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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
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Logistics Review

Class Road Map - EE563
L1(3/26): Motivation, Applications, &
Basic Definitions,
L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).
L3(4/2): Info theory exs, more apps,
definitions, graph/combinatorial examples
L4(4/4):
L5(4/9):
L6(4/11):
L7(4/16):
L8(4/18):
L9(4/23):
L10(4/25):

L11(4/30):
L12(5/2):
L13(5/7):
L14(5/9):
L15(5/14):
L16(5/16):
L17(5/21):
L18(5/23):
L–(5/28): Memorial Day (holiday)
L19(5/30):
L21(6/4): Final Presentations
maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Logistics Review

Two Equivalent Submodular Definitions

Definition 3.2.1 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (3.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.2 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (3.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as the
context in which v is considered grows from A to B.
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Logistics Review

Two Equivalent Supermodular Definitions

Definition 3.2.1 (supermodular)

A function f : 2V → R is supermodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B) (3.8)

Definition 3.2.2 (supermodular (improving returns))

A function f : 2V → R is supermodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≤ f(B ∪ {v})− f(B) (3.9)

Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
A function f is submodular iff −f is supermodular.
If f both submodular and supermodular, then f is said to be modular,
and f(A) = c+

∑
a∈A f(a) (often c = 0).
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Logistics Review

Submodularity’s utility in ML

A model of a physical process :
When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
vice-versa for supermodularity.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, structured
sparse convex norms for use in regularization).
Itself, as an object or function to learn , based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.
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ML Target Surrogate Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples

Learning Submodular Functions

Learning submodular functions is hard

Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f̂ such
that f̂(S) ≤ f(S) ≤ g(n)f̂(S) where g : N→ R?”

Many results,
including that even with adaptive queries and monotone functions,
can’t do better than Ω(

√
n/ log n).

Balcan & Harvey (2011): submodular function learning problem from a
learning theory perspective, given a distribution on subsets. Negative
result is that can’t approximate in this setting to within a constant
factor.
Feldman, Kothari, Vondrák (2013), shows in some learning settings,
things are more promising (PAC learning possible in Õ(n2) · 2O(1/ε4)).
One example: can we learn a subclass, perhaps non-negative weighted
mixtures of submodular components?
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One example: can we learn a subclass, perhaps non-negative weighted
mixtures of submodular components?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F7/56 (pg.8/154)



ML Target Surrogate Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples

Learning Submodular Functions

Learning submodular functions is hard
Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f̂ such
that f̂(S) ≤ f(S) ≤ g(n)f̂(S) where g : N→ R?” Many results,
including that even with adaptive queries and monotone functions,
can’t do better than Ω(

√
n/ log n).

Balcan & Harvey (2011): submodular function learning problem from a
learning theory perspective, given a distribution on subsets. Negative
result is that can’t approximate in this setting to within a constant
factor.
Feldman, Kothari, Vondrák (2013), shows in some learning settings,
things are more promising (PAC learning possible in Õ(n2) · 2O(1/ε4)).
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Structured Learning of Submodular Mixtures

Constraints specified in inference form:

minimize
w,ξt

1

T

∑
t

ξt +
λ

2
‖w‖2 (3.1)

subject to w>ft(y
(t)) ≥ max

y∈Yt

(
w>ft(y) + `t(y)

)
− ξt,∀t (3.2)

ξt ≥ 0, ∀t. (3.3)

Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”
w>ft(y) is a mixture of submodular components.
If loss is also submodular, then loss-augmented inference is submodular
optimization.
If loss is supermodular, this is a difference-of-submodular (DS) function
optimization.
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Structured Prediction: Subgradient Learning

Solvable with simple sub-gradient descent algorithm using structured
variant of hinge-loss (Taskar, 2004).
Loss-augmented inference is either submodular optimization (Lin & B.
2012) or DS optimization (Tschiatschek, Iyer, & B. 2014).

Algorithm 1: Subgradient descent learning
Input : S = {(x(t),y(t))}Tt=1 and a learning rate sequence {ηt}Tt=1.

1 w0 = 0;
2 for t = 1, · · · , T do
3 Loss augmented inference: y∗t ∈ argmaxy∈Yt w

>
t−1ft(y) + `t(y);

4 Compute the subgradient: gt = λwt−1 + ft(y
∗)− ft(y

(t));
5 Update the weights: wt = wt−1 − ηtgt;

Return : the averaged parameters 1
T

∑
twt.
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Recall

The next page shows a slide from Lecture 1
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Submodular-Supermodular Decomposition
As an alternative to graphical decomposition, we can decompose a
function without resorting sums of local terms.

Theorem 3.4.1 (Additive Decomposition (Narasimhan & Bilmes, 2005))

Let h : 2V → R be any set function. Then there exists a submodular
function f : 2V → R and a supermodular function g : 2V → R such that h
may be additively decomposed as follows: For all A ⊆ V ,

h(A) = f(A) + g(A) (3.8)

For many applications (as we will see), either the submodular or
supermodular component is naturally zero.
Sometimes more natural than a graphical decomposition.
Sometimes h(A) has structure in terms of submodular functions but is
non additively decomposed (one example is h(A) = f(A)/g(A)).
Complementary: simultaneous graphical/submodular-supermodular
decomposition (i.e., submodular + supermodular tree).
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Applications of DS functions

Any function h : 2V → R can be expressed as a difference between two
submodular (DS) functions, h = f − g.

Sensor placement with submodular costs. I.e., let V be a set of possible
sensor locations, f(A) = I(XA;XV \A) measures the quality of a
subset A of placed sensors, and c(A) the submodular cost. We have
f(A)− λc(A) as the overall objective to maximize.

Discriminatively structured graphical models, EAR measure
I(XA;XV \A)− I(XA;XV \A|C), and synergy in neuroscience.
Feature selection: a problem of maximizing
I(XA;C)− λc(A) = H(XA)− [H(XA|C) + λc(A)], the difference
between two submodular functions, where H is the entropy and c is a
feature cost function.
Graphical Model Inference. Finding x that maximizes
p(x) ∝ exp(−v(x)) where x ∈ {0, 1}n and v is a pseudo-Boolean
function. When v is non-submodular, it can be represented as a
difference between submodular functions.
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Submodular Relaxation

We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

If potentials are submodular, we can solve them.
When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).
An alternative is submodular relaxation. I.e., given

Pr(x) =
1

Z
exp(−E(x)) (3.4)

where E(x) = Ef (x)− Eg(x) and both of Ef (x) and Eg(x) are
submodular.
Any function can be expressed as the difference between two
submodular functions.
Hence, rather than minimize E(x) (hard), we can minimize the easier
Ẽ(x) = Ef (x)− Em(x) ≥ E(x) where Em(x) is a modular lower
bound on Eg(x).
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Submodular Analysis for Non-Submodular Problems

Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.

For example, “deviation from submodularity” can be measured using the
submodularity ratio (Das & Kempe):

γU,k(f) , min
L⊆U,S:|S|≤k,S∩L=∅

∑
s∈S f(x|L)

f(S|L)
(3.5)

f is submodular if and only if γV,|V | = 1.
For some variable selection problems, can get bounds of the form:

Solution ≥ (1− 1

eγU∗,k
)OPT (3.6)

where U∗ is the solution set of a variable selection algorithm.
This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).
Other analogous concepts: curvature of a submodular function, and
also the submodular degree.
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Ground set: E or V ?

Submodular functions are functions defined on subsets of some finite set,
called the ground set.

It is common in the literature to use either E or V as the ground set —
we will at different times use both (there should be no confusion).

The terminology ground set comes from lattice theory, where V are the
ground elements of a lattice (just above 0).
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Notation RE, and modular functions as vectors

What does x ∈ RE mean?

RE = {x = (xj ∈ R : j ∈ E)} (3.7)

and

RE+ = {x = (xj : j ∈ E) : x ≥ 0} (3.8)

Any vector x ∈ RE can be treated as a normalized modular function, and
vice verse. That is, for A ⊆ E,

x(A) =
∑
a∈A

xa (3.9)

Note that x is said to be normalized since x(∅) = 0.
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characteristic (incidence) vectors of sets & modular
functions

Given an A ⊆ E, define the incidence (or characteristic) vector
1A ∈ {0, 1}E on the unit hypercube to be

1A(j) =

{
1 if j ∈ A;

0 if j /∈ A
(3.10)

or equivalently,

1A
def
=
{
x ∈ {0, 1}E : xi = 1 if‌f i ∈ A

}
(3.11)

Sometimes this is written as χA ≡ 1A.
Thus, given modular function x ∈ RE , we can write x(A) in a variety
of ways, i.e.,

x(A) = xᵀ · 1A =
∑
i∈A

x(i) (3.12)
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Other Notation: singletons and sets

When A is a set and k is a singleton (i.e., a single item), the union is
properly written as A ∪ {k}, but sometimes we will write just A+ k.
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What does ST mean when S and T are arbitrary sets?

Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

We define the notation ST to be the set of all functions that map from
T to S. That is, if f ∈ ST , then f : T → S.
Hence, given a finite set E, RE is the set of all functions that map
from elements of E to the reals R, and such functions are identical to a
vector in a vector space with axes labeled as elements of E (i.e., if
m ∈ RE , then for all e ∈ E, m(e) ∈ R).
Often “2” is shorthand for the set {0, 1}. I.e., R2 where 2 ≡ {0, 1}.
Similarly, 2E is the set of all functions from E to “two” — so 2E is
shorthand for {0, 1}E

— hence, 2E is the set of all functions that map
from elements of E to {0, 1}, equivalent to all binary vectors with
elements indexed by elements of E, equivalent to subsets of E. Hence,
if A ∈ 2E then A ⊆ E.

What might 3E mean?
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Example Submodular: Entropy from Information Theory

Entropy is submodular. Let V be the index set of a set of random
variables, then the function

f(A) = H(XA) = −
∑
xA

p(xA) log p(xA) (3.13)

is submodular.
Proof: (further) conditioning reduces entropy. With A ⊆ B and v /∈ B,

H(Xv|XB) = H(XB+v)−H(XB) (3.14)
≤ H(XA+v)−H(XA) = H(Xv|XA) (3.15)

We say “further” due to B \A not nec. empty.
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Example Submodular: Entropy from Information Theory

Alternate Proof: Conditional mutual Information is always non-negative.
Given A,B ⊆ V , consider conditional mutual information quantity:

I(XA\B;XB\A|XA∩B) =
∑
xA∪B

p(xA∪B) log
p(xA\B, xB\A|xA∩B)

p(xA\B|xA∩B)p(xB\A|xA∩B)

=
∑
xA∪B

p(xA∪B) log
p(xA∪B)p(xA∩B)

p(xA)p(xB)
≥ 0 (3.16)

then

I(XA\B;XB\A|XA∩B)

= H(XA) +H(XB)−H(XA∪B)−H(XA∩B) ≥ 0 (3.17)

so entropy satisfies

H(XA) +H(XB) ≥ H(XA∪B) +H(XA∩B) (3.18)
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Information Theory: Block Coding

Given a set of random variables {Xi}i∈V indexed by set V , how do we
partition them so that we can best block-code them within each block.

I.e., how do we form S ⊆ V such that I(XS ;XV \S) is as small as
possible, where I(XA;XB) is the mutual information between random
variables XA and XB, i.e.,

I(XA;XB) = H(XA) +H(XB)−H(XA, XB) (3.19)

and H(XA) = −∑xA
p(xA) log p(xA) is the joint entropy of the set

XA of random variables.
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Example Submodular: Mutual Information

Also, symmetric mutual information is submodular,

f(A) = I(XA;XV \A) = H(XA) +H(XV \A)−H(XV ) (3.20)

Note that f(A) = H(XA) and f̄(A) = H(XV \A), and adding
submodular functions preserves submodularity (which we will see quite
soon).
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Monge Matrices

m× n matrices C = [cij ]ij are called Monge matrices if they satisfy the
Monge property, namely:

cij + crs ≤ cis + crj (3.21)

for all 1 ≤ i < r ≤ m and 1 ≤ j < s ≤ n.

Equivalently, for all 1 ≤ i, r ≤ m, 1 ≤ j, s ≤ n,
cmin(i,r),min(j,s) + cmax(i,r),max(j,s) ≤ cis + crj (3.22)

Consider four elements of the m× n matrix:

cij

crs

cis
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Monge Matrices, where useful

Useful for speeding up many transportation, dynamic programming,
flow, search, lot-sizing and many other problems.

Example, Hitchcock transportation problem: Given m× n cost matrix
C = [cij ]ij , a non-negative supply vector a ∈ Rm+ , a non-negative
demand vector b ∈ Rn+ with

∑m
i=1 a(i) =

∑n
j=1 bj , we wish to

optimally solve the following linear program:

minimize
X∈Rm×n

m∑
i=1

n∑
j=1

cijxij (3.23)

subject to
m∑
i=1

xij = bj ∀j = 1, . . . , n (3.24)

n∑
j=1

xij = ai ∀i = 1, . . . ,m (3.25)

xi,j ≥ 0 ∀i, j (3.26)
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Monge Matrices, Hitchcock transportation

a1

a2

a3

b1 b2 b3 b4

C

0 1 3 3
10

14940

1 4 7
2

1
5

3 2 1 2

Producers,
Sources,

or Supply

Consumers, Sinks, or
Demand

Solving the linear program can be done easily and optimally using the
“North West Corner Rule” (a 2D greedy-like approach starting at
top-left and moving down-right) in only O(m+ n) if the matrix C is
Monge!
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Monge Matrices and Convex Polygons

Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances cij
satisfy Monge property (or quadrangle inequality).

d(p2, q3) + d(p3, q4) ≤ d(p2, q4) + d(p3, q3) (3.27)
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Monge Matrices and Submodularity

A submodular function has the form: f : 2V → R which can be seen as
f : {0, 1}V → R

We can generalize this to f : {0,K}V → R for some constant K ∈ Z+.
We may define submodularity as: for all x, y ∈ {0,K}V , we have

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (3.28)

x ∨ y is the (join) element-wise min of each element, that is
(x ∨ y)(v) = min(x(v), y(v)) for v ∈ V .
x ∧ y is the (meet) element-wise min of each element, that is,
(x ∧ y)(v) = max(x(v), y(v)) for v ∈ V .
With K = 1, then this is the standard definition of submodularity.
With |V | = 2, and K + 1 the side-dimension of the matrix, we get a
Monge property (on square matrices).
Not-necessarily-square would be f : {0,K1} × {0,K2} → R.
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Two Equivalent Submodular Definitions

Definition 3.8.1 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (3.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.8.2 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (3.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as the
context in which v is considered grows from A to B.
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Submodular on Hypercube Vertices

Test submodularity via values on verticies of hypercube.

Example: with |V | = n = 2, this is
easy:

00 01

1110

With |V | = n = 3, a bit harder.

000

001100 010

011101110

111

How many inequalities?
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Subadditive Definitions

Definition 3.8.1 (subadditive)

A function f : 2V → R is subadditive if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) (3.29)

This means that the “whole” is less than the sum of the parts.
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Two Equivalent Supermodular Definitions

Definition 3.8.1 (supermodular)

A function f : 2V → R is supermodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B) (3.8)

Definition 3.8.2 (supermodular (improving returns))

A function f : 2V → R is supermodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≤ f(B ∪ {v})− f(B) (3.9)

Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
A function f is submodular iff −f is supermodular.
If f both submodular and supermodular, then f is said to be modular,
and f(A) = c+

∑
a∈A f(a) (often c = 0).
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Superadditive Definitions

Definition 3.8.2 (superadditive)

A function f : 2V → R is superadditive if for any A,B ⊆ V , we have that:

f(A) + f(B) ≤ f(A ∪B) (3.30)

This means that the “whole” is greater than the sum of the parts.

In general, submodular and subadditive (and supermodular and
superadditive) are different properties.
Ex: Let 0 < k < |V |, and consider f : 2V → R+ where:

f(A) =

{
1 if |A| ≤ k
0 else

(3.31)

This function is subadditive but not submodular.
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Modular Definitions

Definition 3.8.3 (modular)

A function that is both submodular and supermodular is called modular

If f is a modular function, than for any A,B ⊆ V , we have

f(A) + f(B) = f(A ∩B) + f(A ∪B) (3.32)

In modular functions, elements do not interact (or cooperate, or compete, or
influence each other), and have value based only on singleton values.

Proposition 3.8.4
If f is modular, it may be written as

f(A) = f(∅) +
∑
a∈A

(
f({a})− f(∅)

)
= c+

∑
a∈A

f ′(a) (3.33)

which has only |V |+ 1 parameters.
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Modular Definitions

Proof.
We inductively construct the value for A = {a1, a2, . . . , ak}.
For k = 2,

f(a1) + f(a2) = f(a1, a2) + f(∅) (3.34)
implies f(a1, a2) = f(a1)− f(∅) + f(a2)− f(∅) + f(∅) (3.35)

then for k = 3,

f(a1, a2) + f(a3) = f(a1, a2, a3) + f(∅) (3.36)
implies f(a1, a2, a3) = f(a1, a2)− f(∅) + f(a3)− f(∅) + f(∅) (3.37)

= f(∅) +

3∑
i=1

(
f(ai)− f(∅)

)
(3.38)

and so on . . .
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Complement function

Given a function f : 2V → R, we can find a complement function
f̄ : 2V → R as f̄(A) = f(V \A) for any A.

Proposition 3.8.5

f̄ is submodular iff f is submodular.

Proof.

f̄(A) + f̄(B) ≥ f̄(A ∪B) + f̄(A ∩B) (3.39)

follows from

f(V \A) + f(V \B) ≥ f(V \ (A ∪B)) + f(V \ (A ∩B)) (3.40)

which is true because V \ (A ∪B) = (V \A) ∩ (V \B) and
V \ (A ∩B) = (V \A) ∪ (V \B) (De Morgan’s laws for sets).
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Undirected Graphs

Let G = (V,E) be a graph with vertices V = V (G) and edges
E = E(G) ⊆ V × V .

If G is undirected, define

E(X,Y ) = {{x, y} ∈ E(G) : x ∈ X \ Y, y ∈ Y \X} (3.41)

as the edges strictly between X and Y .
Nodes define cuts, define the cut function δ(X) = E(X,V \X).

G = (V ,E )

S={a,b,c} δG (S) = {{u, v}∈ E : u ∈ S , v ∈ V \ S}.

a

b

c

e
f

h

g

d

 = {{a,d},{b,d},{b,e},{c,e},{c,f}}
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Directed graphs, and cuts and flows
If G is directed, define

E+(X,Y ) , {(x, y) ∈ E(G) : x ∈ X \ Y, y ∈ Y \X} (3.42)

as the edges directed strictly from X towards Y .

Nodes define cuts and flows. Define edges leaving X (out-flow) as

δ+(X) , E+(X,V \X) (3.43)

and edges entering X (in-flow) as

δ−(X) , E+(V \X,X) (3.44)

S={a,b,c}

a

b

c

e
f

h

g

d

δG (S) = {(u, v ) ∈ E : u ∈ S , v ∈ V \ S}.
 = {(b,e) ,(c,f)}

+

 = {(d,a) ,(d,b) ,(e,c)}
δG (S) = {(v , u) ∈ E : u ∈ S , v ∈ V \ S}.-
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Directed graphs, and cuts and flows
If G is directed, define
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The Neighbor function in undirected graphs

Given a set X ⊆ V , the neighbor function of X is defined as

Γ(X) , {v ∈ V (G) \X : E(X, {v}) 6= ∅} (3.45)

Example:

a

b

c

e
f

h

g

d

G = (V,E)

S = {a, b, c}

Γ(S) = {d, e, f}
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The Neighbor function in undirected graphs

Given a set X ⊆ V , the neighbor function of X is defined as
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Directed Cut function: property

Lemma 3.9.1
For a digraph G = (V,E) and any X,Y ⊆ V : we have

|δ+(X)|+ |δ+(Y )|
= |δ+(X ∩ Y )|+ |δ+(X ∪ Y )|+ |E+(X,Y )|+ |E+(Y,X)| (3.46)

and

|δ−(X)|+ |δ−(Y )|
= |δ−(X ∩ Y )|+ |δ−(X ∪ Y )|+ |E−(X,Y )|+ |E−(Y,X)| (3.47)
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Directed Cut function: proof of property
Proof.
We can prove Eq. (3.46) using a geometric counting argument (proof for
|δ−(X)| case is similar)

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

(e)

(e)

(b)
(a)

(a)

(b)

(b)
(b)

(c)

(c)

(f )

(f )

(g)

(g)

(d)

(d)

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

|δ+(X )| |δ+(Y )|

|δ+(X ∩ Y )| |δ+(X ∪ Y )|

|E+(X ,Y )| |E+(Y ,X )|
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Directed cut/flow functions: submodular

Lemma 3.9.2

For a digraph G = (V,E) and any X,Y ⊆ V : both functions |δ+(X)| and
|δ−(X)| are submodular.

Proof.

|E+(X,Y )| ≥ 0 and |E−(X,Y )| ≥ 0.

More generally, in the non-negative edge weighted case, both in-flow and
out-flow are submodular on subsets of the vertices.
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Undirected Cut/Flow & the Neighbor function: submodular
Lemma 3.9.3
For an undirected graph G = (V,E) and any X,Y ⊆ V : we have that both
the undirected cut (or flow) function |δ(X)| and the neighbor function
|Γ(X)| are submodular. I.e.,

|δ(X)|+ |δ(Y )| = |δ(X ∩ Y )|+ |δ(X ∪ Y )|+ 2|E(X,Y )| (3.48)

and

|Γ(X)|+ |Γ(Y )| ≥ |Γ(X ∩ Y )|+ |Γ(X ∪ Y )| (3.49)

Proof.
Eq. (3.48) follows from Eq. (3.46): we replace each undirected edge
{u, v} with two oppositely-directed directed edges (u, v) and (v, u).
Then we use same counting argument.

Eq. (3.49) follows as shown in the following page.

. . .
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|Γ(X)|+ |Γ(Y )| ≥ |Γ(X ∩ Y )|+ |Γ(X ∪ Y )| (3.49)

Proof.
Eq. (3.48) follows from Eq. (3.46): we replace each undirected edge
{u, v} with two oppositely-directed directed edges (u, v) and (v, u).
Then we use same counting argument.
Eq. (3.49) follows as shown in the following page.

. . .
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Undirected Neighbor function
cont.

X Y(a) (b)

(c)

(f )

(g)

(h)
(e)

(d)

Graphically, we can count and see that

Γ(X) = (a) + (c) + (f) + (g) + (d) (3.50)
Γ(Y ) = (b) + (c) + (e) + (h) + (d) (3.51)
Γ(X ∪ Y ) = (a) + (b) + (c) + (d) (3.52)

Γ(X ∩ Y ) = (c) + (g) + (h) (3.53)

so

|Γ(X)|+ |Γ(Y )| = (a) + (b) + 2(c) + 2(d) + (e) + (f) + (g) + (h)

≥ (a) + (b) + 2(c) + (d) + (g) + (h) = |Γ(X ∪ Y )|+ |Γ(X ∩ Y )| (3.54)
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Undirected Neighbor functions

Therefore, the undirected cut function |δ(A)| and the neighbor function
|Γ(A)| of a graph G are both submodular.
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Undirected cut/flow is submodular: alternate proof
Another simple proof shows that |δ(X)| is submodular.

Define a graph Guv = ({u, v}, {e}, w) with two nodes u, v and one
edge e = {u, v} with non-negative weight w(e) ∈ R+.
Cut weight function over those two nodes: w(δu,v(·)) has valuation:

w(δu,v(∅)) = w(δu,v({u, v})) = 0 (3.55)

and

w(δu,v({u})) = w(δu,v({v})) = w ≥ 0 (3.56)

Thus, w(δu,v(·)) is submodular since

w(δu,v({u})) + w(δu,v({v})) ≥ w(δu,v({u, v})) + w(δu,v(∅)) (3.57)

General non-negative weighted graph G = (V,E,w), define w(δ(·)):
f(X) = w(δ(X)) =

∑
(u,v)∈E(G)

w(δu,v(X ∩ {u, v})) (3.58)

This is easily shown to be submodular using properties we will soon see
(namely, submodularity closed under summation and restriction).
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.
Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.

Let E(S) be the edges with both vertices in S ⊆ V (G). Then |E(S)|
(the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.
Recall |δ(S)|, is the set size of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut size function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|.

So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.
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|I(S)| (the incidence function) is submodular.

Recall |δ(S)|, is the set size of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut size function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|.

So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.
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I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|.

So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?
Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.
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I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|. So we can get a submodular function by
summing a submodular and a supermodular function.

If you had to
guess, is this always the case?
Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
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prove it.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F48/56 (pg.114/154)



ML Target Surrogate Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples

Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.
Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
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Recall |δ(S)|, is the set size of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut size function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.
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Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.
Let E(S) be the edges with both vertices in S ⊆ V (G). Then |E(S)|
(the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.
Recall |δ(S)|, is the set size of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut size function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?
Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
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Number of connected components in a graph via edges
Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).

Hence, if g : 2V → R is supermodular, then so is ḡ : 2V → R defined as
ḡ(S) = g(V \ S).
Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+.
c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .
Then c(A) is supermodular, i.e.,

c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.59)
with A ⊆ B ⊆ E \ {a}.
Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).
Hence, if g : 2V → R is supermodular, then so is ḡ : 2V → R defined as
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Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
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Then c(A) is supermodular, i.e.,
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edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Number of connected components in a graph via edges
Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).
Hence, if g : 2V → R is supermodular, then so is ḡ : 2V → R defined as
ḡ(S) = g(V \ S).
Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+.

c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .
Then c(A) is supermodular, i.e.,

c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.59)
with A ⊆ B ⊆ E \ {a}.
Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Number of connected components in a graph via edges
Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).
Hence, if g : 2V → R is supermodular, then so is ḡ : 2V → R defined as
ḡ(S) = g(V \ S).
Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+.
c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .

Then c(A) is supermodular, i.e.,
c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.59)

with A ⊆ B ⊆ E \ {a}.
Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Number of connected components in a graph via edges
Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).
Hence, if g : 2V → R is supermodular, then so is ḡ : 2V → R defined as
ḡ(S) = g(V \ S).
Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+.
c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .
Then c(A) is supermodular, i.e.,

c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.59)
with A ⊆ B ⊆ E \ {a}.

Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F49/56 (pg.121/154)



ML Target Surrogate Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples

Number of connected components in a graph via edges
Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).
Hence, if g : 2V → R is supermodular, then so is ḡ : 2V → R defined as
ḡ(S) = g(V \ S).
Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+.
c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .
Then c(A) is supermodular, i.e.,

c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.59)
with A ⊆ B ⊆ E \ {a}.
Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.

c̄(A) = c(E \A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Number of connected components in a graph via edges
Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).
Hence, if g : 2V → R is supermodular, then so is ḡ : 2V → R defined as
ḡ(S) = g(V \ S).
Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+.
c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .
Then c(A) is supermodular, i.e.,

c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.59)
with A ⊆ B ⊆ E \ {a}.
Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F49/56 (pg.123/154)



ML Target Surrogate Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples

Graph Strength

So c̄(A) = c(E \A) is the number of connected components in G
when we remove A, is supermodular.

Maximizing c̄(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).
If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.
An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.
Let G = (V,E,w) with w : E → R+ be a weighted graph with
non-negative weights.
For (u, v) = e ∈ E, let w(e) be a measure of the strength of the
connection between vertices u and v (strength meaning the difficulty of
cutting the edge e).
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Graph Strength

So c̄(A) = c(E \A) is the number of connected components in G
when we remove A, is supermodular.
Maximizing c̄(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.
An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.
Let G = (V,E,w) with w : E → R+ be a weighted graph with
non-negative weights.
For (u, v) = e ∈ E, let w(e) be a measure of the strength of the
connection between vertices u and v (strength meaning the difficulty of
cutting the edge e).
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Graph Strength

So c̄(A) = c(E \A) is the number of connected components in G
when we remove A, is supermodular.
Maximizing c̄(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).
If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.
Let G = (V,E,w) with w : E → R+ be a weighted graph with
non-negative weights.
For (u, v) = e ∈ E, let w(e) be a measure of the strength of the
connection between vertices u and v (strength meaning the difficulty of
cutting the edge e).
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Graph Strength

So c̄(A) = c(E \A) is the number of connected components in G
when we remove A, is supermodular.
Maximizing c̄(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).
If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.
An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

Let G = (V,E,w) with w : E → R+ be a weighted graph with
non-negative weights.
For (u, v) = e ∈ E, let w(e) be a measure of the strength of the
connection between vertices u and v (strength meaning the difficulty of
cutting the edge e).
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Graph Strength

So c̄(A) = c(E \A) is the number of connected components in G
when we remove A, is supermodular.
Maximizing c̄(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).
If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.
An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.
Let G = (V,E,w) with w : E → R+ be a weighted graph with
non-negative weights.

For (u, v) = e ∈ E, let w(e) be a measure of the strength of the
connection between vertices u and v (strength meaning the difficulty of
cutting the edge e).
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Graph Strength

So c̄(A) = c(E \A) is the number of connected components in G
when we remove A, is supermodular.
Maximizing c̄(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).
If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.
An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.
Let G = (V,E,w) with w : E → R+ be a weighted graph with
non-negative weights.
For (u, v) = e ∈ E, let w(e) be a measure of the strength of the
connection between vertices u and v (strength meaning the difficulty of
cutting the edge e).
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Graph Strength

Then w(A) for A ⊆ E is a modular function

w(A) =
∑
e∈A

we (3.60)

so that w(E(G[S])) is the “internal strength” of the vertex set S.
Notation: S is a set of nodes, G[S] is the vertex-induced subgraph of G induced by
vertices S, E(G[S]) are the edges contained within this induced subgraph, and
w(E(G[S])) is the weight of these edges.

Suppose removing A shatters G into a graph with c̄(A) > 1
components —

then w(A)/(c̄(A)− 1) is like the “effort per
achieved/additional component” for a network attacker.

A form of graph strength can then be defined as the following:

strength(G,w) = min
A⊆E(G):c̄(A)>1

w(A)

c̄(A)− 1
(3.61)

Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G,w).
Since submodularity, problems have strongly-poly-time solutions.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F51/56 (pg.130/154)



ML Target Surrogate Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples
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Then w(A) for A ⊆ E is a modular function

w(A) =
∑
e∈A

we (3.60)

so that w(E(G[S])) is the “internal strength” of the vertex set S.
Suppose removing A shatters G into a graph with c̄(A) > 1
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then w(A)/(c̄(A)− 1) is like the “effort per
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Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G,w).
Since submodularity, problems have strongly-poly-time solutions.
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Then w(A) for A ⊆ E is a modular function

w(A) =
∑
e∈A

we (3.60)

so that w(E(G[S])) is the “internal strength” of the vertex set S.
Suppose removing A shatters G into a graph with c̄(A) > 1
components — then w(A)/(c̄(A)− 1) is like the “effort per
achieved/additional component” for a network attacker.

A form of graph strength can then be defined as the following:

strength(G,w) = min
A⊆E(G):c̄(A)>1

w(A)

c̄(A)− 1
(3.61)

Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G,w).
Since submodularity, problems have strongly-poly-time solutions.
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w(A) =
∑
e∈A

we (3.60)

so that w(E(G[S])) is the “internal strength” of the vertex set S.
Suppose removing A shatters G into a graph with c̄(A) > 1
components — then w(A)/(c̄(A)− 1) is like the “effort per
achieved/additional component” for a network attacker.
A form of graph strength can then be defined as the following:

strength(G,w) = min
A⊆E(G):c̄(A)>1

w(A)

c̄(A)− 1
(3.61)

Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G,w).
Since submodularity, problems have strongly-poly-time solutions.
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Then w(A) for A ⊆ E is a modular function

w(A) =
∑
e∈A

we (3.60)

so that w(E(G[S])) is the “internal strength” of the vertex set S.
Suppose removing A shatters G into a graph with c̄(A) > 1
components — then w(A)/(c̄(A)− 1) is like the “effort per
achieved/additional component” for a network attacker.
A form of graph strength can then be defined as the following:

strength(G,w) = min
A⊆E(G):c̄(A)>1

w(A)

c̄(A)− 1
(3.61)

Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G,w).

Since submodularity, problems have strongly-poly-time solutions.
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Then w(A) for A ⊆ E is a modular function
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we (3.60)

so that w(E(G[S])) is the “internal strength” of the vertex set S.
Suppose removing A shatters G into a graph with c̄(A) > 1
components — then w(A)/(c̄(A)− 1) is like the “effort per
achieved/additional component” for a network attacker.
A form of graph strength can then be defined as the following:

strength(G,w) = min
A⊆E(G):c̄(A)>1

w(A)

c̄(A)− 1
(3.61)

Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G,w).
Since submodularity, problems have strongly-poly-time solutions.
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Lemma 3.9.4

Let M ∈ Rn×n be a symmetric matrix and m ∈ Rn be a vector. Then
f : 2V → R defined as

f(X) = mᵀ1X +
1

2
1ᵀXM1X (3.62)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

Given a complete graph G = (V,E), recall that E(X) is the edge set
with both vertices in X ⊆ V (G), and that |E(X)| is supermodular.
Non-negative modular weights w+ : E → R+, w(E(X)) is also
supermodular, so −w(E(X)) is submodular.
f is a modular function mᵀ1A = m(A) added to a weighted
submodular function, hence f is submodular.
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Lemma 3.9.4

Let M ∈ Rn×n be a symmetric matrix and m ∈ Rn be a vector. Then
f : 2V → R defined as

f(X) = mᵀ1X +
1

2
1ᵀXM1X (3.62)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.
Given a complete graph G = (V,E), recall that E(X) is the edge set
with both vertices in X ⊆ V (G), and that |E(X)| is supermodular.

Non-negative modular weights w+ : E → R+, w(E(X)) is also
supermodular, so −w(E(X)) is submodular.
f is a modular function mᵀ1A = m(A) added to a weighted
submodular function, hence f is submodular.
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Lemma 3.9.4

Let M ∈ Rn×n be a symmetric matrix and m ∈ Rn be a vector. Then
f : 2V → R defined as

f(X) = mᵀ1X +
1

2
1ᵀXM1X (3.62)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.
Given a complete graph G = (V,E), recall that E(X) is the edge set
with both vertices in X ⊆ V (G), and that |E(X)| is supermodular.
Non-negative modular weights w+ : E → R+, w(E(X)) is also
supermodular, so −w(E(X)) is submodular.

f is a modular function mᵀ1A = m(A) added to a weighted
submodular function, hence f is submodular.
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Lemma 3.9.4

Let M ∈ Rn×n be a symmetric matrix and m ∈ Rn be a vector. Then
f : 2V → R defined as

f(X) = mᵀ1X +
1

2
1ᵀXM1X (3.62)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.
Given a complete graph G = (V,E), recall that E(X) is the edge set
with both vertices in X ⊆ V (G), and that |E(X)| is supermodular.
Non-negative modular weights w+ : E → R+, w(E(X)) is also
supermodular, so −w(E(X)) is submodular.
f is a modular function mᵀ1A = m(A) added to a weighted
submodular function, hence f is submodular. . . .
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Proof of Lemma 3.9.4 cont.
Conversely, suppose f is submodular.

Then ∀u, v ∈ V , f({u}) + f({v}) ≥ f({u, v}) + f(∅) while f(∅) = 0.
This requires:

0 ≤ f({u}) + f({v})− f({u, v}) (3.63)

= m(u) +
1

2
Mu,u +m(v) +

1

2
Mv,v (3.64)

−
(
m(u) +m(v) +

1

2
Mu,u +Mu,v +

1

2
Mv,v

)
(3.65)

= −Mu,v (3.66)

So that ∀u, v ∈ V , Mu,v ≤ 0.
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Proof of Lemma 3.9.4 cont.
Conversely, suppose f is submodular.
Then ∀u, v ∈ V , f({u}) + f({v}) ≥ f({u, v}) + f(∅) while f(∅) = 0.

This requires:

0 ≤ f({u}) + f({v})− f({u, v}) (3.63)

= m(u) +
1

2
Mu,u +m(v) +

1

2
Mv,v (3.64)

−
(
m(u) +m(v) +

1

2
Mu,u +Mu,v +

1

2
Mv,v

)
(3.65)

= −Mu,v (3.66)

So that ∀u, v ∈ V , Mu,v ≤ 0.
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Proof of Lemma 3.9.4 cont.
Conversely, suppose f is submodular.
Then ∀u, v ∈ V , f({u}) + f({v}) ≥ f({u, v}) + f(∅) while f(∅) = 0.
This requires:

0 ≤ f({u}) + f({v})− f({u, v}) (3.63)

= m(u) +
1

2
Mu,u +m(v) +

1

2
Mv,v (3.64)

−
(
m(u) +m(v) +

1

2
Mu,u +Mu,v +

1

2
Mv,v

)
(3.65)

= −Mu,v (3.66)

So that ∀u, v ∈ V , Mu,v ≤ 0.
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Set Cover and Maximum Coverage
just Special cases of Submodular Optimization

We are given a finite set U of m elements and a set of subsets
U = {U1, U2, . . . , Un} of n subsets of U , so that Ui ⊆ U and⋃
i Ui = U .

The goal of minimum set cover is to choose the smallest subset
A ⊆ [n] , {1, . . . , n} such that

⋃
a∈A Ua = U .

Maximum k cover: The goal in maximum coverage is, given an integer
k ≤ n, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [n] such that
|⋃k

i=1 Uai | is maximized.
f : 2[n] → Z+ where for A ⊆ [n], f(A) = |⋃a∈A Va| is the set cover
function and is submodular.
Weighted set cover: f(A) = w(

⋃
a∈A Va) where w : U → R+.

Both Set cover and maximum coverage are well known to be NP-hard,
but have a fast greedy approximation algorithm, and hence are
instances of submodular optimization.
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Set Cover and Maximum Coverage
just Special cases of Submodular Optimization

We are given a finite set U of m elements and a set of subsets
U = {U1, U2, . . . , Un} of n subsets of U , so that Ui ⊆ U and⋃
i Ui = U .

The goal of minimum set cover is to choose the smallest subset
A ⊆ [n] , {1, . . . , n} such that

⋃
a∈A Ua = U .

Maximum k cover: The goal in maximum coverage is, given an integer
k ≤ n, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [n] such that
|⋃k

i=1 Uai | is maximized.
f : 2[n] → Z+ where for A ⊆ [n], f(A) = |⋃a∈A Va| is the set cover
function and is submodular.
Weighted set cover: f(A) = w(

⋃
a∈A Va) where w : U → R+.

Both Set cover and maximum coverage are well known to be NP-hard,
but have a fast greedy approximation algorithm, and hence are
instances of submodular optimization.
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Set Cover and Maximum Coverage
just Special cases of Submodular Optimization

We are given a finite set U of m elements and a set of subsets
U = {U1, U2, . . . , Un} of n subsets of U , so that Ui ⊆ U and⋃
i Ui = U .

The goal of minimum set cover is to choose the smallest subset
A ⊆ [n] , {1, . . . , n} such that

⋃
a∈A Ua = U .

Maximum k cover: The goal in maximum coverage is, given an integer
k ≤ n, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [n] such that
|⋃k

i=1 Uai | is maximized.

f : 2[n] → Z+ where for A ⊆ [n], f(A) = |⋃a∈A Va| is the set cover
function and is submodular.
Weighted set cover: f(A) = w(

⋃
a∈A Va) where w : U → R+.

Both Set cover and maximum coverage are well known to be NP-hard,
but have a fast greedy approximation algorithm, and hence are
instances of submodular optimization.
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Set Cover and Maximum Coverage
just Special cases of Submodular Optimization

We are given a finite set U of m elements and a set of subsets
U = {U1, U2, . . . , Un} of n subsets of U , so that Ui ⊆ U and⋃
i Ui = U .

The goal of minimum set cover is to choose the smallest subset
A ⊆ [n] , {1, . . . , n} such that

⋃
a∈A Ua = U .

Maximum k cover: The goal in maximum coverage is, given an integer
k ≤ n, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [n] such that
|⋃k

i=1 Uai | is maximized.
f : 2[n] → Z+ where for A ⊆ [n], f(A) = |⋃a∈A Va| is the set cover
function and is submodular.

Weighted set cover: f(A) = w(
⋃
a∈A Va) where w : U → R+.

Both Set cover and maximum coverage are well known to be NP-hard,
but have a fast greedy approximation algorithm, and hence are
instances of submodular optimization.
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Set Cover and Maximum Coverage
just Special cases of Submodular Optimization

We are given a finite set U of m elements and a set of subsets
U = {U1, U2, . . . , Un} of n subsets of U , so that Ui ⊆ U and⋃
i Ui = U .

The goal of minimum set cover is to choose the smallest subset
A ⊆ [n] , {1, . . . , n} such that

⋃
a∈A Ua = U .

Maximum k cover: The goal in maximum coverage is, given an integer
k ≤ n, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [n] such that
|⋃k

i=1 Uai | is maximized.
f : 2[n] → Z+ where for A ⊆ [n], f(A) = |⋃a∈A Va| is the set cover
function and is submodular.
Weighted set cover: f(A) = w(

⋃
a∈A Va) where w : U → R+.

Both Set cover and maximum coverage are well known to be NP-hard,
but have a fast greedy approximation algorithm, and hence are
instances of submodular optimization.
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Set Cover and Maximum Coverage
just Special cases of Submodular Optimization

We are given a finite set U of m elements and a set of subsets
U = {U1, U2, . . . , Un} of n subsets of U , so that Ui ⊆ U and⋃
i Ui = U .

The goal of minimum set cover is to choose the smallest subset
A ⊆ [n] , {1, . . . , n} such that

⋃
a∈A Ua = U .

Maximum k cover: The goal in maximum coverage is, given an integer
k ≤ n, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [n] such that
|⋃k

i=1 Uai | is maximized.
f : 2[n] → Z+ where for A ⊆ [n], f(A) = |⋃a∈A Va| is the set cover
function and is submodular.
Weighted set cover: f(A) = w(

⋃
a∈A Va) where w : U → R+.

Both Set cover and maximum coverage are well known to be NP-hard,
but have a fast greedy approximation algorithm, and hence are
instances of submodular optimization.
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Vertex and Edge Covers
Also instances of submodular optimization

Definition 3.9.5 (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V,E) is a
set S ⊆ V (G) of vertices such that every edge in G is incident to at least
one vertex in S.

Let I(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S ⊆ V subject to I(S) = |E|.

Definition 3.9.6 (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V,E) is a
set F ⊆ E(G) of edges such that every vertex in G is incident to at least
one edge in F .

Let |V |(F ) be the number of vertices incident to edge set F . Then we
wish to find the smallest set F ⊆ E subject to |V |(F ) = |V |.
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Graph Cut Problems
Also submodular optimization

Minimum cut: Given a graph G = (V,E), find a set of vertices S ⊆ V
that minimize the cut (set of edges) between S and V \ S.

Maximum cut: Given a graph G = (V,E), find a set of vertices S ⊆ V
that minimize the cut (set of edges) between S and V \ S.
Let δ : 2V → R+ be the cut function, namely for any given set of nodes
X ⊆ V , |δ(X)| measures the number of edges between nodes X and
V \X — i.e., δ(x) = E(X,V \X).
Weighted versions, where rather than count, we sum the (non-negative)
weights of the edges of a cut, f(X) = w(δ(X)).
Hence, Minimum cut and Maximum cut are also special cases of
submodular optimization.
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Graph Cut Problems
Also submodular optimization

Minimum cut: Given a graph G = (V,E), find a set of vertices S ⊆ V
that minimize the cut (set of edges) between S and V \ S.
Maximum cut: Given a graph G = (V,E), find a set of vertices S ⊆ V
that minimize the cut (set of edges) between S and V \ S.

Let δ : 2V → R+ be the cut function, namely for any given set of nodes
X ⊆ V , |δ(X)| measures the number of edges between nodes X and
V \X — i.e., δ(x) = E(X,V \X).
Weighted versions, where rather than count, we sum the (non-negative)
weights of the edges of a cut, f(X) = w(δ(X)).
Hence, Minimum cut and Maximum cut are also special cases of
submodular optimization.
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Graph Cut Problems
Also submodular optimization

Minimum cut: Given a graph G = (V,E), find a set of vertices S ⊆ V
that minimize the cut (set of edges) between S and V \ S.
Maximum cut: Given a graph G = (V,E), find a set of vertices S ⊆ V
that minimize the cut (set of edges) between S and V \ S.
Let δ : 2V → R+ be the cut function, namely for any given set of nodes
X ⊆ V , |δ(X)| measures the number of edges between nodes X and
V \X — i.e., δ(x) = E(X,V \X).

Weighted versions, where rather than count, we sum the (non-negative)
weights of the edges of a cut, f(X) = w(δ(X)).
Hence, Minimum cut and Maximum cut are also special cases of
submodular optimization.
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Graph Cut Problems
Also submodular optimization

Minimum cut: Given a graph G = (V,E), find a set of vertices S ⊆ V
that minimize the cut (set of edges) between S and V \ S.
Maximum cut: Given a graph G = (V,E), find a set of vertices S ⊆ V
that minimize the cut (set of edges) between S and V \ S.
Let δ : 2V → R+ be the cut function, namely for any given set of nodes
X ⊆ V , |δ(X)| measures the number of edges between nodes X and
V \X — i.e., δ(x) = E(X,V \X).
Weighted versions, where rather than count, we sum the (non-negative)
weights of the edges of a cut, f(X) = w(δ(X)).

Hence, Minimum cut and Maximum cut are also special cases of
submodular optimization.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F56/56 (pg.153/154)



ML Target Surrogate Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples

Graph Cut Problems
Also submodular optimization

Minimum cut: Given a graph G = (V,E), find a set of vertices S ⊆ V
that minimize the cut (set of edges) between S and V \ S.
Maximum cut: Given a graph G = (V,E), find a set of vertices S ⊆ V
that minimize the cut (set of edges) between S and V \ S.
Let δ : 2V → R+ be the cut function, namely for any given set of nodes
X ⊆ V , |δ(X)| measures the number of edges between nodes X and
V \X — i.e., δ(x) = E(X,V \X).
Weighted versions, where rather than count, we sum the (non-negative)
weights of the edges of a cut, f(X) = w(δ(X)).
Hence, Minimum cut and Maximum cut are also special cases of
submodular optimization.
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