Submodular Functions, Optimization,

and Applications to Machine Learning
— Spring Quarter, Lecture 3 —

http://www.ee.washington.edu/people/faculty/bilmes/classes/eeb63_spring_2018/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/ ~bilmes

April 2nd, 2018

M f(A) ()>f(AuB)+f(AmB)
S 00 @ ® £

Prof. Jeff Bilmes EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F1/56 (pg.1/56)

Logistics
1l

Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige's book.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F2/56 (pg.2/56)

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/
http://melodi.ee.washington.edu/~bilmes

@ L1(3/26): Motivation, Applications, & @ L11(4/30)
Basic Definitions, @ L12(5/2):
@ L2(3/28): Machine Learning Apps @ L13(5/7)
(diversity, complexity, parameter, learning o L14(5/9)
target, surrogate). o L15(5/14)
@ L3(4/2): Info theory exs, more apps, o L16(5/16
definitions, graph/combinatorial examples (5/16)
o La(4/4): @ L17(5/21)
o L5(4/9) o L18(5/23):
o L6(4/11): @ L—(5/28): Memorial Day (holiday)
o L7(4/16): @ L19(5/30):
o L8(4/18): @ L21(6/4): Final Presentations
o L9(4/23): maximization.
@ L10(4/25):

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F3/56 (pg.3/56)

Two Equivalent Submodular Definitions

Definition 3.2.1 (submodular concave)

A function f : 2V — R is submodular if for any A, B C V, we have that:

f(A) + f(B) = f(AUB) + f(AN B) (3.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.2 (diminishing returns)

A function f: 2" — R is submodular if for any A C B C V, and
v € V \ B, we have that:

f(AU{v}) = f(A) = f(BU{v}) - f(B) (3.9)

v

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as the
context in which v is considered grows from A to B.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F4/56 (pg.4/56)

Two Equivalent Supermodular Definitions

Definition 3.2.1 (supermodular)
A function f : 2¥ — R is supermodular if for any A, B C V, we have that:

f(A)+ f(B) < f(AUB) + f(AN B) (3.8)

o

Definition 3.2.2 (supermodular (improving returns))

A function f : 2 — R is supermodular if for any A C B C V, and
v € V' \ B, we have that:

f(AU{v}) = f(A) < f(BU{v}) - f(B) (3.9)
@ Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
@ A function f is submodular iff —f is supermodular.
o If f both submodular and supermodular, then f is said to be modular,
and f(A) =c+ > ,ca f(a) (often ¢ = 0).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F5/56 (pg.5/56)

Submodularity’s utility in ML

@ A model of a physical process :
e When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
e When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
e vice-versa for supermodularity.
@ A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, structured
sparse convex norms for use in regularization).

@ Itself, as an object or function to learn , based on data.

@ A surrogate or relaxation strategy for optimization or analysis

e An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). l.e., a means
towards tractable surrogates for graphical models.

e Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.

e Non-submodular problems can be analyzed via submodularity.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F6/56 (pg.6/56)

ML Target
[N

Learning Submodular Functions

@ Learning submodular functions is hard

@ Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f such
that f(S) < £(S) < g(n)f(S) where g : N — R?" Many results,
including that even with adaptive queries and monotone functions,
can't do better than Q(y/n/logn).

@ Balcan & Harvey (2011): submodular function learning problem from a
learning theory perspective, given a distribution on subsets. Negative
result is that can't approximate in this setting to within a constant
factor.

o Feldman, Kothari, Vondrak (2013), shows in some learning settings,
things are more promising (PAC learning possible in O(n2) - 20(1/€"),

@ One example: can we learn a subclass, perhaps non-negative weighted
mixtures of submodular components?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F7/56 (pg.7/56)

ML Target
10l

Structured Learning of Submodular Mixtures

@ Constraints specified in inference form:

1 A
minimize T Zt:& 35 [w|? (3.1)

W,gt
subject to w ' £(y®) > max (wat(y) + Et(y)) — &, vt (3.2)
YEW:

@ Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”

o w ' fi(y) is a mixture of submodular components.

@ If loss is also submodular, then loss-augmented inference is submodular
optimization.

@ If loss is supermodular, this is a difference-of-submodular (DS) function
optimization.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F8/56 (pg.8/56)

ML Target
(W]

Structured Prediction: Subgradient Learning

@ Solvable with simple sub-gradient descent algorithm using structured
variant of hinge-loss (Taskar, 2004).

@ Loss-augmented inference is either submodular optimization (Lin & B.
2012) or DS optimization (Tschiatschek, lyer, & B. 2014).

Algorithm 1: Subgradient descent learning

Input : S = {(x®,y®) T | and a learning rate sequence {m;}L_;.
1 wg = 0;

2 fort=1,---,7T do

3 Loss augmented inference: y; € argmaxy cy, WtT_lft(y) + 4 (y);
4 Compute the subgradient: g; = Aw;_1 + fi(y*) — £;(y®);

5 Update the weights: w; = w1 — n:8¢;

Return : the averaged parameters %Zt Wy

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F9/56 (pg.9/56)

The next page shows a slide from Lecture 1

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F10/56 (pg.10/56)

Surrogate
[N NN

Submodular-Supermodular Decomposition

@ As an alternative to graphical decomposition, we can decompose a
function without resorting sums of local terms.

Theorem 3.4.1 (Additive Decomposition (Narasimhan & Bilmes, 2005))

Let h: 2V — R be any set function. Then there exists a submodular
function f : 2V — R and a supermodular function g : 2 — R such that h
may be additively decomposed as follows: For all A C'V,

h(A) = f(A) + g(4) (3.8)

v

e For many applications (as we will see), either the submodular or
supermodular component is naturally zero.

@ Sometimes more natural than a graphical decomposition.

@ Sometimes h(A) has structure in terms of submodular functions but is
non additively decomposed (one example is h(A) = f(A)/g(A)).

@ Complementary: simultaneous graphical /submodular-supermodular
decomposition (i.e., submodular + supermodular tree).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F11/56 (pg.11/56)

Surrogate
[N AN

Applications of DS functions

Any function h : 2V — R can be expressed as a difference between two
submodular (DS) functions, h = f — g.

@ Sensor placement with submodular costs. l.e., let V be a set of possible
sensor locations, f(A) = I(Xa; Xy, 4) measures the quality of a
subset A of placed sensors, and ¢(A) the submodular cost. We have
f(A) — Ac(A) as the overall objective to maximize.

@ Discriminatively structured graphical models, EAR measure
I(Xa; Xy\a) — I(Xa; Xy 4]C), and synergy in neuroscience.

o Feature selection: a problem of maximizing
I(X4;C) — Ae(A) = H(X) — [H(X4|C) + Ac(A)], the difference
between two submodular functions, where H is the entropy and c is a
feature cost function.

@ Graphical Model Inference. Finding = that maximizes
p(z) x exp(—v(z)) where x € {0,1}" and v is a pseudo-Boolean
function. When v is non-submodular, it can be represented as a
difference between submodular functions.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F12/56 (pg.12/56)

Surrogate
11Inl

Submodular Relaxation

@ We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

e If potentials are submodular, we can solve them.

@ When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

@ An alternative is submodular relaxation. l.e., given

Pr(z) = %exp(—E(aj)) (3.4)
where E(x) = Ef(x) — E4(x) and both of Ef(x) and E4(x) are

submodular.

@ Any function can be expressed as the difference between two
submodular functions.

@ Hence, rather than minimize E(x) (hard), we can minimize the easier
E(z) = E¢(x) — Ep(z) > E(z) where E,,(x) is a modular lower
bound on Ej,(x).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F13/56 (pg.13/56)

Surrogate
[NENN |

Submodular Analysis for Non-Submodular Problems

@ Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.

@ For example, “deviation from submodularity” can be measured using the
submodularity ratio (Das & Kempe):

A E:sestf(xLL)
= 35
04(f) LgU,S;éﬂ%%,SmL:@ f(S|L) (&5
o f is submodular if and only if vy = 1.
@ For some variable selection problems, can get bounds of the form:
Solution > (1 — JOPT (3.6)

e VU* .k
where U™ is the solution set of a variable selection algorithm.

@ This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).

@ Other analogous concepts: curvature of a submodular function, and
also the submodular degree.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F14/56 (pg.14/56)

Bit More Notation

Ground set: E or V7

Submodular functions are functions defined on subsets of some finite set,
called the ground set.

@ It is common in the literature to use either E or V' as the ground set —
we will at different times use both (there should be no confusion).

@ The terminology ground set comes from lattice theory, where V' are the
ground elements of a lattice (just above 0).

Prof. Jeff Bilmes EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F15/56 (pg.15/56)

Bit More Notation

Notation RZ, and modular functions as vectors

What does = € R¥ mean?

RF={z=(z; cR:j€ E)} (3.7)
and

RY={z=(z;:j€E): x>0} (3.8)

Any vector = € R can be treated as a normalized modular function, and
vice verse. Thatis, for A C F,

2(A) =)z, (3.9)

acA

Note that x is said to be normalized since z(()) = 0.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F16/56 (pg.16/56)

Bit More Notation

characteristic (incidence) vectors of sets & modular

functions

@ Given an A C E, define the incidence (or characteristic) vector
14 € {0,1}¥ on the unit hypercube to be

1 ifje A,
14(7) = 3.10
A(Jj) {0 ifid A ()
or equivalently,
1, {xE{O,l}E:xizl iffz'eA} (3.11)

@ Sometimes this is written as x4 = 14.
e Thus, given modular function z € R, we can write z:(A) in a variety
of ways, i.e.,

2(A)=aT-14=) (i) (3.12)

1€EA

Prof. Jeff Bilmes EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F17/56 (pg.17/56)

Bit More Notation

Other Notation: singletons and sets

When A is a set and k is a singleton (i.e., a single item), the union is
properly written as A U {k}, but sometimes we will write just A + k.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F18/56 (pg.18/56)

Bit More Notation
[ANNN |

What does S” mean when S and T are arbitrary sets?

@ Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

@ We define the notation ST to be the set of all functions that map from
Tto S. Thatis, if f € ST, then f:T — S.

@ Hence, given a finite set E, R¥ is the set of all functions that map
from elements of E to the reals R, and such functions are identical to a
vector in a vector space with axes labeled as elements of E (i.e., if
m € RE, then for all e € E, m(e) € R).

e Often “2" is shorthand for the set {0,1}. l.e., R? where 2 = {0, 1}.

o Similarly, 2F is the set of all functions from E to “two” — so 2F is
shorthand for {0,1}* — hence, 2% is the set of all functions that map
from elements of E to {0, 1}, equivalent to all binary vectors with
elements indexed by elements of F, equivalent to subsets of E. Hence,
if A€ 2F then ACE.

e What might 3% mean?

Prof. Jeff Bilmes EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F19/56 (pg.19/56)

Info Theory Examples
Bl

Example Submodular: Entropy from Information Theory

@ Entropy is submodular. Let V' be the index set of a set of random
variables, then the function

f(A)=H(Xa)=—) p(za)logp(za) (3.13)
xA
is submodular.
@ Proof: (further) conditioning reduces entropy. With A C B and v ¢ B,

H(X,|Xp) = H(Xptv) — H(XB) (3.14)
< H(Xaty) — H(X4) = H(Xy|X4) (3.15)

e We say “further” due to B\ A not nec. empty.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F20/56 (pg.20/56)

Info Theory Examples
1l

Example Submodular: Entropy from Information Theory

@ Alternate Proof: Conditional mutual Information is always non-negative.
e Given A, B C V, consider conditional mutual information quantity:

p(za\B>TB\4lTANB)

I(Xa\5; Xp\alXanB) = zau)lo
(Xa\5;: Xp\alXanp) =) p(zaup) gp(:BA\B|ZUAﬂB)p(37B\A|$AﬂB)

TAUB
73 i
= 3" pleaus) log P(@auB)p(Tans) - (3.16)
vt p(za)p(zp)
then
I(X a\B; XB\alXanB)
= H(X4) + H(Xp) — HXaup) — H(Xanp) >0 (3.17)
so entropy satisfies
H(XA)—I—H(XB) ZH(XAUB)+H(XAQB) (3.18)

Prof. Jeff Bilmes EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F21/56 (pg.21/56)

Info Theory Examples
11nl

Information Theory: Block Coding

e Given a set of random variables {X;},.y, indexed by set V', how do we
partition them so that we can best block-code them within each block.

@ l.e., how do we form S C V such that I(XS;XV\S) is as small as
possible, where I(X 4; Xp) is the mutual information between random
variables X4 and Xpg, i.e.,

I(Xa;Xp) = H(Xa)+ H(XB) — H(X4,XB) (3.19)

and H(X4) =—>_,, p(za)logp(za) is the joint entropy of the set
X 4 of random variables.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F22/56 (pg.22/56)

Info Theory Examples
(NN |

Example Submodular: Mutual Information

@ Also, symmetric mutual information is submodular,
f(A) = I(Xa; Xyna) = H(Xa) + H(Xyn4) — H(Xv) (3.20)

Note that f(A) = H(X4) and f(A) = H(Xy\ 4), and adding
submodular functions preserves submodularity (which we will see quite
soon).

Prof. Jeff Bilmes EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F23/56 (pg.23/56)

Monge Matrices

@ m X n matrices C' = [¢;;];; are called Monge matrices if they satisfy the
Monge property, namely:
Cij t Crs < Cis + Crj (321)
foralll1<i<r<mand1<j<s<n.
e Equivalently, forall 1 <i,7» <m, 1 <j,s <n,
Cmin(i,r),min(j,s) + Cmax(i,r),max(j,s) < Cis + Crj (322)

@ Consider four elements of the m x n matrix:

C; ‘i

9 s
cj=A+B,¢c;j=B,¢cs =B+ D,cis=A+B+C+D.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F24/56 (pg.24/56)

Monge Matrices, where useful

@ Useful for speeding up many transportation, dynamic programming,
flow, search, lot-sizing and many other problems.

@ Example, Hitchcock transportation problem: Given m x n cost matrix
C = [cij]ij » a non-negative supply vector a € Rl", a non-negative
demand vector b € R} with > i%, a(i) = > 7, b;, we wish to
optimally solve the following linear program:

minimize i z”: Gty (3.23)

S =1 j=1
m
subject to inj =b; Vi=1,...,n (3.24)
1=1
n
inj:ai Vi:1,...,m (325)
j=1
Zi g >0 Vi,j (3.26)

Prof. Jeff Bilmes EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F25/56 (pg.25/56)

Monge
[N AN

Monge Matrices, Hitchcock transportation

ai O|1T |3 |3
Producers,
Sources, 9 4 7 10
or Supply
as 0|49 (14
3 2 1 2

b1 by bz by

Consumers, Sinks, or
Demand

@ Solving the linear program can be done easily and optimally using the
“North West Corner Rule” (a 2D greedy-like approach starting at
top-left and moving down-right) in only O(m + n) if the matrix C is
Monge!

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F26/56 (pg.26/56)

Monge
(NN B

Monge Matrices and Convex Polygons

@ Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances c;;
satisfy Monge property (or quadrangle inequality).

d(p2,q3) + d(ps, qa) < d(p2,qa) + d(p3, q3) (3.27)
q1
q2 P1
P2 P2
qs q3
P3 P3
q4 g 5 D4 g4

Prof. Jeff Bilmes EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F27/56 (pg.27/56)

Monge
[NENN |

Monge Matrices and Submodularity

@ A submodular function has the form: f : 2V — R which can be seen as
f:{0,1}V - R

o We can generalize this to f : {0, K}" — R for some constant K € Z, .

@ We may define submodularity as: for all z,y € {O,K}V, we have

f@)+ fly) = fzVy) + fzAy) (3.28)

@ x V y is the (join) element-wise min of each element, that is
(z Vy)(v) =min(z(v),y(v)) forv e V.
@ x Ay is the (meet) element-wise min of each element, that is,
(x Ay)(v) = max(z(v),y(v)) for v € V.
e With K =1, then this is the standard definition of submodularity.

@ With |V| =2, and K + 1 the side-dimension of the matrix, we get a
Monge property (on square matrices).

@ Not-necessarily-square would be f : {0, K1} x {0, Ko} — R.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F28/56 (pg.28/56)

More Definitions

Submodular Motivation Recap

o Given a set of objects V = {v1,...,v,} and a function f:2V = R
that returns a real value for any subset S C V.

@ Suppose we are interested in finding the subset that either maximizes or
minimizes the function, e.g., argmaxgcy f(5), possibly subject to
some constraints.

@ In general, this problem has exponential time complexity.

@ Example: f might correspond to the value (e.g., information gain) of a
set of sensor locations in an environment, and we wish to find the best
set S C V of sensors locations given a fixed upper limit on the number
of sensors |.5].

@ In many cases (such as above) f has properties that make its
optimization tractable to either exactly or approximately compute.

@ One such property is submodularity.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F29/56 (pg.29/56)

Two Equivalent Submodular Definitions

Definition 3.8.1 (submodular concave)

A function f : 2V — R is submodular if for any A, B C V, we have that:

f(A) + f(B) = f(AUB) + f(AN B) (3.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.8.2 (diminishing returns)

A function f: 2" — R is submodular if for any A C B C V, and
v € V \ B, we have that:

f(AU{v}) = f(A) = f(BU{v}) - f(B) (3.9)

v

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as the
context in which v is considered grows from A to B.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F30/56 (pg.30,/56)

More Definitions
[N RRRENE]

Submodular on Hypercube Vertices

@ Test submodularity via values on verticies of hypercube.
Example: with |V| =n =2, thisis With |V| =n = 3, a bit harder,

111
easy:

10 "

— XX
\Z%

How many mequalltles?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F31/56 (pg.31/56)

More Definitions
[NEN RN

Subadditive Definitions

Definition 3.8.1 (subadditive)
A function f : 2" — R is subadditive if for any A, B C V, we have that:

F(A)+ F(B) = f(AUB) (3.29)

This means that the “whole” is less than the sum of the parts.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F32/56 (pg.32/56)

More Def finitions
NN ARNE

Two Equivalent Supermodular Definitions

Definition 3.8.1 (supermodular)
A function f : 2V — R is supermodular if for any A, B C V, we have that:

f(A)+ f(B) < f(AUB)+ f(ANnB) (3.8)

v

Definition 3.8.2 (supermodular (improving returns))

A function f : 2 — R is supermodular if for any A C B C V, and
v € V' \ B, we have that:

f(AU{v}) = F(A) < fF(BU{v}) - f(B) (3.9)

v

@ Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.

@ A function f is submodular iff —f is supermodular.

o If f both submodular and supermodular, then f is said to be modular,
and f(A) =c+ > ,ca f(a) (often ¢ = 0).

EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F33/56 (pg.-33/56)

More Def finitions
[NEREN RN

Superadditive Definitions

Definition 3.8.2 (superadditive)
A function f : 2 — R is superadditive if for any A, B C V, we have that:

f(A)+ f(B) < f(AUB) (3.30)

@ This means that the “whole” is greater than the sum of the parts.

@ In general, submodular and subadditive (and supermodular and
superadditive) are different properties.

o Ex: Let 0 < k < |V, and consider f : 2V — R where:

F(4) = {1 A<k (3.31)

0 else

@ This function is subadditive but not submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F34/56 (pg.34/56)

More Def finitions
[NEREEE RN

Modular Definitions

Definition 3.8.3 (modular)

A function that is both submodular and supermodular is called modular

If f is a modular function, than for any A, B C V, we have
flA)+ f(B)=f(ANnB)+ f(AUB) (3.32)

In modular functions, elements do not interact (or cooperate, or compete, or
influence each other), and have value based only on singleton values.

Proposition 3.8.4

If { is modular, it may be written as

F(A) = FO)+ > (F{ah) = FB) =c+ > F(a) (3.33)

acA acA

which has only |V'| + 1 parameters.

EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F35/56 (pg.35/56)

More Def finitions
LErrrrnni

Modular Definitions

We inductively construct the value for A = {aq,aq, ..., ax}.
For k = 2,

fla1) + f(a2) = f(a1,a2) + f(0) (3.34)
implies f(a1,a2) = f(a1) — f(0) + f(a2) — f(0) + f(0) (3.35)

then for k£ = 3,

fla1,a2) + f(a3) = f(a1,a2,a3) + f(0) (3.36)
implies f(a1,a2,a3) = f(a1,a2) — f(0) + f(as) — f(0) + f(0) (3.37)

and so on ...]

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F36/56 (pg.36/56)

More Def finitions
Lerrerenn

Complement function

Given a function f : 2V — R, we can find a complement function
f:2V 2 Ras f(A) = f(V\A) for any A,

Proposition 3.8.5

[is submodular iff f is submodular.

f(A)+ f(B) > f(AUB) + f(ANB) (3.39)

follows from
FVNA)+ f(VAB) = f(VN(AUB))+ f(V\(ANB)) (3.40)

which is true because V'\ (AUB) = (V\ A)n(V\ B) and
VN(ANB)=(V\A)U((V\ B) (De Morgan's laws for sets). O

EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F37/56 (pg.37/56)

Graph & Combinatorial Examples
Rirrrrerrrrrennd

Undirected Graphs

o Let G = (V, E) be a graph with vertices V= V(G) and edges
E=EG)CV xV.
e If G is undirected, define
EX,)Y)={{z,y} e E(G):z2 e X\ Y,y Y\ X} (3.41)

as the edges strictly between X and Y.
@ Nodes define cuts, define the cut function §(X) = E(X,V \ X).

(S)={{u,v}€e E:ueS,ve V\S}
= {{ad}.{bd}.{be} {ce}{c.f}}

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F38/56 (pg.38/56)

Graph & Combinatorial Exampl les

Directed graphs, and cuts and flows
o If G is directed, define

ENX,)Y) & {(z,y) e E(G):2€ X \Y,ye Y\ X} (3.42)

as the edges directed strictly from X towards Y.
@ Nodes define cuts and flows. Define edges leaving X (out-flow) as

ST(X) 2 ET(X,V\X) (3.43)
and edges entering X (in-flow) as

S(X)E2ET(V\ X, X) (3.44)

EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F39/56 (pg.39/56)

Graph & Combinatorial Exampl les
LERLrrrrrrrrrend

The Neighbor function in undirected graphs

@ Given a set X C V, the neighbor function of X is defined as
NX)2 {veV(G)\ X : E(X,{v}) #0} (3.45)

@ Example:

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F40/56 (pg.40/56)

Graph & Combinatorial Examples
LETRrrrrrerrend

Directed Cut function: property

Lemma 3.9.1
For a digraph G = (V, E) and any X, Y C V: we have

|67 (X)) + |67 (V)]

=0T XNY)|+[6T(XUY)|+ |ET(X,Y)|+ |ET(Y, X)| (3.46)
and
67 (X)) +[67(Y)]
— 6" (XNY)|+ |6 (XUY)|+|E(X,Y)| + |E~ (Y, X)| (3.47)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F41/56 (pg.41/56)

Graph & Combinatorial Examples
LErrmrrrrrerrend

Directed Cut function: proof of property
Proof.

We can prove Eq. (3.46) using a geometric counting argument (proof for

|07 (X)| case is similar)

X VX X V\X
(@)
Y b)_> Y (e) 19 |(g)
|07 (X)) © TANY l07(Y)
V\Y ar> V\Y
X V\X X _ V\X
(@)
Y > Y b)
BrXnY) el 8 \\ 9O rxuY),
\4
VY| Y VY o
X V\X X V\X
Y Y
|ET(X, V) () |EF(Y, X)|
V\Y © V\Y

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F42/56 (pg.42/56)

Graph & Combinatorial Examples
Lrrrrerrrrerrend

Directed cut/flow functions: submodular

For a digraph G = (V,E) and any X,Y C V: both functions |6%(X)| and
|07 (X)| are submodular.

|ET(X,Y)| >0 and |E-(X,Y)| > 0. O

More generally, in the non-negative edge weighted case, both in-flow and
out-flow are submodular on subsets of the vertices.

EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F43/56 (pg.43/56)

Graph & Combinatori
LErrrrmrrned

Undirected Cut/Flow & the Neighbor function: submodular
Lemma 3.9.3

For an undirected graph G = (V, E) and any X, Y C V: we have that both
the undirected cut (or flow) function |§(X)| and the neighbor function
|T'(X)| are submodular. I.e.,

0(X)|+0(Y)|=16(XNY)|+|0(XUY)|+2|E(X,Y)| (3.48)

and

PO+ D) = DX NY)| + [T(X UY) (3.49)

Proof.
e Eq. (3.48) follows from Eq. (3.46): we replace each undirected edge
{u, v} with two oppositely-directed directed edges (u,v) and (v, u).
Then we use same counting argument.

e Eq. (3.49) follows as shown in the following page.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F44/56 (pg.44/56)

() —
Graphically, we can count and see that

['(X) = (a) + () + (f) + (9) + (d) (3.50)
T(Y) = (b) + (c) + (e) + (h) + (d) (3.51)
T(X UY) = (a)+ (b) + (c) + (d) (3.52)
N NY) = () +(g9) + (h) (3.53)

SO

DX+ DY)| = (a) + (0) +2(c) +2(d) + (e) + () +(g9) + ()
> (a) + (b) +2(c) + (d) + (9) + () = IN(X UY)|+ [T(X NY)| (3.54)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F45/56 (pg.45/56)

Graph & Combinatorial Examples
LErrrrrrerrrrnnd

Undirected Neighbor functions

Therefore, the undirected cut function |§(A)| and the neighbor function
I['(A)| of a graph G are both submodular.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F46/56 (pg.46/56)

Graph & Combinatorial Exampl les
LErrrrrrrerrrenl

Undirected cut/flow is submodular: alternate proof

Another simple proof shows that |§(X)| is submodular.
Define a graph Gy, = ({u, v}, {e}, w) with two nodes u,v and one
edge e = {u,v} with non-negative weight w(e) € R.
o Cut weight function over those two nodes: w(d,,(+)) has valuation:

W(0y,0 (1)) = w(dup({u,v})) =0 (3.55)
and
w(0up({u})) = w(uu({v})) =w =0 (3.56)
@ Thus, w(dy.(-)) is submodular since

w(0u({u})) + w(dup({v})) = w(luw({u, v})) + w(0uw(@)) (3.57)
General non-negative weighted graph G = (V, E, w), define w(d(+)):

FX)=w@(X) = Y w(uu(Xn{u,v})) (3.58)

(u,0)EE(G)

@ This is easily shown to be submodular using properties we will soon see
(namely, submodularity closed under summation and restriction).

EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F47/56 (pg.47/56)

Graph & Combinatorial Exampl les
LErrrrrrrrerrnnl

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X) be the vertices adjacent to some edge in X C E(G), then
|V (X)]| (the vertex function) is submodular.

@ Let F(S) be the edges with both vertices in S C V(G). Then |E(S)|
(the interior edge function) is supermodular.

o Let I(S) be the edges with at least one vertex in S C V(G). Then
|1(S)| (the incidence function) is submodular.

@ Recall |0(S)], is the set size of edges with exactly one vertex in
S C V(G) is submodular (cut size function). Thus, we have
I(S) = E(S)Ud(S) and E(S)Nd(S) =0, and thus that
|1I(S)| = |E(S)| + |6(S)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

o Consider f(A) = |6T(A)| —[67(V \ A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F48/56 (pg.48/56)

Graph & Combinatorial Examples
[NRNRERER RN RRRR

Number of connected components in a graph via edges

@ Recall, f:2" — R is submodular, then so is f : 2 — R defined as
f(8) = F(V\S).

@ Hence, if g : 2 — R is supermodular, then so is g : 2" — R defined as
g(S) = g(V\ 5).

e Given a graph G = (V, FE), for each A C E(G), let ¢c(A) denote the
number of connected components of the (spanning) subgraph
(V(G),A), with ¢: 2F - R,

@ ¢(A) is monotone non-increasing, c(A+a) —c(A) < 0.

@ Then ¢(A) is supermodular, i.e.,

c(A+a)—c(A) <¢(B+a)—cB) (3.59)
with AC B C E\ {a}.

@ Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.

@ ¢(A) =c(E\ A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.

Prof. Jeff Bilmes EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F49/56 (pg.49/56)

Graph & Combinatorial Examples
Lerrrrrrrrrrernl

Graph Strength

@ So ¢(A) = c¢(F \ A) is the number of connected components in G
when we remove A, is supermodular.

e Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

@ If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

o Let G = (V, E,w) with w : E — R+ be a weighted graph with
non-negative weights.

@ For (u,v) =e € E, let w(e) be a measure of the strength of the
connection between vertices u and v (strength meaning the difficulty of
cutting the edge e).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F50/56 (pg.50,/56)

Graph & Combinatorial Examples
LErrrrrrrrrrrmnd

Graph Strength

@ Then w(A) for A C E is a modular function

w(A) = " w, (3.60)
ecA
so that w(FE(G[S])) is the “internal strength” of the vertex set S.

@ Suppose removing A shatters GG into a graph with ¢(A) > 1
components — then w(A)/(¢(A) — 1) is like the “effort per
achieved/additional component” for a network attacker.

@ A form of graph strength can then be defined as the following:

strength(G,w) = min wid)

— .61
ACE(G):¢(A)>1 ¢(A) — 1 (3.61)

@ Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G, w).

@ Since submodularity, problems have strongly-poly-time solutions.

Prof. Jeff Bilmes EE563/Spring 2018 /Submodularity - Lecture 3 - April 2nd, 2018 F51/56 (pg.51/56)

Graph & Combinatori
Lrrrrrrrrend

Submodularity, Quadratic Structures, and Cuts

Lemma 3.9.4

Let M € R™*"™ be a symmetric matrix and m € R™ be a vector. Then
f:2V = R defined as

1
f(X) =mTlx + 51}(1\/[1)((362)

is submodular iff the off-diagonal elements of M are non-positive.

| A\

Proof.

@ Given a complete graph G = (V, E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)| is supermodular.

@ Non-negative modular weights w™ : E — R, w(E(X)) is also
supermodular, so —w(E(X)) is submodular.

e f is a modular function m™14 = m(A) added to a weighted
submodular function, hence f is submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F52/56 (pg.52/56)

Graph & Combinatorial Examples
Lerrrrrrerrrreen

Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 3.9.4 cont.

@ Conversely, suppose f is submodular.

e Then Vu,v € V, f({u}) + f({v}) > f({u,v}) + f(0) while f(0) = 0.

@ This requires:

0 < f({u}) + f({v}) — f({u,v}) (3.63)
— m(u) + %Mu,u +m(v) + %M (3.64)
— (m(u) + m(v) + % . 3= Wiy o 3F %Mv,v) (3.65)

— M, (3.66)

So that Vu,v € V, M,,, <0.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F53/56 (pg.53/56)

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,...,U,} of n subsets of U, so that U; C U and
U, U =U.

@ The goal of minimum set cover is to choose the smallest subset
AC[n]2{1,...,n} such that J,. 4, Us = U.

@ Maximum k cover: The goal in maximum coverage is, given an integer
k < n, select k subsets, say {ai,aq,...,ar} with a; € [n] such that
| Ule Us,| is maximized.

o f:2" - Z, where for A C [n], f(A) = | Upea Val is the set cover
function and is submodular.

o Weighted set cover: f(A) = w({J,cy Va) where w : U — Ry

@ Both Set cover and maximum coverage are well known to be NP-hard,
but have a fast greedy approximation algorithm, and hence are
instances of submodular optimization.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F54/56 (pg.54/56)

Graph & Combinatorial Examples
1

Vertex and Edge Covers

Also instances of submodular optimization

Definition 3.9.5 (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V, E) is a
set S C V(@) of vertices such that every edge in G is incident to at least
one vertex in S.

@ Let /(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S C V subject to I(S) = |E].

Definition 3.9.6 (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V, E) is a
set F' C E(G) of edges such that every vertex in G is incident to at least
one edge in F.

@ Let |V|(F') be the number of vertices incident to edge set F'. Then we
wish to find the smallest set ' C E subject to |V|(F) = |V].

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F55/56 (pg.55/56)

Graph & Combinatorial Examples
(NN]

Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V' \ S.

@ Maximum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V' \ S.

o Let 6 : 2" — R, be the cut function, namely for any given set of nodes
X CV, |6(X)| measures the number of edges between nodes X and
VAX —ie, d(x)=EX,V\X).

@ Weighted versions, where rather than count, we sum the (non-negative)
weights of the edges of a cut, f(X) = w(d(X)).

@ Hence, Minimum cut and Maximum cut are also special cases of
submodular optimization.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F56/56 (pg.56,/56)

	Logistics & Review
	Logistics
	

	Review
	

	Current Lecture Part
	Current Lecture
	Itself, as a target for learning
	

	Surrogates for optimization and analysis
	

	Bit More Notation
	

	Info Theory Examples
	

	Monge
	

	More Definitions
	

	Graph & Combinatorial Examples
	Graphs
	Combinatorial Structures

