

Logistics

Class Road Map - EE563

- L1(3/26): Motivation, Applications, & Basic Definitions,
- L2(3/28): Machine Learning Apps (diversity, complexity, parameter, learning target, surrogate).
- L3(4/2): Info theory exs, more apps, definitions, graph/combinatorial examples
- L4(4/4): Graph and Combinatorial Examples, Matrix Rank, Examples and Properties, visualizations
- L5(4/9): More Examples/Properties/ Other Submodular Defs., Independence,
- L6(4/11): Matroids, Matroid Examples, Matroid Rank, Partition/Laminar Matroids
- L7(4/16): Laminar Matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid Representation, Dual Matroids
- L8(4/18): Dual Matroids, Other Matroid Properties, Combinatorial Geometries, Matroids and Greedy.
- L9(4/23): Polyhedra, Matroid Polytopes, Matroids \rightarrow Polymatroids
- L10(4/29): Matroids \rightarrow Polymatroids, Polymatroids, Polymatroids and Greedy,

- L11(4/30): Polymatroids, Polymatroids and Greedy
- L12(5/2): Polymatroids and Greedy, Extreme Points, Cardinality Constrained Maximization
- L13(5/7): Constrained Submodular Maximization
- L14(5/9): Submodular Max w. Other Constraints, Cont. Extensions, Lovasz Extension
- L15(5/14): Cont. Extensions, Lovasz Extension, Choquet Integration, Properties
- L16(5/16): More Lovasz extension, Choquet, defs/props, examples, multiliear extension
- L17(5/21): Finish L.E., Multilinear Extension, Submodular Max/polyhedral approaches, Most Violated inequality, Still More on Matroids, Closure/Sat
- L18(5/23):
- L-(5/28): Memorial Day (holiday)
- L19(5/30):
- L21(6/4): Final Presentations maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018. EE563/Spring 2018/Submodularity - Lecture 17 - May 23st, 2018

Logistics

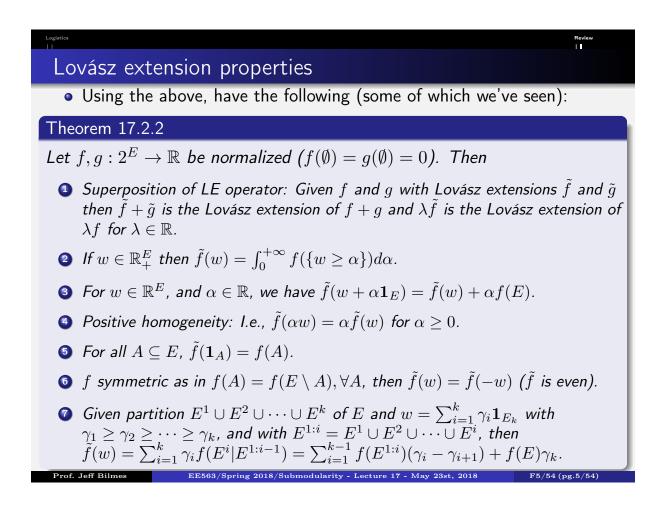
Prof. Jeff Bilmes

One slide review of concave relaxation

- convex closure $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$, where where $\triangle^n(x) = \left\{ p \in \mathbb{R}^{2^n} : \sum_{S \subseteq V} p_S = 1, \ p_S \ge 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_S \mathbf{1}_S = x \right\}$
- "Edmonds" extension $\breve{f}(w) = \max(wx : x \in B_f)$
- Lovász extension $f_{\mathsf{LE}}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$, with λ_i such that $w = \sum_{i=1}^{m} \lambda_i \mathbf{1}_{E_i}$
- $\tilde{f}(w) = \max_{\sigma \in \Pi_{[m]}} w^{\mathsf{T}} c^{\sigma}$, $\Pi_{[m]}$ set of m! permutations of [m], $\sigma \in \Pi_{[m]}$ a permutation, c^{σ} vector with $c_i^{\sigma} = f(E_{\sigma_i}) - f(E_{\sigma_{i-1}})$, $E_{\sigma_i} = \{e_{\sigma_1}, e_{\sigma_2}, \dots, e_{\sigma_i}\}$.
- Choquet integral $C_f(w) = \sum_{i=1}^m (w_{e_i} w_{e_{i+1}}) f(E_i)$

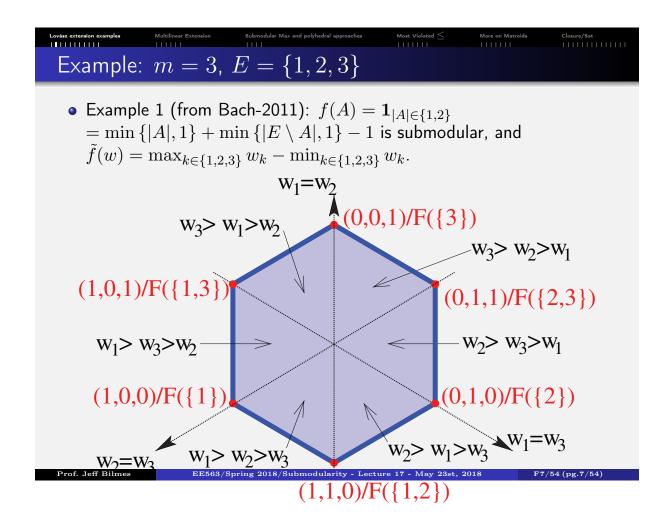
•
$$\tilde{f}(w) = \int_{-\infty}^{+\infty} \hat{f}(\alpha) d\alpha$$
, $\hat{f}(\alpha) = \begin{cases} f(\{w \ge \alpha\}) & \text{if } \alpha \ge 0\\ f(\{w \ge \alpha\}) - f(E) & \text{if } \alpha < 0 \end{cases}$

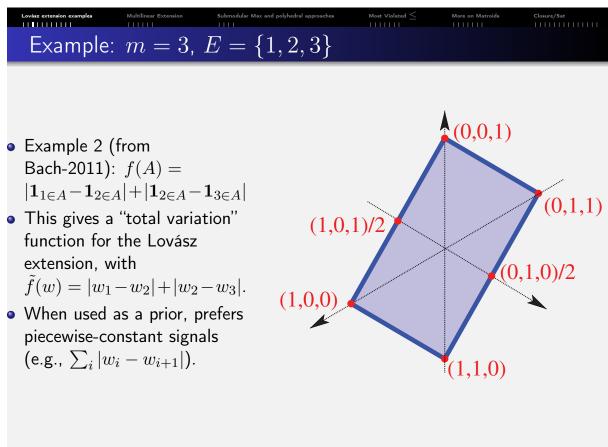
• All the same when f is submodular.

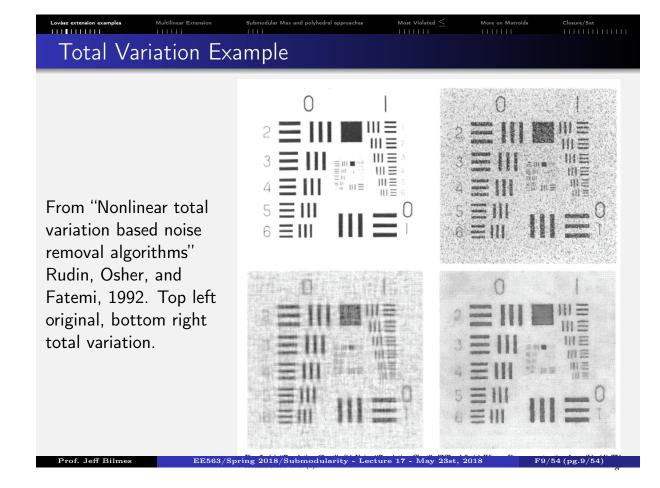


Locates extensionMultilinear ExtensionSubmodular Max and polyhedral approachesMost Violated \leq More on MatroidaClosure/SatExample: $m = 3, E = \{1, 2, 3\}$

- In order to visualize in 3D, we make a few simplifications.
- Consider any submodular f' and $x \in B_{f'}$. Then f(A) = f'(A) x(A) is submodular, and moreover f(E) = f'(E) x(E) = 0.
- Hence, from $\tilde{f}(w + \alpha \mathbf{1}_E) = \tilde{f}(w) + \alpha f(E)$, we have that $\tilde{f}(w + \alpha \mathbf{1}_E) = \tilde{f}(w)$ when f(E) = 0.
- Thus, we can look "down" on the contour plot of the Lovász extension, $\left\{w: \tilde{f}(w) = 1\right\}$, from a vantage point right on the line $\{x: x = \alpha \mathbf{1}_E, \alpha > 0\}$ since moving in direction $\mathbf{1}_E$ changes nothing.
- I.e., consider 2D plane perpendicular to the line $\{x : \exists \alpha, x = \alpha \mathbf{1}_E\}$ at any point along that line, then Lovász extension is surface plot with coordinates on that plane (or alternatively we can view contours).







Lovise extension examples Multilinear Extension Submodular Max and polyhedral approaches Most Violated ≤ More on Matroids Closure/Sat Example: Lovász extension of concave over modular

• Let $m: E \to \mathbb{R}_+$ be a modular function and define f(A) = g(m(A)) where g is concave. Then f is submodular.

• Let
$$M_j = \sum_{i=1}^j m(e_i)$$

• $\tilde{f}(w)$ is given as

$$\tilde{f}(w) = \sum_{i=1}^{m} w(e_i) \left(g(M_i) - g(M_{i-1}) \right)$$
(17.1)

• And if m(A) = |A|, we get

$$\tilde{f}(w) = \sum_{i=1}^{m} w(e_i) \left(g(i) - g(i-1) \right)$$
(17.2)

Example: Lovász extension and cut functions

- Cut Function: Given a non-negative weighted graph G = (V, E, m)where $m : E \to \mathbb{R}_+$ is a modular function over the edges, we know from Lecture 2 that $f : 2^V \to \mathbb{R}_+$ with $f(X) = m(\Gamma(X))$ where $\Gamma(X) = \{(u, v) | (u, v) \in E, u \in X, v \in V \setminus X\}$ is non-monotone submodular.
- Simple way to write it, with $m_{ij} = m((i, j))$:

$$f(X) = \sum_{i \in X, j \in V \setminus X} m_{ij}$$
(17.3)

_____Sat

• Exercise: show that Lovász extension of graph cut may be written as:

$$\tilde{f}(w) = \sum_{i,j \in V} m_{ij} \max\{(w_i - w_j), 0\}$$
(17.4)

where elements are ordered as usual, $w_1 \ge w_2 \ge \cdots \ge w_n$.

g 2018/Submodularity - Le

This is also a form of "total variation"

A few more Lovász extension examples Advine Lovász extension examples A few more Lovász extension examples

Some additional submodular functions and their Lovász extensions, where $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m) \ge 0$. Let $W_k \triangleq \sum_{i=1}^k w(e_i)$.

f(A)	$\widetilde{f}(w)$
	$ w _1$
$\min(A , 1)$	$\ w\ _{\infty}$
$\min(A , 1) - \max(A - m + 1, 0)$	$\ w\ _{\infty} - \min_i w_i$
$\min(A ,k)$	W_k
$\min(A , k) - \max(A - (n - k) + 1, 1)$	$2W_k - W_m$
$\min(A , E \setminus A)$	$2W_{\lfloor m/2 \rfloor} - W_m$

(thanks to K. Narayanan).

Supervised And Unsupervised Machine Learning

• Given training data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^m$ with $(x_i, y_i) \in \mathbb{R}^n \times \mathbb{R}$, perform the following risk minimization problem:

$$\min_{w \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m \ell(y_i, w^{\mathsf{T}} x_i) + \lambda \Omega(w),$$
(17.5)

Closure/Sat

where $\ell(\cdot)$ is a loss function (e.g., squared error) and $\Omega(w)$ is a norm.

• When data has multiple responses $(x_i, y_i) \in \mathbb{R}^n \times \mathbb{R}^k$, learning becomes:

$$\min_{w^1,\dots,w^k \in \mathbb{R}^n} \sum_{j=1}^k \frac{1}{m} \sum_{i=1}^m \ell(y_i^k, (w^k)^\mathsf{T} x_i) + \lambda \Omega(w^k),$$
(17.6)

• When data has multiple responses only that are observed, $(y_i) \in R^k$ we get dictionary learning (Krause & Guestrin, Das & Kempe):

$$\min_{x_1,...,x_m} \min_{w^1,...,w^k \in \mathbb{R}^n} \sum_{j=1}^k \frac{1}{m} \sum_{i=1}^m \ell(y_i^k, (w^k)^\mathsf{T} x_i) + \lambda \Omega(w^k), \quad (17.7)$$

Lovisz extension examples Multilinear Extension Submodular Max and polyhedral approaches More on Matroids Closure/Sat

- Common norms include *p*-norm $\Omega(w) = ||w||_p = (\sum_{i=1}^p w_i^p)^{1/p}$
- 1-norm promotes sparsity (prefer solutions with zero entries).
- Image denoising, total variation is useful, norm takes form:

$$\Omega(w) = \sum_{i=2}^{N} |w_i - w_{i-1}|$$
(17.8)

• Points of difference should be "sparse" (frequently zero).

Prof. Jeff Bilme

14/54 (pg.14/54)

Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For $w \in \mathbb{R}^V$, $\operatorname{supp}(w) \in \{0,1\}^V$ has $\operatorname{supp}(w)(v) = 1$ iff w(v) > 0
- Desirable sparse norm: count the non-zeros, $||w||_0 = \mathbf{1}^{\mathsf{T}} \operatorname{supp}(w)$.
- Using $\Omega(w) = ||w||_0$ is NP-hard, instead we often optimize tightest convex relaxation, $||w||_1$ which is the convex envelope.
- With $||w||_0$ or its relaxation, each non-zero element has equal degree of penalty. Penalties do not interact.
- Given submodular function $f: 2^V \to \mathbb{R}_+$, $f(\operatorname{supp}(w))$ measures the "complexity" of the non-zero pattern of w; can have more non-zero values if they cooperate (via f) with other non-zero values.
- f(supp(w)) is hard to optimize, but it's convex envelope f̃(|w|) (i.e., largest convex under-estimator of f(supp(w))) is obtained via the Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).
- Submodular functions thus parameterize structured convex sparse norms via the Lovász-extension!
- Ex: total variation is Lovász-ext. of graph cut, but ∃ many more!

Lovász extension Submodular Max and polyhedral approaches Most Violated ≤ More on Matroids Closure/Sat Lovász extension and norms Intervention Intervention

- Using Lovász extension to define various norms of the form $\|w\|_{\tilde{f}} = \tilde{f}(|w|)$. This renders the function symmetric about all orthants (meaning, $\|w\|_{\tilde{f}} = \|b \odot w\|_{\tilde{f}}$ for any $b \in \{-1, 1\}^m$ and \odot is element-wise multiplication).
- Simple example. The Lovász extension of the modular function f(A) = |A| is the ℓ_1 norm, and the Lovász extension of the modular function f(A) = m(A) is the weighted ℓ_1 norm.
- With more general submodular functions, one can generate a large and interesting variety of norms, all of which have polyhedral contours (unlike, say, something like the ℓ₂ norm).
- Hence, not all norms come from the Lovász extension of some submodular function.
- Similarly, not all convex functions are the Lovász extension of some submodular function.
- Bach-2011 has a complete discussion of this.

Concave closure

• The concave closure is defined as:

$$\hat{f}(x) = \max_{p \in \triangle^n(x)} \sum_{S \subseteq V} p_S f(S)$$
(17.9)

Closure/Sat

where $\triangle^n(x) = \left\{ p \in \mathbb{R}^{2^n} : \sum_{S \subseteq V} p_S = 1, p_S \ge 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_S \mathbf{1}_S = x \right\}$

- This is tight at the hypercube vertices, concave, and the concave envolope for the dual reasons as the convex closure.
- Unlike the convex extension, the concave closure is defined by the Lovász extension iff *f* is a supermodular function.
- When f is submodular, even evaluating \hat{f} is NP-hard (rough intuition: submodular maxmization is NP-hard (reduction to set cover), if we could evaluate \hat{f} in poly time, we can maximize concave function to solve submodular maximization in poly time).

Lovász extension Multilinear Extension Submodular Max and polyhedral approaches Most Violated ≤ More on Matroids Closure/Sat Multilinear extension Image: Submodular Max and polyhedral approaches Most Violated ≤ More on Matroids Closure/Sat

• Rather than the concave closure, multi-linear extension is used as a surrogate. For $x\in[0,1]^V=[0,1]^{[n]}$

$$\tilde{f}(x) = \sum_{S \subseteq V} f(S) \prod_{i \in S} x_i \prod_{i \in V \setminus S} (1 - x_i) = E_{S \sim x}[f(S)]$$
(17.10)

- Can be viewed as expected value of f(S) where S is a random set distributed via x, so $Pr(v \in S) = x_v$ and is independent of $Pr(u \in S) = x_u$, $v \neq u$.
- This is tight at the hypercube vertices (immediate, since $f(\mathbf{1}_A)$ yields only one term in the sum non-zero, namely the one where S = A).
- Why called multilinear (multi-linear) extension? It is linear in each of its arguments (i.e., f̃(x₁, x₂,..., αx_k + βx'_k,..., x_n) = αf̃(x₁, x₂,..., x_k,..., x_n) + βf̃(x₁, x₂,..., x'_k,..., x_n)
- This is unfortunately not concave. However there are some useful properties.

Multilinear extension

Lemma 17.4.1

Let $\tilde{f}(x)$ be the multilinear extension of a set function $f: 2^V \to \mathbb{R}$. Then:

- If f is monotone non-decreasing, then $\frac{\partial \tilde{f}}{\partial x_v} \ge 0$ for all $v \in V$ within $[0,1]^V$ (i.e., \tilde{f} is also monotone non-decreasing).
- If f is submodular, then \tilde{f} has an antitone supergradient, i.e., $\frac{\partial^2 \tilde{f}}{\partial x_i \partial x_j} \leq 0$ for all $i, j \in V$ within $[0, 1]^V$.

Proof.

• First part (monotonicity). Choose $x \in [0, 1]^V$ and let $S \sim x$ be random where x is treated as a distribution (so elements v is chosen with probability x_v independently of any other element).

... proof continued.

• Since \tilde{f} is multilinear, derivative is a simple difference when only one argument varies, i.e.,

$$\frac{\partial f}{\partial x_v} = \tilde{f}(x_1, x_2, \dots, x_{v_1}, 1, x_{v+1}, \dots, x_n)$$
(17.11)

$$-\tilde{f}(x_1, x_2, \dots, x_{v_1}, 0, x_{v+1}, \dots, x_n)$$
(17.12)

$$= E_{S \sim x}[f(S+v)] - E_{S \sim x}[f(S-v)]$$
(17.13)

 $\geq 0 \tag{17.14}$

where the final part follows due to monotonicity of each argument, i.e., $f(S+i) \ge f(S-i)$ for any S and $i \in V$.

Multilinear extension

... proof continued.

• Second part of proof (antitone supergradient) also relies on simple consequence of multilinearity, namely multilinearity of the derivative as well. In this case

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial f}{\partial x_j}(x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n)$$
(17.15)

$$-\frac{\partial \tilde{f}}{\partial x_j}(x_1,\ldots,x_{i-1},0,x_{i+1},\ldots,x_n)$$
(17.16)

_____Sat

Closure/Sat

$$= E_{S \sim x}[f(S+i+j) - f(S+i-j)]$$
(17.17)

$$-E_{S\sim x}[f(S-i+j) - f(S-i-j)]$$
(17.18)

$$\leq 0 \tag{17.19}$$

since by submodularity, we have

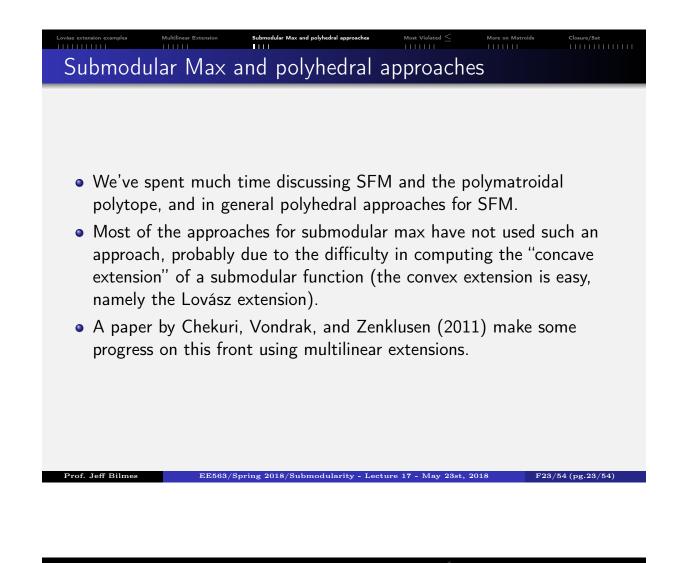
$$f(S+i-j) + f(S-i+j) \ge f(S+i+j) + f(S-i-j)$$
 (17.20)

Multilinear Extension Submodular Max and polyhedral approaches Mont Violated S More on Ma Multilinear extension: some properties

Corollary 17.4.2

let f be a function and \tilde{f} its multilinear extension on $[0,1]^V$.

- if f is monotone non-decreasing then \tilde{f} is non-decreasing along any strictly non-negative direction (i.e., $\tilde{f}(x) \leq \tilde{f}(y)$ whenever $x \leq y$, or $\tilde{f}(x) \leq \tilde{f}(x + \epsilon \mathbf{1}_v)$ for any $v \in V$ and any $\epsilon \geq 0$.
- If f is submodular, then f̃ is concave along any non-negative direction (i.e., the function g(α) = f̃(x + αz) is 1-D concave in α for any z ∈ ℝ₊).
- If f is submodular than f̃ is convex along any diagonal direction (i.e., the function g(α) = f̃(x + α(1_v − 1_u)) is 1-D convex in α for any u ≠ v.



Multilinear extension (review) Definition 17.5.1

For a set function $f:2^V\to\mathbb{R},$ define its multilinear extension $F:[0,1]^V\to\mathbb{R}$ by

$$F(x) = \sum_{S \subseteq V} f(S) \prod_{i \in S} x_i \prod_{j \in V \setminus S} (1 - x_j)$$
(17.21)

More on Ma

- Note that $F(x) = Ef(\hat{x})$ where \hat{x} is a random binary vector over $\{0, 1\}^V$ with elements independent w. probability x_i for \hat{x}_i .
- While this is defined for any set function, we have:

Lemma 17.5.2

Let $F: [0,1]^V \to \mathbb{R}$ be multilinear extension of set function $f: 2^V \to \mathbb{R}$, then

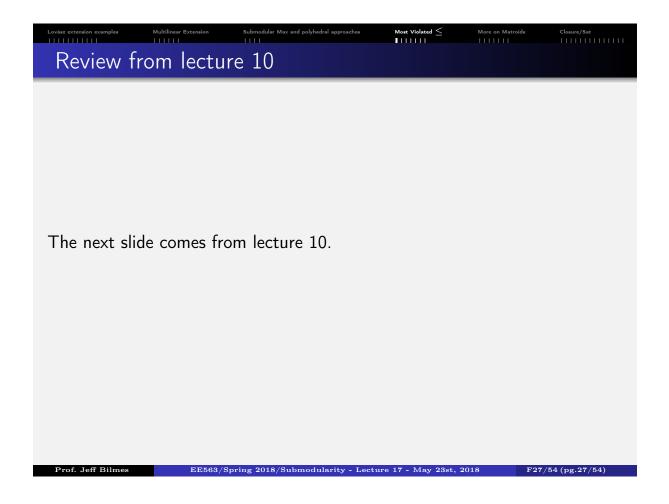
- If f is monotone non-decreasing, then $\frac{\partial F}{\partial x_i} \geq 0$ for all $i \in V$, $x \in [0,1]^V$.
- If f is submodular, then $\frac{\partial^2 F}{\partial x_i \partial x_j} \leq 0$ for all i, j in V, $x \in [0, 1]^V$.

Lovász extension examples Multillnear Extension Submodular Max and polyhedral approaches Most Violated ≤ More on Matroids Closure/Sat Submodular Max and polyhedral approaches Most Violated ≤ More on Matroids Closure/Sat

- Basic idea: Given a set of constraints *I*, we form a polytope P_I such that {1_I : I ∈ *I*} ⊆ P_I
- We find $\max_{x \in P_{\mathcal{I}}} F(x)$ where F(x) is the multi-linear extension of f, to find a fractional solution x^*
- We then round x^* to a point on the hypercube, thus giving us a solution to the discrete problem.

Submodular Max and polyhedral approaches More on Matroida Cloure/Sat

- In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:
- 1) constant factor approximation algorithm for max {F(x) : x ∈ P} for any down-monotone solvable polytope P and F multilinear extension of any non-negative submodular function.
- 2) A randomized rounding (pipage rounding) scheme to obtain an integer solution
- 3) An optimal (1 − 1/e) instance of their rounding scheme that can be used for a variety of interesting independence systems, including O(1) knapsacks, k matroids and O(1) knapsacks, a k-matchoid and l sparse packing integer programs, and unsplittable flow in paths and trees.
- Also, Vondrak showed that this scheme achieves the $\frac{1}{c}(1-e^{-c})$ curvature based bound for any matroid, which matches the bound we had earlier for uniform matroids with standard greedy.
- In general, one needs to do Monte-Carlo methods to estimate the multilinear extension (so further approximations would apply).



A polymatroid function's polyhedron is a polymatroid.

Theorem 17.6.1

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}_+^E$, and any P_f^+ -basis $y^x \in \mathbb{R}_+^E$ of x, the component sum of y^x is

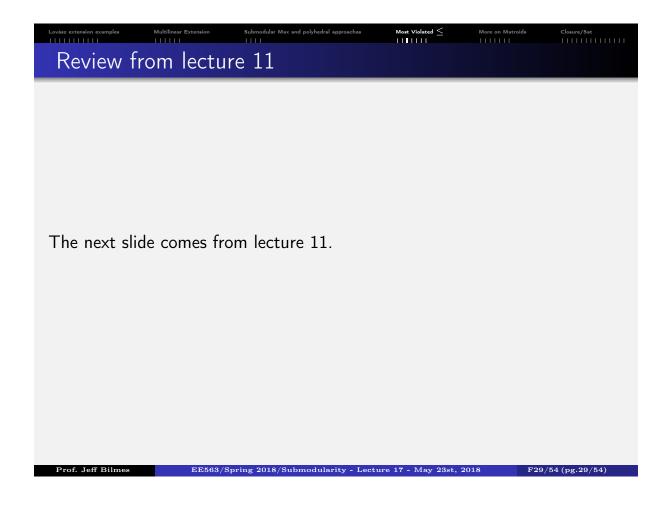
$$y^{x}(E) = \operatorname{rank}(x) \triangleq \max\left(y(E) : y \le x, y \in P_{f}^{+}\right)$$
$$= \min\left(x(A) + f(E \setminus A) : A \subseteq E\right)$$
(17.10)

As a consequence, P_f^+ is a polymatroid, since r.h.s. is constant w.r.t. y^x .

Taking $E \setminus B = \operatorname{supp}(x)$ (so elements B are all zeros in x), and for $b \notin B$ we make x(b) is big enough, the r.h.s. min has solution $A^* = B$. We recover submodular function from the polymatroid polyhedron via the following:

$$\operatorname{\mathsf{rank}}\left(\frac{1}{\epsilon}\mathbf{1}_{E\setminus B}\right) = f(E\setminus B) = \max\left\{y(E\setminus B) : y\in P_f^+\right\}$$
(17.11)

In fact, we will ultimately see a number of important consequences of this theorem (other than just that P_f^+ is a polymatroid)



• Considering Theorem ??, the matroid case is now a special case, where we have that:
Corollary 17.6.2
We have that:

$$\max \{y(E) : y \in P_{ind. set}(M), y \leq x\} = \min \{r_M(A) + x(E \setminus A) : A \subseteq E\}$$
(17.21)
where r_M is the matroid rank function of some matroid.

Most violated inequality problem in matroid polytope case

• Consider

$$P_r^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r_M(A), \forall A \subseteq E \right\}$$
(17.22)

- Suppose we have any $x \in \mathbb{R}^E_+$ such that $x \notin P_r^+$.
- Hence, there must be a set of $\mathcal{W} \subseteq 2^V$, each member of which corresponds to a violated inequality, i.e., equations of the form $x(A) > r_M(A)$ for $A \in \mathcal{W}$.
- The most violated inequality when x is considered w.r.t. P_r^+ corresponds to the set A that maximizes $x(A) r_M(A)$, i.e., the most violated inequality is valuated as:

$$\max \{x(A) - r_M(A) : A \in \mathcal{W}\} = \max \{x(A) - r_M(A) : A \subseteq E\}$$
 (17.23)

• Since x is modular and $x(E \setminus A) = x(E) - x(A)$, we can express this via a min as in;:

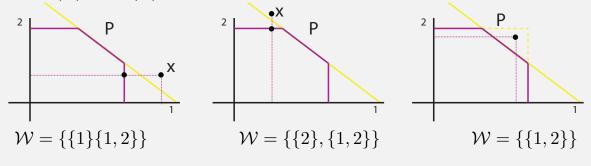
$$\min \{r_M(A) + x(E \setminus A) : A \subseteq E\}$$
(17.24)

<u>Most violated inequality/polymatroid</u> membership/SFM

Consider

$$P_f^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le f(A), \forall A \subseteq E \right\}$$
(17.25)

- Suppose we have any $x \in \mathbb{R}^E_+$ such that $x \notin P_f^+$.
- Hence, there must be a set of W ⊆ 2^V, each member of which corresponds to a violated inequality, i.e., equations of the form x(A) > r_M(A) for A ∈ W.



Most violated inequality/polymatroid membership/SFM

• The most violated inequality when x is considered w.r.t. P_f^+ corresponds to the set A that maximizes x(A) - f(A), i.e., the most violated inequality is valuated as:

 $\max \{x(A) - f(A) : A \in \mathcal{W}\} = \max \{x(A) - f(A) : A \subseteq E\}$ (17.26)

• Since x is modular and $x(E \setminus A) = x(E) - x(A)$, we can express this via a min as in;:

$$\min \left\{ f(A) + x(E \setminus A) : A \subseteq E \right\}$$
(17.27)

Most Violated S

- More importantly, min {f(A) + x(E \ A) : A ⊆ E} is a form of submodular function minimization, namely min {f(A) x(A) : A ⊆ E} for a submodular f and x ∈ ℝ^E₊, consisting of a difference of polymatroid and modular function (so f x is no longer necessarily monotone, nor positive).
- We will ultimatley answer how general this form of SFM is.

Review fr	Multilinear Extension	Submodular Max and polyhedral approaches	Most Violated ≤	More on Matroids ∎	Closure/Sat
The followin	g three slide	es are review from I	ecture 6.		
Prof. Jeff Bilmes		Spring 2018/Submodularity - Leo			/54 (pg 34/54)

Matroids, other definitions using matroid rank $r: 2^V \to \mathbb{Z}_+$

Definition 17.7.3 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition: A hyperplane is a flat of rank r(M) - 1.

Definition 17.7.4 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$

Therefore, a closed set A has span(A) = A.

Definition 17.7.5 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an <u>inclusionwise-minimal</u> <u>dependent set</u> (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).

A set is independent if and only if it contains no circuit. Therefore, it is not surprising that circuits can also characterize a matroid.

Theorem 17.7.3 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the following three properties:

- (C1): $\emptyset \notin C$
- **2** (C2): if $C_1, C_2 \in C$ and $C_1 \subseteq C_2$, then $C_1 = C_2$.
- **3** (C3): if $C_1, C_2 \in C$ with $C_1 \neq C_2$, and $e \in C_1 \cap C_2$, then there exists a $C_3 \in C$ such that $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\}$.

Let E be a set and C be a collection of nonempty subsets of E, such that no two sets in C are contained in each other. Then the following are equivalent.

- C is the collection of circuits of a matroid;
- 2) if $C, C' \in C$, and $x \in C \cap C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C;
- 3 if $C, C' \in C$, and $x \in C \cap C'$, and $y \in C \setminus C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and matrices, and spanning trees.

2018/Submodularity - Lecture 17

Lovász extension examples	Multilinear Extension	Submodular Max and polyhedral approaches	Most Violated \leq	More on Matroids	Closure/Sat
				1111	
Fundame	ental circu	iits in matroids			

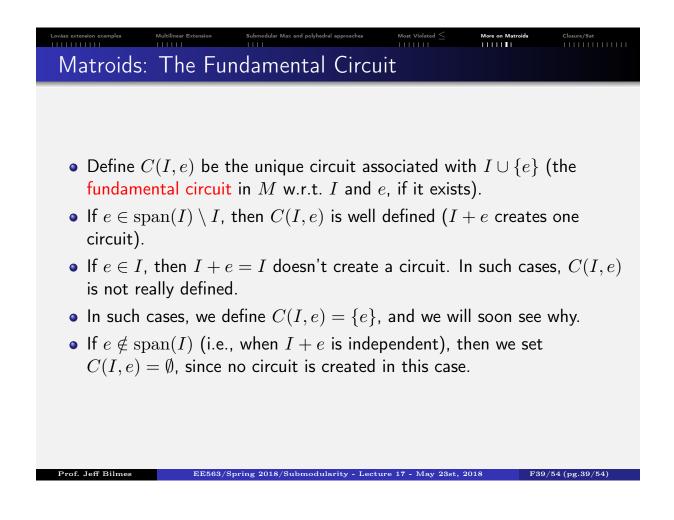
Lemma 17.7.1

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup \{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C₁, C₂ such that C₁ ∪ C₂ ⊆ I ∪ {e}.
- Then $e \in C_1 \cap C_2$, and by (C2), there is a circuit C_3 of M s.t. $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\} \subseteq I$
- This contradicts the independence of *I*.

In general, let C(I, e) be the unique circuit associated with $I \cup \{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).



Lovász extension examples Multilinear Extension Submodular Max and polyhedral approaches Most Violated S More on Matroids Closure/Sat					
Union of matroid bases of a set					
Lemma 17.7.2					
Let $\mathcal{B}(D)$ be the set of bases of any set D . Then, given matroid $\mathcal{M} = (E, \mathcal{I})$, and any loop-free (i.e., no dependent singleton elements) set $D \subseteq E$, we have:					
$\bigcup_{B \in \mathcal{B}(D)} B = D.$ (17.28)					
Proof.					
• Define $D' \triangleq \bigcup_{B \in \mathcal{B}(D)} \subseteq D$, suppose $\exists d \in D$ such that $d \notin D'$.					
• Hence, $\forall B \in \mathcal{B}(D)$ we have $d \notin B$, and $B + d$ must contain a single circuit for any B , namely $C(B, d)$.					
• Then choose $d' \in C(B, d)$ with $d' \neq d$.					
• Then $B + d - d'$ is independent size- $ B $ subset of D and hence spans					

 Then B + d − d' is independent size-|B| subset of D and hence spans D, and thus is a d-containing member of B(D), contradicting d ∉ D'.

The sat function = Polymatroid Closure

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_f$ for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.
- That is, we saw in Lecture 7 that for any $A, B \in \mathcal{D}(x)$, we have that $A \cup B \in \mathcal{D}(x)$ and $A \cap B \in \mathcal{D}(x)$, which can constitute a join and meet.
- Recall, for a given $x \in P_f$, we have defined this tight family as

$$\mathcal{D}(x) = \{A : A \subseteq E, x(A) = f(A)\}$$
(17.29)

Closure/Sat

• Now given $x \in P_f^+$:

$$\mathcal{D}(x) = \{A : A \subseteq E, x(A) = f(A)\}$$
(17.30)

$$= \{A : f(A) - x(A) = 0\}$$
(17.31)

- Since $x \in P_f^+$ and f is presumed to be polymatroid function, we see f'(A) = f(A) x(A) is a non-negative submodular function, and $\mathcal{D}(x)$ are the zero-valued minimizers (if any) of f'(A).
- The zero-valued minimizers of f' are thus closed under union and intersection.
- In fact, this is true for all minimizers of a submodular function as stated in the next theorem.

Lovász extension example

Submodular Max and polyhedral appr

polyhedral approaches Most V

Closure/Sat

Minimizers of a Submodular Function form a lattice

Theorem 17.8.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A) = f(B) \le f(A \cap B)$ and $f(A) = f(B) \le f(A \cup B)$.

By submodularity, we have

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$
 (17.32)

Hence, we must have $f(A) = f(B) = f(A \cup B) = f(A \cap B)$.

Thus, the minimizers of a submodular function form a lattice, and there is a maximal and a minimal minimizer of every submodular function.

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_f$, we have defined:

$$\mathsf{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \left\{ A : A \in \mathcal{D}(x) \right\}$$
(17.33)

$$= \bigcup \{A : A \subseteq E, x(A) = f(A)\}$$
(17.34)

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
(17.35)

- Hence, sat(x) is the maximal (zero-valued) minimizer of the submodular function f_x(A) ≜ f(A) x(A).
- Eq. (17.35) says that sat consists of elements of point x that are P_f saturated (any additional positive movement, in that dimension, leaves P_f). We'll revisit this in a few slides.
- First, we see how sat generalizes matroid closure.

The sat function = Polymatroid Closure

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_{I}) = \{A : \mathbf{1}_{I}(A) = r(A)\}$$
(17.36)

More on Mat

Closure/Sat

and

$$\operatorname{sat}(\mathbf{1}_{I}) = \bigcup \left\{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_{I}) \right\}$$
(17.37)

$$= \bigcup \left\{ A : A \subseteq E, \mathbf{1}_I(A) = r(A) \right\}$$
(17.38)

$$= \bigcup \{A : A \subseteq E, |I \cap A| = r(A)\}$$
(17.39)

• Notice that
$$\mathbf{1}_I(A) = |I \cap A| \le |I|$$
.

- Intuitively, consider an $A \supset I \in \mathcal{I}$ that doesn't increase rank, meaning r(A) = r(I). If $r(A) = |I \cap A| = r(I \cap A)$, as in Eqn. (17.39), then A is in I's span, so should get $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$.
- We formalize this next.

Lowisz extension Submodular Max and polyhedral approaches Most Violated ≤ More on Matroids Clower/Sat The sat function = Polymatroid Closure

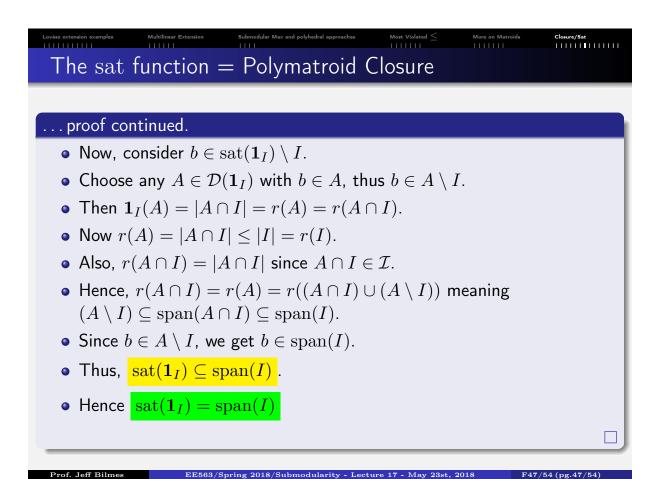
Lemma 17.8.2 (Matroid
$$\operatorname{sat}: \mathbb{R}^E_+ \to 2^E$$
 is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (17.40)

Proof.

- For $\mathbf{1}_I(I) = |I| = r(I)$, so $I \in \mathcal{D}(\mathbf{1}_I)$ and $I \subseteq \operatorname{sat}(\mathbf{1}_I)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \setminus I$.
- Then $I \cup \{b\} \in \mathcal{D}(\mathbf{1}_I)$ since $\mathbf{1}_I(I \cup \{b\}) = |I| = r(I \cup \{b\}) = r(I)$.
- Thus, $b \in \operatorname{sat}(\mathbf{1}_I)$.
- Therefore, $\operatorname{sat}(\mathbf{1}_I) \supseteq \operatorname{span}(I)$.

• •



$\frac{1}{1} \frac{1}{1} \frac{1}$

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it is not a vertex, or even a member, of P_r .
- span(·) operates on more than just independent sets, so span(C) is perfectly sensible.
- Note $\operatorname{span}(C) = \operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_B \leq \mathbf{1}_C \leq \mathbf{1}_{\operatorname{span}(C)}$, and that $\mathbf{1}_B \in P_r$. We can then make the definition:

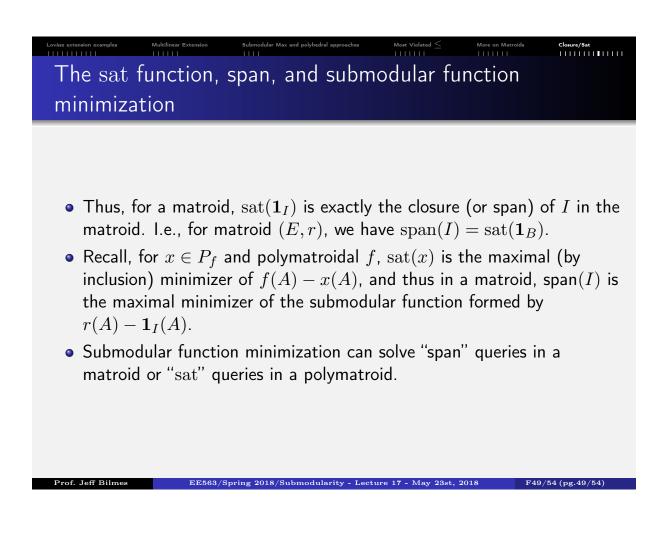
$$\operatorname{sat}(\mathbf{1}_C) \triangleq \operatorname{sat}(\mathbf{1}_B) \text{ for } B \in \mathcal{B}(C)$$
 (17.41)

In which case, we also get $sat(\mathbf{1}_C) = span(C)$ (in general, could define $sat(y) = sat(\mathsf{P}\text{-}\mathsf{basis}(y))$).

• However, consider the following form

$$\operatorname{sat}(\mathbf{1}_C) = \bigcup \left\{ A : A \subseteq E, |A \cap C| = r(A) \right\}$$
(17.42)

Exercise: is $\operatorname{span}(C) = \operatorname{sat}(\mathbf{1}_C)$? Prove or disprove it.



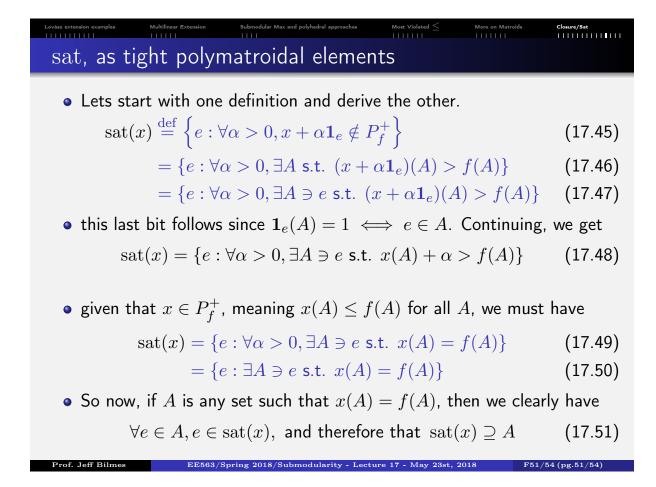
- We are given an $x \in P_f^+$ for submodular function f.
- Recall that for such an x, sat(x) is defined as

$$sat(x) = \bigcup \{A : x(A) = f(A)\}$$
 (17.43)

• We also have stated that sat(x) can be defined as:

$$\operatorname{sat}(x) = \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
(17.44)

• We next show more formally that these are the same.



		Submodular Max and polyhedral approaches	Most Violated \leq	More on Matroids	Closure/Sat
sat, as tig	ght polyn	natroidal elemer	nts		

• ... and therefore, with sat as defined in Eq. (??),

$$\operatorname{sat}(x) \supseteq \bigcup \left\{ A : x(A) = f(A) \right\}$$
(17.52)

On the other hand, for any e ∈ sat(x) defined as in Eq. (17.50), since e is itself a member of a tight set, there is a set A ∋ e such that x(A) = f(A), giving

$$\operatorname{sat}(x) \subseteq \bigcup \left\{ A : x(A) = f(A) \right\}$$
(17.53)

• Therefore, the two definitions of sat are identical.

Closure/Sat Saturation Capacity • Another useful concept is saturation capacity which we develop next. • For $x \in P_f$, and $e \in E$, consider finding $\max\left\{\alpha: \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f\right\}$ (17.54)This is identical to: $\max \{ \alpha : (x + \alpha \mathbf{1}_e)(A) \le f(A), \forall A \supseteq \{e\} \}$ (17.55)since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_e$ adjustment, meaning $(x + \alpha \mathbf{1}_e)(B) = x(B)$. • Again, this is identical to:

$$\max\left\{\alpha: x(A) + \alpha \le f(A), \forall A \supseteq \{e\}\right\}$$
(17.56)

or

vasz extension examples

$$\max\left\{\alpha:\alpha\leq f(A)-x(A),\forall A\supseteq\left\{e\right\}\right\}$$
(17.57)

		Submodular Max and polyhedral approaches 	Most Violated \leq	More on Matroids	Closure/Sat
Saturatio	on Capaci [.]	ty			

The max is achieved when

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
(17.58)

- $\hat{c}(x;e)$ is known as the saturation capacity associated with $x\in P_f$ and P
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min\left\{f(A) - x(A), \forall A \ni e\right\}$$
(17.59)

$$= \max \left\{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \right\}$$
(17.60)

- We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x; e) > 0$.
- Also, we have that: $e \in \operatorname{sat}(x) \Leftrightarrow \hat{c}(x; e) = 0$.
- Note that any α with $0 \leq \alpha \leq \hat{c}(x; e)$ we have $x + \alpha \mathbf{1}_e \in P_f$.
- We also see that computing $\hat{c}(x; e)$ is a form of submodular function minimization.