Submodular Functions, Optimization, and Applications to Machine Learning
 - Spring Quarter, Lecture 3 -

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

April 2nd, 2018

Cumulative Outstanding Reading

- Read chapter 1 from Fujishige's book.

Class Road Map - EE563

- L1(3/26): Motivation, Applications, \& Basic Definitions,
- L2(3/28): Machine Learning Apps (diversity, complexity, parameter, learning target, surrogate).
- L3(4/2): Info theory exs, more apps, definitions, graph/combinatorial examples
- L4(4/4):
- L5(4/9):
- L6(4/11):
- L7(4/16):
- L8(4/18):
- L9(4/23):
- L10(4/25):
- L11(4/30):
- L12(5/2):
- L13(5/7):
- L14(5/9):
- L15(5/14):
- L16(5/16):
- L17(5/21):
- L18(5/23):
- L-(5/28): Memorial Day (holiday)
- L19(5/30):
- L21(6/4): Final Presentations maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

Two Equivalent Submodular Definitions

Definition 3.2.1 (submodular concave)

A function $f: 2^{V} \rightarrow \mathbb{R}$ is submodular if for any $A, B \subseteq V$, we have that:

$$
\begin{equation*}
f(A)+f(B) \geq f(A \cup B)+f(A \cap B) \tag{3.8}
\end{equation*}
$$

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.2 (diminishing returns)

A function $f: 2^{V} \rightarrow \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $v \in V \backslash B$, we have that:

$$
\begin{equation*}
f(A \cup\{v\})-f(A) \geq f(B \cup\{v\})-f(B) \tag{3.9}
\end{equation*}
$$

The incremental "value", "gain", or "cost" of v decreases (diminishes) as the context in which v is considered grows from A to B.

Two Equivalent Supermodular Definitions

Definition 3.2.1 (supermodular)

A function $f: 2^{V} \rightarrow \mathbb{R}$ is supermodular if for any $A, B \subseteq V$, we have that:

$$
\begin{equation*}
f(A)+f(B) \leq f(A \cup B)+f(A \cap B) \tag{3.8}
\end{equation*}
$$

Definition 3.2.2 (supermodular (improving returns))

A function $f: 2^{V} \rightarrow \mathbb{R}$ is supermodular if for any $A \subseteq B \subset V$, and $v \in V \backslash B$, we have that:

$$
\begin{equation*}
f(A \cup\{v\})-f(A) \leq f(B \cup\{v\})-f(B) \tag{3.9}
\end{equation*}
$$

- Incremental "value", "gain", or "cost" of v increases (improves) as the context in which v is considered grows from A to B.
- A function f is submodular iff $-f$ is supermodular.
- If f both submodular and supermodular, then f is said to be modular, and $f(A)=c+\sum_{a \in A} f(a)$ (often $c=0$).

Submodularity's utility in ML

- A model of a physical process :
- When maximizing, submodularity naturally models: diversity, coverage, span, and information.
- When minimizing, submodularity naturally models: cooperative costs, complexity, roughness, and irregularity.
- vice-versa for supermodularity.
- A submodular function can act as a parameter for a machine learning strategy (active/semi-supervised learning, discrete divergence, structured sparse convex norms for use in regularization).
- Itself, as an object or function to learn, based on data.
- A surrogate or relaxation strategy for optimization or analysis
- An alternate to factorization, decomposition, or sum-product based simplification (as one typically finds in a graphical model). I.e., a means towards tractable surrogates for graphical models.
- Also, we can "relax" a problem to a submodular one where it can be efficiently solved and offer a bounded quality solution.
- Non-submodular problems can be analyzed via submodularity.
- Learning submodular functions is hard
- Goemans et al. (2009): "can one make only polynomial number of queries to an unknown submodular function f and constructs a \hat{f} such that $\hat{f}(S) \leq f(S) \leq g(n) \hat{f}(S)$ where $g: \mathbb{N} \rightarrow \mathbb{R}$?" Many results, including that even with adaptive queries and monotone functions, can't do better than $\Omega(\sqrt{n} / \log n)$.
- Balcan \& Harvey (2011): submodular function learning problem from a learning theory perspective, given a distribution on subsets. Negative result is that can't approximate in this setting to within a constant factor.
- Feldman, Kothari, Vondrák (2013), shows in some learning settings, things are more promising (PAC learning possible in $\tilde{O}\left(n^{2}\right) \cdot 2^{O\left(1 / \epsilon^{4}\right)}$).
- One example: can we learn a subclass, perhaps non-negative weighted mixtures of submodular components?

Structured Learning of Submodular Mixtures

- Constraints specified in inference form:

$$
\begin{array}{ll}
\underset{\mathbf{w}, \xi_{t}}{\operatorname{minimize}} & \frac{1}{T} \sum_{t} \xi_{t}+\frac{\lambda}{2}\|\mathbf{w}\|^{2} \\
\text { subject to } & \mathbf{w}^{\top} \mathbf{f}_{t}\left(\mathbf{y}^{(t)}\right) \geq \max _{\mathbf{y} \in \mathcal{Y}_{t}}\left(\mathbf{w}^{\top} \mathbf{f}_{t}(\mathbf{y})+\ell_{t}(\mathbf{y})\right)-\xi_{t}, \forall t \\
& \xi_{t} \geq 0, \forall t .
\end{array}
$$

- Exponential set of constraints reduced to an embedded optimization problem, "loss-augmented inference."
- $\mathbf{w}^{\top} \mathbf{f}_{t}(\mathbf{y})$ is a mixture of submodular components.
- If loss is also submodular, then loss-augmented inference is submodular optimization.
- If loss is supermodular, this is a difference-of-submodular (DS) function optimization.
- Solvable with simple sub-gradient descent algorithm using structured variant of hinge-loss (Taskar, 2004).
- Loss-augmented inference is either submodular optimization (Lin \& B. 2012) or DS optimization (Tschiatschek, lyer, \& B. 2014).

Algorithm 1: Subgradient descent learning
Input : $S=\left\{\left(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}\right)\right\}_{t=1}^{T}$ and a learning rate sequence $\left\{\eta_{t}\right\}_{t=1}^{T}$.
$1 w_{0}=0$;
2 for $t=1, \cdots, T$ do
Loss augmented inference: $\mathbf{y}_{t}^{*} \in \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}_{t}} \mathbf{w}_{t-1}^{\top} \mathbf{f}_{t}(\mathbf{y})+\ell_{t}(\mathbf{y})$;
Compute the subgradient: $\mathbf{g}_{t}=\lambda \mathbf{w}_{t-1}+\mathbf{f}_{t}\left(\mathbf{y}^{*}\right)-\mathbf{f}_{t}\left(\mathbf{y}^{(t)}\right)$;
Update the weights: $\mathbf{w}_{t}=\mathbf{w}_{t-1}-\eta_{t} \mathbf{g}_{t}$;
Return : the averaged parameters $\frac{1}{T} \sum_{t} \mathbf{w}_{t}$.

The next page shows a slide from Lecture 1

Submodular-Supermodular Decomposition

- As an alternative to graphical decomposition, we can decompose a function without resorting sums of local terms.

Theorem 3.4.1 (Additive Decomposition (Narasimhan \& Bilmes, 2005))

Let $h: 2^{V} \rightarrow \mathbb{R}$ be any set function. Then there exists a submodular function $f: 2^{V} \rightarrow \mathbb{R}$ and a supermodular function $g: 2^{V} \rightarrow \mathbb{R}$ such that h may be additively decomposed as follows: For all $A \subseteq V$,

$$
\begin{equation*}
h(A)=f(A)+g(A) \tag{3.8}
\end{equation*}
$$

- For many applications (as we will see), either the submodular or supermodular component is naturally zero.
- Sometimes more natural than a graphical decomposition.
- Sometimes $h(A)$ has structure in terms of submodular functions but is non additively decomposed (one example is $h(A)=f(A) / g(A)$).
- Complementary: simultaneous graphical/submodular-supermodular decomposition (i.e., submodular + supermodular tree).

$\begin{array}{ll}\text { ML Target } & \text { Surrogate } \\ \text { ||। } & \text { |||||l }\end{array}$

Applications of DS functions

Any function $h: 2^{V} \rightarrow \mathbb{R}$ can be expressed as a difference between two submodular (DS) functions, $h=f-g$.

- Sensor placement with submodular costs. I.e., let V be a set of possible sensor locations, $f(A)=I\left(X_{A} ; X_{V \backslash A}\right)$ measures the quality of a subset A of placed sensors, and $c(A)$ the submodular cost. We have $f(A)-\lambda c(A)$ as the overall objective to maximize.
- Discriminatively structured graphical models, EAR measure $I\left(X_{A} ; X_{V \backslash A}\right)-I\left(X_{A} ; X_{V \backslash A} \mid C\right)$, and synergy in neuroscience.
- Feature selection: a problem of maximizing $I\left(X_{A} ; C\right)-\lambda c(A)=H\left(X_{A}\right)-\left[H\left(X_{A} \mid C\right)+\lambda c(A)\right]$, the difference between two submodular functions, where H is the entropy and c is a feature cost function.
- Graphical Model Inference. Finding x that maximizes $p(x) \propto \exp (-v(x))$ where $x \in\{0,1\}^{n}$ and v is a pseudo-Boolean function. When v is non-submodular, it can be represented as a difference between submodular functions.

Submodular Relaxation

- We often are unable to optimize an objective. E.g., high tree-width graphical models (as we saw).
- If potentials are submodular, we can solve them.
- When potentials are not, we might resort to factorization (e.g., the marginal polytope in variational inference, were we optimize over a tree-constrained polytope).
- An alternative is submodular relaxation. I.e., given

$$
\begin{equation*}
\operatorname{Pr}(x)=\frac{1}{Z} \exp (-E(x)) \tag{3.4}
\end{equation*}
$$

where $E(x)=E_{f}(x)-E_{g}(x)$ and both of $E_{f}(x)$ and $E_{g}(x)$ are submodular.

- Any function can be expressed as the difference between two submodular functions.
- Hence, rather than minimize $E(x)$ (hard), we can minimize the easier $\tilde{E}(x)=E_{f}(x)-E_{m}(x) \geq E(x)$ where $E_{m}(x)$ is a modular lower bound on $E_{g}(x)$.

Submodular Analysis for Non-Submodular Problems

- Sometimes the quality of solutions to non-submodular problems can be analyzed via submodularity.
- For example, "deviation from submodularity" can be measured using the submodularity ratio (Das \& Kempe):

$$
\begin{equation*}
\gamma_{U, k}(f) \triangleq \min _{L \subseteq U, S:|S| \leq k, S \cap L=\emptyset} \frac{\sum_{s \in S} f(x \mid L)}{f(S \mid L)} \tag{3.5}
\end{equation*}
$$

- f is submodular if and only if $\gamma_{V,|V|}=1$.
- For some variable selection problems, can get bounds of the form:

$$
\begin{equation*}
\text { Solution } \geq\left(1-\frac{1}{e^{\gamma_{U^{*}, k}}}\right) \text { OPT } \tag{3.6}
\end{equation*}
$$

where U^{*} is the solution set of a variable selection algorithm.

- This gradually get worse as we move away from an objective being submodular (see Das \& Kempe, 2011).
- Other analogous concepts: curvature of a submodular function, and also the submodular degree.

Submodular functions are functions defined on subsets of some finite set, called the ground set.

- It is common in the literature to use either E or V as the ground set we will at different times use both (there should be no confusion).
- The terminology ground set comes from lattice theory, where V are the ground elements of a lattice (just above 0).

Notation \mathbb{R}^{E}, and modular functions as vectors

What does $x \in \mathbb{R}^{E}$ mean?

$$
\begin{equation*}
\mathbb{R}^{E}=\left\{x=\left(x_{j} \in \mathbb{R}: j \in E\right)\right\} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{R}_{+}^{E}=\left\{x=\left(x_{j}: j \in E\right): x \geq 0\right\} \tag{3.8}
\end{equation*}
$$

Any vector $x \in \mathbb{R}^{E}$ can be treated as a normalized modular function, and vice verse. That is, for $A \subseteq E$,

$$
\begin{equation*}
x(A)=\sum_{a \in A} x_{a} \tag{3.9}
\end{equation*}
$$

Note that x is said to be normalized since $x(\emptyset)=0$.

ML Target

- Given an $A \subseteq E$, define the incidence (or characteristic) vector $\mathbf{1}_{A} \in\{0,1\}^{E}$ on the unit hypercube to be

$$
\mathbf{1}_{A}(j)= \begin{cases}1 & \text { if } j \in A \tag{3.10}\\ 0 & \text { if } j \notin A\end{cases}
$$

or equivalently,

$$
\begin{equation*}
\mathbf{1}_{A} \stackrel{\text { def }}{=}\left\{x \in\{0,1\}^{E}: x_{i}=1 \text { iff } i \in A\right\} \tag{3.11}
\end{equation*}
$$

- Sometimes this is written as $\chi_{A} \equiv \mathbf{1}_{A}$.
- Thus, given modular function $x \in \mathbb{R}^{E}$, we can write $x(A)$ in a variety of ways, i.e.,

$$
\begin{equation*}
x(A)=x^{\top} \cdot \mathbf{1}_{A}=\sum_{i \in A} x(i) \tag{3.12}
\end{equation*}
$$

Other Notation: singletons and sets

When A is a set and k is a singleton (i.e., a single item), the union is properly written as $A \cup\{k\}$, but sometimes we will write just $A+k$.

What does S^{T} mean when S and T are arbitrary sets?

- Let S and T be two arbitrary sets (either of which could be countable, or uncountable).
- We define the notation S^{T} to be the set of all functions that map from T to S. That is, if $f \in S^{T}$, then $f: T \rightarrow S$.
- Hence, given a finite set E, \mathbb{R}^{E} is the set of all functions that map from elements of E to the reals \mathbb{R}, and such functions are identical to a vector in a vector space with axes labeled as elements of E (i.e., if $m \in \mathbb{R}^{E}$, then for all $\left.e \in E, m(e) \in \mathbb{R}\right)$.
- Often " 2 " is shorthand for the set $\{0,1\}$. I.e., \mathbb{R}^{2} where $2 \equiv\{0,1\}$.
- Similarly, 2^{E} is the set of all functions from E to "two" - so 2^{E} is shorthand for $\{0,1\}^{E}$ - hence, 2^{E} is the set of all functions that map from elements of E to $\{0,1\}$, equivalent to all binary vectors with elements indexed by elements of E, equivalent to subsets of E. Hence, if $A \in 2^{E}$ then $A \subseteq E$.
- What might 3^{E} mean?

mitem emin Example Submodular: Entropy from Information Theory

- Entropy is submodular. Let V be the index set of a set of random variables, then the function

$$
\begin{equation*}
f(A)=H\left(X_{A}\right)=-\sum_{x_{A}} p\left(x_{A}\right) \log p\left(x_{A}\right) \tag{3.13}
\end{equation*}
$$

is submodular.

- Proof: (further) conditioning reduces entropy. With $A \subseteq B$ and $v \notin B$,

$$
\begin{align*}
H\left(X_{v} \mid X_{B}\right) & =H\left(X_{B+v}\right)-H\left(X_{B}\right) \tag{3.14}\\
& \leq H\left(X_{A+v}\right)-H\left(X_{A}\right)=H\left(X_{v} \mid X_{A}\right) \tag{3.15}
\end{align*}
$$

- We say "further" due to $B \backslash A$ not nec. empty.

$\begin{array}{lll}\text { ML Target } & \text { Surrogate } & \text { Bit More Notation } \\ \text { Info Theory Examples }\end{array}$
 Example Submodular: Entropy from Information Theory

- Alternate Proof: Conditional mutual Information is always non-negative.
- Given $A, B \subseteq V$, consider conditional mutual information quantity:

$$
\begin{align*}
I\left(X_{A \backslash B} ; X_{B \backslash A} \mid X_{A \cap B}\right) & =\sum_{x_{A \cup B}} p\left(x_{A \cup B}\right) \log \frac{p\left(x_{A \backslash B}, x_{B \backslash A} \mid x_{A \cap B}\right)}{p\left(x_{A \backslash B} \mid x_{A \cap B}\right) p\left(x_{B \backslash A} \mid x_{A \cap B}\right)} \\
& =\sum_{x_{A \cup B}} p\left(x_{A \cup B}\right) \log \frac{p\left(x_{A \cup B}\right) p\left(x_{A \cap B}\right)}{p\left(x_{A}\right) p\left(x_{B}\right)} \geq 0 \tag{3.16}
\end{align*}
$$

then

$$
\begin{align*}
& I\left(X_{A \backslash B} ; X_{B \backslash A} \mid X_{A \cap B}\right) \\
& \quad=H\left(X_{A}\right)+H\left(X_{B}\right)-H\left(X_{A \cup B}\right)-H\left(X_{A \cap B}\right) \geq 0 \tag{3.17}
\end{align*}
$$

so entropy satisfies

$$
\begin{equation*}
H\left(X_{A}\right)+H\left(X_{B}\right) \geq H\left(X_{A \cup B}\right)+H\left(X_{A \cap B}\right) \tag{3.18}
\end{equation*}
$$

mom min minem
 Information Theory: Block Coding

- Given a set of random variables $\left\{X_{i}\right\}_{i \in V}$ indexed by set V, how do we partition them so that we can best block-code them within each block.
- I.e., how do we form $S \subseteq V$ such that $I\left(X_{S} ; X_{V \backslash S}\right)$ is as small as possible, where $I\left(X_{A} ; X_{B}\right)$ is the mutual information between random variables X_{A} and X_{B}, i.e.,

$$
\begin{equation*}
I\left(X_{A} ; X_{B}\right)=H\left(X_{A}\right)+H\left(X_{B}\right)-H\left(X_{A}, X_{B}\right) \tag{3.19}
\end{equation*}
$$

and $H\left(X_{A}\right)=-\sum_{x_{A}} p\left(x_{A}\right) \log p\left(x_{A}\right)$ is the joint entropy of the set X_{A} of random variables.

- Also, symmetric mutual information is submodular,

$$
\begin{equation*}
f(A)=I\left(X_{A} ; X_{V \backslash A}\right)=H\left(X_{A}\right)+H\left(X_{V \backslash A}\right)-H\left(X_{V}\right) \tag{3.20}
\end{equation*}
$$

Note that $f(A)=H\left(X_{A}\right)$ and $\bar{f}(A)=H\left(X_{V \backslash A}\right)$, and adding submodular functions preserves submodularity (which we will see quite soon).

- $m \times n$ matrices $C=\left[c_{i j}\right]_{i j}$ are called Monge matrices if they satisfy the Monge property, namely:

$$
\begin{equation*}
c_{i j}+c_{r s} \leq c_{i s}+c_{r j} \tag{3.21}
\end{equation*}
$$

for all $1 \leq i<r \leq m$ and $1 \leq j<s \leq n$.

- Equivalently, for all $1 \leq i, r \leq m, 1 \leq j, s \leq n$,

$$
\begin{equation*}
c_{\min (i, r), \min (j, s)}+c_{\max (i, r), \max (j, s)} \leq c_{i s}+c_{r j} \tag{3.22}
\end{equation*}
$$

- Consider four elements of the $m \times n$ matrix:

$c_{i j}=A+B, c_{r j}=B, c_{r s}=B+D, c_{i s}=A+B+C+D$.

ML Target
 Monge Matrices, where useful

- Useful for speeding up many transportation, dynamic programming, flow, search, lot-sizing and many other problems.
- Example, Hitchcock transportation problem: Given $m \times n$ cost matrix $C=\left[c_{i j}\right]_{i j}$, a non-negative supply vector $a \in \mathbb{R}_{+}^{m}$, a non-negative demand vector $b \in \mathbb{R}_{+}^{n}$ with $\sum_{i=1}^{m} a(i)=\sum_{j=1}^{n} b_{j}$, we wish to optimally solve the following linear program:

$$
\begin{array}{ll}
\underset{X \in \mathbb{R}^{m \times n}}{\operatorname{minimize}} & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} \\
\text { subject to } & \sum_{i=1}^{m} x_{i j}=b_{j} \forall j=1, \ldots, n \\
& \sum_{j=1}^{n} x_{i j}=a_{i} \forall i=1, \ldots, m \\
& x_{i, j} \geq 0 \forall i, j \tag{3.26}
\end{array}
$$

Monge Matrices, Hitchcock transportation

Consumers, Sinks, or
Demand

- Solving the linear program can be done easily and optimally using the "North West Corner Rule" (a 2D greedy-like approach starting at top-left and moving down-right) in only $O(m+n)$ if the matrix C is Monge!

ML Target
 Monge Matrices and Convex Polygons

- Can generate a Monge matrix from a convex polygon - delete two segments, then separately number vertices on each chain. Distances $c_{i j}$ satisfy Monge property (or quadrangle inequality).

$$
\begin{equation*}
d\left(p_{2}, q_{3}\right)+d\left(p_{3}, q_{4}\right) \leq d\left(p_{2}, q_{4}\right)+d\left(p_{3}, q_{3}\right) \tag{3.27}
\end{equation*}
$$

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018

Monge l।।l|

Monge Matrices and Submodularity

- A submodular function has the form: $f: 2^{V} \rightarrow \mathbb{R}$ which can be seen as $f:\{0,1\}^{V} \rightarrow \mathbb{R}$
- We can generalize this to $f:\{0, K\}^{V} \rightarrow \mathbb{R}$ for some constant $K \in \mathbb{Z}_{+}$.
- We may define submodularity as: for all $x, y \in\{0, K\}^{V}$, we have

$$
\begin{equation*}
f(x)+f(y) \geq f(x \vee y)+f(x \wedge y) \tag{3.28}
\end{equation*}
$$

- $x \vee y$ is the (join) element-wise min of each element, that is $(x \vee y)(v)=\min (x(v), y(v))$ for $v \in V$.
- $x \wedge y$ is the (meet) element-wise min of each element, that is, $(x \wedge y)(v)=\max (x(v), y(v))$ for $v \in V$.
- With $K=1$, then this is the standard definition of submodularity.
- With $|V|=2$, and $K+1$ the side-dimension of the matrix, we get a Monge property (on square matrices).
- Not-necessarily-square would be $f:\left\{0, K_{1}\right\} \times\left\{0, K_{2}\right\} \rightarrow \mathbb{R}$.
- Given a set of objects $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and a function $f: 2^{V} \rightarrow \mathbb{R}$ that returns a real value for any subset $S \subseteq V$.
- Suppose we are interested in finding the subset that either maximizes or minimizes the function, e.g., $\operatorname{argmax}_{S \subseteq V} f(S)$, possibly subject to some constraints.
- In general, this problem has exponential time complexity.
- Example: f might correspond to the value (e.g., information gain) of a set of sensor locations in an environment, and we wish to find the best set $S \subseteq V$ of sensors locations given a fixed upper limit on the number of sensors $|S|$.
- In many cases (such as above) f has properties that make its optimization tractable to either exactly or approximately compute.
- One such property is submodularity.

Definition 3.8.1 (submodular concave)

A function $f: 2^{V} \rightarrow \mathbb{R}$ is submodular if for any $A, B \subseteq V$, we have that:

$$
\begin{equation*}
f(A)+f(B) \geq f(A \cup B)+f(A \cap B) \tag{3.8}
\end{equation*}
$$

An alternate and (as we will soon see) equivalent definition is:

Definition 3.8.2 (diminishing returns)

A function $f: 2^{V} \rightarrow \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $v \in V \backslash B$, we have that:

$$
\begin{equation*}
f(A \cup\{v\})-f(A) \geq f(B \cup\{v\})-f(B) \tag{3.9}
\end{equation*}
$$

The incremental "value", "gain", or "cost" of v decreases (diminishes) as the context in which v is considered grows from A to B.

Submodular on Hypercube Vertices

- Test submodularity via values on verticies of hypercube.

Example: with $|V|=n=2$, this is \quad With $|V|=n=3$, a bit harder. easy:

How many inequalities?

Definition 3.8.1 (subadditive)

A function $f: 2^{V} \rightarrow \mathbb{R}$ is subadditive if for any $A, B \subseteq V$, we have that:

$$
\begin{equation*}
f(A)+f(B) \geq f(A \cup B) \tag{3.29}
\end{equation*}
$$

This means that the "whole" is less than the sum of the parts.

ML Target
 Two Equivalent Supermodular Definitions

Definition 3.8.1 (supermodular)

A function $f: 2^{V} \rightarrow \mathbb{R}$ is supermodular if for any $A, B \subseteq V$, we have that:

$$
\begin{equation*}
f(A)+f(B) \leq f(A \cup B)+f(A \cap B) \tag{3.8}
\end{equation*}
$$

Definition 3.8.2 (supermodular (improving returns))

A function $f: 2^{V} \rightarrow \mathbb{R}$ is supermodular if for any $A \subseteq B \subset V$, and $v \in V \backslash B$, we have that:

$$
\begin{equation*}
f(A \cup\{v\})-f(A) \leq f(B \cup\{v\})-f(B) \tag{3.9}
\end{equation*}
$$

- Incremental "value", "gain", or "cost" of v increases (improves) as the context in which v is considered grows from A to B.
- A function f is submodular iff $-f$ is supermodular.
- If f both submodular and supermodular, then f is said to be modular, and $f(A)=c+\sum_{a \in A} f(a)$ (often $c=0$).

Mum
 Superadditive Definitions

Definition 3.8.2 (superadditive)

A function $f: 2^{V} \rightarrow \mathbb{R}$ is superadditive if for any $A, B \subseteq V$, we have that:

$$
\begin{equation*}
f(A)+f(B) \leq f(A \cup B) \tag{3.30}
\end{equation*}
$$

- This means that the "whole" is greater than the sum of the parts.
- In general, submodular and subadditive (and supermodular and superadditive) are different properties.
- Ex: Let $0<k<|V|$, and consider $f: 2^{V} \rightarrow \mathbb{R}_{+}$where:

$$
f(A)= \begin{cases}1 & \text { if }|A| \leq k \tag{3.31}\\ 0 & \text { else }\end{cases}
$$

- This function is subadditive but not submodular.

Modular Definitions

Definition 3.8.3 (modular)

A function that is both submodular and supermodular is called modular
If f is a modular function, than for any $A, B \subseteq V$, we have

$$
\begin{equation*}
f(A)+f(B)=f(A \cap B)+f(A \cup B) \tag{3.32}
\end{equation*}
$$

In modular functions, elements do not interact (or cooperate, or compete, or influence each other), and have value based only on singleton values.

Proposition 3.8.4
If f is modular, it may be written as

$$
\begin{equation*}
f(A)=f(\emptyset)+\sum_{a \in A}(f(\{a\})-f(\emptyset))=c+\sum_{a \in A} f^{\prime}(a) \tag{3.33}
\end{equation*}
$$

which has only $|V|+1$ parameters.

Modular Definitions

Proof.

We inductively construct the value for $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$.
For $k=2$,

$$
\begin{gather*}
f\left(a_{1}\right)+f\left(a_{2}\right)=f\left(a_{1}, a_{2}\right)+f(\emptyset) \tag{3.34}\\
\text { implies } f\left(a_{1}, a_{2}\right)=f\left(a_{1}\right)-f(\emptyset)+f\left(a_{2}\right)-f(\emptyset)+f(\emptyset) \tag{3.35}
\end{gather*}
$$

then for $k=3$,

$$
\begin{gather*}
f\left(a_{1}, a_{2}\right)+f\left(a_{3}\right)=f\left(a_{1}, a_{2}, a_{3}\right)+f(\emptyset) \tag{3.36}\\
\text { implies } \begin{aligned}
f\left(a_{1}, a_{2}, a_{3}\right) & =f\left(a_{1}, a_{2}\right)-f(\emptyset)+f\left(a_{3}\right)-f(\emptyset)+f(\emptyset) \\
& =f(\emptyset)+\sum_{i=1}^{3}\left(f\left(a_{i}\right)-f(\emptyset)\right)
\end{aligned} \tag{3.37}
\end{gather*}
$$

Complement function

Given a function $f: 2^{V} \rightarrow \mathbb{R}$, we can find a complement function $\bar{f}: 2^{V} \rightarrow \mathbb{R}$ as $\bar{f}(A)=f(V \backslash A)$ for any A.

Proposition 3.8.5

\bar{f} is submodular iff f is submodular.

Proof.

$$
\begin{equation*}
\bar{f}(A)+\bar{f}(B) \geq \bar{f}(A \cup B)+\bar{f}(A \cap B) \tag{3.39}
\end{equation*}
$$

follows from

$$
\begin{equation*}
f(V \backslash A)+f(V \backslash B) \geq f(V \backslash(A \cup B))+f(V \backslash(A \cap B)) \tag{3.40}
\end{equation*}
$$

which is true because $V \backslash(A \cup B)=(V \backslash A) \cap(V \backslash B)$ and $V \backslash(A \cap B)=(V \backslash A) \cup(V \backslash B)$ (De Morgan's laws for sets).

Undirected Graphs

- Let $G=(V, E)$ be a graph with vertices $V=V(G)$ and edges

$$
E=E(G) \subseteq V \times V
$$

- If G is undirected, define

$$
\begin{equation*}
E(X, Y)=\{\{x, y\} \in E(G): x \in X \backslash Y, y \in Y \backslash X\} \tag{3.41}
\end{equation*}
$$

as the edges strictly between X and Y.

- Nodes define cuts, define the cut function $\delta(X)=E(X, V \backslash X)$.

$$
\begin{aligned}
\delta_{G}(S) & =\{\{u, v\} \in E: u \in S, v \in V \backslash S\} \\
& =\{\{\mathrm{a}, \mathrm{~d}\},\{\mathrm{b}, \mathrm{~d}\},\{\mathrm{b}, \mathrm{e}\},\{\mathrm{c}, \mathrm{e}\},\{\mathrm{c}, \mathrm{f}\}\}
\end{aligned}
$$

ML Target

Directed graphs, and cuts and flows

- If G is directed, define

$$
\begin{equation*}
E^{+}(X, Y) \triangleq\{(x, y) \in E(G): x \in X \backslash Y, y \in Y \backslash X\} \tag{3.42}
\end{equation*}
$$

as the edges directed strictly from X towards Y.

- Nodes define cuts and flows. Define edges leaving X (out-flow) as

$$
\begin{equation*}
\delta^{+}(X) \triangleq E^{+}(X, V \backslash X) \tag{3.43}
\end{equation*}
$$

and edges entering X (in-flow) as

$$
\begin{equation*}
\delta^{-}(X) \triangleq E^{+}(V \backslash X, X) \tag{3.44}
\end{equation*}
$$

The Neighbor function in undirected graphs

- Given a set $X \subseteq V$, the neighbor function of X is defined as

$$
\begin{equation*}
\Gamma(X) \triangleq\{v \in V(G) \backslash X: E(X,\{v\}) \neq \emptyset\} \tag{3.45}
\end{equation*}
$$

- Example:

Directed Cut function: property

Lemma 3.9.1

For a digraph $G=(V, E)$ and any $X, Y \subseteq V$: we have

$$
\begin{align*}
& \left|\delta^{+}(X)\right|+\left|\delta^{+}(Y)\right| \\
& \quad=\left|\delta^{+}(X \cap Y)\right|+\left|\delta^{+}(X \cup Y)\right|+\left|E^{+}(X, Y)\right|+\left|E^{+}(Y, X)\right| \tag{3.46}
\end{align*}
$$

and

$$
\begin{align*}
& \left|\delta^{-}(X)\right|+\left|\delta^{-}(Y)\right| \\
& \quad=\left|\delta^{-}(X \cap Y)\right|+\left|\delta^{-}(X \cup Y)\right|+\left|E^{-}(X, Y)\right|+\left|E^{-}(Y, X)\right| \tag{3.47}
\end{align*}
$$

Directed Cut function: proof of property

Proof.

We can prove Eq. (3.46) using a geometric counting argument (proof for $\left|\delta^{-}(X)\right|$ case is similar)

Directed cut/flow functions: submodular

Lemma 3.9.2

For a digraph $G=(V, E)$ and any $X, Y \subseteq V$: both functions $\left|\delta^{+}(X)\right|$ and $\left|\delta^{-}(X)\right|$ are submodular.

Proof.

$\left|E^{+}(X, Y)\right| \geq 0$ and $\left|E^{-}(X, Y)\right| \geq 0$.
More generally, in the non-negative edge weighted case, both in-flow and out-flow are submodular on subsets of the vertices.

Undirected Cut/Flow \& the Neighbor function: submodular

Lemma 3.9.3

For an undirected graph $G=(V, E)$ and any $X, Y \subseteq V$: we have that both the undirected cut (or flow) function $|\delta(X)|$ and the neighbor function $|\Gamma(X)|$ are submodular. I.e.,

$$
\begin{equation*}
|\delta(X)|+|\delta(Y)|=|\delta(X \cap Y)|+|\delta(X \cup Y)|+2|E(X, Y)| \tag{3.48}
\end{equation*}
$$

and

$$
\begin{equation*}
|\Gamma(X)|+|\Gamma(Y)| \geq|\Gamma(X \cap Y)|+|\Gamma(X \cup Y)| \tag{3.49}
\end{equation*}
$$

Proof.

- Eq. (3.48) follows from Eq. (3.46): we replace each undirected edge $\{u, v\}$ with two oppositely-directed directed edges (u, v) and (v, u).
Then we use same counting argument.
- Eq. (3.49) follows as shown in the following page.

Graphically, we can count and see that

$$
\begin{array}{r}
\Gamma(X)=(a)+(c)+(f)+(g)+(d) \\
\Gamma(Y)=(b)+(c)+(e)+(h)+(d) \\
\Gamma(X \cup Y)=(a)+(b)+(c)+(d) \\
\Gamma(X \cap Y)=(c)+(g)+(h) \tag{3.53}
\end{array}
$$

so

$$
\begin{align*}
& |\Gamma(X)|+|\Gamma(Y)|=(a)+(b)+2(c)+2(d)+(e)+(f)+(g)+(h) \\
& \geq(a)+(b)+2(c)+(d)+(g)+(h)=|\Gamma(X \cup Y)|+|\Gamma(X \cap Y)| \tag{3.54}
\end{align*}
$$

Undirected Neighbor functions

Therefore, the undirected cut function $|\delta(A)|$ and the neighbor function $|\Gamma(A)|$ of a graph G are both submodular.

Undirected cut/flow is submodular: alternate proof

- Another simple proof shows that $|\delta(X)|$ is submodular.
- Define a graph $G_{u v}=(\{u, v\},\{e\}, w)$ with two nodes u, v and one edge $e=\{u, v\}$ with non-negative weight $w(e) \in \mathbb{R}_{+}$.
- Cut weight function over those two nodes: $w\left(\delta_{u, v}(\cdot)\right)$ has valuation:

$$
\begin{equation*}
w\left(\delta_{u, v}(\emptyset)\right)=w\left(\delta_{u, v}(\{u, v\})\right)=0 \tag{3.55}
\end{equation*}
$$

and

$$
\begin{equation*}
w\left(\delta_{u, v}(\{u\})\right)=w\left(\delta_{u, v}(\{v\})\right)=w \geq 0 \tag{3.56}
\end{equation*}
$$

- Thus, $w\left(\delta_{u, v}(\cdot)\right)$ is submodular since

$$
\begin{equation*}
w\left(\delta_{u, v}(\{u\})\right)+w\left(\delta_{u, v}(\{v\})\right) \geq w\left(\delta_{u, v}(\{u, v\})\right)+w\left(\delta_{u, v}(\emptyset)\right) \tag{3.57}
\end{equation*}
$$

- General non-negative weighted graph $G=(V, E, w)$, define $w(\delta(\cdot))$:

$$
\begin{equation*}
f(X)=w(\delta(X))=\sum_{(u, v) \in E(G)} w\left(\delta_{u, v}(X \cap\{u, v\})\right) \tag{3.58}
\end{equation*}
$$

- This is easily shown to be submodular using properties we will soon see (namely, submodularity closed under summation and restriction).
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3-April 2nd, $2018 \quad$ F47/56 (pg.47/56)

mitmo

 mim Bit More Notation Monge\| \| \| \|

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

- Let $V(X)$ be the vertices adjacent to some edge in $X \subseteq E(G)$, then $|V(X)|$ (the vertex function) is submodular.
- Let $E(S)$ be the edges with both vertices in $S \subseteq V(G)$. Then $|E(S)|$ (the interior edge function) is supermodular.
- Let $I(S)$ be the edges with at least one vertex in $S \subseteq V(G)$. Then $|I(S)|$ (the incidence function) is submodular.
- Recall $|\delta(S)|$, is the set size of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut size function). Thus, we have $I(S)=E(S) \cup \delta(S)$ and $E(S) \cap \delta(S)=\emptyset$, and thus that $|I(S)|=|E(S)|+|\delta(S)|$. So we can get a submodular function by summing a submodular and a supermodular function. If you had to guess, is this always the case?
- Consider $f(A)=\left|\delta^{+}(A)\right|-\left|\delta^{+}(V \backslash A)\right|$. Guess, submodular, supermodular, modular, or neither? Exercise: determine which one and prove it.

Number of connected components in a graph via edges

- Recall, $f: 2^{V} \rightarrow \mathbb{R}$ is submodular, then so is $\bar{f}: 2^{V} \rightarrow \mathbb{R}$ defined as $\bar{f}(S)=f(V \backslash S)$.
- Hence, if $g: 2^{V} \rightarrow \mathbb{R}$ is supermodular, then so is $\bar{g}: 2^{V} \rightarrow \mathbb{R}$ defined as $\bar{g}(S)=g(V \backslash S)$.
- Given a graph $G=(V, E)$, for each $A \subseteq E(G)$, let $c(A)$ denote the number of connected components of the (spanning) subgraph $(V(G), A)$, with $c: 2^{E} \rightarrow \mathbb{R}_{+}$.
- $c(A)$ is monotone non-increasing, $c(A+a)-c(A) \leq 0$.
- Then $c(A)$ is supermodular, i.e.,

$$
\begin{equation*}
c(A+a)-c(A) \leq c(B+a)-c(B) \tag{3.59}
\end{equation*}
$$

with $A \subseteq B \subseteq E \backslash\{a\}$.

- Intuition: an edge is "more" (no less) able to bridge separate components (and reduce the number of conected components) when edge is added in a smaller context than when added in a larger context.
- $\bar{c}(A)=c(E \backslash A)$ is number of connected components in G when we remove A; supermodular monotone non-decreasing but not normalized.
- So $\bar{c}(A)=c(E \backslash A)$ is the number of connected components in G when we remove A, is supermodular.
- Maximizing $\bar{c}(A)$ might seem as a goal for a network attacker - many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set A and shatter the graph into many connected components, then the graph is weak.
- An attacker wishes to choose a small number of edges (since it is cheap) to shatter the graph into as many components as possible.
- Let $G=(V, E, w)$ with $w: E \rightarrow \mathbb{R}+$ be a weighted graph with non-negative weights.
- For $(u, v)=e \in E$, let $w(e)$ be a measure of the strength of the connection between vertices u and v (strength meaning the difficulty of cutting the edge e).

Graph Strength

- Then $w(A)$ for $A \subseteq E$ is a modular function

$$
\begin{equation*}
w(A)=\sum_{e \in A} w_{e} \tag{3.60}
\end{equation*}
$$

so that $w(E(G[S]))$ is the "internal strength" of the vertex set S.

- Suppose removing A shatters G into a graph with $\bar{c}(A)>1$ components - then $w(A) /(\bar{c}(A)-1)$ is like the "effort per achieved/additional component" for a network attacker.
- A form of graph strength can then be defined as the following:

$$
\begin{equation*}
\operatorname{strength}(G, w)=\min _{A \subseteq E(G): \bar{c}(A)>1} \frac{w(A)}{\bar{c}(A)-1} \tag{3.61}
\end{equation*}
$$

- Graph strength is like the minimum effort per component. An attacker would use the argument of the min to choose which edges to attack. A network designer would maximize, over G and/or w, the graph strength, strength (G, w).
- Since submodularity, problems have strongly-poly-time solutions.

Submodularity, Quadratic Structures, and Cuts

Lemma 3.9.4

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $m \in \mathbb{R}^{n}$ be a vector. Then $f: 2^{V} \rightarrow \mathbb{R}$ defined as

$$
\begin{equation*}
f(X)=m^{\top} \mathbf{1}_{X}+\frac{1}{2} \mathbf{1}_{X}^{\top} \mathbf{M} \mathbf{1}_{X} \tag{3.62}
\end{equation*}
$$

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

- Given a complete graph $G=(V, E)$, recall that $E(X)$ is the edge set with both vertices in $X \subseteq V(G)$, and that $|E(X)|$ is supermodular.
- Non-negative modular weights $w^{+}: E \rightarrow \mathbb{R}_{+}, w(E(X))$ is also supermodular, so $-w(E(X))$ is submodular.
- f is a modular function $m^{\top} \mathbf{1}_{A}=m(A)$ added to a weighted submodular function, hence f is submodular.

Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 3.9.4 cont.

- Conversely, suppose f is submodular.
- Then $\forall u, v \in V, f(\{u\})+f(\{v\}) \geq f(\{u, v\})+f(\emptyset)$ while $f(\emptyset)=0$.
- This requires:

$$
\begin{align*}
0 \leq & f(\{u\})+f(\{v\})-f(\{u, v\}) \tag{3.63}\\
= & m(u)+\frac{1}{2} M_{u, u}+m(v)+\frac{1}{2} M_{v, v} \tag{3.64}\\
& -\left(m(u)+m(v)+\frac{1}{2} M_{u, u}+M_{u, v}+\frac{1}{2} M_{v, v}\right) \tag{3.65}\\
= & -M_{u, v} \tag{3.66}
\end{align*}
$$

So that $\forall u, v \in V, M_{u, v} \leq 0$.

- We are given a finite set U of m elements and a set of subsets $\mathcal{U}=\left\{U_{1}, U_{2}, \ldots, U_{n}\right\}$ of n subsets of U, so that $U_{i} \subseteq U$ and $\bigcup_{i} U_{i}=U$.
- The goal of minimum set cover is to choose the smallest subset $A \subseteq[n] \triangleq\{1, \ldots, n\}$ such that $\bigcup_{a \in A} U_{a}=U$.
- Maximum k cover: The goal in maximum coverage is, given an integer $k \leq n$, select k subsets, say $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ with $a_{i} \in[n]$ such that $\left|\bigcup_{i=1}^{k} U_{a_{i}}\right|$ is maximized.
- $f: 2^{[n]} \rightarrow \mathbb{Z}_{+}$where for $A \subseteq[n], f(A)=\left|\bigcup_{a \in A} V_{a}\right|$ is the set cover function and is submodular.
- Weighted set cover: $f(A)=w\left(\bigcup_{a \in A} V_{a}\right)$ where $w: U \rightarrow \mathbb{R}_{+}$.
- Both Set cover and maximum coverage are well known to be NP-hard, but have a fast greedy approximation algorithm, and hence are instances of submodular optimization.

Definition 3.9.5 (vertex cover)

A vertex cover (a "vertex-based cover of edges") in graph $G=(V, E)$ is a set $S \subseteq V(G)$ of vertices such that every edge in G is incident to at least one vertex in S.

- Let $I(S)$ be the number of edges incident to vertex set S. Then we wish to find the smallest set $S \subseteq V$ subject to $I(S)=|E|$.

Definition 3.9.6 (edge cover)

A edge cover (an "edge-based cover of vertices") in graph $G=(V, E)$ is a set $F \subseteq E(G)$ of edges such that every vertex in G is incident to at least one edge in F.

- Let $|V|(F)$ be the number of vertices incident to edge set F. Then we wish to find the smallest set $F \subseteq E$ subject to $|V|(F)=|V|$.
- Minimum cut: Given a graph $G=(V, E)$, find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \backslash S$.
- Maximum cut: Given a graph $G=(V, E)$, find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \backslash S$.
- Let $\delta: 2^{V} \rightarrow \mathbb{R}_{+}$be the cut function, namely for any given set of nodes $X \subseteq V,|\delta(X)|$ measures the number of edges between nodes X and $V \backslash X$ - i.e., $\delta(x)=E(X, V \backslash X)$.
- Weighted versions, where rather than count, we sum the (non-negative) weights of the edges of a cut, $f(X)=w(\delta(X))$.
- Hence, Minimum cut and Maximum cut are also special cases of submodular optimization.

