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Logistics Review

Announcements, Assignments, and Reminders

Take home final exam (like long homework). Due Friday, June 8th,
4:00pm via our assignment dropbox
(https://canvas.uw.edu/courses/1216339/assignments).
Get started now. At least read through everything and ask any
questions you might have.
As always, if you have any questions about anything, please ask then
via our discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
Can meet at odd hours via zoom (send message on canvas to schedule
time to chat).
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Logistics Review

Class Road Map - EE563

L1(3/26): Motivation, Applications, &

Basic Definitions,

L2(3/28): Machine Learning Apps

(diversity, complexity, parameter, learning

target, surrogate).

L3(4/2): Info theory exs, more apps,

definitions, graph/combinatorial examples

L4(4/4): Graph and Combinatorial

Examples, Matrix Rank, Examples and

Properties, visualizations

L5(4/9): More Examples/Properties/

Other Submodular Defs., Independence,

L6(4/11): Matroids, Matroid Examples,

Matroid Rank, Partition/Laminar

Matroids

L7(4/16): Laminar Matroids, System of

Distinct Reps, Transversals, Transversal

Matroid, Matroid Representation, Dual

Matroids

L8(4/18): Dual Matroids, Other Matroid

Properties, Combinatorial Geometries,

Matroids and Greedy.

L9(4/23): Polyhedra, Matroid Polytopes,

Matroids ! Polymatroids

L10(4/29): Matroids ! Polymatroids,

Polymatroids, Polymatroids and Greedy,

L11(4/30): Polymatroids, Polymatroids

and Greedy

L12(5/2): Polymatroids and Greedy,

Extreme Points, Cardinality Constrained

Maximization

L13(5/7): Constrained Submodular

Maximization

L14(5/9): Submodular Max w. Other

Constraints, Cont. Extensions, Lovasz

Extension

L15(5/14): Cont. Extensions, Lovasz

Extension, Choquet Integration, Properties

L16(5/16): More Lovasz extension,

Choquet, defs/props, examples, multiliear

extension

L17(5/21): Finish L.E., Multilinear

Extension, Submodular Max/polyhedral

approaches, Most Violated inequality, Still

More on Matroids, Closure/Sat

L–(5/28): Memorial Day (holiday)

L18(5/30): Closure/Sat, Fund.

Circuit/Dep

L19(6/6): Fund. Circuit/Dep, Min-Norm

Point Definitions, Review & Support for

Min-Norm, Proof that min-norm gives

optimal, Computing Min-Norm Vector for

Bf maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Summary of Concepts

Most violated inequality max {x(A)� f(A) : A ✓ E}

Matroid by circuits, and the fundamental circuit C(I, e) ✓ I + e.
Minimizers of submodular functions form a lattice.
Minimal and maximal element of a lattice.
x-tight sets, maximal and minimal tight set.
sat function & Closure
Saturation Capacity
e-containing tight sets
dep function & fundamental circuit of a matroid
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Logistics Review

Summary important definitions so far: tight, dep, & sat

x-tight sets: For x 2 Pf , D(x) , {A ✓ E : x(A) = f(A)}.

Polymatroid closure/maximal x-tight set: For x 2 Pf ,
sat(x) , [{A : A 2 D(x)} = {e : e 2 E, 8↵ > 0, x+ ↵1e /2 Pf}.
Saturation capacity: for x 2 Pf , 0  ĉ(x; e) ,
min {f(A)� x(A)|8A 3 e} = max {↵ : ↵ 2 R, x+ ↵1e 2 Pf}
Recall: sat(x) = {e : ĉ(x; e) = 0} and E \ sat(x) = {e : ĉ(x; e) > 0}.
e-containing x-tight sets: For x 2 Pf ,
D(x, e) = {A : e 2 A ✓ E, x(A) = f(A)} ✓ D(x).
Minimal e-containing x-tight set/polymatroidal fundamental circuit/:
For x 2 Pf ,

dep(x, e) =

(T
{A : e 2 A ✓ E, x(A) = f(A)} if e 2 sat(x)

; else

=
�
e0 : 9↵ > 0, s.t. x+ ↵(1e � 1e0) 2 Pf
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min {f(A)� x(A)|8A 3 e} = max {↵ : ↵ 2 R, x+ ↵1e 2 Pf}
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Logistics Review

dep and sat in a lattice

Given some x 2 Pf ,
The picture on the
right summarizes
the relationships
between the lattices
and sublattices.
Note, dep(x, e) ◆
dep(x) =T

{A : x(A) = f(A)}.
In fact,
sat(x, e) = sat(x).
Why?
Example lattice on 4
elements.

;

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

(C2)
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sat(x)

dep(x , e)

all of 2 E (or at least all of the lattice)

lattice of x-tight sets

lattice of x-tight

 sets containing e

dry(x )

sat(x,e)

=dry(x , e)

=dep(x )
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Fund. Circuit/Dep Min-Norm Point Definitions Review & Support for Min-Norm Proof that min-norm gives optimal Computing Min-Norm Vector for Bf

Submodular Function Minimization (SFM) and Min-Norm

We saw that SFM can be used to solve most violated inequality
problems for a given x 2 Pf and, in general, SFM can solve the
question “Is x 2 Pf ” by seeing if x violates any inequality (if the most
violated one is negative, solution to SFM, then x 2 Pf ).
Unconstrained SFM, minA✓V f(A) solves many other problems as well
in combinatorial optimization, machine learning, and other fields.
We next study an algorithm, the “Fujishige-Wolfe Algorithm”, or what
is known as the “Minimum Norm Point” algorithm, which is an active
set method to do this, and one that in practice works about as well as
anything else people (so far) have tried for general purpose SFM.
Note special case SFM can be much faster.
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Fund. Circuit/Dep Min-Norm Point Definitions Review & Support for Min-Norm Proof that min-norm gives optimal Computing Min-Norm Vector for Bf

Min-Norm Point: Definition

Consider the optimization:

minimize kxk22 (19.1a)

subject to x 2 Bf (19.1b)

where Bf is the base polytope of submodular f , and
kxk22 =

P
e2E x(e)2 is the squared 2-norm. Let x⇤ be the optimal

solution.

Note, x⇤ is the unique optimal solution since we have a strictly convex
objective over a set of convex constraints.
x⇤ is called the minimum norm point of the base polytope.
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Fund. Circuit/Dep Min-Norm Point Definitions Review & Support for Min-Norm Proof that min-norm gives optimal Computing Min-Norm Vector for Bf

Min-Norm Point: Examples

Pf Pf Pf

Pf

Pf

Pf

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 19 - June 6th, 2018 F10/65 (pg.25/229)

•  •  a

•

•

•



Fund. Circuit/Dep Min-Norm Point Definitions Review & Support for Min-Norm Proof that min-norm gives optimal Computing Min-Norm Vector for Bf

Ex: 3D base Bf : permutahedron

Consider submodular
function f : 2V ! R with
n = |V | = 4, and for
X ✓ V , concave g,

f(X) = g(|X|) =
|X|X

i=1

(n� i+ 1)

= |X|
⇣
n� |X|� 1

2

⌘

Then Bf is a 3D polytope,
and in this particular case
gives us a permutahedron
with 24 distinct extreme
points, on the right (from
wikipedia).
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Min-Norm Point and Submodular Function Minimization

Given optimal solution x⇤ to [min kxk22 s.t. x 2 Bf ], and consider:

y⇤ = x⇤ ^ 0 = (min(x⇤(e), 0)|e 2 E), (19.2)
A� = {e : x⇤(e) < 0}, (19.3)
A0 = {e : x⇤(e)  0}. (19.4)

Thus, we immediately have that:

A� ✓ A0 (19.5)

and that

x⇤(A�) = x⇤(A0) = y⇤(A�) = y⇤(A0) (19.6)

It turns out, these quantities will solve the submodular function
minimization problem, as we now show.
The proof is nice since it uses the tools we’ve been recently developing.
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More about the base Bf

Theorem 19.5.1
Let f be a polymatroid function and suppose that E can be partitioned into
(E1, E2, . . . , Ek) such that f(A) =

Pk
i=1 f(A \ Ei) for all A ✓ E, and k is

maximum. Then the base polytope Bf = {x 2 Pf : x(E) = f(E)} (the
E-tight subset of Pf ) has dimension |E|� k.

In fact, every x 2 Pf is dominated by x  y 2 Bf .

Theorem 19.5.2
If x 2 Pf and T is tight for x (meaning x(T ) = f(T )), then there exists
y 2 Bf with x  y and y(e) = x(e) for e 2 T .

We leave the proof as an exercise.
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Review from Lecture 12

The following slide repeats Theorem 12.3.2 from lecture 12 and is one of the
most important theorems in submodular theory.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 19 - June 6th, 2018 F14/65 (pg.34/229)



Fund. Circuit/Dep Min-Norm Point Definitions Review & Support for Min-Norm Proof that min-norm gives optimal Computing Min-Norm Vector for Bf

A polymatroid function’s polyhedron is a polymatroid.

Theorem 19.5.1
Let f be a submodular function defined on subsets of E. For any x 2 RE ,
we have:

rank(x) = max (y(E) : y  x, y 2 Pf ) = min (x(A) + f(E \ A) : A ✓ E)
(19.1)

Essentially the same theorem as Theorem 10.4.1, but note Pf rather than
P+
f . Taking x = 0 we get:

Corollary 19.5.2
Let f be a submodular function defined on subsets of E. We have:

rank(0) = max (y(E) : y  0, y 2 Pf ) = min (f(A) : A ✓ E) (19.2)
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Modified max-min theorem

Min-max theorem (Thm 12.3.2) restated for x = 0.
max {y(E)|y 2 Pf , y  0} = min {f(X)|X ✓ V } (19.7)

Theorem 19.5.3 (Edmonds-1970)

min {f(X)|X ✓ E} = max
�
x�(E)|x 2 Bf

 
(19.8)

where x�(e) = min {x(e), 0} for e 2 E.

Proof via the Lovász ext.

min {f(X)|X ✓ E} = min
w2[0,1]E

f̃(w) = min
w2[0,1]E

max
x2Pf

w|x (19.9)

= min
w2[0,1]E

max
x2Bf

w|x (19.10)

= max
x2Bf

min
w2[0,1]E

w|x (19.11)

= max
x2Bf

x�(E) (19.12)
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Alternate proof of modified max-min theorem

We start directly from Theorem 12.3.2.

max (y(E) : y  0, y 2 Pf ) = min (f(A) : A ✓ E) (19.16)

Given y 2 RE , define y� 2 RE with y�(e) = min {y(e), 0} for e 2 E.

max (y(E) : y  0, y 2 Pf ) = max
�
y�(E) : y  0, y 2 Pf

�
(19.17)

= max
�
y�(E) : y 2 Pf

�
(19.18)

= max
�
y�(E) : y 2 Bf

�
(19.19)

The first equality follows since y  0. The second equality (together with
the first) shown on following slide. The third equality follows since for any
x 2 Pf there exists a y 2 Bf with x  y (follows from Theorem 19.5.2).
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Alternate proof of modified max-min theorem

Consider the following two problems:

max
X

e2E
y(e)

s.t. y  x

y 2 P

(19.20a)

(19.20b)
(19.20c)

max
X

e2E
min(y(e), x(e))

s.t. y 2 P

(19.21a)

(19.21b)

Solutions identical cost. Let y⇤1 be l.h.s. OPT and y⇤2 be r.h.s. OPT.
Consider y⇤1 as r.h.s. solution and suppose it is worse than r.h.s. OPT:X

e2E
min(y⇤1(e), x(e)) <

X

e2E
min(y⇤2(e), x(e)) (19.22)

Hence, 9e0 s.t. y⇤1(e
0) < min(y⇤2(e

0), x(e0)). Recall y⇤1, y⇤2 2 P .
This implies

P
e 6=e0 y

⇤
1(e) + y⇤1(e

0) <
P

e 6=e0 y
⇤
1(e) + min(y⇤2(e

0), x(e0)),
better feasible solution to l.h.s., contradicting y⇤1’s optimality for l.h.s.
Similarly, consider y⇤2 as l.h.s. solution, suppose worse than l.h.s. OPTX

e2E
y⇤2(e) <

X

e2E
y⇤1(e) (19.23)

Then 9e0 such that y⇤2(e0) < y⇤1(e
0)  x(e0).

This implies that replacing y⇤2(e
0)’s value with y⇤1(e

0) is still feasible for
r.h.s. but better, contradicting y⇤2’s optimality.
Hence, from previous slide, taking x = 0, max (y(E) : y  0, y 2 Pf ) =
max (y�(E) : y 2 Pf ) = max (y�(E) : y 2 Bf )
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Alternate proof of modified max-min theorem
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min {w|
x : x 2 Bf}

Recall that the greedy algorithm solves, for w 2 RE
+

max {w|x|x 2 Pf} = max {w|x|x 2 Bf} (19.23)

since for all x 2 Pf , there exists y � x with y 2 Bf .

For arbitrary w 2 RE , greedy algorithm will also solve:

max {w|x|x 2 Bf} (19.24)

Also, since w 2 RE is arbitrary, and since

min {w|x|x 2 Bf} = �max {�w|x|x 2 Bf} (19.25)

the greedy algorithm using ordering (e1, e2, . . . , em) such that

w(e1)  w(e2)  · · ·  w(em) (19.26)

will solve l.h.s. of Equation (19.25).
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min {w|
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Greedy solves max {w|
x|x 2 Bf} for arbitrary w 2 RE

Let f(A) be arbitrary submodular function, and f(A) = f 0(A)�m(A)
where f 0 is polymatroidal, and w 2 RE .

max {w|x|x 2 Bf} = max {w|x|x(A)  f(A) 8A, x(E) = f(E)}
= max

�
w|x|x(A)  f 0(A)�m(A) 8A, x(E) = f 0(E)�m(E)

 

= max
�
w|x|x(A) +m(A)  f 0(A) 8A, x(E) +m(E) = f 0(E)

 

= max
�
w|x+ w|m|

x(A) +m(A)  f 0(A) 8A, x(E) +m(E) = f 0(E)
 
� w|m

= max
�
w|y|y 2 Bf 0

 
� w|m

= w|y⇤ � w|m = w|(y⇤ �m)

where y = x+m, so that x⇤ = y⇤ �m.
So y⇤ uses greedy algorithm with positive orthant Bf 0 . To show, we use
Theorem 11.4.1 in Lecture 11, but we don’t require y � 0, and don’t stop
when w goes negative to ensure y⇤ 2 Bf 0 . Then when we subtract off m
from y⇤, we get solution to the original problem.
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Min-Norm Point and Submodular Function Minimization

Given optimal solution x⇤ to [min kxk22 s.t. x 2 Bf ], and consider:

y⇤ = x⇤ ^ 0 = (min(x⇤(e), 0)|e 2 E), (19.2)
A� = {e : x⇤(e) < 0}, (19.3)
A0 = {e : x⇤(e)  0}. (19.4)

Thus, we immediately have that:

A� ✓ A0 (19.5)

and that

x⇤(A�) = x⇤(A0) = y⇤(A�) = y⇤(A0) (19.6)

It turns out, these quantities will solve the submodular function
minimization problem, as we now show.
The proof is nice since it uses the tools we’ve been recently developing.
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Min-Norm Point and SFM

Theorem 19.6.1
Let x⇤, y⇤, A�, and A0 be as given. Then y⇤ is a maximizer of the l.h.s. of
Eqn. (19.7). Moreover, A� is the unique minimal minimizer of f and A0 is
the unique maximal minimizer of f .

Proof.
First note, since x⇤ 2 Bf , we have x⇤(E) = f(E), meaning sat(x⇤) = E.
Thus, we may consider any e 2 E within dep(x⇤, e).

Consider any pair (e, e0) with e 2 A� and e0 2 dep(x⇤, e). Then
x⇤(e) < 0, and 9↵ > 0 s.t. x⇤ + ↵1e � ↵1e0 2 Pf .
We have x⇤(E) = f(E) and x⇤ is minimum in l2 sense. We have
(x⇤ + ↵1e � ↵1e0) 2 Pf , and in fact

(x⇤ + ↵1e � ↵1e0)(E) = x⇤(E) + ↵� ↵ = f(E) (19.27)

so x⇤ + ↵1e � ↵1e0 2 Bf also.

. . .
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Min-Norm Point and SFM

Theorem 19.6.1
Let x⇤, y⇤, A�, and A0 be as given. Then y⇤ is a maximizer of the l.h.s. of
Eqn. (19.7). Moreover, A� is the unique minimal minimizer of f and A0 is
the unique maximal minimizer of f .

Proof.
First note, since x⇤ 2 Bf , we have x⇤(E) = f(E), meaning sat(x⇤) = E.
Thus, we may consider any e 2 E within dep(x⇤, e).
Consider any pair (e, e0) with e 2 A� and e0 2 dep(x⇤, e). Then
x⇤(e) < 0, and 9↵ > 0 s.t. x⇤ + ↵1e � ↵1e0 2 Pf .

We have x⇤(E) = f(E) and x⇤ is minimum in l2 sense. We have
(x⇤ + ↵1e � ↵1e0) 2 Pf , and in fact

(x⇤ + ↵1e � ↵1e0)(E) = x⇤(E) + ↵� ↵ = f(E) (19.27)

so x⇤ + ↵1e � ↵1e0 2 Bf also.
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Min-Norm Point and SFM

Theorem 19.6.1
Let x⇤, y⇤, A�, and A0 be as given. Then y⇤ is a maximizer of the l.h.s. of
Eqn. (19.7). Moreover, A� is the unique minimal minimizer of f and A0 is
the unique maximal minimizer of f .

Proof.
First note, since x⇤ 2 Bf , we have x⇤(E) = f(E), meaning sat(x⇤) = E.
Thus, we may consider any e 2 E within dep(x⇤, e).
Consider any pair (e, e0) with e 2 A� and e0 2 dep(x⇤, e). Then
x⇤(e) < 0, and 9↵ > 0 s.t. x⇤ + ↵1e � ↵1e0 2 Pf .
We have x⇤(E) = f(E) and x⇤ is minimum in l2 sense. We have
(x⇤ + ↵1e � ↵1e0) 2 Pf , and in fact

(x⇤ + ↵1e � ↵1e0)(E) = x⇤(E) + ↵� ↵ = f(E) (19.27)

so x⇤ + ↵1e � ↵1e0 2 Bf also.
. . .
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Min-Norm Point and SFM

. . . proof of Thm. 19.6.1 cont.
Then (x⇤ + ↵1e � ↵1e0)(E)
= x⇤(E \ {e, e0}) + (x⇤(e) + ↵)| {z }

x⇤
new(e)

+(x⇤(e0)� ↵)| {z }
x⇤

new(e
0)

= f(E).

Minimality of x⇤ 2 Bf in l2 sense requires that, with such an ↵ > 0,⇣
x⇤(e)

⌘2
+
⇣
x⇤(e0)

⌘2
<
⇣
x⇤new(e)

⌘2
+
⇣
x⇤new(e

0)
⌘2

Given that e 2 A�, x⇤(e) < 0. Thus, if x⇤(e0) > 0, we would have
(x⇤(e) + ↵0)2 + (x⇤(e0)� ↵0)2 < (x⇤(e))2 + (x⇤(e0))2, for some
0 < ↵0  ↵, contradicting the optimality of x⇤.
If x⇤(e0) = 0, we would have (x⇤(e) + ↵)2 + (↵0)2 < (x⇤(e))2, for any
0 < ↵0 < |x⇤(e)| by convexity, again contradicting optimality of x⇤.
Thus, we must have x⇤(e0) < 0 (strict negativity).

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 19.6.1 cont.
Then (x⇤ + ↵1e � ↵1e0)(E)
= x⇤(E \ {e, e0}) + (x⇤(e) + ↵)| {z }

x⇤
new(e)

+(x⇤(e0)� ↵)| {z }
x⇤

new(e
0)

= f(E).

Minimality of x⇤ 2 Bf in l2 sense requires that, with such an ↵ > 0,⇣
x⇤(e)

⌘2
+
⇣
x⇤(e0)

⌘2
<
⇣
x⇤new(e)

⌘2
+
⇣
x⇤new(e

0)
⌘2

Given that e 2 A�, x⇤(e) < 0. Thus, if x⇤(e0) > 0, we would have
(x⇤(e) + ↵0)2 + (x⇤(e0)� ↵0)2 < (x⇤(e))2 + (x⇤(e0))2, for some
0 < ↵0  ↵, contradicting the optimality of x⇤.
If x⇤(e0) = 0, we would have (x⇤(e) + ↵)2 + (↵0)2 < (x⇤(e))2, for any
0 < ↵0 < |x⇤(e)| by convexity, again contradicting optimality of x⇤.
Thus, we must have x⇤(e0) < 0 (strict negativity).

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 19.6.1 cont.
Then (x⇤ + ↵1e � ↵1e0)(E)
= x⇤(E \ {e, e0}) + (x⇤(e) + ↵)| {z }

x⇤
new(e)

+(x⇤(e0)� ↵)| {z }
x⇤

new(e
0)

= f(E).

Minimality of x⇤ 2 Bf in l2 sense requires that, with such an ↵ > 0,⇣
x⇤(e)

⌘2
+
⇣
x⇤(e0)

⌘2
<
⇣
x⇤new(e)

⌘2
+
⇣
x⇤new(e

0)
⌘2

Given that e 2 A�, x⇤(e) < 0. Thus, if x⇤(e0) > 0, we would have
(x⇤(e) + ↵0)2 + (x⇤(e0)� ↵0)2 < (x⇤(e))2 + (x⇤(e0))2, for some
0 < ↵0  ↵, contradicting the optimality of x⇤.

If x⇤(e0) = 0, we would have (x⇤(e) + ↵)2 + (↵0)2 < (x⇤(e))2, for any
0 < ↵0 < |x⇤(e)| by convexity, again contradicting optimality of x⇤.
Thus, we must have x⇤(e0) < 0 (strict negativity).

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 19.6.1 cont.
Then (x⇤ + ↵1e � ↵1e0)(E)
= x⇤(E \ {e, e0}) + (x⇤(e) + ↵)| {z }

x⇤
new(e)

+(x⇤(e0)� ↵)| {z }
x⇤

new(e
0)

= f(E).

Minimality of x⇤ 2 Bf in l2 sense requires that, with such an ↵ > 0,⇣
x⇤(e)

⌘2
+
⇣
x⇤(e0)

⌘2
<
⇣
x⇤new(e)

⌘2
+
⇣
x⇤new(e

0)
⌘2

Given that e 2 A�, x⇤(e) < 0. Thus, if x⇤(e0) > 0, we would have
(x⇤(e) + ↵0)2 + (x⇤(e0)� ↵0)2 < (x⇤(e))2 + (x⇤(e0))2, for some
0 < ↵0  ↵, contradicting the optimality of x⇤.
If x⇤(e0) = 0, we would have (x⇤(e) + ↵)2 + (↵0)2 < (x⇤(e))2, for any
0 < ↵0 < |x⇤(e)| by convexity, again contradicting optimality of x⇤.

Thus, we must have x⇤(e0) < 0 (strict negativity).

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 19.6.1 cont.
Then (x⇤ + ↵1e � ↵1e0)(E)
= x⇤(E \ {e, e0}) + (x⇤(e) + ↵)| {z }

x⇤
new(e)

+(x⇤(e0)� ↵)| {z }
x⇤

new(e
0)

= f(E).

Minimality of x⇤ 2 Bf in l2 sense requires that, with such an ↵ > 0,⇣
x⇤(e)

⌘2
+
⇣
x⇤(e0)

⌘2
<
⇣
x⇤new(e)

⌘2
+
⇣
x⇤new(e

0)
⌘2

Given that e 2 A�, x⇤(e) < 0. Thus, if x⇤(e0) > 0, we would have
(x⇤(e) + ↵0)2 + (x⇤(e0)� ↵0)2 < (x⇤(e))2 + (x⇤(e0))2, for some
0 < ↵0  ↵, contradicting the optimality of x⇤.
If x⇤(e0) = 0, we would have (x⇤(e) + ↵)2 + (↵0)2 < (x⇤(e))2, for any
0 < ↵0 < |x⇤(e)| by convexity, again contradicting optimality of x⇤.
Thus, we must have x⇤(e0) < 0 (strict negativity).

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 19.6.1 cont.
Thus, for a pair (e, e0) with e0 2 dep(x⇤, e) and e 2 A�, we have
x(e0) < 0 and hence e0 2 A�.

Hence, 8e 2 A�, we have dep(x⇤, e) ✓ A�.
A very similar argument can show that, 8e 2 A0, we have
dep(x⇤, e) ✓ A0.
Also, recall that e 2 dep(x⇤, e).

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 19.6.1 cont.
Thus, for a pair (e, e0) with e0 2 dep(x⇤, e) and e 2 A�, we have
x(e0) < 0 and hence e0 2 A�.
Hence, 8e 2 A�, we have dep(x⇤, e) ✓ A�.

A very similar argument can show that, 8e 2 A0, we have
dep(x⇤, e) ✓ A0.
Also, recall that e 2 dep(x⇤, e).

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 19.6.1 cont.
Thus, for a pair (e, e0) with e0 2 dep(x⇤, e) and e 2 A�, we have
x(e0) < 0 and hence e0 2 A�.
Hence, 8e 2 A�, we have dep(x⇤, e) ✓ A�.
A very similar argument can show that, 8e 2 A0, we have
dep(x⇤, e) ✓ A0.

Also, recall that e 2 dep(x⇤, e).

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 19.6.1 cont.
Thus, for a pair (e, e0) with e0 2 dep(x⇤, e) and e 2 A�, we have
x(e0) < 0 and hence e0 2 A�.
Hence, 8e 2 A�, we have dep(x⇤, e) ✓ A�.
A very similar argument can show that, 8e 2 A0, we have
dep(x⇤, e) ✓ A0.
Also, recall that e 2 dep(x⇤, e).

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 19.6.1 cont.
Therefore, we have [e2A� dep(x⇤, e) = A� and [e2A0 dep(x

⇤, e) = A0

Ie., {dep(x⇤, e)}e2A�
is cover for A�, as is {dep(x⇤, e)}e2A0

for A0.
dep(x⇤, e) is minimal tight set containing e, meaning
x⇤(dep(x⇤, e)) = f(dep(x⇤, e)), and since tight sets are closed under
union, we have that A� and A0 are also tight, meaning:

x⇤(A�) = f(A�) (19.28)
x⇤(A0) = f(A0) (19.29)
x⇤(A�) = x⇤(A0) = y⇤(E) = y⇤(A0) + y⇤(E \ A0)| {z }

=0

(19.30)

and therefore, all together we have
f(A�) = f(A0) = x⇤(A�) = x⇤(A0) = y⇤(E) (19.31)

Hence, f(A�) = f(A0), meaning A� and A0 have the same valuation,
but we have not yet shown they are the minimizers of the submodular
function, nor that they are, resp. the maximal and minimal minimizers.
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Min-Norm Point and SFM

. . . proof of Thm. 19.6.1 cont.
Therefore, we have [e2A� dep(x⇤, e) = A� and [e2A0 dep(x

⇤, e) = A0

Ie., {dep(x⇤, e)}e2A�
is cover for A�, as is {dep(x⇤, e)}e2A0

for A0.

dep(x⇤, e) is minimal tight set containing e, meaning
x⇤(dep(x⇤, e)) = f(dep(x⇤, e)), and since tight sets are closed under
union, we have that A� and A0 are also tight, meaning:

x⇤(A�) = f(A�) (19.28)
x⇤(A0) = f(A0) (19.29)
x⇤(A�) = x⇤(A0) = y⇤(E) = y⇤(A0) + y⇤(E \ A0)| {z }

=0

(19.30)

and therefore, all together we have
f(A�) = f(A0) = x⇤(A�) = x⇤(A0) = y⇤(E) (19.31)

Hence, f(A�) = f(A0), meaning A� and A0 have the same valuation,
but we have not yet shown they are the minimizers of the submodular
function, nor that they are, resp. the maximal and minimal minimizers.
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Min-Norm Point and SFM

. . . proof of Thm. 19.6.1 cont.
Therefore, we have [e2A� dep(x⇤, e) = A� and [e2A0 dep(x

⇤, e) = A0

Ie., {dep(x⇤, e)}e2A�
is cover for A�, as is {dep(x⇤, e)}e2A0

for A0.
dep(x⇤, e) is minimal tight set containing e, meaning
x⇤(dep(x⇤, e)) = f(dep(x⇤, e)), and since tight sets are closed under
union, we have that A� and A0 are also tight, meaning:

x⇤(A�) = f(A�) (19.28)
x⇤(A0) = f(A0) (19.29)
x⇤(A�) = x⇤(A0) = y⇤(E) = y⇤(A0) + y⇤(E \ A0)| {z }

=0

(19.30)

and therefore, all together we have
f(A�) = f(A0) = x⇤(A�) = x⇤(A0) = y⇤(E) (19.31)

Hence, f(A�) = f(A0), meaning A� and A0 have the same valuation,
but we have not yet shown they are the minimizers of the submodular
function, nor that they are, resp. the maximal and minimal minimizers.
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Min-Norm Point and SFM

. . . proof of Thm. 19.6.1 cont.
Therefore, we have [e2A� dep(x⇤, e) = A� and [e2A0 dep(x

⇤, e) = A0

Ie., {dep(x⇤, e)}e2A�
is cover for A�, as is {dep(x⇤, e)}e2A0

for A0.
dep(x⇤, e) is minimal tight set containing e, meaning
x⇤(dep(x⇤, e)) = f(dep(x⇤, e)), and since tight sets are closed under
union, we have that A� and A0 are also tight, meaning:

x⇤(A�) = f(A�) (19.28)

x⇤(A0) = f(A0) (19.29)
x⇤(A�) = x⇤(A0) = y⇤(E) = y⇤(A0) + y⇤(E \ A0)| {z }

=0

(19.30)

and therefore, all together we have
f(A�) = f(A0) = x⇤(A�) = x⇤(A0) = y⇤(E) (19.31)

Hence, f(A�) = f(A0), meaning A� and A0 have the same valuation,
but we have not yet shown they are the minimizers of the submodular
function, nor that they are, resp. the maximal and minimal minimizers.
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. . . proof of Thm. 19.6.1 cont.
Therefore, we have [e2A� dep(x⇤, e) = A� and [e2A0 dep(x

⇤, e) = A0

Ie., {dep(x⇤, e)}e2A�
is cover for A�, as is {dep(x⇤, e)}e2A0

for A0.
dep(x⇤, e) is minimal tight set containing e, meaning
x⇤(dep(x⇤, e)) = f(dep(x⇤, e)), and since tight sets are closed under
union, we have that A� and A0 are also tight, meaning:

x⇤(A�) = f(A�) (19.28)
x⇤(A0) = f(A0) (19.29)

x⇤(A�) = x⇤(A0) = y⇤(E) = y⇤(A0) + y⇤(E \ A0)| {z }
=0

(19.30)

and therefore, all together we have
f(A�) = f(A0) = x⇤(A�) = x⇤(A0) = y⇤(E) (19.31)

Hence, f(A�) = f(A0), meaning A� and A0 have the same valuation,
but we have not yet shown they are the minimizers of the submodular
function, nor that they are, resp. the maximal and minimal minimizers.
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. . . proof of Thm. 19.6.1 cont.
Therefore, we have [e2A� dep(x⇤, e) = A� and [e2A0 dep(x

⇤, e) = A0

Ie., {dep(x⇤, e)}e2A�
is cover for A�, as is {dep(x⇤, e)}e2A0

for A0.
dep(x⇤, e) is minimal tight set containing e, meaning
x⇤(dep(x⇤, e)) = f(dep(x⇤, e)), and since tight sets are closed under
union, we have that A� and A0 are also tight, meaning:

x⇤(A�) = f(A�) (19.28)
x⇤(A0) = f(A0) (19.29)
x⇤(A�) = x⇤(A0) = y⇤(E) = y⇤(A0) + y⇤(E \ A0)| {z }

=0

(19.30)

and therefore, all together we have
f(A�) = f(A0) = x⇤(A�) = x⇤(A0) = y⇤(E) (19.31)

Hence, f(A�) = f(A0), meaning A� and A0 have the same valuation,
but we have not yet shown they are the minimizers of the submodular
function, nor that they are, resp. the maximal and minimal minimizers.
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(19.30)
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Hence, f(A�) = f(A0), meaning A� and A0 have the same valuation,
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function, nor that they are, resp. the maximal and minimal minimizers.
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. . . proof of Thm. 19.6.1 cont.
Now, y⇤ is feasible for the l.h.s. of Eqn. (19.7) (recall, which is
max {y(E)|y 2 Pf , y  0} = min {f(X)|X ✓ V }).

This follows since,
we have y⇤ = x⇤ ^ 0  0, and since x⇤ 2 Bf ⇢ Pf , and y⇤  x⇤ and
Pf is down-closed, we have that y⇤ 2 Pf .
Also, for any y 2 Pf with y  0 and for any X ✓ E, we have
y(E)  y(X)  f(X).
Hence, we have found a feasible for l.h.s. of Eqn. (19.7), y⇤  0,
y⇤ 2 Pf , so y⇤(E)  f(X) for all X.
So y⇤(E)  min {f(X)|X ✓ V }.
Considering Eqn. (19.28), we have found sets A� and A0 with
tightness in Eqn. (19.7), meaning y⇤(E) = f(A�) = f(A0).
Hence, y⇤ is a maximizer of l.h.s. of Eqn. (19.7), and A� and A0 are
minimizers of f .
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. . . proof of Thm. 19.6.1 cont.
We next show that, not only are they minimizers, but A� is the unique
minimal and A0 is the unique maximal minimizer of f

Now, for any X ⇢ A�, we have

f(X) � x⇤(X) > x⇤(A�) = f(A�) (19.32)

And for any X � A0, we have

f(X) � x⇤(X) > x⇤(A0) = f(A0) (19.33)

Hence, A� must be the unique minimal minimizer of f , and A0 is the
unique maximal minimizer of f .
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Min-Norm Point and SFM

So, if we have a procedure to compute the min-norm point
computation, we can solve SFM.

Nice thing about previous proof is that it uses both expressions for dep
for different purposes.
This was discovered by Fujishige (in fact the proof above is an
expanded version of the one found in the book).
As we will see, the algorithm (by F. Wolfe) can find this min-norm
point, essentially an active-set procedure for quadratic programming. It
uses Edmonds’s greedy algorithm to make it efficient.
This is currently the best practical algorithm for general purpose
submodular function minimization.
But its underlying lower-bound strong poly complexity is unknown.
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Min-norm point and other minimizers of f

Recall, that the set of minimizers of f forms a lattice.

Q: If we take any A with A� ⇢ A ⇢ A0, is A also a minimizer?
In fact, with x⇤ the min-norm point, and A� and A0 as defined above,
we have the following theorem:

Theorem 19.6.2
Let A ✓ E be any minimizer of submodular f , and let x⇤ be the
minimum-norm point. Then A can be expressed in the form:

A = A� [
[

a2Am

dep(x⇤, a) (19.34)

for some set Am ✓ A0 \ A�. Conversely, for any set Am ✓ A0 \ A�, then
A , A� [

S
a2Am

dep(x⇤, a) is a minimizer.
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Q: If we take any A with A� ⇢ A ⇢ A0, is A also a minimizer?
In fact, with x⇤ the min-norm point, and A� and A0 as defined above,
we have the following theorem:

Theorem 19.6.2
Let A ✓ E be any minimizer of submodular f , and let x⇤ be the
minimum-norm point. Then A can be expressed in the form:

A = A� [
[

a2Am

dep(x⇤, a) (19.34)

for some set Am ✓ A0 \ A�. Conversely, for any set Am ✓ A0 \ A�, then
A , A� [

S
a2Am

dep(x⇤, a) is a minimizer.
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Min-norm point and other minimizers of f

proof of Thm. 19.6.2.
If A is a minimizer, then A� ✓ A ✓ A0, and f(A) = y⇤(E) is the
minimum valuation of f .

But x⇤ 2 Pf , so x⇤(A)  f(A) and f(A) = x⇤(A�)  x⇤(A).
Also, since A ✓ A0 and x⇤(A0 \ A) = 0, x⇤(A�) = x⇤(A) = x⇤(A0)

Hence, x⇤(A) = x⇤(A�) = f(A) so that A is also a tight set for x⇤.
For any a 2 A, A is a tight set containing a, and dep(x⇤, a) is the
minimal tight containing a.
Hence, for any a 2 A, dep(x⇤, a) ✓ A.
This means that

S
a2A dep(x⇤, a) = A.

Since A� ✓ A ✓ A0, then 9Am ✓ A \ A� such that

A =
[

a2A�

dep(x⇤, a) [
[

a2Am

dep(x⇤, a) = A� [
[

a2Am

dep(x⇤, a)

. . .
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Min-norm point and other minimizers of f

proof of Thm. 19.6.2.
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Min-norm point and other minimizers of f
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Min-norm point and other minimizers of f

proof of Thm. 19.6.2.
Conversely, consider any set Am ✓ A0 \ A�, and define A as

A = A� [
[

a2Am

dep(x⇤, a) =
[

a2A�

dep(x⇤, a) [
[

a2Am

dep(x⇤, a)

(19.35)

Then since A is a union of tight sets, A is also a tight set, and we have
f(A) = x⇤(A).
But x⇤(A \ A�) = 0, so f(A) = x⇤(A) = x⇤(A�) = f(A�) meaning
A is also a minimizer of f .

Therefore, we can generate the entire lattice of minimizers of f starting
from A� and A0 given access to dep(x⇤, e).
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On a unique minimizer f

Note that if f(e|A) > 0, 8A ✓ E and e 2 E \ A, then we have
A� = A0 (there is one unique minimizer).

On the other hand, if A� = A0, it does not imply f(e|A) > 0 for all
A ✓ E \ {e}.
If A� = A0 then certainly f(e|A0) > 0 for e 2 E \ A0 and
�f(e|A0 \ {e}) > 0 for all e 2 A0.
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Duality: convex minimization of L.E. and min-norm alg.

Let f be a submodular function with f̃ it’s Lovász extension. Then the
following two problems are duals (Bach-2013):

minimize
w2RV

f̃(w) +
1

2
kwk22 (19.36) maximize � kxk22

subject to x 2 Bf

(19.37a)
(19.37b)

where Bf = Pf \
�
x 2 RV : x(V ) = f(V )

 
is the base polytope of

submodular function f , and kxk22 =
P

e2V x(e)2 is squared 2-norm.
Equation (19.36) is related to proximal methods to minimize the Lovász
extension (see Parikh&Boyd, “Proximal Algorithms” 2013).
Equation (19.37b) is solved by the minimum-norm point algorithm
(Wolfe-1976, Fujishige-1984, Fujishige-2005, Fujishige-2011) is (as we will
see) essentially an active-set procedure for quadratic programming, and
uses Edmonds’s greedy algorithm to make it efficient.
Unknown strongly poly worst-case running time, although in practice it
usually performs quite well (see below).
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Convex and affine hulls, affinely independent

Given points set P = {p1, p2, . . . , pk} with pi 2 RV , let convP be the
convex hull of P , i.e.,

convP ,
(

kX

i=1

�ipi :
X

i

�i = 1, �i � 0, i 2 [k]

)
. (19.38)

For a set of points Q = {q1, q2, . . . , qk}, with qi 2 RV , we define a↵ Q
to be the affine hull of Q, i.e.:

a↵ Q ,
(

kX

i21
�iqi :

kX

i=1

�i = 1

)

◆ convQ.

(19.39)

A set of points Q is affinely independent if no point in Q belows to the
affine hull of the remaining points.
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Convex vs. Affine hull, geometry

Q = {x1, x2, x3}
a↵(Q)

conv(Q)

span(Q)
x1

x2
x3

8i, xi 2 R3

x1, x2, x3 coplanar
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H(x): Orthogonal x-containing hyperplane

Define H(x) as the hyperplane that is orthogonal to the line from 0 to x,
while also containing x, i.e.

H(x) ,
n
y 2 RV |x|y = kxk22

o
(19.40)

Any set
�
y 2 RV |x|y = c

 
is orthogonal

to the line from 0 to x. This follows
since, for constant z, {y : (y � z)|x = 0} =
{y : y|x = z|x} is hyperplane orthogonal to
x translated by z. Take c = z|x for result,
and z = x, giving c = kxk2, to contain x.

Note, H(x) is translation of subspace of dimension |V |� 1 = n� 1 (i.e.,
H(x)� {x} is a subspace, H(x) is an affine set).
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H(x): Orthogonal x-containing hyperplane

Define H(x) as the hyperplane that is orthogonal to the line from 0 to x,
while also containing x, i.e.

H(x) ,
n
y 2 RV |x|y = kxk22

o
(19.40)

Any set
�
y 2 RV |x|y = c

 
is orthogonal

to the line from 0 to x. This follows
since, for constant z, {y : (y � z)|x = 0} =
{y : y|x = z|x} is hyperplane orthogonal to
x translated by z. Take c = z|x for result,
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Ex: H(x), polytopes, and supporting hyperplanes

H(x)=
n
y 2 RV |x|y = kxk22

o
,

any z 2 H(x) has x|z = x|x.

Consider convP polytope for
points P = {p1, p2, . . .}, and
p̂ 2 argminp2P x|p. TL:
x|p < x|x; TR: x|p > x|x;
middle row: x|p = x|x.
Bottom Row: In Algo, x is
chosen so that if x|p̂ = x|x
then H(x) separates P from
the origin, and x is the min
2-norm point. Notice that
x|p � x|x for all p 2 P .
Middle/bottom row: H(x) is a
supporting hyperplane of
convP (contained, touching).

x
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x
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Notation

The line between x and y: given two points x, y 2 RV , let
[x, y] , {�x+ (1� �y) : � 2 [0, 1]}. Hence, [x, y] = conv {x, y}.

Note, if we wish to minimize the 2-norm of a vector kxk2, we can
equivalently minimize its square kxk22 =

P
i x

2
i , and vice verse.
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Notation

The line between x and y: given two points x, y 2 RV , let
[x, y] , {�x+ (1� �y) : � 2 [0, 1]}. Hence, [x, y] = conv {x, y}.
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Frank-Wolfe vs. Fujishige-Wolfe

An algorithm we will not use for the min-norm is M. Frank & P. Wolfe “An
algorithm for quadratic programming”, 1956, or conditional gradient descent
for constrained convex minimization given convex function f : D ! R.

Input : Convex f : D ! R, x0 2 D
Output: x⇤ 2 D, the minimizer of f .

1 k  0 and start with x0 2 D ;
2 Let sk solve minhs,rf(xk)i s.t. s 2 D ;
3 Let �k 2 [0, 1] minimize f(�sk + (1� �)xk) ;
4 xk+1  �ksk + (1� �k)xk, k  k + 1 ;
5 Goto line 1 if kxk+1 � xkk > ⌧ ;
6 x⇤  xk+1

Above could minimize Lovász extension, primal approach to SFM.
For finding the min-norm point, we will be using the P. Wolfe, “Finding
the Nearest Point in a Polytope”, 1976 which is the same Wolfe but
different algorithm and different year.
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Fujishige-Wolfe Min-Norm Algorithm

Wolfe-1976 (“Finding the Nearest Point in a Polytope”) developed an
algorithm to compute the minimum norm point of a polytope, specified
as a set of vertices (again, not same as Frank-Wolfe’1956).

Given set of points P = {p1, · · · , pm} where pi 2 Rn: find the
minimum norm point in convex hull of P :

min
x2convP

kxk2 (19.41)

Wolfe’s algorithm is guaranteed terminating, and explicitly uses a
representation of x as a convex combination of points in P

Fujishige-1984 “Submodular Systems and Related Topics” realized this
algorithm can find the the min. norm point of Bf thanks to Edmond’s
greedy algorithm.
Seems to still be (among) the fastest general purpose SFM algo.
Algorithm maintains a set of points Q ✓ P , which is always assuredly
affinely independent.
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Fujishige-Wolfe Min-Norm Algorithm
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Fujishige-Wolfe Min-Norm Algorithm
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Fujishige-Wolfe Min-Norm Algorithm

When Q are affinely independent, minimum norm point in the affine hull
of Q can easily be found, as a closed form solution for minx2a↵ Q kxk2 is
available (see below).

Algorithm repeatedly produces min. norm point x⇤ for selected set Q.
If we find wi � 0, i = 1, · · · ,m for the minimum norm point, then x⇤ also
belongs to convQ and also a minimum norm point over convQ.
If Q ✓ P is suitably chosen, x⇤ may even be the minimum norm point
over convP solving the original problem.
One of the most expensive parts of Wolfe’s original 1976 algorithm is
solving linear optimization problem over the polytope, doable by
examining all the extreme points in the polytope.
If number of extreme points is exponential, hard to do in general.
Number of extreme points of submodular base polytope is exponentially
large, but linear optimization over the base polytope Bf doable
O(n log n) time via Edmonds’s greedy algorithm.
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Fujishige-Wolfe Min-Norm Algorithm
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Pseudocode of Fujishige-Wolfe Min-Norm (MN) algorithm

Input : P = {p1, · · · , pm}, pi 2 Rn, i = 1, · · · ,m.
Output: x⇤: the minimum-norm-point in convP .

1 x⇤  � pi⇤ where pi⇤ 2 argminp2P kpk2 /* or choose it arbitrarily */ ;
2 Q � {x⇤};
3 while 1 do /* major loop */
4 if x⇤ = 0 or H(x⇤) separates P from origin then

return : x⇤

5 else

6 Choose x̂ 2 P on the near (closer to 0) side of H(x⇤);
7 Q = Q [ {x̂};

8 while 1 do /* minor loop */
9 x0  � argminx2a↵ Q kxk2;

10 if x0 2 convQ then

11 x⇤  � x0;

12 break;
13 else

14 y  � argminx2convQ\[x⇤,x0] kx� x0k2;
15 Delete from Q points not on the face of convQ where y lies;
16 x⇤  � y;
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

It is advised that for the next set of slides, you have a print out of the
previous MN algorithm available on display/paper somewhere.

Algorithm maintains an invariant, namely that:

x⇤ 2 convQ ✓ convP, (19.42)

must hold at every possible assignment of x⇤ (Lines 1, 11, and 16):

1 True after Line 1 since Q = {x⇤},
2 True after Line 11 since x0 2 convQ,
3 and true after Line 16 since y 2 convQ even after deleting points.

Note also for any x⇤ 2 convQ ✓ convP , we have

min
x2a↵ Q

kxk2  min
x2convQ

kxk2  kx
⇤k2 (19.43)

Note, the input, P , consists of m points. In the case of the base
polytope, P = Bf could be exponential in n = |V |.
There are six places that might be seemingly tricky or expensive: Line
4, Line 6, Line 9, Line 10, Line 14, and Line 15.
We will consider each in turn, but first we do a geometric example.
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Note, the input, P , consists of m points. In the case of the base
polytope, P = Bf could be exponential in n = |V |.
There are six places that might be seemingly tricky or expensive: Line
4, Line 6, Line 9, Line 10, Line 14, and Line 15.
We will consider each in turn, but first we do a geometric example.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

It is advised that for the next set of slides, you have a print out of the
previous MN algorithm available on display/paper somewhere.
Algorithm maintains an invariant, namely that:

x⇤ 2 convQ ✓ convP, (19.42)

must hold at every possible assignment of x⇤ (Lines 1, 11, and 16):
1 True after Line 1 since Q = {x⇤},
2 True after Line 11 since x0 2 convQ,
3 and true after Line 16 since y 2 convQ even after deleting points.

Note also for any x⇤ 2 convQ ✓ convP , we have

min
x2a↵ Q

kxk2  min
x2convQ

kxk2  kx
⇤k2 (19.43)

Note, the input, P , consists of m points. In the case of the base
polytope, P = Bf could be exponential in n = |V |.
There are six places that might be seemingly tricky or expensive: Line
4, Line 6, Line 9, Line 10, Line 14, and Line 15.
We will consider each in turn, but first we do a geometric example.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

It is advised that for the next set of slides, you have a print out of the
previous MN algorithm available on display/paper somewhere.
Algorithm maintains an invariant, namely that:

x⇤ 2 convQ ✓ convP, (19.42)

must hold at every possible assignment of x⇤ (Lines 1, 11, and 16):
1 True after Line 1 since Q = {x⇤},
2 True after Line 11 since x0 2 convQ,
3 and true after Line 16 since y 2 convQ even after deleting points.

Note also for any x⇤ 2 convQ ✓ convP , we have

min
x2a↵ Q

kxk2  min
x2convQ

kxk2  kx
⇤k2 (19.43)

Note, the input, P , consists of m points. In the case of the base
polytope, P = Bf could be exponential in n = |V |.

There are six places that might be seemingly tricky or expensive: Line
4, Line 6, Line 9, Line 10, Line 14, and Line 15.
We will consider each in turn, but first we do a geometric example.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

It is advised that for the next set of slides, you have a print out of the
previous MN algorithm available on display/paper somewhere.
Algorithm maintains an invariant, namely that:

x⇤ 2 convQ ✓ convP, (19.42)

must hold at every possible assignment of x⇤ (Lines 1, 11, and 16):
1 True after Line 1 since Q = {x⇤},
2 True after Line 11 since x0 2 convQ,
3 and true after Line 16 since y 2 convQ even after deleting points.

Note also for any x⇤ 2 convQ ✓ convP , we have

min
x2a↵ Q

kxk2  min
x2convQ

kxk2  kx
⇤k2 (19.43)

Note, the input, P , consists of m points. In the case of the base
polytope, P = Bf could be exponential in n = |V |.
There are six places that might be seemingly tricky or expensive: Line
4, Line 6, Line 9, Line 10, Line 14, and Line 15.

We will consider each in turn, but first we do a geometric example.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

It is advised that for the next set of slides, you have a print out of the
previous MN algorithm available on display/paper somewhere.
Algorithm maintains an invariant, namely that:

x⇤ 2 convQ ✓ convP, (19.42)

must hold at every possible assignment of x⇤ (Lines 1, 11, and 16):
1 True after Line 1 since Q = {x⇤},
2 True after Line 11 since x0 2 convQ,
3 and true after Line 16 since y 2 convQ even after deleting points.

Note also for any x⇤ 2 convQ ✓ convP , we have

min
x2a↵ Q

kxk2  min
x2convQ

kxk2  kx
⇤k2 (19.43)

Note, the input, P , consists of m points. In the case of the base
polytope, P = Bf could be exponential in n = |V |.
There are six places that might be seemingly tricky or expensive: Line
4, Line 6, Line 9, Line 10, Line 14, and Line 15.
We will consider each in turn, but first we do a geometric example.
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Solved by Edmond’s 
greedy procedure.

Solved via linear
equation solver. 

Linear equation solver represents
x_0 as affine coefs, so this just checks >= 0.

Doable since we’re representing points
as convex combinations of points within Q
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

In the following series of images, permanent (non-changing) named
points on the polytope will be indicated by capital letters (i.e., P1, P2,
P3, R, S, T ) while variables in the algorithm that are changing will use
lower case letters (i.e., x⇤, x0, x̂, y).
Also, example is in 2D, so polytope given can’t be a real base Bf for
any f . Example meant to show only the geometry of the algorithm.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

Polytope, and circles concentric at 0.

P1

P2

P3

0

Minimum Norm
Point
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

P1

P2

P3

0

The initial polytope consisting of the convex hull of three points p1, p2, p3,
and the origin 0.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

P1

P2

P3

0

H(p1)
(x⇤)

p1 is the extreme point closest to 0 and so we choose it first, although we
can choose any arbitrary extreme point as the initial point. We set x⇤  p1
in Line 1, and Q {p1} in Line 2. H(x⇤) = H(p1) (green dashed line) is
not a supporting hyperplane of conv(P ) in Line 4, so we move on to the
else condition in Line 5.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

P1

P2

P3

0

H(p1)

(x̂)

(x⇤)

We need to add some extreme point x̂ on the “near” side of H(p1) in Line 6,
we choose x̂ = p2. In Line 7, we set Q Q [ {p2}, so Q = {p1, p2}.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

P1

P2

P3

0

R
H(p1)

(x0)

(x̂)

(x⇤)

x0 = R is the min-norm point in a↵ {p1, p2} computed in Line 9.

Also, with
Q = {p1, p2}, since R 2 convQ, we set x⇤  x0 = R in Line 11, not
violating the invariant x⇤ 2 convQ. Note, after Line 11, we still have
x⇤ 2 convP and kx⇤k2 = kx⇤newk2 <

��x⇤old
��
2

strictly.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

P1

P2

P3

0

R
H(p1)

(x0)

(x̂)

(x⇤)

x0 = R is the min-norm point in a↵ {p1, p2} computed in Line 9. Also, with
Q = {p1, p2}, since R 2 convQ, we set x⇤  x0 = R in Line 11, not
violating the invariant x⇤ 2 convQ. Note, after Line 11, we still have
x⇤ 2 convP and kx⇤k2 = kx⇤newk2 <

��x⇤old
��
2

strictly.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

P1

P2

P3

0

R
H(p1)

(x0)

(x̂)

(x⇤)

H(
)R

R = x0 = x⇤. We consider next H(R) = H(x⇤) in Line 4. H(x⇤) is not a
supporting hyperplane of convP . So we choose p3 on the “near” side of
H(x⇤) in Line 6. Add Q Q [ {p3} in Line 7. Now Q = P = {p1, p2, p3}.

The origin x0 = 0 is the min-norm point in a↵ Q (Line 9), and it is not in
the interior of convQ (condition in Line 10 is false).
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

P1

P2

P3

0

R
H(p1)

(x0)
(x̂)

(x⇤)

H(
)R

R = x0 = x⇤. We consider next H(R) = H(x⇤) in Line 4. H(x⇤) is not a
supporting hyperplane of convP . So we choose p3 on the “near” side of
H(x⇤) in Line 6. Add Q Q [ {p3} in Line 7. Now Q = P = {p1, p2, p3}.
The origin x0 = 0 is the min-norm point in a↵ Q (Line 9), and it is not in
the interior of convQ (condition in Line 10 is false).
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

P1

P2

P3

0

R

S

H(p1)

(x0)
(x̂)

(x⇤)
conv(Q)

\[x⇤, x0]

(y)

Q = P = {p1, p2, p3}. Line 14: S = y = argminx2convQ\[x⇤,x0] kx� x0k2
where x0 is 0 and x⇤ is R here. Thus, y lies on the boundary of convQ.
Note, kyk2 < kx⇤k2 since x⇤ 2 convQ, kx0k2 < kx⇤k2.

Line 15: Delete p1
from Q since not on face where y = S lies. Q = {p2, p3} after Line 15. We
still have y = S 2 convQ for the updated Q. Line 16: x⇤  y, retain
invariant x⇤ 2 convQ, and again have kx⇤k2 = kx⇤newk2 <

��x⇤old
��
2

strictly.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

P1

P2

P3

0

R

S

H(p1)

(x0)
(x̂)

(x⇤)
conv(Q)

\[x⇤, x0]

(y)

Q = P = {p1, p2, p3}. Line 14: S = y = argminx2convQ\[x⇤,x0] kx� x0k2
where x0 is 0 and x⇤ is R here. Thus, y lies on the boundary of convQ.
Note, kyk2 < kx⇤k2 since x⇤ 2 convQ, kx0k2 < kx⇤k2. Line 15: Delete p1
from Q since not on face where y = S lies. Q = {p2, p3} after Line 15. We
still have y = S 2 convQ for the updated Q.

Line 16: x⇤  y, retain
invariant x⇤ 2 convQ, and again have kx⇤k2 = kx⇤newk2 <

��x⇤old
��
2

strictly.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

P1

P2

P3

0

R

S

H(p1)

(x0)
(x̂)

(x⇤)
conv(Q)

\[x⇤, x0]

(y)

Q = P = {p1, p2, p3}. Line 14: S = y = argminx2convQ\[x⇤,x0] kx� x0k2
where x0 is 0 and x⇤ is R here. Thus, y lies on the boundary of convQ.
Note, kyk2 < kx⇤k2 since x⇤ 2 convQ, kx0k2 < kx⇤k2. Line 15: Delete p1
from Q since not on face where y = S lies. Q = {p2, p3} after Line 15. We
still have y = S 2 convQ for the updated Q. Line 16: x⇤  y, retain
invariant x⇤ 2 convQ, and again have kx⇤k2 = kx⇤newk2 <

��x⇤old
��
2

strictly.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

P1

P2

P3

0

R

S

T

H(p1)

H(
)R

H( )T

(x̂)

(x⇤)

(y)
(x0)

Q = {p2, p3}, and so x0 = T computed in Line 9 is the min-norm point in
a↵ Q. We also have x0 2 convQ in Line 10 so we assign x⇤  x0 in Line
11 and break.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

P1

P2

P3

0

T

(x̂)

(x⇤)
H( )T

H(T ) separates P from the origin in Line 4, and therefore is a supporting
hyperplane, and therefore x⇤ is the min-norm point in convP , so we return
with x⇤.
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Condition for Min-Norm Point

Theorem 19.7.1
P = {p1, p2, . . . , pm}, x⇤ 2 convP is the min. norm point in convP iff

pi
|x⇤ � kx⇤k22 8i = 1, · · · ,m. (19.44)

Proof.
Assume x⇤ is the min-norm point, let y 2 convP , and 0  ✓  1.

Then z , x⇤ + ✓(y � x⇤) = (1� ✓)x⇤ + ✓y 2 convP , and
kzk22 = kx

⇤ + ✓(y � x⇤)k22 (19.45)

= kx⇤k22 + 2✓(x⇤|y � x⇤|x⇤) + ✓2 ky � x⇤k22 (19.46)

It is possible for kzk22 < kx⇤k
2
2 for small ✓, unless x⇤|y � x⇤|x⇤ for all

y 2 convP ) Equation (19.44).
Conversely, given Eq (19.44), and given that y =

P
i �ipi 2 convP ,

y|x⇤ =
X

i

�ipi
|x⇤ �

X

i

�ix
⇤|x⇤ = x⇤|x⇤ (19.47)

implying that kzk22 > kx⇤k
2
2 in Equation 19.46 for arbitrary z 2 convP .
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Condition for Min-Norm Point

Theorem 19.7.1
P = {p1, p2, . . . , pm}, x⇤ 2 convP is the min. norm point in convP iff

pi
|x⇤ � kx⇤k22 8i = 1, · · · ,m. (19.44)

Proof.
Assume x⇤ is the min-norm point, let y 2 convP , and 0  ✓  1.
Then z , x⇤ + ✓(y � x⇤) = (1� ✓)x⇤ + ✓y 2 convP , and

kzk22 = kx
⇤ + ✓(y � x⇤)k22 (19.45)

= kx⇤k22 + 2✓(x⇤|y � x⇤|x⇤) + ✓2 ky � x⇤k22 (19.46)

It is possible for kzk22 < kx⇤k
2
2 for small ✓, unless x⇤|y � x⇤|x⇤ for all

y 2 convP ) Equation (19.44).
Conversely, given Eq (19.44), and given that y =

P
i �ipi 2 convP ,

y|x⇤ =
X

i

�ipi
|x⇤ �

X

i

�ix
⇤|x⇤ = x⇤|x⇤ (19.47)

implying that kzk22 > kx⇤k
2
2 in Equation 19.46 for arbitrary z 2 convP .
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Condition for Min-Norm Point

Theorem 19.7.1
P = {p1, p2, . . . , pm}, x⇤ 2 convP is the min. norm point in convP iff

pi
|x⇤ � kx⇤k22 8i = 1, · · · ,m. (19.44)

Proof.
Assume x⇤ is the min-norm point, let y 2 convP , and 0  ✓  1.
Then z , x⇤ + ✓(y � x⇤) = (1� ✓)x⇤ + ✓y 2 convP , and

kzk22 = kx
⇤ + ✓(y � x⇤)k22 (19.45)

= kx⇤k22 + 2✓(x⇤|y � x⇤|x⇤) + ✓2 ky � x⇤k22 (19.46)

It is possible for kzk22 < kx⇤k
2
2 for small ✓, unless x⇤|y � x⇤|x⇤ for all

y 2 convP ) Equation (19.44).

Conversely, given Eq (19.44), and given that y =
P

i �ipi 2 convP ,
y|x⇤ =

X

i

�ipi
|x⇤ �

X

i

�ix
⇤|x⇤ = x⇤|x⇤ (19.47)

implying that kzk22 > kx⇤k
2
2 in Equation 19.46 for arbitrary z 2 convP .
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Condition for Min-Norm Point

Theorem 19.7.1
P = {p1, p2, . . . , pm}, x⇤ 2 convP is the min. norm point in convP iff

pi
|x⇤ � kx⇤k22 8i = 1, · · · ,m. (19.44)

Proof.
Assume x⇤ is the min-norm point, let y 2 convP , and 0  ✓  1.
Then z , x⇤ + ✓(y � x⇤) = (1� ✓)x⇤ + ✓y 2 convP , and

kzk22 = kx
⇤ + ✓(y � x⇤)k22 (19.45)

= kx⇤k22 + 2✓(x⇤|y � x⇤|x⇤) + ✓2 ky � x⇤k22 (19.46)

It is possible for kzk22 < kx⇤k
2
2 for small ✓, unless x⇤|y � x⇤|x⇤ for all

y 2 convP ) Equation (19.44).
Conversely, given Eq (19.44), and given that y =

P
i �ipi 2 convP ,

y|x⇤ =
X

i

�ipi
|x⇤ �

X

i

�ix
⇤|x⇤ = x⇤|x⇤ (19.47)

implying that kzk22 > kx⇤k
2
2 in Equation 19.46 for arbitrary z 2 convP .
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The set Q is always affinely independent

Lemma 19.7.2
The set Q in the MN Algorithm is always affinely independent.

Proof.

Q is of course affinely independent when there is at most one point in it
(e.g., after Line 2).
After the initialization, it changes only by deletion of points, or adding a
single point. Deletion does not change the independence.
Before adding x̂ at Line 7, we know x⇤ is the minimum norm point in
a↵ Q (since we break only at Line 12).
Therefore, x⇤ is normal to a↵ Q, which implies a↵ Q ✓ H(x⇤).
Since x̂ /2 H(x⇤) chosen at Line 6, we have x̂ /2 a↵ Q.
) update Q [ {x̂} at Line 7 is affinely independent as long as Q is.

Thus, by Lemma 19.7.2, we have for any x 2 a↵ Q such that x =
P

iwiqi
with

P
iwi = 1, the weights wi are uniquely determined.
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The set Q is always affinely independent

Lemma 19.7.2
The set Q in the MN Algorithm is always affinely independent.

Proof.

Q is of course affinely independent when there is at most one point in it
(e.g., after Line 2).
After the initialization, it changes only by deletion of points, or adding a
single point. Deletion does not change the independence.
Before adding x̂ at Line 7, we know x⇤ is the minimum norm point in
a↵ Q (since we break only at Line 12).
Therefore, x⇤ is normal to a↵ Q, which implies a↵ Q ✓ H(x⇤).
Since x̂ /2 H(x⇤) chosen at Line 6, we have x̂ /2 a↵ Q.
) update Q [ {x̂} at Line 7 is affinely independent as long as Q is.

Thus, by Lemma 19.7.2, we have for any x 2 a↵ Q such that x =
P

iwiqi
with

P
iwi = 1, the weights wi are uniquely determined.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 19 - June 6th, 2018 F50/65 (pg.166/229)



Fund. Circuit/Dep Min-Norm Point Definitions Review & Support for Min-Norm Proof that min-norm gives optimal Computing Min-Norm Vector for Bf

The set Q is always affinely independent

Lemma 19.7.2
The set Q in the MN Algorithm is always affinely independent.

Proof.
Q is of course affinely independent when there is at most one point in it
(e.g., after Line 2).

After the initialization, it changes only by deletion of points, or adding a
single point. Deletion does not change the independence.
Before adding x̂ at Line 7, we know x⇤ is the minimum norm point in
a↵ Q (since we break only at Line 12).
Therefore, x⇤ is normal to a↵ Q, which implies a↵ Q ✓ H(x⇤).
Since x̂ /2 H(x⇤) chosen at Line 6, we have x̂ /2 a↵ Q.
) update Q [ {x̂} at Line 7 is affinely independent as long as Q is.

Thus, by Lemma 19.7.2, we have for any x 2 a↵ Q such that x =
P

iwiqi
with

P
iwi = 1, the weights wi are uniquely determined.
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The set Q is never too large

Lemma 19.7.3
The set Q in the MN Algorithm has size never more than n+ 1.

Proof.
This is immediate, since Q is always affinely independnet, and in RV , an
affinely independnet set can have at most n+ 1 entries, with |V | = n.
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Minimum Norm in an affine set

Line 9 of the algorithm requires x0  minx2a↵ Q kxk2.

When Q is affinely independent, this is relatively easy.
Let Q represent n⇥ k matrix with points as columns q 2 Q. The following
is solvable with matrix inversion/linear solver, where x = Qw:

minimize kxk22 = w|Q|Qw (19.48)

subject to 1|w = 1 (19.49)

Form Lagrangian w|Q|Qw+ 2�(1|w� 1), and differentiating w.r.t. � and
w, and setting to zero, we get:

1|w = 1 (19.50)
Q|Qw + �1 = 0 (19.51)

k + 1 variables and k unknowns, solvable with linear solver with matrices

0 1|

1 Q|Q

� 
�
w

�
=


1
0

�
(19.52)

Thanks to Q being affine, matrix on l.h.s. is invertable.
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Minimum Norm in an affine set

Note, this also solves Line 10, since feasibility requires
P

iwi = 1, we
need only check w � 0 to ensure x0 =

P
iwiqi 2 convQ.

In fact, a feature of the algorithm (in Wolfe’s 1976 paper) is that we
keep the convex coefficients {wi}i where x⇤ =

P
iwipi of x⇤ and from

this vector. We also keep v such that x0 =
P

i viqi for points qi 2 Q,
from Line 9.
Given w and v, we can also easily solve Lines 14 and 15 (see “Step 3”
on page 133 of Wolfe-1976, which also defines numerical tolerances).
We have yet to see how to efficiently solve Lines 4 and 6, however.
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MN Algorithm finds the MN point in finite time.

Theorem 19.7.4
The MN Algorithm finds the minimum norm point in convP after a finite
number of iterations of the major loop.

Proof.
In minor loop, we always have x⇤ 2 convQ, since whenever Q is
modified, x⇤ is updated as well (Line 16) such that the updated x⇤

remains in new convQ.

Hence, every time x⇤ is updated (in minor loop), its norm never
increases,

i.e., before Line 11, kx0k2  kx⇤k2 since x⇤ 2 a↵ Q and
x0 = minx2a↵ Q kxk2.Similarly, before Line 16, kyk2  kx⇤k2, since
invariant x⇤ 2 convQ but while x0 2 a↵ Q, we have x0 /2 convQ, and
kx0k2 < kx⇤k2.

. . .
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 19.7.4 continued.
Moreover, there can be no more iterations within a minor loop than the
dimension of convQ for the initial Q given to the minor loop initially at
Line 8 (dimension of convQ is |Q|� 1 since Q is affinely independent).

Each iteration of the minor loop removes at least one point from Q in
Line 15.
When Q reduces to a singleton, the minor loop always terminates.
Thus, the minor loop terminates in finite number of iterations, at most
dimension of Q.
In fact, total number of iterations of minor loop in entire algorithm is
at most number of points in P since we never add back in points to Q
that have been removed.

. . .
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Thus, the minor loop terminates in finite number of iterations, at most
dimension of Q.
In fact, total number of iterations of minor loop in entire algorithm is
at most number of points in P since we never add back in points to Q
that have been removed.

. . .
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 19.7.4 continued.
Each time Q is augmented with x̂ at Line 7, followed by updating x⇤

with x0 at Line 11, (i.e., when the minor loop returns with only one
iteration), kx⇤k2 strictly decreases from what it was before.

To see this, consider x⇤ + ✓(x̂� x⇤) where 0  ✓  1. Since both
x̂, x⇤ 2 convQ, we have x⇤ + ✓(x̂� x⇤) 2 convQ.
Therefore, we have kx⇤ + ✓(x̂� x⇤)k2 � kx0k2, which implies

kx⇤ + ✓(x̂� x⇤)k22 = kx
⇤k22 + 2✓

⇣
(x⇤)>x̂� kx⇤k22

⌘
+ ✓2 kx̂� x⇤k22

� kx0k22 (19.53)

and from Line 6, x̂ is on the same side of H(x⇤) as the origin, i.e.
(x⇤)>x̂ < kx⇤k22, so middle term of r.h.s. of equality is negative.

. . .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 19 - June 6th, 2018 F56/65 (pg.195/229)



Fund. Circuit/Dep Min-Norm Point Definitions Review & Support for Min-Norm Proof that min-norm gives optimal Computing Min-Norm Vector for Bf

MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 19.7.4 continued.
Each time Q is augmented with x̂ at Line 7, followed by updating x⇤
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 19.7.4 continued.
Therefore, for sufficiently small ✓, specifically for

✓ <
2
⇣
kx⇤k22 � (x⇤)>x̂

⌘

kx̂� x⇤k22
(19.54)

we have that kx⇤k22 > kx0k
2
2.

For a similar reason, we have kx⇤k2 strictly decreases each time Q is
updated at Line 7 and followed by updating x⇤ with y at Line 16.
Therefore, in each iteration of major loop, kx⇤k2 strictly decreases, and
the MN Algorithm must terminate and it can only do so when the
optimal is found.
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 19.7.4 continued.
Therefore, for sufficiently small ✓, specifically for

✓ <
2
⇣
kx⇤k22 � (x⇤)>x̂

⌘

kx̂� x⇤k22
(19.54)

we have that kx⇤k22 > kx0k
2
2.

For a similar reason, we have kx⇤k2 strictly decreases each time Q is
updated at Line 7 and followed by updating x⇤ with y at Line 16.

Therefore, in each iteration of major loop, kx⇤k2 strictly decreases, and
the MN Algorithm must terminate and it can only do so when the
optimal is found.
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 19.7.4 continued.
Therefore, for sufficiently small ✓, specifically for

✓ <
2
⇣
kx⇤k22 � (x⇤)>x̂

⌘

kx̂� x⇤k22
(19.54)

we have that kx⇤k22 > kx0k
2
2.

For a similar reason, we have kx⇤k2 strictly decreases each time Q is
updated at Line 7 and followed by updating x⇤ with y at Line 16.
Therefore, in each iteration of major loop, kx⇤k2 strictly decreases, and
the MN Algorithm must terminate and it can only do so when the
optimal is found.
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Line: 6: Finding x̂ 2 P on the near side of H(x⇤)

The “near” side means the side that contains the origin.

Ideally, find x̂ such that the reduction of kx⇤k2 is maximized to reduce
number of major iterations.
From Eqn. 19.53, reduction on norm is lower-bounded:

� = kx⇤k22 � kx0k
2
2 � 2✓

⇣
kx⇤k22 � (x⇤)>x̂

⌘
� ✓2 kx̂� x⇤k22 , �

(19.55)

When 0  ✓ <
2(kx⇤k22�(x⇤)>x̂)

kx̂�x⇤k22
, we can get the maximal value of the

lower bound, over ✓, as follows:

max

0✓<
2(kx⇤k22�(x⇤)>x̂)

kx̂�x⇤k22

� =

 
kx⇤k22 � (x⇤)>x̂

kx̂� x⇤k2

!2

(19.56)
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Line: 6: Finding x̂ 2 P on the near side of H(x⇤)

The “near” side means the side that contains the origin.
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⇣
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When 0  ✓ <
2(kx⇤k22�(x⇤)>x̂)
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, we can get the maximal value of the

lower bound, over ✓, as follows:

max
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Line: 6: Finding x̂ 2 P on the near side of H(x⇤)

To maximize lower bound of norm reduction at each major iteration,
want to find an x̂ such that the above lower bound (Equation 19.56) is
maximized.

That is, we want to find

x̂ 2 argmax
x2P

 
kx⇤k22 � (x⇤)>x

kx� x⇤k2

!2

(19.57)

to ensure that a large norm reduction is assured.
This problem, however, is at least as hard as the MN problem itself as
we have a quadratic term in the denominator.
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Line: 6: Finding x̂ 2 P on the near side of H(x⇤)

To maximize lower bound of norm reduction at each major iteration,
want to find an x̂ such that the above lower bound (Equation 19.56) is
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That is, we want to find
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to ensure that a large norm reduction is assured.
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Line: 6: Finding x̂ 2 P on the near side of H(x⇤)

To maximize lower bound of norm reduction at each major iteration,
want to find an x̂ such that the above lower bound (Equation 19.56) is
maximized.
That is, we want to find

x̂ 2 argmax
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kx� x⇤k2

!2

(19.57)

to ensure that a large norm reduction is assured.
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Line: 6: Finding x̂ 2 P on the near side of H(x⇤)

As a surrogate, we maximize numerator in Eqn. 19.57, i.e., find

x̂ 2 argmax
x2P

kx⇤k22 � (x⇤)>x = argmin
x2P

(x⇤)>x, (19.58)

Intuitively, by solving the above, we find x̂ such that it has the largest
“distance” to the hyperplane H(x⇤), and this is exactly the strategy
used in the Wolfe-1976 algorithm.
Also, solution x̂ in Line 6 can be used to determine if hyperplane
H(x⇤) separates convP from the origin (Line 4): if the point in P
having greatest distance to H(x⇤) is not on the side where origin lies,
then H(x⇤) separates convP from the origin.
Mathematically and theoretically, we terminate the algorithm if

(x⇤)>x̂ � kx⇤k22 , (19.59)

where x̂ is the solution of Eq. 19.58.
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Line: 6: Finding x̂ 2 P on the near side of H(x⇤)
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Line: 6: Finding x̂ 2 P on the near side of H(x⇤)

As a surrogate, we maximize numerator in Eqn. 19.57, i.e., find

x̂ 2 argmax
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kx⇤k22 � (x⇤)>x = argmin
x2P

(x⇤)>x, (19.58)

Intuitively, by solving the above, we find x̂ such that it has the largest
“distance” to the hyperplane H(x⇤), and this is exactly the strategy
used in the Wolfe-1976 algorithm.
Also, solution x̂ in Line 6 can be used to determine if hyperplane
H(x⇤) separates convP from the origin (Line 4): if the point in P
having greatest distance to H(x⇤) is not on the side where origin lies,
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where x̂ is the solution of Eq. 19.58.
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Line: 6: Finding x̂ 2 P on the near side of H(x⇤)

In practice,the above optimality test might never hold numerically.
Hence, as suggested by Wolfe, we introduce a tolerance parameter
✏ > 0, and terminates the algorithm if

(x⇤)>x̂ > kx⇤k22 � ✏max
x2Q
kxk22 (19.60)

When convP is a submodular base polytope (i.e., convP = Bf for a
submodular function f), then the problem in Eqn 19.58 can be solved
efficiently by Edmonds’s greedy algorithm (even though there may be
an exponential number of extreme points).
Edmond’s greedy algorithm, therefore, solves both Line 4 and Line 6
simultaneously.
Hence, Edmonds’s discovery is one of the main reasons that the MN
algorithm is applicable to submodular function minimization.
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SFM Summary (modified from S. Iwata’s slides)

General Submodular Function Minimization 

 

Iwata, Fleischer, Fujishige (2000) Schrijver (2000) 

Iwata (2003) 

Fleischer, Iwata (2000) 

Orlin (2007) 

Iwata (2002) 

Fully Combinatorial 

Grötschel, Lovász, Schrijver (1981, 1988)

Ellipsoid Method 

minimum norm point
algorithm

Cunningham (1985) 

Fujishige (1980/1991)

Bixby,Cunningham,Topkis (1984) 

Edmonds (1965/1970) 

Bach (2012/13) 

Iwata, Orlin (2009) 

Wolfe (1976)/von Hohenbalken (1975)
gen. convex methods
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MN Algorithm Complexity

The currently fastest strongly polynomial combinatorial algorithm for
SFM achieves a running time of O(n5T + n6) (Orlin’09) where T is the
time for function evaluation, far from practical for large problem
instances.

Fujishige & Isotani report that MN algorithm is fast in practice, but
they use only a limited set of submodular functions.
Complexity of MN Algorithm is still an unsolved problem.
Obvious facts:

each major iteration requires O(n) function oracle calls
complexity of each major iteration could be at least O(n3) due to the
affine projection step (solving a linear system).
Therefore, the complexity of each major iteration is

O(n3 + n1+p)

where each function oracle call requires O(np) time.

Since the number of major iterations required is unknown, the
complexity of MN is also unknown.
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MN Algorithm Empirical Complexity
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Figure: The number of major iteration for f(S) = �m1(S) + 100 · (w1(N (S)))↵. The red lines are the linear interpolations of the worst case points, and the black
lines are the linear interpolations of the average case points. From Lin&Bilmes 2014 (unpublished)
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MN Algorithm Complexity

A lower bound complexity of the min-norm has not been established.

In 2014, Chakrabarty, Jain, and Kothari in their NIPS 2014 paper
“Provable Submodular Minimization using Wolfe’s Algorithm” showed a
pseudo-polynomial time bound of O(n7g2f ) where n = |V | is the
ground set, and gf is the maximum gain of a particular function f .
This is pseudo-polynomial since it depends on the function values.
There currently is no known polynomial time complexity analysis for
this algorithm.
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