Submodular Functions, Optimization, and Applications to Machine Learning
 - Spring Quarter, Lecture 16 -

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

May 21st, 2018

$f(A)+f(B) \geq f(A \cup B)+f(A \cap B)$
$=f\left(A_{r}\right)+2 f(C)+f\left(B_{r}\right)=f\left(A_{r}\right)+f(C)+f\left(B_{r}\right) \quad=f\left(A_{\cap} \cap B\right)$

Announcements, Assignments, and Reminders

- Next homework will be posted tonight.
- Rest of the quarter. One more longish homework.
- Take home final exam (like a long homework).
- As always, if you have any questions about anything, please ask then via our discussion board (https://canvas.uw.edu/courses/1216339/discussion_topics). Can meet at odd hours via zoom (send message on canvas to schedule time to chat).

Class Road Map - EE563

- L1(3/26): Motivation, Applications, \& Basic Definitions,
- L2(3/28): Machine Learning Apps (diversity, complexity, parameter, learning target, surrogate).
- L3(4/2): Info theory exs, more apps, definitions, graph/combinatorial examples
- L4(4/4): Graph and Combinatorial Examples, Matrix Rank, Examples and Properties, visualizations
- L5(4/9): More Examples/Properties/ Other Submodular Defs., Independence,
- L6(4/11): Matroids, Matroid Examples, Matroid Rank, Partition/Laminar Matroids
- L7(4/16): Laminar Matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid Representation, Dual Matroids
- L8(4/18): Dual Matroids, Other Matroid Properties, Combinatorial Geometries, Matroids and Greedy.
- L9(4/23): Polyhedra, Matroid Polytopes, Matroids \rightarrow Polymatroids
- L10(4/29): Matroids \rightarrow Polymatroids, Polymatroids, Polymatroids and Greedy,
- L11(4/30): Polymatroids, Polymatroids and Greedy
- L12(5/2): Polymatroids and Greedy, Extreme Points, Cardinality Constrained Maximization
- L13(5/7): Constrained Submodular Maximization
- L14(5/9): Submodular Max w. Other Constraints, Cont. Extensions, Lovasz Extension
- L15(5/14): Cont. Extensions, Lovasz Extension, Choquet Integration, Properties
- L16(5/16): More Lovasz extension, Choquet, defs/props, examples, multiliear extension
- L17(5/21): Finish L.E., Multilinear Extension, Submodular Max/polyhedral approaches, Most Violated inequality, Still More on Matroids, Closure/Sat
- L-(5/28): Memorial Day (holiday)
- L18(5/30): Closure/Sat, Fund. Circuit/Dep, Min-Norm Point Definitions, Proof that min-norm gives optimal Review \& Support for Min-Norm, Computing Min-Norm Vector for B_{f}
- L21(6/4): Final Presentations maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

Convex Closure of Discrete Set Functions

- Given set function $f: 2^{V} \rightarrow \mathbb{R}$, an arbitrary (i.e., not necessarily submodular nor supermodular) set function, define a function $\check{f}:[0,1]^{V} \rightarrow \mathbb{R}$, as

$$
\begin{equation*}
\check{f}(x)=\min _{p \in \triangle^{n}(x)} \sum_{S \subseteq V} p_{S} f(S) \tag{16.1}
\end{equation*}
$$

where $\triangle^{n}(x)=$

$$
\left\{p \in \mathbb{R}^{2^{n}}: \sum_{S \subseteq V} p_{S}=1, p_{S} \geq 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_{S} \mathbf{1}_{S}=x\right\}
$$

- Hence, $\triangle^{n}(x)$ is the set of all probability distributions over the 2^{n} vertices of the hypercube, and where the expected value of the characteristic vectors of those points is equal to x, i.e., for any $p \in \triangle^{n}(x), E_{S \sim p}\left(\mathbf{1}_{S}\right)=\sum_{S \subseteq V} p_{S} \mathbf{1}_{S}=x$.
- Hence, $\check{f}(x)=\min _{p \in \Delta^{n}(x)} E_{S \sim p}[f(S)]$
- Note, this is not (necessarily) the Lovász extension, rather this is a convex extension.

Convex Closure of Discrete Set Functions

- Given, $\check{f}(x)=\min _{p \in \Delta^{n}(x)} E_{S \sim p}[f(S)]$, we can show:
(1) That \check{f} is tight (i.e., $\forall S \subseteq V$, we have $\check{f}\left(\mathbf{1}_{S}\right)=f(S)$).
(2) That \check{f} is convex (and consequently, that any arbitrary set function has a tight convex extension).
(3) That the convex closure \check{f} is the convex envelope of the function defined only on the hypercube vertices, and that takes value $f(S)$ at $\mathbf{1}_{S}$.
(1) The definition of the Lovász extension of a set function, and that \check{f} is the Lovász extension iff f is submodular.

A continuous extension of submodular f

- That is, given a submodular function f, a $w \in \mathbb{R}^{E}$, choose element order $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ based on decreasing w,so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- Define the chain with $i^{\text {th }}$ element $E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$, we have

$$
\begin{align*}
\breve{f}(w) & =\max \left(w x: x \in B_{f}\right) \tag{16.12}\\
& =\sum_{i=1}^{m} w\left(e_{i}\right) f\left(e_{i} \mid E_{i-1}\right)=\sum_{i=1}^{m} w\left(e_{i}\right) x\left(e_{i}\right) \tag{16.13}\\
& =\sum_{i=1}^{m} w\left(e_{i}\right)\left(f\left(E_{i}\right)-f\left(E_{i-1}\right)\right) \tag{16.14}\\
& =w\left(e_{m}\right) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right) f\left(E_{i}\right) \tag{16.15}
\end{align*}
$$

- We say that $\emptyset \triangleq E_{0} \subset E_{1} \subset E_{2} \subset \cdots \subset E_{m}=E$ forms a chain based on w.

A continuous extension of submodular f

- Definition of the continuous extension, once again, for reference:

$$
\begin{equation*}
\breve{f}(w)=\max \left(w x: x \in B_{f}\right) \tag{16.12}
\end{equation*}
$$

- Therefore, if f is a submodular function, we can write

$$
\begin{align*}
\breve{f}(w) & =w\left(e_{m}\right) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right) f\left(E_{i}\right) \tag{16.13}\\
& =\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{16.14}
\end{align*}
$$

where $\lambda_{m}=w\left(e_{m}\right)$ and otherwise $\lambda_{i}=w\left(e_{i}\right)-w\left(e_{i+1}\right)$, where the elements are sorted descending according to w as before.

- Convex analysis $\Rightarrow \breve{f}(w)=\max (w x: x \in P)$ is always convex in w for any set $P \subseteq R^{E}$, since a maximum of a set of linear functions (true even when f is not submodular or P is not itself a convex set).

An extension of an arbitrary $f: 2^{V} \rightarrow \mathbb{R}$

- Thus, for any $f: 2^{E} \rightarrow \mathbb{R}$, even non-submodular f, we can define an extension, having $\breve{f}\left(\mathbf{1}_{A}\right)=f(A), \forall A$, in this way where

$$
\begin{equation*}
\breve{f}(w)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{16.21}
\end{equation*}
$$

with the $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$'s defined based on sorted descending order of w as in $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$, and where

$$
\text { for } i \in\{1, \ldots, m\}, \quad \lambda_{i}= \begin{cases}w\left(e_{i}\right)-w\left(e_{i+1}\right) & \text { if } i<m \tag{16.22}\\ w\left(e_{m}\right) & \text { if } i=m\end{cases}
$$

so that $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$.

- $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$ is an interpolation of certain hypercube vertices.
- $\breve{f}(w)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)$ is the associated interpolation of the values of f at sets corresponding to each hypercube vertex.
- This extension is called the Lovász extension!

Summary: comparison of the two extension forms

- So if f is submodular, then we can write $f(w)=\max \left(w x: x \in B_{f}\right)$ (which is clearly convex) in the form:

$$
\begin{equation*}
\breve{f}(w)=\max \left(w x: x \in B_{f}\right)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{16.25}
\end{equation*}
$$

where $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$ and $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$ defined based on sorted descending order $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.

- On the other hand, for any f (even non-submodular), we can produce an extension \breve{f} having the form

$$
\begin{equation*}
\breve{f}(w)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{16.26}
\end{equation*}
$$

where $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$ and $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$ defined based on sorted descending order $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.

- In both Eq. (??) and Eq. (??), we have $\breve{f}\left(\mathbf{1}_{A}\right)=f(A), \forall A$, but

Eq. (??), might not be convex.

- Submodularity is sufficient for convexity, but is it necessary?

Lovász Extension, Submodularity and Convexity

Theorem 16.2.5

A function $f: 2^{E} \rightarrow \mathbb{R}$ is submodular iff its Lovász extension \breve{f} of f is convex.

Proof.

- We've already seen that if f is submodular, its extension can be written via Eqn.(??) due to the greedy algorithm, and therefore is also equivalent to $\breve{f}(w)=\max \left\{w x: x \in P_{f}\right\}$, and thus is convex.
- Conversely, suppose the Lovász extension $\breve{f}(w)=\sum_{i} \lambda_{i} f\left(E_{i}\right)$ of some function $f: 2^{E} \rightarrow \mathbb{R}$ is a convex function.
- We note that, based on the extension definition, in particular the definition of the $\left\{\lambda_{i}\right\}_{i}$, we have that $\breve{f}(\alpha w)=\alpha \breve{f}(w)$ for any $\alpha \in \mathbb{R}_{+}$. l.e., f is a positively homogeneous convex function.

Lovász ext. vs. the concave closure of submodular function

Theorem 16.2.5

Let $\breve{f}(w)=\max \left(w y: y \in B_{f}\right)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)$ be the Lovász extension and $\check{f}(x)=\min _{p \in \Delta^{n}(x)} E_{S \sim p}[f(S)]$ be the convex closure. Then \breve{f} and \check{f} coincide iff f is submodular, i.e., $\breve{f}(w)=\check{f}(w), \forall w$.

Proof.

- Assume f is submodular.
- Given x, let p^{x} be an achieving argmin in $\check{f}(x)$ that also maximizes $\sum_{S} p_{S}^{x}|S|^{2}$.
- Suppose $\exists A, B \subseteq V$ that are crossing (i.e., $A \nsubseteq B, B \nsubseteq A$) and positive and w.l.o.g., $p_{A}^{x} \geq p_{B}^{x}>0$.
- Then we may update p^{x} as follows:

$$
\begin{array}{rr}
\bar{p}_{A}^{x} \leftarrow p_{A}^{x}-p_{B}^{x} & \bar{p}_{B}^{x} \leftarrow p_{B}^{x}-p_{B}^{x} \\
\bar{p}_{A \cup B}^{x} \leftarrow p_{A \cup B}^{x}+p_{B}^{x} & \bar{p}_{A \cap B}^{x} \leftarrow p_{A \cap B}^{x}+p_{B}^{x} \tag{16.35}
\end{array}
$$

and by submodularity, this does not increase $\sum_{S} p_{S}^{x} f(S)$.

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.

- Next, assume f is not submodular. We must show that the Lovász extension $\breve{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.

. . . proof cont.

- Next, assume f is not submodular. We must show that the Lovász extension $\breve{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.
- Since f is not submodular, $\exists S$ and $i, j \notin S$ such that $f(S)+f(S+i+j)>f(S+i)+f(S+j)$, a strict violation of submodularity.

. . . proof cont.

- Next, assume f is not submodular. We must show that the Lovász extension $\breve{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.
- Since f is not submodular, $\exists S$ and $i, j \notin S$ such that $f(S)+f(S+i+j)>f(S+i)+f(S+j)$, a strict violation of submodularity.
- Consider $x=\mathbf{1}_{S}+\frac{1}{2} \mathbf{1}_{\{i, j\}}$.

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.

- Next, assume f is not submodular. We must show that the Lovász extension $\breve{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.
- Since f is not submodular, $\exists S$ and $i, j \notin S$ such that $f(S)+f(S+i+j)>f(S+i)+f(S+j)$, a strict violation of submodularity.
- Consider $x=\mathbf{1}_{S}+\frac{1}{2} \mathbf{1}_{\{i, j\}}$.
- Then L.E. has $\breve{f}(x)=\frac{1}{2} f(S)+\frac{1}{2} f(S+i+j)$ and this p is feasible for $\breve{f}(x)$ with $p_{S}=1 / 2$ and $p_{S+i+j}=1 / 2$.

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.

- Next, assume f is not submodular. We must show that the Lovász extension $\breve{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.
- Since f is not submodular, $\exists S$ and $i, j \notin S$ such that $f(S)+f(S+i+j)>f(S+i)+f(S+j)$, a strict violation of submodularity.
- Consider $x=\mathbf{1}_{S}+\frac{1}{2} \mathbf{1}_{\{i, j\}}$.
- Then L.E. has $\breve{f}(x)=\frac{1}{2} f(S)+\frac{1}{2} f(S+i+j)$ and this p is feasible for $f(x)$ with $p_{S}=1 / 2$ and $p_{S+i+j}=1 / 2$.
- An alternate feasible distribution for $\check{f}(x)$ in the convex closure is $\bar{p}_{S+i}=\bar{p}_{S+j}=1 / 2$.

Lovász ext. vs. the concave closure of submodular function

proof cont.

- Next, assume f is not submodular. We must show that the Lovász extension $\breve{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.
- Since f is not submodular, $\exists S$ and $i, j \notin S$ such that $f(S)+f(S+i+j)>f(S+i)+f(S+j)$, a strict violation of submodularity.
- Consider $x=\mathbf{1}_{S}+\frac{1}{2} \mathbf{1}_{\{i, j\}}$.
- Then L.E. has $\breve{f}(x)=\frac{1}{2} f(S)+\frac{1}{2} f(S+i+j)$ and this p is feasible for $f(x)$ with $p_{S}=1 / 2$ and $p_{S+i+j}=1 / 2$.
- An alternate feasible distribution for $\check{f}(x)$ in the convex closure is $\bar{p}_{S+i}=\bar{p}_{S+j}=1 / 2$.
- This gives

$$
\begin{equation*}
\check{f}(x) \leq \frac{1}{2}[f(S+i)+f(S+j)]<\breve{f}(x) \tag{16.1}
\end{equation*}
$$

meaning $\check{f}(x) \neq \breve{f}(x)$.

Integration and Aggregation

- Integration is just summation (e.g., the \int symbol has as its origins a sum).

Integration and Aggregation

- Integration is just summation (e.g., the \int symbol has as its origins a sum).
- Lebesgue integration allows integration w.r.t. an underlying measure μ of sets. E.g., given measurable function f, we can define

$$
\begin{equation*}
\int_{X} f d u=\sup I_{X}(s) \tag{16.2}
\end{equation*}
$$

where $I_{X}(s)=\sum_{i=1}^{n} c_{i} \mu\left(X \cap X_{i}\right)$, and where we take the sup over all measurable functions s such that $0 \leq s \leq f$ and $s(x)=\sum_{i=1}^{n} c_{i} I_{X_{i}}(x)$ and where $I_{X_{i}}(x)$ is indicator of membership of set X_{i}, with $c_{i}>0$.

Integration, Aggregation, and Weighted Averages

- In finite discrete spaces, Lebesgue integration is just a weighted average, and can be seen as an aggregation function.

Integration, Aggregation, and Weighted Averages

- In finite discrete spaces, Lebesgue integration is just a weighted average, and can be seen as an aggregation function.
- I.e., given a weight vector $w \in[0,1]^{E}$ for some finite ground set E, then for any $x \in \mathbb{R}^{E}$ we have the weighted average of x as:

$$
\begin{equation*}
\operatorname{WAVG}(x)=\sum_{e \in E} x(e) w(e) \tag{16.3}
\end{equation*}
$$

Integration, Aggregation, and Weighted Averages

- In finite discrete spaces, Lebesgue integration is just a weighted average, and can be seen as an aggregation function.
- I.e., given a weight vector $w \in[0,1]^{E}$ for some finite ground set E, then for any $x \in \mathbb{R}^{E}$ we have the weighted average of x as:

$$
\begin{equation*}
\operatorname{WAVG}(x)=\sum_{e \in E} x(e) w(e) \tag{16.3}
\end{equation*}
$$

- Consider $\mathbf{1}_{e}$ for $e \in E$, we have

$$
\begin{equation*}
\operatorname{WAVG}\left(\mathbf{1}_{e}\right)=w(e) \tag{16.4}
\end{equation*}
$$

Integration, Aggregation, and Weighted Averages

- In finite discrete spaces, Lebesgue integration is just a weighted average, and can be seen as an aggregation function.
- I.e., given a weight vector $w \in[0,1]^{E}$ for some finite ground set E, then for any $x \in \mathbb{R}^{E}$ we have the weighted average of x as:

$$
\begin{equation*}
\operatorname{WAVG}(x)=\sum_{e \in E} x(e) w(e) \tag{16.3}
\end{equation*}
$$

- Consider $\mathbf{1}_{e}$ for $e \in E$, we have

$$
\begin{equation*}
\operatorname{WAVG}\left(\mathbf{1}_{e}\right)=w(e) \tag{16.4}
\end{equation*}
$$

so seen as a function on the hypercube vertices, the entire WAVG function is given based on values on a size $m=|E|$ subset of the vertices of this hypercube, i.e., $\left\{\mathbf{1}_{e}: e \in E\right\}$.

Integration, Aggregation, and Weighted Averages

- In finite discrete spaces, Lebesgue integration is just a weighted average, and can be seen as an aggregation function.
- I.e., given a weight vector $w \in[0,1]^{E}$ for some finite ground set E, then for any $x \in \mathbb{R}^{E}$ we have the weighted average of x as:

$$
\begin{equation*}
\operatorname{WAVG}(x)=\sum_{e \in E} x(e) w(e) \tag{16.3}
\end{equation*}
$$

- Consider $\mathbf{1}_{e}$ for $e \in E$, we have

$$
\begin{equation*}
\operatorname{WAVG}\left(\mathbf{1}_{e}\right)=w(e) \tag{16.4}
\end{equation*}
$$

so seen as a function on the hypercube vertices, the entire WAVG function is given based on values on a size $m=|E|$ subset of the vertices of this hypercube, i.e., $\left\{\mathbf{1}_{e}: e \in E\right\}$. Moreover, we are interpolating as in

$$
\begin{equation*}
\operatorname{WAVG}(x)=\sum_{e \in E} x(e) w(e)=\sum_{e \in E} x(e) \operatorname{WAVG}\left(\mathbf{1}_{e}\right) \tag{16.5}
\end{equation*}
$$

Integration, Aggregation, and Weighted Averages

$$
\begin{equation*}
\operatorname{WAVG}(x)=\sum_{e \in E} x(e) w(e) \tag{16.6}
\end{equation*}
$$

- Clearly, WAVG function is linear in weights w, in the argument x, and is homogeneous. That is, for all $w, w_{1}, w_{2}, x, x_{1}, x_{2} \in \mathbb{R}^{E}$ and $\alpha \in \mathbb{R}$,

$$
\begin{align*}
\operatorname{WAVG}_{w_{1}+w_{2}}(x) & =\operatorname{WAVG}_{w_{1}}(x)+\operatorname{WAVG}_{w_{2}}(x), \tag{16.7}\\
\operatorname{WAVG}_{w}\left(x_{1}+x_{2}\right) & =\operatorname{WAVG}_{w}\left(x_{1}\right)+\operatorname{WAVG}_{w}\left(x_{2}\right), \tag{16.8}
\end{align*}
$$

and is homogeneous, $\forall \alpha \in \mathbb{R}$,

$$
\begin{equation*}
\operatorname{WAVG}(\alpha x)=\alpha \operatorname{WAVG}(x) \tag{16.9}
\end{equation*}
$$

Integration, Aggregation, and Weighted Averages

$$
\begin{equation*}
\operatorname{WAVG}(x)=\sum_{e \in E} x(e) w(e) \tag{16.6}
\end{equation*}
$$

- Clearly, WAVG function is linear in weights w, in the argument x, and is homogeneous. That is, for all $w, w_{1}, w_{2}, x, x_{1}, x_{2} \in \mathbb{R}^{E}$ and $\alpha \in \mathbb{R}$,

$$
\begin{align*}
\operatorname{WAVG}_{w_{1}+w_{2}}(x) & =\operatorname{WAVG}_{w_{1}}(x)+\operatorname{WAVG}_{w_{2}}(x), \tag{16.7}\\
\operatorname{WAVG}_{w}\left(x_{1}+x_{2}\right) & =\operatorname{WAVG}_{w}\left(x_{1}\right)+\operatorname{WAVG}_{w}\left(x_{2}\right), \tag{16.8}
\end{align*}
$$

and is homogeneous, $\forall \alpha \in \mathbb{R}$,

$$
\begin{equation*}
\operatorname{WAVG}(\alpha x)=\alpha \operatorname{WAVG}(x) \tag{16.9}
\end{equation*}
$$

- How related? The Lovász extension $\breve{f}(x)$ is still linear in "weights" (i.e., the submodular function f), but will not be linear in x and will only be positively homogeneous (for $\alpha \geq 0$).

Integration, Aggregation, and Weighted Averages

- More complex "nonlinear" aggregation functions can be constructed by defining the aggregation function on all vertices of the hypercube. I.e., for each $\mathbf{1}_{A}: A \subseteq E$ we might have (for all $A \subseteq E$):

$$
\begin{equation*}
\mathrm{AG}\left(\mathbf{1}_{A}\right)=w_{A} \tag{16.10}
\end{equation*}
$$

Integration, Aggregation, and Weighted Averages

- More complex "nonlinear" aggregation functions can be constructed by defining the aggregation function on all vertices of the hypercube. I.e., for each $\mathbf{1}_{A}: A \subseteq E$ we might have (for all $A \subseteq E$):

$$
\begin{equation*}
\mathrm{AG}\left(\mathbf{1}_{A}\right)=w_{A} \tag{16.10}
\end{equation*}
$$

- What then might $\mathrm{AG}(x)$ be for some $x \in \mathbb{R}^{E}$? Our weighted average functions might look something more like the r.h.s. in:

$$
\begin{equation*}
\mathrm{AG}(x)=\sum_{A \subseteq E} x(A) w_{A}=\sum_{A \subseteq E} x(A) \mathrm{AG}\left(\mathbf{1}_{A}\right) \tag{16.11}
\end{equation*}
$$

Integration, Aggregation, and Weighted Averages

- More complex "nonlinear" aggregation functions can be constructed by defining the aggregation function on all vertices of the hypercube. I.e., for each $\mathbf{1}_{A}: A \subseteq E$ we might have (for all $A \subseteq E$):

$$
\begin{equation*}
\mathrm{AG}\left(\mathbf{1}_{A}\right)=w_{A} \tag{16.10}
\end{equation*}
$$

- What then might $\mathrm{AG}(x)$ be for some $x \in \mathbb{R}^{E}$? Our weighted average functions might look something more like the r.h.s. in:

$$
\begin{equation*}
\mathrm{AG}(x)=\sum_{A \subseteq E} x(A) w_{A}=\sum_{A \subseteq E} x(A) \mathrm{AG}\left(\mathbf{1}_{A}\right) \tag{16.11}
\end{equation*}
$$

- Note, we can define $w(e)=w^{\prime}(e)$ and $w(A)=0, \forall A:|A|>1$ and get back previous (normal) weighted average, in that

$$
\begin{equation*}
\operatorname{WAVG}_{w^{\prime}}(x)=\mathrm{AG}_{w}(x) \tag{16.12}
\end{equation*}
$$

Integration, Aggregation, and Weighted Averages

- More complex "nonlinear" aggregation functions can be constructed by defining the aggregation function on all vertices of the hypercube. I.e., for each $\mathbf{1}_{A}: A \subseteq E$ we might have (for all $A \subseteq E$):

$$
\begin{equation*}
\mathrm{AG}\left(\mathbf{1}_{A}\right)=w_{A} \tag{16.10}
\end{equation*}
$$

- What then might $\mathrm{AG}(x)$ be for some $x \in \mathbb{R}^{E}$? Our weighted average functions might look something more like the r.h.s. in:

$$
\begin{equation*}
\mathrm{AG}(x)=\sum_{A \subseteq E} x(A) w_{A}=\sum_{A \subseteq E} x(A) \mathrm{AG}\left(\mathbf{1}_{A}\right) \tag{16.11}
\end{equation*}
$$

- Note, we can define $w(e)=w^{\prime}(e)$ and $w(A)=0, \forall A:|A|>1$ and get back previous (normal) weighted average, in that

$$
\begin{equation*}
\mathrm{WAVG}_{w^{\prime}}(x)=\mathrm{AG}_{w}(x) \tag{16.12}
\end{equation*}
$$

- Set function $f: 2^{E} \rightarrow \mathbb{R}$ is a game if f is normalized $f(\emptyset)=0$.

Integration, Aggregation, and Weighted Averages

- Set function $f: 2^{E} \rightarrow \mathbb{R}$ is called a capacity if it is monotone non-decreasing, i.e., $f(A) \leq f(B)$ whenever $A \subseteq B$.

Integration, Aggregation, and Weighted Averages

- Set function $f: 2^{E} \rightarrow \mathbb{R}$ is called a capacity if it is monotone non-decreasing, i.e., $f(A) \leq f(B)$ whenever $A \subseteq B$.
- A Boolean function f is any function $f:\{0,1\}^{m} \rightarrow\{0,1\}$ and is a pseudo-Boolean function if $f:\{0,1\}^{m} \rightarrow \mathbb{R}$.

Integration, Aggregation, and Weighted Averages

- Set function $f: 2^{E} \rightarrow \mathbb{R}$ is called a capacity if it is monotone non-decreasing, i.e., $f(A) \leq f(B)$ whenever $A \subseteq B$.
- A Boolean function f is any function $f:\{0,1\}^{m} \rightarrow\{0,1\}$ and is a pseudo-Boolean function if $f:\{0,1\}^{m} \rightarrow \mathbb{R}$.
- Any set function corresponds to a pseudo-Boolean function. I.e., given $f: 2^{E} \rightarrow \mathbb{R}$, form $f_{b}:\{0,1\}^{m} \rightarrow \mathbb{R}$ as $f_{b}(x)=f\left(A_{x}\right)$ where the A, x bijection is $A=\left\{e \in E: x_{e}=1\right\}$ and $x=\mathbf{1}_{A}$.

Integration, Aggregation, and Weighted Averages

- Set function $f: 2^{E} \rightarrow \mathbb{R}$ is called a capacity if it is monotone non-decreasing, i.e., $f(A) \leq f(B)$ whenever $A \subseteq B$.
- A Boolean function f is any function $f:\{0,1\}^{m} \rightarrow\{0,1\}$ and is a pseudo-Boolean function if $f:\{0,1\}^{m} \rightarrow \mathbb{R}$.
- Any set function corresponds to a pseudo-Boolean function. I.e., given $f: 2^{E} \rightarrow \mathbb{R}$, form $f_{b}:\{0,1\}^{m} \rightarrow \mathbb{R}$ as $f_{b}(x)=f\left(A_{x}\right)$ where the A, x bijection is $A=\left\{e \in E: x_{e}=1\right\}$ and $x=\mathbf{1}_{A}$.
- Also, if we have an expression for f_{b} we can construct a set function f as $f(A)=f_{b}\left(\mathbf{1}_{A}\right)$. We can also often relax f_{b} to any $x \in[0,1]^{m}$.

Integration, Aggregation, and Weighted Averages

- Set function $f: 2^{E} \rightarrow \mathbb{R}$ is called a capacity if it is monotone non-decreasing, i.e., $f(A) \leq f(B)$ whenever $A \subseteq B$.
- A Boolean function f is any function $f:\{0,1\}^{m} \rightarrow\{0,1\}$ and is a pseudo-Boolean function if $f:\{0,1\}^{m} \rightarrow \mathbb{R}$.
- Any set function corresponds to a pseudo-Boolean function. I.e., given $f: 2^{E} \rightarrow \mathbb{R}$, form $f_{b}:\{0,1\}^{m} \rightarrow \mathbb{R}$ as $f_{b}(x)=f\left(A_{x}\right)$ where the A, x bijection is $A=\left\{e \in E: x_{e}=1\right\}$ and $x=\mathbf{1}_{A}$.
- Also, if we have an expression for f_{b} we can construct a set function f as $f(A)=f_{b}\left(\mathbf{1}_{A}\right)$. We can also often relax f_{b} to any $x \in[0,1]^{m}$.
- We saw this for Lovász extension.

Integration, Aggregation, and Weighted Averages

- Set function $f: 2^{E} \rightarrow \mathbb{R}$ is called a capacity if it is monotone non-decreasing, i.e., $f(A) \leq f(B)$ whenever $A \subseteq B$.
- A Boolean function f is any function $f:\{0,1\}^{m} \rightarrow\{0,1\}$ and is a pseudo-Boolean function if $f:\{0,1\}^{m} \rightarrow \mathbb{R}$.
- Any set function corresponds to a pseudo-Boolean function. I.e., given $f: 2^{E} \rightarrow \mathbb{R}$, form $f_{b}:\{0,1\}^{m} \rightarrow \mathbb{R}$ as $f_{b}(x)=f\left(A_{x}\right)$ where the A, x bijection is $A=\left\{e \in E: x_{e}=1\right\}$ and $x=\mathbf{1}_{A}$.
- Also, if we have an expression for f_{b} we can construct a set function f as $f(A)=f_{b}\left(\mathbf{1}_{A}\right)$. We can also often relax f_{b} to any $x \in[0,1]^{m}$.
- We saw this for Lovász extension.
- It turns out that a concept essentially identical to the Lovász extension was derived much earlier, in 1954, and using this derivation (via integration) leads to deeper intuition.

Choquet integral

Definition 16.4.1

Let f be any capacity on E and $w \in \mathbb{R}_{+}^{E}$. The Choquet integral (1954) of w w.r.t. f is defined by

$$
\begin{equation*}
C_{f}(w)=\sum_{i=1}^{m}\left(w_{e_{i}}-w_{e_{i+1}}\right) f\left(E_{i}\right) \tag{16.13}
\end{equation*}
$$

where in the sum, we have sorted and renamed the elements of E so that $w_{e_{1}} \geq w_{e_{2}} \geq \cdots \geq w_{e_{m}} \geq w_{e_{m+1}} \triangleq 0$, and where $E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$.

- We immediately see that an equivalent formula is as follows:

$$
\begin{equation*}
C_{f}(w)=\sum_{i=1}^{m} w\left(e_{i}\right)\left(f\left(E_{i}\right)-f\left(E_{i-1}\right)\right) \tag{16.14}
\end{equation*}
$$

where $E_{0} \stackrel{\text { def }}{=} \emptyset$.

Choquet integral

Definition 16.4.1

Let f be any capacity on E and $w \in \mathbb{R}_{+}^{E}$. The Choquet integral (1954) of w w.r.t. f is defined by

$$
\begin{equation*}
C_{f}(w)=\sum_{i=1}^{m}\left(w_{e_{i}}-w_{e_{i+1}}\right) f\left(E_{i}\right) \tag{16.13}
\end{equation*}
$$

where in the sum, we have sorted and renamed the elements of E so that $w_{e_{1}} \geq w_{e_{2}} \geq \cdots \geq w_{e_{m}} \geq w_{e_{m+1}} \triangleq 0$, and where $E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$.

- this again essentially Abel's partial summation formula: Given two arbitrary sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ with $A_{n}=\sum_{k=1}^{n} a_{k}$, we have

$$
\begin{equation*}
\sum_{k=m}^{n} a_{k} b_{k}=\sum_{k=m}^{n} A_{k}\left(b_{k}-b_{k+1}\right)+A_{n} b_{n+1}-A_{m-1} b_{m} \tag{16.15}
\end{equation*}
$$

The "integral" in the Choquet integral

- Thought of as an integral over \mathbb{R} of a piece-wise constant function.

The "integral" in the Choquet integral

- Thought of as an integral over \mathbb{R} of a piece-wise constant function.
- First note, assuming E is ordered according to descending w, so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m-1}\right) \geq w\left(e_{m}\right)$, then
$E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}=\left\{e \in E: w_{e} \geq w_{e_{i}}\right\}$.

The "integral" in the Choquet integral

- Thought of as an integral over \mathbb{R} of a piece-wise constant function.
- First note, assuming E is ordered according to descending w, so that

$$
\begin{aligned}
& w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m-1}\right) \geq w\left(e_{m}\right), \text { then } \\
& E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}=\left\{e \in E: w_{e} \geq w_{e_{i}}\right\} .
\end{aligned}
$$

- For any $w_{e_{i}}>\alpha \geq w_{e_{i+1}}$ we also have

$$
E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}=\left\{e \in E: w_{e}>\alpha\right\}
$$

The "integral" in the Choquet integral

- Thought of as an integral over \mathbb{R} of a piece-wise constant function.
- First note, assuming E is ordered according to descending w, so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m-1}\right) \geq w\left(e_{m}\right)$, then $E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}=\left\{e \in E: w_{e} \geq w_{e_{i}}\right\}$.
- For any $w_{e_{i}}>\alpha \geq w_{e_{i+1}}$ we also have $E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}=\left\{e \in E: w_{e}>\alpha\right\}$.
- Can segment real-axis at boundary points $w_{e_{i}}$, right most is $w_{e_{1}}$.

$w\left(e_{m}\right) w\left(e_{m-1}\right)$	\cdots	$w\left(e_{5}\right)$	$w\left(e_{4}\right) w\left(e_{3}\right)$	$w\left(e_{2}\right) w\left(e_{1}\right)$

The "integral" in the Choquet integral

- Thought of as an integral over \mathbb{R} of a piece-wise constant function.
- First note, assuming E is ordered according to descending w, so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m-1}\right) \geq w\left(e_{m}\right)$, then $E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}=\left\{e \in E: w_{e} \geq w_{e_{i}}\right\}$.
- For any $w_{e_{i}}>\alpha \geq w_{e_{i+1}}$ we also have $E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}=\left\{e \in E: w_{e}>\alpha\right\}$.
- Can segment real-axis at boundary points $w_{e_{i}}$, right most is $w_{e_{1}}$.

$$
\begin{array}{ccccc}
\hline \frac{1}{w}\left(e_{m}\right) w\left(e_{m-1}\right) & \cdots & w\left(e_{5}\right) & w\left(e_{4}\right) w\left(e_{3}\right) & w\left(e_{2}\right) w\left(e_{1}\right)
\end{array}
$$

- A function can be defined on a segment of \mathbb{R}, namely $w_{e_{i}}>\alpha \geq w_{e_{i+1}}$. This function $F_{i}:\left[w_{e_{i+1}}, w_{e_{i}}\right) \rightarrow \mathbb{R}$ is defined as

$$
\begin{equation*}
F_{i}(\alpha)=f\left(\left\{e \in E: w_{e}>\alpha\right\}\right)=f\left(E_{i}\right) \tag{16.16}
\end{equation*}
$$

The "integral" in the Choquet integral

- We can generalize this to multiple segments of \mathbb{R} (for now, take $w \in \mathbb{R}_{+}^{E}$). The piecewise-constant function is defined as:
$F(\alpha)= \begin{cases}f(E) & \text { if } 0 \leq \alpha<w_{m} \\ f\left(\left\{e \in E: w_{e}>\alpha\right\}\right) & \text { if } w_{e_{i+1}} \leq \alpha<w_{e_{i}}, i \in\{1, \ldots, m-1\} \\ 0(=f(\emptyset)) & \text { if } w_{1}<\alpha\end{cases}$

The "integral" in the Choquet integral

- We can generalize this to multiple segments of \mathbb{R} (for now, take $w \in \mathbb{R}_{+}^{E}$). The piecewise-constant function is defined as:

$$
F(\alpha)= \begin{cases}f(E) & \text { if } 0 \leq \alpha<w_{m} \\ f\left(\left\{e \in E: w_{e}>\alpha\right\}\right) & \text { if } w_{e_{i+1}} \leq \alpha<w_{e_{i}}, i \in\{1, \ldots, m-1\} \\ 0(=f(\emptyset)) & \text { if } w_{1}<\alpha\end{cases}
$$

- Visualizing a piecewise constant function, where the constant values are given by f evaluated on E_{i} for each i $F(\alpha)$

Note, what is depicted may be a game but not a capacity. Why?

The "integral" in the Choquet integral

- Now consider the integral, with $w \in \mathbb{R}_{+}^{E}$, and normalized f so that $f(\emptyset)=0$. Recall $w_{m+1} \stackrel{\text { def }}{=} 0$.

$$
\begin{equation*}
\tilde{f}(w) \stackrel{\text { def }}{=} \int_{0}^{\infty} F(\alpha) d \alpha \tag{16.17}
\end{equation*}
$$

The "integral" in the Choquet integral

- Now consider the integral, with $w \in \mathbb{R}_{+}^{E}$, and normalized f so that $f(\emptyset)=0$. Recall $w_{m+1} \stackrel{\text { def }}{=} 0$.

$$
\begin{align*}
\tilde{f}(w) & \stackrel{\text { def }}{=} \int_{0}^{\infty} F(\alpha) d \alpha \tag{16.17}\\
& =\int_{0}^{\infty} f\left(\left\{e \in E: w_{e}>\alpha\right\}\right) d \alpha \tag{16.18}
\end{align*}
$$

The "integral" in the Choquet integral

- Now consider the integral, with $w \in \mathbb{R}_{+}^{E}$, and normalized f so that $f(\emptyset)=0$. Recall $w_{m+1} \stackrel{\text { def }}{=} 0$.

$$
\begin{align*}
\tilde{f}(w) & \stackrel{\text { def }}{=} \int_{0}^{\infty} F(\alpha) d \alpha \tag{16.17}\\
& =\int_{0}^{\infty} f\left(\left\{e \in E: w_{e}>\alpha\right\}\right) d \alpha \tag{16.18}\\
& =\int_{w_{m+1}}^{\infty} f\left(\left\{e \in E: w_{e}>\alpha\right\}\right) d \alpha \tag{16.19}
\end{align*}
$$

The "integral" in the Choquet integral

- Now consider the integral, with $w \in \mathbb{R}_{+}^{E}$, and normalized f so that $f(\emptyset)=0$. Recall $w_{m+1} \stackrel{\text { def }}{=} 0$.

$$
\begin{align*}
\tilde{f}(w) & \stackrel{\text { def }}{=} \int_{0}^{\infty} F(\alpha) d \alpha \tag{16.17}\\
& =\int_{0}^{\infty} f\left(\left\{e \in E: w_{e}>\alpha\right\}\right) d \alpha \tag{16.18}\\
& =\int_{w_{m+1}}^{\infty} f\left(\left\{e \in E: w_{e}>\alpha\right\}\right) d \alpha \tag{16.19}\\
& =\sum_{i=1}^{m} \int_{w_{i+1}}^{w_{i}} f\left(\left\{e \in E: w_{e}>\alpha\right\}\right) d \alpha \tag{16.20}
\end{align*}
$$

The "integral" in the Choquet integral

- Now consider the integral, with $w \in \mathbb{R}_{+}^{E}$, and normalized f so that $f(\emptyset)=0$. Recall $w_{m+1} \stackrel{\text { def }}{=} 0$.

$$
\begin{align*}
\tilde{f}(w) & \stackrel{\text { def }}{=} \int_{0}^{\infty} F(\alpha) d \alpha \tag{16.17}\\
& =\int_{0}^{\infty} f\left(\left\{e \in E: w_{e}>\alpha\right\}\right) d \alpha \tag{16.18}\\
& =\int_{w_{m+1}}^{\infty} f\left(\left\{e \in E: w_{e}>\alpha\right\}\right) d \alpha \tag{16.19}\\
& =\sum_{i=1}^{m} \int_{w_{i+1}}^{w_{i}} f\left(\left\{e \in E: w_{e}>\alpha\right\}\right) d \alpha \tag{16.20}\\
& =\sum_{i=1}^{m} \int_{w_{i+1}}^{w_{i}} f\left(E_{i}\right) d \alpha=\sum_{i=1}^{m} f\left(E_{i}\right)\left(w_{i}-w_{i+1}\right) \tag{16.21}
\end{align*}
$$

The "integral" in the Choquet integral

- But we saw before that $\sum_{i=1}^{m} f\left(E_{i}\right)\left(w_{i}-w_{i+1}\right)$ is just the Lovász extension of a function f.

The "integral" in the Choquet integral

- But we saw before that $\sum_{i=1}^{m} f\left(E_{i}\right)\left(w_{i}-w_{i+1}\right)$ is just the Lovász extension of a function f.
- Thus, we have the following definition:

Definition 16.4.2

Given $w \in \mathbb{R}_{+}^{E}$, the Lovász extension (equivalently Choquet integral) may be defined as follows:

$$
\begin{equation*}
\tilde{f}(w) \stackrel{\text { def }}{=} \int_{0}^{\infty} F(\alpha) d \alpha \tag{16.22}
\end{equation*}
$$

where the function F is defined as before.

The "integral" in the Choquet integral

- But we saw before that $\sum_{i=1}^{m} f\left(E_{i}\right)\left(w_{i}-w_{i+1}\right)$ is just the Lovász extension of a function f.
- Thus, we have the following definition:

Definition 16.4.2

Given $w \in \mathbb{R}_{+}^{E}$, the Lovász extension (equivalently Choquet integral) may be defined as follows:

$$
\begin{equation*}
\tilde{f}(w) \stackrel{\text { def }}{=} \int_{0}^{\infty} F(\alpha) d \alpha \tag{16.22}
\end{equation*}
$$

where the function F is defined as before.

- Note that it is not necessary in general to require $w \in \mathbb{R}_{+}^{E}$ (i.e., we can take $w \in \mathbb{R}^{E}$) nor that f be non-negative, but it is a bit more involved. Above is the simple case.

The "integral" in the Choquet integral

- But we saw before that $\sum_{i=1}^{m} f\left(E_{i}\right)\left(w_{i}-w_{i+1}\right)$ is just the Lovász extension of a function f.
- Thus, we have the following definition:

Definition 16.4.2

Given $w \in \mathbb{R}_{+}^{E}$, the Lovász extension (equivalently Choquet integral) may be defined as follows:

$$
\begin{equation*}
\tilde{f}(w) \stackrel{\text { def }}{=} \int_{0}^{\infty} F(\alpha) d \alpha \tag{16.22}
\end{equation*}
$$

where the function F is defined as before.

- Note that it is not necessary in general to require $w \in \mathbb{R}_{+}^{E}$ (i.e., we can take $w \in \mathbb{R}^{E}$) nor that f be non-negative, but it is a bit more involved. Above is the simple case.
- The above integral will be further generalized a bit later.

Choquet integral and aggregation

- Recall, we want to produce some notion of generalized aggregation function having the flavor of:

$$
\begin{equation*}
\mathrm{AG}(x)=\sum_{A \subseteq E} x(A) w_{A}=\sum_{A \subseteq E} x(A) \mathrm{AG}\left(\mathbf{1}_{A}\right) \tag{16.23}
\end{equation*}
$$

how does this correspond to Lovász extension?

Choquet integral and aggregation

- Recall, we want to produce some notion of generalized aggregation function having the flavor of:

$$
\begin{equation*}
\operatorname{AG}(x)=\sum_{A \subseteq E} x(A) w_{A}=\sum_{A \subseteq E} x(A) \mathrm{AG}\left(\mathbf{1}_{A}\right) \tag{16.23}
\end{equation*}
$$

how does this correspond to Lovász extension?

- Let us partition the hypercube $[0,1]^{m}$ into q polytopes, $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{q}$, each polytope defined by a set of vertices.

Choquet integral and aggregation

- Recall, we want to produce some notion of generalized aggregation function having the flavor of:

$$
\begin{equation*}
\mathrm{AG}(x)=\sum_{A \subseteq E} x(A) w_{A}=\sum_{A \subseteq E} x(A) \mathrm{AG}\left(\mathbf{1}_{A}\right) \tag{16.23}
\end{equation*}
$$

how does this correspond to Lovász extension?

- Let us partition the hypercube $[0,1]^{m}$ into q polytopes, $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{q}$, each polytope defined by a set of vertices.
- E.g., for each $i, \mathcal{V}_{i}=\left\{\mathbf{1}_{A_{1}}, \mathbf{1}_{A_{2}}, \ldots, \mathbf{1}_{A_{k}}\right\}$ (k vertices) and the convex hull of \mathcal{V}_{i} defines the $i^{\text {th }}$ polytope.

Choquet integral and aggregation

- Recall, we want to produce some notion of generalized aggregation function having the flavor of:

$$
\begin{equation*}
\mathrm{AG}(x)=\sum_{A \subseteq E} x(A) w_{A}=\sum_{A \subseteq E} x(A) \mathrm{AG}\left(\mathbf{1}_{A}\right) \tag{16.23}
\end{equation*}
$$

how does this correspond to Lovász extension?

- Let us partition the hypercube $[0,1]^{m}$ into q polytopes, $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{q}$, each polytope defined by a set of vertices.
- E.g., for each $i, \mathcal{V}_{i}=\left\{\mathbf{1}_{A_{1}}, \mathbf{1}_{A_{2}}, \ldots, \mathbf{1}_{A_{k}}\right\}$ (k vertices) and the convex hull of \mathcal{V}_{i} defines the $i^{\text {th }}$ polytope.
- This forms a "triangulation" of the hypercube.

Choquet integral and aggregation

- Recall, we want to produce some notion of generalized aggregation function having the flavor of:

$$
\begin{equation*}
\mathrm{AG}(x)=\sum_{A \subseteq E} x(A) w_{A}=\sum_{A \subseteq E} x(A) \mathrm{AG}\left(\mathbf{1}_{A}\right) \tag{16.23}
\end{equation*}
$$

how does this correspond to Lovász extension?

- Let us partition the hypercube $[0,1]^{m}$ into q polytopes, $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{q}$, each polytope defined by a set of vertices.
- E.g., for each $i, \mathcal{V}_{i}=\left\{\mathbf{1}_{A_{1}}, \mathbf{1}_{A_{2}}, \ldots, \mathbf{1}_{A_{k}}\right\}$ (k vertices) and the convex hull of \mathcal{V}_{i} defines the $i^{\text {th }}$ polytope.
- This forms a "triangulation" of the hypercube.
- For any $x \in[0,1]^{m}$ there is a (not necessarily unique) $\mathcal{V}(x)=\mathcal{V}_{j}$ for some j such that $x \in \operatorname{conv}(\mathcal{V}(x))$.

Choquet integral and aggregation

- Most generally, for $x \in[0,1]^{m}$, let us define the (unique) coefficients $\alpha_{0}^{x}(A)$ and $\alpha_{i}^{x}(A)$ that define the affine transformation of the coefficients of x to be used with the particular hypercube vertex $\mathbf{1}_{A} \in \operatorname{conv}(\mathcal{V}(x))$. The affine transformation is as follows:

$$
\begin{equation*}
\alpha_{0}^{x}(A)+\sum_{j=1}^{m} \alpha_{j}^{x}(A) x_{j} \in \mathbb{R} \tag{16.24}
\end{equation*}
$$

Note that many of these coefficient are often zero.

Choquet integral and aggregation

- Most generally, for $x \in[0,1]^{m}$, let us define the (unique) coefficients $\alpha_{0}^{x}(A)$ and $\alpha_{i}^{x}(A)$ that define the affine transformation of the coefficients of x to be used with the particular hypercube vertex $\mathbf{1}_{A} \in \operatorname{conv}(\mathcal{V}(x))$. The affine transformation is as follows:

$$
\begin{equation*}
\alpha_{0}^{x}(A)+\sum_{j=1}^{m} \alpha_{j}^{x}(A) x_{j} \in \mathbb{R} \tag{16.24}
\end{equation*}
$$

Note that many of these coefficient are often zero.

- From this, we can define an aggregation function of the form

$$
\begin{equation*}
\mathrm{AG}(x) \stackrel{\text { def }}{=} \sum_{A: \mathbf{1}_{A} \in \mathcal{V}(x)}\left(\alpha_{0}^{x}(A)+\sum_{j=1}^{m} \alpha_{j}^{x}(A) x_{j}\right) \mathrm{AG}\left(\mathbf{1}_{A}\right) \tag{16.25}
\end{equation*}
$$

Choquet integral and aggregation

- We can define a canonical triangulation of the hypercube in terms of permutations of the coordinates. I.e., given some permutation σ, define

$$
\begin{equation*}
\operatorname{conv}\left(\mathcal{V}_{\sigma}\right)=\left\{x \in[0,1]^{n} \mid x_{\sigma(1)} \geq x_{\sigma(2)} \geq \cdots \geq x_{\sigma(m)}\right\} \tag{16.26}
\end{equation*}
$$

Then these m ! blocks of the partition are called the canonical partitions of the hypercube.

Choquet integral and aggregation

- We can define a canonical triangulation of the hypercube in terms of permutations of the coordinates. I.e., given some permutation σ, define

$$
\begin{equation*}
\operatorname{conv}\left(\mathcal{V}_{\sigma}\right)=\left\{x \in[0,1]^{n} \mid x_{\sigma(1)} \geq x_{\sigma(2)} \geq \cdots \geq x_{\sigma(m)}\right\} \tag{16.26}
\end{equation*}
$$

Then these m ! blocks of the partition are called the canonical partitions of the hypercube.

- With this, we can define $\left\{\mathcal{V}_{i}\right\}_{i=1}^{m!}$ as the vertices of $\operatorname{conv}\left(\mathcal{V}_{\sigma}\right)$ for each permutation σ.

Choquet integral and aggregation

- We can define a canonical triangulation of the hypercube in terms of permutations of the coordinates. I.e., given some permutation σ, define

$$
\begin{equation*}
\operatorname{conv}\left(\mathcal{V}_{\sigma}\right)=\left\{x \in[0,1]^{n} \mid x_{\sigma(1)} \geq x_{\sigma(2)} \geq \cdots \geq x_{\sigma(m)}\right\} \tag{16.26}
\end{equation*}
$$

Then these m ! blocks of the partition are called the canonical partitions of the hypercube.

- With this, we can define $\left\{\mathcal{V}_{i}\right\}_{i=1}^{m!}$ as the vertices of $\operatorname{conv}\left(\mathcal{V}_{\sigma}\right)$ for each permutation σ. In this case, we have:

Choquet integral and aggregation

- We can define a canonical triangulation of the hypercube in terms of permutations of the coordinates. I.e., given some permutation σ, define

$$
\begin{equation*}
\operatorname{conv}\left(\mathcal{V}_{\sigma}\right)=\left\{x \in[0,1]^{n} \mid x_{\sigma(1)} \geq x_{\sigma(2)} \geq \cdots \geq x_{\sigma(m)}\right\} \tag{16.26}
\end{equation*}
$$

Then these m ! blocks of the partition are called the canonical partitions of the hypercube.

- With this, we can define $\left\{\mathcal{V}_{i}\right\}_{i=1}^{m!}$ as the vertices of $\operatorname{conv}\left(\mathcal{V}_{\sigma}\right)$ for each permutation σ. In this case, we have:

Proposition 16.4.3

The above linear interpolation in Eqn. (16.25) using the canonical partition yields the Lovász extension with $\alpha_{0}^{x}(A)+\sum_{j=1}^{m} \alpha_{j}^{x}(A) x_{j}=x_{\sigma_{i}}-x_{\sigma_{i-1}}$ for $A=E_{i}=\left\{e_{\sigma_{1}}, \ldots, e_{\sigma_{i}}\right\}$ for appropriate order σ.

Choquet integral and aggregation

- We can define a canonical triangulation of the hypercube in terms of permutations of the coordinates. I.e., given some permutation σ, define

$$
\begin{equation*}
\operatorname{conv}\left(\mathcal{V}_{\sigma}\right)=\left\{x \in[0,1]^{n} \mid x_{\sigma(1)} \geq x_{\sigma(2)} \geq \cdots \geq x_{\sigma(m)}\right\} \tag{16.26}
\end{equation*}
$$

Then these m ! blocks of the partition are called the canonical partitions of the hypercube.

- With this, we can define $\left\{\mathcal{V}_{i}\right\}_{i=1}^{m!}$ as the vertices of $\operatorname{conv}\left(\mathcal{V}_{\sigma}\right)$ for each permutation σ. In this case, we have:

Proposition 16.4.3

The above linear interpolation in Eqn. (16.25) using the canonical partition yields the Lovász extension with $\alpha_{0}^{x}(A)+\sum_{j=1}^{m} \alpha_{j}^{x}(A) x_{j}=x_{\sigma_{i}}-x_{\sigma_{i-1}}$ for $A=E_{i}=\left\{e_{\sigma_{1}}, \ldots, e_{\sigma_{i}}\right\}$ for appropriate order σ.

- Hence, Lovász extension is a generalized aggregation function.

Lovász extension as max over orders

- We can also write the Lovász extension as follows:

$$
\begin{equation*}
\tilde{f}(w)=\max _{\sigma \in \Pi_{[m]}} w^{\top} c^{\sigma} \tag{16.27}
\end{equation*}
$$

where $\Pi_{[m]}$ is the set of m ! permutations of $[m]=E, \sigma \in \Pi_{[m]}$ is a particular permutation, and c^{σ} is a vector associated with permutation σ defined as:

$$
\begin{equation*}
c_{i}^{\sigma}=f\left(E_{\sigma_{i}}\right)-f\left(E_{\sigma_{i-1}}\right) \tag{16.28}
\end{equation*}
$$

where $E_{\sigma_{i}}=\left\{e_{\sigma_{1}}, e_{\sigma_{2}}, \ldots, e_{\sigma_{i}}\right\}$.

Lovász extension as max over orders

- We can also write the Lovász extension as follows:

$$
\begin{equation*}
\tilde{f}(w)=\max _{\sigma \in \Pi_{[m]}} w^{\top} c^{\sigma} \tag{16.27}
\end{equation*}
$$

where $\Pi_{[m]}$ is the set of m ! permutations of $[m]=E, \sigma \in \Pi_{[m]}$ is a particular permutation, and c^{σ} is a vector associated with permutation σ defined as:

$$
\begin{equation*}
c_{i}^{\sigma}=f\left(E_{\sigma_{i}}\right)-f\left(E_{\sigma_{i-1}}\right) \tag{16.28}
\end{equation*}
$$

where $E_{\sigma_{i}}=\left\{e_{\sigma_{1}}, e_{\sigma_{2}}, \ldots, e_{\sigma_{i}}\right\}$.

- Note this immediately follows from the definition of the Lovász extension in the form:

$$
\begin{equation*}
\tilde{f}(w)=\max _{x \in P_{f}} w^{\top} x=\max _{x \in B_{f}} w^{\top} x \tag{16.29}
\end{equation*}
$$

since we know that the maximum is achieved by an extreme point of the base B_{f} and all extreme points are obtained by a permutation-of- E-parameterized greedy instance.

Lovász extension, defined in multiple ways

- As shorthand notation, lets use $\{w \geq \alpha\} \equiv\{e \in E: w(e) \geq \alpha\}$, called the weak α-sup-level set of w.

Lovász extension, defined in multiple ways

- As shorthand notation, lets use $\{w \geq \alpha\} \equiv\{e \in E: w(e) \geq \alpha\}$, called the weak α-sup-level set of w. A similar definition holds for $\{w>\alpha\}$ (called the strong α-sup-level set of w).

Lovász extension, defined in multiple ways

- As shorthand notation, lets use $\{w \geq \alpha\} \equiv\{e \in E: w(e) \geq \alpha\}$, called the weak α-sup-level set of w. A similar definition holds for $\{w>\alpha\}$ (called the strong α-sup-level set of w).
- Given any $w \in \mathbb{R}^{E}$, sort E as $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.

Lovász extension, defined in multiple ways

- As shorthand notation, lets use $\{w \geq \alpha\} \equiv\{e \in E: w(e) \geq \alpha\}$, called the weak α-sup-level set of w. A similar definition holds for $\{w>\alpha\}$ (called the strong α-sup-level set of w).
- Given any $w \in \mathbb{R}^{E}$, sort E as $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$. Also, w.I.o.g., number elements of w so that $w_{1} \geq w_{2} \geq \cdots \geq w_{m}$.

Lovász extension, defined in multiple ways

- As shorthand notation, lets use $\{w \geq \alpha\} \equiv\{e \in E: w(e) \geq \alpha\}$, called the weak α-sup-level set of w. A similar definition holds for $\{w>\alpha\}$ (called the strong α-sup-level set of w).
- Given any $w \in \mathbb{R}^{E}$, sort E as $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$. Also, w.l.o.g., number elements of w so that $w_{1} \geq w_{2} \geq \cdots \geq w_{m}$.
- We have already seen how we can define the Lovász extension for any (not necessarily submodular) function f in the following equivalent ways:

$$
\begin{align*}
\tilde{f}(w) & =\sum_{i=1}^{m} w\left(e_{i}\right) f\left(e_{i} \mid E_{i-1}\right) \tag{16.30}\\
& =\sum_{i=1}^{m-1} f\left(E_{i}\right)\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right)+f(E) w\left(e_{m}\right) a \tag{16.31}\\
& =\sum_{i=1}^{m-1} \lambda_{i} f\left(E_{i}\right) \tag{16.32}
\end{align*}
$$

Lovász extension, as integral

- Additional ways we can define the Lovász extension for any (not necessarily submodular) but normalized function f include:

$$
\begin{aligned}
\tilde{f}(w) & =\sum_{i=1}^{m} w\left(e_{i}\right) f\left(e_{i} \mid E_{i-1}\right)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \\
& =\sum_{i=1}^{m-1} f\left(E_{i}\right)\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right)+f(E) w\left(e_{m}\right) \\
& =\int_{\min \left\{w_{1}, \ldots, w_{m}\right\}}^{+\infty} f(\{w \geq \alpha\}) d \alpha+f(E) \min \left\{w_{1}, \ldots, w_{m}\right\} \\
& =\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha+\int_{-\infty}^{0}[f(\{w \geq \alpha\})-f(E)] d \alpha
\end{aligned}
$$

general Lovász extension, as simple integral

- In fact, we have that, given function f, and any $w \in \mathbb{R}^{E}$:

$$
\begin{equation*}
\tilde{f}(w)=\int_{-\infty}^{+\infty} \hat{f}(\alpha) d \alpha \tag{16.37}
\end{equation*}
$$

where

$$
\hat{f}(\alpha)= \begin{cases}f(\{w \geq \alpha\}) & \text { if } \alpha \geq 0 \tag{16.38}\\ f(\{w \geq \alpha\})-f(E) & \text { if } \alpha<0\end{cases}
$$

general Lovász extension, as simple integral

- In fact, we have that, given function f, and any $w \in \mathbb{R}^{E}$:

$$
\begin{equation*}
\tilde{f}(w)=\int_{-\infty}^{+\infty} \hat{f}(\alpha) d \alpha \tag{16.37}
\end{equation*}
$$

where

$$
\hat{f}(\alpha)= \begin{cases}f(\{w \geq \alpha\}) & \text { if } \alpha \geq 0 \tag{16.38}\\ f(\{w \geq \alpha\})-f(E) & \text { if } \alpha<0\end{cases}
$$

- So we can write it as a simple integral over the right function.

general Lovász extension, as simple integral

- In fact, we have that, given function f, and any $w \in \mathbb{R}^{E}$:

$$
\begin{equation*}
\tilde{f}(w)=\int_{-\infty}^{+\infty} \hat{f}(\alpha) d \alpha \tag{16.37}
\end{equation*}
$$

where

$$
\hat{f}(\alpha)= \begin{cases}f(\{w \geq \alpha\}) & \text { if } \alpha \geq 0 \tag{16.38}\\ f(\{w \geq \alpha\})-f(E) & \text { if } \alpha<0\end{cases}
$$

- So we can write it as a simple integral over the right function.
- These make it easier to see certain properties of the Lovász extension. But first, we show the above.

Lovász extension, as integral

- To show Eqn. (16.35), first note that the r.h.s. terms are the same since $w\left(e_{m}\right)=\min \left\{w_{1}, \ldots, w_{m}\right\}$.

Lovász extension, as integral

- To show Eqn. (16.35), first note that the r.h.s. terms are the same since $w\left(e_{m}\right)=\min \left\{w_{1}, \ldots, w_{m}\right\}$.
- Then, consider that, as a function of α, we have

$$
f(\{w \geq \alpha\})= \begin{cases}0 & \text { if } \alpha>w\left(e_{1}\right) \tag{16.39}\\ f\left(E_{k}\right) & \text { if } \alpha \in\left(w\left(e_{k+1}\right), w\left(e_{k}\right)\right), k \in\{1, \ldots, m-1\} \\ f(E) & \text { if } \alpha<w\left(e_{m}\right)\end{cases}
$$

we may use open intervals since sets of zero measure don't change integration.

Lovász extension, as integral

- To show Eqn. (16.35), first note that the r.h.s. terms are the same since $w\left(e_{m}\right)=\min \left\{w_{1}, \ldots, w_{m}\right\}$.
- Then, consider that, as a function of α, we have

$$
f(\{w \geq \alpha\})= \begin{cases}0 & \text { if } \alpha>w\left(e_{1}\right) \tag{16.39}\\ f\left(E_{k}\right) & \text { if } \alpha \in\left(w\left(e_{k+1}\right), w\left(e_{k}\right)\right), k \in\{1, \ldots, m-1\} \\ f(E) & \text { if } \alpha<w\left(e_{m}\right)\end{cases}
$$

we may use open intervals since sets of zero measure don't change integration.

- Inside the integral, then, this recovers Eqn. (16.34).

Lovász extension, as integral

- To show Eqn. (16.36), start with Eqn. (16.35), note $w_{m}=\min \left\{w_{1}, \ldots, w_{m}\right\}$, take any $\beta \leq \min \left\{0, w_{1}, \ldots, w_{m}\right\}$, and form:
$\tilde{f}(w)$

Lovász extension, as integral

- To show Eqn. (16.36), start with Eqn. (16.35), note $w_{m}=\min \left\{w_{1}, \ldots, w_{m}\right\}$, take any $\beta \leq \min \left\{0, w_{1}, \ldots, w_{m}\right\}$, and form:

$$
\tilde{f}(w)=\int_{w_{m}}^{+\infty} f(\{w \geq \alpha\}) d \alpha+f(E) \min \left\{w_{1}, \ldots, w_{m}\right\}
$$

Lovász extension, as integral

- To show Eqn. (16.36), start with Eqn. (16.35), note $w_{m}=\min \left\{w_{1}, \ldots, w_{m}\right\}$, take any $\beta \leq \min \left\{0, w_{1}, \ldots, w_{m}\right\}$, and form:

$$
\begin{aligned}
\tilde{f}(w) & =\int_{w_{m}}^{+\infty} f(\{w \geq \alpha\}) d \alpha+f(E) \min \left\{w_{1}, \ldots, w_{m}\right\} \\
& =\int_{\beta}^{+\infty} f(\{w \geq \alpha\}) d \alpha-\int_{\beta}^{w_{m}} f(\{w \geq \alpha\}) d \alpha+f(E) \int_{0}^{w_{m}} d \alpha
\end{aligned}
$$

Lovász extension, as integral

- To show Eqn. (16.36), start with Eqn. (16.35), note $w_{m}=\min \left\{w_{1}, \ldots, w_{m}\right\}$, take any $\beta \leq \min \left\{0, w_{1}, \ldots, w_{m}\right\}$, and form:

$$
\begin{aligned}
\tilde{f}(w) & =\int_{w_{m}}^{+\infty} f(\{w \geq \alpha\}) d \alpha+f(E) \min \left\{w_{1}, \ldots, w_{m}\right\} \\
& =\int_{\beta}^{+\infty} f(\{w \geq \alpha\}) d \alpha-\int_{\beta}^{w_{m}} f(\{w \geq \alpha\}) d \alpha+f(E) \int_{0}^{w_{m}} d \alpha \\
& =\int_{\beta}^{+\infty} f(\{w \geq \alpha\}) d \alpha-\int_{\beta}^{w_{m}} f(E) d \alpha+\int_{0}^{w_{m}} f(E) d \alpha
\end{aligned}
$$

Lovász extension, as integral

- To show Eqn. (16.36), start with Eqn. (16.35), note
$w_{m}=\min \left\{w_{1}, \ldots, w_{m}\right\}$, take any $\beta \leq \min \left\{0, w_{1}, \ldots, w_{m}\right\}$, and form:

$$
\begin{aligned}
\tilde{f}(w) & =\int_{w_{m}}^{+\infty} f(\{w \geq \alpha\}) d \alpha+f(E) \min \left\{w_{1}, \ldots, w_{m}\right\} \\
& =\int_{\beta}^{+\infty} f(\{w \geq \alpha\}) d \alpha-\int_{\beta}^{w_{m}} f(\{w \geq \alpha\}) d \alpha+f(E) \int_{0}^{w_{m}} d \alpha \\
& =\int_{\beta}^{+\infty} f(\{w \geq \alpha\}) d \alpha-\int_{\beta}^{w_{m}} f(E) d \alpha+\int_{0}^{w_{m}} f(E) d \alpha \\
& =\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha+\int_{\beta}^{0} f(\{w \geq \alpha\}) d \alpha-\int_{\beta}^{0} f(E) d \alpha
\end{aligned}
$$

Lovász extension, as integral

- To show Eqn. (16.36), start with Eqn. (16.35), note $w_{m}=\min \left\{w_{1}, \ldots, w_{m}\right\}$, take any $\beta \leq \min \left\{0, w_{1}, \ldots, w_{m}\right\}$, and form:

$$
\begin{aligned}
\tilde{f}(w) & =\int_{w_{m}}^{+\infty} f(\{w \geq \alpha\}) d \alpha+f(E) \min \left\{w_{1}, \ldots, w_{m}\right\} \\
& =\int_{\beta}^{+\infty} f(\{w \geq \alpha\}) d \alpha-\int_{\beta}^{w_{m}} f(\{w \geq \alpha\}) d \alpha+f(E) \int_{0}^{w_{m}} d \alpha \\
& =\int_{\beta}^{+\infty} f(\{w \geq \alpha\}) d \alpha-\int_{\beta}^{w_{m}} f(E) d \alpha+\int_{0}^{w_{m}} f(E) d \alpha \\
& =\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha+\int_{\beta}^{0} f(\{w \geq \alpha\}) d \alpha-\int_{\beta}^{0} f(E) d \alpha \\
& =\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha+\int_{\beta}^{0}[f(\{w \geq \alpha\})-f(E)] d \alpha
\end{aligned}
$$

Lovász extension, as integral

- To show Eqn. (16.36), start with Eqn. (16.35), note $w_{m}=\min \left\{w_{1}, \ldots, w_{m}\right\}$, take any $\beta \leq \min \left\{0, w_{1}, \ldots, w_{m}\right\}$, and form:

$$
\begin{aligned}
\tilde{f}(w) & =\int_{w_{m}}^{+\infty} f(\{w \geq \alpha\}) d \alpha+f(E) \min \left\{w_{1}, \ldots, w_{m}\right\} \\
& =\int_{\beta}^{+\infty} f(\{w \geq \alpha\}) d \alpha-\int_{\beta}^{w_{m}} f(\{w \geq \alpha\}) d \alpha+f(E) \int_{0}^{w_{m}} d \alpha \\
& =\int_{\beta}^{+\infty} f(\{w \geq \alpha\}) d \alpha-\int_{\beta}^{w_{m}} f(E) d \alpha+\int_{0}^{w_{m}} f(E) d \alpha \\
& =\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha+\int_{\beta}^{0} f(\{w \geq \alpha\}) d \alpha-\int_{\beta}^{0} f(E) d \alpha \\
& =\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha+\int_{\beta}^{0}[f(\{w \geq \alpha\})-f(E)] d \alpha
\end{aligned}
$$

and then let $\beta \rightarrow-\infty$ and we get Eqn. (16.36), i.e.:

Lovász extension, as integral

- To show Eqn. (16.36), start with Eqn. (16.35), note $w_{m}=\min \left\{w_{1}, \ldots, w_{m}\right\}$, take any $\beta \leq \min \left\{0, w_{1}, \ldots, w_{m}\right\}$, and form:

$$
\begin{aligned}
\tilde{f}(w) & =\int_{w_{m}}^{+\infty} f(\{w \geq \alpha\}) d \alpha+f(E) \min \left\{w_{1}, \ldots, w_{m}\right\} \\
& =\int_{\beta}^{+\infty} f(\{w \geq \alpha\}) d \alpha-\int_{\beta}^{w_{m}} f(\{w \geq \alpha\}) d \alpha+f(E) \int_{0}^{w_{m}} d \alpha \\
& =\int_{\beta}^{+\infty} f(\{w \geq \alpha\}) d \alpha-\int_{\beta}^{w_{m}} f(E) d \alpha+\int_{0}^{w_{m}} f(E) d \alpha \\
& =\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha+\int_{\beta}^{0} f(\{w \geq \alpha\}) d \alpha-\int_{\beta}^{0} f(E) d \alpha \\
& =\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha+\int_{\beta}^{0}[f(\{w \geq \alpha\})-f(E)] d \alpha
\end{aligned}
$$

and then let $\beta \rightarrow-\infty$ and we get Eqn. (16.36), i.e.:

$$
=\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha+\int_{-\infty}^{0}[f(\{w \geq \alpha\})-f(E)] d \alpha
$$

Lovász extension properties

- Using the above, have the following (some of which we've seen):

Lovász extension properties

- Using the above, have the following (some of which we've seen):

Theorem 16.5.1

Let $f, g: 2^{E} \rightarrow \mathbb{R}$ be normalized $(f(\emptyset)=g(\emptyset)=0)$. Then

Lovász extension properties

- Using the above, have the following (some of which we've seen):

Theorem 16.5.1

Let $f, g: 2^{E} \rightarrow \mathbb{R}$ be normalized $(f(\emptyset)=g(\emptyset)=0)$. Then
(1) Superposition of LE operator: Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f}+\tilde{g}$ is the Lovász extension of $f+g$ and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.

Lovász extension properties

- Using the above, have the following (some of which we've seen):

Theorem 16.5.1

Let $f, g: 2^{E} \rightarrow \mathbb{R}$ be normalized $(f(\emptyset)=g(\emptyset)=0)$. Then
(1) Superposition of LE operator: Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f}+\tilde{g}$ is the Lovász extension of $f+g$ and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.
(2) If $w \in \mathbb{R}_{+}^{E}$ then $\tilde{f}(w)=\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha$.

Lovász extension properties

- Using the above, have the following (some of which we've seen):

Theorem 16.5.1

Let $f, g: 2^{E} \rightarrow \mathbb{R}$ be normalized $(f(\emptyset)=g(\emptyset)=0)$. Then
(1) Superposition of LE operator: Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f}+\tilde{g}$ is the Lovász extension of $f+g$ and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.
(2) If $w \in \mathbb{R}_{+}^{E}$ then $\tilde{f}(w)=\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha$.
(3) For $w \in \mathbb{R}^{E}$, and $\alpha \in \mathbb{R}$, we have $\tilde{f}\left(w+\alpha \mathbf{1}_{E}\right)=\tilde{f}(w)+\alpha f(E)$.

Lovász extension properties

- Using the above, have the following (some of which we've seen):

Theorem 16.5.1

Let $f, g: 2^{E} \rightarrow \mathbb{R}$ be normalized $(f(\emptyset)=g(\emptyset)=0)$. Then
(1) Superposition of LE operator: Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f}+\tilde{g}$ is the Lovász extension of $f+g$ and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.
(2) If $w \in \mathbb{R}_{+}^{E}$ then $\tilde{f}(w)=\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha$.
(3) For $w \in \mathbb{R}^{E}$, and $\alpha \in \mathbb{R}$, we have $\tilde{f}\left(w+\alpha \mathbf{1}_{E}\right)=\tilde{f}(w)+\alpha f(E)$.
(4) Positive homogeneity: I.e., $\tilde{f}(\alpha w)=\alpha \tilde{f}(w)$ for $\alpha \geq 0$.

Lovász extension properties

- Using the above, have the following (some of which we've seen):

Theorem 16.5.1

Let $f, g: 2^{E} \rightarrow \mathbb{R}$ be normalized $(f(\emptyset)=g(\emptyset)=0)$. Then
(1) Superposition of LE operator: Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f}+\tilde{g}$ is the Lovász extension of $f+g$ and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.
(2) If $w \in \mathbb{R}_{+}^{E}$ then $\tilde{f}(w)=\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha$.
(3) For $w \in \mathbb{R}^{E}$, and $\alpha \in \mathbb{R}$, we have $\tilde{f}\left(w+\alpha \mathbf{1}_{E}\right)=\tilde{f}(w)+\alpha f(E)$.
(9) Positive homogeneity: I.e., $\tilde{f}(\alpha w)=\alpha \tilde{f}(w)$ for $\alpha \geq 0$.
(5) For all $A \subseteq E, \tilde{f}\left(\mathbf{1}_{A}\right)=f(A)$.

Lovász extension properties

- Using the above, have the following (some of which we've seen):

Theorem 16.5.1

Let $f, g: 2^{E} \rightarrow \mathbb{R}$ be normalized $(f(\emptyset)=g(\emptyset)=0)$. Then
(1) Superposition of LE operator: Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f}+\tilde{g}$ is the Lovász extension of $f+g$ and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.
(2) If $w \in \mathbb{R}_{+}^{E}$ then $\tilde{f}(w)=\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha$.
(3) For $w \in \mathbb{R}^{E}$, and $\alpha \in \mathbb{R}$, we have $\tilde{f}\left(w+\alpha \mathbf{1}_{E}\right)=\tilde{f}(w)+\alpha f(E)$.
(9) Positive homogeneity: I.e., $\tilde{f}(\alpha w)=\alpha \tilde{f}(w)$ for $\alpha \geq 0$.
(5) For all $A \subseteq E, \tilde{f}\left(\mathbf{1}_{A}\right)=f(A)$.
(0) f symmetric as in $f(A)=f(E \backslash A), \forall A$, then $\tilde{f}(w)=\tilde{f}(-w)(\tilde{f}$ is even).

Lovász extension properties

- Using the above, have the following (some of which we've seen):

Theorem 16.5.1

Let $f, g: 2^{E} \rightarrow \mathbb{R}$ be normalized $(f(\emptyset)=g(\emptyset)=0)$. Then
(1) Superposition of LE operator: Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f}+\tilde{g}$ is the Lovász extension of $f+g$ and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.
(2) If $w \in \mathbb{R}_{+}^{E}$ then $\tilde{f}(w)=\int_{0}^{+\infty} f(\{w \geq \alpha\}) d \alpha$.
(3) For $w \in \mathbb{R}^{E}$, and $\alpha \in \mathbb{R}$, we have $\tilde{f}\left(w+\alpha \mathbf{1}_{E}\right)=\tilde{f}(w)+\alpha f(E)$.
(9) Positive homogeneity: I.e., $\tilde{f}(\alpha w)=\alpha \tilde{f}(w)$ for $\alpha \geq 0$.
(3) For all $A \subseteq E, \tilde{f}\left(\mathbf{1}_{A}\right)=f(A)$.
(0) f symmetric as in $f(A)=f(E \backslash A), \forall A$, then $\tilde{f}(w)=\tilde{f}(-w)(\tilde{f}$ is even).
(1) Given partition $E^{1} \cup E^{2} \cup \cdots \cup E^{k}$ of E and $w=\sum_{i=1}^{k} \gamma_{i} \mathbf{1}_{E_{k}}$ with $\gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{k}$, and with $E^{1: i}=E^{1} \cup E^{2} \cup \cdots \cup E^{i}$, then $\tilde{f}(w)=\sum_{i=1}^{k} \gamma_{i} f\left(E^{i} \mid E^{1: i-1}\right)=\sum_{i=1}^{k-1} f\left(E^{1: i}\right)\left(\gamma_{i}-\gamma_{i+1}\right)+f(E) \gamma_{k}$.

Lovász extension properties: ex. property 3

- Consider property property 3, for example, which says that $\tilde{f}\left(w+\alpha \mathbf{1}_{E}\right)=\tilde{f}(w)+\alpha f(E)$.

Lovász extension properties: ex. property 3

- Consider property property 3, for example, which says that $\tilde{f}\left(w+\alpha \mathbf{1}_{E}\right)=\tilde{f}(w)+\alpha f(E)$.
- This means that, say when $m=2$, that as we move along the line $w_{1}=w_{2}$, the Lovász extension scales linearly.

Lovász extension properties: ex. property 3

- Consider property property 3, for example, which says that $\tilde{f}\left(w+\alpha \mathbf{1}_{E}\right)=\tilde{f}(w)+\alpha f(E)$.
- This means that, say when $m=2$, that as we move along the line $w_{1}=w_{2}$, the Lovász extension scales linearly.
- And if $f(E)=0$, then the Lovász extension is constant along the direction $\mathbf{1}_{E}$.

Lovász extension properties

- Given Eqns. (16.33) through (16.36), most of the above properties are relatively easy to derive.
- For example, if f is symmetric, and since $f(E)=f(\emptyset)=0$, we have

$$
\tilde{f}(-w)=\int_{-\infty}^{\infty} f(\{-w \geq \alpha\}) d \alpha
$$

Equality (a) follows since $\int_{-\infty}^{\infty} f(\alpha) d \alpha=\int_{-\infty}^{\infty} f(a \alpha+b) d \alpha$ for any b and $a \in \pm 1$, and equality (b) follows since $f(A)=f(E \backslash A)$, so $f(\{w \leq \alpha\})=f(\{w>\alpha\})$.

Lovász extension properties

- Given Eqns. (16.33) through (16.36), most of the above properties are relatively easy to derive.
- For example, if f is symmetric, and since $f(E)=f(\emptyset)=0$, we have

$$
\begin{equation*}
\tilde{f}(-w)=\int_{-\infty}^{\infty} f(\{-w \geq \alpha\}) d \alpha=\int_{-\infty}^{\infty} f(\{w \leq-\alpha\}) d \alpha \tag{16.40}
\end{equation*}
$$

(16.42)

Equality (a) follows since $\int_{-\infty}^{\infty} f(\alpha) d \alpha=\int_{-\infty}^{\infty} f(a \alpha+b) d \alpha$ for any b and $a \in \pm 1$, and equality (b) follows since $f(A)=f(E \backslash A)$, so $f(\{w \leq \alpha\})=f(\{w>\alpha\})$.

Lovász extension properties

- Given Eqns. (16.33) through (16.36), most of the above properties are relatively easy to derive.
- For example, if f is symmetric, and since $f(E)=f(\emptyset)=0$, we have

$$
\begin{align*}
\tilde{f}(-w) & =\int_{-\infty}^{\infty} f(\{-w \geq \alpha\}) d \alpha=\int_{-\infty}^{\infty} f(\{w \leq-\alpha\}) d \alpha \tag{16.40}\\
& \stackrel{(a)}{=} \int_{-\infty}^{\infty} f(\{w \leq \alpha\}) d \alpha \tag{16.42}
\end{align*}
$$

Equality (a) follows since $\int_{-\infty}^{\infty} f(\alpha) d \alpha=\int_{-\infty}^{\infty} f(a \alpha+b) d \alpha$ for any b and $a \in \pm 1$, and equality (b) follows since $f(A)=f(E \backslash A)$, so $f(\{w \leq \alpha\})=f(\{w>\alpha\})$.

Lovász extension properties

- Given Eqns. (16.33) through (16.36), most of the above properties are relatively easy to derive.
- For example, if f is symmetric, and since $f(E)=f(\emptyset)=0$, we have

$$
\begin{align*}
\tilde{f}(-w) & =\int_{-\infty}^{\infty} f(\{-w \geq \alpha\}) d \alpha=\int_{-\infty}^{\infty} f(\{w \leq-\alpha\}) d \alpha \tag{16.40}\\
& \stackrel{(a)}{=} \int_{-\infty}^{\infty} f(\{w \leq \alpha\}) d \alpha \stackrel{(b)}{=} \int_{-\infty}^{\infty} f(\{w>\alpha\}) d \alpha \tag{16.41}
\end{align*}
$$

(16.42)

Equality (a) follows since $\int_{-\infty}^{\infty} f(\alpha) d \alpha=\int_{-\infty}^{\infty} f(a \alpha+b) d \alpha$ for any b and $a \in \pm 1$, and equality (b) follows since $f(A)=f(E \backslash A)$, so $f(\{w \leq \alpha\})=f(\{w>\alpha\})$.

Lovász extension properties

- Given Eqns. (16.33) through (16.36), most of the above properties are relatively easy to derive.
- For example, if f is symmetric, and since $f(E)=f(\emptyset)=0$, we have

$$
\begin{align*}
\tilde{f}(-w) & =\int_{-\infty}^{\infty} f(\{-w \geq \alpha\}) d \alpha=\int_{-\infty}^{\infty} f(\{w \leq-\alpha\}) d \alpha \tag{16.40}\\
& \stackrel{(a)}{=} \int_{-\infty}^{\infty} f(\{w \leq \alpha\}) d \alpha \stackrel{(b)}{=} \int_{-\infty}^{\infty} f(\{w>\alpha\}) d \alpha \tag{16.41}\\
& =\int_{-\infty}^{\infty} f(\{w \geq \alpha\}) d \alpha \tag{16.42}
\end{align*}
$$

Equality (a) follows since $\int_{-\infty}^{\infty} f(\alpha) d \alpha=\int_{-\infty}^{\infty} f(a \alpha+b) d \alpha$ for any b and $a \in \pm 1$, and equality (b) follows since $f(A)=f(E \backslash A)$, so $f(\{w \leq \alpha\})=f(\{w>\alpha\})$.

Lovász extension properties

- Given Eqns. (16.33) through (16.36), most of the above properties are relatively easy to derive.
- For example, if f is symmetric, and since $f(E)=f(\emptyset)=0$, we have

$$
\begin{align*}
\tilde{f}(-w) & =\int_{-\infty}^{\infty} f(\{-w \geq \alpha\}) d \alpha=\int_{-\infty}^{\infty} f(\{w \leq-\alpha\}) d \alpha \tag{16.40}\\
& \stackrel{(a)}{=} \int_{-\infty}^{\infty} f(\{w \leq \alpha\}) d \alpha \stackrel{(b)}{=} \int_{-\infty}^{\infty} f(\{w>\alpha\}) d \alpha \tag{16.41}\\
& =\int_{-\infty}^{\infty} f(\{w \geq \alpha\}) d \alpha=\tilde{f}(w) \tag{16.42}
\end{align*}
$$

Equality (a) follows since $\int_{-\infty}^{\infty} f(\alpha) d \alpha=\int_{-\infty}^{\infty} f(a \alpha+b) d \alpha$ for any b and $a \in \pm 1$, and equality (b) follows since $f(A)=f(E \backslash A)$, so $f(\{w \leq \alpha\})=f(\{w>\alpha\})$.

Lovász extension, expected value of random variable

- Recall, for $w \in \mathbb{R}_{+}^{E}$, we have $\tilde{f}(w)=\int_{0}^{\infty} f(\{w \geq \alpha\}) d \alpha$

Lovász extension, expected value of random variable

- Recall, for $w \in \mathbb{R}_{+}^{E}$, we have $\tilde{f}(w)=\int_{0}^{\infty} f(\{w \geq \alpha\}) d \alpha$
- Since $f(\{w \geq \alpha\})=0$ for $\alpha>w_{1} \geq w_{\ell}$, we have for $w \in \mathbb{R}_{+}^{E}$, we have $\tilde{f}(w)=\int_{0}^{w_{1}} f(\{w \geq \alpha\}) d \alpha$

Lovász extension, expected value of random variable

- Recall, for $w \in \mathbb{R}_{+}^{E}$, we have $\tilde{f}(w)=\int_{0}^{\infty} f(\{w \geq \alpha\}) d \alpha$
- Since $f(\{w \geq \alpha\})=0$ for $\alpha>w_{1} \geq w_{\ell}$, we have for $w \in \mathbb{R}_{+}^{E}$, we have $\tilde{f}(w)=\int_{0}^{w_{1}} f(\{w \geq \alpha\}) d \alpha$
- For $w \in[0,1]^{E}$, then $\tilde{f}(w)=\int_{0}^{w_{1}} f(\{w \geq \alpha\}) d \alpha=\int_{0}^{1} f(\{w \geq \alpha\}) d \alpha$ since $f(\{w \geq \alpha\})=0$ for $1 \geq \alpha>w_{1}$.

Lovász extension, expected value of random variable

- Recall, for $w \in \mathbb{R}_{+}^{E}$, we have $\tilde{f}(w)=\int_{0}^{\infty} f(\{w \geq \alpha\}) d \alpha$
- Since $f(\{w \geq \alpha\})=0$ for $\alpha>w_{1} \geq w_{\ell}$, we have for $w \in \mathbb{R}_{+}^{E}$, we have $\tilde{f}(w)=\int_{0}^{w_{1}} f(\{w \geq \alpha\}) d \alpha$
- For $w \in[0,1]^{E}$, then $\tilde{f}(w)=\int_{0}^{w_{1}} f(\{w \geq \alpha\}) d \alpha=\int_{0}^{1} f(\{w \geq \alpha\}) d \alpha$ since $f(\{w \geq \alpha\})=0$ for $1 \geq \alpha>w_{1}$.
- Consider α as a uniform random variable on $[0,1]$ and let $h(\alpha)$ be a function of α. Then the expected value $\mathbb{E}[h(\alpha)]=\int_{0}^{1} h(\alpha) d \alpha$.

Lovász extension, expected value of random variable

- Recall, for $w \in \mathbb{R}_{+}^{E}$, we have $\tilde{f}(w)=\int_{0}^{\infty} f(\{w \geq \alpha\}) d \alpha$
- Since $f(\{w \geq \alpha\})=0$ for $\alpha>w_{1} \geq w_{\ell}$, we have for $w \in \mathbb{R}_{+}^{E}$, we have $\tilde{f}(w)=\int_{0}^{w_{1}} f(\{w \geq \alpha\}) d \alpha$
- For $w \in[0,1]^{E}$, then $\tilde{f}(w)=\int_{0}^{w_{1}} f(\{w \geq \alpha\}) d \alpha=\int_{0}^{1} f(\{w \geq \alpha\}) d \alpha$ since $f(\{w \geq \alpha\})=0$ for $1 \geq \alpha>w_{1}$.
- Consider α as a uniform random variable on $[0,1]$ and let $h(\alpha)$ be a function of α. Then the expected value $\mathbb{E}[h(\alpha)]=\int_{0}^{1} h(\alpha) d \alpha$.
- Hence, for $w \in[0,1]^{m}$, we can also define the Lovász extension as

$$
\begin{equation*}
\tilde{f}(w)=\mathbb{E}_{p(\alpha)}[\underbrace{f(\{w \geq \alpha\})}_{h(\alpha)}]=\mathbb{E}_{p(\alpha)}[\underbrace{f\left(e \in E: w\left(e_{i}\right) \geq \alpha\right)}_{h(\alpha)}] \tag{16.43}
\end{equation*}
$$

where α is uniform random variable in $[0,1]$.

Lovász extension, expected value of random variable

- Recall, for $w \in \mathbb{R}_{+}^{E}$, we have $\tilde{f}(w)=\int_{0}^{\infty} f(\{w \geq \alpha\}) d \alpha$
- Since $f(\{w \geq \alpha\})=0$ for $\alpha>w_{1} \geq w_{\ell}$, we have for $w \in \mathbb{R}_{+}^{E}$, we have $\tilde{f}(w)=\int_{0}^{w_{1}} f(\{w \geq \alpha\}) d \alpha$
- For $w \in[0,1]^{E}$, then $\tilde{f}(w)=\int_{0}^{w_{1}} f(\{w \geq \alpha\}) d \alpha=\int_{0}^{1} f(\{w \geq \alpha\}) d \alpha$ since $f(\{w \geq \alpha\})=0$ for $1 \geq \alpha>w_{1}$.
- Consider α as a uniform random variable on $[0,1]$ and let $h(\alpha)$ be a function of α. Then the expected value $\mathbb{E}[h(\alpha)]=\int_{0}^{1} h(\alpha) d \alpha$.
- Hence, for $w \in[0,1]^{m}$, we can also define the Lovász extension as

$$
\begin{equation*}
\tilde{f}(w)=\mathbb{E}_{p(\alpha)}[\underbrace{f(\{w \geq \alpha\})}_{h(\alpha)}]=\mathbb{E}_{p(\alpha)}[\underbrace{f\left(e \in E: w\left(e_{i}\right) \geq \alpha\right)}_{h(\alpha)}] \tag{16.43}
\end{equation*}
$$

where α is uniform random variable in $[0,1]$.

- Useful for showing results for randomized rounding schemes in solving submodular opt. problems subject to constraints via relaxations to convex optimization problems subject to linear constraints.

Simple expressions for Lovász E. with $m=2, E=\{1,2\}$

- If $w_{1} \geq w_{2}$, then

$$
\begin{aligned}
\tilde{f}(w) & =w_{1} f(\{1\})+w_{2} f(\{2\} \mid\{1\}) \\
& =\left(w_{1}-w_{2}\right) f(\{1\})+w_{2} f(\{1,2\})
\end{aligned}
$$

(16.44)
(16.45)

Simple expressions for Lovász E. with $m=2, E=\{1,2\}$

- If $w_{1} \geq w_{2}$, then

$$
\begin{align*}
\tilde{f}(w) & =w_{1} f(\{1\})+w_{2} f(\{2\} \mid\{1\}) \tag{16.44}\\
& =\left(w_{1}-w_{2}\right) f(\{1\})+w_{2} f(\{1,2\}) \tag{16.45}
\end{align*}
$$

- If $w_{1} \leq w_{2}$, then

$$
\begin{align*}
\tilde{f}(w) & =w_{2} f(\{2\})+w_{1} f(\{1\} \mid\{2\}) \tag{16.46}\\
& =\left(w_{2}-w_{1}\right) f(\{2\})+w_{1} f(\{1,2\}) \tag{16.47}
\end{align*}
$$

Simple expressions for Lovász E. with $m=2, E=\{1,2\}$

- If $w_{1} \geq w_{2}$, then

$$
\begin{align*}
\tilde{f}(w)= & w_{1} f(\{1\})+w_{2} f(\{2\} \mid\{1\}) \tag{16.48}\\
= & \left(w_{1}-w_{2}\right) f(\{1\})+w_{2} f(\{1,2\}) \tag{16.49}\\
= & \frac{1}{2} f(1)\left(w_{1}-w_{2}\right)+\frac{1}{2} f(1)\left(w_{1}-w_{2}\right) \tag{16.50}\\
& +\frac{1}{2} f(\{1,2\})\left(w_{1}+w_{2}\right)-\frac{1}{2} f(\{1,2\})\left(w_{1}-w_{2}\right) \tag{16.51}\\
& \quad+\frac{1}{2} f(2)\left(w_{1}-w_{2}\right)+\frac{1}{2} f(2)\left(w_{2}-w_{1}\right) \tag{16.52}
\end{align*}
$$

Simple expressions for Lovász E. with $m=2, E=\{1,2\}$

- If $w_{1} \geq w_{2}$, then

$$
\begin{align*}
\tilde{f}(w)= & w_{1} f(\{1\})+w_{2} f(\{2\} \mid\{1\}) \tag{16.48}\\
= & \left(w_{1}-w_{2}\right) f(\{1\})+w_{2} f(\{1,2\}) \tag{16.49}\\
= & \frac{1}{2} f(1)\left(w_{1}-w_{2}\right)+\frac{1}{2} f(1)\left(w_{1}-w_{2}\right) \tag{16.50}\\
& +\frac{1}{2} f(\{1,2\})\left(w_{1}+w_{2}\right)-\frac{1}{2} f(\{1,2\})\left(w_{1}-w_{2}\right) \tag{16.51}\\
& \quad+\frac{1}{2} f(2)\left(w_{1}-w_{2}\right)+\frac{1}{2} f(2)\left(w_{2}-w_{1}\right) \tag{16.52}
\end{align*}
$$

- A similar (symmetric) expression holds when $w_{1} \leq w_{2}$.

Simple expressions for Lovász E. with $m=2, E=\{1,2\}$

- This gives, for general w_{1}, w_{2}, that

$$
\begin{align*}
\tilde{f}(w)= & \frac{1}{2}(f(\{1\})+f(\{2\})-f(\{1,2\}))\left|w_{1}-w_{2}\right| \tag{16.53}\\
& +\frac{1}{2}(f(\{1\})-f(\{2\})+f(\{1,2\})) w_{1} \tag{16.54}\\
& +\frac{1}{2}(-f(\{1\})+f(\{2\})+f(\{1,2\})) w_{2} \tag{16.55}\\
=- & (f(\{1\})+f(\{2\})-f(\{1,2\})) \min \left\{w_{1}, w_{2}\right\} \tag{16.56}\\
& +f(\{1\}) w_{1}+f(\{2\}) w_{2}
\end{align*}
$$

Simple expressions for Lovász E. with $m=2, E=\{1,2\}$

- This gives, for general w_{1}, w_{2}, that

$$
\begin{align*}
\tilde{f}(w)= & \frac{1}{2}(f(\{1\})+f(\{2\})-f(\{1,2\}))\left|w_{1}-w_{2}\right| \tag{16.53}\\
& +\frac{1}{2}(f(\{1\})-f(\{2\})+f(\{1,2\})) w_{1} \tag{16.54}\\
& +\frac{1}{2}(-f(\{1\})+f(\{2\})+f(\{1,2\})) w_{2} \tag{16.55}\\
=- & (f(\{1\})+f(\{2\})-f(\{1,2\})) \min \left\{w_{1}, w_{2}\right\} \tag{16.56}\\
& +f(\{1\}) w_{1}+f(\{2\}) w_{2}
\end{align*}
$$

(16.57)

- Thus, if $f(A)=H\left(X_{A}\right)$ is the entropy function, we have $\tilde{f}(w)=H\left(e_{1}\right) w_{1}+H\left(e_{2}\right) w_{2}-I\left(e_{1} ; e_{2}\right) \min \left\{w_{1}, w_{2}\right\}$ which must be convex in w, where $I\left(e_{1} ; e_{2}\right)$ is the mutual information.

Simple expressions for Lovász E. with $m=2, E=\{1,2\}$

- This gives, for general w_{1}, w_{2}, that

$$
\begin{align*}
\tilde{f}(w)= & \frac{1}{2}(f(\{1\})+f(\{2\})-f(\{1,2\}))\left|w_{1}-w_{2}\right| \tag{16.53}\\
& +\frac{1}{2}(f(\{1\})-f(\{2\})+f(\{1,2\})) w_{1} \tag{16.54}\\
& +\frac{1}{2}(-f(\{1\})+f(\{2\})+f(\{1,2\})) w_{2} \tag{16.55}\\
=- & (f(\{1\})+f(\{2\})-f(\{1,2\})) \min \left\{w_{1}, w_{2}\right\} \tag{16.56}\\
& +f(\{1\}) w_{1}+f(\{2\}) w_{2}
\end{align*}
$$

(16.57)

- Thus, if $f(A)=H\left(X_{A}\right)$ is the entropy function, we have $\tilde{f}(w)=H\left(e_{1}\right) w_{1}+H\left(e_{2}\right) w_{2}-I\left(e_{1} ; e_{2}\right) \min \left\{w_{1}, w_{2}\right\}$ which must be convex in w, where $I\left(e_{1} ; e_{2}\right)$ is the mutual information.
- This "simple" but general form of the Lovász extension with $m=2$ can be useful.

Example: $m=2, E=\{1,2\}$, contours

- If $w_{1} \geq w_{2}$, then

$$
\tilde{f}(w)=w_{1} f(\{1\})+w_{2} f(\{2\} \mid\{1\})
$$

Example: $m=2, E=\{1,2\}$, contours

- If $w_{1} \geq w_{2}$, then

$$
\tilde{f}(w)=w_{1} f(\{1\})+w_{2} f(\{2\} \mid\{1\})
$$

- If $w=(1,0) / f(\{1\})=(1 / f(\{1\}), 0)$ then $\tilde{f}(w)=1$.

Example: $m=2, E=\{1,2\}$, contours

- If $w_{1} \geq w_{2}$, then

$$
\tilde{f}(w)=w_{1} f(\{1\})+w_{2} f(\{2\} \mid\{1\})
$$

- If $w=(1,0) / f(\{1\})=(1 / f(\{1\}), 0)$ then $\tilde{f}(w)=1$.
- If $w=(1,1) / f(\{1,2\})$ then $\tilde{f}(w)=1$.

Example: $m=2, E=\{1,2\}$, contours

- If $w_{1} \geq w_{2}$, then

$$
\begin{equation*}
\tilde{f}(w)=w_{1} f(\{1\})+w_{2} f(\{2\} \mid\{1\}) \tag{16.58}
\end{equation*}
$$

- If $w=(1,0) / f(\{1\})=(1 / f(\{1\}), 0)$ then $\tilde{f}(w)=1$.
- If $w=(1,1) / f(\{1,2\})$ then $\tilde{f}(w)=1$.
- If $w_{1} \leq w_{2}$, then

$$
\begin{equation*}
\tilde{f}(w)=w_{2} f(\{2\})+w_{1} f(\{1\} \mid\{2\}) \tag{16.59}
\end{equation*}
$$

Example: $m=2, E=\{1,2\}$, contours

- If $w_{1} \geq w_{2}$, then

$$
\begin{equation*}
\tilde{f}(w)=w_{1} f(\{1\})+w_{2} f(\{2\} \mid\{1\}) \tag{16.58}
\end{equation*}
$$

- If $w=(1,0) / f(\{1\})=(1 / f(\{1\}), 0)$ then $\tilde{f}(w)=1$.
- If $w=(1,1) / f(\{1,2\})$ then $\tilde{f}(w)=1$.
- If $w_{1} \leq w_{2}$, then

$$
\tilde{f}(w)=w_{2} f(\{2\})+w_{1} f(\{1\} \mid\{2\})
$$

(16.59)

- If $w=(0,1) / f(\{2\})=(0,1 / f(\{2\}))$ then $\tilde{f}(w)=1$.

Example: $m=2, E=\{1,2\}$, contours

- If $w_{1} \geq w_{2}$, then

$$
\begin{equation*}
\tilde{f}(w)=w_{1} f(\{1\})+w_{2} f(\{2\} \mid\{1\}) \tag{16.58}
\end{equation*}
$$

- If $w=(1,0) / f(\{1\})=(1 / f(\{1\}), 0)$ then $\tilde{f}(w)=1$.
- If $w=(1,1) / f(\{1,2\})$ then $\tilde{f}(w)=1$.
- If $w_{1} \leq w_{2}$, then

$$
\tilde{f}(w)=w_{2} f(\{2\})+w_{1} f(\{1\} \mid\{2\})
$$

(16.59)

- If $w=(0,1) / f(\{2\})=(0,1 / \underset{\sim}{f}(\{2\}))$ then $\tilde{f}(w)=1$.
- If $w=(1,1) / f(\{1,2\})$ then $\tilde{f}(w)=1$.

Example: $m=2, E=\{1,2\}$, contours

- If $w_{1} \geq w_{2}$, then

$$
\begin{equation*}
\tilde{f}(w)=w_{1} f(\{1\})+w_{2} f(\{2\} \mid\{1\}) \tag{16.58}
\end{equation*}
$$

- If $w=(1,0) / f(\{1\})=(1 / f(\{1\}), 0)$ then $\tilde{f}(w)=1$.
- If $w=(1,1) / f(\{1,2\})$ then $\tilde{f}(w)=1$.
- If $w_{1} \leq w_{2}$, then

$$
\begin{equation*}
\tilde{f}(w)=w_{2} f(\{2\})+w_{1} f(\{1\} \mid\{2\}) \tag{16.59}
\end{equation*}
$$

- If $w=(0,1) / f(\{2\})=(0,1 / \underset{\sim}{f}(\{2\}))$ then $\tilde{f}(w)=1$.
- If $w=(1,1) / f(\{1,2\})$ then $\tilde{f}(w)=1$.
- Can plot contours of the form $\left\{w \in \mathbb{R}^{2}: \tilde{f}(w)=1\right\}$, particular marked points of form $w=\mathbf{1}_{A} \times \frac{1}{f(A)}$ for certain A, where $\tilde{f}(w)=1$.

Example: $m=2, E=\{1,2\}$

- Contour plot of $m=2$ Lovász extension (from Bach-2011).

