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Logistics
1l

Announcements, Assignments, and Reminders

@ Next homework will be posted tonight.
@ Rest of the quarter. One more longish homework.
@ Take home final exam (like a long homework).

@ As always, if you have any questions about anything, please ask then
via our discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
Can meet at odd hours via zoom (send message on canvas to schedule
time to chat).
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Logistics

Class Road Map - EE563

@ L1(3/26): Motivation, Applications, &

@ L11(4/30): Polymatroids, Polymatroids

Basic Definitions,

@ L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

@ L3(4/2): Info theory exs, more apps,
definitions, graph/combinatorial examples

@ L4(4/4): Graph and Combinatorial
Examples, Matrix Rank, Examples and
Properties, visualizations

@ L5(4/9): More Examples/Properties/
Other Submodular Defs., Independence,

@ L6(4/11): Matroids, Matroid Examples,
Matroid Rank, Partition/Laminar
Matroids

@ L7(4/16): Laminar Matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid Representation, Dual
Matroids

and Greedy

L12(5/2): Polymatroids and Greedy,
Extreme Points, Cardinality Constrained
Maximization

L13(5/7): Constrained Submodular
Maximization

L14(5/9): Submodular Max w. Other
Constraints, Cont. Extensions, Lovasz
Extension

L15(5/14): Cont. Extensions, Lovasz
Extension, Choquet Integration, Properties
L16(5/16): More Lovasz extension,
Choquet, defs/props, examples, multiliear
extension

L17(5/21): Finish L.E., Multilinear
Extension, Submodular Max/polyhedral
approaches, Most Violated inequality, Still
More on Matroids, Closure/Sat

@ L8(4/18): Dual Matroids, Other Matroid @ L18(5/23):
Properties, Combinatorial Geometries, @ L—(5/28): Memorial Day (holiday)
Matroids and Greedy. o L19(5/30):

® L9(4/23): Polyhedra, Matroid Polytopes, g L21(6/4): Final Presentations

Matroids — Polymatroids

@ L10(4/29): Matroids — Polymatroids,
Polymatroids, Polymatroids and Greedy,

maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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One slide review of concave relaxation

e convex closure f(z) = Min,ean(z) Es~plf(S)], where where A™(z)
{p e R?" : ngVpS =1, ps >20VSCV, & ngvpsls = :C}

“Edmonds” extension f(w) = max(wz : z € By)
Lovasz extension fig(w) = > i~ \if(E;), with \; such that
w =31 Ailp,

f(w) = maXger,, We, M, set of m! permutations of [m],
o € I}, a permutation, ¢ vector with ¢f = f(Ey,) — f(Ey,_,),
Es;, = {esy, €055 1€0;}-

o Choquet integral C¢(w) = > (we; — e, ) f(Es)
e o [f({w>a)) >0

@ All the same when f is submodular.

. Jeff Bilmes
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Lovasz extension properties

@ Using the above, have the following (some of which we've seen):

Theorem 17.2.2

Let f,g:2¥ — R be normalized (f(0) = g(0) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and g
then f + § is the Lovasz extension of f + g and \f is the Lovasz extension of
Af for A € R.

Q Ifw e R then f(w) = [ f({w > a})da

@ Forw e RP, and a € R, we have f(w+ alg) = f(w) + af(E).

Q Positive homogeneity: l.e., f(aw) = of (w) for o > 0.

Q@ Forall ACE, f(1,4) = f(A).

@ [ symmetric as in f(A) = f(E\ A),VA, then f(w) = f(—w) (f is even).

@ Given partition E'UE2 U---UE* of E and w = Y1 v;1p, with
Y1 > Y2 > - >k, and with B ?E1UE2U~-UEZ', then
7 k |l -1 g
flw) =32 wf (BB Y = 3075 F(EY) (v — vi) + F(E)
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sion examples

Lovasz extensi
[AAREERRA RN

Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.

o Consider any submodular " and x € By. Then f(A) = f'(A) — z(A)
is submodular, and moreover f(FE) = f'(FE) — z(E) = 0.

@ Hence, from f(w +alg) = f(w) + af(E), we have that
fw+alg) = f(w) when f(E) =

@ Thus, we can look “down” on the contour plot of the Lovasz extension,
{w L fw) = 1}, from a vantage point right on the line
{z : x = alg,a > 0} since moving in direction 1 changes nothing.

@ l.e., consider 2D plane perpendicular to the line {z : dJa,x = alg} at

any point along that line, then Lovasz extension is surface plot with
coordinates on that plane (or alternatively we can view contours).
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Lovész extension examples
IRl

Example: m =3, £ ={1,2,3}

o Example 1 (from Bach-2011): f(A) = 114c(1,2)
= min {|A[, 1} + min {|E'\ A|,1} — 1 is submodular, and
flw) = MmaXrec{1,2,3} Wk — minke{l,Q,S} WE-
W1=Wi
Z0.0,1)/F({3})
W3> W2>W1

W3> Wl >W2

(L0,1/F({ 13D Y 0.1,1/F(2.3))

Wi> W3>W2 ................... Wr> W3>W1

(1LO,0/F({1}) ke P N ~J(0,1,0)/F({2})
- W= Wo>Ws Wp=> W >W:;*W1:W3
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(1,1,0)/F({1,2})

Lovész extension examples
LIRLLLLLntl

Example: m =3, £ ={1,2,3}

@ Example 2 (from
Bach-2011): f(A) =
[Liea—12eal+[12e4 —13e4]

@ This gives a “total variation” (1,0 1)/2 ........................... 0,1,1)
function for the Lovasz Y A e
extension, with e ~4(0,1,0)/2
f(w) = w1 —wa|+|ws —ws]. L Y & ’ ’
: (1,0,0) & AL
@ When used as a prior, prefers P
piecewise-constant signals

(e.g., D; lwi — wiy1]). é(1,1,0)
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sion examples

Lovasz extensi
[NER ERERE RN

Total Variation Example

0 | 3 |

E— — P cnssat 41 B . F

=T 3 = Hi

3 = 1] zpe: WE i IH

| E“I = s '\le; =3t

From “Nonlinear total s =i 65 m
variation based noise 5 =11 I” —— E=4

removal algorithms”
Rudin, Osher, and
Fatemi, 1992. Top left

original, bottom right e I” E;ik:r—

total variation. = Il :va M=
= Il hE
= Il s
=m W=
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sion examples

Lovasz extensi
[NENN AERE RN

Example: Lovasz extension of concave over modular

@ Let m: E — Ry be a modular function and define f(A) = g(m(A))
where g is concave. Then f is submodular.

o Let M; = S0 m(e;)

o f(w) is given as

= w(e;)(g(M;) — g(M;_1)) (17.1)
1=1
e And if m(A) = |A|, we get
flw) => " wle;)(g(i) — gli — 1)) (17.2)
=1
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Lovész extension examples
[NERNN ARNRN

Example: Lovasz extension and cut functions

@ Cut Function: Given a non-negative weighted graph G = (V, E, m)
where m : E— R, is a modular function over the edges, we know
from Lecture 2 that f : 2V — R, with f(X) = m(I'(X)) where
IN'X) ={(u,v)|(u,v) € E,u € X,v € V\ X} is non-monotone
submodular.

e Simple way to write it, with m;; = m((i, )):

fF(X) = Z Mij (17.3)
i€X,jEV\X
@ Exercise: show that Lovasz extension of graph cut may be written as:
flw) =" mjjmax {(w; — w;),0} (17.4)
ijEV
where elements are ordered as usual, wy > wy > -+ > w,,.

@ This is also a form of “total variation”
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A few more Lovasz extension examples

Some additional submodular functions and their Lovasz extensions, where
w(er) > wley) > -+ > wley) > 0. Let Wy £ Zle w(e;).

f(A) f(w)
4] Rl
Y [los
min(|A[, 1) — max(|A| —m + 1,0) |w]|oo — min; w;
min(|A[, k) Wi,
min(|A|, k) — max(|]A| — (n — k) + 1,1) 2Wy, — Wi,
min([AL, [B\ A] 2V sl — W

(thanks to K. Narayanan).
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Lovész extension examp les
(NENNRNE RN

Supervised And Unsupervised Machine Learning

o Given training data D = {(x;, ¥;) };~; with (z;,4;) € R™ x R, perform
the following risk minimization problem:

min — Ze (yi, wTx;) + AQ(w), (17.5)

wER™ M

where £(-) is a loss function (e.g., squared error) and Q(w) is a norm.
@ When data has muItipIe responses (x;,y;) € R” x R¥, learning becomes:

min Z Zﬂyz,(w T2:) + AQ(wh), (17.6)

1’ ,’I.Uk GRn

@ When data has multiple responses only that are observed, (y;) € RF
we get dictionary learning (Krause & Guestrin, Das & Kempe):

k m
min min Z % Zﬁ(yf, (w®) z;) + AQ(w"), (17.7)
i=1

T1,..,Tm wl?.”’wkeRn J_l
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Lovész extension examp les
(NENRRNRN RN

Norms, sparse norms, and computer vision

e Common norms include p-norm Q(w) = ||w|, = (37, w?)"/?

1-norm promotes sparsity (prefer solutions with zero entrles).

e Image denoising, total variation is useful, norm takes form:
N
Qw) = Jw; — wi1] (17.8)
=2
@ Points of difference should be “sparse” (frequently zero).
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Lovasz extension e
[NERERENEN N

——

Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RY, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0

Desirable sparse norm: count the non-zeros, ||w|lo = 17 supp(w).

Using Q(w) = ||w||p is NP-hard, instead we often optimize tightest

convex relaxation, ||w||; which is the convex envelope.

e With ||w||o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.

o Given submodular function f: 2 — R, f(supp(w)) measures the
“complexity’” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.

o f(supp(w)) is hard to optimize, but it's convex envelope f(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovasz-extension f of f (Vondrak 2007, Bach 2010).

@ Submodular functions thus parameterize structured convex sparse
norms via the Lovasz-extension!

e Ex: total variation is Lovasz-ext. of graph cut, but 3 many more!

Prof. Jeff Bilmes EE563/Spring 2018 /Submodularity - Lecture 17 - May 23st, 2018 F15/54 (pg.15/54)

Lovasz extension e
[AEREREREN |

——

Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
Jwl| 7 = f(Jw|). This renders the function symmetric about all orthants
(meaning, [lw| 7= (b © w| 7 for any b € {-1, 1} and © is
element-wise multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) =|A] is the ¢; norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢; norm.

@ With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the ¢5 norm).

@ Hence, not all norms come from the Lovasz extension of some
submodular function.

@ Similarly, not all convex functions are the Lovasz extension of some
submodular function.

@ Bach-2011 has a complete discussion of this.
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Multilinear Extension
[ ERRAN

Concave closure

@ The concave closure is defined as:

flz) = max Y psf(S) (17.9)

where A" (z) =
{p e R*" : ng/ps =1,ps >0VS CV, & ng/psls = 37}

@ This is tight at the hypercube vertices, concave, and the concave
envolope for the dual reasons as the convex closure.

@ Unlike the convex extension, the concave closure is defined by the
Lovasz extension iff f is a supermodular function.

@ When f is submodular, even evaluating f is NP-hard (rough intuition:
submodular maxmization is NP-hard (reduction to set cover), if we
could evaluate f in poly time, we can maximize concave function to
solve submodular maximization in poly time).
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Multilinear Extension
(R ERNN

Multilinear extension

@ Rather than the concave closure, multi-linear extension is used as a
surrogate. For z € [0,1]" = [0, 1]/

fle)=>_ S [z J] (0 —2) = Esalf(5)] (17.10)

SCV i€S  ieV\S

@ Can be viewed as expected value of f(S) where S is a random set
distributed via z, so Pr(v € S) = z,, and is independent of
Pr(u € §) = zy, v # u.

@ This is tight at the hypercube vertices (immediate, since f(14) yields
only one term in the sum non-zero, namely the one where S = A).

e Why called multilinear (multi-linear) extension? It is linear in each of

its arguments (i.e., f(v1,22,...,ax, + Bz, ..., 7,) =
af(z1,x2,..., 2k, ..., xn) + Bf(T1,22,. .., 2, ..., Tp)

@ This is unfortunately not concave. However there are some useful
properties.
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Multilinear Extension
LI

Multilinear extension

Lemma 17.4.1

Let f(z) be the multilinear extension of a set function f : 2 — R. Then:

e If f is monotone non-decreasing, then 887f > 0 for all v € V' within

w =

[0,1]V (i.e., f is also monotone non-decreasing).

o If f is submodular, then f has an antitone supergradient, i.e.,

G <0 for all i, j € V' within [0,1]""

e First part (monotonicity). Choose = € [0,1]" and let S ~ z be random
where z is treated as a distribution (so elements v is chosen with
probability x, independently of any other element).

\

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 17 - May 23st, 2018 F19/54 (pg.19/54)

Multilinear Extension
LLIRLI

Multilinear extension

... proof continued.

@ Since f is multilinear, derivative is a simple difference when only one
argument varies, i.e.,

of ~
83‘2 = f(x1,22, ...y Ty L, Top1,y - o, Tp) (17.11)
—f(ml,xg,...,xvl,O,va,...,xn) (17.12)
= Egalf (S +v)] = Egnaf(S —v)] (17.13)
>0 (17.14)

where the final part follows due to monotonicity of each argument, i.e.,
f(S+i)> f(S—1i)forany Sandie V.

[
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Multilinear Extension
[NERN N

Multilinear extension

... proof continued.

@ Second part of proof (antitone supergradient) also relies on simple
consequence of multilinearity, namely multilinearity of the derivative as
well. In this case

0*f  of
axiaij = 8:2 (ml,...,xi_l,l,xiﬂ,...,xn) (1715)
— %fj(xl,...,xi_1,0,$i+1,...,$n) (17.16)
= Eswolf(S+i+4) — f(S+i—3)] (17.17)
— Esolf(S—i+J) = f(S—i—j)] (17.18)
<0 (17.19)

since by submodularity, we have
fS+i—=g)+f(S—i+j) = f(S+i+j)+f(S—i—yj) (17.20)
[]
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v

Multilinear Extension
L

Multilinear extension: some properties

Corollary 17.4.2

let f be a function and f its multilinear extension on [0,1]" .

e if f is monotone non-decreasing then fis non-decreasing along any
strictly non-negative direction (i.e., f(x) < f(y) whenever x <y, or
f(z) < f(x + €ly) for any v € V and any e > 0.

o If f is submodular, then f is concave along any non-negative direction

(i.e., the function g(a) = f(x + «z) is 1I-D concave in « for any

o If f is submodular than f is convex along any diagonal direction (i.e.,

the function g(«) = f(z + a(1, — 1)) is I-D convex in « for any

U # v,
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Submodular Max and polyhedral approaches
111

Submodular Max and polyhedral approaches

@ We've spent much time discussing SFM and the polymatroidal
polytope, and in general polyhedral approaches for SFM.

@ Most of the approaches for submodular max have not used such an
approach, probably due to the difficulty in computing the “concave
extension” of a submodular function (the convex extension is easy,
namely the Lovasz extension).

@ A paper by Chekuri, Vondrak, and Zenklusen (2011) make some
progress on this front using multilinear extensions.
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Submodular Max and polyhedral approaches
1l

Multilinear extension (review)
Definition 17.5.1

For a set function f : 2V — R, define its multilinear extension
F:[0,1]Y = R by

F@) =S f$[= I -2 (17.21)

SCV €S jeV\S

@ Note that F(z) = Ef(&) where & is a random binary vector over
{0, 1}V with elements independent w. probability x; for ;.
@ While this is defined for any set function, we have:

Lemma 17.5.2

Let F:[0,1]Y — R be multilinear extension of set function f : 2" — R,
then

o If f is monotone non-decreasing, then % >0 forallieV, zel0, 1]V.

o If f is submodular, then agj;;j <0 foralli,jinV, z €10,1]".
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Submodular Max and polyhedral approaches
1l

Submodular Max and polyhedral approaches

@ Basic idea: Given a set of constraints Z, we form a polytope Pz such
that {1[ 1 EI} C Pr

o We find max,ecp, F'(x) where F'(z) is the multi-linear extension of f,
to find a fractional solution x*

@ We then round z* to a point on the hypercube, thus giving us a
solution to the discrete problem.
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Submodular Max and polyhedral approaches
(N ]

Submodular Max and polyhedral approaches

@ In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

@ 1) constant factor approximation algorithm for max { F'(z) : x € P} for
any down-monotone solvable polytope P and F' multilinear extension of
any non-negative submodular function.

@ 2) A randomized rounding (pipage rounding) scheme to obtain an
integer solution

@ 3) An optimal (1 — 1/e) instance of their rounding scheme that can be
used for a variety of interesting independence systems, including O(1)
knapsacks, k£ matroids and O(1) knapsacks, a k-matchoid and ¢ sparse
packing integer programs, and unsplittable flow in paths and trees.

o Also, Vondrak showed that this scheme achieves the (1 — e™°)
curvature based bound for any matroid, which matches the bound we
had earlier for uniform matroids with standard greedy.

@ In general, one needs to do Monte-Carlo methods to estimate the
multilinear extension (so further approximations would apply).
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Most Violated <<
[ RERARE!

Review from lecture 10

The next slide comes from lecture 10.
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Most Violated <<
(N ERERN

A polymatroid function's polyhedron is a polymatroid.

Theorem 17.6.1

Let f be a polymatroid function defined on subsets of E. For any x € RY,
and any PJPL-basis y* € RE of z, the component sum of y* is

y*(E) = rank(z) £ max (y(E) € Pf)
= min (z(A) + f(E\ A) : AC E) (17.10)

As a consequence, P]T is a polymatroid, since r.h.s. is constant w.r.t. y*.

Taking £\ B = supp(x) (so elements B are all zeros in z), and for b ¢ B
we make z(b) is big enough, the r.h.s. min has solution A* = B. We recover
submodular function from the polymatroid polyhedron via the following:

rank GlE\B) — f(E\ B) :max{y(E\B):y € PJT} (17.11)

In fact, we will ultimately see a number of important consequences of this
theorem (other than just that P} is a polymatroid)
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Most Violated <<
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Review from lecture 11

The next slide comes from lecture 11.
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Most Violated <<
[HER RN

Matroid instance of Theorem 77

@ Considering Theorem ?7?, the matroid case is now a special case, where
we have that:

Corollary 17.6.2

We have that:

max{y(E) : y € Ping. set(M),y < 2} = min{ry(4A) +x(E\A): AC E}
(17.21)

where ), is the matroid rank function of some matroid.
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Most Violated <
[NERE RN

Most violated inequality problem in matroid polytope case

o Consider
Pr={z¢ RE 2> 0,2(A) <rp(A),VAC E} (17.22)

o Suppose we have any z € RY such that z ¢ P,

@ Hence, there must be a set of W C 2V, each member of which
corresponds to a violated inequality, i.e., equations of the form
z(A) > rpy(A) for AeW.

@ The most violated inequality when x is considered w.r.t. P corresponds
to the set A that maximizes z(A) — rps(A), i.e., the most violated
inequality is valuated as:

max {x(A) —ry(A): A e W =max{z(4) —ry(4) : AC E}  (17.23)

@ Since z is modular and x(E'\ A) = x(E) — xz(A), we can express this via a
min as in;:

min {ry(A) +z(E\ A): AC E} (17.24)
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Most Violated <
LIrrend

Most violated inequality/polymatroid membership/SFM

e Consider
Pf={zeR"”:2>0,2(4) < f(A),VA C E} (17.25)

@ Suppose we have any z € Rf such that = ¢ Pf+.

@ Hence, there must be a set of W C 2V, each member of which
corresponds to a violated inequality, i.e., equations of the form
z(A) > rpy(A) for AeW.

oX

2 2 P

P —\

— \W

1 1 1

W = {{1}{1,2}} W= {{2},{1,2}} W= {{1,2}}
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Most Violated <
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Most violated inequality/polymatroid membership/SFM

@ The most violated inequality when x is considered w.r.t. P;“
corresponds to the set A that maximizes z(A) — f(A), i.e., the most
violated inequality is valuated as:

max {z(A) — f(A): A e W} =max{z(A) — f(A): AC E} (17.26)

@ Since x is modular and z(F \ A) = x(E) — xz(A), we can express this
via a min as in;:

min{f(A)+z(F\A): AC E} (17.27)

@ More importantly, min {f(A) + z(EF \ A): A C E} is a form of
submodular function minimization, namely
min {f(A) — 2(A) : A C E} for a submodular f and z € RY,
consisting of a difference of polymatroid and modular function (so
f — x is no longer necessarily monotone, nor positive).

@ We will ultimatley answer how general this form of SFM is.
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More on Matroids

Review from Lecture 6

The following three slides are review from lecture 6.
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More on Matroids

Matroids, other definitions using matroid rank r : 2V — Z,

Definition 17.7.3 (closed/flat/subspace)

A subset A C F is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{z}) =r(A) + 1.

Definition: A hyperplane is a flat of rank r(M) — 1.

Definition 17.7.4 (closure)

Given A C E, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A.

Definition 17.7.5 (circuit)

A subset A C E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A| and for any a € A, r(A\ {a}) = |A| - 1).
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More on Matroids

Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not
surprising that circuits can also characterize a matroid.
Theorem 17.7.3 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the
following three properties:

Q (CI)Déc
Q (C2) ifCl,CQ € C and C1 C Oy, then C1 = C5.

© (C3): ifC1,Cy € C with C; # Cy, and e € C1 N Cy, then there exists a
C3 € C such that C3 C (Cl U CQ) \ {6}

v
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More on Matroids

Matroids by circuits

Several circuit definitions for matroids.

Theorem 17.7.3 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that
no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx e CNC’, then (CUC")\ {x} contains a set inC;

Q@ ifC,C"eC,andxeCNC’,andy € C\ ', then (CUC")\ {z}
contains a set in C containing vy,

Again, think about this for a moment in terms of linear spaces and matrices,
and spanning trees.
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More on Matroids

Fundamental circuits in matroids

Let I € Z(M), and e € E, then I U {e} contains at most one circuit in M.

Proof.

@ Suppose, to the contrary, that there are two distinct circuits C1, Cs
such that C; UCy C T U {e}.

@ Then e € Cy N Cy, and by (C2), there is a circuit C3 of M s.t.
C3 C (ClUCQ)\{e} -y

@ This contradicts the independence of I.

In general, let C(I,e) be the unique circuit associated with I U {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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More on Matroids

Matroids: The Fundamental Circuit

@ Define C'(I,e) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

o If e € span([l) \ I, then C(I,e) is well defined (I + e creates one
circuit).

o If e € I, then [ + e = I doesn't create a circuit. In such cases, C'(1,¢)
is not really defined.

@ In such cases, we define C(I,¢e) = {e}, and we will soon see why.

o If e ¢ span([/) (i.e., when I + e is independent), then we set
C(I,e) =0, since no circuit is created in this case.
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More on Matroids

Union of matroid bases of a set

Lemma 17.7.2

Let B(D) be the set of bases of any set D. Then, given matroid
M = (E,I), and any loop-free (i.e., no dependent singleton elements) set
D C E, we have:

|J B=D. (17.28)
BeB(D)

| \

Proof.
o Define D' & Usespy € D, suppose 3d € D such that d ¢ D'
@ Hence, VB € B(D) we have d ¢ B, and B + d must contain a single
circuit for any B, namely C(B,d).
@ Then choose d’ € C(B,d) with d’ # d.

@ Then B + d — d' is independent size-| B| subset of D and hence spans
D, and thus is a d-containing member of B(D), contradicting d ¢ D’'.
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Closure, /Sat
Birrrrrrrrrernd

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A spans
(eq. that depend on A).

@ We wish to generalize closure to polymatroids.
o Consider x € Py for polymatroid function f.

@ Again, recall, tight sets are closed under union and intersection, and
therefore form a distributive lattice.

@ That is, we saw in Lecture 7 that for any A, B € D(z), we have that
AUB € D(x) and AN B € D(x), which can constitute a join and
meet.

@ Recall, for a given x € Py, we have defined this tight family as

D(z) = {A: AC E,z(A) = f(A)} (17.29)
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Closure, /Sat
TR

The sat function = Polymatroid Closure

@ Now given x € PJZF:

D(z) = {A: AC E,z(A) = f(A)} (17.30)
— {A: f(A) — 2(A) = 0} (17.31)

@ Since z € PJT and f is presumed to be polymatroid function, we see
f'(A) = f(A) — z(A) is a non-negative submodular function, and D(x)
are the zero-valued minimizers (if any) of f/'(A).

@ The zero-valued minimizers of f’ are thus closed under union and
intersection.

@ In fact, this is true for all minimizers of a submodular function as stated
in the next theorem.
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Closure, /Sat
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Minimizers of a Submodular Function form a lattice

Theorem 17.8.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminxcp f(X) be the set of minimizers of
f. Let ABe M. Then AUB e M and ANB e M.

Proof.

Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(A) = f(B) < f(AU B).

By submodularity, we have

F(A) + f(B) = f(AU B) + f(AN B) (17.32)

Hence, we must have f(A) = f(B) = f(AUB) = f(AN B). O

v

Thus, the minimizers of a submodular function form a lattice, and there is a
maximal and a minimal minimizer of every submodular function.
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Closure, /Sat
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The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in D(x),
also called the polymatroid closure or sat (saturation function).

e For some = € Py, we have defined:

cl(z) € sat(z) < | J{4: A € D(z)} (17.33)
= J{4: ACE 2(4) = f(A)} (17.34)
={e:e€ E,Ya> 0,z + al. ¢ P} (17.35)

@ Hence, sat(z) is the maximal (zero-valued) minimizer of the

submodular function f,(A) £ f(A) — z(A).

@ Eq. (17.35) says that sat consists of elements of point = that are P
saturated (any additional positive movement, in that dimension, leaves
Py). We'll revisit this in a few slides.

o First, we see how sat generalizes matroid closure.
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Closure, /Sat
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The sat function = Polymatroid Closure

o Consider matroid (F,Z) = (E,r), some [ € Z. Then 17 € P, and

D(1y) ={A:1,(4) =r(4)} (17.36)

and
sat(17) = J{A: AC E,AeD(1;)} (17.37)
= J{4:AC E,1;(4) =r(A)} (17.38)
=|J{4:ACE,|INnA|=r(A)} (17.39)

@ Notice that 1;(A4) = [INA| < |I].

@ Intuitively, consider an A D I € 7 that doesn't increase rank, meaning
r(A)=r(I). If r(A) =|INAl=r(INA), asin Eqgn. (17.39), then A
is in I's span, so should get sat(17) = span([).

@ We formalize this next.
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Closure, /Sat
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The sat function = Polymatroid Closure

Lemma 17.8.2 (Matroid sat : RY — 2 is the same as closure.)

For I € Z, we have sat(1;) = span([) (17.40)
@ For1;(I)=|I|=r(I),so I € D(1;) and I Csat(1y). Also,
I C span([).

o Consider some b € span([/) \ I.

@ Then TU{b} € D(1;) since 1;(I U{b}) = |I| =r(I U{b}) =r(I).
@ Thus, b € sat(1y).

@ Therefore, sat(1l;) D span([) .
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Closure, /Sat
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The sat function = Polymatroid Closure

... proof continued.

® 6 6 6 o o

Now, consider b € sat(17) \ I.

Choose any A € D(1;7) with b € A, thusb e A\ 1.

Then 1;(A)=|ANnI|=7r(A)=r(ANI).

Now r(A) = |[ANI| < |I| =r().

Also, r(ANI)=|ANI|since ANT €T.

Hence, r(ANI)=7r(A)=r((ANI)U(A\ I)) meaning
(A\I) Cspan(ANI) Cspan([).

Since b€ A\ I, we get b € span([).

Thus, sat(1;) C span([) .

Hence 'sat(17) = span(/)
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Closure, /Sat
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The sat function = Polymatroid Closure

Now, consider a matroid (E,7) and some C C E with C' ¢ Z, and
consider 1. Is 1 € P.7 No, it is not a vertex, or even a member, of
P..

span(-) operates on more than just independent sets, so span(C) is
perfectly sensible.

Note span(C') = span(B) where Z 5 B € B((C)) is a base of C.

Then we have 15 < 1¢ < 1g,an(c), and that 15 € P.. We can then
make the definition:

sat(1¢) = sat(1p) for B € B(C) (17.41)

In which case, we also get sat(1¢) = span(C) (in general, could define
sat(y) = sat(P-basis(y))).
However, consider the following form

sat(lo) = J{A: AC E,|ANC| =r(A)} (17.42)

Exercise: is span(C) = sat(1¢)? Prove or disprove it.
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Closure, /Sat
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The sat function, span, and submodular function

minimization

@ Thus, for a matroid, sat(1) is exactly the closure (or span) of I in the
matroid. l.e., for matroid (E,r), we have span(l) = sat(1p).

@ Recall, for € Py and polymatroidal f, sat(x) is the maximal (by
inclusion) minimizer of f(A) — x(A), and thus in a matroid, span(/) is
the maximal minimizer of the submodular function formed by
r(4) — 11(A).

@ Submodular function minimization can solve “span” queries in a
matroid or “sat” queries in a polymatroid.
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Closure, /Sat
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sat, as tight polymatroidal elements

We are given an x € P]T for submodular function f.

Recall that for such an z, sat(x) is defined as

sat(z) = {4 : 2(4) = f(A)} (17.43)

We also have stated that sat(z) can be defined as:

sat(x) = {e Va>0,x+al. ¢ P}F} (17.44)
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Closure, /Sat
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sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.

sat(z) & {e :Va>0,x+al. ¢ PJPL} (17.45)

={e:Va>0,3Ast. (z+al.)(A) > f(A)} (17.46)
={e:Va>0,d4A>5est. (x+al.)(A) > f(A)} (17.47)

@ this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va >0,d4>est. z(A)+a > f(A)} (17.48)

@ given that x € P]ﬁ“, meaning z(A) < f(A) for all A, we must have

sat(x) = {e:Va > 0,dA 3 es.t. z(A) = f(A)} (17.49)
={e:JA>est x(A) = f(A)} (17.50)

@ So now, if A is any set such that z(A) = f(A), then we clearly have
Ve € A, e € sat(z), and therefore that sat(x) O A (17.51)
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Closure, /Sat
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sat, as tight polymatroidal elements

@ ...and therefore, with sat as defined in Eq. (77),
sat(z) 2 | J{A4: z(4) = f(A)} (17.52)

@ On the other hand, for any e € sat(z) defined as in Eq. (17.50), since e
is itself a member of a tight set, there is a set A 5 e such that

z(A) = f(A), giving
sat(z) C | J{4: z(4) = f(A)} (17.53)

@ Therefore, the two definitions of sat are identical.
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Closure, /Sat
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Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
@ For x € Py, and e € E, consider finding

max {a:a € R,z + al, € Py} (17.54)
e This is identical to:
max {a: (x + ale)(A4) < f(A),YA D {e}} (17.55)

since any B C F such that e ¢ B does not change in a 1. adjustment,
meaning (z + al.)(B) = z(B).
@ Again, this is identical to:

max {a: x(A)+ a < f(A),VA D {e}} (17.56)

max {a:a < f(A) —x(A),VA D {e}} (17.57)
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Closure, /Sat
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Saturation Capacity

@ The max is achieved when
a = é(z;e) ¥ min {f(4) — 2(4),YA D {e}} (17.58)

@ ¢(z;e) is known as the saturation capacity associated with z € Py and
e.

@ Thus we have for z € Py,

é(zre) & min {f(A) — 2(A),VA > e} (17.59)

=max{a:a e R z+al, € P} (17.60)

We immediately see that for e € E'\ sat(z), we have that ¢(x;e) > 0.
Also, we have that: e € sat(z) < ¢(x;e) = 0.
Note that any o with 0 < a < ¢(z;e) we have x + al. € Py,

We also see that computing ¢(x; e) is a form of submodular function
minimization.
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