
Submodular Functions, Optimization,
and Applications to Machine Learning

— Spring Quarter, Lecture 1 —
http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering

http://melodi.ee.washington.edu/~bilmes

Mar 26th, 2018

+f (A) + f (B) f (A ∪ B)

= f (Ar ) +f (C ) + f (Br )

≥
= f (A ∩ B)

f (A ∩ B)

= f (Ar ) + 2f (C ) + f (Br )

Clockwise from top left:v
Lásló Lovász

Jack Edmonds
Satoru Fujishige

George Nemhauser
Laurence Wolsey

András Frank
Lloyd Shapley
H. Narayanan
Robert Bixby

William Cunningham
William Tutte
Richard Rado

Alexander Schrijver
Garrett Birkho�
Hassler Whitney

Richard Dedekind

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F1/50 (pg.1/52)

Logistics

Announcements

Welcome to: Submodular Functions, Optimization, and Applications to
Machine Learning, EE563.
Class: An introduction to submodular functions including methods for
their optimization, and how they have been (and can be) applied in
many application domains.
Weekly Virtual Office Hours: Mondays, 10:00-11:00pm, via zoom (link
posted on canvas).
EEB 042, class web page is at our web page
(http://www.ee.washington.edu/people/faculty/bilmes/
classes/ee563_spring_2018/).
Use our discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics)
for all questions, comments, so that all will benefit from them being
answered.
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Rough Class Outline

Introduction to submodular functions: definitions, real-world and
contrived examples, properties, operations that preserve submodularity,
inequalities, variants and special submodular functions, and
computational properties. Gain intution, when is submodularity and
supermodularity useful?

Submodularity is an ideal model for cooperation, complexity,

and attractiveness as well as for diversity, coverage, & information

Applications in data science , computer vision , tractable

substructures in constraint satisfaction/SAT and graphical models ,

game theory , social networks , economics , information theory ,

structured convex norms , natural language processing ,

genomics/proteomics , sensor networks , probabilistic inference , and

other areas of machine learning .
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Rough Class Outline (cont. II)

theory of matroids and lattices.

Polyhedral properties of submodular functions, polymatroids generalize
matroids.

The Lovász extension of submodular functions, the Choquet integral,
and convex and concave extensions.

Submodular maximization algorithms under constraints, submodular
cover problems, greedy algorithms, approximation guarantees.

Submodular minimization algorithms, a history of submodular
minimization, including both numerical and combinatorial algorithms,
computational properties, and descriptions of both known results and
currently open problems in this area.

Submodular flow problems, the principle partition of a submodular
function and its variants.
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Rough Class Outline (cont. III)

Constrained optimization problems with submodular functions, including
maximization and minimization problems with various constraints. An
overview of recent problems addressed in the community.
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Classic References

Jack Edmonds’s paper “Submodular Functions, Matroids, and Certain
Polyhedra” from 1970.
Nemhauser, Wolsey, Fisher, “A Analysis of Approximations for
Maximizing Submodular Set Functions-I”, 1978
Lovász’s paper, “Submodular functions and convexity”, from 1983.
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Useful Books

Fujishige, “Submodular Functions and Optimization”, 2005
Narayanan, “Submodular Functions and Electrical Networks”, 1997
Welsh, “Matroid Theory”, 1975.
Oxley, “Matroid Theory”, 1992 (and 2011).
Lawler, “Combinatorial Optimization: Networks and Matroids”, 1976.
Schrijver, “Combinatorial Optimization”, 2003
Gruenbaum, “Convex Polytopes, 2nd Ed”, 2003.
Additional readings that will be announced here.
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Recent online material (some with an ML slant)
Previous video version of this class http:
//j.ee.washington.edu/~bilmes/classes/ee596a_fall_2014/.
Stefanie Jegelka & Andreas Krause’s 2013 ICML tutorial
http://techtalks.tv/talks/
submodularity-in-machine-learning-new-directions-part-i/
58125/
NIPS, 2013 tutorial on submodularity http://melodi.ee.washington.
edu/~bilmes/pgs/b2hd-bilmes2013-nips-tutorial.html and
http://youtu.be/c4rBof38nKQ
Andreas Krause’s web page http://submodularity.org.
Francis Bach’s updated 2013 text. http://hal.archives-ouvertes.fr/
docs/00/87/06/09/PDF/submodular_fot_revised_hal.pdf
Tom McCormick’s overview paper on submodular minimization http:
//people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
Georgia Tech’s 2012 workshop on submodularity:
http://www.arc.gatech.edu/events/arc-submodularity-workshop
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Facts about the class

Prerequisites: ideally knowledge in probability, statistics, convex
optimization, and combinatorial optimization these will be reviewed as
necessary. The course is open to students in all UW departments. Any
questions, please contact me.
Text: We will be drawing from the book by Satoru Fujishige entitled
"Submodular Functions and Optimization" 2nd Edition, 2005, but we
will also be reading handouts and research papers that will be posted
here on this web page, especially for some of the application areas.
Grades and Assignments: Grades will be based on a combination of a
final project (45%), homeworks (55%). There will be between 3-6
homeworks during the quarter.
Final project: The final project will consist of a 4-page paper
(conference style) and a final project presentation. The project must
involve using/dealing mathematically with submodularity in some way
or another, and might involve a contest!
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Facts about the class

Homework must be submitted electronically using our assignment
dropbox
(https://canvas.uw.edu/courses/1216339/assignments). PDF
submissions only please. Photos of neatly hand written solutions,
combined into one PDF, are fine
Lecture slides - are being updated and improved this quarter. They will
likely appear on the web page the night before, and the final version
will appear just before class.
Slides from previous version of this class are at
http://www.ee.washington.edu/people/faculty/bilmes/
classes/ee596b_spring_2016/.
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Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
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Class Road Map - EE595 Spring 2016
L1(3/28): Motivation, Applications, &
Basic Definitions
L2(3/30): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).
L3(4/4): Info theory exs, more apps,
definitions, graph/combinatorial examples,
matrix rank example, visualization
L4(4/6): Graph and Combinatorial
Examples, matrix rank, Venn diagrams,
examples of proofs of submodularity, some
useful properties
L5(4/11): Examples & Properties, Other
Defs., Independence
L6(4/13): Independence, Matroids,
Matroid Examples, matroid rank is
submodular
L7(4/18): Matroid Rank, More on
Partition Matroid, System of Distinct
Reps, Transversals, Transversal Matroid,
L8(4/20): Transversals, Matroid and
representation, Dual Matroids,
L9(4/25): Dual Matroids, Properties,
Combinatorial Geometries, Matroid and
Greedy
L10(4/27): Matroid and Greedy,
Polyhedra, Matroid Polytopes,

L11(5/2): From Matroids to
Polymatroids, Polymatroids
L12(5/4): Polymatroids, Polymatroids
and Greedy
L13(5/9): Polymatroids and Greedy;
Possible Polytopes; Extreme Points;
Polymatroids, Greedy, and Cardinality
Constrained Maximization
L14(5/11): Cardinality Constrained
Maximization; Curvature; Submodular
Max w. Other Constraints
L15(5/16): Submodular Max w. Other
Constraints, Most Violated ≤, Matroids
cont., Closure/Sat,
L16(5/18): Closure/Sat, Fund.
Circuit/Dep,
L17(5/23): Min-Norm Point and SFM,
Min-Norm Point Algorithm,
L18(5/25): Proof that min-norm gives
optimal, Lovász extension.
L19(6/1):
L20(6/6): Final Presentations
maximization.

Finals Week: June 6th-10th, 2016.
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Class Road Map - EE563
L1(3/26): Motivation, Applications, &
Basic Definitions,
L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).
L3(4/2): Info theory exs, more apps,
definitions, graph/combinatorial examples
L4(4/4):
L5(4/9):
L6(4/11):
L7(4/16):
L8(4/18):
L9(4/23):
L10(4/25):

L11(4/30):
L12(5/2):
L13(5/7):
L14(5/9):
L15(5/14):
L16(5/16):
L17(5/21):
L18(5/23):
L–(5/28): Memorial Day (holiday)
L19(5/30):
L21(6/4): Final Presentations
maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Background Definitions Simple Examples ML Apps

The Ideal Machine Learning Methods

Simple to define

Mathematically rich

Naturally suited to many
real-world applications

Efficient & scalable to large
problem instances
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Background Definitions Simple Examples ML Apps

Convex Analysis in Machine Learning
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Background Definitions Simple Examples ML Apps

Successful Convexity in Machine Learning

Linear and logistic regresion, surrogate loss functions.
Convex sparse regularizers (such as the `p family and nuclear norms).
PSD matrices (i.e., positive semidefinite cone) and Gaussian densities.
Optimizing non-linear and even non-convex classification/regression
methods such as support-vector (SVMs) and kernel machines via
convex optimization.
Maximum entropy estimation
The expectation-maximization (EM) algorithm.
Ideas/techniques/insight for non-convex methods, convex minimization
useful even for non-convex problems, such as Deep Neural Networks
(DNNs). Convex analysis for non-convex problems.
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A Convexity Limitation: Discrete Problems
Many Machine Learning problems are inherently discrete:
Active learning/label selection.
MAP & diverse k-best discrete
probabilistic inference
Data Science: data partitioning,
clustering, summarization; the
science of data management.
Sparse modeling, compressed
sensing, low-rank approximation.
Probabilistic models: structure
learning in graphical models and
neural networks. Non-graphical
global potentials.
Variable and feature selection;
dictionary selection.

Natural language processing (NLP):
words, phrases, sentences,
paragraphs, n-grams, syntax trees,
graphs, semantic structures.
Social choice and voting theory,
social networks, viral marketing,
(Multi-label) image segmentation in
computer vision.
Proteomics: selecting peptides,
proteins, drug trial participants
Genomics: cell-type or assay
selection, genomic summarization
Social networks, influence, viral
marketing, information cascades,
diffusion networks

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F17/50 (pg.17/52)

Background Definitions Simple Examples ML Apps

Classic Discrete Optimization Problems

Operations Research/Industrial Engineering: facility and factory location, packing and
covering.

Sensor placement where to optimally place sensors?

Information: Information theory, sets of random variables.

Geometry: Polytopes and polyhedra

Mathematics: e.g., monge matrices, efficient dynamic programming, Birkhoff lattice
theory

Combinatorial Problems: e.g., sets, graphs, graph cuts, max k coverage, packings,
coverings, partitions, paths, flows, matchings, colorings,

Algorithms: Algorithms, and time/space complexity

Economics: markets, economies of scale, mathematics of supply & demand

General Integer Programming (e.g., Integer Linear Programming (ILP),
Integer Quadratic Programming (IQP), etc). General case can ignore useful
and natural structures common to many problems.
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Attractions of Convex Functions

Why do we like Convex Functions? (Quoting Lovász 1983):

1 Convex functions occur in many mathematical models in economy,
engineering, and other sciences. Convexity is a very natural property of
various functions and domains occurring in such models; quite often the
only non-trivial property which can be stated in general.

2 Convexity is preserved under many natural operations and
transformations, and thereby the effective range of results can be
extended, elegant proof techniques can be developed as well as
unforeseen applications of certain results can be given.

3 Convex functions and domains exhibit sufficient structure so that a
mathematically beautiful and practically useful theory can be developed.

4 There are theoretically and practically (reasonably) efficient methods to
find the minimum of a convex function.
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Background Definitions Simple Examples ML Apps

Attractions of Submodular Functions

In this course, we wish to demonstrate that submodular and
supermodular functions also possess attractions of these four sorts as
well.
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Graphical Models and Decomposition
Let B be the set of cliques of a graph G. A graphical model prescribes
how to write functions f : {0, 1}n → R. Let x ∈ {0, 1}n

f(x) =
∑
B∈B

fB(xB) (1.1)

Example: Undirected Graphs

X2

X1

X3

X4
X6

X5

f(x1:6) = f(x1, x2, x3) + f(x2, x3, x4)

+ f(x3, x5) + f(x5, x6) + f(x4, x6)

f(x1:6) = f(x1, x2) + f(x2, x3) + f(x3, x1)

+ f(x2, x3) + f(x3, x4) + f(x4, x2)

+ f(x3, x5) + f(x5, x6) + f(x4, x6)

Example: Factor/Hyper Graphs
x1

x2

x3

x4

f1

f2

f3

f4

f(x1:4) = f1(x1, x2, x3) + f2(x2, x3)

= f3(x1, x3, x4) + f4(x3)
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Background Definitions Simple Examples ML Apps

Graphical Models/Decomposition: Real-Object Example

How to valuate a set of items?
Let C, T , and L be binary variables indicating the presence or absence
of items, and we wish to compute value(C, T, L).
Example: Value of Coffee (C), Tea (T), and Lemon (L).

C T L

value(C, T, L) = value(C, T ) + value(T, L) (1.2)
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Graphical Decomposition Limitation: Manner of Interaction
Value of Coffee (C), Tea (T), and Lemon (L).

C T L

value(C, T, L) = value(C, T ) + value(T, L) (1.3)

Coffee and Tea are “substitutive”

value(C, T ) ≤ value(C) + value(T ) (1.4)

Tea and Lemon are “complementary”

value(T, L) ≥ value(T ) + value(L) (1.5)

These are distinct non-graphically expressed manners of interaction!
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Background Definitions Simple Examples ML Apps

Options for Cost Models via Graphical Decomposition
Three items. Hamburger (H), Fries (F), Soda (S)

Some graphical model options for costs(H,F, S):

costs(H,F, S ) = csthfc(H,F, S )

costs(H,F, S ) = csthf(H,F ) + cstfc(F, S )

costs(H,F, S ) = csth(H) + cstf(F ) + cstc(S )
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Decompositions via Manner of Interaction
costs(H,F, S) of Hamburger (H), Fries (F), Soda (S)

Consider components of cost: consumer-costs (ccs) and health-costs
(hcs), each of which is ternary.

costs(H,F, S) = ccs(H,F, S) + hcs(H,F, S) (1.6)

Consumer costs

( ) ( )≥ ( )( )ccs ccs ccs ccs

Health costs

( ) ( )≤ ( )( )hcs hcs hcs hcs

In both cases, graphical-only decompositions fail!
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Background Definitions Simple Examples ML Apps

Sets and set functions f : 2V → R

We are given a finite “ground” set V of objects, 2V , {A : A ⊆ V }

V =




Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f(V ) = 6
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Sets and set functions f : 2V → R

Subset A ⊆ V of objects:

A =




Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f(A) = 1

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F26/50 (pg.27/52)

Background Definitions Simple Examples ML Apps

Sets and set functions f : 2V → R

Subset B ⊆ V of objects:

B =




Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f(B) = 6

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F26/50 (pg.28/52)



Background Definitions Simple Examples ML Apps

Set functions are pseudo-Boolean functions

Any set A ⊆ V can be represented as a binary vector
x ∈ {0, 1}V (a “bit vector” representation of a set).
The characteristic vector 1A ∈ {0, 1}V of a set A is defined one where
element v ∈ V has value:

1A(v) =

{
1 if v ∈ A
0 else

(1.7)

Useful to be able to quickly map between X = X(1X) and
x(X)

∆
= 1X .

f : {0, 1}V → {0, 1} are known as Boolean function.
f : {0, 1}V → R is a pseudo-Boolean function (submodular functions
are a special case).
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Background Definitions Simple Examples ML Apps

Two Equivalent Submodular Definitions

Definition 1.3.1 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (1.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 1.3.2 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (1.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as the
context in which v is considered grows from A to B.
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Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls, f(S)
counts the number of distinct colors in S.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).
Thus, f is submodular.
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Background Definitions Simple Examples ML Apps

Two Equivalent Supermodular Definitions

Definition 1.3.3 (supermodular)

A function f : 2V → R is supermodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B) (1.10)

Definition 1.3.4 (supermodular (improving returns))

A function f : 2V → R is supermodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≤ f(B ∪ {v})− f(B) (1.11)

Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
A function f is submodular iff −f is supermodular.
If f both submodular and supermodular, then f is said to be modular,
and f(A) = c+

∑
a∈A f(a) (often c = 0).
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Example Supermodular: Number of Balls with Two Lines

Given ball pyramid, bottom row V is size n = |V |. For subset S ⊆ V of
bottom-row balls, draw 45◦ and 135◦ diagonal lines from each s ∈ S. Let
f(S) be number of non-bottom-row balls with two lines ⇒ f(S) is
supermodular.

1 2 3 4 5 6 7 8 9 10
V

1 2 3 4 5 6 7 8 9 10
V

A = {2, 5, 9} A ∪ {4} = {2, 4, 5, 9}

1 2 3 4 5 6 7 8 9 10
V

1 2 3 4 5 6 7 8 9 10
V

B = {2, 5, 8, 9} B ∪ {4} = {2, 4, 5, 8, 9}

f(A) = 3 f(A ∪ {4}) = 6

f(B) = 6 f(B ∪ {4}) = 10
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Background Definitions Simple Examples ML Apps

Scientific Anecdote: Emergent Properties

New York Times column (D. Brooks), March 28th, 2011 on “Tools for
Thinking” was about responses to Steven Pinker’s (Harvard) asking a
number of scientists “What scientific concept would improve everybody’s
cognitive toolkit?”
See http://edge.org/responses/
what-scientific-concept-would-improve-everybodys-cognitive-toolkit
A common theme was “emergent properties” or “emergent systems”

Emergent systems are ones in which many different elements inter-
act. The pattern of interaction then produces a new element that is
greater than the sum of the parts, which then exercises a top-down
influence on the constituent elements.

Emergent properties are well modeled by supermodular functions!
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Submodular-Supermodular Decomposition
As an alternative to graphical decomposition, we can decompose a
function without resorting sums of local terms.

Theorem 1.3.5 (Additive Decomposition (Narasimhan & Bilmes, 2005))

Let h : 2V → R be any set function. Then there exists a submodular
function f : 2V → R and a supermodular function g : 2V → R such that h
may be additively decomposed as follows: For all A ⊆ V ,

h(A) = f(A) + g(A) (1.12)

For many applications (as we will see), either the submodular or
supermodular component is naturally zero.
Sometimes more natural than a graphical decomposition.
Sometimes h(A) has structure in terms of submodular functions but is
non additively decomposed (one example is h(A) = f(A)/g(A)).
Complementary: simultaneous graphical/submodular-supermodular
decomposition (i.e., submodular + supermodular tree).
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The Ideal Machine Learning Methods

Simple to define

Mathematically rich

Naturally suited to many
real-world applications

Efficient & scalable to large
problem instances
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Discrete Optimization

Unconstrained minimization and maximization:

min
X⊆V

f(X) (1.13) max
X⊆V

f(X) (1.14)

Knowing nothing about f , need
2n queries for any quality as-
surance on candidate solution.
Otherwise, solution can be un-
boundedly poor!!

∅

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

Alternatively, we may partition V into (necessarily disjoint) blocks
{V1, V2, . . .} that collectively are good in some way.
When f is submodular, however, Eq. (1.13) is polytime, and Eq. (1.14)
is constant-factor approximable. Partitionings are also approximable!
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Constrained Discrete Optimization
Constrained case: interested only in a subset of subsets S ⊆ 2V .
Ex: Bounded size S =
{S ⊆ V : |S| ≤ k}, or given cost
vector w and budget, bounded cost{
S ⊆ V :

∑
s∈S w(s) ≤ b

}
. ∅

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

Ex: feasible sets S as combina-
torial objects

Trees

Matchings

Paths

Verte
x Covers

Ed
ge

 C
ov

er
s

Cuts

Ex: feasible sets S as matroids.
Ex: feasible sets S

as sub-level sets of g,
S = {S ⊆ V : g(S) ≤ α},
sup-level sets S =
{S ⊆ V : g(S) ≥ α}
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Constrained Discrete Optimization

Constrained discrete optimization problems:

maximize f(S)

subject to S ∈ S (1.15)
minimize f(S)

subject to S ∈ S (1.16)
where S ⊆ 2V is the feasible set of sets.

Fortunately, when f (and g) are submodular, these problems can often
be solved with guarantees, often very efficiently!
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Submodular and Supermodular Applications

Algorithms: Algorithms can be developed that often are tractable (and
as we will see many in this class).
Applications: There are many seemingly different applications that are
strongly related to submodularity.
Submodularity and supermodularity is as common and natural for
discrete problems in machine learning as is convexity/concavity for
continuous problems.
First, lets look at a few more very simple examples of submodular
functions.
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Continuous Set Cover
The area of the union of areas indexed by A

Let V be a set of indices, and each v ∈ V indexes a given fixed
sub-area of some region in R2.
Let area(v) be the area corresponding to item v.
Let f(S) =

⋃
s∈S area(s) be the union of the areas indexed by elements

in S.
Then f(S) is submodular, and corresponds to a continuous set cover
function.
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Continuous Set Cover
The area of the union of areas indexed by A — Example

Gain (value) of v in context of A:

f(A ∪ {v})− f(A) = f({v})

We get full value f({v}) in this case
since the area of v has no overlap
with that of A.

Incremental value of v in the context
of B ⊃ A.

f(B ∪ {v})− f(B) < f({v})
= f(A ∪ {v})− f(A)

So benefit of v in the context of A is
greater than the benefit of v in the
context of B ⊇ A.
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Simple Consumer Costs

Grocery store: finite set of items V that one can purchase.
Each item v ∈ V has a price m(v).
Basket of groceries A ⊆ V costs:

m(A) =
∑
a∈A

m(a), (1.17)

the sum of individual item costs (no two-for-one discounts).
This is known as a modular function.
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Discounted Consumer Costs (as we saw earlier)

Let f be the cost of purchasing a set of items (consumer cost). For
example, V = {"coke", "fries", "hamburger"} and f(A) measures the
cost of any subset A ⊆ V .We get diminishing returns:

f ( ) f ( ) ≥ f ( ) f ( )

Simply rearranging terms, we get the other definition of submodularity:

f ( ) ≥ f ( ) + f ( )f ( )+

Typical: additional cost of a coke is free only if you add it to a fries and
hamburger order.
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Shared Fixed Costs (interacting costs)

Costs often interact in the real world.
Ex: Let V = {v1, v2} be a set of actions with:
v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ⊆ V , let f(A) be the consumer cost of set of items A.
f({v1}) = cost to drive to and from store cd, and cost to purchase
milk cm, so f({v1}) = cd + cm.
f({v2}) = cost to drive to and from store cd, and cost to purchase
honey ch, so f({v2}) = cd + ch.
But f({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is a
shared fixed cost.
Shared fixed costs are submodular: f(v1) + f(v2) ≥ f(v1, v2) + f(∅)
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Markets: Supply Side Economies of scale

Economies of Scale : Many goods and services can be produced at a
much lower per-unit cost only if they are produced in very large
quantities.
The profit margin for producing a unit of goods is improved as more
of those goods are created.
If you already make a good, making a similar good is easier than if you
start from scratch (e.g., Apple making both iPod and iPhone).
An argument in favor of free trade is that it opens up larger markets for
firms (especially in otherwise small markets), thereby enabling better
economies of scale, and hence greater efficiency (lower costs and
resources per unit of good produced).
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Supply Side Economies of Scale

What is a good model of the cost of manufacturing a set of items?
Let V be a set of possible items to manufacture, and let f(S) for
S ⊆ V be the manufacture costs of items in the subset S.
Ex: V might be paint colors to produce: green, red, blue, yellow, white,
etc.
Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)− f(blue, yellow) <= f(green, blue)− f(blue)

So diminishing returns (a submodular function) would be a good model.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 1 - Mar 26th, 2018 F45/50 (pg.47/52)

Background Definitions Simple Examples ML Apps

Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.
Consumers derive positive
incremental value when size of
the market for that good
increases.

Va
lu

e 
of

 N
et

w
or

k

Called network externalities (Katz & Shapiro 1986), or network effects
and is a form of demand-side economies of scale
Ex: durable goods (e.g., a car or phone), software (facebook,
smartphone apps), and technology-specific human capital investment
(e.g., education in a skill), benefit depends on total user base.
Let V be a set of goods, A a subset and v /∈ A. Incremental gain of
good f(A+ v)− f(A) gets larger as size of market A grows. This is
known as a supermodular function.
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Examples: Positive Network Effects
railroad - standard rail format and shared access
The telephone, who wants to talk by phone only to oneself?
the internet, more valuable per person the more people use it.
ebooks (the more people comment, the better it gets)
social network sites: facebook more valuable with everyone online
online education, Massive Open Online Courses (MOOCs) such as
Coursera, edX, etc. – with many people simultaneously taking a class,
all gain due to richer peer discussions due to greater pool of well
matched study groups, more simultaneous similar questions/problems
that are asked ⇒ more efficient learning & training data for ML
algorithms to learn how people learn.
Software (e.g., Microsoft office, smartphone apps, etc.): more people
means more bug reporting ⇒ better & faster software evolution.
gmail and web-based email (collaborative spam filtering).
wikipedia, collaborative documents
any widely used standard (job training now is useful in the future)
the “tipping point”, and “winner take all” (one platform prevails)
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Examples: Other Network Effects

No Network Externalities
food/drink - (should be) independent of how many others are eating
the type of food.
Music - your enjoyment should (ideally) be independent of others’
enjoyment (but maybe not, see Salganik, Dodds, Watts’06).

Negative Network Effects
clothing
(Halloween) costumes
perfume?
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Review So far

Machine learning paradigms should be: easy to define ,

mathematically rich , naturally applicable , and efficient/scalable .

Convexity (continuous structures) and graphical models (based on
factorization or additive separation) are two such modeling paradigms.

Submodularity/supermodularity offer a distinct mathematically rich
paradigm over discrete space that neither need be continous nor be
additively additively separable,
submodularity offers forms of structural decomposition, e.g., h = f + g,
into potentially global (manner of interaction) terms.
Set cover, supply and demand side economies of scale,
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Submodularity’s utility in ML

A model of a physical process :
When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
vice-versa for supermodularity.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, structured
sparse convex norms for use in regularization).
Itself, as an object or function to learn , based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.
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