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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
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Logistics Review

Class Road Map - EE563

L1(3/26): Motivation, Applications, &
Basic Definitions,
L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).
L3(4/2):
L4(4/4):
L5(4/9):
L6(4/11):
L7(4/16):
L8(4/18):
L9(4/23):
L10(4/25):

L11(4/30):
L12(5/2):
L13(5/7):
L14(5/9):
L15(5/14):
L16(5/16):
L17(5/21):
L18(5/23):
L–(5/28): Memorial Day (holiday)
L19(5/30):
L21(6/4): Final Presentations
maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Logistics Review

Two Equivalent Submodular Definitions

Definition 2.2.1 (submodular concave)

A function f : 2V ! R is submodular if for any A,B ✓ V , we have that:

f(A) + f(B) � f(A [B) + f(A \B) (2.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 2.2.2 (diminishing returns)

A function f : 2V ! R is submodular if for any A ✓ B ⇢ V , and
v 2 V \B, we have that:

f(A [ {v})� f(A) � f(B [ {v})� f(B) (2.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as the
context in which v is considered grows from A to B.
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Logistics Review

Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls, f(S)
counts the number of distinct colors in S.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).
Thus, f is submodular.
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Two Equivalent Supermodular Definitions

Definition 2.2.1 (supermodular)

A function f : 2V ! R is supermodular if for any A,B ✓ V , we have that:

f(A) + f(B)  f(A [B) + f(A \B) (2.8)

Definition 2.2.2 (supermodular (improving returns))

A function f : 2V ! R is supermodular if for any A ✓ B ⇢ V , and
v 2 V \B, we have that:

f(A [ {v})� f(A)  f(B [ {v})� f(B) (2.9)

Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
A function f is submodular iff �f is supermodular.
If f both submodular and supermodular, then f is said to be modular,
and f(A) = c+

P
a2A f(a) (often c = 0).
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Example Supermodular: Number of Balls with Two Lines

Given ball pyramid, bottom row V is size n = |V |. For subset S ✓ V of
bottom-row balls, draw 45� and 135� diagonal lines from each s 2 S. Let
f(S) be number of non-bottom-row balls with two lines ) f(S) is
supermodular.

1 2 3 4 5 6 7 8 9 10
V

1 2 3 4 5 6 7 8 9 10
V

A = {2, 5, 9} A [ {4} = {2, 4, 5, 9}

1 2 3 4 5 6 7 8 9 10
V

1 2 3 4 5 6 7 8 9 10
V

B = {2, 5, 8, 9} B [ {4} = {2, 4, 5, 8, 9}

f(A) = 3 f(A [ {4}) = 6

f(B) = 6 f(B [ {4}) = 10
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Review So far

Machine learning paradigms should be: easy to define ,
mathematically rich , naturally applicable , and efficient/scalable .

Convexity (continuous structures) and graphical models (based on
factorization or additive separation) are two such modeling paradigms.

Submodularity/supermodularity offer a distinct mathematically rich
paradigm over discrete space that neither need be continous nor be
additively additively separable,
submodularity offers forms of structural decomposition, e.g., h = f + g,
into potentially global (manner of interaction) terms.
Set cover, supply and demand side economies of scale,

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 2 - Mar 28th, 2018 F8/72 (pg.8/214)
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Submodularity’s utility in ML

A model of a physical process :
When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
vice-versa for supermodularity.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, structured
sparse convex norms for use in regularization).
Itself, as an object or function to learn , based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.
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ML Apps Diversity Complexity Parameter ML Target Surrogate

Many different functions are submodular!

We will see many applications of submodularity in machine learning.
On next set of slides, we will state (without proof, for now) that many
of the functions are submodular (or supermodular).
In subsequent lectures, we will start showing how to prove
submodularity.
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Functions to Measure Diversity
Diversity is good, especially when it is high

Quantitative measurement diversity in data science and ML. Goal of
diversity: ensure small set properly represents the large.

Web search: given ambiguous search term (e.g., “jaguar”) with no other
information, one wants articles more than just about cars.

Try google searching for words (e.g., “break”) with many meanings
(http://muse.dillfrog.com/lists/ambiguous), how well does
google’s diversity measure do?
Overall goal: user quickly finds informative, concise, accurate, relevant,
comprehensive information ) diversity

Given a set V of of items, how do we choose a subset S ✓ V that is as
diverse as possible, with perhaps constraints on S such as its size?
Answer: submodular maximization.
How do we choose the smallest set S that maintains a given degree of
diversity? Constrained minimization (i.e., min |A| s.t. f(A) � ↵).
Random sample has probability of poorly representing normally
underrepresented groups.
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Extractive Document Summarization

We extract sentences (green) as a summary of the full document

⇢

The summary on the left is a subset of the summary on the right.
Consider adding a new (blue) sentence to each of the two summaries.
The marginal (incremental) benefit of adding the new (blue) sentence
to the smaller (left) summary is no more than the marginal benefit of
adding the new sentence to the larger (right) summary.
diminishing returns $ submodularity
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Large image collections need to be summarized

Many images, also that have a higher level gestalt than just a few, want a
summary (subset of images) to represent the diversity in the large image set.
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Image Summarization

10⇥10 image collection: 3 good summaries (diverse):

3 ok summaries:

3 poor summaries (redundant):
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More Generally: Information and Summarization

Let V be a set of information containing elements (V might say be any
of words, sentences, documents, web pages, or blogs, sensor readings,
etc.).
Each v 2 V is one (or a set of) element(s). The total amount of
information in V is measure by a function f(V ), and any given subset
S ✓ V measures the amount of information in S, given by f(S).
How informative is any given item v in different sized contexts? Any
such real-world information function would exhibit diminishing returns,
i.e., the value of v decreases when it is considered in a larger context.
A submodular function is likely a good model.
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Variable Selection in Classification/Regression

Let Y be a random variable we wish to accurately predict based on at
most n = |V | observed measurement variables (X1, X2, . . . , Xn) = XV in
a probability model Pr(Y,X1, X2, . . . , Xn).

Too costly to use all V variables. Goal: choose subset A ✓ V of variables
within budget |A|  k. Predictions based on only Pr(y|xA), hence subset
A should retain accuracy.
The mutual information function f(A) = I(Y ;XA) (“information gain”)
measures how well variables A can predicting Y (entropy reduction,
reduction of uncertainty of Y ).
The mutual information function f(A) = I(Y ;XA) is defined as:

I(Y ;XA) =
X

y,xA

Pr(y, xA) log
Pr(y, xA)

Pr(y) Pr(xA)
= H(Y )�H(Y |XA) (2.1)

= H(XA)�H(XA|Y ) = H(XA) +H(Y )�H(XA, Y ) (2.2)

Applicable in pattern recognition, also in sensor coverage problem, where
Y is whatever question we wish to ask about environment.
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Information Gain and Feature Selection
in Pattern Classification: Naïve Bayes

Naïve Bayes property: XA??XB|Y for all A,B.
Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

When XA??XB|Y for all A,B (the Naïve Bayes assumption holds),
then

f(A) = I(Y ;XA) = H(XA)�H(XA|Y ) = H(XA)�
X

a2A

H(Xa|Y )

(2.3)

is submodular (submodular minus modular).
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Variable Selection in Pattern Classification

Naïve Bayes property fails:
Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

f(A) naturally expressed as a difference of two submodular functions

f(A) = I(Y ;XA) = H(XA)�H(XA|Y ), (2.4)

which is a DS (difference of submodular) function.
Alternatively, when Naïve Bayes assumption is false, we can make a
submodular approximation (Peng-2005). E.g., functions of the form:

f(A) =
X

a2A

I(Xa;Y )� �
X

a,a02A

I(Xa;Xa0 |Y ) (2.5)

where � � 0 is a tradeoff constant.
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Variable Selection: Linear Regression Case

Next, let Z be continuous. Predictor is linear Z̃A =
P

i2A ↵iXi.

Error measure is the residual variance

R2
Z,A =

Var(Z)� E[(Z � Z̃A)2]

Var(Z)
(2.6)

R2
Z,A’s minimizing parameters, for a given A, can be easily computed

(R2
Z,A = bA

|(C�1
A )

|
bA when VarZ = 1, where bi = Cov(Z,Xi) and

C = E[(X � E[X])|(X � E[X])] is the covariance matrix).
When there are no “suppressor” variables (essentially, no
v-structures that converge on Xj with parents Xi and Z),
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Data Subset Selection

Suppose we are given a large data set D = {xi}
n
i=1 of n data items

V = {v1, v2, . . . , vn} and we wish to choose a subset A ⇢ V of items
that is good in some way (e.g., a summary).

Suppose moreover each data item v 2 V is described by a vector of
non-negative scores for a set U of features (or “properties”, or
“concepts”, etc.) of each data item.
That is, for u 2 U and v 2 V , let mu(v) represent the “degree of
u-ness” possessed by data item v. Then mu 2 RV

+ for all u 2 U .
Example: U could be a set of colors, and for an image v 2 V , mu(v)
could represent the number of pixels that are of color u.
Example: U might be a set of textual features (e.g., ngrams), and
mu(v) is the number of ngrams of type u in sentence v. E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m’the’(v) = 1 while m’New York City’(v) = 2.
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Data Subset Selection

For X ✓ V , define mu(X) =
P

x2X mu(x), so mu(X) is a modular
function representing the “degree of u-ness” in subset X.

Since mu(X) is modular, it does not have a diminishing returns property.
I.e., as we add to X, the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X)) grows subadditively (if we add
v to a context A with less u-ness, the u-ness benefit is more than if we add
v to a context B ◆ A having more u-ness). That is

g(mu(A+ v))� g(mu(A)) � g(mu(B + v))� g(mu(B)) (2.8)

Consider the following class of feature functions f : 2V ! R+

f(X) =
X

u2U

↵ugu(mu(X)) (2.9)

where gu is a non-decreasing concave, and ↵u � 0 is a feature importance
weight. Thus, f is submodular.
f(X) measures X’s ability to represent set of features U as measured by
mu(X), with diminishing returns function g, and importance weights ↵u.
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Data Subset Selection
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Data Subset Selection

For X ✓ V , define mu(X) =
P

x2X mu(x), so mu(X) is a modular
function representing the “degree of u-ness” in subset X.
Since mu(X) is modular, it does not have a diminishing returns property.
I.e., as we add to X, the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X)) grows subadditively (if we add
v to a context A with less u-ness, the u-ness benefit is more than if we add
v to a context B ◆ A having more u-ness). That is

g(mu(A+ v))� g(mu(A)) � g(mu(B + v))� g(mu(B)) (2.8)

Consider the following class of feature functions f : 2V ! R+

f(X) =
X

u2U

↵ugu(mu(X)) (2.9)

where gu is a non-decreasing concave, and ↵u � 0 is a feature importance
weight. Thus, f is submodular.

f(X) measures X’s ability to represent set of features U as measured by
mu(X), with diminishing returns function g, and importance weights ↵u.
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Data Subset Selection, KL-divergence

Let p = {pu}u2U be a desired probability distribution over features (i.e.,P
u pu = 1 and pu � 0 for all u 2 U).

Next, normalize the modular weights for each feature:

0  m̄u(X) , mu(X)P
u02U mu0(X)

=
mu(X)

m(X)
 1 (2.10)

where m(X) , P
u02U mu0(X).

Then m̄u(X) can also be seen as a distribution over features U since
m̄u(X) � 0 and

P
u2U m̄u(X) = 1 for any X ✓ V .

Consider the KL-divergence between these two distributions:

D(p||{m̄u(X)}u2U ) =
X

u2U

pu log pu �

X

u2U

pu log(m̄u(X)) (2.11)

=
X

u2U

pu log pu �

X

u2U

pu log(mu(X)) + log(m(X))

= �H(p) + logm(X)�
X

u2U

pu log(mu(X)) (2.12)
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Data Subset Selection, KL-divergence

The objective once again, treating entropy H(p) as a constant,

D(p||{m̄u(X)}) = const. + logm(X)�
X

u2U

pu log(mu(X)) (2.13)

But seen as a function of X, both logm(X) and
P

u2U pu logmu(X)
are submodular functions.
Hence the KL-divergence, seen as a function of X, i.e.,
f(X) = D(p||{m̄u(X)}) is quite naturally represented as a difference
of submodular functions.
Alternatively, if we define (Shinohara, 2014)

g(X) , logm(X)�D(p||{m̄u(X)}) =
X

u2U

pu log(mu(X)) (2.14)

we have a submodular function g that represents a combination of its
quantity of X via its features (i.e., logm(X)) and its feature
distribution closeness to some distribution p (i.e., D(p||{m̄u(X)})).
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Information Gain for Sensor Placement

Given an environment, V is set of candidate locations for placement of
a sensor (e.g., temperature, gas, audio, video, bacteria or other
environmental contaminant, etc.).

We have a function f(A) that measures the “coverage” of any given set
A of sensor placement decisions. If a point is covered, we can answer a
question about it (i.e., temperature, degree of contaminant).
f(V ) is maximum coverage.
One possible goal: choose smallest set A such that f(A) � ↵f(V )
with 0 < ↵  1 (recall the submodular set cover problem)
Another possible goal: choose size at most k set A such that f(A) is
maximized.
Environment could be a floor of a building, water network, monitored
ecological preservation.
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Sensor Placement within Buildings

An example of a room layout. Should be possible to determine
temperature at all points in the room. Sensors cannot sense beyond
wall (thick black line) boundaries.
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Sensor Placement within Buildings

Example sensor placement using small range cheap sensors (located at
red dots).
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Sensor Placement within Buildings

Example sensor placement using longer range expensive sensors
(located at red dots).
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Sensor Placement within Buildings

Example sensor placement using mixed range sensors (located at red
dots).
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Social Networks

(from Newman, 2004). Clockwise from top
left: 1) predator-prey interactions, 2) scientific
collaborations, 3) sexual contact, 4) school
friendships.
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The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals in a network. How valuable is a given
friend v 2 V ?

It depends on how many friends you have.
Valuate a group of friends S ✓ V via set function f(S).
A submodular model: a friend becomes less marginally valuable as your
set of friends grows.
Supermodular model: a friend becomes more valuable the more friends
you have.
Which is a better model?
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Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often set
off cascades, which are like large “waves” of information flow?
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Diffusion Networks
Where are they useful?

Information propagation: when blogs or news stories break, and
creates an information cascade over multiple other
blogs/newspapers/magazines.

Viral marketing: What is the pattern of trendsetters that cause an
individual to purchase a product?
Epidemiology: who gets sick from whom? What is the infection
network of such links? Given finite supply of vaccine, who to inoculate
to protect overall population (cut the network)?

Infer the connectivity of a network (memes, purchase decisions, viruses,
etc.) based only on diffusion traces (the time that each node is
“infected”)?
How to find the most likely tree or graph?
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A model of influence in social networks

Given a graph G = (V,E), each v 2 V corresponds to a person, to each
v we have an activation function fv : 2V ! [0, 1] dependent only on its
neighbors. I.e., fv(A) = fv(A \ �(v)).

Goal - Viral Marketing: find a small subset S ✓ V of individuals to
directly influence, and thus indirectly influence the greatest number of
possible other individuals (via the social network G).
Define function f : 2V ! Z+ to model the ultimate influence of an
initial infected nodes S. Use following iterative process; at each step:

Given previous set of infected nodes S that have not yet had their chance
to infect their neighbors,
activate new nodes v 2 V \ S if fv(S \ �v) � U [0, 1], where U [0, 1] is a
uniform random number between 0 and 1, and �v are the neighbors of v.

For many fv (including simple linear functions, and where fv is
submodular itself), we can show f is submodular (Kempe, Kleinberg,
Tardos 1993).
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Optimization Problem Involving Network Externalities

(From Mirrokni, Roch, Sundararajan 2012): Let V be a set of users.

Let vi(S) be the value that user i has for a good if S ✓ V already own
the good — e.g. vi(S) = !i + fi(

P
j2S wij) where !i is inherent

value, and fi might be a concave function, and wij is how important
j 2 S is to i (e.g., a network). Weights might be random.
Given price p for good, user i buys good if vi(S) � p.
We choose initial price p and initial set of users A ✓ V who get the
good for free.
Define S1 = {i /2 A : vi(A) � p} initial set of buyers.
S2 = {i /2 A [ S1 : vi(A [ S1) � p}.
This starts a cascade. Let
Sk = {i /2 [j<kSj [A : vj([j<kSj [A) � p},
and let Sk⇤ be the saturation point, lowest value of k such that
Sk = Sk+1

Goal: find A and p to maximize fp(A) = E[p⇥ |Sk⇤ |].
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Graphical Model Structure Learning

A probability distribution on binary vectors p : {0, 1}V ! [0, 1]:

p(x) =
1

Z
exp(�E(x)) (2.15)

where E(x) is the energy function.

A graphical model G = (V, E) represents a family of probability
distributions p 2 F(G) all of which factor w.r.t. the graph.
I.e., if C are a set of cliques of graph G, then we must have:

E(x) =
X

c2C

Ec(xc) (2.16)

The problem of structure learning in graphical models is to find the
graph G based on data.
This can be viewed as a discrete optimization problem on the potential
(undirected) edges of the graph V ⇥ V .
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Graphical Models: Learning Tree Distributions

Goal: find the closest distribution pt to p subject to pt factoring w.r.t.
some tree T = (V, F ), i.e., pt 2 F(T,M).

This can be expressed as a discrete optimization problem:

minimize
pt2F(G,M)

D(p||pt)

subject to pt 2 F(T,M).
T = (V, F ) is a tree

Discrete problem: choose the optimal set of edges A ✓ E that constitute
tree (i.e., find a spanning tree of G of best quality).
Define f : 2E ! R+ where f is a weighted cycle matroid rank function (a
type of submodular function), with weights w(e) = w(u, v) = I(Xu;Xv)
for e 2 E.
Then finding the maximum weight base of the matroid is solved by
the greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)
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subject to pt 2 F(T,M).
T = (V, F ) is a tree
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Discrete problem: choose the optimal set of edges A ✓ E that constitute
tree (i.e., find a spanning tree of G of best quality).
Define f : 2E ! R+ where f is a weighted cycle matroid rank function (a
type of submodular function), with weights w(e) = w(u, v) = I(Xu;Xv)
for e 2 E.

Then finding the maximum weight base of the matroid is solved by
the greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)
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Determinantal Point Processes (DPPs)

Sometimes we wish not only to valuate subsets A ✓ V but to induce
probability distributions over all subsets.

We may wish to prefer samples where elements of A are diverse (i.e.,
given a sample A, for a, b 2 A, we prefer a and b to be different).

(Kulesza,
Gillen-
water, &
Taskar,
2011)

A Determinantal point processes (DPPs) is a probability distribution
over subsets A of V where the “energy” function is submodular.
More “diverse” or “complex” samples are given higher probability.
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DPPs and log-submodular probability distributions

Given binary vectors x, y 2 {0, 1}V , y  x if y(v)  x(v), 8v 2 V .

Given a positive-definite n⇥ n matrix M , a subset X ✓ V , let MX be
|X|⇥ |X| principle submatrix, rows/columns specified by X ✓ V .
A Determinantal Point Process (DPP) is a distribution of the form:

Pr(X = x) =
|MX(x)|

|M + I|
= exp

✓
log

⇣ |MX(x)|

|M + I|

⌘◆
/ det(MX(x))

(2.17)

where I is n⇥ n identity matrix, and X 2 {0, 1}V is a random vector.
Equivalently, defining K as K = M(M + I)�1, we have:

X

x2{0,1}V :x�y

Pr(X = x) = Pr(X � y) = exp
⇣
log

⇣
|KY (y)|

⌘⌘
(2.18)

Given positive definite matrix M , function f : 2V ! R with
f(A) = log |MA| (the logdet function) is submodular.
Therefore, a DPP is a log-submodular probability distribution.
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Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(�E(x)) (2.19)

where E(x) =
P

c2C Ec(xc) and C are cliques of graph G = (V, E).

MAP inference problem is important in ML: compute

x⇤ 2 argmax
x2{0,1}V

p(x) (2.20)

Easy when G a tree, exponential in k (tree-width of G) in general.
Even worse, NP-hard to find the tree-width.
Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but ⌦(

p
n) tree-width).

Many approximate inference strategies utilize additional factorization
assumptions (e.g., mean-field, variational inference, expectation
propagation, etc).
Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?
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Order-two (edge) graphical models

Given G let p 2 F(G,M(f)) such that we can write the global energy
E(x) as a sum of unary and pairwise potentials:

E(x) =
X

v2V (G)

ev(xv) +
X

(i,j)2E(G)

eij(xi, xj) (2.21)

ev(xv) and eij(xi, xj) are like local energy potentials.
Since log p(x) = �E(x) + const., the smaller ev(xv) or eij(xi, xj)
become, the higher the probability becomes.
Further, say that DXv = {0, 1} (binary), so we have binary random
vectors distributed according to p(x).
Thus, x 2 {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min
x2{0,1}V

E(x) (2.22)
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MRF example

Markov random field

log p(x) /
X

v2V (G)

ev(xv) +
X

(i,j)2E(G)

eij(xi, xj) (2.23)

When G is a 2D grid graph, we have
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Create an auxiliary graph

We can create auxiliary graph Ga that involves two new “terminal”
nodes s and t and all of the original “non-terminal” nodes v 2 V (G).
The non-terminal nodes represent the original random variables
xv, v 2 V .
Starting with the original grid-graph amongst the vertices v 2 V , we
connect each of s and t to all of the original nodes.
I.e., we form Ga = (V [ {s, t}, E + [v2V ((s, v) [ (v, t))).
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Transformation from graphical model to auxiliary graph

Original 2D-grid graphical model G and energy function
E(x) =

P
v2V (G) ev(xv) +

P
(i,j)2E(G) eij(xi, xj) needing to be minimized

over x 2 {0, 1}V . Recall, tree-width is O(
p
|V |).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 2 - Mar 28th, 2018 F40/72 (pg.114/214)

n.NL?dtiix's )



ML Apps Diversity Complexity Parameter ML Target Surrogate

Transformation from graphical model to auxiliary graph

Augmented graph-cut graph with cut edges
removed corresponds to particular binary
vector x̄ 2 {0, 1}n. Each vector x̄ has a
score corresponding to log p(x̄).
When can graph cut scores
correspond precisely to log p(x̄)
in a way that min-cut
algorithms can find
minimum of
energy E(x)?

t

s
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Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ 2 {0, 1}n.
If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow
(many algorithms, e.g., Edmonds&Karp O(nm2) or O(n2m log(nC));
Goldberg&Tarjan O(nm log(n2/m)), see Schrijver, page 161).
If weights are set correctly in the cut graph, and if edge functions eij
satisfy certain properties, then graph-cut score corresponding to x̄ can
be made equivalent to E(x) = log p(x̄) + const..
Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!
In general, finding MPE is an NP-hard optimization problem.
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Submodular potentials
submodularity is what allows graph cut to find exact solution

Edge functions must be submodular (in the binary case, equivalent to
“associative”, “attractive”, “regular”, “Potts”, or “ferromagnetic”): for all
(i, j) 2 E(G), must have:

eij(0, 1) + eij(1, 0) � eij(1, 1) + eij(0, 0) (2.31)

This means: on average, preservation is preferred over change.
As a set function, this is the same as:

f(X) =
X

{i,j}2E(G)

fi,j(X \ {i, j}) (2.32)

which is submodular if each of the fi,j ’s are submodular!
A special case of more general submodular functions – unconstrained
submodular function minimization is solvable in polytime.
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On log-supermodular vs. log-submodular distributions

Log-supermodular distributions.

log Pr(x) = g(x) + const. = �E(x) + const. (2.33)

where g is supermodular (E(x) = �g(x) is submodular). MAP (or
high-probable) assignments should be “regular”, “homogeneous”,
“smooth”, “simple”. E.g., attractive potentials in computer vision,
ferromagnetic Potts models statistical physics.

Log-submodular distributions:

log Pr(x) = f(x) + const. (2.34)

where f is submodular. MAP or high-probable assignments should be
“diverse”, or “complex”, or “covering”, like in determinantal point
processes.
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Shrinking bias in graph cut image segmentation

What does graph-cut based im-
age segmentation do with elon-
gated structures (top) or con-
trast gradients (bottom)?
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Shrinking bias in graph cut image segmentation
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Addressing shrinking bias with edge submodularity

Standard graph cut, uses a modular function w : 2E ! R+ defined on
the edges to measure cut costs. Graph cut node function is submodular.

fw(X) = w
⇣
{(u, v) 2 E : u 2 X, v 2 V \X}

⌘
(2.35)

Instead, we can use a submodular function g : 2E ! R+ defined on the
edges to express cooperative costs.

fg(X) = g
⇣
{(u, v) 2 E : u 2 X, v 2 V \X}

⌘
(2.36)

Seen as a node function, fg : 2V ! R+ is not submodular, but it uses
submodularity internally to solve the shrinking bias problem.
) cooperative-cut (Jegelka & B., 2011).
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Graph-cut vs. cooperative-cut comparisons

Graph Cut Cooperative Cut

(Jegelka&Bilmes,’11). There are fast algorithms for solving as well.
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A submodular function as a parameter

In some cases, it may be useful to view a submodular function
f : 2V ! R as a input “parameter” to a machine learning algorithm.

Machine Learning
Problem or Instance

Data

f : 2V ! R+ Output

A given submodular function f 2 S ✓ R2n can be seen as a vector in a
2n-dimensional compact cone.
S is a submodular cone since submodularity is closed under
non-negative (conic) combinations.
2n-dimensional since for certain f 2 S, there exists f✏ 2 R2n having no
zero elements with f + f✏ 2 S (more on problem sets).
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Supervised Machine Learning
From F. Bach

We are given n samples of observed data (xi, yi) 2 Rp
⇥ R, i 2 [n].

Response vector y = (y1, . . . , yn)
|
2 Rn

Design matrix X = (x1, . . . , xn)
|
2 Rn⇥p.

Regularized empirical risk minimization:

min
w2Rp

1

n

nX

i=1

`(yi, w
|xi) + �⌦(w) = min

w2Rp
L(y,Xw) + �⌦(w) (2.37)

where `(·) is a loss function (e.g., squared error) and ⌦(w) is a (perhaps
sparse) norm.
When data has multiple (k) responses, y = (y1, . . . , yk) 2 Rn⇥k, we get:

min
w1,...,wk2Rn

kX

j=1

�
L(yj , Xwj) + �⌦(wj)

 
(2.38)
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Dictionary Learning and Selection

When only the multiple responses y = (y1, . . . , yk) 2 Rn⇥k are
observed, we get either dictionary learning

min
X=(x1,...,xp)2Rn⇥p

min
w1,...,wk2Rp

kX

j=1

n
L(yj , Xwj) + �⌦(wj)

o
(2.39)

or when we select sub-dimensions of x, we get dictionary selection
(Cevher & Krause, Das & Kempe).

f(D) = min
S✓D,|S|k

min
wj

S2RS

kX

j=1

n
L(yj , XSw

j
S) + �⌦(wj

S)
o

(2.40)

where D is the dictionary (allowed indices of X), and XS 2 Rn⇥|S| is a
column sub-matrix of X.
This is a subset selection problem, and the regularizer ⌦(·) is critical
(could be structured sparse convex norm, via Lovász extension!).
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Norms, sparse norms, and computer vision

Common norms include p-norm ⌦(w) = kwkp = (
Pp

i=1w
p
i )

1/p

1-norm promotes sparsity (prefer solutions with zero entries).
Image denoising, total variation is useful, norm takes form:

⌦(w) =
NX

i=2

|wi � wi�1| (2.41)

related to Lovász extension of a graph-cut submodular function.
Points of difference should be “sparse” (frequently zero).

(Rodriguez,

2009)
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w 2 RV , supp(w) 2 {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Given submodular function f : 2V ! R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension f̃ of f (Bolton et al. 2008, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
The Lovász-extension (Lovász ’82, Edmonds ’70) is easy to get via the
greedy algorithm: sort w�1 � w�2 � · · · � w�n , then

f̃(w) =
nX

i=1

w�i(f(�1, . . . ,�i)� f(�1, . . . ,�i�1)) (2.42)

Ex: total variation is the Lovász-extension of graph cut
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norms via the Lovász-extension!
The Lovász-extension (Lovász ’82, Edmonds ’70) is easy to get via the
greedy algorithm: sort w�1 � w�2 � · · · � w�n , then

f̃(w) =
nX

i=1

w�i(f(�1, . . . ,�i)� f(�1, . . . ,�i�1)) (2.42)

Ex: total variation is the Lovász-extension of graph cut
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w 2 RV , supp(w) 2 {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Given submodular function f : 2V ! R+, f(supp(w)) measures the
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Lovász-extension f̃ of f (Bolton et al. 2008, Bach 2010).
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greedy algorithm: sort w�1 � w�2 � · · · � w�n , then

f̃(w) =
nX
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w�i(f(�1, . . . ,�i)� f(�1, . . . ,�i�1)) (2.42)

Ex: total variation is the Lovász-extension of graph cut
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Given submodular function f : 2V ! R+, f(supp(w)) measures the
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w 2 RV , supp(w) 2 {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Given submodular function f : 2V ! R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension f̃ of f (Bolton et al. 2008, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
The Lovász-extension (Lovász ’82, Edmonds ’70) is easy to get via the
greedy algorithm: sort w�1 � w�2 � · · · � w�n , then

f̃(w) =
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Submodular Generalized Dependence

there is a notion of “independence” , i.e., A??B:

f(A [B) = f(A) + f(B), (2.43)

and a notion of “conditional independence” , i.e., A??B|C:

f(A [B [ C) + f(C) = f(A [ C) + f(B [ C) (2.44)

and a notion of “dependence” (conditioning reduces valuation):

f(A|B) , f(A [B)� f(B) < f(A), (2.45)

and a notion of “conditional mutual information”

If (A;B|C) , f(A [ C) + f(B [ C)� f(A [B [ C)� f(C) � 0

and two notions of “information amongst a collection of sets”:

If (S1;S2; . . . ;Sk) =
kX

i=1

f(Sk)� f(S1 [ S2 [ · · · [ Sk) (2.46)

I 0f (S1;S2; . . . ;Sk) =
X

A✓{1,2,...,k}

(�1)|A|+1f(
[

j2A

Sj) (2.47)
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and a notion of “conditional independence” , i.e., A??B|C:

f(A [B [ C) + f(C) = f(A [ C) + f(B [ C) (2.44)

and a notion of “dependence” (conditioning reduces valuation):

f(A|B) , f(A [B)� f(B) < f(A), (2.45)

and a notion of “conditional mutual information”

If (A;B|C) , f(A [ C) + f(B [ C)� f(A [B [ C)� f(C) � 0

and two notions of “information amongst a collection of sets”:

If (S1;S2; . . . ;Sk) =
kX
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Submodular Parameterized Clustering

Given a submodular function f : 2V ! R, form the combinatorial
dependence function If (A;B) = f(A) + f(B)� f(A [B).

Consider clustering algorithm: First find partition
A⇤

1 2 argminA✓V If (A;V \A) and A⇤

2 = V \A⇤

1.
Then partition the partitions: A⇤

11 2 argminA✓A⇤
1
If (A;A⇤

1 \A),
A⇤

12 = A⇤

1 \A
⇤

11, and A⇤

21 2 argminA✓A⇤
2
If (A;A⇤

2 \A), etc.
Recursively partition the partitions, we end up with a partition
V = V1 [ V2 [ · · · [ Vk that clusters the data.
Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a partition
no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).
Hence, family of clustering algorithms parameterized by f .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 2 - Mar 28th, 2018 F57/72 (pg.153/214)



ML Apps Diversity Complexity Parameter ML Target Surrogate

Submodular Parameterized Clustering

Given a submodular function f : 2V ! R, form the combinatorial
dependence function If (A;B) = f(A) + f(B)� f(A [B).
Consider clustering algorithm: First find partition
A⇤

1 2 argminA✓V If (A;V \A) and A⇤

2 = V \A⇤

1.

Then partition the partitions: A⇤

11 2 argminA✓A⇤
1
If (A;A⇤

1 \A),
A⇤

12 = A⇤

1 \A
⇤

11, and A⇤

21 2 argminA✓A⇤
2
If (A;A⇤

2 \A), etc.
Recursively partition the partitions, we end up with a partition
V = V1 [ V2 [ · · · [ Vk that clusters the data.
Each minimization can be done using Queyranne’s algorithm
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no worse than factor 2 away from optimal partition.
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Submodular Parameterized Clustering

Given a submodular function f : 2V ! R, form the combinatorial
dependence function If (A;B) = f(A) + f(B)� f(A [B).
Consider clustering algorithm: First find partition
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Recursively partition the partitions, we end up with a partition
V = V1 [ V2 [ · · · [ Vk that clusters the data.
Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a partition
no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).
Hence, family of clustering algorithms parameterized by f .
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Submodular Parameterized Clustering

Given a submodular function f : 2V ! R, form the combinatorial
dependence function If (A;B) = f(A) + f(B)� f(A [B).
Consider clustering algorithm: First find partition
A⇤

1 2 argminA✓V If (A;V \A) and A⇤

2 = V \A⇤

1.
Then partition the partitions: A⇤

11 2 argminA✓A⇤
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1 \A),
A⇤

12 = A⇤

1 \A
⇤

11, and A⇤

21 2 argminA✓A⇤
2
If (A;A⇤

2 \A), etc.
Recursively partition the partitions, we end up with a partition
V = V1 [ V2 [ · · · [ Vk that clusters the data.

Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a partition
no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).
Hence, family of clustering algorithms parameterized by f .
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Submodular Parameterized Clustering

Given a submodular function f : 2V ! R, form the combinatorial
dependence function If (A;B) = f(A) + f(B)� f(A [B).
Consider clustering algorithm: First find partition
A⇤

1 2 argminA✓V If (A;V \A) and A⇤

2 = V \A⇤

1.
Then partition the partitions: A⇤

11 2 argminA✓A⇤
1
If (A;A⇤

1 \A),
A⇤

12 = A⇤

1 \A
⇤

11, and A⇤

21 2 argminA✓A⇤
2
If (A;A⇤

2 \A), etc.
Recursively partition the partitions, we end up with a partition
V = V1 [ V2 [ · · · [ Vk that clusters the data.
Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a partition
no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

Hence, family of clustering algorithms parameterized by f .
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Submodular Parameterized Clustering

Given a submodular function f : 2V ! R, form the combinatorial
dependence function If (A;B) = f(A) + f(B)� f(A [B).
Consider clustering algorithm: First find partition
A⇤

1 2 argminA✓V If (A;V \A) and A⇤

2 = V \A⇤

1.
Then partition the partitions: A⇤

11 2 argminA✓A⇤
1
If (A;A⇤

1 \A),
A⇤

12 = A⇤

1 \A
⇤

11, and A⇤

21 2 argminA✓A⇤
2
If (A;A⇤

2 \A), etc.
Recursively partition the partitions, we end up with a partition
V = V1 [ V2 [ · · · [ Vk that clusters the data.
Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a partition
no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).
Hence, family of clustering algorithms parameterized by f .
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Is Submodular Maximization Just Clustering?

1 Clustering objectives often NP-hard and inapproximable, submodular
maximization is approximable for any submodular function.

2 To have guarantee, clustering typically needs metricity, submodularity
parameterized via any non-negative pairwise values.

3 Clustering often requires separate process to choose representatives
within each cluster. Submodular max does this automatically. Can also
do submodular data partitioning (like clustering).

4 Submodular max covers clustering objectives such as k-medoids.
5 Can learn submodular functions (hence, learn clustering objective).
6 We can choose quality guarantee for any submodular function via

submodular set cover (only possible for some clustering algorithms).
7 Submodular max with constraints, ensures representatives are feasible

(e.g., knapsack, matroid independence, combinatorial, submodular level
set, etc.)

8 Submodular functions may be more general than clustering objectives
(submodularity allows high-order interactions between elements).
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Active Learning and Semi-Supervised Learning

Given training data DV = {(xi, yi)}i2V of (x, y) pairs where x is a
query (data item) and y is an answer (label), goal is to learn a good
mapping y = h(x).

Often, getting y is time-consuming, expensive, and error prone (manual
transcription, Amazon Turk, etc.)
Batch active learning: choose a subset S ⇢ V so that only the labels
{yi}i2S should be acquired.
Adaptive active learning: choose a policy whereby we choose an
i1 2 V , get the label yi1 , choose another i2 2 V , get label yi2 ,where
each chose can be based on previously acquired labels.
Semi-supervised (transductive) learning: Once we have {yi}i2S , infer
the remaining labels {yi}i2V \S .
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Often, getting y is time-consuming, expensive, and error prone (manual
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query (data item) and y is an answer (label), goal is to learn a good
mapping y = h(x).
Often, getting y is time-consuming, expensive, and error prone (manual
transcription, Amazon Turk, etc.)
Batch active learning: choose a subset S ⇢ V so that only the labels
{yi}i2S should be acquired.
Adaptive active learning: choose a policy whereby we choose an
i1 2 V , get the label yi1 , choose another i2 2 V , get label yi2 ,where
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the remaining labels {yi}i2V \S .
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Active Transductive Semi-Supervised Learning

Batch/Offline active learning: Given a set V of unlabeled data items,
learner chooses subset L ✓ V of items to be labeled

Nature reveals labels yL 2 {0, 1}L, learner predicts labels ŷ 2 {0, 1}V

Learner suffers loss kŷ � yk1, where y is truth. Below, kŷ � yk1 = 2.
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Active Transductive Semi-Supervised Learning

Batch/Offline active learning: Given a set V of unlabeled data items,
learner chooses subset L ✓ V of items to be labeled

Nature reveals labels yL 2 {0, 1}L, learner predicts labels ŷ 2 {0, 1}V
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Choosing labels: how to select L

Consider the following objective

 (L) = min
T✓V \L:T 6=;

�(T )

|T |
(2.48)

where �(T ) = If (T ;V \ T ) = f(T ) + f(V \ T )� f(V ) is an arbitrary
symmetric submodular function (e.g., graph cut value between T and
V \ T , or combinatorial mutual information).

Small  (L) means an adversary can separate away many (|T | is big)
combinatorially “independent” (�(T ) is small) points from L.

This suggests choosing (bounded cost) L that maximizes  (L).
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Choosing labels: how to select L

Consider the following objective

 (L) = min
T✓V \L:T 6=;

�(T )

|T |
(2.48)

where �(T ) = If (T ;V \ T ) = f(T ) + f(V \ T )� f(V ) is an arbitrary
symmetric submodular function (e.g., graph cut value between T and
V \ T , or combinatorial mutual information).
Small  (L) means an adversary can separate away many (|T | is big)
combinatorially “independent” (�(T ) is small) points from L.

 (L) = 1/8  (L) = 1

This suggests choosing (bounded cost) L that maximizes  (L).
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Choosing remaining labels: semi-supervised learning

Once given labels for L, how to complete the remaining labels?

We form a labeling ŷ 2 {0, 1}V such that ŷL = yL (i.e., we agree with
the known labels).
�(T ) measures label smoothness, how much combinatorial
“information” between labels T and complement V \ T (e.g., in
graph-cut case, says label change should be across small cuts).
Hence, choose labels to minimize �(Y (ŷ)) such that ŷL = yL.
This is submodular function minimization on function g : 2V \L

! R+

where for A ✓ V \ L,

g(A) = �(A [ {v 2 L : yL(v) = 1}) (2.49)

In graph cut case, this is standard min-cut (Blum & Chawla 2001)
approach to semi-supervised learning.
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This is submodular function minimization on function g : 2V \L

! R+

where for A ✓ V \ L,

g(A) = �(A [ {v 2 L : yL(v) = 1}) (2.49)

In graph cut case, this is standard min-cut (Blum & Chawla 2001)
approach to semi-supervised learning.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 2 - Mar 28th, 2018 F62/72 (pg.173/214)



ML Apps Diversity Complexity Parameter ML Target Surrogate

Choosing remaining labels: semi-supervised learning

Once given labels for L, how to complete the remaining labels?
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Generalized Error Bound

Theorem 2.6.1 (Guillory & B., ’11)
For any symmetric submodular �(S), assume ŷ minimizes �(Y (ŷ)) subject

to ŷL = yL. Then

kŷ � yk1  2
�(Y (y))

 (L)
(2.50)

where y 2 {0, 1}V are the true labels.

All is defined in terms of the symmetric submodular function � (need
not be graph cut), where:

 (S) = min
T✓V \S:T 6=;

�(T )

|T |
(2.51)

�(T ) = If (T ;V \ T ) = f(S) + f(V \ S)� f(V ) determined by
arbitrary submodular function f , different error bound for each.
Joint algorithm is “parameterized” by a submodular function f .
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Discrete Submodular Divergences

A convex function parameterizes a Bregman divergence, useful for
clustering (Banerjee et al.), includes KL-divergence, squared l2, etc.

Given a (not nec. differentiable) convex function � and a sub-gradient
map H� (the gradient when � is everywhere differentiable), the
generalized Bregman divergence is defined as:

d
H�

� (x, y) = �(x)� �(y)� hH�(y), x� yi, 8x, y 2 dom(�) (2.52)

A submodular function parameterizes a discrete submodular Bregman
divergence (Iyer & B., 2012).
Example, lower-bound form:

d
Hf

f (X,Y ) = f(X)� f(Y )� hHf (Y ), 1X � 1Y i (2.53)

where Hf (Y ) is a sub-gradient map.
Submodular Bregman divergences also definable in terms of
supergradients.
General: Hamming, Recall, Precision, Cond. MI, Sq. Hamming, etc.
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Learning Submodular Functions

Learning submodular functions is hard

Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f̂ such
that f̂(S)  f(S)  g(n)f̂(S) where g : N ! R?”

Many results,
including that even with adaptive queries and monotone functions,
can’t do better than ⌦(

p
n/ log n).

Balcan & Harvey (2011): submodular function learning problem from a
learning theory perspective, given a distribution on subsets. Negative
result is that can’t approximate in this setting to within a constant
factor.
Feldman, Kothari, Vondrák (2013), shows in some learning settings,
things are more helpful
One example: can we learn a subclass, perhaps non-negative weighted
mixtures of submodular components?
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Structured Learning of Submodular Mixtures

Constraints specified in inference form:

minimize
w,⇠t

1

T

X

t

⇠t +
�

2
kwk

2 (2.54)

subject to w>ft(y
(t)) � max

y2Yt

⇣
w>ft(y) + `t(y)

⌘
� ⇠t, 8t (2.55)

⇠t � 0, 8t. (2.56)

Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”
w>ft(y) is a mixture of submodular components.
If loss is also submodular, then loss-augmented inference is submodular
optimization.
If loss is supermodular, this is a difference-of-submodular (DS) function
optimization.
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Structured Prediction: Subgradient Learning

Solvable with simple sub-gradient descent algorithm using structured
variant of hinge-loss (Taskar, 2004).
Loss-augmented inference is either submodular optimization (Lin & B.
2012) or DS optimization (Tschiatschek, Iyer, & B. 2014).

Algorithm 1: Subgradient descent learning
Input : S = {(x(t),y(t))}Tt=1 and a learning rate sequence {⌘t}Tt=1.

1 w0 = 0;
2 for t = 1, · · · , T do
3 Loss augmented inference: y⇤

t 2 argmaxy2Yt
w>

t�1ft(y) + `t(y);
4 Compute the subgradient: gt = �wt�1 + ft(y⇤)� ft(y(t));
5 Update the weights: wt = wt�1 � ⌘tgt;

Return : the averaged parameters 1
T

P
twt.
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Submodular Relaxation

We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

If potentials are submodular, we can solve them.
When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).
An alternative is submodular relaxation. I.e., given

Pr(x) =
1

Z
exp(�E(x)) (2.57)

where E(x) = Ef (x)� Eg(x) and both of Ef (x) and Eg(x) are
submodular.
Any function can be expressed as the difference between two
submodular functions.
Hence, rather than minimize E(x) (hard), we can minimize
Ef (x) � E(x) (relatively easy), which is an upper bound.
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Submodular Analysis for Non-Submodular Problems

Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.

For example, “deviation from submodularity” can be measured using the
submodularity ratio (Das & Kempe):

�U,k(f) = min
L✓U,S:|S|k,S\L=;

P
s2S f(x|L)

f(S|L)
(2.58)

f is submodular if �U,k � 1 for all U and k.
For some variable selection problems, can get bounds of the form:

Solution � (1�
1

e�U⇤,k
)OPT (2.59)

where U⇤ is the solution set of a variable selection algorithm.
This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).
Other analogous concepts: curvature of a submodular function, and
also the submodular degree.
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Recall

The next page shows a slide from Lecture 1
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Submodular-Supermodular Decomposition

As an alternative to graphical decomposition, we can decompose a
function without resorting sums of local terms.

Theorem 2.8.1 (Additive Decomposition (Narasimhan & Bilmes, 2005))

Let h : 2V ! R be any set function. Then there exists a submodular

function f : 2V ! R and a supermodular function g : 2V ! R such that h
may be additively decomposed as follows: For all A ✓ V ,

h(A) = f(A) + g(A) (2.8)

For many applications (as we will see), either the submodular or
supermodular component is naturally zero.
Sometimes more natural than a graphical decomposition.
Sometimes h(A) has structure in terms of submodular functions but is
non additively decomposed (one example is h(A) = f(A)/g(A)).
Complementary: simultaneous graphical/submodular-supermodular
decomposition (i.e., submodular + supermodular tree).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 2 - Mar 28th, 2018 F71/72 (pg.210/214)



ML Apps Diversity Complexity Parameter ML Target Surrogate

Applications of DS functions

Any function h : 2V ! R can be expressed as a difference between two
submodular (DS) functions, h = f � g.

Sensor placement with submodular costs. I.e., let V be a set of possible
sensor locations, f(A) = I(XA;XV \A) measures the quality of a
subset A of placed sensors, and c(A) the submodular cost. We have
f(A)� �c(A) as the overall objective to maximize.

Discriminatively structured graphical models, EAR measure
I(XA;XV \A)� I(XA;XV \A|C), and synergy in neuroscience.
Feature selection: a problem of maximizing
I(XA;C)� �c(A) = H(XA)� [H(XA|C) + �c(A)], the difference
between two submodular functions, where H is the entropy and c is a
feature cost function.
Graphical Model Inference. Finding x that maximizes
p(x) / exp(�v(x)) where x 2 {0, 1}n and v is a pseudo-Boolean
function. When v is non-submodular, it can be represented as a
difference between submodular functions.
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