Submodular Functions, Optimization,

and Applications to Machine Learning
— Spring Quarter, Lecture 3 —

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring 2018/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/ bilmes

April 2nd, 2018

f(A) + f(B) > f(AUB) + f(ANB)
oo ® s

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F1/56 (pg.1/154)

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/
http://melodi.ee.washington.edu/~bilmes

Logistics

Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige’s book.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F2/56 (pg.2/154)

Logistics

Class Road Map - EE563

@ L1(3/26): Motivation, Applications, & @ L11(4/30)
Basic Definitions, @ L12(5/2):
@ L2(3/28): Machine Learning Apps @ L13(5/7)
(diversity, complexity, parameter, learning o L14(5/9)
target, surrogate). o L15(5/14)
@ L3(4/2): Info theory exs, more apps, o L16(5/16)
definitions, graph/combinatorial examples
o La(4/a) o L17(5/21)
o L5(4/9) o L18(5/23):
o L6(4/11) @ L—(5/28): Memorial Day (holiday)
o L7(4/16) @ L19(5/30):
o L8(4/18) @ L21(6/4): Final Presentations
o L0(4/23): maximization.
@ L10(4/25):

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F3/56 (pg.3/154)

Two Equivalent Submodular Definitions

Definition 3.2.1 (submodular concave)

A function f : 2¥ — R is submodular if for any A, B C V, we have that:

f(A)+f(B) = f(AUB) + f(ANB) (3.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.2 (diminishing returns)

A function f : 2V — R is submodular if for any A C B C V, and
v € V' \ B, we have that:

f(AU{v}) — f(A) = F(BU{v}) — f(B) (3.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as the
context in which v is considered grows from A to B.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F4/56 (pg.4/154)

Two Equivalent Supermodular Definitions

Definition 3.2.1 (supermodular)
A function f : 2" — R is supermodular if for any A, B C V, we have that:

f(A)+ f(B) < f(AUB) + f(AN B) (3.8)

Definition 3.2.2 (supermodular (improving returns))

A function f : 2V — R is supermodular if for any A C B C V, and
v € V'\ B, we have that:

fAU{v}) = f(A) < F(BU{v}) - f(B) (3.9)
@ Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
@ A function f is submodular iff —f is supermodular.
o If f both submodular and supermodular, then f is said to be modular,
and f(A) =c+ > ,ca f(a) (often ¢ =0).

F5/56 (pg.5/154)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018

Submodularity’s utility in ML

@ A model of a physical process :
e When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
o When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
e vice-versa for supermodularity.

@ A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, structured
sparse convex norms for use in regularization).

@ Itself, as an object or function to learn , based on data.

@ A surrogate or relaxation strategy for optimization or analysis
o An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). l.e., a means
towards tractable surrogates for graphical models.
e Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
e Non-submodular problems can be analyzed via submodularity.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F6/56 (pg.6/154)

ML Target
(N}

Learning Submodular Functions

@ Learning submodular functions is hard

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F7/56 (pg.7/154)

ML Target
(N}

Learning Submodular Functions

@ Learning submodular functions is hard

e Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f such

that f(S) < f(S) < g(n)f(S) where g : N — R?"

F7/56 (pg.8/154)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018

ML Target
(N}

Learning Submodular Functions

@ Learning submodular functions is hard

e Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f such
that f(S) < f(S) < g(n)f(S) where g : N — R?" Many results,
including that even with adaptive queries and monotone functions,
can't do better than Q(y/n/logn).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F7/56 (pg.9/154)

ML Target
(N}

Learning Submodular Functions

@ Learning submodular functions is hard

e Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f such
that f(S) < f(S) < g(n)f(S) where g : N — R?" Many results,
including that even with adaptive queries and monotone functions,
can't do better than Q(y/n/logn).

@ Balcan & Harvey (2011): submodular function learning problem from a
learning theory perspective, given a distribution on subsets. Negative
result is that can't approximate in this setting to within a constant
factor.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F7/56 (pg.10/154)

ML Target
(N}

Learning Submodular Functions

@ Learning submodular functions is hard

e Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f such
that f(S) < f(S) < g(n)f(S) where g : N — R?" Many results,
including that even with adaptive queries and monotone functions,
can't do better than Q(y/n/logn).

@ Balcan & Harvey (2011): submodular function learning problem from a
learning theory perspective, given a distribution on subsets. Negative
result is that can’t approximate in this setting to within a constant
factor.

e Feldman, Kothari, Vondrak (2013), shows in some learning settings,
things are more promising (PAC learning possible in O(n?) - 20(1/64)).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F7/56 (pg.11/154)

ML Target
(N}

Learning Submodular Functions

@ Learning submodular functions is hard

e Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f such
that f(S) < f(S) < g(n)f(S) where g : N — R?" Many results,
including that even with adaptive queries and monotone functions,
can't do better than Q(y/n/logn).

@ Balcan & Harvey (2011): submodular function learning problem from a
learning theory perspective, given a distribution on subsets. Negative
result is that can’t approximate in this setting to within a constant
factor.

e Feldman, Kothari, Vondrak (2013), shows in some IeaNrning settings,
things are more promising (PAC learning possible in O(n?) - 20(1/64)).

@ One example: can we learn a subclass, perhaps non-negative weighted
mixtures of submodular components?

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F7/56 (pg.12/154)

ML Target
1

Structured Learning of Submodular Mixtures

@ Constraints specified in inference form:

o e~ A o
mlwglze T Z:ft T3 [w] (31)
subject to w ' £ (y®) > max (WTft(y) + Et(y)) — &, vVt (3.2)

yeVt
£ > 0,Vt. (3.3)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F8/56 (pg.13/154)

ML Target
1

Structured Learning of Submodular Mixtures

@ Constraints specified in inference form:

L 1 A 9
= = 3.1
minimize T % &+ 5 l|w| (3.1)

Wzgt

subject to w ' £ (y®) > e (wat(y) + Et(y)> — &, vVt (3.2)
yelt

@ Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F8/56 (pg.14/154)

ML Target
1

Structured Learning of Submodular Mixtures

@ Constraints specified in inference form:

L 1 A 9
= = 3.1
minimize T % &+ 5 l|w| (3.1)

W,gt
subject to w ' £ (y®) > e (wat(y) + Et(y)> — &, vVt (3.2)
yelt
& > 0,V (3.3)

@ Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”

e w ' fi(y) is a mixture of submodular components.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F8/56 (pg.15/154)

ML Target
1

Structured Learning of Submodular Mixtures

@ Constraints specified in inference form:

minimize ;;gt + % wl)? (3.1)

subject to w ' £ (y®) > e (wat(y) + Et(y)> — &, vVt (3.2)
yelt

& > 0,V (3.3)

@ Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”

o w'fi(y) is a mixture of submodular components.

@ If loss is also submodular, then loss-augmented inference is submodular
optimization.

EES563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F8/56 (pg.16/154)

ML Target
1

Structured Learning of Submodular Mixtures

@ Constraints specified in inference form:

minimize ;;gt + % wl)? (3.1)

subject to w ' £ (y®) > e (wat(y) + Et(y)> — &, vVt (3.2)
yelt

& > 0,V (3.3)

@ Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”

o w'fi(y) is a mixture of submodular components.

@ If loss is also submodular, then loss-augmented inference is submodular
optimization.

o If loss is supermodular, this is a difference-of-submodular (DS) function
optimization.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F8/56 (pg.17/154)

ML Target
(WA]

Structured Prediction: Subgradient Learning

@ Solvable with simple sub-gradient descent algorithm using structured
variant of hinge-loss (Taskar, 2004).

o Loss-augmented inference is either submodular optimization (Lin & B.
2012) or DS optimization (Tschiatschek, lyer, & B. 2014).

Algorithm 1: Subgradient descent learning

Input : S = {(x,y®)}T_| and a learning rate sequence {n;}/_,.
1 wy = 0;
2 fort=1,---,T do
3 Loss augmented inference: y; € argmaxycy, wllft(y) +4(y);
A Compute the subgradient: g; = Aw,_1 + f;(y*) — fi(y®);
5 Update the weights: w; = w1 — m:84;

Return : the averaged parameters + >, w.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F9/56 (pg.18/154)

Recall

The next page shows a slide from Lecture 1

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F10/56 (pg.19/154)

Surrogate
(LERN]

Submodular-Supermodular Decomposition

@ As an alternative to graphical decomposition, we can decompose a
function without resorting sums of local terms.

Theorem 3.4.1 (Additive Decomposition (Narasimhan & Bilmes, 2005))

Let h: 2V — R be any set function. Then there exists a submodular
function f : 2V — R and a supermodular function g : 2" — R such that h
may be additively decomposed as follows: For all A C 'V,

hA) = f(A) +9(4) (3.8)

e For many applications (as we will see), either the submodular or
supermodular component is naturally zero.

@ Sometimes more natural than a graphical decomposition.

@ Sometimes h(A) has structure in terms of submodular functions but is
non additively decomposed (one example is h(A) = f(A)/g(A)).

e Complementary: simultaneous graphical /submodular-supermodular
decomposition (i.e., submodular 4+ supermodular tree).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F11/56 (pg.20/154)

Applications of DS functions

Any function h : 2V — R can be expressed as a difference between two
submodular (DS) functions, h = f — g.

@ Sensor placement with submodular costs. l.e., let V be a set of possible
sensor locations, f(A) = I(Xa; Xy 4) measures the quality of a
subset A of placed sensors, and ¢(A) the submodular cost. We have
f(A) — Ac(A) as the overall objective to maximize.

EES563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F12/56 (pg.21/154)

Surrogate
(RN

Applications of DS functions

Any function h : 2V — R can be expressed as a difference between two
submodular (DS) functions, h = f — g.

@ Sensor placement with submodular costs. l.e., let V be a set of possible
sensor locations, f(A) = I(Xa; Xy 4) measures the quality of a
subset A of placed sensors, and ¢(A) the submodular cost. We have
f(A) — Ac(A) as the overall objective to maximize.

@ Discriminatively structured graphical models, EAR measure
I(X a; Xy a) — 1(Xa; X1\ 4|C), and synergy in neuroscience.

EES563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F12/56 (pg.22/154)

Applications of DS functions

Any function h : 2V — R can be expressed as a difference between two
submodular (DS) functions, h = f — g.

@ Sensor placement with submodular costs. l.e., let V be a set of possible
sensor locations, f(A) = I(Xa; Xy 4) measures the quality of a
subset A of placed sensors, and ¢(A) the submodular cost. We have
f(A) — Ac(A) as the overall objective to maximize.

@ Discriminatively structured graphical models, EAR measure
I(X a; Xy a) — 1(Xa; X1\ 4|C), and synergy in neuroscience.

o Feature selection: a problem of maximizing
I(X4;C) = Ac(A) = H(Xa) — [H(X4|C) + Ac(A)], the difference
between two submodular functions, where H is the entropy and c is a
feature cost function.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F12/56 (pg.23/154)

Surrogate
(RN

Applications of DS functions

Any function h : 2V — R can be expressed as a difference between two
submodular (DS) functions, h = f — g.

@ Sensor placement with submodular costs. l.e., let V be a set of possible
sensor locations, f(A) = I(Xa; Xy 4) measures the quality of a
subset A of placed sensors, and ¢(A) the submodular cost. We have
f(A) — Ac(A) as the overall objective to maximize.

@ Discriminatively structured graphical models, EAR measure
I(X a; Xy a) — 1(Xa; X1\ 4|C), and synergy in neuroscience.

o Feature selection: a problem of maximizing
I(X4;C) — Ae(A) = H(X4) — [H(X4|C) + Ac(A)], the difference
between two submodular functions, where H is the entropy and c is a
feature cost function.

@ Graphical Model Inference. Finding = that maximizes
p(z) o< exp(—v(x)) where z € {0,1}" and v is a pseudo-Boolean
function. When v is non-submodular, it can be represented as a
difference between submodular functions.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F12/56 (pg.24/154)

Submodular Relaxation

@ We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F13/56 (pg.25/154)

Surrogate

Submodular Relaxation

@ We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).
o If potentials are submodular, we can solve them.

ff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F13/56 (pg.26/154)

Surrogate
(RRAN]

Submodular Relaxation

@ We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

e If potentials are submodular, we can solve them.

@ When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F13/56 (pg.27/154)

Submodular Relaxation

@ We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

e If potentials are submodular, we can solve them.

e When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

@ An alternative is submodular relaxation. l.e., given

Pr(z) = %exp(—E(I)) (3.4)

where E(x) = E¢(x) — Eq4(x) and both of Ef(x) and Ey(z) are
submodular.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F13/56 (pg.28/154)

Submodular Relaxation

@ We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

e If potentials are submodular, we can solve them.

e When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

@ An alternative is submodular relaxation. l.e., given

Pr(z) = %exp(—E(:c)) (3.4)

where E(x) = E¢(x) — Eq4(x) and both of Ef(x) and Ey(x) are
submodular.

@ Any function can be expressed as the difference between two
submodular functions.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F13/56 (pg.29/154)

Submodular Relaxation

@ We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

e If potentials are submodular, we can solve them.

e When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

@ An alternative is submodular relaxation. l.e., given

Pr(z) = %exp(—E(:c)) (3.4)

where E(x) = E¢(x) — Eq4(x) and both of Ef(x) and Ey(x) are
submodular.

@ Any function can be expressed as the difference between two
submodular functions.

@ Hence, rather than minimize E(x) (hard), we can minimize the easier
E(z) = Ef(x) — Ep(z) > E(x) where E,,(z) is a modular lower
bound on E,(z).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F13/56 (pg.30/154)

Surrogate
(RNNA}

Submodular Analysis for Non-Submodular Problems

@ Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F14/56 (pg.31/154)

Surrogate
(RNNA}

Submodular Analysis for Non-Submodular Problems

@ Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.

@ For example, “deviation from submodularity” can be measured using the
submodularity ratio (Das & Kempe):

>ses fzlL)

yor(f) £ min
’ LCU,S:|S|<k,snL=0 f(S|L)

(3.5)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F14/56 (pg.32/154)

Surrogate
(RNNA}

Submodular Analysis for Non-Submodular Problems

@ Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.

@ For example, “deviation from submodularity” can be measured using the
submodularity ratio (Das & Kempe):

wk(f) £ i 2ses F(=lL)

= min
LCU,S:|S|<k,snL=0 f(S|L)
e f is submodular if and only if vy, = 1.

(3.5)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018

F14/56 (pg.33/154)

Surrogate
(RNNA}

Submodular Analysis for Non-Submodular Problems

@ Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.

@ For example, “deviation from submodularity” can be measured using the
submodularity ratio (Das & Kempe):

A . ZSES f($|L)
p— - - 3-5
wklf) LgU,S:é%%,SmL:@ f(S|L) (3.5)
e f is submodular if and only if vy, = 1.
@ For some variable selection problems, can get bounds of the form:
Solution > (1 — JOPT (3.6)

e YU* k

where U* is the solution set of a variable selection algorithm.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F14/56 (pg.34/154)

Surrogate
(RNNA}

Submodular Analysis for Non-Submodular Problems

@ Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.
@ For example, “deviation from submodularity” can be measured using the
submodularity ratio (Das & Kempe):
2 ses I(2|L)

. ' Dses f@lL) 3.5
Yk (f) LcU.sS\<ksn=0 f(S|L) =)

e f is submodular if and only if vy, = 1.
@ For some variable selection problems, can get bounds of the form:

. 1
SOIUt|On Z (1 — m)OPT (36)

where U™ is the solution set of a variable selection algorithm.
@ This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F14/56 (pg.35/154)

Surrogate
(RNNA}

Submodular Analysis for Non-Submodular Problems

@ Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.
@ For example, “deviation from submodularity” can be measured using the
submodularity ratio (Das & Kempe):
2 ses I(2|L)

. ' Dses f@lL) 3.5
Yk (f) LcU.sS\<ksn=0 f(S|L) =)

e f is submodular if and only if vy, = 1.
@ For some variable selection problems, can get bounds of the form:

. 1
SOIUt|On Z (1 — m)OPT (36)

where U™ is the solution set of a variable selection algorithm.

@ This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).

@ Other analogous concepts: curvature of a submodular function, and
also the submodular degree.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F14/56 (pg.36/154)

Bit More Notation

Ground set: E or V7

Submodular functions are functions defined on subsets of some finite set,
called the ground set.

@ It is common in the literature to use either E/ or V' as the ground set —
we will at different times use both (there should be no confusion).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F15/56 (pg.37/154)

Bit More Notation
[NRNR

Ground set: E or V7

Submodular functions are functions defined on subsets of some finite set,
called the ground set.

@ It is common in the literature to use either E or V as the ground set —
we will at different times use both (there should be no confusion).

@ The terminology ground set comes from lattice theory, where V' are the
ground elements of a lattice (just above 0).

F15/56 (pg.38/154)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018

Prof. Jeff Bilmes

What does z € RE mean?

R¥={z=(z;€R:j€E)} (3.7)
and

RY={r=(zj:j€E):2>0} (3.8)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F16/56 (pg.39/154)

Bit More Notation

Notation R¥, and modular functions as vectors

What does z € RF mean?

R¥={z=(z;€R:j€E)} (3.7)
and

RY={r=(zj:j€E):2>0} (3.8)

Any vector = € RF can be treated as a normalized modular function, and
vice verse. That is, for A C F,

2(A) =) 4 (3.9)

a€A

Note that x is said to be normalized since () = 0.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F16/56 (pg.40/154)

Bit More Notation

characteristic (incidence) vectors of sets & modular

functions

@ Given an A C E, define the incidence (or characteristic) vector
14 € {0,1}” on the unit hypercube to be

) 1 ifjeA;
LaG) =9, (3.10)
0 ifj¢gA
or equivalently,
1, % {xE (0,117 ;=1 iffieA} (3.11)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F17/56 (pg.41/154)

Bit More Notation

characteristic (incidence) vectors of sets & modular

functions

@ Given an A C E, define the incidence (or characteristic) vector
14 € {0,1}” on the unit hypercube to be

1 ifjeA;
14(7) = 3.10
A7) {0 e A (3.10)
or equivalently,
14 % {xE{O,l}E:xizl iffieA} (3.11)

@ Sometimes this is written as x4 = 14.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F17/56 (pg.42/154)

Bit
(RLAR

characteristic (incidence) vectors of sets & modular

functions

@ Given an A C E, define the incidence (or characteristic) vector
14 € {0,1}” on the unit hypercube to be

1 ifjeA;
14(7) = 3.10
A7) {0 e A (3.10)
or equivalently,
14 % {xE{O,l}E:xizl iffieA} (3.11)

@ Sometimes this is written as x4 = 14.
@ Thus, given modular function z € R”, we can write 2(A) in a variety
of ways, i.e.,

2(A)=aT-14 =) (i) (3.12)

€A

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F17/56 (pg.43/154)

Bit More Notation

Other Notation: singletons and sets

When A is a set and k is a singleton (i.e., a single item), the union is
properly written as A U {k}, but sometimes we will write just A + k.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F18/56 (pg.44/154)

Bit More Notation

What does ST mean when S and T are arbitrary sets?

@ Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

Prof. Jeff Bilmes EES563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F19/56 (pg.45/154)

Bit More Notation

What does ST mean when S and T are arbitrary sets?

o Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

@ We define the notation S” to be the set of all functions that map from
TtoS. Thatis, if f € ST, then f:T — S.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F19/56 (pg.46/154)

What does ST mean when S and T are arbitrary sets?

o Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

@ We define the notation S7 to be the set of all functions that map from
TtoS. Thatis, if f € ST, then f:T — 8.

@ Hence, given a finite set £, R¥ is the set of all functions that map
from elements of E to the reals R, and such functions are identical to a
vector in a vector space with axes labeled as elements of E (i.e., if
m € R¥, then for all e € E, m(e) € R).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F19/56 (pg.47/154)

Bit More Notation

What does ST mean when S and T are arbitrary sets?

o Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

@ We define the notation S7 to be the set of all functions that map from
TtoS. Thatis, if f € ST, then f:T — 8.

@ Hence, given a finite set £, R¥ is the set of all functions that map
from elements of E to the reals R, and such functions are identical to a
vector in a vector space with axes labeled as elements of E (i.e., if
m € RE, then for all e € E, m(e) € R).

@ Often “2" is shorthand for the set {0,1}. l.e., R? where 2 = {0,1}.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F19/56 (pg.48/154)

Bit More Notation

What does ST mean when S and T are arbitrary sets?

o Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

@ We define the notation S7 to be the set of all functions that map from
TtoS. Thatis, if f € ST, then f:T — 8.

@ Hence, given a finite set £, R¥ is the set of all functions that map
from elements of E to the reals R, and such functions are identical to a
vector in a vector space with axes labeled as elements of E (i.e., if
m € RE, then for all e € E, m(e) € R).

e Often “2" is shorthand for the set {0,1}. l.e., R? where 2 = {0,1}.

e Similarly, 2% is the set of all functions from E to “two” — so 2% is
shorthand for {0, 1}

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F19/56 (pg.49/154)

Bit More Notation

What does ST mean when S and T are arbitrary sets?

o Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

@ We define the notation S7 to be the set of all functions that map from
TtoS. Thatis, if f € ST, then f:T — 8.

@ Hence, given a finite set £, R¥ is the set of all functions that map
from elements of E to the reals R, and such functions are identical to a
vector in a vector space with axes labeled as elements of E (i.e., if
m € RE, then for all e € E, m(e) € R).

e Often “2" is shorthand for the set {0,1}. l.e., R? where 2 = {0,1}.

o Similarly, 27 is the set of all functions from E to “two” — so 2 is
shorthand for {0,1}” — hence, 27 is the set of all functions that map
from elements of E to {0, 1}, equivalent to all binary vectors with

elements indexed by elements of F, equivalent to subsets of E. Hence,
if Ac2F then ACE.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F19/56 (pg.50/154)

Bit More Notation

What does ST mean when S and T are arbitrary sets?

o Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

@ We define the notation S7 to be the set of all functions that map from
TtoS. Thatis, if f € ST, then f:T — 8.

@ Hence, given a finite set £, R¥ is the set of all functions that map
from elements of E to the reals R, and such functions are identical to a
vector in a vector space with axes labeled as elements of E (i.e., if
m € RE, then for all e € E, m(e) € R).

e Often “2" is shorthand for the set {0,1}. l.e., R? where 2 = {0,1}.

o Similarly, 2% is the set of all functions from E to “two” — so 2% is
shorthand for {0,1}” — hence, 27 is the set of all functions that map
from elements of E to {0, 1}, equivalent to all binary vectors with
elements indexed by elements of FE, equivalent to subsets of E. Hence,
if A e 2F then AC E.

e What might 3¥ mean?

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F19/56 (pg.51/154)

Info Theory Examples
LARN}

Example Submodular: Entropy from Information Theory

@ Entropy is submodular. Let V' be the index set of a set of random
variables, then the function

f(A) = H(X) == pla)logp(za) (3.13)

TA

is submodular.
@ Proof: (further) conditioning reduces entropy. With A C B and v ¢ B,

H(X,|Xp) = H(Xp4,) — H(Xp) (3.14)

(Xa) = H(Xy[Xa) (3.15)

o We say “further” due to B\ A not nec. empty.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F20/56 (pg.52/154)

Info Theory Examples
1

Example Submodular: Entropy from Information Theory

o Alternate Proof: Conditional mutual Information is always non-negative.
e Given A, B CV, consider conditional mutual information quantity:

p(za\B, T\ AlTANB)
I(X5 X X = T lo

TAUB
= 3 plwavs)log p(zaup)p(TanB) >0 (3.16)
o p(za)p(zp)
then
I(X z\B; Xp\alXanB)
=H(X4)+ H(XB)— H(XauB) — HXanB) >0 (3.17)

so entropy satisfies

H(Xa)+ H(Xp) > H(Xaup) + H(XanB) (3.18)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F21/56 (pg.53/154)

Info Theory Examples
(RLT]

Information Theory: Block Coding

@ Given a set of random variables {X;}, ., indexed by set V', how do we
partition them so that we can best block-code them within each block.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F22/56 (pg.54/154)

Information Theory: Block Coding

@ Given a set of random variables {X;}, , indexed by set V', how do we
partition them so that we can best block-code them within each block.

e le., how do we form S C V' such that I(Xg; Xy g) is as small as
possible, where I(X 4; Xp) is the mutual information between random
variables X4 and Xp, i.e.,

I(X4; XB) = H(X4) + H(Xp) — H(X4,Xp) (3.19)

and H(X4) = —3_,, p(za)logp(xa) is the joint entropy of the set
X 4 of random variables.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F22/56 (pg.55/154)

Example Submodular: Mutual Information

@ Also, symmetric mutual information is submodular,
f(A) = I(Xa; Xy\a) = H(Xa) + HXy\a) — H(Xv) (3.20)

Note that f(A) = H(X4) and f(A) = H(Xy\4), and adding
submodular functions preserves submodularity (which we will see quite
soon).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F23/56 (pg.56/154)

Monge Matrices

@ m x n matrices C' = [¢;;];; are called Monge matrices if they satisfy the
Monge property, namely:

Cij + Crs < Cis + Crj (3.21)
foralll<i<r<mandl1<j<s<n.

Prof. Jeff Bilmes EES563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F24/56 (pg.57/154)

Monge Matrices

e m x n matrices C' = [c;;];; are called Monge matrices if they satisfy the
Monge property, namely:

Cij + Crs < s+ Crj (321)

foralll<i<r<mandl<j<s<n.
@ Equivalently, forall 1 <i,r <m, 1< 74,5 <mn,

Cmin(i,r),min(j,s) + Cmax(i,r),max(j,s) < Cis T Cryj (322)

Prof. Jeff Bilmes EES563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F24/56 (pg.58/154)

Monge Matrices

e m x n matrices C' = [c;;];; are called Monge matrices if they satisfy the
Monge property, namely:
Cij + Crs < s+ Crj (321)
foralll<i<r<mandl<j<s<n.
@ Equivalently, forall 1 <i,r <m, 1 <7j,s<mn,
Cmin(i,r),min(j,s) + Crmax(i,r),max(4,s) < ¢is + Crj (322)

o Consider four elements of the m x n matrix:
n

m T

7 s
cij=A+B,c¢;j=B,¢,s=B+D,cis=A+B+C+D.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F24/56 (pg.59/154)

Monge Matrices, where useful

@ Useful for speeding up many transportation, dynamic programming,
flow, search, lot-sizing and many other problems.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F25/56 (pg.60/154)

Monge Matrices, where useful

@ Useful for speeding up many transportation, dynamic programming,
flow, search, lot-sizing and many other problems.

@ Example, Hitchcock transportation problem: Given m x n cost matrix
C = [cijlij , a non-negative supply vector a € R, a non-negative
demand vector b € RY} with 371", a(i) = 377, bj, we wish to
optimally solve the following linear program:

minimize ii(i“?'” (323)

XGR'HL Xn

i=1 j=1

subject to inj =b; Vj=1,...,n (3.24)
i=1
n

Z:L‘ij =a; Vi=1,...,m (3.25)
J=1

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F25/56 (pg.61/154)

Monge
(RL AN

Monge Matrices, Hitchcock transportation

ai 011 313
Producers,
Sources, (@9 1 4 7 10
or Supply
as O[4]9 |14
3 2 1 2
by by by by
Consumers, Sinks, or
Demand

@ Solving the linear program can be done easily and optimally using the
“North West Corner Rule” (a 2D greedy-like approach starting at
top-left and moving down-right) in only O(m + n) if the matrix C'is
Monge!

F26/56 (pg.62/154)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018

Monge
1

Monge Matrices and Convex Polygons

@ Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances c;;
satisfy Monge property (or quadrangle inequality).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F27/56 (pg.63/154)

Monge
1

Monge Matrices and Convex Polygons

@ Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances c;;
satisfy Monge property (or quadrangle inequality).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F27/56 (pg.64/154)

Monge
1

Monge Matrices and Convex Polygons

@ Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances c;;
satisfy Monge property (or quadrangle inequality).

q1
q2 P1

D2

q3

q4
- P4

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F27/56 (pg.65/154)

Monge
1

Monge Matrices and Convex Polygons

@ Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances c;;
satisfy Monge property (or quadrangle inequality).

P2
a3
p3
q4
d(p2,q3) + d(p3, qa) < d(p2, qa) + d(p3, g3) (3.27)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F27/56 (pg.66/154)

Monge
(NN}

Monge Matrices and Submodularity

@ A submodular function has the form: f : 2V — R which can be seen as
F:{0,1}V =R

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F28/56 (pg.67/154)

Monge
(NN}

Monge Matrices and Submodularity

e A submodular function has the form: f: 2" — R which can be seen as
fF:{0,1}V =R
@ We can generalize this to f : {0, K}" — R for some constant K € Z .

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F28/56 (pg.68/154)

Monge
(NN}

Monge Matrices and Submodularity

e A submodular function has the form: f: 2" — R which can be seen as
fF:{0,1}V =R

@ We can generalize this to f : {0, K}V — R for some constant K € Z, .

@ We may define submodularity as: for all 2,y € {O,K}V, we have

fx)+fly) = flxVy) + flzAy) (3.28)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F28/56 (pg.69/154)

Monge
(NN}

Monge Matrices and Submodularity

e A submodular function has the form: f: 2" — R which can be seen as
fF:{0,1}V =R

@ We can generalize this to f : {0, K}V — R for some constant K € Z, .

o We may define submodularity as: for all z,y € {O,K}V, we have

f@)+ fly) = flevy) + flxAy) (3.28)

@ x V y is the (join) element-wise min of each element, that is
(x Vy)(v) =min(z(v),y(v)) for v e V.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F28/56 (pg.70/154)

Monge
(NN}

Monge Matrices and Submodularity

e A submodular function has the form: f: 2" — R which can be seen as
fF:{0,1}V =R

@ We can generalize this to f : {0, K}V — R for some constant K € Z, .

o We may define submodularity as: for all z,y € {O,K}V, we have

f@)+ f(y) = flzvy) + flzAy) (3.28)
e x V y is the (join) element-wise min of each element, that is
(x Vy)(v) =min(xz(v),y(v)) forv e V.

@ x Ay is the (meet) element-wise min of each element, that is,
(x ANy)(v) = max(z(v),y(v)) for v e V.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F28/56 (pg.71/154)

Monge
(NN}

Monge Matrices and Submodularity

e A submodular function has the form: f: 2" — R which can be seen as
fF:{0,1}V =R

@ We can generalize this to f : {0, K}V — R for some constant K € Z, .

o We may define submodularity as: for all z,y € {O,K}V, we have

f@)+ fly) = flevy) + flxAy) (3.28)

e x V y is the (join) element-wise min of each element, that is
(x Vy)(v) =min(xz(v),y(v)) forv e V.
@ x Ay is the (meet) element-wise min of each element, that is,
(x Ay)(v) = max(z(v),y(v)) forv e V.
o With K =1, then this is the standard definition of submodularity.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F28/56 (pg.72/154)

Monge
(NN}

Monge Matrices and Submodularity

e A submodular function has the form: f: 2" — R which can be seen as
fF:{0,1}V =R

@ We can generalize this to f : {0, K}V — R for some constant K € Z, .

o We may define submodularity as: for all z,y € {O,K}V, we have

f@)+ fly) = flevy) + flxAy) (3.28)

e x V y is the (join) element-wise min of each element, that is
(x Vy)(v) =min(xz(v),y(v)) forv e V.
@ x Ay is the (meet) element-wise min of each element, that is,
(x Ay)(v) = max(z(v),y(v)) forv e V.
o With K =1, then this is the standard definition of submodularity.

e With |V| =2, and K + 1 the side-dimension of the matrix, we get a
Monge property (on square matrices).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F28/56 (pg.73/154)

Monge
(NN}

Monge Matrices and Submodularity

e A submodular function has the form: f: 2" — R which can be seen as
fF:{0,1}V =R

@ We can generalize this to f : {0, K}V — R for some constant K € Z, .

o We may define submodularity as: for all z,y € {O,K}V, we have

f@)+ fly) = flevy) + flxAy) (3.28)

e x V y is the (join) element-wise min of each element, that is
(x Vy)(v) =min(xz(v),y(v)) forv e V.
@ x Ay is the (meet) element-wise min of each element, that is,
(x Ay)(v) = max(z(v),y(v)) forv e V.
o With K =1, then this is the standard definition of submodularity.

e With |V| =2, and K + 1 the side-dimension of the matrix, we get a
Monge property (on square matrices).

@ Not-necessarily-square would be f: {0, K;} x {0, Ko} — R.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F28/56 (pg.74/154)

More Definitions

Two Equivalent Submodular Definitions

Definition 3.8.1 (submodular concave)

A function f : 2¥ — R is submodular if for any A, B C V, we have that:

f(A)+f(B) = f(AUB) + f(ANB) (3.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.8.2 (diminishing returns)

A function f : 2V — R is submodular if for any A C B C V, and
v € V' \ B, we have that:

f(AU{v}) — f(A) = F(BU{v}) — f(B) (3.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as the
context in which v is considered grows from A to B.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F30/56 (pg.75/154)

Mor
[LERRRNN

Submodular on Hypercube Vertices

@ Test submodularity via values on verticies of hypercube.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F31/56 (pg.76/154)

More Definitions

Submodular on Hypercube Vertices

@ Test submodularity via values on verticies of hypercube.

Example: with |[V| =n =2, this is
easy:

10 m

00 01

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018

F31/56 (pg.77/154)

More Definitions
[LERRRNN

Submodular on Hypercube Vertices

@ Test submodularity via values on verticies of hypercube.

Example: with |[V| =n =2, thisis With |V| =n = 3, a bit harder.
easy: ®

0 " /
01 o1
00 01

L

How many inequalltles?

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 /56 (pg.78/154)

Subadditive Definitions

Definition 3.8.1 (subadditive)
A function f :2Y — R is subadditive if for any A, B C V, we have that:

f(A)+ f(B) =z f(AU B) (3.29)

This means that the “whole” is less than the sum of the parts.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F32/56 (pg.79/154)

More Definitions
[RRLRRNN

Two Equivalent Supermodular Definitions

Definition 3.8.1 (supermodular)
A function f : 2" — R is supermodular if for any A, B C V, we have that:

f(A)+ f(B) < f(AUB) + f(AN B) (3.8)

Definition 3.8.2 (supermodular (improving returns))

A function f : 2V — R is supermodular if for any A C B C V, and
v € V'\ B, we have that:

fAU{v}) = f(A) < F(BU{v}) - f(B) (3.9)
@ Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
@ A function f is submodular iff —f is supermodular.
o If f both submodular and supermodular, then f is said to be modular,
and f(A) =c+ > ,ca f(a) (often ¢ =0).

F33/56 (pg.80/154)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018

Superadditive Definitions

Definition 3.8.2 (superadditive)
A function f : 2¥ — R is superadditive if for any A, B C V, we have that:

f(A)+ f(B) < f(AU B) (3.30)

@ This means that the “whole” is greater than the sum of the parts.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F34/56 (pg.81/154)

Superadditive Definitions

Definition 3.8.2 (superadditive)
A function f : 2¥ — R is superadditive if for any A, B C V, we have that:

f(A)+ f(B) < f(AU B) (3.30)

@ This means that the “whole” is greater than the sum of the parts.

@ In general, submodular and subadditive (and supermodular and
superadditive) are different properties.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F34/56 (pg.82/154)

More Definitions

Superadditive Definitions

Definition 3.8.2 (superadditive)

A function f : 2¥ — R is superadditive if for any A, B C V, we have that:

f(A)+ f(B) < f(AU B) (3.30)

@ This means that the “whole” is greater than the sum of the parts.

@ In general, submodular and subadditive (and supermodular and
superadditive) are different properties.

@ Ex: Let 0 < k < |V|, and consider f: 2" — R, where:

£(4) = {1 Tlal<k (3.31)

0 else

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018

F34/56 (pg.83/154)

More Definitions

Superadditive Definitions

Definition 3.8.2 (superadditive)

A function f : 2¥ — R is superadditive if for any A, B C V, we have that:

f(A)+ f(B) < f(AU B) (3.30)

@ This means that the “whole” is greater than the sum of the parts.

@ In general, submodular and subadditive (and supermodular and
superadditive) are different properties.

o Ex: Let 0 < k < |V|, and consider f: 2" — R, where:

=l s

0 else

@ This function is subadditive but not submodular.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F34/56 (pg.84/154)

More Definitions
[RRRRL NN

Modular Definitions

Definition 3.8.3 (modular)

A function that is both submodular and supermodular is called modular

If fis a modular function, than for any A, B C V, we have
f(A)+ f(B)=f(ANnB)+ f(AUB) (3.32)

In modular functions, elements do not interact (or cooperate, or compete, or
influence each other), and have value based only on singleton values.

Proposition 3.8.4

If f is modular, it may be written as

£(A Z(F({a)) -)_c+2f (3.33)

a€A a€cA

which has only |V| + 1 parameters.

A

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F35/56 (pg.85/154)

Modular Definitions

Proof.

We inductively construct the value for A = {ay,as,...,a;}.
For k = 2,

flar) + f(az) = f(a1,a2) + f(0)
implies f(a1,a2) = f(a1) — f(0) + f(a2) — f(0) + f(0)

then for k£ = 3,

f(a1,a2) + f(a3) = f(a1,a2,a3) + f(0)
implies f(a1,a2,a3) = f(a1,a2) — f(0) + f(a3z) — f(0) + f(0)

and soon ...

(3.36)
(3.37)

(3.38)

Complement function

Given a function f : 2V — R, we can find a complement function
f:2V = Ras f(A) = f(V\ A) for any A.

Proposition 3.8.5

f is submodular iff f is submodular.

—

Proof.

f(A)+ f(B) = f(AUB) + f(AN B) (3.39)
follows from
FVNA)+ f(VAB) = f(V\(AUB))+ f(V\(ANB)) (3.40)

which is true because V'\ (AUB) = (V\ A)N(V \ B) and
VN(ANB)=(V\A) U(V\ B) (De Morgan's laws for sets). O

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F37/56 (pg.87/154)

Graph & Combin:
[NRRRRRNAN

Undirected Graphs

o Let G = (V, E) be a graph with vertices V' = V(G) and edges
E=EG) CVxV.

EES563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F38/56 (pg.88/154)

Graph & Combinatorial Examples
[EARRRRNARRRNRRN

Undirected Graphs

o Let G = (V, E) be a graph with vertices V = V(G) and edges
E=E(G) CVxV.
o If G is undirected, define
EX,)Y)={{z,y} € E(G):z € X\Y,ye Y\ X} (3.41)

as the edges strictly between X and Y.

EES563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F38/56 (pg.89/154)

Graph & Combinatorial Examples
[EARRRRNARRRNRRN

Undirected Graphs

o Let G = (V, E) be a graph with vertices V = V(G) and edges
E=EG)CVxV.
e If G is undirected, define
EX,)Y)={{z,y} € E(G):z e X\Y,ye Y\ X} (3.41)

as the edges strictly between X and Y.
@ Nodes define cuts, define the cut function §(X) = E(X,V \ X).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F38/56 (pg.90/154)

Graph
[EARRRRNARRRNRRN

Undirected Graphs

o Let G = (V, E) be a graph with vertices V = V(G) and edges
E=EG)CVxV.
e If G is undirected, define
EX,)Y)={{z,y} € E(G):z e X\Y,ye Y\ X} (3.41)

as the edges strictly between X and Y.
o Nodes define cuts, define the cut function §(X) = E(X,V \ X).

~0¢(S) ={{u,v}€e E:ueS,ve V\S}L
= {{a.d}.{bd}.{be} {ce}{cf}}

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F38/56 (pg.91/154)

Directed graphs, and cuts and flows
o If GG is directed, define

ET(X,Y) & {(z,y) €eE(G): 7€ X \Y,y €Y\ X} (3.42)
as the edges directed strictly from X towards Y.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F39/56 (pg.92/154)

Graph & Combinatorial Examples
(R AR NN

Directed graphs, and cuts and flows
o If G is directed, define

ET(X,Y) &2 {(z,y) €eE(G): 7€ X\Y,y €Y\ X} (3.42)

as the edges directed strictly from X towards Y.
@ Nodes define cuts and flows. Define edges leaving X (out-flow) as

§T(X) = EN(X,V\ X) (3.43)
and edges entering X (in-flow) as
S (X)2 EN(V\ X, X) (3.44)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F39/56 (pg.93/154)

Graph & Combinatorial Examples
(R AR NN

Directed graphs, and cuts and flows
o If G is directed, define

ET(X,Y) &2 {(z,y) €eE(G): 7€ X\Y,y €Y\ X} (3.42)

as the edges directed strictly from X towards Y.
@ Nodes define cuts and flows. Define edges leaving X (out-flow) as

§T(X) & ETN(X,V\ X) (3.43)
and edges entering X (in-flow) as
ST (X)£EN(V\ X, X) (3.44)

5c(S)={(v,u)ye E:ueS,ve V\S},
= {(d.a) (d'b) (e.0)}

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F39/56 (pg.94/154)

The Neighbor function in undirected graphs

@ Given a set X C V, the neighbor function of X is defined as

NX)2{veV(G)\X: EBE(X,{v}) # 0} (3.45)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F40/56 (pg.95/154)

Graph
[N RN

The Neighbor function in undirected graphs

o Given a set X C V, the neighbor function of X is defined as
D(X) £ {veV(G)\ X : E(X, {v}) # 0} (3.45)

e Example:

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F40/56 (pg.96/154)

Graph
[RRE AR NN

Directed Cut function: property

Lemma 3.9.1
For a digraph G = (V, E) and any X, Y C V: we have

|67 ()] + 57 (Y))]
= 6T (X NY)|+ [T (X UY)|[+ |EHX, V)| + [EY (Y, X)| (3.46)

and

|67 (X)) + 16~ (V)]
=[07(XNY)|[+ [(XUY)|+|E-(X,Y)|+ |[E~(Y,X)| (347)

EES563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F41/56 (pg.97/154)

Graph & Combinatorial Examples
[RERE ERANNRNRRN

Directed Cut function: proof of property

We can prove Eq. (3.46) using a geometric counting argument (proof for

|07 (X)| case is similar)

X _ V\X X V\X
@ |
Y b)A) Y (e) 9 ‘(9)
[0*(X)] © TN 67(Y)]
VY ar> V\Y
X V\X X _ V\X
(a)
Y > Y b)
Ny e AN i@ (XU Y)|
v\Y| Y VY ﬁx
X V\X X V\X
Y Y
[EF(X, V)) |EF(Y, X)|
V\Y © V\Y

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F42/56 (pg.98/154)

Directed cut/flow functions: submodular

For a digraph G = (V, E) and any X,Y C V: both functions |6 (X)| and
|0~ (X)| are submodular.

|E(X,Y)|>0and |[E~(X,Y)|>0.

More generally, in the non-negative edge weighted case, both in-flow and
out-flow are submodular on subsets of the vertices.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F43/56 (pg.99/154)

Graph & Co mples
[RERRRY ARRNRNRAN

Undirected Cut/Flow & the Neighbor function: submodular

Lemma 3.9.3

For an undirected graph G = (V, E) and any X,Y C V: we have that both
the undirected cut (or flow) function |6(X)| and the neighbor function
|T'(X)| are submodular. l.e.,

6(X)|+ 6] =[6(XNY)|+[6(XUY)|+2|E(X,Y)] (3.48)
and

T+ [P = X NY)[+[T(X UY)| (3.49)

Proof.

e Eq. (3.48) follows from Eq. (3.46): we replace each undirected edge
{u,v} with two oppositely-directed directed edges (u,v) and (v, u).
Then we use same counting argument.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F44/56 (pg.100/154)

Graph & Combinatorial Examples
[RERRRY ARRNRNRAN

Undirected Cut/Flow & the Neighbor function: submodular

Lemma 3.9.3

For an undirected graph G = (V, E) and any X,Y C V: we have that both
the undirected cut (or flow) function |6(X)| and the neighbor function
|T'(X)| are submodular. l.e.,

6(X)|+ 6] =[6(XNY)|+[6(XUY)|+2|E(X,Y)] (3.48)
and

T+ [P = X NY)[+[T(X UY)| (3.49)

Proof.

e Eq. (3.48) follows from Eq. (3.46): we replace each undirected edge

{u,v} with two oppositely-directed directed edges (u,v) and (v, u).
Then we use same counting argument.

e Eq. (3.49) follows as shown in the following page.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F44/56 (pg.101/154)

I'(X) = (a) + (¢) +(f) + (9) + (d) (3.50)
T(Y) = (b) + (c) + (¢) + (h) + (d) (3.51)
T(XUY) = (a) + (b) + (c) + (d) (3.52)
T(XNY)=(c)+(9)+ (h) (3.53)

SO

~—

+(e) + () + (9) + (h)

PO+ T = (a) + (b) +2(c) +2(d
= [[(XUY)|+|(X NY)| (3.54)

g

Undirected Neighbor functions

Therefore, the undirected cut function |6(A)| and the neighbor function
IT'(A)| of a graph G are both submodular.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F46/56 (pg.103/154)

Graph & Co
[RERREN]

Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that |§(X)| is submodular.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F47/56 (pg.104/154)

Graph & Co
[RERREN]

Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that |§(X)| is submodular.
@ Define a graph Gy, = ({u,v},{e}, w) with two nodes u,v and one
edge e = {u, v} with non-negative weight w(e) € Ry.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F47/56 (pg.105/154)

Graph
[RERRENANE NRNRAN

Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that |§(X)| is submodular.

o Define a graph Gy, = ({u,v}, {e}, w) with two nodes u,v and one
edge e = {u, v} with non-negative weight w(e) € R.

e Cut weight function over those two nodes: w(d,(-)) has valuation:

w(éu,v(@)) = w(éu’v({u, v})) =0 (3.55)

and

w(bup({u})) = w(bup({v})) =w =0 (3.56)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F47/56 (pg.106/154)

Graph &
[RERRENANE NRNRAN

Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that |§(X)| is submodular.

o Define a graph Gy, = ({u,v}, {e}, w) with two nodes u,v and one
edge e = {u, v} with non-negative weight w(e) € R.

o Cut weight function over those two nodes: w(d,.(-)) has valuation:

W(0y,0(0)) = w(duw({u,v})) =0 (3.55)

and

w(dup({u})) = w(uu({v})) = w =0 (3.56)

@ Thus, w(dy(+)) is submodular since

w(0yp({u})) + w(dup({v})) > w(0yo({u,v})) + w(0y (D)) (3.57)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F47/56 (pg.107/154)

Graph &
[RERRENANE NRNRAN

Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that |§(X)| is submodular.
o Define a graph Gy, = ({u,v}, {e}, w) with two nodes u,v and one
edge e = {u, v} with non-negative weight w(e) € R.
o Cut weight function over those two nodes: w(d,.(-)) has valuation:
W(0u,w(0)) = w(duw({u,v})) =0 (3.55)

and
w(bup({u})) = w(bup({v})) =w =0 (3.56)
@ Thus, w(dy(+)) is submodular since
w(buo({u}) + w(up({v})) = w(duo({u,v})) + w(du(0)) (3.57)
@ General non-negative weighted graph G = (V, E, w), define w(4(+)):
FX) =w@(X) = > wlus(XN{u,v})) (3.58)

(u,0)EE(Q)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F47/56 (pg.108/154)

Graph &
[RERRENANE NRNRAN

Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that |§(X)| is submodular.
o Define a graph Gy, = ({u,v}, {e}, w) with two nodes u,v and one
edge e = {u, v} with non-negative weight w(e) € R.
o Cut weight function over those two nodes: w(d,.(-)) has valuation:
W(0u,w(0)) = w(duw({u,v})) =0 (3.55)

and
w(bup({u})) = w(bup({v})) =w =0 (3.56)
@ Thus, w(dy(+)) is submodular since
w(buo({u}) + w(up({v})) = w(duo({u,v})) + w(du(0)) (3.57)
e General non-negative weighted graph G = (V, E, w), define w(d(-)):

FX) =w@EX) = Y wlbue(X N {u,0})) (3.58)

(u,0)EE(G)

@ This is easily shown to be submodular using properties we will soon see
(namely, submodularity closed under summation and restriction).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F47/56 (pg.109/154)

Graph & Combin:
INRRRRNANY 1

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

@ Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|V (X)]| (the vertex function) is submodular.

EES563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F48/56 (pg.110/154)

Graph
INRRRRNANY 1

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|[V(X)| (the vertex function) is submodular.

o Let E(S) be the edges with both vertices in S C V(G). Then |E(S)|
(the interior edge function) is supermodular.

EES563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F48/56 (pg.111/154)

Graph & Combinatorial Examples
[RERRERANNE NNRAN

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|[V(X)| (the vertex function) is submodular.

o Let E(S) be the edges with both vertices in § C V(G). Then |E(S)|
(the interior edge function) is supermodular.

o Let I(S) be the edges with at least one vertex in S C V(G). Then
|1(S)| (the incidence function) is submodular.

EES563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F48/56 (pg.112/154)

Graph & Combinatorial Examples
[RERRERANNE NNRAN

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|[V(X)| (the vertex function) is submodular.

o Let E(S) be the edges with both vertices in S C V(G). Then |E(S)]
(the interior edge function) is supermodular.

o Let I(S) be the edges with at least one vertex in S C V(G). Then
|1(.S)| (the incidence function) is submodular.

@ Recall |§(.9)], is the set size of edges with exactly one vertex in
S C V(G) is submodular (cut size function). Thus, we have
I(S)=E(S)Ud(S) and E(S)Né(S) =0, and thus that
[1(S)] = [E(S)| +16(S)]-

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F48/56 (pg.113/154)

Graph & Combinatorial Examples
[RERRERANNE NNRAN

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|[V(X)| (the vertex function) is submodular.

o Let E(S) be the edges with both vertices in § C V(G). Then |E(S)|
(the interior edge function) is supermodular.

o Let I(S) be the edges with at least one vertex in S C V(G). Then
|1(.S)| (the incidence function) is submodular.

@ Recall [6(.9)], is the set size of edges with exactly one vertex in
S C V(G) is submodular (cut size function). Thus, we have
I(S) = E(S)Ud(S) and E(S)N(S) =0, and thus that
|[I(S)| = |E(S)| + |0(S)|.- So we can get a submodular function by
summing a submodular and a supermodular function.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F48/56 (pg.114/154)

Graph & Combinatorial Examples
[RERRERANNE NNRAN

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|[V(X)| (the vertex function) is submodular.

o Let E(S) be the edges with both vertices in § C V(G). Then |E(S)|
(the interior edge function) is supermodular.

o Let I(S) be the edges with at least one vertex in S C V(G). Then
|1(.S)| (the incidence function) is submodular.

@ Recall [6(.9)], is the set size of edges with exactly one vertex in
S C V(G) is submodular (cut size function). Thus, we have
I(S) = E(S)Ud(S) and E(S)N(S) =0, and thus that
[1(S)| = |E(S)| + |0(S5)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F48/56 (pg.115/154)

Graph & Combinatorial Examples
[RERRERANNE NNRAN

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|[V(X)| (the vertex function) is submodular.

Let £(S) be the edges with both vertices in S C V(G). Then |E(S)]
(the interior edge function) is supermodular.

Let 1(S) be the edges with at least one vertex in S C V(G). Then
|1(.S)| (the incidence function) is submodular.

Recall |§(S)|, is the set size of edges with exactly one vertex in

S C V(G) is submodular (cut size function). Thus, we have

I(S) = E(S)Ud(S) and E(S)N(S) =0, and thus that

[1(S)| = |E(S)| + |0(S5)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

Consider f(A) = |61 (A)| — [67(V \ A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and

prove it.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F48/56 (pg.116/154)

Graph & Combin:
INRRRRNANY

Number of connected components in a graph via edges

@ Recall, f: 2V — R is submodular, then so is f : 2" — R defined as

f(8)=f(V\S).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F49/56 (pg.117/154)

Number of connected components in a graph via edges

o Recall, f: 2V — R is submodular, then so is f : 2V — R defined as
f(S)=f(V\S).

@ Hence, if g : 2V — R is supermodular, then so is g : 2" — R defined as
g(8) =g(V'\9).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F49/56 (pg.118/154)

Graph & Combinatorial Examples
INRRRRNANY

Number of connected components in a graph via edges

o Recall, f: 2V — R is submodular, then so is f : 2V — R defined as
f(8) = F(V\S9).

@ Hence, if g : 2V — R is supermodular, then so is g : 2" — R defined as
9(8) = g(V'\ 9).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with c: 2F - R,

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F49/56 (pg.119/154)

Graph & Combinatorial Examples
INRRRRNANY

Number of connected components in a graph via edges

° Recall, I 2V 5 R is submodular, then so is f: 2V 5 R defined as
F(S) = 17\).

@ Hence, if g : 2V — R is supermodular, then so is g : 2" — R defined as
g(5) =g(V'\ 5).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with c: 2F — R,

@ ¢(A) is monotone non-increasing, ¢c(A+a) —c(A) <0 .

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F49/56 (pg.120/154)

Graph & Combinatorial Examples
[RERRRNRN

Number of connected components in a graph via edges

@ Recall, f: 2V 5 R is submodular, then so is f: 2V 5 R defined as
f(8) = f(V\S).

@ Hence, if g : 2V — R is supermodular, then so is g : 2" — R defined as
9(8) = g(V'\ 9).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with ¢ : 28 - R,

@ ¢(A) is monotone non-increasing, ¢c(A+a) —c(A) <0 .

@ Then ¢(A) is supermodular, i.e.,

c(A+a)—c(A) <ce(B+a)—c(B) (3.59)

with A C B C E'\ {a}.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F49/56 (pg.121/154)

Graph & Combinatorial Examples
INRRRRNANY

Number of connected components in a graph via edges

@ Recall, f: 2V — R is submodular, then so is f : 2" — R defined as
f(S)=f(V\S).

@ Hence, if g : 2V — R is supermodular, then so is g : 2" — R defined as
9(8) = g(V'\ 9).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with c: 2F — R,

@ ¢(A) is monotone non-increasing, ¢c(A+a) —c(A) <0 .

@ Then ¢(A) is supermodular, i.e.,

c(A+a)—c(A) <c(B+a)—c(B) (3.59)

with AC BC E\ {a}.

@ Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F49/56 (pg.122/154)

Graph
INRRRRNANY

Number of connected components in a graph via edges

@ Recall, f: 2V 5 R is submodular, then so is f: 2V 5 R defined as
f(8) = F(V\S9).

@ Hence, if g : 2V — R is supermodular, then so is g : 2" — R defined as
9(8) = g(V'\).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with c: 2F — R,

@ ¢(A) is monotone non-increasing, ¢c(A+a) —c(A) <0 .

@ Then ¢(A) is supermodular, i.e.,

c(A+a)—c(A) <c(B+a)—c(B) (3.59)
with A C B C E\ {a}.

@ Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.

@ ¢(A) =c¢(FE \ A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F49/56 (pg.123/154)

Graph & Combinatorial Examples
[RERRENANNENE N

Graph Strength

@ So ¢(A) =c(FE\ A) is the number of connected components in G
when we remove A, is supermodular.

ff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F50/56 (pg.124/154)

Graph & Combinatorial Examples
[RERRENANNENE N

Graph Strength

@ So ¢(A) =c¢(E \ A) is the number of connected components in G
when we remove A, is supermodular.

e Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018

F50/56 (pg.125/154)

Graph & Combinatorial Examples
[RERRENANNENE N

Graph Strength

@ So ¢(A) =c¢(E \ A) is the number of connected components in G
when we remove A, is supermodular.

e Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

@ If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F50/56 (pg.126/154)

Graph & Combinatorial Examples
[RERRENANNENE N

Graph Strength

@ So ¢(A) =c¢(E \ A) is the number of connected components in G
when we remove A, is supermodular.

e Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

o If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

F50/56 (pg.127/154)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018

Prof. Jeff Bilmes

Graph & Combinatorial Examples
[RERRENANNENE N

Graph Strength

@ So ¢(A) =c¢(E \ A) is the number of connected components in G
when we remove A, is supermodular.

e Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

o If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

o Let G = (V,E,w) with w : E — R+ be a weighted graph with
non-negative weights.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F50/56 (pg.128/154)

Graph & Combis
[RERRRNRN

Graph Strength

So ¢(A) = ¢(E \ A) is the number of connected components in G
when we remove A, is supermodular.

Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

Let G = (V, E,w) with w : E — R+ be a weighted graph with
non-negative weights.

For (u,v) = e € E, let w(e) be a measure of the strength of the

connection between vertices u and v (strength meaning the difficulty of
cutting the edge e).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F50/56 (pg.129/154)

Graph & Combinatorial Examples
[RERRERANNERNE N

Graph Strength

@ Then w(A) for A C E is a modular function

w(d) =) w, (3.60)

ecA

so that w(E(G[S])) is the “internal strength” of the vertex set S.

Notation: S is a set of nodes, G[S] is the vertex-induced subgraph of G induced by
vertices S, E(G[S]) are the edges contained within this induced subgraph, and
w(E(G[S])) is the weight of these edges.

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018

F51/56 (pg.130/154)

Graph & Combin:
INRRRRNANY

Graph Strength

@ Then w(A) for A C E is a modular function
w(A) =) w, (3.60)
ecA

so that w(E(G[S])) is the “internal strength” of the vertex set S.
@ Suppose removing A shatters G into a graph with ¢(A) > 1
components —

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F51/56 (pg.131/154)

Graph & Combin:
INRRRRNANY

Graph Strength

@ Then w(A) for A C E is a modular function

w(A) =) w, (3.60)
ecA
so that w(E(G[S])) is the “internal strength” of the vertex set S.
@ Suppose removing A shatters G into a graph with ¢(A4) > 1
components — then w(A)/(¢(A) — 1) is like the “effort per
achieved/additional component” for a network attacker.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F51/56 (pg.132/154)

Graph
[RERRERANNERNE N

Graph Strength

@ Then w(A) for A C E is a modular function

w(A) =) w, (3.60)
ecA
so that w(E(G[S])) is the “internal strength” of the vertex set S.

@ Suppose removing A shatters G into a graph with ¢(A4) > 1
components — then w(A)/(¢(A) — 1) is like the “effort per
achieved/additional component” for a network attacker.

@ A form of graph strength can then be defined as the following:

strength(G,w) = min w(4)

T 3.61
ACE(G):e(A)>1 ¢(A) — 1 ()

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F51/56 (pg.133/154)

Graph
[RERRERANNERNE N

Graph Strength

@ Then w(A) for A C E is a modular function

w(A) =) w, (3.60)
ecA
so that w(E(G[S])) is the “internal strength” of the vertex set S.

@ Suppose removing A shatters G into a graph with ¢(A4) > 1
components — then w(A)/(¢(A) — 1) is like the “effort per
achieved/additional component” for a network attacker.

@ A form of graph strength can then be defined as the following:

w(A)

h - o\
strength(G:, w) AQE(ICIJI)I:IEI(A)>1 ¢(A) -1

(3.61)

@ Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G,w).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F51/56 (pg.134/154)

Graph Strength

@ Then w(A) for A C E is a modular function

w(A) =) w, (3.60)
ecA

so that w(E(G[S])) is the “internal strength” of the vertex set S.
@ Suppose removing A shatters G into a graph with ¢(A4) > 1

components — then w(A)/(¢(A) — 1) is like the “effort per

achieved/additional component” for a network attacker.
@ A form of graph strength can then be defined as the following:
w(A)

h - o\
strength(G:, w) AQE(ICIJI)I:IEI(A)>1 ¢(A) -1

(3.61)

@ Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G, w).

@ Since submodularity, problems have strongly-poly-time solutions.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F51/56 (pg.135/154)

Graph & Combin:
INRRRRNANY

Submodularity, Quadratic Structures, and Cuts

Lemma 3.9.4

Let M € R™*"™ be a symmetric matrix and m € R™ be a vector. Then
f:2Y = R defined as

1
f(X) =mTly + 51}1\/[1)((362)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F52/56 (pg.136/154)

Submodularity, Quadratic Structures, and Cuts

Lemma 3.9.4

Let M € R™*"™ be a symmetric matrix and m € R™ be a vector. Then
f:2Y = R defined as

1
f(X) =mTly + 51}1\/[1)((362)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

@ Given a complete graph G = (V| E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)]| is supermodular.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F52/56 (pg.137/154)

Graph
[RERRRRANNNRT]

Submodularity, Quadratic Structures, and Cuts

Lemma 3.9.4

Let M € R™*"™ be a symmetric matrix and m € R™ be a vector. Then
f:2Y = R defined as

1
f(X) =mTly + 51}1\/[1)((362)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.
o Given a complete graph G = (V, E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)]| is supermodular.
@ Non-negative modular weights w™ : E — Ry, w(F (X)) is also
supermodular, so —w(F(X)) is submodular.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F52/56 (pg.138/154)

Graph
[RERRRRANNNRT]

Submodularity, Quadratic Structures, and Cuts

Lemma 3.9.4

Let M € R™*"™ be a symmetric matrix and m € R™ be a vector. Then
f:2Y = R defined as

1
f(X) =mTly + 51}1\/[1)((362)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.
o Given a complete graph G = (V, E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)]| is supermodular.
@ Non-negative modular weights w™ : £ — R, w(F (X)) is also
supermodular, so —w(FE(X)) is submodular.

@ f is a modular function m™14 = m(A) added to a weighted
submodular function, hence f is submodular.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F52/56 (pg.139/154)

Graph & Combis
[RERRRNRN

Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 3.9.4 cont.

o Conversely, suppose f is submodular.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F53/56 (pg.140/154)

Proof of Lemma 3.9.4 cont.

@ Conversely, suppose f is submodular.

@ Then Vu,v € V, f({u}) + f({v}) > f({u,v}) + f(D) while f(0) = 0.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F53/56 (pg.141/154)

Graph & Combinatorial Examples
(NERRRNANNNRNANY |

Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 3.9.4 cont.

@ Conversely, suppose f is submodular.
o Then Vu,v € V, f({u}) + f({v}) = f({u,v}) + f(0) while f(0) = 0.

@ This requires:

0 < f({u}) + f({v}) = f({u, v}) (3.63)
=m(u) + %]Wmu + m(v) + %]\Jw (3.64)
— (m(u) +m(v) + %]\[u’u + My + %]va) (3.65)

= — My, (3.66)

So that Yu,v € V, M,, <0.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F53/56 (pg.142/154)

Graph & Combis

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,...,Up,} of n subsets of U, so that U; C U and
U, Ui = U.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F54/56 (pg.143/154)

Graph & Combis

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,..., Uy} of n subsets of U, so that U; C U and
U, Ui=U.

@ The goal of minimum set cover is to choose the smallest subset
AC[n]£{1,...,n} such that J,c, U, = U.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F54/56 (pg.144/154)

Graph & Combis

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,..., Uy} of n subsets of U, so that U; C U and
U, Ui=U.

@ The goal of minimum set cover is to choose the smallest subset
AC[n]2{1,...,n} such that J,c, U, = U.

@ Maximum k cover: The goal in maximum coverage is, given an integer
k < n, select k subsets, say {a1,as,...,ar} with a; € [n] such that
|UF, U,,| is maximized.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F54/56 (pg.145/154)

Graph & Combis

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,..., Uy} of n subsets of U, so that U; C U and
U, Ui=U.

@ The goal of minimum set cover is to choose the smallest subset
AC[n]2{1,...,n} such that J,c, U, = U.

@ Maximum k cover: The goal in maximum coverage is, given an integer
k < n, select k subsets, say {a1,a2,...,ar} with a; € [n] such that
|UE, U,,| is maximized.

o f:2" - 7Z, wherefor A C[n], f(A) = | Usea Val is the set cover
function and is submodular.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F54/56 (pg.146/154)

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,..., Uy} of n subsets of U, so that U; C U and
U, Ui=U.

@ The goal of minimum set cover is to choose the smallest subset
AC[n]2{1,...,n} such that J,c, U, = U.

@ Maximum k cover: The goal in maximum coverage is, given an integer
k < n, select k subsets, say {a1,a2,...,ar} with a; € [n] such that
|UE, U,,| is maximized.

o f:2M 5 Z, where for A C[n], f(A) = | Uuea Val is the set cover
function and is submodular.

o Weighted set cover: f(A) = w({J,cy Va) where w : U — R .

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F54/56 (pg.147/154)

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,..., Uy} of n subsets of U, so that U; C U and

U, Ui=U.

The goal of minimum set cover is to choose the smallest subset
AC[n]2{1,...,n} such that J,c, U, = U.

Maximum k cover: The goal in maximum coverage is, given an integer
k < n, select k subsets, say {a1,a2,...,ar} with a; € [n] such that
|UE, U,,| is maximized.

f:2l = 7, where for A C [n], f(A) = | Ugea Val is the set cover
function and is submodular.

Weighted set cover: f(A) = w(U,c4 Va) where w : U — R,

Both Set cover and maximum coverage are well known to be NP-hard,

but have a fast greedy approximation algorithm, and hence are
instances of submodular optimization.

(]

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F54/56 (pg.148/154)

Vertex and Edge Covers

Also instances of submodular optimization

Definition 3.9.5 (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V. E) is a
set S C V(G) of vertices such that every edge in G is incident to at least
one vertex in S.

o Let I(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S C V' subject to I(S) = |E]|.

Definition 3.9.6 (edge cover)

A edge cover (an “"edge-based cover of vertices”) in graph G = (V, E) is a
set F' C E(G) of edges such that every vertex in G is incident to at least
one edge in F.

o Let |V|(F) be the number of vertices incident to edge set F'. Then we
wish to find the smallest set F' C E subject to |V|(F) = |V].

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F55/56 (pg.149/154)

Graph & Combinatorial Examples
(1]

Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V'
that minimize the cut (set of edges) between S and V' \ S.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F56/56 (pg.150/154)

Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges between Sand V' \S.

)
@ Maximum cut: Given a graph G = (V, E), find a set of vertices S C V'
that minimize the cut (set of edges) between Sand V'\ S.

F56/56 (pg.151/154)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018

Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V'\ S.

e Maximum cut: Given a graph G = (V| E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V'\ S.

o Let §:2Y — R, be the cut function, namely for any given set of nodes
X CV, |6(X)| measures the number of edges between nodes X and
V\X —ie, d6(z) = E(X,V\ X).

F56/56 (pg.152/154)

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018

Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V'\ S.

e Maximum cut: Given a graph G = (V| E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V'\ S.

o Let §:2Y — R, be the cut function, namely for any given set of nodes
X CV, |6(X)| measures the number of edges between nodes X and
VANX —ie, d(z)=EX,V\X).

@ Weighted versions, where rather than count, we sum the (non-negative)
weights of the edges of a cut, f(X) = w(d(X)).

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F56/56 (pg.153/154)

Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V'\ S.

e Maximum cut: Given a graph G = (V| E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V'\ S.

o Let §:2Y — R, be the cut function, namely for any given set of nodes
X CV, |6(X)| measures the number of edges between nodes X and
VANX —ie, d(z)=EX,V\X).

@ Weighted versions, where rather than count, we sum the (non-negative)
weights of the edges of a cut, f(X) = w(d(X)).

@ Hence, Minimum cut and Maximum cut are also special cases of
submodular optimization.

EE563/Spring 2018/Submodularity - Lecture 3 - April 2nd, 2018 F56/56 (pg.154/154)

	Logistics & Review
	Logistics
	

	Review
	

	Current Lecture Part
	Current Lecture
	Itself, as a target for learning
	

	Surrogates for optimization and analysis
	

	Bit More Notation
	

	Info Theory Examples
	

	Monge
	

	More Definitions
	

	Graph & Combinatorial Examples
	Graphs
	Combinatorial Structures

