Submodular Functions, Optimization, and Applications to Machine Learning
 - Spring Quarter, Lecture 17 -

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

May 23st, 2018

$f(A)+f(B) \geq f(A \cup B)+f(A \cap B)$
$=f\left(A_{r}\right)+2 f(C)+f\left(B_{r}\right)=f\left(A_{r}\right)+f(C)+f\left(B_{r}\right) \quad=f\left(A_{\cap} \cap B\right)$

Announcements, Assignments, and Reminders

- Next homework will be posted tonight.
- Rest of the quarter. One more longish homework.
- Take home final exam (like a long homework).
- As always, if you have any questions about anything, please ask then via our discussion board (https://canvas.uw.edu/courses/1216339/discussion_topics). Can meet at odd hours via zoom (send message on canvas to schedule time to chat).

Class Road Map - EE563

- L1(3/26): Motivation, Applications, \& Basic Definitions,
- L2(3/28): Machine Learning Apps (diversity, complexity, parameter, learning target, surrogate).
- L3(4/2): Info theory exs, more apps, definitions, graph/combinatorial examples
- L4(4/4): Graph and Combinatorial Examples, Matrix Rank, Examples and Properties, visualizations
- L5(4/9): More Examples/Properties/ Other Submodular Defs., Independence,
- L6(4/11): Matroids, Matroid Examples, Matroid Rank, Partition/Laminar Matroids
- L7(4/16): Laminar Matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid Representation, Dual Matroids
- L8(4/18): Dual Matroids, Other Matroid Properties, Combinatorial Geometries, Matroids and Greedy.
- L9(4/23): Polyhedra, Matroid Polytopes, Matroids \rightarrow Polymatroids
- L10(4/29): Matroids \rightarrow Polymatroids, Polymatroids, Polymatroids and Greedy,
- L11(4/30): Polymatroids, Polymatroids and Greedy
- L12(5/2): Polymatroids and Greedy, Extreme Points, Cardinality Constrained Maximization
- L13(5/7): Constrained Submodular Maximization
- L14(5/9): Submodular Max w. Other Constraints, Cont. Extensions, Lovasz Extension
- L15(5/14): Cont. Extensions, Lovasz Extension, Choquet Integration, Properties
- L16(5/16): More Lovasz extension, Choquet, defs/props, examples, multiliear extension
- L17(5/21): Finish L.E., Multilinear Extension, Submodular Max/polyhedral approaches, Most Violated inequality, Still More on Matroids, Closure/Sat
- L18(5/23):
- L-(5/28): Memorial Day (holiday)
- L19(5/30):
- L21(6/4): Final Presentations maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

One slide review of concave relaxation

- convex closure $\check{f}(x)=\min _{p \in \triangle^{n}(x)} E_{S \sim p}[f(S)]$, where where $\triangle^{n}(x)=$ $\left\{p \in \mathbb{R}^{2^{n}}: \sum_{S \subseteq V} p_{S}=1, p_{S} \geq 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_{S} \mathbf{1}_{S}=x\right\}$
- "Edmonds" extension $\breve{f}(w)=\max \left(w x: x \in B_{f}\right)$
- Lovász extension $f_{\mathrm{LE}}(w)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)$, with λ_{i} such that $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$
- $\tilde{f}(w)=\max _{\sigma \in \Pi_{[m]}} w^{\top} c^{\sigma}, \Pi_{[m]}$ set of m ! permutations of $[m]$, $\sigma \in \Pi_{[m]}$ a permutation, c^{σ} vector with $c_{i}^{\sigma}=f\left(E_{\sigma_{i}}\right)-f\left(E_{\sigma_{i-1}}\right)$, $E_{\sigma_{i}}=\left\{e_{\sigma_{1}}, e_{\sigma_{2}}, \ldots, e_{\sigma_{i}}\right\}$.
- Choquet integral $C_{f}(w)=\sum_{i=1}^{m}\left(w_{e_{i}}-w_{e_{i+1}}\right) f\left(E_{i}\right)$
- $\tilde{f}(w)=\int_{-\infty}^{+\infty} \hat{f}(\alpha) d \alpha, \hat{f}(\alpha)= \begin{cases}f(\{w \geq \alpha\}) & \text { if } \alpha \geq 0 \\ f(\{w \geq \alpha\})-f(E) & \text { if } \alpha<0\end{cases}$
- All the same when f is submodular.

Lovász extension properties

- Using the above, have the following (some of which we've seen):

Theorem 17.2.2

Let $f, g: 2^{E} \rightarrow \mathbb{R}$ be normalized $(f(\emptyset)=g(\emptyset)=0)$. Then
(1) Superposition of LE operator: Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f}+\tilde{g}$ is the Lovász extension of $f+g$ and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.
(2) If $w \in \mathbb{R}_{+}^{E}$ then $\tilde{f}(w)=\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha$.
(3) For $w \in \mathbb{R}^{E}$, and $\alpha \in \mathbb{R}$, we have $\tilde{f}\left(w+\alpha \mathbf{1}_{E}\right)=\tilde{f}(w)+$.
(9) Positive homogeneity: I.e., $\tilde{f}(\alpha w)=\alpha \tilde{f}(w)$ for $\alpha \geq 0$.
(9) For all $A \subseteq E, \tilde{f}\left(\mathbf{1}_{A}\right)=f(A)$.
(0) f symmetric as in $f(A)=f(E \backslash A), \forall A$, then $\tilde{f}(w)=\tilde{f}(-w)(\tilde{f}$ is even).
(1) Given partition $E^{1} \cup E^{2} \cup \cdots \cup E^{k}$ of E and $w=\sum_{i=1}^{k} \gamma_{i} \mathbf{1}_{E_{k}}$ with $\gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{k}$, and with $E^{1: i}=E^{1} \cup E^{2} \cup \cdots \cup E^{i}$, then $\tilde{f}(w)=\sum_{i=1}^{k} \gamma_{i} f\left(E^{i} \mid E^{1: i-1}\right)=\sum_{i=1}^{k-1} f\left(E^{1: i}\right)\left(\gamma_{i}-\gamma_{i+1}\right)+f(E) \gamma_{k}$.

Example: $m=3, E=\{1,2,3\}$

- In order to visualize in 3D, we make a few simplifications.

Example: $m=3, E=\{1,2,3\}$

- In order to visualize in 3D, we make a fey simplifications.
- Consider any submodular f^{\prime} and $x \in B_{f^{\prime}}$. Then $f(A)=f^{\prime}(A)-x(A)$ is submodular

Example: $m=3, E=\{1,2,3\}$

$$
x(E)=f(E)
$$

- In order to visualize in 3D, we make a few simplifications.
- Consider any submodular f^{\prime} and $x \in B_{f^{\prime}}$. Then $f(A)=f^{\prime}(A)-x(A)$ is submodular, and moreover $f(E)=f^{\prime}(E)-x(E)=0$.

Example: $m=3, E=\{1,2,3\}$

- In order to visualize in 3D, we make a few simplifications.
- Consider any submodular f^{\prime} and $x \in B_{f^{\prime}}$. Then $f(A)=f^{\prime}(A)-x(A)$ is submodular, and moreover $f(E)=f^{\prime}(E)-x(E)=0$.
- Hence, from $\tilde{f}\left(w_{\tilde{f}}+\alpha \mathbf{1}_{E}\right)=\tilde{f}(w)+\alpha f(E)$, we have that $\tilde{f}\left(w+\alpha \mathbf{1}_{E}\right)=\tilde{f}(w)$ when $f(E)=0$.

Example: $m=3, E=\{1,2,3\}$

- In order to visualize in 3D, we make a few simplifications.
- Consider any submodular f^{\prime} and $x \in B_{f^{\prime}}$. Then $f(A)=f^{\prime}(A)-x(A)$ is submodular, and moreover $f(E)=f^{\prime}(E)-x(E)=0$.
- Hence, from $\tilde{f}\left(w+\alpha \mathbf{1}_{E}\right)=\tilde{f}(w)+\alpha f(E)$, we have that $\tilde{f}\left(w+\alpha \mathbf{1}_{E}\right)=\tilde{f}(w)$ when $f(E)=0$.
- Thus, we can look "down" on the contour plot of the Lovász extension, $\{w: \tilde{f}(w)=1\}$, from a vantage point right on the line $\left\{x: x=\alpha \mathbf{1}_{E}, \alpha>0\right\}$ since moving in direction $\mathbf{1}_{E}$ changes nothing.

Example: $m=3, E=\{1,2,3\}$

- In order to visualize in 3D, we make a few simplifications.
- Consider any submodular f^{\prime} and $x \in B_{f^{\prime}}$. Then $f(A)=f^{\prime}(A)-x(A)$ is submodular, and moreover $f(E)=f^{\prime}(E)-x(E)=0$.
- Hence, from $\tilde{f}\left(w_{\tilde{f}}+\alpha \mathbf{1}_{E}\right)=\tilde{f}(w)+\alpha f(E)$, we have that $\tilde{f}\left(w+\alpha \mathbf{1}_{E}\right)=\tilde{f}(w)$ when $f(E)=0$.
- Thus, we can look "down" on the contour plot of the Lovász extension, $\{w: \tilde{f}(w)=1\}$, from a vantage point right on the line $\left\{x: x=\alpha \mathbf{1}_{E}, \alpha>0\right\}$ since moving in direction $\mathbf{1}_{E}$ changes nothing.
- I.e., consider 2D plane perpendicular to the line $\left\{x: \exists \alpha, x=\alpha \mathbf{1}_{E}\right\}$ at any point along that line, then Lovász extension is surface plot with coordinates on that plane (or alternatively we can view contours).

Example: $m=3, E=\{1,2,3\}$

- Example 1 (from Bach-2011): $f(A)=\mathbf{1}_{|A| \in\{1,2\}}$ $=\min \{|A|, 1\}+\min \{|E \backslash A|, 1\}-1$ is submodular, and $\tilde{f}(w)=\max _{k \in\{1,2,3\}} w_{k}-\min _{k \in\{1,2,3\}} w_{k}$.

Example: $m=3, E=\{1,2,3\}$

- Example 1 (from Bach-2011): $f(A)=\mathbf{1}_{|A| \in\{1,2\}}$ $=\min \{|A|, 1\}+\min \{|E \backslash A|, 1\}-1$ is submodular, and $\tilde{f}(w)=\max _{k \in\{1,2,3\}} w_{k}-\min _{k \in\{1,2,3\}} w_{k}$.

Example: $m=3, E=\{1,2,3\}$

- Example 2 (from

Bach-2011): $f(A)=$

$$
\left|\mathbf{1}_{1 \in A}-\mathbf{1}_{2 \in A}\right|+\left|\mathbf{1}_{2 \in A}-\mathbf{1}_{3 \in A}\right|
$$

Example: $m=3, E=\{1,2,3\}$

- Example 2 (from

Bach-2011): $f(A)=$

$$
\left|\mathbf{1}_{1 \in A}-\mathbf{1}_{2 \in A}\right|+\left|\mathbf{1}_{2 \in A}-\mathbf{1}_{3 \in A}\right|
$$

- This gives a "total variation" function for the Lovász extension, with $\tilde{f}(w)=\left|w_{1}-w_{2}\right|+\left|w_{2}-w_{3}\right|$.

Example: $m=3, E=\{1,2,3\}$

- Example 2 (from

Bach-2011): $f(A)=$

$$
\left|\mathbf{1}_{1 \in A}-\mathbf{1}_{2 \in A}\right|+\left|\mathbf{1}_{2 \in A}-\mathbf{1}_{3 \in A}\right|
$$

- This gives a "total variation" function for the Lovász extension, with $\tilde{f}(w)=\left|w_{1}-w_{2}\right|+\left|w_{2}-w_{3}\right|$.
- When used as a prior, prefers piecewise-constant signals (e.g., $\sum_{i}\left|w_{i}-w_{i+1}\right|$).

Total Variation Example

From "Nonlinear total variation based noise removal algorithms' Rudin, Osher, and Fatemi, 1992. Top left original, bottom right total variation.

Example: Lovász extension of concave over modular

- Let $m: E \rightarrow \mathbb{R}_{+}$be a modular function and define $f(A)=g(m(A))$ where g is concave. Then f is submodular.

Example: Lovász extension of concave over modular

- Let $m: E \rightarrow \mathbb{R}_{+}$be a modular function and define $f(A)=g(m(A))$ where g is concave. Then f is submodular.
- Let $M_{j}=\sum_{i=1}^{j} m\left(e_{i}\right)$

Example: Lovász extension of concave over modular

- Let $m: E \rightarrow \mathbb{R}_{+}$be a modular function and define $f(A)=g(m(A))$ where g is concave. Then f is submodular.
- Let $M_{j}=\sum_{i=1}^{j} m\left(e_{i}\right)$
- $\tilde{f}(w)$ is given as

$$
\begin{equation*}
\tilde{f}(w)=\sum_{i=1}^{m} w\left(e_{i}\right)\left(g\left(M_{i}\right)-g\left(M_{i-1}\right)\right) \tag{17.1}
\end{equation*}
$$

Example: Lovász extension of concave over modular

- Let $m: E \rightarrow \mathbb{R}_{+}$be a modular function and define $f(A)=g(m(A))$ where g is concave. Then f is submodular.
- Let $M_{j}=\sum_{i=1}^{j} m\left(e_{i}\right)$
- $\tilde{f}(w)$ is given as

$$
\begin{equation*}
\tilde{f}(w)=\sum_{i=1}^{m} w\left(e_{i}\right)\left(g\left(M_{i}\right)-g\left(M_{i-1}\right)\right) \tag{17.1}
\end{equation*}
$$

- And if $m(A)=|A|$, we get

$$
\begin{equation*}
\tilde{f}(w)=\sum_{i=1}^{m} w\left(e_{i}\right)(g(i)-g(i-1)) \tag{17.2}
\end{equation*}
$$

Example: Lovász extension and cut functions

- Cut Function: Given a non-negative weighted graph $G=(V, E, m)$ where $m: E \rightarrow \mathbb{R}_{+}$is a modular function over the edges, we know from Lecture 2 that $f: 2^{V} \rightarrow \mathbb{R}_{+}$with $f(X)=m(\Gamma(X))$ where $\Gamma(X)=\{(u, v) \mid(u, v) \in E, u \in X, v \in V \backslash X\}$ is non-monotone submodular.

Example: Lovász extension and cut functions

- Cut Function: Given a non-negative weighted graph $G=(V, E, m)$ where $m: E \rightarrow \mathbb{R}_{+}$is a modular function over the edges, we know from Lecture 2 that $f: 2^{V} \rightarrow \mathbb{R}_{+}$with $f(X)=m(\Gamma(X))$ where $\Gamma(X)=\{(u, v) \mid(u, v) \in E, u \in X, v \in V \backslash X\}$ is submodular.
- Simple way to write it, with $m_{i j}=m((i, j))$:

$$
\begin{equation*}
f(X)=\sum_{i \in X, j \in V \backslash X} m_{i j} \tag{17.3}
\end{equation*}
$$

Example: Lovász extension and cut functions

- Cut Function: Given a non-negative weighted graph $G=(V, E, m)$ where $m: E \rightarrow \mathbb{R}_{+}$is a modular function over the edges, we know from Lecture 2 that $f: 2^{V} \rightarrow \mathbb{R}_{+}$with $f(X)=m(\Gamma(X))$ where $\Gamma(X)=\{(u, v) \mid(u, v) \in E, u \in X, v \in V \backslash X\}$ is non-monotone submodular.
- Simple way to write it, with $m_{i j}=m((i, j))$:

$$
\begin{equation*}
f(X)=\sum_{i \in X, j \in V \backslash X} m_{i j} \tag{17.3}
\end{equation*}
$$

- Exercise: show that Lovász extension of graph cut may be written as:

$$
\begin{equation*}
\tilde{f}(w)=\sum_{i, j \in V} m_{i j} \max \left\{\left(w_{i}-w_{j}\right), 0\right\} \tag{17.4}
\end{equation*}
$$

where elements are ordered as usual, $w_{1} \geq w_{2} \geq \cdots \geq w_{n}$.

Example: Lovász extension and cut functions

- Cut Function: Given a non-negative weighted graph $G=(V, E, m)$ where $m: E \rightarrow \mathbb{R}_{+}$is a modular function over the edges, we know from Lecture 2 that $f: 2^{V} \rightarrow \mathbb{R}_{+}$with $f(X)=m(\Gamma(X))$ where $\Gamma(X)=\{(u, v) \mid(u, v) \in E, u \in X, v \in V \backslash X\}$ is non-monotone submodular.
- Simple way to write it, with $m_{i j}=m((i, j))$:

$$
\begin{equation*}
f(X)=\sum_{i \in X, j \in V \backslash X} m_{i j} \tag{17.3}
\end{equation*}
$$

- Exercise: show that Lovász extension of graph cut may be written as:

$$
\begin{equation*}
\tilde{f}(w)=\sum_{i, j \in V} m_{i j} \max \left\{\left(w_{i}-w_{j}\right), 0\right\} \tag{17.4}
\end{equation*}
$$

where elements are ordered as usual, $w_{1} \geq w_{2} \geq \cdots \geq w_{n}$.

- This is also a form of "total variation"

A few more Lovász extension examples

Some additional submodular functions and their Lovász extensions, where $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right) \geq 0$. Let $W_{k} \triangleq \sum_{i=1}^{k} w\left(e_{i}\right)$.

$f(A)$	$\tilde{f}(w)$		
$\|A\|$	$\\|w\\|_{1}$		
$\min (\|A\|, 1)$	$\\|w\\|_{\infty}$		
$\min (\|A\|, 1)-\max (\|A\|-m+1,0)$	$\\|w\\|_{\infty}-\min _{i} w_{i}$		
$\min (\|A\|, k)$	W_{k}		
$\min (\|A\|, k)-\max (\|A\|-(n-k)+1,1)$	$2 W_{k}-W_{m}$		
$\min (\|A\|,\|E \backslash A\|)$	$2 W_{\lfloor m / 2\rfloor}-W_{m}$		

(thanks to K. Narayanan).

Supervised And Unsupervised Machine Learning

- Given training data $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{m}$ with $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{n} \times \mathbb{R}$, perform the following risk minimization problem:

$$
\begin{equation*}
\min _{w \in \mathbb{R}^{n}} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}, w^{\top} x_{i}\right)+\lambda \Omega(w), \tag{17.5}
\end{equation*}
$$

where $\ell(\cdot)$ is a loss function (e.g., squared error) and $\Omega(w)$ is a norm.

- When data has multiple responses $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{k}$, learning becomes:

$$
\begin{equation*}
\min _{w^{1}, \ldots, w^{k} \in \mathbb{R}^{n}} \sum_{j=1}^{k} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}^{k},\left(w^{k}\right)^{\top} x_{i}\right)+\lambda \Omega\left(w^{k}\right) \tag{17.6}
\end{equation*}
$$

- When data has multiple responses only that are observed, $\left(y_{i}\right) \in R^{k}$ we get dictionary learning (Krause \& Guestrin, Das \& Kempe):

$$
\begin{equation*}
\min _{x_{1}, \ldots, x_{m}} \min _{w^{1}, \ldots, w^{k} \in \mathbb{R}^{n}} \sum_{j=1}^{k} \frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}^{k},\left(w^{k}\right)^{\top} x_{i}\right)+\lambda \Omega\left(w^{k}\right) \tag{17.7}
\end{equation*}
$$

Norms, sparse norms, and computer vision

- Common norms include p-norm $\Omega(w)=\|w\|_{p}=\left(\sum_{i=1}^{p} w_{i}^{p}\right)^{1 / p}$

Norms, sparse norms, and computer vision

- Common norms include p-norm $\Omega(w)=\|w\|_{p}=\left(\sum_{i=1}^{p} w_{i}^{p}\right)^{1 / p}$
- 1-norm promotes sparsity (prefer solutions with zero entries).

Norms, sparse norms, and computer vision

- Common norms include p-norm $\Omega(w)=\|w\|_{p}=\left(\sum_{i=1}^{p} w_{i}^{p}\right)^{1 / p}$
- 1-norm promotes sparsity (prefer solutions with zero entries).
- Image denoising, total variation is useful, norm takes form:

$$
\begin{equation*}
\Omega(w)=\sum_{i=2}^{N}\left|w_{i}-w_{i-1}\right| \tag{17.8}
\end{equation*}
$$

- Common norms include p-norm $\Omega(w)=\|w\|_{p}=\left(\sum_{i=1}^{p} w_{i}^{p}\right)^{1 / p}$
- 1-norm promotes sparsity (prefer solutions with zero entries).
- Image denoising, total variation is useful, norm takes form:

$$
\Omega(w)=\sum_{i=2}^{N}\left|w_{i}-w_{i-1}\right|
$$

- Points of difference should be "sparse" (frequently zero).

Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.

Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For $w \in \mathbb{R}^{V}, \operatorname{supp}(w) \in\{0,1\}^{V}$ has $\operatorname{supp}(w)(v)=1$ iff $w(v)>0$

Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For $w \in \mathbb{R}^{V}, \operatorname{supp}(w) \in\{0,1\}^{V}$ has $\operatorname{supp}(w)(v)=1$ iff $w(v)>0$
- Desirable sparse norm: count the non-zeros, $\|w\|_{0}=1^{\top} \operatorname{supp}(w)$.

Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For $w \in \mathbb{R}^{V}, \operatorname{supp}(w) \in\{0,1\}^{V}$ has $\operatorname{supp}(w)(v)=1$ iff $w(v)>0$
- Desirable sparse norm: count the non-zeros, $\|w\|_{0}=\mathbf{1}^{\top} \operatorname{supp}(w)$.
- Using $\Omega(w)=\|w\|_{0}$ is NP-hard, instead we often optimize tightest convex relaxation, $\|w\|_{1}$ which is the convex envelope.

Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For $w \in \mathbb{R}^{V}, \operatorname{supp}(w) \in\{0,1\}^{V}$ has $\operatorname{supp}(w)(v)=1$ iff $w(v)>0$
- Desirable sparse norm: count the non-zeros, $\|w\|_{0}=1^{\top} \operatorname{supp}(w)$.
- Using $\Omega(w)=\|w\|_{0}$ is NP-hard, instead we often optimize tightest convex relaxation, $\|w\|_{1}$ which is the convex envelope.
- With $\|w\|_{0}$ or its relaxation, each non-zero element has equal degree of penalty. Penalties do not interact.

Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For $w \in \mathbb{R}^{V}, \operatorname{supp}(w) \in\{0,1\}^{V}$ has $\operatorname{supp}(w)(v)=1$ iff $w(v)>0$
- Desirable sparse norm: count the non-zeros, $\|w\|_{0}=1^{\top} \operatorname{supp}(w)$.
- Using $\Omega(w)=\|w\|_{0}$ is NP-hard, instead we often optimize tightest convex relaxation, $\|w\|_{1}$ which is the convex envelope.
- With $\|w\|_{0}$ or its relaxation, each non-zero element has equal degree of penalty. Penalties do not interact.
- Given submodular function $f: 2^{V} \rightarrow \mathbb{R}_{+}, f(\operatorname{supp}(w))$ measures the "complexity" of the non-zero pattern of w; can have more non-zero values if they cooperate (via f) with other non-zero values.

Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For $w \in \mathbb{R}^{V}, \operatorname{supp}(w) \in\{0,1\}^{V}$ has $\operatorname{supp}(w)(v)=1$ iff $w(v)>0$
- Desirable sparse norm: count the non-zeros, $\|w\|_{0}=\mathbf{1}^{\top} \operatorname{supp}(w)$.
- Using $\Omega(w)=\|w\|_{0}$ is NP-hard, instead we often optimize tightest convex relaxation, $\|w\|_{1}$ which is the convex envelope.
- With $\|w\|_{0}$ or its relaxation, each non-zero element has equal degree of penalty. Penalties do not interact.
- Given submodular function $f: 2^{V} \rightarrow \mathbb{R}_{+}, f(\operatorname{supp}(w))$ measures the "complexity" of the non-zero pattern of w; can have more non-zero values if they cooperate (via f) with other non-zero values.
- $f(\operatorname{supp}(w))$ is hard to optimize, but it's convex envelope $\tilde{f}(|w|)$ (i.e., largest convex under-estimator of $f(\operatorname{supp}(w)))$ is obtained via the Lovász-extension \tilde{f} of f (Vondrák 2007, Bach 2010).

Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For $w \in \mathbb{R}^{V}, \operatorname{supp}(w) \in\{0,1\}^{V}$ has $\operatorname{supp}(w)(v)=1$ iff $w(v)>0$
- Desirable sparse norm: count the non-zeros, $\|w\|_{0}=1^{\top} \operatorname{supp}(w)$.
- Using $\Omega(w)=\|w\|_{0}$ is NP-hard, instead we often optimize tightest convex relaxation, $\|w\|_{1}$ which is the convex envelope.
- With $\|w\|_{0}$ or its relaxation, each non-zero element has equal degree of penalty. Penalties do not interact.
- Given submodular function $f: 2^{V} \rightarrow \mathbb{R}_{+}, f(\operatorname{supp}(w))$ measures the "complexity" of the non-zero pattern of w; can have more non-zero values if they cooperate (via f) with other non-zero values.
- $f(\operatorname{supp}(w))$ is hard to optimize, but it's convex envelope $\tilde{f}(|w|)$ (i.e., largest convex under-estimator of $f(\operatorname{supp}(w)))$ is obtained via the Lovász-extension \tilde{f} of f (Vondrák 2007, Bach 2010).
- Submodular functions thus parameterize structured convex sparse norms via the Lovász-extension!

Submodular parameterization of a sparse convex norm

- Prefer convex norms since they can be solved.
- For $w \in \mathbb{R}^{V}, \operatorname{supp}(w) \in\{0,1\}^{V}$ has $\operatorname{supp}(w)(v)=1$ iff $w(v)>0$
- Desirable sparse norm: count the non-zeros, $\|w\|_{0}=\mathbf{1}^{\top} \operatorname{supp}(w)$.
- Using $\Omega(w)=\|w\|_{0}$ is NP-hard, instead we often optimize tightest convex relaxation, $\|w\|_{1}$ which is the convex envelope.
- With $\|w\|_{0}$ or its relaxation, each non-zero element has equal degree of penalty. Penalties do not interact.
- Given submodular function $f: 2^{V} \rightarrow \mathbb{R}_{+}, f(\operatorname{supp}(w))$ measures the "complexity" of the non-zero pattern of w; can have more non-zero values if they cooperate (via f) with other non-zero values.
- $f(\operatorname{supp}(w))$ is hard to optimize, but it's convex envelope $\tilde{f}(|w|)$ (i.e., largest convex under-estimator of $f(\operatorname{supp}(w)))$ is obtained via the Lovász-extension \tilde{f} of f (Vondrák 2007, Bach 2010).
- Submodular functions thus parameterize structured convex sparse norms via the Lovász-extension!
- Ex: total variation is Lovász-ext. of graph cut, but \exists many more!

Lovász extension and norms

- Using Lovász extension to define various norms of the form $\|w\|_{\tilde{f}}=\tilde{f}(|w|)$. This renders the function symmetric about all orthants (meaning, $\|w\|_{\tilde{f}}=\|b \odot w\|_{\tilde{f}}$ for any $b \in\{-1,1\}^{m}$ and \odot is element-wise multiplication).

Lovász extension and norms

- Using Lovász extension to define various norms of the form $\|w\|_{\tilde{f}}=\tilde{f}(|w|)$. This renders the function symmetric about all orthants (meaning, $\|w\|_{\tilde{f}}=\|b \odot w\|_{\tilde{f}}$ for any $b \in\{-1,1\}^{m}$ and \odot is element-wise multiplication).
- Simple example. The Lovász extension of the modular function $f(A)=|A|$ is the ℓ_{1} norm, and the Lovász extension of the modular function $f(A)=m(A)$ is the weighted ℓ_{1} norm.

Lovász extension and norms

- Using Lovász extension to define various norms of the form $\|w\|_{\tilde{f}}=\tilde{f}(|w|)$. This renders the function symmetric about all orthants (meaning, $\|w\|_{\tilde{f}}=\|b \odot w\|_{\tilde{f}}$ for any $b \in\{-1,1\}^{m}$ and \odot is element-wise multiplication).
- Simple example. The Lovász extension of the modular function $f(A)=|A|$ is the ℓ_{1} norm, and the Lovász extension of the modular function $f(A)=m(A)$ is the weighted ℓ_{1} norm.
- With more general submodular functions, one can generate a large and interesting variety of norms, all of which have polyhedral contours (unlike, say, something like the ℓ_{2} norm).

Lovász extension and norms

- Using Lovász extension to define various norms of the form $\|w\|_{\tilde{f}}=\tilde{f}(|w|)$. This renders the function symmetric about all orthants (meaning, $\|w\|_{\tilde{f}}=\|b \odot w\|_{\tilde{f}}$ for any $b \in\{-1,1\}^{m}$ and \odot is element-wise multiplication).
- Simple example. The Lovász extension of the modular function $f(A)=|A|$ is the ℓ_{1} norm, and the Lovász extension of the modular function $f(A)=m(A)$ is the weighted ℓ_{1} norm.
- With more general submodular functions, one can generate a large and interesting variety of norms, all of which have polyhedral contours (unlike, say, something like the ℓ_{2} norm).
- Hence, not all norms come from the Lovász extension of some submodular function.

Lovász extension and norms

- Using Lovász extension to define various norms of the form $\|w\|_{\tilde{f}}=\tilde{f}(|w|)$. This renders the function symmetric about all orthants (meaning, $\|w\|_{\tilde{f}}=\|b \odot w\|_{\tilde{f}}$ for any $b \in\{-1,1\}^{m}$ and \odot is element-wise multiplication).
- Simple example. The Lovász extension of the modular function $f(A)=|A|$ is the ℓ_{1} norm, and the Lovász extension of the modular function $f(A)=m(A)$ is the weighted ℓ_{1} norm.
- With more general submodular functions, one can generate a large and interesting variety of norms, all of which have polyhedral contours (unlike, say, something like the ℓ_{2} norm).
- Hence, not all norms come from the Lovász extension of some submodular function.
- Similarly, not all convex functions are the Lovász extension of some submodular function.

Lovász extension and norms

- Using Lovász extension to define various norms of the form $\|w\|_{\tilde{f}}=\tilde{f}(|w|)$. This renders the function symmetric about all orthants (meaning, $\|w\|_{\tilde{f}}=\|b \odot w\|_{\tilde{f}}$ for any $b \in\{-1,1\}^{m}$ and \odot is element-wise multiplication).
- Simple example. The Lovász extension of the modular function $f(A)=|A|$ is the ℓ_{1} norm, and the Lovász extension of the modular function $f(A)=m(A)$ is the weighted ℓ_{1} norm.
- With more general submodular functions, one can generate a large and interesting variety of norms, all of which have polyhedral contours (unlike, say, something like the ℓ_{2} norm).
- Hence, not all norms come from the Lovász extension of some submodular function.
- Similarly, not all convex functions are the Lovász extension of some submodular function.
- Bach-2011 has a complete discussion of this.

Concave closure

- The concave closure is defined as:

$$
\begin{equation*}
\hat{f}(x)=\max _{p \in \triangle^{n}(x)} \sum_{S \subseteq V} p_{S} f(S) \tag{17.9}
\end{equation*}
$$

where $\triangle^{n}(x)=$
$\left\{p \in \mathbb{R}^{2^{n}}: \sum_{S \subseteq V} p_{S}=1, p_{S} \geq 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_{S} \mathbf{1}_{S}=x\right\}$

Concave closure

- The concave closure is defined as:

$$
\begin{equation*}
\hat{f}(x)=\max _{p \in \triangle^{n}(x)} \sum_{S \subseteq V} p_{S} f(S) \tag{17.9}
\end{equation*}
$$

where $\triangle^{n}(x)=$
$\left\{p \in \mathbb{R}^{2^{n}}: \sum_{S \subseteq V} p_{S}=1, p_{S} \geq 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_{S} \mathbf{1}_{S}=x\right\}$

- This is tight at the hypercube vertices, concave, and the concave envolope for the dual reasons as the convex closure.

Concave closure

- The concave closure is defined as:

$$
\begin{equation*}
\hat{f}(x)=\max _{p \in \triangle^{n}(x)} \sum_{S \subseteq V} p_{S} f(S) \tag{17.9}
\end{equation*}
$$

where $\triangle^{n}(x)=$

$$
\left\{p \in \mathbb{R}^{2^{n}}: \sum_{S \subseteq V} p_{S}=1, p_{S} \geq 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_{S} \mathbf{1}_{S}=x\right\}
$$

- This is tight at the hypercube vertices, concave, and the concave envolope for the dual reasons as the convex closure.
- Unlike the convex extension, the concave closure is defined by the Lovász extension iff f is a supermodular function.

Concave closure

- The concave closure is defined as:

$$
\begin{equation*}
\hat{f}(x)=\max _{p \in \Delta^{n}(x)} \sum_{S \subseteq V} p_{S} f(S) \tag{17.9}
\end{equation*}
$$

where $\triangle^{n}(x)=$

$$
\left\{p \in \mathbb{R}^{2^{n}}: \sum_{S \subseteq V} p_{S}=1, p_{S} \geq 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_{S} \mathbf{1}_{S}=x\right\}
$$

- This is tight at the hypercube vertices, concave, and the concave envolope for the dual reasons as the convex closure.
- Unlike the convex extension, the concave closure is defined by the Lovász extension iff f is a supermodular function.
- When f is submodular, even evaluating f is NP-hard (rough intuition: submodular maxmization is NP-hard (reduction to set cover), if we could evaluate \hat{f} in poly time, we can maximize concave function to solve submodular maximization in poly time).

Multilinear extension

- Rather than the concave closure, multi-linear extension is used as a surrogate. For $x \in[0,1]^{V}=[0,1]^{[n]}$

$$
\begin{equation*}
\tilde{f}(x)=\sum_{S \subseteq V} f(S) \prod_{i \in S} x_{i} \prod_{i \in V \backslash S}\left(1-x_{i}\right)=E_{S \sim x}[f(S)] \tag{17.10}
\end{equation*}
$$

what to vo?

1) nultrich eas extension
2) restriztad elcos it submoduln funation that han easin concen closvos
1. M^{4} concam functros
2. deep submodula remettas
3) Polzchutal reloxaかbos h.

Multilinear extension

- Rather than the concave closure, multi-linear extension is used as a surrogate. For $x \in[0,1]^{V}=[0,1]^{[n]}$

$$
\begin{equation*}
\tilde{f}(x)=\sum_{S \subseteq V} f(S) \prod_{i \in S} x_{i} \prod_{i \in V \backslash S}\left(1-x_{i}\right)=E_{S \sim x}[f(S)] \tag{17.10}
\end{equation*}
$$

- Can be viewed as expected value of $f(S)$ where S is a random set distributed via x, so $\operatorname{Pr}(v \in S)=x_{v}$ and is independent of $\operatorname{Pr}(u \in S)=x_{u}, v \neq u$.

$$
x \in[0,1)^{v}
$$

Multilinear extension

- Rather than the concave closure, multi-linear extension is used as a surrogate. For $x \in[0,1]^{V}=[0,1]^{[n]}$

$$
\begin{equation*}
\tilde{f}(x)=\sum_{S \subseteq V} f(S) \prod_{i \in S} x_{i} \prod_{i \in V \backslash S}\left(1-x_{i}\right)=E_{S \sim x}[f(S)] \tag{17.10}
\end{equation*}
$$

- Can be viewed as expected value of $f(S)$ where S is a random set distributed via x, so $\operatorname{Pr}(v \in S)=x_{v}$ and is independent of $\operatorname{Pr}(u \in S)=x_{u}, v \neq u$.
- This is tight at the hypercube vertices (immediate, since $f\left(\mathbf{1}_{A}\right)$ yields only one term in the sum non-zero, namely the one where $S=A$).

Multilinear extension

- Rather than the concave closure, multi-linear extension is used as a surrogate. For $x \in[0,1]^{V}=[0,1]^{[n]}$

$$
\begin{equation*}
\tilde{f}(x)=\sum_{S \subseteq V} f(S) \prod_{i \in S} x_{i} \prod_{i \in V \backslash S}\left(1-x_{i}\right)=E_{S \sim x}[f(S)] \tag{17.10}
\end{equation*}
$$

- Can be viewed as expected value of $f(S)$ where S is a random set distributed via x, so $\operatorname{Pr}(v \in S)=x_{v}$ and is independent of $\operatorname{Pr}(u \in S)=x_{u}, v \neq u$.
- This is tight at the hypercube vertices (immediate, since $f\left(\mathbf{1}_{A}\right)$ yields only one term in the sum non-zero, namely the one where $S=A$).
- Why called multilinear (multi-linear) extension? It is linear in each of its arguments (i.e., $\tilde{f}\left(x_{1}, x_{2}, \ldots, \alpha x_{k}+\beta x_{k}^{\prime}, \ldots, x_{n}\right)=$ $\alpha \tilde{f}\left(x_{1}, x_{2}, \ldots, x_{k}, \ldots, x_{n}\right)+\beta \tilde{f}\left(x_{1}, x_{2}, \ldots, x_{k}^{\prime}, \ldots, x_{n}\right)$

Multilinear extension

- Rather than the concave closure, multi-linear extension is used as a surrogate. For $x \in[0,1]^{V}=[0,1]^{[n]}$

$$
\begin{equation*}
\tilde{f}(x)=\sum_{S \subseteq V} f(S) \prod_{i \in S} x_{i} \prod_{i \in V \backslash S}\left(1-x_{i}\right)=E_{S \sim x}[f(S)] \tag{17.10}
\end{equation*}
$$

- Can be viewed as expected value of $f(S)$ where S is a random set distributed via x, so $\operatorname{Pr}(v \in S)=x_{v}$ and is independent of $\operatorname{Pr}(u \in S)=x_{u}, v \neq u$.
- This is tight at the hypercube vertices (immediate, since $f\left(\mathbf{1}_{A}\right)$ yields only one term in the sum non-zero, namely the one where $S=A$).
- Why called multilinear (multi-linear) extension? It is linear in each of its arguments (i.e., $\tilde{f}\left(x_{1}, x_{2}, \ldots, \alpha x_{k}+\beta x_{k}^{\prime}, \ldots, x_{n}\right)=$ $\alpha \tilde{f}\left(x_{1}, x_{2}, \ldots, x_{k}, \ldots, x_{n}\right)+\beta \tilde{f}\left(x_{1}, x_{2}, \ldots, x_{k}^{\prime}, \ldots, x_{n}\right)$
- This is unfortunately not concave. However there are some useful properties.

Multilinear extension

Lemma 17.4.1

Let $\tilde{f}(x)$ be the multilinear extension of a set function $f: 2^{V} \rightarrow \mathbb{R}$. Then:

- If f is monotone non-decreasing, then $\frac{\partial \tilde{f}}{\partial x_{v}} \geq 0$ for all $v \in V$ within $[0,1]^{V}$ (i.e., \tilde{f} is also monotone non-decreasing).
- If f is submodular, then \tilde{f} has an antitone supergradient, i.e., $\frac{\partial^{2} \tilde{f}}{\partial x_{i} \partial x_{j}} \leq 0$ for all $i, j \in V$ within $[0,1]^{V}$.

Proof.

- First part (monotonicity). Choose $x \in[0,1]^{V}$ and let $S \sim x$ be random where x is treated as a distribution (so elements v is chosen with probability x_{v} independently of any other element).

Multilinear extension

proof continued.

- Since \tilde{f} is multilinear, derivative is a simple difference when only one argument varies, i.e.,

$$
\begin{align*}
\frac{\partial \tilde{f}}{\partial x_{v}}= & \tilde{f}\left(x_{1}, x_{2}, \ldots, x_{v_{1}}, 1, x_{v+1}, \ldots, x_{n}\right) \tag{17.11}\\
& \quad-\tilde{f}\left(x_{1}, x_{2}, \ldots, x_{v_{1}}, 0, x_{v+1}, \ldots, x_{n}\right) \tag{17.12}\\
= & E_{S \sim x}[f(S+v)]-E_{S \sim x}[f(S-v)] \tag{17.13}\\
\geq & 0
\end{align*}
$$

(17.14)
where the final part follows due to monotonicity of each argument, i.e., $f(S+i) \geq f(S-i)$ for any S and $i \in V$.

Multilinear extension

. proof continued.

- Second part of proof (antitone supergradient) also relies on simple consequence of multilinearity, namely multilinearity of the derivative as well. In this case

$$
\begin{align*}
\frac{\partial^{2} \tilde{f}}{\partial x_{i} \partial x_{j}}= & \frac{\partial \tilde{f}}{\partial x_{j}}\left(x_{1}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right) \tag{17.15}\\
& -\frac{\partial \tilde{f}}{\partial x_{j}}\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right) \tag{17.16}\\
= & E_{S \sim x}[f(S+i+j)-f(S+i-j)] \tag{17.17}\\
& \quad-E_{S \sim x}[f(S-i+j)-f(S-i-j)] \tag{17.18}\\
\leq & 0 \tag{17.19}
\end{align*}
$$

since by submodularity, we have

$$
\begin{equation*}
f(S+i-j)+f(S-i+j) \geq f(S+i+j)+f(S-i-j) \tag{17.20}
\end{equation*}
$$

Multilinear extension: some properties

strictly non-negapr or striaky magotim

Corollary 17.4.2

let f be a function and \tilde{f} its multilinear extension on $[0,1]^{V}$.

- if f is monotone non-decreasing then \tilde{f} is non-decreasing along any strictly non-negative direction (i.e., $\tilde{f}(x) \leq \tilde{f}(y)$ whenever $x \leq y$, or $\tilde{f}(x) \leq \tilde{f}\left(x+\epsilon \mathbf{1}_{v}\right)$ for any $v \in V$ and any $\epsilon \geq 0$.
- If f is submodular, then \tilde{f} is concave along any non-negative direction (i.e., the function $g(\alpha)=\tilde{f}(x+\alpha z)$ is 1-D concave in α for any $z \in \mathbb{R}_{+}$).
- If f is submodular than \tilde{f} is convex along any diagonal direction (i.e., the function $g(\alpha)=\tilde{f}\left(x+\alpha\left(\mathbf{1}_{v}-\mathbf{1}_{u}\right)\right)$ is 1-D convex in α for any $u \neq v$.

Submodular Max and polyhedral approaches

- We've spent much time discussing SFM and the polymatroidal polytope, and in general polyhedral approaches for SFM.

Submodular Max and polyhedral approaches

- We've spent much time discussing SFM and the polymatroidal polytope, and in general polyhedral approaches for SFM.
- Most of the approaches for submodular max have not used such an approach, probably due to the difficulty in computing the "concave extension" of a submodular function (the convex extension is easy, namely the Lovász extension).

Submodular Max and polyhedral approaches

- We've spent much time discussing SFM and the polymatroidal polytope, and in general polyhedral approaches for SFM.
- Most of the approaches for submodular max have not used such an approach, probably due to the difficulty in computing the "concave extension" of a submodular function (the convex extension is easy, namely the Lovász extension).
- A paper by Chekuri, Vondrak, and Zenklusen (2011) make some progress on this front using multilinear extensions.

Multilinear extension (review)

Definition 17.5.1
For a set function $f: 2^{V} \rightarrow \mathbb{R}$, define its multilinear extension
$F:[0,1]^{V} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
F(x)=\sum_{S \subseteq V} f(S) \prod_{i \in S} x_{i} \prod_{j \in V \backslash S}\left(1-x_{j}\right) \tag{17.21}
\end{equation*}
$$

- Note that $F(x)=E f(\hat{x})$ where \hat{x} is a random binary vector over $\{0,1\}^{V}$ with elements independent w . probability x_{i} for \hat{x}_{i}.
- While this is defined for any set function, we have:

Lemma 17.5.2

Let $F:[0,1]^{V} \rightarrow \mathbb{R}$ be multilinear extension of set function $f: 2^{V} \rightarrow \mathbb{R}$, then

- If f is monotone non-decreasing, then $\frac{\partial F}{\partial x_{i}} \geq 0$ for all $i \in V, x \in[0,1]^{V}$.
- If f is submodular, then $\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}} \leq 0$ for all i, j in $V, x \in[0,1]^{V}$.

Submodular Max and polyhedral approaches

- Basic idea: Given a set of constraints \mathcal{I}, we form a polytope $P_{\mathcal{I}}$ such that $\left\{\mathbf{1}_{I}: I \in \mathcal{I}\right\} \subseteq P_{\mathcal{I}}$
- We find $\max _{x \in P_{\mathcal{I}}} F(x)$ where $F(x)$ is the multi-linear extension of f, to find a fractional solution x^{*}
- We then round x^{*} to a point on the hypercube, thus giving us a solution to the discrete problem.

Submodular Max and polyhedral approaches

- In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

Submodular Max and polyhedral approaches

classic

- In the paper by Chekuri, Vondrak, and Zenklusen, they show:
- 1) constant factor approximation algorithm for $\max \{F(x): x \in P\}$ for any down-monotone solvable polytope P and F multilinear extension of any non-negative submodular function.

Submodular Max and polyhedral approaches

- In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:
- 1) constant factor approximation algorithm for $\max \{F(x): x \in P\}$ for any down-monotone solvable polytope P and F multilinear extension of any non-negative submodular function.
- 2) A randomized rounding (pipage rounding) scheme to obtain an integer solution

Submodular Max and polyhedral approaches

- In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:
- 1) constant factor approximation algorithm for $\max \{F(x): x \in P\}$ for any down-monotone solvable polytope P and F multilinear extension of any non-negative submodular function.
- 2) A randomized rounding (pipage rounding) scheme to obtain an integer solution
- 3) An optimal ($1-1 / e$) instance of their rounding scheme that can be used for a variety of interesting independence systems, including $O(1)$ knapsacks, k matroids and $O(1)$ knapsacks, a k-matchoid and ℓ sparse packing integer programs, and unsplittable flow in paths and trees.

Submodular Max and polyhedral approaches

- In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:
- 1) constant factor approximation algorithm for $\max \{F(x): x \in P\}$ for any down-monotone solvable polytope P and F multilinear extension of any non-negative submodular function.
- 2) A randomized rounding (pipage rounding) scheme to obtain an integer solution
- 3) An optimal ($1-1 / e$) instance of their rounding scheme that can be used for a variety of interesting independence systems, including $O(1)$ knapsacks, k matroids and $O(1)$ knapsacks, a k-matchoid and ℓ sparse packing integer programs, and unsplittable flow in paths and trees.
- Also, Vondrak showed that this scheme achieves the $\frac{1}{c}\left(1-e^{-c}\right)$ curvature based bound for any matroid, which matches the bound we had earlier for uniform matroids with standard greedy.

Submodular Max and polyhedral approaches

- In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:
- 1) constant factor approximation algorithm for $\max \{F(x): x \in P\}$ for any down-monotone solvable polytope P and F multilinear extension of any non-negative submodular function.
- 2) A randomized rounding (pipage rounding) scheme to obtain an integer solution
- 3) An optimal ($1-1 / e$) instance of their rounding scheme that can be used for a variety of interesting independence systems, including $O(1)$ knapsacks, k matroids and $O(1)$ knapsacks, a k-matchoid and ℓ sparse packing integer programs, and unsplittable flow in paths and trees.
- Also, Vondrak showed that this scheme achieves the $\frac{1}{c}\left(1-e^{-c}\right)$ curvature based bound for any matroid, which matches the bound we had earlier for uniform matroids with standard greedy.
- In general, one needs to do Monte-Carlo methods to estimate the multilinear extension (so further approximations would apply).

Review from lecture 10

The next slide comes from lecture 10 .

A polymatroid function's polyhedron is a polymatroid.

Theorem 17.6.1

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}_{+}^{E}$, and any P_{f}^{+}-basis $y^{x} \in \mathbb{R}_{+}^{E}$ of x, the component sum of y^{x} is

$$
\begin{align*}
y^{x}(E)=\operatorname{rank}(x) & \triangleq \max \left(y(E): y \leq x, y \in P_{f}^{+}\right) \\
& =\min (x(A)+f(E \backslash A): A \subseteq E) \tag{17.10}
\end{align*}
$$

As a consequence, P_{f}^{+}is a polymatroid, since r.h.s. is constant w.r.t. y^{x}.
Taking $E \backslash B=\operatorname{supp}(x)$ (so elements B are all zeros in x), and for $b \notin B$ we make $x(b)$ is big enough, the r.h.s. min has solution $A^{*}=B$. We recover submodular function from the polymatroid polyhedron via the following:

$$
\begin{equation*}
\operatorname{rank}\left(\frac{1}{\epsilon} \mathbf{1}_{E \backslash B}\right)=f(E \backslash B)=\max \left\{y(E \backslash B): y \in P_{f}^{+}\right\} \tag{17.11}
\end{equation*}
$$

In fact, we will ultimately see a number of important consequences of this theorem (other than just that P_{f}^{+}is a polymatroid)

Review from lecture 11

The next slide comes from lecture 11 .

Matroid instance of Theorem ??

- Considering Theorem ??, the matroid case is now a special case, where we have that:

Corollary 17.6.2

We have that:

$$
\max \left\{y(E): y \in P_{\text {ind. set }}(M), y \leq x\right\}=\min \left\{r_{M}(A)+x(E \backslash A): A \subseteq E\right\}
$$

(17.21)
where r_{M} is the matroid rank function of some matroid.

Most violated inequality problem in matroid polytope case

- Consider

$$
\begin{equation*}
P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r_{M}(A), \forall A \subseteq E\right\} \tag{17.22}
\end{equation*}
$$

Most violated inequality problem in matroid polytope case

- Consider

$$
\begin{equation*}
P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r_{M}(A), \forall A \subseteq E\right\} \tag{17.22}
\end{equation*}
$$

- Suppose we have any $x \in \mathbb{R}_{+}^{E}$ such that $x \notin P_{r}^{+}$.

Most violated inequality problem in matroid polytope case

- Consider

$$
\begin{equation*}
P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r_{M}(A), \forall A \subseteq E\right\} \tag{17.22}
\end{equation*}
$$

- Suppose we have any $x \in \mathbb{R}_{+}^{E}$ such that $x \notin P_{r}^{+}$.
- Hence, there must be a set of $\mathcal{W} \subseteq 2^{V}$, each member of which corresponds to a violated inequality, i.e., equations of the form $x(A)>r_{M}(A)$ for $A \in \mathcal{W}$.

Most violated inequality problem in matroid polytope case

- Consider

$$
\begin{equation*}
P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r_{M}(A), \forall A \subseteq E\right\} \tag{17.22}
\end{equation*}
$$

- Suppose we have any $x \in \mathbb{R}_{+}^{E}$ such that $x \notin P_{r}^{+}$.
- Hence, there must be a set of $\mathcal{W} \subseteq 2^{V}$, each member of which corresponds to a violated inequality, i.e., equations of the form $x(A)>r_{M}(A)$ for $A \in \mathcal{W}$.
- The most violated inequality when x is considered w.r.t. P_{r}^{+}corresponds to the set A that maximizes $x(A)-r_{M}(A)$, i.e., the most violated inequality is valuated as:
$\max \left\{x(A)-r_{M}(A): A \in \mathcal{W}\right\}=\max \left\{x(A)-r_{M}(A): A \subseteq E\right\}$

Most violated inequality problem in matroid polytope case

- Consider

$$
\begin{equation*}
P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r_{M}(A), \forall A \subseteq E\right\} \tag{17.22}
\end{equation*}
$$

- Suppose we have any $x \in \mathbb{R}_{+}^{E}$ such that $x \notin P_{r}^{+}$.
- Hence, there must be a set of $\mathcal{W} \subseteq 2^{V}$, each member of which corresponds to a violated inequality, i.e., equations of the form $x(A)>r_{M}(A)$ for $A \in \mathcal{W}$.
- The most violated inequality when x is considered w.r.t. P_{r}^{+}corresponds to the set A that maximizes $x(A)-r_{M}(A)$, i.e., the most violated inequality is valuated as:

$$
\begin{equation*}
\max \left\{x(A)-r_{M}(A): A \in \mathcal{W}\right\}=\max \left\{x(A)-r_{M}(A): A \subseteq E\right\} \tag{17.23}
\end{equation*}
$$

- Since x is modular and $x(E \backslash A)=x(E)-x(A)$, we can express this via a min as in;:

$$
\begin{equation*}
\min \left\{r_{M}(A)+x(E \backslash A): A \subseteq E\right\} \tag{17.24}
\end{equation*}
$$

Most violated inequality/polymatroid membership/SFM

- Consider

$$
\begin{equation*}
P_{f}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq f(A), \forall A \subseteq E\right\} \tag{17.25}
\end{equation*}
$$

Most violated inequality/polymatroid membership/SFM

- Consider

$$
\begin{equation*}
P_{f}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq f(A), \forall A \subseteq E\right\} \tag{17.25}
\end{equation*}
$$

- Suppose we have any $x \in \mathbb{R}_{+}^{E}$ such that $x \notin P_{f}^{+}$.

Most violated inequality/polymatroid membership/SFM

- Consider

$$
\begin{equation*}
P_{f}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq f(A), \forall A \subseteq E\right\} \tag{17.25}
\end{equation*}
$$

- Suppose we have any $x \in \mathbb{R}_{+}^{E}$ such that $x \notin P_{f}^{+}$.
- Hence, there must be a set of $\mathcal{W} \subseteq 2^{V}$, each member of which corresponds to a violated inequality, i.e., equations of the form $x(A)>r_{M}(A)$ for $A \in \mathcal{W}$.

$\mathcal{W}=\{\{1\}\{1,2\}\}$

$\mathcal{W}=\{\{2\},\{1,2\}\}$

$\mathcal{W}=\{\{1,2\}\}$

Most violated inequality/polymatroid membership/SFM

- The most violated inequality when x is considered w.r.t. P_{f}^{+} corresponds to the set A that maximizes $x(A)-f(A)$, i.e., the most violated inequality is valuated as:

$$
\begin{equation*}
\max \{x(A)-f(A): A \in \mathcal{W}\}=\max \{x(A)-f(A): A \subseteq E\} \tag{17.26}
\end{equation*}
$$

Most violated inequality/polymatroid membership/SFM

- The most violated inequality when x is considered w.r.t. P_{f}^{+} corresponds to the set A that maximizes $x(A)-f(A)$, i.e., the most violated inequality is valuated as:

$$
\begin{equation*}
\max \{x(A)-f(A): A \in \mathcal{W}\}=\max \{x(A)-f(A): A \subseteq E\} \tag{17.26}
\end{equation*}
$$

- Since x is modular and $x(E \backslash A)=x(E)-x(A)$, we can express this via a min as in;:

$$
\begin{equation*}
\min \{f(A)+x(E \backslash A): A \subseteq E\} \tag{17.27}
\end{equation*}
$$

Most violated inequality/polymatroid membership/SFM

- The most violated inequality when x is considered w.r.t. P_{f}^{+} corresponds to the set A that maximizes $x(A)-f(A)$, i.e., the most violated inequality is valuated as:

$$
\begin{equation*}
\max \{x(A)-f(A): A \in \mathcal{W}\}=\max \{x(A)-f(A): A \subseteq E\} \tag{17.26}
\end{equation*}
$$

- Since x is modular and $x(E \backslash A)=x(E)-x(A)$, we can express this via a min as in;:

$$
\begin{equation*}
\min \{f(A)+x(E \backslash A): A \subseteq E\} \tag{17.27}
\end{equation*}
$$

- More importantly, $\min \{f(A)+x(E \backslash A): A \subseteq E\}$ is a form of submodular function minimization, namely $\min \{f(A)-x(A): A \subseteq E\}$ for a submodular f and $x \in \mathbb{R}_{+}^{E}$, consisting of a difference of polymatroid and modular function (so $f-x$ is no longer necessarily monotone, nor positive).

Most violated inequality/polymatroid membership/SFM

- The most violated inequality when x is considered w.r.t. P_{f}^{+} corresponds to the set A that maximizes $x(A)-f(A)$, i.e., the most violated inequality is valuated as:

$$
\begin{equation*}
\max \{x(A)-f(A): A \in \mathcal{W}\}=\max \{x(A)-f(A): A \subseteq E\} \tag{17.26}
\end{equation*}
$$

- Since x is modular and $x(E \backslash A)=x(E)-x(A)$, we can express this via a min as in;:

$$
\begin{equation*}
\min \{f(A)+x(E \backslash A): A \subseteq E\} \tag{17.27}
\end{equation*}
$$

- More importantly, $\min \{f(A)+x(E \backslash A): A \subseteq E\}$ is a form of submodular function minimization, namely $\min \{f(A)-x(A): A \subseteq E\}$ for a submodular f and $x \in \mathbb{R}_{+}^{E}$, consisting of a difference of polymatroid and modular function (so $f-x$ is no longer necessarily monotone, nor positive).
- We will ultimatley answer how general this form of SFM is.

Review from Lecture 6

The following three slides are review from lecture 6.

Definition 17.7.3 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \backslash A, r(A \cup\{x\})=r(A)+1$.

Definition: A hyperplane is a flat of $\operatorname{rank} r(M)-1$.

Definition 17.7.4 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by
$\operatorname{span}(A)=\{b \in E: r(A \cup\{b\})=r(A)\}$.
Therefore, a closed set A has $\operatorname{span}(A)=A$.

Definition 17.7.5 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if $r(A)<|A|$ and for any $\overline{a \in A, r(A \backslash\{a\})=\mid} A \mid-1$).

Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not surprising that circuits can also characterize a matroid.

Theorem 17.7.3 (Matroid by circuits)

Let E be a set and \mathcal{C} be a collection of subsets of E that satisfy the following three properties:
(1) (C1): $\emptyset \notin \mathcal{C}$
(2) (C2): if $C_{1}, C_{2} \in \mathcal{C}$ and $C_{1} \subseteq C_{2}$, then $C_{1}=C_{2}$.

3 (C3): if $C_{1}, C_{2} \in \mathcal{C}$ with $C_{1} \neq C_{2}$, and $e \in C_{1} \cap C_{2}$, then there exists a $C_{3} \in \mathcal{C}$ such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\}$.

Matroids by circuits

Several circuit definitions for matroids.

Theorem 17.7.3 (Matroid by circuits)

Let E be a set and \mathcal{C} be a collection of nonempty subsets of E, such that no two sets in \mathcal{C} are contained in each other. Then the following are equivalent.
(1) \mathcal{C} is the collection of circuits of a matroid;
(2) if $C, C^{\prime} \in \mathcal{C}$, and $x \in C \cap C^{\prime}$, then $\left(C \cup C^{\prime}\right) \backslash\{x\}$ contains a set in \mathcal{C};
(3) if $C, C^{\prime} \in \mathcal{C}$, and $x \in C \cap C^{\prime}$, and $y \in C \backslash C^{\prime}$, then $\left(C \cup C^{\prime}\right) \backslash\{x\}$ contains a set in \mathcal{C} containing y;

Again, think about this for a moment in terms of linear spaces and matrices, and spanning trees.

Fundamental circuits in matroids

Lemma 17.7.1

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup\{e\}$ contains at most one circuit in M.

Proof.

Fundamental circuits in matroids

Lemma 17.7.1

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup\{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_{1}, C_{2} such that $C_{1} \cup C_{2} \subseteq I \cup\{e\}$.

Fundamental circuits in matroids

Lemma 17.7.1

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup\{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_{1}, C_{2} such that $C_{1} \cup C_{2} \subseteq I \cup\{e\}$.
- Then $e \in C_{1} \cap C_{2}$, and by (C2), there is a circuit C_{3} of M s.t. $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\} \subseteq I$

Fundamental circuits in matroids

Lemma 17.7.1

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup\{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_{1}, C_{2} such that $C_{1} \cup C_{2} \subseteq I \cup\{e\}$.
- Then $e \in C_{1} \cap C_{2}$, and by (C2), there is a circuit C_{3} of M s.t. $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\} \subseteq I$
- This contradicts the independence of I.

Fundamental circuits in matroids

Lemma 17.7.1

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup\{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_{1}, C_{2} such that $C_{1} \cup C_{2} \subseteq I \cup\{e\}$.
- Then $e \in C_{1} \cap C_{2}$, and by (C2), there is a circuit C_{3} of M s.t. $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\} \subseteq I$
- This contradicts the independence of I.

In general, let $C(I, e)$ be the unique circuit associated with $I \cup\{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).

Matroids: The Fundamental Circuit

- Define $C(I, e)$ be the unique circuit associated with $I \cup\{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).

Matroids: The Fundamental Circuit

- Define $C(I, e)$ be the unique circuit associated with $I \cup\{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).
- If $e \in \operatorname{span}(I) \backslash I$, then $C(I, e)$ is well defined ($I+e$ creates one circuit).

Matroids: The Fundamental Circuit

- Define $C(I, e)$ be the unique circuit associated with $I \cup\{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).
- If $e \in \operatorname{span}(I) \backslash I$, then $C(I, e)$ is well defined ($I+e$ creates one circuit).
- If $e \in I$, then $I+e=I$ doesn't create a circuit. In such cases, $C(I, e)$ is not really defined.

Matroids: The Fundamental Circuit

- Define $C(I, e)$ be the unique circuit associated with $I \cup\{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).
- If $e \in \operatorname{span}(I) \backslash I$, then $C(I, e)$ is well defined ($I+e$ creates one circuit).
- If $e \in I$, then $I+e=I$ doesn't create a circuit. In such cases, $C(I, e)$ is not really defined.
- In such cases, we define $C(I, e)=\{e\}$, and we will soon see why.

Matroids: The Fundamental Circuit

- Define $C(I, e)$ be the unique circuit associated with $I \cup\{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).
- If $e \in \operatorname{span}(I) \backslash I$, then $C(I, e)$ is well defined ($I+e$ creates one circuit).
- If $e \in I$, then $I+e=I$ doesn't create a circuit. In such cases, $C(I, e)$ is not really defined.
- In such cases, we define $C(I, e)=\{e\}$, and we will soon see why.
- If $e \notin \operatorname{span}(I)$ (i.e., when $I+e$ is independent), then we set
$C(I, e)=\emptyset$, sere

Union of matroid bases of a set

Lemma 17.7.2

Let $\mathcal{B}(D)$ be the set of bases of any set D. Then, given matroid $\mathcal{M}=(E, \mathcal{I})$, and any loop-free (i.e., no dependent singleton elements) set $D \subseteq E$, we have:

$$
\begin{equation*}
\bigcup_{B \in \mathcal{B}(D)} B=D \tag{17.28}
\end{equation*}
$$

Union of matroid bases of a set

Lemma 17.7.2

Let $\mathcal{B}(D)$ be the set of bases of any set D. Then, given matroid $\mathcal{M}=(E, \mathcal{I})$, and any loop-free (i.e., no dependent singleton elements) set $D \subseteq E$, we have:

$$
\begin{equation*}
\bigcup_{B \in \mathcal{B}(D)} B=D \tag{17.28}
\end{equation*}
$$

Proof.

- Define $D^{\prime} \triangleq \bigcup_{B \in \mathcal{B}(D)} \subseteq D$, suppose $\exists d \in D$ such that $d \notin D^{\prime}$.

Union of matroid bases of a set

Lemma 17.7.2

Let $\mathcal{B}(D)$ be the set of bases of any set D. Then, given matroid $\mathcal{M}=(E, \mathcal{I})$, and any loop-free (i.e., no dependent singleton elements) set $D \subseteq E$, we have:

$$
\begin{equation*}
\bigcup_{B \in \mathcal{B}(D)} B=D \tag{17.28}
\end{equation*}
$$

Proof.

- Define $D^{\prime} \triangleq \bigcup_{B \in \mathcal{B}(D)} \subseteq D$, suppose $\exists d \in D$ such that $d \notin D^{\prime}$.
- Hence, $\forall B \in \mathcal{B}(D)$ we have $d \notin B$, and $B+d$ must contain a single circuit for any B, namely $C(B, d)$.

Union of matroid bases of a set

Lemma 17.7.2

Let $\mathcal{B}(D)$ be the set of bases of any set D. Then, given matroid $\mathcal{M}=(E, \mathcal{I})$, and any loop-free (i.e., no dependent singleton elements) set $D \subseteq E$, we have:

$$
\begin{equation*}
\bigcup_{B \in \mathcal{B}(D)} B=D . \tag{17.28}
\end{equation*}
$$

Proof.

- Define $D^{\prime} \triangleq \bigcup_{B \in \mathcal{B}(D)} \subseteq D$, suppose $\exists d \in D$ such that $d \notin D^{\prime}$.
- Hence, $\forall B \in \mathcal{B}(D)$ we have $d \notin B$, and $B+d$ must contain a single circuit for any B, namely $C(B, d)$.
- Then choose $d^{\prime} \in C(B, d)$ with $d^{\prime} \neq d$.

Union of matroid bases of a set

Lemma 17.7.2

Let $\mathcal{B}(D)$ be the set of bases of any set D. Then, given matroid $\mathcal{M}=(E, \mathcal{I})$, and any loop-free (i.e., no dependent singleton elements) set $D \subseteq E$, we have:

$$
\begin{equation*}
\bigcup_{B \in \mathcal{B}(D)} B=D . \tag{17.28}
\end{equation*}
$$

Proof.

- Define $D^{\prime} \triangleq \bigcup_{B \in \mathcal{B}(D)} \subseteq D$, suppose $\exists d \in D$ such that $d \notin D^{\prime}$.
- Hence, $\forall B \in \mathcal{B}(D)$ we have $d \notin B$, and $B+d$ must contain a single circuit for any B, namely $C(B, d)$.
- Then choose $d^{\prime} \in C(B, d)$ with $d^{\prime} \neq d$.
- Then $B+d-d^{\prime}$ is independent size- $|B|$ subset of D and hence spans D, and thus is a d-containing member of $\mathcal{B}(D)$, contradicting $d \notin D^{\prime}$.

The sat function $=$ Polymatroid Closure

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).

The sat function $=$ Polymatroid Closure

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.

The sat function $=$ Polymatroid Closure

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_{f}$ for polymatroid function f.

The sat function $=$ Polymatroid Closure

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_{f}$ for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.

The sat function $=$ Polymatroid Closure

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_{f}$ for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.
- That is, we saw in Lecture 7 that for any $A, B \in \mathcal{D}(x)$, we have that $A \cup B \in \mathcal{D}(x)$ and $A \cap B \in \mathcal{D}(x)$, which can constitute a join and meet.

The sat function $=$ Polymatroid Closure

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_{f}$ for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.
- That is, we saw in Lecture 7 that for any $A, B \in \mathcal{D}(x)$, we have that $A \cup B \in \mathcal{D}(x)$ and $A \cap B \in \mathcal{D}(x)$, which can constitute a join and meet.
- Recall, for a given $x \in P_{f}$, we have defined this tight family as

$$
\begin{equation*}
\mathcal{D}(x)=\{A: A \subseteq E, x(A)=f(A)\} \tag{17.29}
\end{equation*}
$$

The sat function $=$ Polymatroid Closure

- Now given $x \in P_{f}^{+}$:

$$
\begin{aligned}
\mathcal{D}(x) & =\{A: A \subseteq E, x(A)=f(A)\} \\
& =\{A: f(A)-x(A)=0\}
\end{aligned}
$$

The sat function $=$ Polymatroid Closure

- Now given $x \in P_{f}^{+}$:

$$
\begin{align*}
\mathcal{D}(x) & =\{A: A \subseteq E, x(A)=f(A)\} \tag{17.30}\\
& =\{A: f(A)-x(A)=0\} \tag{17.31}
\end{align*}
$$

- Since $x \in P_{f}^{+}$and f is presumed to be polymatroid function, we see $f^{\prime}(A)=f(A)-x(A)$ is a non-negative submodular function, and $\mathcal{D}(x)$ are the zero-valued minimizers (if any) of $f^{\prime}(A)$.

The sat function $=$ Polymatroid Closure

- Now given $x \in P_{f}^{+}$:

$$
\begin{align*}
\mathcal{D}(x) & =\{A: A \subseteq E, x(A)=f(A)\} \tag{17.30}\\
& =\{A: f(A)-x(A)=0\} \tag{17.31}
\end{align*}
$$

- Since $x \in P_{f}^{+}$and f is presumed to be polymatroid function, we see $f^{\prime}(A)=f(A)-x(A)$ is a non-negative submodular function, and $\mathcal{D}(x)$ are the zero-valued minimizers (if any) of $f^{\prime}(A)$.
- The zero-valued minimizers of f^{\prime} are thus closed under union and intersection.

The sat function $=$ Polymatroid Closure

- Now given $x \in P_{f}^{+}$:

$$
\begin{align*}
\mathcal{D}(x) & =\{A: A \subseteq E, x(A)=f(A)\} \tag{17.30}\\
& =\{A: f(A)-x(A)=0\} \tag{17.31}
\end{align*}
$$

- Since $x \in P_{f}^{+}$and f is presumed to be polymatroid function, we see $f^{\prime}(A)=f(A)-x(A)$ is a non-negative submodular function, and $\mathcal{D}(x)$ are the zero-valued minimizers (if any) of $f^{\prime}(A)$.
- The zero-valued minimizers of f^{\prime} are thus closed under union and intersection.
- In fact, this is true for all minimizers of a submodular function as stated in the next theorem.

Minimizers of a Submodular Function form a lattice

Theorem 17.8.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M}=\operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Minimizers of a Submodular Function form a lattice

Theorem 17.8.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M}=\operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Minimizers of a Submodular Function form a lattice

Theorem 17.8.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M}=\operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A)=f(B) \leq f(A \cap B)$ and $f(A)=f(B) \leq f(A \cup B)$.

Minimizers of a Submodular Function form a lattice

Theorem 17.8.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M}=\operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A)=f(B) \leq f(A \cap B)$ and $f(A)=f(B) \leq f(A \cup B)$.
By submodularity, we have

$$
\begin{equation*}
f(A)+f(B) \geq f(A \cup B)+f(A \cap B) \tag{17.32}
\end{equation*}
$$

Minimizers of a Submodular Function form a lattice

Theorem 17.8.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M}=\operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A)=f(B) \leq f(A \cap B)$ and $f(A)=f(B) \leq f(A \cup B)$.
By submodularity, we have

$$
f(A)+f(B) \geq f(A \cup B)+f(A \cap B)
$$

Hence, we must have $f(A)=f(B)=f(A \cup B)=f(A \cap B)$.

Minimizers of a Submodular Function form a lattice

Theorem 17.8.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M}=\operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A)=f(B) \leq f(A \cap B)$ and $f(A)=f(B) \leq f(A \cup B)$.
By submodularity, we have

$$
f(A)+f(B) \geq f(A \cup B)+f(A \cap B)
$$

Hence, we must have $f(A)=f(B)=f(A \cup B)=f(A \cap B)$.
Thus, the minimizers of a submodular function form a lattice, and there is a maximal and a minimal minimizer of every submodular function.

The sat function $=$ Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).

The sat function $=$ Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_{f}$, we have defined:

$$
\begin{equation*}
\mathrm{cl}(x) \stackrel{\text { def }}{=} \operatorname{sat}(x) \stackrel{\text { def }}{=} \bigcup\{A: A \in \mathcal{D}(x)\} \tag{17.33}
\end{equation*}
$$

The sat function $=$ Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_{f}$, we have defined:

$$
\begin{align*}
\mathrm{cl}(x) \stackrel{\text { def }}{=} \operatorname{sat}(x) & \stackrel{\text { def }}{=} \bigcup\{A: A \in \mathcal{D}(x)\} \tag{17.33}\\
& =\bigcup\{A: A \subseteq E, x(A)=f(A)\} \tag{17.34}
\end{align*}
$$

The sat function $=$ Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_{f}$, we have defined:

$$
\begin{align*}
\mathrm{cl}(x) \stackrel{\text { def }}{=} \operatorname{sat}(x) & \stackrel{\text { def }}{=} \bigcup\{A: A \in \mathcal{D}(x)\} \tag{17.33}\\
& =\bigcup\{A: A \subseteq E, x(A)=f(A)\} \tag{17.34}\\
& =\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\} \tag{17.35}
\end{align*}
$$

The sat function $=$ Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_{f}$, we have defined:

$$
\begin{align*}
\mathrm{cl}(x) \stackrel{\text { def }}{=} \operatorname{sat}(x) & \stackrel{\text { def }}{=} \bigcup\{A: A \in \mathcal{D}(x)\} \tag{17.33}\\
& =\bigcup\{A: A \subseteq E, x(A)=f(A)\} \tag{17.34}\\
& =\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\} \tag{17.35}
\end{align*}
$$

- Hence, sat (x) is the maximal (zero-valued) minimizer of the submodular function $f_{x}(A) \triangleq f(A)-x(A)$.

The sat function $=$ Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_{f}$, we have defined:

$$
\begin{align*}
\mathrm{cl}(x) \stackrel{\text { def }}{=} \operatorname{sat}(x) & \stackrel{\text { def }}{=} \bigcup\{A: A \in \mathcal{D}(x)\} \tag{17.33}\\
& =\bigcup\{A: A \subseteq E, x(A)=f(A)\} \tag{17.34}\\
& =\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\} \tag{17.35}
\end{align*}
$$

- Hence, $\operatorname{sat}(x)$ is the maximal (zero-valued) minimizer of the submodular function $f_{x}(A) \triangleq f(A)-x(A)$.

- Eq. (17.35) says that sat consists of elements point x that are P_{f} saturated (any additional positive movement, in that dimension, leaves $\left.P_{f}\right)$. We'll revisit this in a few slides.

The sat function $=$ Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_{f}$, we have defined:

$$
\begin{align*}
\mathrm{cl}(x) \stackrel{\text { def }}{=} \operatorname{sat}(x) & \stackrel{\text { def }}{=} \bigcup\{A: A \in \mathcal{D}(x)\} \tag{17.33}\\
& =\bigcup\{A: A \subseteq E, x(A)=f(A)\} \tag{17.34}\\
& =\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\} \tag{17.35}
\end{align*}
$$

- Hence, $\operatorname{sat}(x)$ is the maximal (zero-valued) minimizer of the submodular function $f_{x}(A) \triangleq f(A)-x(A)$.
- Eq. (17.35) says that sat consists of elements of point x that are P_{f} saturated (any additional positive movement, in that dimension, leaves P_{f}). We'll revisit this in a few slides.
- First, we see how sat generalizes matroid closure.

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and $x=1_{A}$

$$
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\}
$$

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and

$$
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\}
$$

and

$$
\operatorname{sat}\left(\mathbf{1}_{I}\right)
$$

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and

$$
\begin{equation*}
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\} \tag{17.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{sat}\left(\mathbf{1}_{I}\right)=\bigcup\left\{A: A \subseteq E, A \in \mathcal{D}\left(\mathbf{1}_{I}\right)\right\} \tag{17.37}
\end{equation*}
$$

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and

$$
\begin{equation*}
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\} \tag{17.36}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{sat}\left(\mathbf{1}_{I}\right) & =\bigcup\left\{A: A \subseteq E, A \in \mathcal{D}\left(\mathbf{1}_{I}\right)\right\} \tag{17.37}\\
& =\bigcup\left\{A: A \subseteq E, \mathbf{1}_{I}(A)=r(A)\right\} \tag{17.38}
\end{align*}
$$

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and

$$
\begin{equation*}
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\} \tag{17.36}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{sat}\left(\mathbf{1}_{I}\right) & =\bigcup\left\{A: A \subseteq E, A \in \mathcal{D}\left(\mathbf{1}_{I}\right)\right\} \tag{17.37}\\
& =\bigcup\left\{A: A \subseteq E, \mathbf{1}_{I}(A)=r(A)\right\} \tag{17.38}\\
& =\bigcup\{A: A \subseteq E,|I \cap A|=r(A)\} \tag{17.39}
\end{align*}
$$

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and

$$
\begin{equation*}
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\} \tag{17.36}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{sat}\left(\mathbf{1}_{I}\right) & =\bigcup\left\{A: A \subseteq E, A \in \mathcal{D}\left(\mathbf{1}_{I}\right)\right\} \tag{17.37}\\
& =\bigcup\left\{A: A \subseteq E, \mathbf{1}_{I}(A)=r(A)\right\} \tag{17.38}\\
& =\bigcup\{A: A \subseteq E,|I \cap A|=r(A)\} \tag{17.39}
\end{align*}
$$

- Notice that $\mathbf{1}_{I}(A)=|I \cap A| \leq|I|$.

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and

$$
\begin{equation*}
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\} \tag{17.36}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{sat}\left(\mathbf{1}_{I}\right) & =\bigcup\left\{A: A \subseteq E, A \in \mathcal{D}\left(\mathbf{1}_{I}\right)\right\} \tag{17.37}\\
& =\bigcup\left\{A: A \subseteq E, \mathbf{1}_{I}(A)=r(A)\right\} \tag{17.38}\\
& =\bigcup\{A: A \subseteq E,|I \cap A|=r(A)\} \tag{17.39}
\end{align*}
$$

- Notice that $\mathbf{1}_{I}(A)=|I \cap A| \leq|I|$.
- Intuitively, consider an $A \supset I \in \mathcal{I}$ that doesn't increase rank, meaning $r(A)=r(I)$. If $r(A)=|I \cap A|=r(I \cap A)$, as in Eqn. (17.39), then A is in I 's span, so should get $\operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)$.

$$
C((A \cap I) \cup(A(I))=r(I \cap A)
$$

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and

$$
\begin{equation*}
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\} \tag{17.36}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{sat}\left(\mathbf{1}_{I}\right) & =\bigcup\left\{A: A \subseteq E, A \in \mathcal{D}\left(\mathbf{1}_{I}\right)\right\} \tag{17.37}\\
& =\bigcup\left\{A: A \subseteq E, \mathbf{1}_{I}(A)=r(A)\right\} \tag{17.38}\\
& =\bigcup\{A: A \subseteq E,|I \cap A|=r(A)\} \tag{17.39}
\end{align*}
$$

- Notice that $\mathbf{1}_{I}(A)=|I \cap A| \leq|I|$.
- Intuitively, consider an $A \supset I \in \mathcal{I}$ that doesn't increase rank, meaning $r(A)=r(I)$. If $r(A)=|I \cap A|=r(I \cap A)$, as in Eqn. (17.39), then A is in I 's span, so should get $\operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)$.
- We formalize this next.

The sat function $=$ Polymatroid Closure

Lemma 17.8.2 (Matroid sat : $\mathbb{R}_{+}^{E} \rightarrow 2^{E}$ is the same as closure.)

$$
\begin{equation*}
\text { For } I \in \mathcal{I} \text {, we have } \operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I) \tag{17.40}
\end{equation*}
$$

The sat function $=$ Polymatroid Closure

Lemma 17.8.2 (Matroid sat: $\mathbb{R}_{+}^{E} \rightarrow 2^{E}$ is the same as closure.)

$$
\text { For } I \in \mathcal{I} \text {, we have } \operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)
$$

Proof.

- For $\mathbf{1}_{I}(I)=|I|=r(I)$, so $I \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ and $I \subseteq \operatorname{sat}\left(\mathbf{1}_{I}\right)$. Also, $I \subseteq \operatorname{span}(I)$.

The sat function $=$ Polymatroid Closure

Lemma 17.8.2 (Matroid sat: $\mathbb{R}_{+}^{E} \rightarrow 2^{E}$ is the same as closure.)

$$
\text { For } I \in \mathcal{I} \text {, we have } \operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)
$$

Proof.

- For $\mathbf{1}_{I}(I)=|I|=r(I)$, so $I \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ and $I \subseteq \operatorname{sat}\left(\mathbf{1}_{I}\right)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \backslash I$.

The sat function $=$ Polymatroid Closure

Lemma 17.8.2 (Matroid sat: $\mathbb{R}_{+}^{E} \rightarrow 2^{E}$ is the same as closure.)

$$
\text { For } I \in \mathcal{I} \text {, we have } \operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)
$$

Proof.

- For $\mathbf{1}_{I}(I)=|I|=r(I)$, so $I \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ and $I \subseteq \operatorname{sat}\left(\mathbf{1}_{I}\right)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \backslash I$.
- Then $I \cup\{b\} \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ since $\mathbf{1}_{I}(I \cup\{b\})=|I|=r(I \cup\{b\})=r(I)$.

The sat function $=$ Polymatroid Closure

Lemma 17.8.2 (Matroid sat : $\mathbb{R}_{+}^{E} \rightarrow 2^{E}$ is the same as closure.)

$$
\text { For } I \in \mathcal{I} \text {, we have } \operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)
$$

Proof.

- For $\mathbf{1}_{I}(I)=|I|=r(I)$, so $I \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ and $I \subseteq \operatorname{sat}\left(\mathbf{1}_{I}\right)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \backslash I$.
- Then $I \cup\{b\} \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ since $\mathbf{1}_{I}(I \cup\{b\})=|I|=r(I \cup\{b\})=r(I)$.
- Thus, $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right)$.

The sat function $=$ Polymatroid Closure

Lemma 17.8.2 (Matroid sat : $\mathbb{R}_{+}^{E} \rightarrow 2^{E}$ is the same as closure.)

$$
\text { For } I \in \mathcal{I} \text {, we have } \operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)
$$

Proof.

- For $\mathbf{1}_{I}(I)=|I|=r(I)$, so $I \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ and $I \subseteq \operatorname{sat}\left(\mathbf{1}_{I}\right)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \backslash I$.
- Then $I \cup\{b\} \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ since $\mathbf{1}_{I}(I \cup\{b\})=|I|=r(I \cup\{b\})=r(I)$.
- Thus, $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right)$.
- Therefore, $\operatorname{sat}\left(\mathbf{1}_{I}\right) \supseteq \operatorname{span}(I)$.

The sat function $=$ Polymatroid Closure

. . . proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.

The sat function $=$ Polymatroid Closure

proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.

The sat function $=$ Polymatroid Closure

proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.
- Then $\mathbf{1}_{I}(A)=|A \cap I|=r(A)=r(A \cap I)$.

The sat function $=$ Polymatroid Closure

proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.
- Then $\mathbf{1}_{I}(A)=|A \cap I|=r(A)=r(A \cap I)$.
- Now $r(A)=|A \cap I| \leq|I|=r(I)$.

The sat function $=$ Polymatroid Closure

proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.
- Then $\mathbf{1}_{I}(A)=|A \cap I|=r(A)=r(A \cap I)$.
- Now $r(A)=|A \cap I| \leq|I|=r(I)$.
- Also, $r(A \cap I)=|A \cap I|$ since $A \cap I \in \mathcal{I}$.

The sat function $=$ Polymatroid Closure

proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.
- Then $\mathbf{1}_{I}(A)=|A \cap I|=r(A)=r(A \cap I)$.
- Now $r(A)=|A \cap I| \leq|I|=r(I)$.
- Also, $r(A \cap I)=|A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I)=r(A)=r((A \cap I) \cup(A \backslash I))$ meaning $(A \backslash I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.

The sat function $=$ Polymatroid Closure

proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.
- Then $\mathbf{1}_{I}(A)=|A \cap I|=r(A)=r(A \cap I)$.
- Now $r(A)=|A \cap I| \leq|I|=r(I)$.
- Also, $r(A \cap I)=|A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I)=r(A)=r((A \cap I) \cup(A \backslash I))$ meaning $(A \backslash I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.
- Since $b \in A \backslash I$, we get $b \in \operatorname{span}(I)$.

The sat function $=$ Polymatroid Closure

proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.
- Then $\mathbf{1}_{I}(A)=|A \cap I|=r(A)=r(A \cap I)$.
- Now $r(A)=|A \cap I| \leq|I|=r(I)$.
- Also, $r(A \cap I)=|A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I)=r(A)=r((A \cap I) \cup(A \backslash I))$ meaning $(A \backslash I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.
- Since $b \in A \backslash I$, we get $b \in \operatorname{span}(I)$.
- Thus, $\operatorname{sat}\left(\mathbf{1}_{I}\right) \subseteq \operatorname{span}(I)$.

The sat function $=$ Polymatroid Closure

proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.
- Then $\mathbf{1}_{I}(A)=|A \cap I|=r(A)=r(A \cap I)$.
- Now $r(A)=|A \cap I| \leq|I|=r(I)$.
- Also, $r(A \cap I)=|A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I)=r(A)=r((A \cap I) \cup(A \backslash I))$ meaning $(A \backslash I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.
- Since $b \in A \backslash I$, we get $b \in \operatorname{span}(I)$.
- Thus, $\operatorname{sat}\left(\mathbf{1}_{I}\right) \subseteq \operatorname{span}(I)$.
- Hence $\operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)$

The sat function $=$ Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_{C}$.

The sat function $=$ Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_{C}$. Is $\mathbf{1}_{C} \in P_{r}$?

The sat function $=$ Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_{C}$. Is $\mathbf{1}_{C} \in P_{r}$? No, it is not a vertex, or even a member, of P_{r}.

The sat function $=$ Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_{C}$. Is $\mathbf{1}_{C} \in P_{r}$? No, it is not a vertex, or even a member, of P_{r}.
- $\operatorname{span}(\cdot)$ operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.

The sat function $=$ Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_{C}$. Is $\mathbf{1}_{C} \in P_{r}$? No, it is not a vertex, or even a member, of P_{r}.
- span (\cdot) operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C)=\operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.

The sat function $=$ Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_{C}$. Is $\mathbf{1}_{C} \in P_{r}$? No, it is not a vertex, or even a member, of P_{r}.
- span (\cdot) operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C)=\operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_{B} \leq \mathbf{1}_{C} \leq \mathbf{1}_{\text {span }(C)}$, and that $\mathbf{1}_{B} \in P_{r}$. We can then make the definition:

$$
\begin{equation*}
\operatorname{sat}\left(\mathbf{1}_{C}\right) \triangleq \operatorname{sat}\left(\mathbf{1}_{B}\right) \text { for } B \in \mathcal{B}(C) \tag{17.41}
\end{equation*}
$$

In which case, we also get $\operatorname{sat}\left(\mathbf{1}_{C}\right)=\operatorname{span}(C)$ (in general, could define $\operatorname{sat}(y)=\operatorname{sat}($ P-basis $(y)))$.

The sat function $=$ Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_{C}$. Is $\mathbf{1}_{C} \in P_{r}$? No, it is not a vertex, or even a member, of P_{r}.
- $\operatorname{span}(\cdot)$ operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C)=\operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_{B} \leq \mathbf{1}_{C} \leq \mathbf{1}_{\text {span }(C)}$, and that $\mathbf{1}_{B} \in P_{r}$. We can then make the definition:

$$
\begin{equation*}
\operatorname{sat}\left(\mathbf{1}_{C}\right) \triangleq \operatorname{sat}\left(\mathbf{1}_{B}\right) \text { for } B \in \mathcal{B}(C) \tag{17.41}
\end{equation*}
$$

In which case, we also get $\operatorname{sat}\left(\mathbf{1}_{C}\right)=\operatorname{span}(C)$ (in general, could define $\operatorname{sat}(y)=\operatorname{sat}($ P-basis $(y)))$.

- However, consider the following form

$$
\begin{equation*}
\operatorname{sat}\left(\mathbf{1}_{C}\right)=\bigcup\{A: A \subseteq E,|A \cap C|=r(A)\} \tag{17.42}
\end{equation*}
$$

Exercise: is $\operatorname{span}(C)=\operatorname{sat}\left(\mathbf{1}_{C}\right)$? Prove or disprove it.
tale hor,

The sat function, span, and submodular function minimization

- Thus, for a matroid, $\operatorname{sat}\left(\mathbf{1}_{I}\right)$ is exactly the closure (or span) of I in the matroid. I.e., for matroid (E, r), we have $\operatorname{span}(I)=\operatorname{sat}\left(\mathbf{1}_{B}\right)$.

The sat function, span, and submodular function minimization

- Thus, for a matroid, $\operatorname{sat}\left(\mathbf{1}_{I}\right)$ is exactly the closure (or span) of I in the matroid. I.e., for matroid (E, r), we have $\operatorname{span}(I)=\operatorname{sat}\left(\mathbf{1}_{B}\right)$.
- Recall, for $x \in P_{f}$ and polymatroidal f, $\operatorname{sat}(x)$ is the maximal (by inclusion) minimizer of $f(A)-x(A)$, and thus in a matroid, $\operatorname{span}(I)$ is the maximal minimizer of the submodular function formed by $r(A)-\mathbf{1}_{I}(A)$.

The sat function, span, and submodular function minimization

- Thus, for a matroid, $\operatorname{sat}\left(\mathbf{1}_{I}\right)$ is exactly the closure (or span) of I in the matroid. I.e., for matroid (E, r), we have $\operatorname{span}(I)=\operatorname{sat}\left(\mathbf{1}_{B}\right)$.
- Recall, for $x \in P_{f}$ and polymatroidal f, $\operatorname{sat}(x)$ is the maximal (by inclusion) minimizer of $f(A)-x(A)$, and thus in a matroid, $\operatorname{span}(I)$ is the maximal minimizer of the submodular function formed by $r(A)-\mathbf{1}_{I}(A)$.
- Submodular function minimization can solve "span" queries in a matroid or "sat" queries in a polymatroid.

sat, as tight polymatroidal elements

- We are given an $x \in P_{f}^{+}$for submodular function f.

sat, as tight polymatroidal elements

- We are given an $x \in P_{f}^{+}$for submodular function f.
- Recall that for such an x, $\operatorname{sat}(x)$ is defined as

$$
\begin{equation*}
\operatorname{sat}(x)=\bigcup\{A: x(A)=f(A)\} \tag{17.43}
\end{equation*}
$$

sat, as tight polymatroidal elements

- We are given an $x \in P_{f}^{+}$for submodular function f.
- Recall that for such an $x, \operatorname{sat}(x)$ is defined as

$$
\begin{equation*}
\operatorname{sat}(x)=\bigcup\{A: x(A)=f(A)\} \tag{17.43}
\end{equation*}
$$

- We also have stated that sat (x) can be defined as:

$$
\begin{equation*}
\operatorname{sat}(x)=\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{17.44}
\end{equation*}
$$

sat, as tight polymatroidal elements

- We are given an $x \in P_{f}^{+}$for submodular function f.
- Recall that for such an $x, \operatorname{sat}(x)$ is defined as

$$
\begin{equation*}
\operatorname{sat}(x)=\bigcup\{A: x(A)=f(A)\} \tag{17.43}
\end{equation*}
$$

- We also have stated that sat (x) can be defined as:

$$
\begin{equation*}
\operatorname{sat}(x)=\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{17.44}
\end{equation*}
$$

- We next show more formally that these are the same.

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\operatorname{sat}(x)
$$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{equation*}
\operatorname{sat}(x) \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{17.45}
\end{equation*}
$$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{17.45}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\}
\end{align*}
$$

(17.46)

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{17.45}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\}
\end{align*}
$$

(17.46)
(17.47)

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{17.45}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\}
\end{align*}
$$

(17.46)
(17.47)

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$.

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{17.45}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\}
\end{align*}
$$

(17.46)
(17.47)

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$. Continuing, we get

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)+\alpha>f(A)\} \tag{17.48}
\end{equation*}
$$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{17.45}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{17.46}\\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{17.47}
\end{align*}
$$

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$. Continuing, we get

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)+\alpha>f(A)\} \tag{17.48}
\end{equation*}
$$

- given that $x \in P_{f}^{+}$, meaning $x(A) \leq f(A)$ for all A, we must have

$$
\operatorname{sat}(x)
$$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{17.45}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{17.46}\\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{17.47}
\end{align*}
$$

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$. Continuing, we get

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)+\alpha>f(A)\} \tag{17.48}
\end{equation*}
$$

- given that $x \in P_{f}^{+}$, meaning $x(A) \leq f(A)$ for all A, we must have

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{17.49}
\end{equation*}
$$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{17.45}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{17.46}\\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{17.47}
\end{align*}
$$

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$. Continuing, we get

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)+\alpha>f(A)\} \tag{17.48}
\end{equation*}
$$

- given that $x \in P_{f}^{+}$, meaning $x(A) \leq f(A)$ for all A, we must have

$$
\begin{align*}
\operatorname{sat}(x) & =\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{17.49}\\
& =\{e: \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{17.50}
\end{align*}
$$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{17.45}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{17.46}\\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{17.47}
\end{align*}
$$

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$. Continuing, we get

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)+\alpha>f(A)\} \tag{17.48}
\end{equation*}
$$

- given that $x \in P_{f}^{+}$, meaning $x(A) \leq f(A)$ for all A, we must have

$$
\begin{align*}
\operatorname{sat}(x) & =\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{17.49}\\
& =\{e: \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{17.50}
\end{align*}
$$

- So now, if A is any set such that $x(A)=f(A)$, then we clearly have

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{17.45}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{17.46}\\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{17.47}
\end{align*}
$$

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$. Continuing, we get

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)+\alpha>f(A)\} \tag{17.48}
\end{equation*}
$$

- given that $x \in P_{f}^{+}$, meaning $x(A) \leq f(A)$ for all A, we must have

$$
\begin{align*}
\operatorname{sat}(x) & =\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{17.49}\\
& =\{e: \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{17.50}
\end{align*}
$$

- So now, if A is any set such that $x(A)=f(A)$, then we clearly have

$$
\begin{equation*}
\forall e \in A, e \in \operatorname{sat}(x) \tag{17.51}
\end{equation*}
$$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{17.45}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{17.46}\\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{17.47}
\end{align*}
$$

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$. Continuing, we get

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)+\alpha>f(A)\} \tag{17.48}
\end{equation*}
$$

- given that $x \in P_{f}^{+}$, meaning $x(A) \leq f(A)$ for all A, we must have

$$
\begin{align*}
\operatorname{sat}(x) & =\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{17.49}\\
& =\{e: \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{17.50}
\end{align*}
$$

- So now, if A is any set such that $x(A)=f(A)$, then we clearly have $\forall e \in A, e \in \operatorname{sat}(x)$, and therefore that $\operatorname{sat}(x) \supseteq A$

sat, as tight polymatroidal elements

- ... and therefore, with sat as defined in Eq. (??),

$$
\begin{equation*}
\operatorname{sat}(x) \supseteq \bigcup\{A: x(A)=f(A)\} \tag{17.52}
\end{equation*}
$$

sat, as tight polymatroidal elements

- ... and therefore, with sat as defined in Eq. (??),

$$
\begin{equation*}
\operatorname{sat}(x) \supseteq \bigcup\{A: x(A)=f(A)\} \tag{17.52}
\end{equation*}
$$

- On the other hand, for any $e \in \operatorname{sat}(x)$ defined as in Eq. (17.50), since e is itself a member of a tight set, there is a set $A \ni e$ such that $x(A)=f(A)$, giving

$$
\begin{equation*}
\operatorname{sat}(x) \subseteq \bigcup\{A: x(A)=f(A)\} \tag{17.53}
\end{equation*}
$$

sat, as tight polymatroidal elements

- ... and therefore, with sat as defined in Eq. (??),

$$
\begin{equation*}
\operatorname{sat}(x) \supseteq \bigcup\{A: x(A)=f(A)\} \tag{17.52}
\end{equation*}
$$

- On the other hand, for any $e \in \operatorname{sat}(x)$ defined as in Eq. (17.50), since e is itself a member of a tight set, there is a set $A \ni e$ such that $x(A)=f(A)$, giving

$$
\begin{equation*}
\operatorname{sat}(x) \subseteq \bigcup\{A: x(A)=f(A)\} \tag{17.53}
\end{equation*}
$$

- Therefore, the two definitions of sat are identical.

Saturation Capacity

- Another useful concept is saturation capacity which we develop next.

Saturation Capacity

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_{f}$, and $e \in E$, consider finding

$$
\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\}
$$

Saturation Capacity

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_{f}$, and $e \in E$, consider finding

$$
\begin{equation*}
\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{17.54}
\end{equation*}
$$

- This is identical to:

$$
\begin{equation*}
\max \left\{\alpha:\left(x+\alpha \mathbf{1}_{e}\right)(A) \leq f(A), \forall A \supseteq\{e\}\right\} \tag{17.55}
\end{equation*}
$$

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_{e}$ adjustment, meaning $\left(x+\alpha \mathbf{1}_{e}\right)(B)=x(B)$.

Saturation Capacity

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_{f}$, and $e \in E$, consider finding

$$
\begin{equation*}
\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{17.54}
\end{equation*}
$$

- This is identical to:

$$
\begin{equation*}
\max \left\{\alpha:\left(x+\alpha \mathbf{1}_{e}\right)(A) \leq f(A), \forall A \supseteq\{e\}\right\} \tag{17.55}
\end{equation*}
$$

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_{e}$ adjustment, meaning $\left(x+\alpha \mathbf{1}_{e}\right)(B)=x(B)$.

- Again, this is identical to:

$$
\begin{equation*}
\max \{\alpha: x(A)+\alpha \leq f(A), \forall A \supseteq\{e\}\} \tag{17.56}
\end{equation*}
$$

Saturation Capacity

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_{f}$, and $e \in E$, consider finding

$$
\begin{equation*}
\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{17.54}
\end{equation*}
$$

- This is identical to:

$$
\begin{equation*}
\max \left\{\alpha:\left(x+\alpha \mathbf{1}_{e}\right)(A) \leq f(A), \forall A \supseteq\{e\}\right\} \tag{17.55}
\end{equation*}
$$

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_{e}$ adjustment, meaning $\left(x+\alpha \mathbf{1}_{e}\right)(B)=x(B)$.

- Again, this is identical to:

$$
\begin{equation*}
\max \{\alpha: x(A)+\alpha \leq f(A), \forall A \supseteq\{e\}\} \tag{17.56}
\end{equation*}
$$

or

$$
\begin{equation*}
\max \{\alpha: \alpha \leq f(A)-x(A), \forall A \supseteq\{e\}\} \tag{17.57}
\end{equation*}
$$

Saturation Capacity

- The max is achieved when

$$
\alpha=\hat{c}(x ; e) \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \supseteq\{e\}\}
$$

Saturation Capacity

- The max is achieved when

$$
\begin{equation*}
\alpha=\hat{c}(x ; e) \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \supseteq\{e\}\} \tag{17.58}
\end{equation*}
$$

- $\hat{c}(x ; e)$ is known as the saturation capacity associated with $x \in P_{f}$ and e.

Saturation Capacity

- The max is achieved when

$$
\begin{equation*}
\alpha=\hat{c}(x ; e) \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \supseteq\{e\}\} \tag{17.58}
\end{equation*}
$$

- $\hat{c}(x ; e)$ is known as the saturation capacity associated with $x \in P_{f}$ and e.
- Thus we have for $x \in P_{f}$,

$$
\begin{align*}
\hat{c}(x ; e) & \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \ni e\} \tag{17.59}\\
& =\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{17.60}
\end{align*}
$$

Saturation Capacity

- The max is achieved when

$$
\begin{equation*}
\alpha=\hat{c}(x ; e) \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \supseteq\{e\}\} \tag{17.58}
\end{equation*}
$$

- $\hat{c}(x ; e)$ is known as the saturation capacity associated with $x \in P_{f}$ and e.
- Thus we have for $x \in P_{f}$,

$$
\begin{align*}
\hat{c}(x ; e) & \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \ni e\} \tag{17.59}\\
& =\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{17.60}
\end{align*}
$$

- We immediately see that for $e \in E \backslash \operatorname{sat}(x)$, we have that $\hat{c}(x ; e)>0$.

Saturation Capacity

- The max is achieved when

$$
\begin{equation*}
\alpha=\hat{c}(x ; e) \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \supseteq\{e\}\} \tag{17.58}
\end{equation*}
$$

- $\hat{c}(x ; e)$ is known as the saturation capacity associated with $x \in P_{f}$ and e.
- Thus we have for $x \in P_{f}$,

$$
\begin{align*}
\hat{c}(x ; e) & \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \ni e\} \tag{17.59}\\
& =\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{17.60}
\end{align*}
$$

- We immediately see that for $e \in E \backslash \operatorname{sat}(x)$, we have that $\hat{c}(x ; e)>0$.
- Also, we have that: $e \in \operatorname{sat}(x) \Leftrightarrow \hat{c}(x ; e)=0$.

Saturation Capacity

- The max is achieved when

$$
\begin{equation*}
\alpha=\hat{c}(x ; e) \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \supseteq\{e\}\} \tag{17.58}
\end{equation*}
$$

- $\hat{c}(x ; e)$ is known as the saturation capacity associated with $x \in P_{f}$ and e.
- Thus we have for $x \in P_{f}$,

$$
\begin{align*}
\hat{c}(x ; e) & \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \ni e\} \tag{17.59}\\
& =\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{17.60}
\end{align*}
$$

- We immediately see that for $e \in E \backslash \operatorname{sat}(x)$, we have that $\hat{c}(x ; e)>0$.
- Also, we have that: $e \in \operatorname{sat}(x) \Leftrightarrow \hat{c}(x ; e)=0$.
- Note that any α with $0 \leq \alpha \leq \hat{c}(x ; e)$ we have $x+\alpha \mathbf{1}_{e} \in P_{f}$.

Saturation Capacity

- The max is achieved when

$$
\begin{equation*}
\alpha=\hat{c}(x ; e) \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \supseteq\{e\}\} \tag{17.58}
\end{equation*}
$$

- $\hat{c}(x ; e)$ is known as the saturation capacity associated with $x \in P_{f}$ and e.
- Thus we have for $x \in P_{f}$,

$$
\begin{align*}
\hat{c}(x ; e) & \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \ni e\} \tag{17.59}\\
& =\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{17.60}
\end{align*}
$$

- We immediately see that for $e \in E \backslash \operatorname{sat}(x)$, we have that $\hat{c}(x ; e)>0$.
- Also, we have that: $e \in \operatorname{sat}(x) \Leftrightarrow \hat{c}(x ; e)=0$.
- Note that any α with $0 \leq \alpha \leq \hat{c}(x ; e)$ we have $x+\alpha \mathbf{1}_{e} \in P_{f}$.
- We also see that computing $\hat{c}(x ; e)$ is a form of submodular function minimization.

