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Announcements, Assignments, and Reminders

Next homework will be posted tonight.

Rest of the quarter. One more longish homework.

Take home final exam (like a long homework).

As always, if you have any questions about anything, please ask then
via our discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
Can meet at odd hours via zoom (send message on canvas to schedule
time to chat).
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Logistics

Class Road Map - EE563

@ L1(3/26): Motivation, Applications, &
Basic Definitions,

@ L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

@ L3(4/2): Info theory exs, more apps,
definitions, graph/combinatorial examples

@ L4(4/4): Graph and Combinatorial
Examples, Matrix Rank, Examples and
Properties, visualizations

@ L5(4/9): More Examples/Properties/
Other Submodular Defs., Independence,

@ L6(4/11): Matroids, Matroid Examples,
Matroid Rank, Partition/Laminar
Matroids

@ L7(4/16): Laminar Matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid Representation, Dual
Matroids

@ 18(4/18): Dual Matroids, Other Matroid
Properties, Combinatorial Geometries,
Matroids and Greedy.

@ L9(4/23): Polyhedra, Matroid Polytopes,
Matroids — Polymatroids

@ L10(4/29): Matroids — Polymatroids,
Polymatroids, Polymatroids and Greedy,

@ L11(4/30): Polymatroids, Polymatroids
and Greedy

@ L12(5/2): Polymatroids and Greedy,

Extreme Points, Cardinality Constrained

Maximization

L13(5/7): Constrained Submodular

Maximization

L14(5/9): Submodular Max w. Other

Constraints, Cont. Extensions, Lovasz

Extension

L15(5/14): Cont. Extensions, Lovasz

Extension, Choquet Integration, Properties

L16(5/16): More Lovasz extension,

Choquet, defs/props, examples, multiliear

extension

L17(5/21): Finish L.E., Multilinear

Extension, Submodular Max/polyhedral

approaches, Most Violated inequality, Still

More on Matroids, Closure/Sat

L18(5/23):

L—-(5/28): Memorial Day (holiday)

L19(5/30):

L21(6/4): Final Presentations

maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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One slide review of concave relaxation

o convex closure f(x) = Min,e An () Es~p[f(S)], where where A" () =
{PERY : Tocyps=1, s 209 CV, & Tgcy psls =}

o “Edmonds" extension f(w) = max(wz : x € By)

o Lovasz extension fig(w) = > ", X\if(E;), with \; such that

o f(w)= maxgeri,, wTe?, Uy, set of m! permutations of [m)],
o € I}, a permutation, ¢” vector with ¢f = f(E,,) — f(Es,_,),

E,. ={es,,€00s---€0,}
o Choquet integral Cr(w) = Y7 (we, — we, ;) f(E;)
) o 7w > o) fa>0
= e ()= {f({wZa})—f(E) fa<o

o All the same when f is submodular.
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Lovasz extension properties

@ Using the above, have the following (some of which we've seen):

Theorem 17.2.2

Let f,g:2% — R be normalized (f(0) = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovasz extensions f and §
then f + § is the Lovasz extension of f 4+ g and \f is the Lovasz extension of
Af for A € R.

Q /fw € RE then f(w) = +°° f{w > a})da

© ForweRE, and o € R, we ha
@ Positive homogeneity: |.e., f(aw) = af(w) tora > 0.
Q ForallACE, f(14) = f(A).

@ f symmetric as in f(A) = f(E\ A),VA, then f(w) =

@ Given partition E* UE?>U---UE* of E and w
’Y}Z’}/QZkZ’yk,andWIthEll?.lEqU.EQU c ’
flw) =3 wf(BEY ) = 30700 fF(BY) (% — Yivr) + F(E)w

—w) (f is even).
ith
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ples

Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.
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Lovész extension examples
[ ARRRRRNARN]

Example: m =3, £ ={1,2,3}
——

@ In order to visualize in 3D, we make a few simplifications.
[, Then f(4) = f(4) — o(A)

@ Consider any submodular f’ and = €

is submodular
\ (4
XA 7/0) X = 0)\36
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Lovész extension examples
[ ARRRRRNARN]

Example: m =3, £ ={1,2,3}

x(g)=+(F)
@ In order to visualize in 3D, we make a few simplifications.

o Consider any submodular f' and z € By/. Then f(A) = f'(A) — z(A)
is submodular, and moreover f(E) = f/(E) — z(E) = 0.

EE563/Spring 2018/Submodularity - Lecture 17 - May 23st, 2018 F6/54 (pg.8/192)



Lovész extension examples
[ ARNRRRNARN]

Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.

o Consider any submodular f' and « € By. Then f(A) = f'(A) — z(A)
is submodular, and moreover f(E) = f/(E) — z(E) = 0.

e Hence, from f(w + alg) = f(w) + af(E), we have that

f(w+ alg) = f(w) when' f(E) = 0.
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Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.

o Consider any submodular f' and « € By. Then f(A) = f'(A) — z(A)
is submodular, and moreover f(E) = f/(E) — z(E) = 0.

@ Hence, from f(zg—i— alp) = f(w) + af (E), we have that

f(w+alg) = f(w) when f(E) = 0.
@ Thus, we can look “"down” on the contour plot of the Lovasz extension,
{w : f(w) = 1}, from a vantage point right on the line

{z:x =alg,a > 0} since moving in direction 1 changes nothing.
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Example: m =3, £ ={1,2,3}

@ In order to visualize in 3D, we make a few simplifications.

o Consider any submodular f' and « € By. Then f(A) = f'(A) — z(A)
is submodular, and moreover f(E) = f/(E) — z(E) = 0.

o Hence, from f(zg—i— alp) = f(w) + af (E), we have that
f(w+alg) = f(w) when f(E) = 0.

@ Thus, we can look “"down” on the contour plot of the Lovasz extension,
{w : flw) = 1}, from a vantage point right on the line
{z:x =alg,a > 0} since moving in direction 1 changes nothing.

@ l.e., consider 2D plane perpendicular to the line {z : Ja,x = alg} at
any point along that line, then Lovasz extension is surface plot with
coordinates on that plane (or alternatively we can view contours).
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Example: m =3, £ ={1,2,3}

e Example 1 (from Bach-2011): f(A) = 1 4/¢f1,2}
= min {|A[,1} + min {|E \ A|,1} — 1 is submodular, and
fw) = MaXge (1,23} Wk — Milge (1 9 3} Wk

EE563/Spring 2018/Submodularity - Lecture 17 - May 23st, 2018 F7/54 (pg.12/192)



ovész exte
1

Example: m =3, £ ={1,2,3}

o Example 1 (from Bach-2011): f(A) = 1 4/¢f1,2)
= min {|A[, 1} + min {| £\ A[, 1} — 1 is submodular, and
f(w) = maxgey 23y W — Mingeqy 2,33 W

Wi=W,
i((),(),l)/F({fS})
W3> W2>W1

W3> Wl >W2

(LO.D/F( L3N 7 »-E"O’1,1)/F({2,3})

Wi> Wi>W) PN Wo> W3>W

(1,0,00/F({1H ke S10,1,0/F(2)

Wo> wy>wy MWW

17 - May 23st, F7/54 (pg.13/192

4+ W1> W2

=W

Prof. Jeff Bilmes



Lovész extension examples
[RLRRRRARRN]

Example: m =3, £ ={1,2,3}

A (0,0,1)

o Example 2 (from
Bach-2011): f(A) =
[Tica—1acal+[12ca—13ea]

_Fo.L
(1,0,1)/2 fo=

TN (0,1,0)/2

(1,0,0) . N
P

(1,1,0)
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Lovész extension examples
[RLRRRRARRN]

Example: m =3, £ ={1,2,3}

A (0,0,1)

o Example 2 (from
Bach-2011): f(A) =
[11e4—12ea|+[12ea —13e4]

@ This gives a “total variation” (1,0 1)/2 Py 0.1,1)

function for the Lovasz

extension, with
Fw) — | . - 4(0,1,0/2
f(w) = w1 —w2|+|w2 —ws|. (1,0,0) . N

(1,1,0)
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Example: m =3, £ ={1,2,3}

A (0,0,1)

o Example 2 (from
Bach-2011): f(A) =
[11e4—12ea|+[12ea —13e4]

o This gives a “total variation” (1,0 1)/2 / _ (O,1,1)

function for the Lovasz
extension, with

~ = / 0’1,0 /2
f(w) = |wy —ws|+|wz —ws]. ( )
@ When used as a prior, prefers P
piecewise-constant signals
(e.g 22 [wi — wita). 1(1,1,0)
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Total Variation Example

5 |
2 =H E”"‘
3 Hi =
e e
=

From “Nonlinear total m

variation based noise !“ e
removal algorithms”
Rudin, Osher, and
Fatemi, 1992. Top left

{t't i i

original, bottom right - I” !‘HE
total variation. AL e, N
= ||| 3
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Example: Lovasz extension of concave over modular

@ Let m: E — Ry be a modular function and define f(A) = g(m(A))
where ¢ is concave. Then f is submodular.
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Example: Lovasz extension of concave over modular

o Let m: E — R, be a modular function and define f(A) = g(m(A))
where g is concave. Then f is submodular.

o Let M, = Zgzl m(e;)
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Example: Lovasz extension of concave over modular

o Let m: E — R, be a modular function and define f(A) = g(m(A))
where g is concave. Then f is submodular.

o Let M; = 57_ mi(e;)

o f(w) is given as

flw) = Zw(ei)(g(]wi) — g(M;_1)) (17.1)
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Example: Lovasz extension of concave over modular

o Let m: E — R, be a modular function and define f(A) = g(m(A))
where g is concave. Then f is submodular.

o Let M; = 57_ mi(e;)
o f(w) is given as
flw) = Zw(ei)(g(Mi) — g(M;—1)) (17.1)

e And if m(A) = |A|, we get

(w) = Zw —g(i—1)) (17.2)
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Example: Lovasz extension and cut functions

@ Cut Function: Given a non-negative weighted graph G = (V, E, m)
where m : E — R is a modular function over the edges, we know
from Lecture 2 that f: 2" — R, with f(X) = m(I'(X)) where
NX) = {(u,v)|(u,v) € BE,u € X,v €V \ X} is non-monotone
submodular.
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Example: Lovasz extension and cut functions

@ Cut Function: Given a non-negative weighted graph G = (V, E, m)
where m : E — R is a modular function over the edges, we know
from Lecture 2 that f: 2" — R with f(X) = m(I'(X)) where
NX) = {(u,v)|(u,v) € BE,u € X,v eV \ X} is'mensmonotone
submodular.

e Simple way to write it, with m;; = m((¢, 7)):

f(X) = Z M (17.3)

i€eX,jeV\X
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Example: Lovasz extension and cut functions

@ Cut Function: Given a non-negative weighted graph G = (V, E, m)
where m : E — R is a modular function over the edges, we know
from Lecture 2 that f: 2" — R with f(X) = m(I'(X)) where
NX) = {(u,v)|(u,v) € E,u € X,v eV \ X} is non-monotone
submodular.

e Simple way to write it, with m;; = m((¢, 7)):

FX)=" > my (17.3)
1€X,jeV\X

@ Exercise: show that Lovasz extension of graph cut may be written as:

f(w) Z mi; max {(w; —wj),0} (17.4)

i,jeV

where elements are ordered as usual, w; > wy > -+ > w,.
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Example: Lovasz extension and cut functions

@ Cut Function: Given a non-negative weighted graph G = (V, E, m)
where m : E — R is a modular function over the edges, we know
from Lecture 2 that f: 2" — R with f(X) = m(I'(X)) where
NX) = {(u,v)|(u,v) € E,u € X,v eV \ X} is non-monotone
submodular.

e Simple way to write it, with m;; = m((¢, 7)):

fX) = > my (17.3)
1€X,jeV\X
@ Exercise: show that Lovasz extension of graph cut may be written as:
flw) = Z mi; max {(w; — wj),0} (17.4)
1,J€EV
where elements are ordered as usual, wy > we > -+ > w,,.
@ This is also a form of “total variation”
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A few more Lovasz extension examples

Some additional submodular functions and their Lovasz extensions, where
w(er) > w(ez) > -+ > wlem) > 0. Let Wi, 2 38 wiey).

| f(A) | f(w) |
4] [l
min([A], 1 0]
min(|A],1) — max(|A| —m +1,0) |w]|oo — min; w;
min(|A[, k) Wi
min(|A|, k) — max(|A| — (n — k) + 1,1) 2Wi — Wi,
min([AL, |5\ A] IV ol W

(thanks to K. Narayanan).
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Supervised And Unsupervised Machine Learning

o Given training data D = {(x;, ;) };~, with (z;,y) € R" x R, perform

the following risk minimization problem: i L
sk
75%/"@ min — Z€ yi, wz;) + AQ(w), (17.5)

weR™ M

where £(-) is a loss function (e.g., squared error) and Q(w) is a norm.
@ When data has muItipIe responses (z;, ;) € R™ x R*, learning becomes:

" mul)EE]R" Z ZZ vk (W) ) + AQwh), (17.6)

o When data has multiple responses only that are observed, (y;) € R*
we get dictionary Iearning (Krause & Guestrin, Das & Kempe):

min min Z Z O(yE, (WP ) + AQwh), (17.7)

T1yeeeyTm w1 W ER”
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Norms, sparse norms, and computer vision

e Common norms include p-norm Q(w) = |lw|, = (3°F, w?)l/p
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Lovész extension examples
(LAN]

Norms, sparse norms, and computer vision

e Common norms include p-norm Q(w) = |lwl|, = (3%, wf)l/p

@ 1-norm promotes sparsity (prefer solutions with zero entries).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 17 - May 23st, 2018 F14/54 (pg-29/192)



Lovész extension examples
(LAN]

Norms, sparse norms, and computer vision

e Common norms include p-norm Q(w) = |lwl|, = (3%, wf)l/p

@ 1-norm promotes sparsity (prefer solutions with zero entries).
@ Image denoising, total variation is useful, norm takes form:
N

Qw) =) |w; — w1 (17.8)

1=2

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 17 - May 23st, 2018 F14/54 (pg-30/192)



Lovész extension examples
(RLRN

Norms, sparse norms, and computer vision

e Common norms include p-norm Q(w) = |[wl|, = (322_, w?)*/?
@ 1l-norm promotes sparsity (prefer solutions with zero entries).
@ Image denoising, total variation is useful, norm takes form:
N
Qw) =D w; — w1 (17.8)
=2

@ Points of difference should be “sparse” (frequently zero).

(Rodriguez,
2009)
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Submodular parameterization of a sparse convex norm

@ Prefer convex norms since they can be solved.
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Submodular parameterization of a sparse convex norm

@ Prefer convex norms since they can be solved.
e For w e RY, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
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Submodular parameterization of a sparse convex norm

@ Prefer convex norms since they can be solved.
e For w e RY, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0

@ Desirable sparse norm: count the non-zeros, ||w||p = 17 supp(w).
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 17 supp(w).
Using Q(w) = |lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||w||; which is the convex envelope.
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = ||lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||w||; which is the convex envelope.

With ||wl|o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = ||lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||w||; which is the convex envelope.

With ||w||o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.

Given submodular function f:2¥ — R, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = ||lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||w||; which is the convex envelope.

With ||w||o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.

Given submodular function f: 2" — R,, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it's convex envelope f(|w]) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovasz-extension f of f (Vondrak 2007, Bach 2010).
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = ||lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||w||; which is the convex envelope.

With ||w||o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.

Given submodular function f: 2" — R,, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it's convex envelope f(|w|) (i.e.,
largest convex under-estimator of Fsupp(w))) is obtained via the
Lovasz-extension f of f (Vondrak 2007, Bach 2010).

Submodular functions thus parameterize structured convex sparse
norms via the Lovasz-extension!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w € RV, supp(w) € {0,1}" has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ||wl||o = 1T supp(w).
Using Q(w) = ||lwl|o is NP-hard, instead we often optimize tightest
convex relaxation, ||w||; which is the convex envelope.

With ||w||o or its relaxation, each non-zero element has equal degree of
penalty. Penalties do not interact.

Given submodular function f: 2" — R,, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it's convex envelope f(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovasz-extension f of f (Vondrak 2007, Bach 2010).

Submodular functions thus parameterize structured convex sparse
norms via the Lovasz-extension!

Ex: total variation is Lovasz-ext. of graph cut, but 3 many more!
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Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
|lwll 7 = f(Jwl). This renders the function symmetric about all orthants

(meaning, |lw[|; = [|b® wl| 7 for any b € {—1, 1} and © is
element-wise multiplication).

F16/54 (pg.41/192)
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Lovész extension examples
(NNA ]

Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
Hwa = f(Jwl|). This renders the function symmetric about all orthants
(meaning, [|w||; = [|b® w]|; for any b € {1, 1} and ® is
element-wise multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) = |A]| is the £; norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢; norm.
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Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
Hwa = f(Jwl|). This renders the function symmetric about all orthants
(meaning, [|w||; = [|b® w]|; for any b € {1, 1} and ® is
element-wise multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) = |A| is the ¢1 norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢; norm.

@ With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the ¢5 norm).
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Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
Hwa = f(Jwl|). This renders the function symmetric about all orthants
(meaning, [|w||; = [|b® w]|; for any b € {1, 1} and ® is
element-wise multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) = |A| is the ¢1 norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢; norm.

@ With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the ¢5 norm).

@ Hence, not all norms come from the Lovasz extension of some
submodular function.
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Lovész extension examples
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Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
Hwa = f(Jwl|). This renders the function symmetric about all orthants
(meaning, [|w||; = [|b® w]|; for any b € {1, 1} and ® is
element-wise multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) = |A| is the ¢1 norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢; norm.

@ With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the ¢5 norm).

@ Hence, not all norms come from the Lovasz extension of some
submodular function.

@ Similarly, not all convex functions are the Lovasz extension of some
submodular function.
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Lovész extension examples
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Lovasz extension and norms

@ Using Lovasz extension to define various norms of the form
Hwa = f(Jwl|). This renders the function symmetric about all orthants
(meaning, [|w||; = [|b® w]|; for any b € {1, 1} and ® is
element-wise multiplication).

@ Simple example. The Lovasz extension of the modular function
f(A) = |A| is the ¢1 norm, and the Lovasz extension of the modular
function f(A) = m(A) is the weighted ¢; norm.

@ With more general submodular functions, one can generate a large and
interesting variety of norms, all of which have polyhedral contours
(unlike, say, something like the ¢5 norm).

@ Hence, not all norms come from the Lovasz extension of some
submodular function.

@ Similarly, not all convex functions are the Lovasz extension of some
submodular function.

@ Bach-2011 has a complete discussion of this.
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Concave closure

@ The concave closure is defined as:

f(z) = max ZPS]‘ (17.9)

A'"/
Pe SCV

where A™(x) =
{pEeRY : Tgcyps =1,ps = VS CV, & Yoy psls =}

EE563/Spring 2018/Submodularity - Lecture 17 - May 23st, 2018 F17/54 (pg.47/192)



@ The concave closure is defined as:

f(z) = max Zpgf (17.9)

ATL
PEA™(2) {1

where A™(x) =
{p eR*: ngva =1ps>0VSCV, & ZggvpslS = 33'}

@ This is tight at the hypercube vertices, concave, and the concave
envolope for the dual reasons as the convex closure.
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Multilinear Extension
[ NNRN]

Concave closure

@ The concave closure is defined as:

f(z) = max Zpgf (17.9)

peA™ (@) S
where A™(x) =
{p € R¥: ng/ps =1,ps>0VSCV, & ZggvpslS = 1‘}

@ This is tight at the hypercube vertices, concave, and the concave
envolope for the dual reasons as the convex closure.

@ Unlike the convex extension, the concave closure is defined by the
Lovasz extension iff [ is a supermodular function.

Prof. Jeff Bilmes
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Multilinear Extension
[ ENRN]

Concave closure

@ The concave closure is defined as:

f(z) = max Zpgf (17.9)

PEA™®) 5oy
where A™(x) =
{p eR*: ngva =1ps>0VSCV, & ZggvpslS = 33'}
@ This is tight at the hypercube vertices, concave, and the concave

envolope for the dual reasons as the convex closure.

@ Unlike the convex extension, the concave closure is defined by the
Lovasz extension iff f is a supermodular function.

o When f is submodular, even evaluating f is NP-hard (rough intuition:
submodular maxmization is NP-hard (reduction to set cover), if we
could evaluate f in poly time, we can maximize concave function to
solve submodular maximization in poly time).
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Multiling tension
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Multilinear extension

@ Rather than the concave closure, multi-linear extension is used as a
surrogate. For z € [0,1]V = [0, 1]I"!

F@)=>Y_"f = I] @ -2)=Eswalf(9) (17.10)
SCV €S ieV\S
M% s Concuvt

Ul'\"r s o Fuanetions
l) nv "'/‘\' lon M‘*\Jo’ﬂn
‘).) (e SdrizAdA elers 3 bl Fonapin
thff" "M LarpA CoAdene closvme

| mé’ Concorn et
9. /u/ Kvlv'vu/vl i

3) polq dadrd e lofz v
£ (&)
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Multilinear extension

@ Rather than the concave closure, multi-linear extension is used as a
surrogate. For z € [0,1]Y = [0, 1]I"!

fl@)y=> f) [z I (1 —2)= Eswalf(S)] (17.10)

SCV 1€S  eV\S

@ Can be viewed as expected value of f(S) where S is a random set
distributed via x, so Pr(v € S) = z,, and is independent of
Pr(u € S) =z, v # u.

v
v elod
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Multiling
(LEN]

Multilinear extension

@ Rather than the concave closure, multi-linear extension is used as a
surrogate. For z € [0,1]Y = [0, 1]I"!

fl@)y=> f) [z I (1 —2)= Eswalf(S)] (17.10)

SCV 1€S  eV\S

@ Can be viewed as expected value of f(S) where S is a random set
distributed via z, so Pr(v € §) = z, and is independent of
Pr(u € S) =z, v # u.

@ This is tight at the hypercube vertices (immediate, since f(14) yields
only one term in the sum non-zero, namely the one where S = A).

EE563/Spring 2018/Submodularity - Lecture 17 - May 23st, 2018 F18/54 (pg.53/192)



Multilinear extension

@ Rather than the concave closure, multi-linear extension is used as a
surrogate. For z € [0,1]Y = [0, 1]I"!

fl@)y=> f) [z I (1 —2)= Eswalf(S)] (17.10)

SCV 1€S  eV\S

@ Can be viewed as expected value of f(S) where S is a random set
distributed via z, so Pr(v € §) = z, and is independent of
Pr(u € S) =z, v # u.

@ This is tight at the hypercube vertices (immediate, since f(14) yields
only one term in the sum non-zero, namely the one where S = A).

@ Why called multilinear (multi-linear) extension? It is linear in each of
its arguments (i.e., f(z1,2,...,ox) + By, Tn) =
oaf (X1, @2, Tk xn) + Bf (@1, T2, . .. (T T

~—

n
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Multilinear extension

@ Rather than the concave closure, multi-linear extension is used as a
surrogate. For z € [0,1]Y = [0, 1]I"!

fl@)y=> f) [z I (1 —2)= Eswalf(S)] (17.10)

SCV 1€S  eV\S

@ Can be viewed as expected value of f(S) where S is a random set
distributed via z, so Pr(v € §) = z, and is independent of
Pr(u € S) =z, v # u.

@ This is tight at the hypercube vertices (immediate, since f(14) yields
only one term in the sum non-zero, namely the one where S = A).

o Why called multilinear (multi-linear) extension? It is linear in each of
its arguments (i.e., f(xl, T2,. .0z + BTy, . Tn) =
af(zi,x2, ..., Tk, ..., Tn) + Bf(T1,22,.. ., Ty .., T)

@ This is unfortunately not concave. However there are some useful
properties.
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Multilinear extension

Lemma 17.4.1
Let f(x) be the multilinear extension of a set function f : 2V — R. Then:
e If f is monotone non-decreasing, then (%f; >0 for all v € V within
0,1]V (i.e., f is also monotone non-decreasing).
o If f is submodular, then f has an antitone supergradient, i.e.,

8226’; <0 for all i, j € V within [0,1]V".

Proof.

e First part (monotonicity). Choose = € [0,1]" and let S ~ x be random
where z is treated as a distribution (so elements v is chosen with
probability x,, independently of any other element).
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Multilinear extension

... proof continued.

@ Since f is multilinear, derivative is a simple difference when only one

argument varies, i.e., V-(
801{; :f(xl,xQ,...,$U1,1,$1)+1,...,$n) (17.11)
—f(l‘l,xg,...,J?UI,O,IU+1,...,JU”) (17.12)
= Fgz[f(S +v)] — Esg[f(S — v)] (17.13)
>0 (17.14)

where the final part follows due to monotonicity of each argument, i.e.,
f(S+i)> f(S—1i)forany SandicV.

]
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Multilinear extension

... proof continued.

@ Second part of proof (antitone supergradient) also relies on simple
consequence of multilinearity, namely multilinearity of the derivative as
well. In this case

*f of

o 4*‘17 41500 17.15
Oxz(f‘)x] 01] (xl’  Ti—1, 1, Lit+1 xn) ( )

R of

- ﬁ(ﬂ?l,...,.’1,‘1',1,0,37@+1,...,ﬂ?n) (1716)

T
= Bsolf(S+i+3) — £(5+5 - )] (17.17)
— Esalf(S —i+3) — f(S —i— )] (17.18)
<0 (17.19)

since by submodularity, we have
FE+i=g)+f(S—i+i) = f(S+i+i)+f(S—i—j) (17.20)
L]
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Multilinear extension: some properties

S*('.‘L’ﬂ? Do~ ey
o Jkr."JV? g

Corollary 17.4.2

let f be a function and f its multilinear extension on [0,1]" .

@ if f is monotone non-decreasing then f is non-decreasing along any

strictly non-negative direction (i.e., f(x) < f(y) whenever z <y, or
Mforanyv €V and any e > 0.

o If f is submodular, then f is concave along any/ non-negative direction

(i.e., the function g(a) = f(z + az) is 1-D concave in « for any
AS R+)

o If f is submodular than f is convex along any diagonal direction (i.e.,

the function g(a) = f(x + a(1, — 1)) is 1-D convex in o for any
u # v. &Y

-
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Submodular Max and polyhedral approaches
LARN}

Submodular Max and polyhedral approaches

o We've spent much time discussing SFM and the polymatroidal
polytope, and in general polyhedral approaches for SFM.
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Submodular Max and polyhedral
LARN}

Submodular Max and polyhedral approaches

@ We've spent much time discussing SFM and the polymatroidal
polytope, and in general polyhedral approaches for SFM.

@ Most of the approaches for submodular max have not used such an
approach, probably due to the difficulty in computing the “concave
extension” of a submodular function (the convex extension is easy,
namely the Lovasz extension).
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Submodular Max and polyhedral approaches
LARN}

Submodular Max and polyhedral approaches

@ We've spent much time discussing SFM and the polymatroidal
polytope, and in general polyhedral approaches for SFM.

@ Most of the approaches for submodular max have not used such an
approach, probably due to the difficulty in computing the “concave
extension” of a submodular function (the convex extension is easy,
namely the Lovasz extension).

@ A paper by Chekuri, Vondrak, and Zenklusen (2011) make some
progress on this front using multilinear extensions.
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Submodular Max and polyhedral approaches
(L AN

Multilinear extension (review)
Definition 17.5.1

For a set function f : 2" — R, define its multilinear extension
F:[0,1V - R by

F(z)=Y_ fS ]z J[ Q-2 (17.21)

scv i€S  jeV\S

o Note that F'(x) = Ef(Z) where Z is a random binary vector over
{0, 1}V with elements independent w. probability x; for ;.
@ While this is defined for any set function, we have:

Lemma 17.5.2

Let F :[0,1]Y — R be multilinear extension of set function f : 2" — R,
then

o If f is monotone non-decreasing, then % >0forallicV,xel0,1]V.

o If f is submodular, then 6fj£j <0 foralli,jinV, z €[0,1]V.
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Submodular Max and polyhedral
1

Submodular Max and polyhedral approaches

@ Basic idea: Given a set of constraints Z, we form a polytope Pz such
that {1;: I € Z} C Py

o We find max,cp, F'(x) where F(z) is the multi-linear extension of f,
to find a fractional solution x*

@ We then round z* to a point on the hypercube, thus giving us a
solution to the discrete problem.
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Submodular Max and polyhedral approaches
(NN ]

Submodular Max and polyhedral approaches

@ In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:
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Submodular Max and polyhedral
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Submodular Max and polyhedral approaches

c[@ﬂ:t
o In the yégepr paper by Chekuri, Vondrak, and Zenklusen, they show:

@ 1) constant factor approximation algorithm for max { F(x) : € P} for
any down-monotone solvable polytope P and F' multilinear extension of

any non-negative submodular function.

F26/54 (pg.66/192)
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Submodular Max and polyhedral
(NN ]

Submodular Max and polyhedral approaches

@ In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

@ 1) constant factor approximation algorithm for max { F(x) : € P} for
any down-monotone solvable polytope P and F' multilinear extension of
any non-negative submodular function.

@ 2) A randomized rounding (pipage rounding) scheme to obtain an
integer solution

F26/54 (pg.67/192)
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Submodular Max and polyhedral approaches
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Submodular Max and polyhedral approaches

@ In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

@ 1) constant factor approximation algorithm for max { F(x) : € P} for
any down-monotone solvable polytope P and F' multilinear extension of
any non-negative submodular function.

@ 2) A randomized rounding (pipage rounding) scheme to obtain an
integer solution

@ 3) An optimal (1 — 1/e) instance of their rounding scheme that can be
used for a variety of interesting independence systems, including O(1)
knapsacks, k& matroids and O(1) knapsacks, a k-matchoid and ¢ sparse
packing integer programs, and unsplittable flow in paths and trees.
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Submodular Max and polyhedral approaches
(NN ]

Submodular Max and polyhedral approaches

@ In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

@ 1) constant factor approximation algorithm for max { F(x) : € P} for
any down-monotone solvable polytope P and F' multilinear extension of
any non-negative submodular function.

@ 2) A randomized rounding (pipage rounding) scheme to obtain an
integer solution

@ 3) An optimal (1 — 1/e) instance of their rounding scheme that can be
used for a variety of interesting independence systems, including O(1)
knapsacks, k& matroids and O(1) knapsacks, a k-matchoid and ¢ sparse
packing integer programs, and unsplittable flow in paths and trees.

e Also, Vondrak showed that this scheme achieves the 1(1 — e~¢)
curvature based bound for any matroid, which matches the bound we
had earlier for uniform matroids with standard greedy.
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Submodular Max and polyhedral approaches
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Submodular Max and polyhedral approaches

@ In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

@ 1) constant factor approximation algorithm for max { F(x) : € P} for
any down-monotone solvable polytope P and F' multilinear extension of
any non-negative submodular function.

@ 2) A randomized rounding (pipage rounding) scheme to obtain an
integer solution

@ 3) An optimal (1 — 1/e) instance of their rounding scheme that can be
used for a variety of interesting independence systems, including O(1)
knapsacks, k& matroids and O(1) knapsacks, a k-matchoid and ¢ sparse
packing integer programs, and unsplittable flow in paths and trees.

e Also, Vondrak showed that this scheme achieves the 1(1 — e~¢)
curvature based bound for any matroid, which matches the bound we
had earlier for uniform matroids with standard greedy.

@ In general, one needs to do Monte-Carlo methods to estimate the
multilinear extension (so further approximations would apply).
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Review from lecture 10

The next slide comes from lecture 10.
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A polymatroid function's polyhedron is a polymatroid.

Theorem 17.6.1

Let f be a polymatroid function defined on subsets of E. For any x € RY,
and any P]T-basis y* € RE of x, the component sum of y* is

y*(E) = rank(z) = max (y(E) ry<uzx,y € P]T)
=min (z(A)+ f(E\A): ACE) (17.10)

As a consequence, P]T is a polymatroid, since r.h.s. is constant w.r.t. y*.

Taking '\ B = supp(x) (so elements B are all zeros in z), and for b ¢ B
we make x(b) is big enough, the r.h.s. min has solution A* = B. We recover
submodular function from the polymatroid polyhedron via the following:

rank <i1E\B> = f(F'\ B) = max {y(E\B) Ty € PJT} (17.11)

In fact, we will ultimately see a number of important consequences of this
theorem (other than just that P} is a polymatroid)
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Most Violated <
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Review from lecture 11

The next slide comes from lecture 11.
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Most Violated <
[

Matroid instance of Theorem 77

e Considering Theorem 77, the matroid case is now a special case, where
we have that:

Corollary 17.6.2

We have that:

maX{y(E) 1Y € Pipg, set(M)yy < 37} = min {TM(A) + w(E \ A) :AC E}
(17.21)

where 7,/ is the matroid rank function of some matroid.
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Most violated inequality problem in matroid polytope case

o Consider

Pr={ze RE .2 >0,2(A) <rp(A),VAC E} (17.22)
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Most Violated <
(RN

Most violated inequality problem in matroid polytope case

o Consider
Pr={zeR”:2>0z(A) <ry(A),YAC E} (17.22)

@ Suppose we have any x € Rf such that = ¢ PF.
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Most Violated <

Most violated inequality problem in matroid polytope case

o Consider
Pr={zeR”:2>0z(A) <ry(A),YAC E} (17.22)

o Suppose we have any z € R¥ such that z ¢ P

@ Hence, there must be a set of W C 2V, each member of which
corresponds to a violated inequality, i.e., equations of the form
T(A) > T]\,](A) for AeW.
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Most violated inequality problem in matroid polytope case

o Consider
Pr={zeR”:2>0z(A) <ry(A),YAC E} (17.22)

o Suppose we have any z € R¥ such that z ¢ P

@ Hence, there must be a set of W C 2", each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > rpy(A) for AeW.

@ The most violated inequality when z is considered w.r.t. P," corresponds
to the'set A that maximizes z(A) — ry(A), i.e., the most violated
inequality is valuated as:

max {z(A) —ry(4): A e W} = max{z(A) —rmy(A): AC E}  (17.23)
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Most violated inequality problem in matroid polytope case

o Consider
Pr={zeR”:2>0z(A) <ry(A),YAC E} (17.22)

o Suppose we have any z € R¥ such that z ¢ P

@ Hence, there must be a set of W C 2", each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > rpy(A) for AeW.

@ The most violated inequality when z is considered w.r.t. P." corresponds
to the set A that maximizes x(A) — rps(A), i.e., the most violated
inequality is valuated as:

max {x(A) —ry(A) : Ae W} =max{z(A) —rmy(A): ACE}  (17.23)

@ Since x is modular and z(E \ A) = z(E) — x(A), we can express this via a
min as in;:

min {ry(A) +z(E\ A): AC E} (17.24)
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Most violated inequality/polymatroid membership/SFM

o Consider

Pf={xe R¥ 2 >0,2(A) < f(A),YAC E} (17.25)
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lated

Most violated inequality/polymatroid membership/SFM

o Consider

Pf={zeR”:2>0,2(4) < f(A),VAC E} (17.25)

@ Suppose we have any = € R¥ such that z ¢ P]j“.
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Most Violated <
[Ny

Most violated inequality /polymatroid membership/SFM

o Consider
Pf={zeR”:2>0,2(4) < f(A),VAC E} (17.25)

e Suppose we have any = € R¥ such that z ¢ PJT.

@ Hence, there must be a set of W C 2V, each member of which
corresponds to a violated inequality, i.e., equations of the form
z(A) > ry(A) for AeW.

B

2 X p 2 P

' W
1 1 1

W= {{1H{1,2}} W= {{2},{1,2}} W= {{1,2}}
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Most violated inequality/polymatroid membership/SFM

@ The most violated inequality when z is considered w.r.t. P}
corresponds to the set A that maximizes z(A) — f(A), i.e., the most
violated inequality is valuated as:

max {z(A) — f(A): A€ W} =max{z(A) — f(A): ACE} (17.26)
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Most Violated <
[ERARNL]

Most violated inequality/polymatroid membership/SFM

@ The most violated inequality when x is considered w.r.t. P;"
corresponds to the set A that maximizes z(A) — f(A), i.e., the most
violated inequality is valuated as:

max {x(A4) — f(A) : Ae W} =max{z(A) — f(A): AC E} (17.26)

@ Since z is modular and z(E \ A) = z(E) — z(A), we can express this
via a min as in;:

min {f(A)+z(E\ A): AC E} (17.27)
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Most Violated <
[ERARNL]

Most violated inequality/polymatroid membership/SFM

@ The most violated inequality when x is considered w.r.t. P;"
corresponds to the set A that maximizes z(A) — f(A), i.e., the most
violated inequality is valuated as:

max {x(A4) — f(A) : Ae W} =max{z(A) — f(A): AC E} (17.26)
@ Since z is modular and z(E \ A) = z(E) — xz(A), we can express this
via a min as in;:
min{f(A)+z(E\ A): AC E} (17.27)
e More importantly, min {f(A) + z(E\ A) : A C E} is a form of
submodular function minimization, namely
min {f(A) — z(A) : A C E} for a submodular f and z € RY,
consisting of a difference of polymatroid and modular function (so
f — x is no longer necessarily monotone, nor positive).

F33/54 (pg.85/192)
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Most Violated <
[ERARNL]

Most violated inequality/polymatroid membership/SFM

@ The most violated inequality when x is considered w.r.t. P;"
corresponds to the set A that maximizes z(A) — f(A), i.e., the most
violated inequality is valuated as:

max {x(A4) — f(A) : Ae W} =max{z(A) — f(A): AC E} (17.26)

@ Since z is modular and z(E \ A) = z(E) — xz(A), we can express this

via a min as in;:
min{f(A)+z(E\ A): AC E} (17.27)

e More importantly, min {f(A) + z(E\ A) : A C E} is a form of
submodular function minimization, namely
min {f(A) — z(A) : A C E} for a submodular f and z € RY,
consisting of a dlfference of polymatroid and modular functlon (so
f — x is no longer necessarily monotone, nor positive).

e We will ultimatley answer how general this form of SFM is.
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More on Matroids
[ ARNRRN

Review from Lecture 6

The following three slides are review from lecture 6.
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More on Matroi ids
(L ERRAN]

Matroids, other definitions using matroid rank 7 :

Definition 17.7.3 (closed/flat/subspace)

A subset A C E'is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{z}) =r(A) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.

Definition 17.7.4 (closure)

Given A C FE, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A.

Definition 17.7.5 (circuit)

A subset A C FE is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A| and for any a € A, (A \ {a}) = |A] — 1).
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not
surprising that circuits can also characterize a matroid.

Theorem 17.7.3 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the
following three properties:

Q@ (C1):v¢cC
Q (C2) ifC’l,C'g € C and C; C Cy, then C1 = Cs.

@ (C3): if C1,Cq € C with Cy # Cy, and e € Cy N Cy, then there exists a
Cs € C such that C3 C (Cl U 02) \ {6}

(4
C( e \} &y

4
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 17.7.3 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that
no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx € CNC', then (CUC")\ {z} contains a set in C;

Q@ ifC,C"eC,andx e CNC’', andy € C\ ', then (CUC")\ {z}
contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and matrices,
and spanning trees.
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More on Matroids

Fundamental circuits in matroids

Let I € Z(M), and e € E, then I U {e} contains at most one circuit in M.
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Fundamental circuits in matroids

Let I € Z(M), and e € E, then I U {e} contains at most one circuit in M.

@ Suppose, to the contrary, that there are two distinct circuits Cy, Co
such that C; UCy C T U {e}.
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More on Matroids

Fundamental circuits in matroids

Let I € Z(M), and e € E, then I U {e} contains at most one circuit in M.

@ Suppose, to the contrary, that there are two distinct circuits Cq, Co
such that C; U Cy C I U {e}.

@ Then e € C1 N Cq, and by (C2), there is a circuit C3 of M s.t.
C3 C (ClLJCQ)\{G} clI
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More on Matroids

Fundamental circuits in matroids

Let I € Z(M), and e € E, then I U {e} contains at most one circuit in M.

@ Suppose, to the contrary, that there are two distinct circuits Cq, Co
such that C; U Cy C I U {e}.

@ Then e € Cy N Cy, and by (C2), there is a circuit C3 of M s.t.
C3 C (C1UCy)\{e} C I

@ This contradicts the independence of 1.
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More on Matroids

Fundamental circuits in matroids

Let I € Z(M), and e € E, then I U {e} contains at most one circuit in M.

@ Suppose, to the contrary, that there are two distinct circuits Cq, Co
such that C; U Cy C I U {e}.

@ Then e € Cy N Cy, and by (C2), there is a circuit C3 of M s.t.
C3 C (CLUCy)\{e} C I

@ This contradicts the independence of 1.

In general, let C(1,e) be the unique circuit associated with I U {e}

(commonly called the fundamental circuit in M w.r.t. I and e).
[ — —_— —_— -
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Matroids: The Fundamental Circuit

@ Define C(I,e) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

-/
\TZE\/C“
N
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Matroids: The Fundamental Circuit

e Define C(I, ) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

o If e e span([) \ I, then C(I,e) is well defined (I + e creates one
circuit).
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Matroids: The Fundamental Circuit

e Define C(I, ) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

o If e e span(l) \ I, then C(I,e) is well defined (I + e creates one
circuit).

@ If e €I, then I + e = I doesn’t create a circuit. In such cases, C(1,e)
is not really defined.
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Matroids: The Fundamental Circuit

e Define C(I, ) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

o If e e span(l) \ I, then C(I,e) is well defined (I + e creates one
circuit).

o If e € I, then I + e = I doesn't create a circuit. In such cases, C(I,e)
is not really defined.

@ In such cases, we define C'(1,e) = {e}, and we will soon see why.
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Matroids: The Fundamental Circuit

e Define C(I, ) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

o If e e span(l) \ I, then C(I,e) is well defined (I + e creates one
circuit).

o If e € I, then I + e = I doesn't create a circuit. In such cases, C(I,e)
is not really defined.

@ In such cases, we define C(I,e) = {e}, and we will soon see why.

e If e ¢ span([) (i.e., when I + e is independent), then we set
C(I 6) = Q)’ s . e . .
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More on Matroids
[RNRRNN |

Union of matroid bases of a set

Lemma 17.7.2

Let B(D) be the set of bases of any set D. Then, given matroid
M = (E,T), and any loop-free (i.e., no dependent singleton elements) set

D C E, we have:

U B=D. (17.28)
BeB(D

F40/54 (pg.101/192)
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Union of matroid bases of a set

Lemma 17.7.2

Let B(D) be the set of bases of any set D. Then, given matroid
M = (E,T), and any loop-free (i.e., no dependent singleton elements) set

D C E, we have:

U B=D. (17.28)
BeB(D

Proof.
@ Define D' = UBGB C D, suppose 3d € D such that d ¢ D’.
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Union of matroid bases of a set

Lemma 17.7.2

Let B(D) be the set of bases of any set D. Then, given matroid
M = (E,T), and any loop-free (i.e., no dependent singleton elements) set

D C E, we have:

U B=D. (17.28)
BeB(D

Proof
o Define D' £ Uses(p) € D, suppose 3d € D such that d ¢ D".

@ Hence, VB € B(D) we have d ¢ B, and B + d must contain a single
circuit for any B, namely C (B, d).

F40/54 (pg.103/192)
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More on Matroids
[RNRRNN |

Union of matroid bases of a set

Lemma 17.7.2

Let B(D) be the set of bases of any set D. Then, given matroid

M = (E,T), and any loop-free (i.e., no dependent singleton elements) set
D C E, we have:

U B=D. (17.28)
BeB(D

Proof
o Define D' £ Upcp(p) € D, suppose 3d € D such that d ¢ D'.
@ Hence, VB € B(D) we have d ¢ B, and B + d must contain a single
circuit for any B, namely C(B,d).
@ Then choose d' € C(B,d) with d’ # d.

F40/54 (pg.104/192)
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More on Matroids
[RNRRNN |

Union of matroid bases of a set

Lemma 17.7.2

Let B(D) be the set of bases of any set D. Then, given matroid

M = (E,T), and any loop-free (i.e., no dependent singleton elements) set
D C E, we have:

U B=D. (17.28)
BeB(D

Proof
o Define D' £ Upcp(p) € D, suppose 3d € D such that d ¢ D'.
@ Hence, VB € B(D) we have d ¢ B, and B + d must contain a single
circuit for any B, namely C(B,d).
@ Then choose d’ € C(B,d) with d’ # d.

@ Then B + d — d’ is independent size-| B| subset of D and hence spans
D, and thus is a d-containing member of B(D), contradicting d ¢ D'.
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Closure/Sat
[ ANRRNRRRNANRY

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A spans
(eq. that depend on A).
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Closure/Sat
[ ANRRNRRRNANRY

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A spans
(eq. that depend on A).

@ We wish to generalize closure to polymatroids.
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Closure/Sat
[ ANRRNRRRNANRY

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A spans
(eq. that depend on A).

@ We wish to generalize closure to polymatroids.

e Consider x € Py for polymatroid function f.
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Closure/Sat
[AERRNRNRNNRN]

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A spans
(eq. that depend on A).

@ We wish to generalize closure to polymatroids.
o Consider x € Py for polymatroid function f.

@ Again, recall, tight sets are closed under union and intersection, and
therefore form a distributive lattice.
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Closure/Sat
[ ANRRNRRRNANRY

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A spans
(eq. that depend on A).

@ We wish to generalize closure to polymatroids.
o Consider x € Py for polymatroid function f.

@ Again, recall, tight sets are closed under union and intersection, and
therefore form a distributive lattice.

@ That is, we saw in Lecture 7 that for any A, B € D(z), we have that
AUB € D(z) and AN B € D(x), which can constitute a join and
meet.
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Closure/Sat
[ ANRRNRRRNANAY

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A spans
(eq. that depend on A).

@ We wish to generalize closure to polymatroids.
o Consider x € Py for polymatroid function f.

@ Again, recall, tight sets are closed under union and intersection, and
therefore form a distributive lattice.

@ That is, we saw in Lecture 7 that for any A, B € D(x), we have that
AUB € D(z) and AN B € D(x), which can constitute a join and
meet.

@ Recall, for a given = € Py, we have defined this tight family as

D(z) = {A: AC E,z(A) = f(A)} (17.29)
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Closure/Sat
LIRRRRRNRNAY

The sat function = Polymatroid Closure

o Now given z € PJT:

D(z) = {A: AC E,z(A) = f(A)} (17.30)
= {A: f(A) - z(A) =0} (17.31)
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Closure/Sat
L RRRRRNERNN

The sat function = Polymatroid Closure

o Now given = € PJT:

D(z) = {A: AC E,z(A) = f(A)} (17.30)
= {A: f(A) — z(A) =0} (17.31)

@ Since x € P and f is presumed to be polymatroid function, we see

f'(A) = f(A) — z(A) is a non-negative submodular function, and D(x)
are the zero-valued minimizers (if any) of f/(A).
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Closure/Sat
L RRRRRNERNN

The sat function = Polymatroid Closure

o Now given = € PJT:

D(z) = {A: AC E,z(A) = f(A)} (17.30)
= {A: f(A) — z(A) =0} (17.31)

@ Since € P; and f is presumed to be polymatroid function, we see
f'(A) = f(A) — z(A) is a non-negative submodular function, and D(x)
are the zero-valued minimizers (if any) of f/(A).

@ The zero-valued minimizers of f’ are thus closed under union and
intersection.
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cl /sat
(L RRRNRNNNRRN

The sat function = Polymatroid Closure

o Now given = € PJT:

D(z) = {A: AC E,z(A) = f(A)} (17.30)
= {A: f(A) — z(A) =0} (17.31)

@ Since € P; and f is presumed to be polymatroid function, we see
f'(A) = f(A) — z(A) is a non-negative submodular function, and D(x)
are the zero-valued minimizers (if any) of f/(A).

@ The zero-valued minimizers of f’ are thus closed under union and
intersection.

o In fact, this is true for all minimizers of a submodular function as stated
in the next theorem.
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Closure/Sat
L NERRRRNRAY

Minimizers of a Submodular Function form a lattice

Theorem 17.8.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of minimizers of
f-Let AABe M. Then AUB € M and AN B € M.
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Closure/Sat
L NERRRRNRAY

Minimizers of a Submodular Function form a lattice

Theorem 17.8.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of minimizers of
f-Let AABe M. Then AUB € M and AN B € M.

[]
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Closure/Sat
L NERRRRNRAY

Minimizers of a Submodular Function form a lattice

Theorem 17.8.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of minimizers of
f-Let AABe M. Then AUB € M and AN B € M.

Proof.
Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(A) = f(B) < f(AUB).
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Closure/Sat
L NERRRRNRAY

Minimizers of a Submodular Function form a lattice

Theorem 17.8.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of minimizers of
f-Let AABe M. Then AUB € M and AN B € M.

Proof.
Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(A) = f(B) < f(AUB).

By submodularity, we have

f(A)+ f(B) =z f(AUB) + f(AN B) (17.32)

Ol

EE563/Spring 2018/Submodularity - Lecture 17 - May 23st, 2018 F43/54 (pg.119/192)



Closure/Sat
L NERRRRNRAY

Minimizers of a Submodular Function form a lattice

Theorem 17.8.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of minimizers of
f-Let AABe M. Then AUB € M and AN B € M.

Proof.
Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(A) = f(B) < f(AUB).

By submodularity, we have

f(A)+ f(B) > f(AUB) + f(AN B) (17.32)

Hence, we must have f(A) = f(B) = f(AUB) = f(AN B). O
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Closure/Sat
L NERRRRNRAY

Minimizers of a Submodular Function form a lattice

Theorem 17.8.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of minimizers of
f-Let AABe M. Then AUB € M and AN B € M.

Proof.

Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(A) = f(B) < f(AUB).

By submodularity, we have

f(A)+ f(B) > f(AUB) + f(AN B) (17.32)

Hence, we must have f(A) = f(B) = f(AUB) = f(AN B). O

Thus, the minimizers of a submodular function form a lattice, and there is a
maximal and a minimal minimizer of every submodular function.
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Closure/Sat
(L ERRRRNRNAY

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in D(x),
also called the polymatroid closure or sat (saturation function).
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Closure/Sat
(L ERRRRNRNAY

The sat function = Polymatroid Closure

e Matroid closure is generalized by the unique maximal element in D(x),
also called the polymatroid closure or sat (saturation function).

e For some = € Py, we have defined:

def dof

cl(z) < sat UJ{A: Ae D)} (17.33)

_(A/)’(/LO
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The sat function = Polymatroid Closure

e Matroid closure is generalized by the unique maximal element in D(x),
also called the polymatroid closure or sat (saturation function).

e For some = € Py, we have defined:

cl(z) & sat(z) € | J{A: A € D(x)} (17.33)

= J{A: AC B,z(A) = f(A)} (17.34)
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Closure/Sat
RLERERNERNR

The sat function = Polymatroid Closure

e Matroid closure is generalized by the unique maximal element in D(x),
also called the polymatroid closure or sat (saturation function).
e For some = € Py, we have defined:

cl(z) € sat(z) €| J{A: A € D(2)} (17.33)
= J{A: ACE x(A) = f(A)} (17.34)
={e:ec ENa> 0,2+ al. ¢ Py} (17.35)
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Closure/Sat
(L ERRRRNRNAY

The sat function = Polymatroid Closure

e Matroid closure is generalized by the unique maximal element in D(x),
also called the polymatroid closure or sat (saturation function).

e For some = € Py, we have defined:

cl(z) & sat(z) € | J{A: A € D(x)} (17.33)
= J{A: ACE x(A) = f(A)} (17.34)
={e:ec ENa> 0,2+ al. ¢ Py} (17.35)

@ Hence, sat(z) is the maximal (zero-valued) minimizer of the
submodular function f,(A4) £ f(A) — z(A).
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Closure/Sat
RLERRRNERNR

The sat function = Polymatroid Closure

e Matroid closure is generalized by the unique maximal element in D(x),
also called the polymatroid closure or sat (saturation function).

e For some = € Py, we have defined:

cl(z) & sat(z) € | J{A: A € D(x)} (17.33)
= J{A: ACE x(A) = f(A)} (17.34)
={e:ec ENa> 0,2+ al. ¢ Py} (17.35)

@ Hence, sat(z) is the maximal (zero-valued) minimizer of the
submodular function f,(A) £ f(A) — z(A). € for

@ Eq. (17.35) says that sat consists of elements o point « that are Py
saturated (any additional positive movement, in‘that dimension, leaves

Py). We'll revisit this in a few slides.
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The sat function = Polymatroid Closure

e Matroid closure is generalized by the unique maximal element in D(x),
also called the polymatroid closure or sat (saturation function).

e For some = € Py, we have defined:

cl(z) & sat(z) € | J{A: A € D(x)} (17.33)
= J{A: ACE x(A) = f(A)} (17.34)
={e:ec ENa> 0,2+ al. ¢ Py} (17.35)

@ Hence, sat(z) is the maximal (zero-valued) minimizer of the
submodular function f,(A) £ f(A) — z(A).

e Eq. (17.35) says that sat consists of elements of point = that are Py
saturated (any additional positive movement, in that dimension, leaves
Py). We'll revisit this in a few slides.

o First, we see how sat generalizes matroid closure.
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Closure/Sat
(RN ARRRNRNAY

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some [ € Z. Then 1; € P, and

vz lp D(1;) = {A: 11(A) = r(A)} (17.36)
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The sat function = Polymatroid Closure

o Consider matroid (E,Z) = (E,r), some I € Z. Then 1; € P, and
D(1;)={A:1;(A) =r(A)} (17.36)
and

sat(1y)
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Closure/Sat
HHI\HHHH

The sat function = Polymatroid Closure

o Consider matroid (E,Z) = (E,r), some I € Z. Then 1; € P, and
D(1;)={A:1;(A) =r(A)} (17.36)
and

sat(1y) = J{4: AC E, A€ D(1)} (17.37)
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Closure/Sat
HHI\HHHH

The sat function = Polymatroid Closure

o Consider matroid (E,Z) = (E,r), some I € Z. Then 1; € P, and

D(1;) ={A:1,(A4) =r(A4)} (17.36)

and
sat(1;) = J{A: AC E, A€ D(1,)} (17.37)
=J{A: ACE 1,(4) =r(A)} (17.38)
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Closure/Sat
(RN ARRRNRNAY

The sat function = Polymatroid Closure

o Consider matroid (E,Z) = (E,r), some I € Z. Then 1; € P, and

D(1r) ={A:1,(A4) =r(A)} (17.36)

and
sat(1;) = J{A: AC E, A€ D(1,)} (17.37)
=J{A: ACE 1,(4) =r(A)} (17.38)
=J{A: ACE |InAl=r(A)} (17.39)
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Closure/Sat
HHI\HHHH

The sat function = Polymatroid Closure

o Consider matroid (E,Z) = (E,r), some I € Z. Then 1; € P, and

D(1r) ={A:1,(A4) =r(A)} (17.36)

and
sat(1;) = J{A: AC E, A€ D(1,)} (17.37)
=J{A: ACE 1,(4) =r(A)} (17.38)
=J{A4:ACE|InA =rA)} (17.39)

e Notice that 1;(A) = |I N A| <|I|.
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Closure/Sat
(RN ARRRNRNAY

The sat function = Polymatroid Closure

o Consider matroid (E,Z) = (E,r), some I € Z. Then 1; € P, and

D(11) ={A:1;(A) =r(A)} (17.36)

and
sat(1;) = J{A: AC E, A€ D(1,)} (17.37)
=J{A: ACE 1,(4) =r(A)} (17.38)
=J{A4:ACE|InA =rA)} (17.39)

e Notice that 1;7(A4) = [INA| < |I].

@ Intuitively, consider an A D I € 7 that doesn’t increase rank, meaning
r(A) =r(I). fr(A) =|INAl=r(INA), asin Eqn. (17.39), then A
is in I's span, so should get sat(1;) = span(/).

cl #ng) v (/Hf)) «’P@:”’T/

EE563/Spring 2018/Submodularity - Lecture 17 - May 23st, 2018 F45/54 (pg.135/192)



Closure/Sat
HHI\HHHH

The sat function = Polymatroid Closure

o Consider matroid (E,Z) = (E,r), some I € Z. Then 1; € P, and

D(1r) ={A:1,(A4) =r(A)} (17.36)

and
sat(1;) = J{A: AC E, A€ D(1,)} (17.37)
=J{A: ACE 1,(4) =r(A)} (17.38)
=J{A4:ACE|InA =rA)} (17.39)

e Notice that 1;7(A4) = [INA| < |I].

@ Intuitively, consider an A D I € 7 that doesn’t increase rank, meaning
r(A) =r(I). fr(A) =|INA|=r(INA), asin Eqn. (17.39), then A
is in I's span, so should get sat(17) = span([).

o We formalize this next.
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Closure/Sat
ERRRL ERRNRNAY

The sat function = Polymatroid Closure

Lemma 17.8.2 (Matroid sat : R¥ — 2F is the same as closure.)

For I € Z, we have sat(1;) = span([) (17.40)
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The sat function = Polymatroid Closure

Lemma 17.8.2 (Matroid sat : R¥ — 2F is the same as closure.)

For I € Z, we have sat(1;) = span([) (17.40)

@ For 1;(I) = |I| =r(I),so I € D(17) and I C sat(1;). Also,
I C span([).
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Closure/Sat
ERRRL ERRNRNAY

The sat function = Polymatroid Closure

Lemma 17.8.2 (Matroid sat : R¥ — 2F is the same as closure.)

For I € Z, we have sat(1y) = span([) (17.40)
@ For1;(I)=|I| =r(I),soI € D(1r) and I C sat(1). Also,
I C span([).

e Consider some b € span([/) \ 1.
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Closure/Sat
ERRRL ERRNRNAY

The sat function = Polymatroid Closure

Lemma 17.8.2 (Matroid sat : R¥ — 2F is the same as closure.)

For I € Z, we have sat(1y) = span([) (17.40)
@ For1;(I)=|I| =r(I),soI € D(1r) and I C sat(1). Also,
I C span([).

o Consider some b € span([) \ 1.
@ Then IU{b} € D(1;) since 1;(L U {b}) = |I| =r(I U{b}) = r(I).
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Closure/Sat
ERERL ERRERNR

The sat function = Polymatroid Closure

Lemma 17.8.2 (Matroid sat : R¥ — 2F is the same as closure.)

For I € Z, we have sat(1y) = span([) (17.40)
@ For1;(I)=|I| =r(I),soI € D(1r) and I C sat(1). Also,
I C span([).

o Consider some b € span([) \ 1.
@ Then T U {b} € D(1;) since 1;(I U {b}) = |I| =r(IU{b}) =r(I).
@ Thus, b € sat(1y).
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Closure/Sat
ERERL ERRERNR

The sat function = Polymatroid Closure

Lemma 17.8.2 (Matroid sat : R¥ — 2F is the same as closure.)

For I € Z, we have sat(1y) = span([) (17.40)
@ For1;(I)=|I| =r(I),soI € D(1r) and I C sat(1). Also,
I C span([).
o Consider some b € span([) \ 1.

Then T U {b} € D(11) since 1;(I U {b}) = |I| = r(I U{b}) = r(I).
Thus, b € sat(1y).
Therefore, sat(1;) 2 span([]) .
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Closure/Sat
(ERRER ARNRNAY

The sat function = Polymatroid Closure

... proof continued.

@ Now, consider b € sat(17) \ I.
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Closure/Sat
(ERRER ARNRNAY

The sat function = Polymatroid Closure

... proof continued.

o Now, consider b € sat(17) \ I.
@ Choose any A € D(1;) with b e A, thusbe A\ I.
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The sat function = Polymatroid Closure

... proof continued.

o Now, consider b € sat(17) \ I.
@ Choose any A € D(1;) with b e A, thusbe A\ I.
@ Then 1;(A)=|ANI|=r(A)=r(ANI).
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Closure/Sat
(ERRER ARNRNAY

The sat function = Polymatroid Closure

... proof continued.

@ Now, consider b € sat(15) \ I.

@ Choose any A € D(1;) with b e A, thusbe A\ I.
@ Then 1;(A)=|ANI|=r(A) =r(ANI).

@ Now r(A4) = |[ANI| <|I| =r().
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Closure/Sat
(ERRER ARNRNAY

The sat function = Polymatroid Closure

... proof continued.

o Now, consider b € sat(17) \ I.

@ Choose any A € D(1;) with b e A, thusbe A\ I.
@ Then 1;(A)=|ANI|=r(A) =r(ANI).

o Now r(A) = |[ANI| < |I| =r().

@ Also, r(ANI)=|ANI|since ANI €T
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Closure/Sat
(ERRER ARNRNAY

The sat function = Polymatroid Closure

... proof continued.

o Now, consider b € sat(17) \ I.

@ Choose any A € D(1;) with b e A, thusbe A\ I.
@ Then 1;(A)=|ANI|=r(A) =r(ANI).

o Now r(A) = |[ANI| < |I| =r().
°
°

Also, r(ANI)=|ANI|since ANI e T.

Hence, r(ANI)=7r(A) =r((ANI)U(A\ I)) meaning
(A\I) Cspan(ANI) Cspan(]).
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Closure/Sat
(ERRER ARNRNAY

The sat function = Polymatroid Closure

... proof continued.

o Now, consider b € sat(17) \ I.

@ Choose any A € D(1;) with b e A, thusbe A\ I.

@ Then 1;(A)=|ANI|=r(A) =r(ANI).

o Now r(A) = |[ANI| < |I| =r().

@ Also, r(ANI)=|ANI|since ANI eI

@ Hence, r(ANI)=r(A)=r((ANI)U(A\I)) meaning
(A\I) Cspan(ANI) Cspan(]).

@ Since b e A\ I, we get b € span(I).
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Closure/Sat

The sat function = Polymatroid Closure

... proof continued.

o Now, consider b € sat(17) \ I.

@ Choose any A € D(1;) with b e A, thusbe A\ I.
@ Then 1;(A)=|ANI|=r(A) =r(ANI).

o Now r(A) = |[ANI| < |I| =r().
°
°

Also, r(ANI)=|ANI|since ANI e T.
Hence, r(ANI)=1r(A)=r((ANI)U(A\ I)) meaning
(A\I) Cspan(ANI) Cspan(]).

o Since be A\ I, we get b € span(I).

@ Thus, sat(17) C span([) .
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Closure/Sat
(ERRER ARNRNAY

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(17) \ 1.

Choose any A € D(17) with b€ A, thusbe A\ .

Then 1;(A) = |ANnI|=7r(A)=r(ANI).

Now r(A) = |ANI| < |I| =r(I).

Also, r(ANI)=|ANI|since ANI € T.

Hence, r(ANI)=7r(A)=r((ANI)U(A\I)) meaning
(A\I) Cspan(ANI) Cspan(]).

o Since be A\ I, we get b € span(I).

@ Thus, sat(17) C span([) .

o Hence [sat(1;) = span(7)
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Closure/Sat
(ERRERRL ENRNAY

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C C E with C' ¢ Z, and
consider 1.
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Closure/Sat
(ERRERRL ENRNAY

The sat function = Polymatroid Closure

e Now, consider a matroid (E,r) and some C C E with C' ¢ Z, and
consider 1. Is 1o € P,.?
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Closure/Sat
(ERRERRL ENRNAY

The sat function = Polymatroid Closure

e Now, consider a matroid (E,r) and some C C E with C' ¢ Z, and
consider 1. Is 1 € P.7 No, it is not a vertex, or even a member, of
P
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Closure/Sat
ERRRRRL IR

The sat function = Polymatroid Closure

e Now, consider a matroid (E,r) and some C C E with C' ¢ Z, and
consider 1. Is 1o € P.7 No, it is not a vertex, or even a member, of

P,.
@ span(-) operates on more than just independent sets, so span(C) is

perfectly sensible.

F48/54 (pg.155/192)
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Closure/Sat
ERRRRRL IR

The sat function = Polymatroid Closure

e Now, consider a matroid (E,r) and some C C E with C' ¢ Z, and
consider 1. Is 1o € P.7 No, it is not a vertex, or even a member, of
P,..

@ span(-) operates on more than just independent sets, so span(C) is

perfectly sensible.
@ Note span(C') = span(B) where Z > B € B(C) is a base of C.
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The sat function = Polymatroid Closure

e Now, consider a matroid (E,r) and some C C E with C' ¢ Z, and
consider 1. Is 1o € P.7 No, it is not a vertex, or even a member, of
P,..

@ span(-) operates on more than just independent sets, so span(C) is
perfectly sensible.

@ Note span(C') = span(B) where Z > B € B(C) is a base of C.

@ Then we have 15 < 1¢ < 1g,.n(c), and that 15 € .. We can then
make the definition:

sat(1¢) 2 sat(1p) for B € B(O) (17.41)

In which case, we also get sat(1¢) = span(C') (in general, could define
sat(y) = sat(P-basis(y))).
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Closure/Sat
(ERRERRL NNRNAY

The sat function = Polymatroid Closure

e Now, consider a matroid (E,r) and some C C E with C' ¢ Z, and
consider 1. Is 1o € P.7 No, it is not a vertex, or even a member, of
P,..

@ span(-) operates on more than just independent sets, so span(C) is
perfectly sensible.

@ Note span(C') = span(B) where Z > B € B(C) is a base of C.

@ Then we have 15 < 1¢ < 1g,n(c), and that 15 € P.. We can then
make the definition:

sat(1¢) £ sat(1p) for B € B(C) (17.41)
In which case, we also get sat(1¢) = span(C) (in general, could define

sat(y) = sat(P-basis(y))).
@ However, consider the following form

sat(lc) = J{A: AC E,|[ANC| =r(A)} fmlm(n.zxz)

Exercise: is span(C') = sat(1¢)? Prove or disprove it. (-
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Closure/Sat
(ENRRRRRL ERAY!

The sat function, span, and submodular function

minimization

@ Thus, for a matroid, sat(1;) is exactly the closure (or span) of I in the
matroid. l.e., for matroid (E,r), we have span(/) = sat(1p).

EE563/Spring 2018/Submodularity - Lecture 17 - May 23st, 2018 F49/54 (pg.159/192)



Closure/Sat
(ENRRRRRL ERAY!

The sat function, span, and submodular function

minimization

@ Thus, for a matroid, sat(1;) is exactly the closure (or span) of I in the
matroid. l.e., for matroid (E,r), we have span(]) = sat(1p).

@ Recall, for z € Py and polymatroidal f, sat(x) is the maximal (by
inclusion) minimizer of f(A) — x(A), and thus in a matroid, span([) is
the maximal minimizer of the submodular function formed by

r(A) —17(A4).
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Closure/Sat
(ENRRRRRL ERAY!

The sat function, span, and submodular function

minimization

@ Thus, for a matroid, sat(1;) is exactly the closure (or span) of I in the
matroid. l.e., for matroid (E,r), we have span(]) = sat(1p).

@ Recall, for z € Py and polymatroidal f, sat(x) is the maximal (by
inclusion) minimizer of f(A) — x(A), and thus in a matroid, span([) is
the maximal minimizer of the submodular function formed by
r(A) = 17(A).

@ Submodular function minimization can solve “span” queries in a
matroid or “sat” queries in a polymatroid.
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Closure/Sat
ENRERRRRL AT

sat, as tight polymatroidal elements

o We are given an x € Pf for submodular function f.
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sat, as tight polymatroidal elements

e We are given an x € Pf+ for submodular function f.

@ Recall that for such an z, sat(x) is defined as

sat(z) = _J{A: z(A) = f(A)} (17.43)
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Closure/Sat
ENRERRRRL AT

sat, as tight polymatroidal elements

e We are given an x € Pf+ for submodular function f.

@ Recall that for such an z, sat(x) is defined as
sat(z) = | J{A: z(4) = f(A)} (17.43)
@ We also have stated that sat(z) can be defined as:

sat(z) = {e Vo> 0,z +al. ¢ P]T} (17.44)
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sat, as tight polymatroidal elements

e We are given an x € Pf+ for submodular function f.

@ Recall that for such an z, sat(x) is defined as
sat(z) = | J{A: z(4) = f(A)} (17.43)
@ We also have stated that sat(z) can be defined as:

sat(z) = {e Yo >0,z + ol ¢ P;} (17.44)

@ We next show more formally that these are the same.
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Closure/Sat
ERRERRRRNLIAY

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.

sat(x)
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Closure/Sat
ERRERRRRNLIAY

sat, as tight polymatroidal elements

o Lets start with one definition and derive the other.
sat(z) {e Vo> 0,7+ al, ¢ P;} (17.45)
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sat, as tight polymatroidal elements

o Lets start with one definition and derive the other.

sat(z) & {e Yo > 0,2+ ale ¢ P;} (17.45)

={e:Va>0,3Ast. (z+al.)(A) > f(A)} (17.46)
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Closure/Sat
ERRERRRRNLIAY

sat, as tight polymatroidal elements

o Lets start with one definition and derive the other.
sat(z) & {e Yo > 0,2+ ale ¢ P;} (17.45)

={e:Va>0,3Ast. (z+al.)(A) > f(A)} (17.46)
={e:Va>0,3JA3est. (z+al.)(A) > f(A)} (17.47)

F51/54 (pg.169/192)
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Closure/Sat
ERRERRRRNLIAY

sat, as tight polymatroidal elements

o Lets start with one definition and derive the other.
sat(z) & {e Yo > 0,2+ ale ¢ P;} (17.45)

={e:Va>0,3Ast. (z+al.)(A) > f(A)} (17.46)
={e:Va>0,3A3est. (v +al.)(A) > f(A)} (17.47)

@ this last bit follows since 1.(A) =1 <= e € A.

F51/54 (pg.170/192)
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Closure/Sat
ERRERRRRNLIAY

sat, as tight polymatroidal elements

o Lets start with one definition and derive the other.
sat(z) & {e Yo > 0,2+ ale ¢ P;} (17.45)
={e:Va>0,3Ast. (z+al.)(A) > f(A)} (17.46)
={e:Va>0,3A3est. (z+al.)(A) > f(A)} (17.47)
@ this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(x) ={e:Va>0,dJA2est. x(A)+a > f(A)} (17.48)
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Closure/Sat
ERRERRRRNLIAY

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) & {e Yo > 0,2+ ale ¢ P;} (17.45)
={e:Va>0,3Ast. (z+al.)(A) > f(A)} (17.46)
={e:Va>0,3A3est. (v +al.)(A) > f(A)} (17.47)
o this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va > 0,345 est. z(A)+a> f(A)} (17.48)
@ given that z € P;r, meaning z(A) < f(A) for all A, we must have

sat(x)
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Closure/Sat
ERRRRRRREL I

sat, as tight polymatroidal elements

o Lets start with one definition and derive the other.

sat(z) & {e Yo > 0,2+ ale ¢ P;} (17.45)

={e:Va>0,3Ast. (z+al.)(A) > f(A)} (17.46)
={e:Va>0,3A3est. (v +al.)(A) > f(A)} (17.47)
o this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va > 0,345 est. z(A)+a> f(A)} (17.48)
@ given that = € PJT, meaning z(A) < f(A) for all A, we must have

sat(z) = {e:Va>0,3A > est z(A) = f(A)} (17.49)
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Closure/Sat
ERRRRRRREL I

sat, as tight polymatroidal elements

o Lets start with one definition and derive the other.

sat(z) & {e Yo > 0,2+ ale ¢ P;} (17.45)

={e:Va>0,3Ast. (z+al.)(A) > f(A)} (17.46)
={e:Va>0,3A3est. (v +al.)(A) > f(A)} (17.47)
o this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va > 0,345 est. z(A)+a> f(A)} (17.48)
@ given that = € PJT, meaning z(A) < f(A) for all A, we must have
sat(z) ={e:Va>0,3A>est z(A) = f(A)} (17.49)
={e:JA>est x(4) = f(A)} (17.50)
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sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) & {e Yo > 0,2+ ale ¢ P;} (17.45)
={e:Va>0,3Ast. (z+al.)(A) > f(A)} (17.46)
={e:Va>0,3A3est. (v +al.)(A) > f(A)} (17.47)
o this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va > 0,345 est. z(A)+a> f(A)} (17.48)
@ given that = € PJT, meaning z(A) < f(A) for all A, we must have
sat(x) = {e:Va > 0,dA 3 est. z(A) = f(A)} (17.49)
={e:JA>est z(A) = f(A)} (17.50)
@ So now, if A is any set such that z(A) = f(A), then we clearly have

(17.51)
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sat, as tight polymatroidal elements

o Lets start with one definition and derive the other.
sat(x) def {e Ya>0,z+al. ¢ P]T} (17.45)
={e:Va>0,3Ast. (z+al.)(A) > f(A)} (17.46)
={e:Va>0,3A3est. (v +al.)(A) > f(A)} (17.47)
o this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va > 0,345 est. z(A)+a> f(A)} (17.48)
@ given that = € PJT, meaning z(A) < f(A) for all A, we must have
sat(z) ={e:Va>0,3A>est z(A) = f(A)} (17.49)
={e:JA>est z(A) = f(A)} (17.50)
@ So now, if A is any set such that z(A) = f(A), then we clearly have

Ve € A, e € sat(x), (17.51)
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sat, as tight polymatroidal elements

o Lets start with one definition and derive the other.
sat(x) def {e Ya>0,z+al. ¢ P]T} (17.45)
={e:Va>0,3Ast. (z+al.)(A) > f(A)} (17.46)
={e:Va>0,3A3est. (v +al.)(A) > f(A)} (17.47)
o this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va > 0,345 est. z(A)+a> f(A)} (17.48)
@ given that = € PJT, meaning z(A) < f(A) for all A, we must have
sat(z) ={e:Va>0,3A>est z(A) = f(A)} (17.49)
={e:JA>est z(A) = f(A)} (17.50)
@ So now, if A is any set such that z(A) = f(A), then we clearly have

Ve € A, e € sat(z), and therefore that sat(z) O A (17.51)
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sat, as tight polymatroidal elements

@ ...and therefore, with sat as defined in Eq. (77?),

sat(z) 2 | J{A: 2(4) = f(A)} (17.52)
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sat, as tight polymatroidal elements

@ ...and therefore, with sat as defined in Eq. (77?),
sat(z) 2 U {A:z(4) = f(A)} (17.52)

@ On the other hand, for any e € sat(z) defined as in Eq. (17.50), since e
is itself a member of a tight set, there is a set A > e such that

z(A) = f(A), giving

sat(z CU{A x( f(A)} (17.53)
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sat, as tight polymatroidal elements

@ ...and therefore, with sat as defined in Eq. (77?),
sat(z) 2 U {A:z(4) = f(A)} (17.52)

@ On the other hand, for any e € sat(z) defined as in Eq. (17.50), since e
is itself a member of a tight set, there is a set A 3 e such that

2(A) = f(A), giving

sat(z) C U {A:z2(A) = f(A)} (17.53)

@ Therefore, the two definitions of sat are identical.
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Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.

Bilmes EE563/Spring 2018/Submodularity - Lecture 17 - May 23st, 2018 F53/54 (pg.181/192)



Closure/Sat
(ERRERRRRNRNL Y

Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
@ For xz € Py, and e € E, consider finding

max{a:a € R,z +al. € P} (17.54)
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Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
e For z € Py, and e € E, consider finding

max{a:a € R,z +al. € P} (17.54)
@ This is identical to:
max{a: (z+ al.)(A) < f(A),VA D {e}} (17.55)

since any B C F such that e ¢ B does not change in a 1. adjustment,
meaning (z + al.)(B) = z(B).
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Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
e For z € Py, and e € E, consider finding

max{a:a € R,z +al. € P} (17.54)
@ This is identical to:
max{a: (z+ al.)(A) < f(A),VA D {e}} (17.55)

since any B C F such that e ¢ B does not change in a 1. adjustment,
meaning (z + al.)(B) = z(B).
@ Again, this is identical to:

max {«a: z(A) +a < f(A),VA D {e}} (17.56)
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Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
e For z € Py, and e € E, consider finding

max{a:a € R,z +al. € P} (17.54)
@ This is identical to:
max{a: (z+ al.)(A) < f(A),VA D {e}} (17.55)

since any B C F such that e ¢ B does not change in a 1. adjustment,
meaning (z + al.)(B) = z(B).
@ Again, this is identical to:
max {a: z(A)+a < f(A),VA D {e}} (17.56)

or

max{a:a < f(A) —z(A),VA D {e}} (17.57)
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Saturation Capacity

@ The max is achieved when

a = é(zye) © min {f(A) — 2(A),VA D {e}} (17.58)
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Saturation Capacity

@ The max is achieved when
a = é(z;e) 2 min {f(A) — 2(A),VA D {e}} (17.58)

@ ¢(x;e) is known as the saturation capacity associated with 2 € Py and
e
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Saturation Capacity

@ The max is achieved when
a = é(z;e) 2 min {f(A) — 2(A),VA D {e}} (17.58)

@ ¢(x;e) is known as the saturation capacity associated with « € Py and
e.

@ Thus we have for z € P,

é(xye) 4 in {f(A) —z(A),VA > e} (17.59)
=max{a:a R,z +al. € P} (17.60)
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Saturation Capacity

@ The max is achieved when
a = é(z;e) 2 min {f(A) — 2(A),VA D {e}} (17.58)

@ ¢(x;e) is known as the saturation capacity associated with « € Py and
e.

@ Thus we have for z € P,

é(zse) € min {f(A) — 2(A),VA > e} (17.59)
=max{a:a R,z +al. € P} (17.60)

@ We immediately see that for e € E \ sat(x), we have that é(z;e) > 0.
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Saturation Capacity

@ The max is achieved when
a = é(z;e) 2 min {f(A) — 2(A),VA D {e}} (17.58)

@ ¢(x;e) is known as the saturation capacity associated with « € Py and
e.

@ Thus we have for z € P,

é(zse) € min {f(A) — 2(A),VA > e} (17.59)
=max{a:a R,z +al. € P} (17.60)

@ We immediately see that for e € E \ sat(x), we have that é¢(z;e) > 0.
@ Also, we have that: e € sat(x) < é(z;e) = 0.
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Saturation Capacity

@ The max is achieved when

a = é(z;e) 2 min {f(A) — 2(A),VA D {e}} (17.58)
@ ¢(x;e) is known as the saturation capacity associated with « € Py and
e.
@ Thus we have for z € P,
é(zse) € min {f(A) — 2(A),VA > e} (17.59)
=max{a:a R,z +al. € P} (17.60)

(]

We immediately see that for e € E \ sat(x), we have that é(z;e) > 0.
Also, we have that: e € sat(z) < ¢é(x;e) = 0.
Note that any o with 0 < o <

¢(z;e) we have z 4+ al. € Py.
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Saturation Capacity

@ The max is achieved when

a = é(z;e) 2 min {f(A) — 2(A),VA D {e}} (17.58)
@ ¢(x;e) is known as the saturation capacity associated with « € Py and
e.
@ Thus we have for z € P,
é(zse) € min {f(A) — 2(A),VA > e} (17.59)
=max{a:a R,z +al. € P} (17.60)

We immediately see that for e € E \ sat(x), we have that é(z;e) > 0.
Also, we have that: e € sat(z) < ¢é(x;e) = 0.
Note that any a with 0 < a < é(z;e) we have z + al, € Py.

We also see that computing ¢(x;e) is a form of submodular function
minimization.

® 6 o o
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