Submodular Functions, Optimization, and Applications to Machine Learning

- Spring Quarter, Lectur 14

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

May 14th. 2018

$f(A)+f(B) \geq f(A \cup B)+f(A \cap B)$
$=f\left(A_{r}\right)+2 f(C)+f\left(B_{r}\right) \quad=f\left(A_{r}\right)+f(C)+f\left(B_{r}\right) \quad=f(A \cap B)$

Cumulative Outstanding Reading

- Read chapter 1 from Fujishige's book.
- Read chapter 2 from Fujishige's book.
- Read chapter 3 from Fujishige's book.
- Read chapter 4 from Fujishige's book.

Announcements, Assignments, and Reminders

- Next homework is posted on canvas. Due Thursday $5 / 10,11: 59$ pm.
- As always, if you have any questions about anything, please ask then via our discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics). Can meet at odd hours via zoom (send message on canvas to schedule time to chat).

Class Road Map - EE563

- L1(3/26): Motivation, Applications, \& Basic Definitions,
- L2(3/28): Machine Learning Apps (diversity, complexity, parameter, learning target, surrogate).
- L3(4/2): Info theory exs, more apps, definitions, graph/combinatorial examples
- L4(4/4): Graph and Combinatorial Examples, Matrix Rank, Examples and Properties, visualizations
- L5(4/9): More Examples/Properties/ Other Submodular Defs., Independence,
- L6(4/11): Matroids, Matroid Examples, Matroid Rank, Partition/Laminar Matroids
- L7(4/16): Laminar Matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid Representation, Dual Matroids
- L8(4/18): Dual Matroids, Other Matroid Properties, Combinatorial Geometries, Matroids and Greedy.
- L9(4/23): Polyhedra, Matroid Polytopes, Matroids \rightarrow Polymatroids
- L10(4/29): Matroids \rightarrow Polymatroids, Polymatroids, Polymatroids and Greedy,
- L11(4/30): Polymatroids, Polymatroids and Greedy
- L12(5/2): Polymatroids and Greedy, Extreme Points, Cardinality Constrained Maximization
- L13(5/7): Constrained Submodular Maximization
- L14(5/9): Submodular Max w. Other Constraints, Cont. Extensions, Lovasz Extension
- L15(5/14):
- L16(5/16):
- L17(5/21):
- L18(5/23):
- L-(5/28): Memorial Day (holiday)
- L19(5/30):
- L21(6/4): Final Presentations maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

Priority Queue

- Use a priority queue Q as a data structure: operations include:
- Insert an item (v, α) into queue, with $v \in V$ and $\alpha \in \mathbb{R}$.

$$
\begin{equation*}
\operatorname{insert}(Q,(v, \alpha)) \tag{14.14}
\end{equation*}
$$

- Pop the item (v, α) with maximum value α off the queue.

$$
\begin{equation*}
(v, \alpha) \leftarrow \operatorname{pop}(Q) \tag{14.15}
\end{equation*}
$$

- Query the value of the max item in the queue

$$
\begin{equation*}
\max (Q) \in \mathbb{R} \tag{14.16}
\end{equation*}
$$

- On next slide, we call a popped item "fresh" if the value (v, α) popped has the correct value $\alpha=f\left(v \mid S_{i}\right)$. Use extra "bit" to store this info
- If a popped item is fresh, it must be the maximum - this can happen if, at given iteration, v was first popped and neither fresh nor maximum so placed back in the queue, and it then percolates back to the top at which point it is fresh - thereby avoid extra queue check.

Minoux's Accelerated Greedy Algorithm Submodular Max

Algorithm 1: Minoux's Accelerated Greedy Algorithm
1 Set $S_{0} \leftarrow \emptyset ; i \leftarrow 0$; Initialize priority queue Q;
2 for $v \in E$ do
$3\lfloor\operatorname{INSERT}(Q, f(v))$
4 repeat
$5 \quad(v, \alpha) \leftarrow \operatorname{pop}(Q)$;
6 if α not "fresh" then

13 until $i=|E|$;

(Minimum) Submodular Set Cover

- Given polymatroid f, goal is to find a covering set of minimum cost:

$$
\begin{equation*}
S^{*} \in \underset{S \subseteq V}{\operatorname{argmin}}|S| \text { such that } f(S) \geq \alpha \tag{14.14}
\end{equation*}
$$

where α is a "cover" requirement.

- Normally take $\alpha=f(V)$ but defining $f^{\prime}(A)=\min \{f(A), \alpha\}$ we can take any α. Hence, we have equivalent formulation:

$$
\begin{equation*}
S^{*} \in \underset{S \subseteq V}{\operatorname{argmin}}|S| \text { such that } f^{\prime}(S) \geq f^{\prime}(V) \tag{14.15}
\end{equation*}
$$

- Note that this immediately generalizes standard set cover, in which case $f(A)$ is the cardinality of the union of sets indexed by A.
- Greedy Algorithm: Pick the first chain item S_{i} chosen by aforementioned greedy algorithm such that $f\left(S_{i}\right) \geq \alpha$ and output that as solution.

(Minimum) Submodular Set Cover: Approximation Analysis

- For integer valued f, this greedy algorithm an $O\left(\log \left(\max _{s \in V} f(\{s\})\right)\right)$ approximation. Let S^{*} be optimal, and S^{G} be greedy solution, then

$$
\begin{equation*}
\left|S^{\mathrm{G}}\right| \leq\left|S^{*}\right| H\left(\max _{s \in V} f(\{s\})\right)=\left|S^{*}\right| O\left(\log _{e}\left(\max _{s \in V} f(\{s\})\right)\right) \tag{14.14}
\end{equation*}
$$

where H is the harmonic function, i.e., $H(d)=\sum_{i=1}^{d}(1 / i)$.

- If f is not integral value, then bounds we get are of the form:

$$
\begin{equation*}
\left|S^{\mathrm{G}}\right| \leq\left|S^{*}\right|\left(1+\log _{e} \frac{f(V)}{f(V)-f\left(S_{T-1}\right)}\right) \tag{14.15}
\end{equation*}
$$

wehre S_{T} is the final greedy solution that occurs at step T.

- Set cover is hard to approximate with a factor better than $(1-\epsilon) \log \alpha$, where α is the desired cover constraint.

Curvature of a Submodular function

$$
\begin{aligned}
f(j)=0 \quad \Rightarrow f(j \mid A) & =0 \quad \forall A \\
f(j \mid \phi) & =f(j \cup \phi)-f(\phi)=f(j)
\end{aligned}
$$

- By submodularity, total curvature can be computed in either form:

$$
\begin{equation*}
c \triangleq 1-\min _{S, j \notin S: f(j \mid \emptyset) \neq 0} \frac{f(j \mid S)}{f(j \mid \emptyset)}=1-\min _{j: f(j \mid \emptyset) \neq 0} \frac{f(j \mid V \backslash\{j\})}{f(j \mid \emptyset)} \tag{14.17}
\end{equation*}
$$

- Note: Matroid rank is either modular $c=0$ or maximally curved $c=1$ - hence, matroid rank can have only the extreme points of curvature, namely 0 or 1 .
- Polymatroid functions are, in this sense, more nuanced, in that they allow non-extreme curvature, with $c \in[0,1]$.
- It will be remembered the notion of "partial dependence" within polymatroid functions.

$$
\begin{gathered}
f(j \mid v(j)=0 \\
\Rightarrow c=1
\end{gathered}
$$

Curvature and approximation

- Curvature limitation can help the greedy algorithm in terms of approximation bounds.
- Conforti \& Cornuéjols showed that greedy gives a $1 /(1+c)$ approximation to $\max \{f(S): S \in \mathcal{I}\}$ when f has total curvature c.
- Hence, greedy subject to matroid constraint is a $\max (1 /(1+c), 1 / 2)$ approximation algorithm, and if $c<1$ then it is better than $1 / 2$ (e.g., with $c=1 / 4$ then we have a 0.8 algorithm).

For k-uniform matroid - (i.e., k-cardinality constraints), then approximation factor becomes
$\frac{1}{c}\left(1-e^{-c}\right)$

Generalizations

- Consider a k-uniform matroid $\mathcal{M}=(V, \mathcal{I})$ where $\mathcal{I}=\{S \subseteq V:|S| \leq k\}$, and consider problem $\max \{f(A): A \in \mathcal{I}\}$

$$
\max \underset{\sim}{f(A)} \text { s.t. } \underset{\sim}{r}(A)=|A|
$$

Generalizations

- Consider a k-uniform matroid $\mathcal{M}=(V, \mathcal{I})$ where $\mathcal{I}=\{S \subseteq V:|S| \leq k\}$, and consider problem $\max \{f(A): A \in \mathcal{I}\}$
- Hence, the greedy algorithm is $1-1$ /e optimal for maximizing polymatroidal f subject to a k-uniform matroid constraint.

Generalizations

- Consider a k-uniform matroid $\mathcal{M}=(V, \mathcal{I})$ where $\mathcal{I}=\{S \subseteq V:|S| \leq k\}$, and consider problem $\max \{f(A): A \in \mathcal{I}\}$
- Hence, the greedy algorithm is $1-1$ /e optimal for maximizing polymatroidal f subject to a k-uniform matroid constraint.
- Might be useful to allow an arbitrary matroid (e.g., partition matroid $\mathcal{I}=\left\{X \subseteq V:\left|X \cap V_{i}\right| \leq k_{i}\right.$ for all $\left.i=1, \ldots, \ell\right\}$., or a transversal, etc).

Generalizations

- Consider a k-uniform matroid $\mathcal{M}=(V, \mathcal{I})$ where $\mathcal{I}=\{S \subseteq V:|S| \leq k\}$, and consider problem $\max \{f(A): A \in \mathcal{I}\}$
- Hence, the greedy algorithm is $1-1$ /e optimal for maximizing polymatroidal f subject to a k-uniform matroid constraint.
- Might be useful to allow an arbitrary matroid (e.g., partition matroid $\mathcal{I}=\left\{X \subseteq V:\left|X \cap V_{i}\right| \leq k_{i}\right.$ for all $\left.i=1, \ldots, \ell\right\}$., or a transversal, etc).
- Knapsack constraint: if each item $v \in V$ has a cost $c(v)$, we may ask for $c(S) \leq b$ where b is a budget, in units of costs.

$$
c(S)=\sum_{V E S} c(v)
$$

Generalizations

- Consider a k-uniform matroid $\mathcal{M}=(V, \mathcal{I})$ where $\mathcal{I}=\{S \subseteq V:|S| \leq k\}$, and consider problem $\max \{f(A): A \in \mathcal{I}\}$
- Hence, the greedy algorithm is $1-1$ /e optimal for maximizing polymatroidal f subject to a k-uniform matroid constraint.
- Might be useful to allow an arbitrary matroid (e.g., partition matroid $\mathcal{I}=\left\{X \subseteq V:\left|X \cap V_{i}\right| \leq k_{i}\right.$ for all $\left.i=1, \ldots, \ell\right\}$., or a transversal, etc).

$$
b \geq 0 \quad c(v) \geq 0
$$

- Knapsack constraint: if each item $v \in V$ has a cost $c(v)$, we may ask for $c(S) \leq b$ where b is a budget, in units of costs. Q: Is $\mathcal{I}=\{I: c(I) \leq b\}$ the independent sets of a matroid?

Generalizations

- Consider a k-uniform matroid $\mathcal{M}=(V, \mathcal{I})$ where $\mathcal{I}=\{S \subseteq V:|S| \leq k\}$, and consider problem $\max \{f(A): A \in \mathcal{I}\}$
- Hence, the greedy algorithm is $1-1$ /e optimal for maximizing polymatroidal f subject to a k-uniform matroid constraint.
- Might be useful to allow an arbitrary matroid (e.g., partition matroid $\mathcal{I}=\left\{X \subseteq V:\left|X \cap V_{i}\right| \leq k_{i}\right.$ for all $\left.i=1, \ldots, \ell\right\}$., or a transversal, etc).
- Knapsack constraint: if each item $v \in V$ has a cost $c(v)$, we may ask for $c(S) \leq b$ where b is a budget, in units of costs. Q: Is $\mathcal{I}=\{I: c(I) \leq b\}$ the independent sets of a matroid?
- We may wish to maximize f subject to multiple matroid constraints. I.e., $S \in \mathcal{I}_{1}, S \in \mathcal{I}_{2}, \ldots, S \in \mathcal{I}_{p}$ where \mathcal{I}_{i} are independent sets of the $i^{\text {th }}$ matroid.

Generalizations

- Consider a k-uniform matroid $\mathcal{M}=(V, \mathcal{I})$ where $\mathcal{I}=\{S \subseteq V:|S| \leq k\}$, and consider problem $\max \{f(A): A \in \mathcal{I}\}$
- Hence, the greedy algorithm is $1-1$ /e optimal for maximizing polymatroidal f subject to a k-uniform matroid constraint.
- Might be useful to allow an arbitrary matroid (e.g., partition matroid $\mathcal{I}=\left\{X \subseteq V:\left|X \cap V_{i}\right| \leq k_{i}\right.$ for all $\left.i=1, \ldots, \ell\right\}$., or a transversal, etc).
- Knapsack constraint: if each item $v \in V$ has a cost $c(v)$, we may ask for $c(S) \leq b$ where b is a budget, in units of costs. Q: Is $\mathcal{I}=\{I: c(I) \leq b\}$ the independent sets of a matroid?
- We may wish to maximize f subject to multiple matroid constraints. I.e., $S \in \mathcal{I}_{1}, S \in \mathcal{I}_{2}, \ldots, S \in \mathcal{I}_{p}$ where \mathcal{I}_{i} are independent sets of the $i^{\text {th }}$ matroid.
- Combinations of the above (e.g., knapsack \& multiple matroid constraints).

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.
- I.e., Starting with $S_{0}=\emptyset$, we repeat the following greedy step

$$
\begin{equation*}
S_{i+1}=S_{i} \cup\left\{\underset{v \in V \backslash S_{i}: S_{i}+v \in \bigcap_{i=1}^{p} \mathcal{I}_{i}}{\operatorname{argmax}} f\left(S_{i} \cup\{v\}\right)\right\} \tag{14.1}
\end{equation*}
$$

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.
- I.e., Starting with $S_{0}=\emptyset$, we repeat the following greedy step

$$
\begin{equation*}
S_{i+1}=S_{i} \cup\left\{\underset{v \in V \backslash S_{i}: S_{i}+v \in \bigcap_{i=1}^{p} \mathcal{I}_{i}}{\operatorname{argmax}} f\left(S_{i} \cup\{v\}\right)\right\} \tag{14.1}
\end{equation*}
$$

- That is, we keep choosing next whatever feasible element looks best.

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.
- I.e., Starting with $S_{0}=\emptyset$, we repeat the following greedy step

$$
\begin{equation*}
S_{i+1}=S_{i} \cup\left\{\underset{v \in V \backslash S_{i}: S_{i}+v \in \bigcap_{i=1}^{p} \mathcal{I}_{i}}{\operatorname{argmax}} f\left(S_{i} \cup\{v\}\right)\right\} \tag{14.1}
\end{equation*}
$$

- That is, we keep choosing next whatever feasible element looks best.
- This algorithm is simple and also has a guarantee

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.
- I.e., Starting with $S_{0}=\emptyset$, we repeat the following greedy step

$$
\begin{equation*}
S_{i+1}=S_{i} \cup\left\{\underset{v \in V \backslash S_{i}: S_{i}+v \in \bigcap_{i=1}^{p} \mathcal{I}_{i}}{\operatorname{argmax}} f\left(S_{i} \cup\{v\}\right)\right\} \tag{14.1}
\end{equation*}
$$

- That is, we keep choosing next whatever feasible element looks best.
- This algorithm is simple and also has a guarantee

Theorem 14.3.1

Given a polymatroid function f, and set of matroids $\left\{M_{j}=\left(E, \mathcal{I}_{j}\right)\right\}_{j=1}^{p}$, the above greedy algorithm returns sets S_{i} such that for each i we have $f\left(S_{i}\right) \geq \frac{1}{p+1} \max _{|S| \leq i, S \in \bigcap_{i=1}^{p} \mathcal{I}_{i}} f(S)$, assuming such sets exists.

- p-extudisk system.
$-\frac{1}{p+c}$

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.
- I.e., Starting with $S_{0}=\emptyset$, we repeat the following greedy step

$$
\begin{equation*}
S_{i+1}=S_{i} \cup\left\{\underset{v \in V \backslash S_{i}: S_{i}+v \in \bigcap_{i=1}^{p} \mathcal{I}_{i}}{\operatorname{argmax}} f\left(S_{i} \cup\{v\}\right)\right\} \tag{14.1}
\end{equation*}
$$

- That is, we keep choosing next whatever feasible element looks best.
- This algorithm is simple and also has a guarantee

Theorem 14.3.1

Given a polymatroid function f, and set of matroids $\left\{M_{j}=\left(E, \mathcal{I}_{j}\right)\right\}_{j=1}^{p}$, the above greedy algorithm returns sets S_{i} such that for each i we have $f\left(S_{i}\right) \geq \frac{1}{p+1} \max _{|S| \leq i, S \in \bigcap_{i=1}^{p} \mathcal{I}_{i}} f(S)$, assuming such sets exists.

- For one matroid, we have a $1 / 2$ approximation.

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.
- I.e., Starting with $S_{0}=\emptyset$, we repeat the following greedy step

$$
\begin{equation*}
S_{i+1}=S_{i} \cup\left\{\underset{v \in V \backslash S_{i}: S_{i}+v \in \bigcap_{i=1}^{p} \mathcal{I}_{i}}{\operatorname{argmax}} f\left(S_{i} \cup\{v\}\right)\right\} \tag{14.1}
\end{equation*}
$$

- That is, we keep choosing next whatever feasible element looks best.
- This algorithm is simple and also has a guarantee

Theorem 14.3.1

Given a polymatroid function f, and set of matroids $\left\{M_{j}=\left(E, \mathcal{I}_{j}\right)\right\}_{j=1}^{p}$, the above greedy algorithm returns sets S_{i} such that for each i we have $f\left(S_{i}\right) \geq \frac{1}{p+1} \max _{|S| \leq i, S \in \bigcap_{i=1}^{p} \mathcal{I}_{i}} f(S)$, assuming such sets exists.

- For one matroid, we have a $1 / 2$ approximation.
- Very easy algorithm, Minoux trick still possible, while addresses multiple matroid constraints

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.
- I.e., Starting with $S_{0}=\emptyset$, we repeat the following greedy step

$$
\begin{equation*}
S_{i+1}=S_{i} \cup\left\{\underset{v \in V \backslash S_{i}: S_{i}+v \in \bigcap_{i=1}^{p} \mathcal{I}_{i}}{\operatorname{argmax}} f\left(S_{i} \cup\{v\}\right)\right\} \tag{14.1}
\end{equation*}
$$

- That is, we keep choosing next whatever feasible element looks best.
- This algorithm is simple and also has a guarantee

Theorem 14.3.1

Given a polymatroid function f, and set of matroids $\left\{M_{j}=\left(E, \mathcal{I}_{j}\right)\right\}_{j=1}^{p}$, the above greedy algorithm returns sets S_{i} such that for each i we have $f\left(S_{i}\right) \geq \frac{1}{p+1} \max _{|S| \leq i, S \in \bigcap_{i=1}^{p} \mathcal{I}_{i}} f(S)$, assuming such sets exists.

- For one matroid, we have a $1 / 2$ approximation.
- Very easy algorithm, Minoux trick still possible, while addresses multiple matroid constraints - but the bound is not that good when there are many matroids.

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph $G=(V, F, E)$. Define two partition matroids $M_{V}=\left(E, \mathcal{I}_{V}\right)$, and $M_{F}=\left(E, \mathcal{I}_{F}\right)$.

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph $G=(V, F, E)$. Define two partition matroids $M_{V}=\left(E, \mathcal{I}_{V}\right)$, and $M_{F}=\left(E, \mathcal{I}_{F}\right)$.
- Independence in each matroid corresponds to:

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph $G=(V, F, E)$. Define two partition matroids $M_{V}=\left(E, \mathcal{I}_{V}\right)$, and $M_{F}=\left(E, \mathcal{I}_{F}\right)$.
- Independence in each matroid corresponds to:
(1) $I \in \mathcal{I}_{V}$ if $|I \cap(V, f)| \leq 1$ for all $f \in F$,

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph $G=(V, F, E)$. Define two partition matroids $M_{V}=\left(E, \mathcal{I}_{V}\right)$, and $M_{F}=\left(E, \mathcal{I}_{F}\right)$.
- Independence in each matroid corresponds to:
(1) $I \in \mathcal{I}_{V}$ if $|I \cap(V, f)| \leq 1$ for all $f \in F$,
(2) and $I \in \mathcal{I}_{F}$ if $|I \cap(v, F)| \leq 1$ for all $v \in V$.

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph $G=(V, F, E)$. Define two partition matroids $M_{V}=\left(E, \mathcal{I}_{V}\right)$, and $M_{F}=\left(E, \mathcal{I}_{F}\right)$.
- Independence in each matroid corresponds to:
(1) $I \in \mathcal{I}_{V}$ if $|I \cap(V, f)| \leq 1$ for all $f \in F$,
(2) and $I \in \mathcal{I}_{F}$ if $|I \cap(v, F)| \leq 1$ for all $v \in V$.

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph $G=(V, F, E)$. Define two partition matroids $M_{V}=\left(E, \mathcal{I}_{V}\right)$, and $M_{F}=\left(E, \mathcal{I}_{F}\right)$.
- Independence in each matroid corresponds to:
(1) $I \in \mathcal{I}_{\text {pif }}|I \cap(V, f)| \leq 1$ for all $f \in F$,
(2) and $I \in \mathcal{I}_{\text {vif }}|I \cap(v, F)| \leq 1$ for all $v \in V$.

- Therefore, a matching in G is simultaneously independent in both M_{V} and M_{F} and finding the maximum matching is finding the maximum cardinality set independent in both matroids.

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph $G=(V, F, E)$. Define two partition matroids $M_{V}=\left(E, \mathcal{I}_{V}\right)$, and $M_{F}=\left(E, \mathcal{I}_{F}\right)$.
- Independence in each matroid corresponds to:
(1) $I \in \mathcal{I}_{V}$ if $|I \cap(V, f)| \leq 1$ for all $f \in F$,
(2) and $I \in \mathcal{I}_{F}$ if $|I \cap(v, F)| \leq 1$ for all $v \in V$.

- Therefore, a matching in G is simultaneously independent in both M_{V} and M_{F} and finding the maximum matching is finding the maximum cardinality set independent in both matroids.
- In bipartite graph case, therefore, can be solved in polynomial time.

Matroid Intersection and Network Communication

- Let $G_{1}=\left(V_{1}, E\right)$ and $G_{2}=\left(V_{2}, E\right)$ be two graphs on an isomorphic set of edges (lets just give them same names E).

Matroid Intersection and Network Communication

- Let $G_{1}=\left(V_{1}, E\right)$ and $G_{2}=\left(V_{2}, E\right)$ be two graphs on an isomorphic set of edges (lets just give them same names E).
- Consider two cycle matroids associated with these graphs $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$. They might be very different (e.g., an edge might be between two distinct nodes in G_{1} but the same edge is a loop in multi-graph G_{2}.)

Matroid Intersection and Network Communication

- Let $G_{1}=\left(V_{1}, E\right)$ and $G_{2}=\left(V_{2}, E\right)$ be two graphs on an isomorphic set of edges (lets just give them same names E).
- Consider two cycle matroids associated with these graphs $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$. They might be very different (e.g., an edge might be between two distinct nodes in G_{1} but the same edge is a loop in multi-graph G_{2}.)
- We may wish to find the maximum size edge-induced subgraph that is still forest in both graphs (i.e., adding any edges will create a circuit in either M_{1}, M_{2}, or both).

Matroid Intersection and Network Communication

- Let $G_{1}=\left(V_{1}, E\right)$ and $G_{2}=\left(V_{2}, E\right)$ be two graphs on an isomorphic set of edges (lets just give them same names E).
- Consider two cycle matroids associated with these graphs $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$. They might be very different (e.g., an edge might be between two distinct nodes in G_{1} but the same edge is a loop in multi-graph G_{2}.)
- We may wish to find the maximum size edge-induced subgraph that is still forest in both graphs (i.e., adding any edges will create a circuit in either M_{1}, M_{2}, or both).
- This is again a matroid intersection problem.

Matroid Intersection and TSP

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.

Matroid Intersection and TSP

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.

Matroid Intersection and TSP

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From G with n nodes, create G^{\prime} with $n+1$ nodes by duplicating (w.l.o.g.) a particular node $v_{1} \in V(G)$ to v_{1}^{+}, v_{1}^{-}, and have all outgoing edges from v_{1} come instead from v_{1}^{-}and all edges incoming to v_{1} go instead to v_{1}^{+}.

Matroid Intersection and TSP

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From G with n nodes, create G^{\prime} with $n+1$ nodes by duplicating (w.l.o.g.) a particular node $v_{1} \in V(G)$ to v_{1}^{+}, v_{1}^{-}, and have all outgoing edges from v_{1} come instead from v_{1}^{-}and all edges incoming to v_{1} go instead to v_{1}^{+}.
- Let M_{1} be the cycle matroid on G^{\prime}.

Matroid Intersection and TSP

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From G with n nodes, create G^{\prime} with $n+1$ nodes by duplicating (w.l.o.g.) a particular node $v_{1} \in V(G)$ to v_{1}^{+}, v_{1}^{-}, and have all outgoing edges from v_{1} come instead from v_{1}^{-}and all edges incoming to v_{1} go instead to v_{1}^{+}.
- Let M_{1} be the cycle matroid on G^{\prime}.
- Let M_{2} be the partition matroid having as independent sets those that have no more than one edge leaving any node - i.e., $I \in \mathcal{I}\left(M_{2}\right)$ if $\left|I \cap \delta^{-}(v)\right| \leq 1$ for all $v \in V\left(G^{\prime}\right)$.

Matroid Intersection and TSP

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From G with n nodes, create G^{\prime} with $n+1$ nodes by duplicating (w.l.o.g.) a particular node $v_{1} \in V(G)$ to v_{1}^{+}, v_{1}^{-}, and have all outgoing edges from v_{1} come instead from v_{1}^{-}and all edges incoming to v_{1} go instead to v_{1}^{+}.
- Let M_{1} be the cycle matroid on G^{\prime}.
- Let M_{2} be the partition matroid having as independent sets those that have no more than one edge leaving any node - i.e., $I \in \mathcal{I}\left(M_{2}\right)$ if $\left|I \cap \delta^{-}(v)\right| \leq 1$ for all $v \in V\left(G^{\prime}\right)$.
- Let M_{3} be the partition matroid having as independent sets those that have no more than one edge entering any node - i.e., $I \in \mathcal{I}\left(M_{3}\right)$ if $\left|I \cap \delta^{+}(v)\right| \leq 1$ for all $v \in V\left(G^{\prime}\right)$.

Matroid Intersection and TSP

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From G with n nodes, create G^{\prime} with $n+1$ nodes by duplicating (w.l.o.g.) a particular node $v_{1} \in V(G)$ to v_{1}^{+}, v_{1}^{-}, and have all outgoing edges from v_{1} come instead from v_{1}^{-}and all edges incoming to v_{1} go instead to v_{1}^{+}.
- Let M_{1} be the cycle matroid on G^{\prime}.
- Let M_{2} be the partition matroid having as independent sets those that have no more than one edge leaving any node - i.e., $I \in \mathcal{I}\left(M_{2}\right)$ if $\left|I \cap \delta^{-}(v)\right| \leq 1$ for all $v \in V\left(G^{\prime}\right)$.
- Let M_{3} be the partition matroid having as independent sets those that have no more than one edge entering any node - i.e., $I \in \mathcal{I}\left(M_{3}\right)$ if $\left|I \cap \delta^{+}(v)\right| \leq 1$ for all $v \in V\left(G^{\prime}\right)$.
- Then a Hamiltonian cycle exists iff there is an n-element intersection of M_{1}, M_{2}, and M_{3}.

$$
\begin{aligned}
& M_{1}=\left(V_{1}=\{I \subseteq v:|I| \leq h\}\right) \\
& I_{1} \\
& \text { is } M_{3}=\left(V, I_{1}\right)
\end{aligned}
$$

Matroid Intersection and TSP

- Recall, the traveling salesperson problem (TSP) is the problem to, given a directed graph, start at a node, visit all cities, and return to the starting point. Optimization version does this tour at minimum cost.

Matroid Intersection and TSP

- Recall, the traveling salesperson problem (TSP) is the problem to, given a directed graph, start at a node, visit all cities, and return to the starting point. Optimization version does this tour at minimum cost.
- Since TSP is NP-complete, we obviously can't solve matroid intersections of 3 more matroids, unless $\mathrm{P}=\mathrm{NP}$.

Matroid Intersection and TSP

- Recall, the traveling salesperson problem (TSP) is the problem to, given a directed graph, start at a node, visit all cities, and return to the starting point. Optimization version does this tour at minimum cost.
- Since TSP is NP-complete, we obviously can't solve matroid intersections of 3 more matroids, unless $P=N P$.
- But bipartite graph example gives us hope for 2 matroids, as in that case we can easily solve $\max |X|$ s.t. $x \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.

Greedy over multiple matroids: Generalized Bipartite Matching

- Generalized bipartite matching (i.e., max bipartite matching with submodular costs on the edges). Use two partition matroids (as mentioned earlier in class)

Greedy over multiple matroids: Generalized Bipartite Matching

- Generalized bipartite matching (i.e., max bipartite matching with submodular costs on the edges). Use two partition matroids (as mentioned earlier in class)
- Useful in natural language processing: Ex. Computer language translation, find an alignment between two language strings.

Greedy over multiple matroids: Generalized Bipartite Matching

- Generalized bipartite matching (i.e., max bipartite matching with submodular costs on the edges). Use two partition matroids (as mentioned earlier in class)
- Useful in natural language processing: Ex. Computer language translation, find an alignment between two language strings.
- Consider bipartite graph $G=(E, F, V)$ where E and F are the left/right set of nodes, respectively, and V is the set of edges.

Greedy over multiple matroids: Generalized Bipartite Matching

- Generalized bipartite matching (i.e., max bipartite matching with submodular costs on the edges). Use two partition matroids (as mentioned earlier in class)
- Useful in natural language processing: Ex. Computer language translation, find an alignment between two language strings.
- Consider bipartite graph $G=(E, F, V)$ where E and F are the left/right set of nodes, respectively, and V is the set of edges.
- E corresponds to, say, an English language sentence and F corresponds to a French language sentence - goal is to form a matching (an alignment) between the two.

Greedy over > 1 matroids: Multiple Language Alignment

- Consider English string and French string, set up as a bipartite graph.

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique

Greedy over > 1 matroids: Multiple Language Alignment

- One possible alignment, a matching, with score as sum of edge weights.

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique

Greedy over > 1 matroids: Multiple Language Alignment

- Edges incident to English words constitute an edge partition

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique

- The two edge partitions can be used to set up two 1-partition matroids on the edges.
- For each matroid, a set of edges is independent only if the set intersects each partition block no more than one time.
- Edges incident to French words constitute an edge partition

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique

- The two edge partitions can be used to set up two 1-partition matroids on the edges.
- For each matroid, a set of edges is independent only if the set intersects each partition block no more than one time.
- Typical to use bipartite matching to find an alignment between the two language strings.

Greedy over > 1 matroids: Multiple Language Alignment

- Typical to use bipartite matching to find an alignment between the two language strings.
- As we saw, this is equivalent to two 1-partition matroids and a non-negative modular cost function on the edges.

Greedy over > 1 matroids: Multiple Language Alignment

- Typical to use bipartite matching to find an alignment between the two language strings.
- As we saw, this is equivalent to two 1-partition matroids and a non-negative modular cost function on the edges.
- We can generalize this using a polymatroid cost function on the edges, and two k-partition matroids, allowing for "fertility" in the models:

Greedy over > 1 matroids: Multiple Language Alignment

- Typical to use bipartite matching to find an alignment between the two language strings.
- As we saw, this is equivalent to two 1-partition matroids and a non-negative modular cost function on the edges.
- We can generalize this using a polymatroid cost function on the edges, and two k-partition matroids, allowing for "fertility" in the models:

Fertility at most 1
. . . the ... of public ownership

. . . le ... de propriété publique
. . . the ... of public ownership

le.. de propriété publique

Greedy over > 1 matroids: Multiple Language Alignment

- Typical to use bipartite matching to find an alignment between the two language strings.
- As we saw, this is equivalent to two 1-partition matroids and a non-negative modular cost function on the edges.
- We can generalize this using a polymatroid cost function on the edges, and two k-partition matroids, allowing for "fertility" in the models:

Fertility at most 2
. . . the ... of public ownership

. . . le ... de propriété publique
. . . the ... of public ownership

le ... de propriété publique

Greedy over > 1 matroids: Multiple Language Alignment

- Generalizing further, each block of edges in each partition matroid can have its own "fertility" limit:

$$
\mathcal{I}=\left\{X \subseteq V:\left|X \cap V_{i}\right| \leq k_{i} \text { for all } i=1, \ldots, \ell\right\}
$$

Greedy over > 1 matroids: Multiple Language Alignment

- Generalizing further, each block of edges in each partition matroid can have its own "fertility" limit: $\mathcal{I}=\left\{X \subseteq V:\left|X \cap V_{i}\right| \leq k_{i}\right.$ for all $\left.i=1, \ldots, \ell\right\}$.
- Maximizing submodular function subject to multiple matroid constraints addresses this problem.

Greedy over multiple matroids: Submodular Welfare

- Submodular Welfare Maximization: Consider E a set of m goods to be distributed/partitioned among n people ("players").

Greedy over multiple matroids: Submodular Welfare

- Submodular Welfare Maximization: Consider E a set of m goods to be distributed/partitioned among n people ("players').
- Each players has a submodular "valuation" function, $g_{i}: 2^{E} \rightarrow \mathbb{R}_{+}$that measures how "desirable" or "valuable" a given subset $A \subseteq E$ of goods are to that player.

Greedy over multiple matroids: Submodular Welfare

- Submodular Welfare Maximization: Consider E a set of m goods to be distributed/partitioned among n people ("players').
- Each players has a submodular "valuation" function, $g_{i}: 2^{E} \rightarrow \mathbb{R}_{+}$that measures how "desirable" or "valuable" a given subset $A \subseteq E$ of goods are to that player. $g_{i}(A)$ the valm that person in hos for
- Assumption: No good can be shared between multiple players, each good must be allocated to a single player.

Greedy over multiple matroids: Submodular Welfare

- Submodular Welfare Maximization: Consider E a set of m goods to be distributed/partitioned among n people ("players").
- Each players has a submodular "valuation" function, $g_{i}: 2^{E} \rightarrow \mathbb{R}_{+}$that measures how "desirable" or "valuable" a given subset $A \subseteq E$ of goods are to that player.
- Assumption: No good can be shared between multiple players, each good must be allocated to a single player.
- Goal of submodular welfare: Partition the goods $E=E_{1} \cup E_{2} \cup \cdots \cup E_{n}$ into n blocks in order to maximize the submodular social welfare, measured as:

$$
\begin{aligned}
& \text { submodular-social-welfare }\left(E_{1}, E_{2}, \ldots, E_{n}\right)=\sum_{i=1}^{n} g_{i}\left(E_{i}\right) . \\
& \text { submolula farh allocoph } \min _{i=1}^{n} g_{i}\left(E_{i}\right)
\end{aligned}
$$

Greedy over multiple matroids: Submodular Welfare

- Submodular Welfare Maximization: Consider E a set of m goods to be distributed/partitioned among n people ("players").
- Each players has a submodular "valuation" function, $g_{i}: 2^{E} \rightarrow \mathbb{R}_{+}$that measures how "desirable" or "valuable" a given subset $A \subseteq E$ of goods are to that player.
- Assumption: No good can be shared between multiple players, each good must be allocated to a single player.
- Goal of submodular welfare: Partition the goods $E=E_{1} \cup E_{2} \cup \cdots \cup E_{n}$ into n blocks in order to maximize the submodular social welfare, measured as:

$$
\begin{equation*}
\text { submodular-social-welfare }\left(E_{1}, E_{2}, \ldots, E_{n}\right)=\sum_{i=1}^{n} g_{i}\left(E_{i}\right) \tag{14.2}
\end{equation*}
$$

- We can solve this via submodular maximization subject to multiple matroid independence constraints as we next describe ...

Submodular Welfare: Submodular Max over matroid partition

- Create new ground set E^{\prime} as disjoint union of n copies of the ground set. I.e.,

$$
\begin{equation*}
E^{\prime}=\underbrace{E \uplus E \uplus \cdots \uplus E}_{n \times} \tag{14.3}
\end{equation*}
$$

Submodular Welfare: Submodular Max over matroid partition

- Create new ground set E^{\prime} as disjoint union of n copies of the ground set. I.e.,

$$
\begin{equation*}
E^{\prime}=\underbrace{E \uplus E \uplus \cdots \uplus E}_{n \times} \tag{14.3}
\end{equation*}
$$

- Let $E^{(i)} \subset E^{\prime}$ be the $i^{\text {th }}$ block of E^{\prime}.

Submodular Welfare: Submodular Max over matroid partition

- Create new ground set E^{\prime} as disjoint union of n copies of the ground set. I.e.,

$$
\begin{equation*}
E^{\prime}=\underbrace{E \uplus E \uplus \cdots \uplus E}_{n \times} \tag{14.3}
\end{equation*}
$$

- Let $E^{(i)} \subset E^{\prime}$ be the $i^{\text {th }}$ block of E^{\prime}.
- For any $e \in E$, the corresponding element in $E^{(i)}$ is called $(e, i) \in E^{(i)}$ (each original element is tagged by integer).

Submodular Welfare: Submodular Max over matroid

 partition- Create new ground set E^{\prime} as disjoint union of n copies of the ground set. I.e.,

$$
\begin{equation*}
E^{\prime}=\underbrace{E \uplus E \uplus \cdots \uplus E}_{n \times} \tag{14.3}
\end{equation*}
$$

- Let $E^{(i)} \subset E^{\prime}$ be the $i^{\text {th }}$ block of $E^{\prime} . \quad\left|E^{(i)}\right|=m$
- For any $e \in E$, the corresponding element in $E^{(i)}$ is called $(e, i) \in E^{(i)}$ (each original element is tagged by integer).
- For $e \in E$, define $E_{e}=\left\{\left(e^{\prime}, i\right) \in E^{\prime}: e^{\prime}=e\right\}$. $\quad\left|\boldsymbol{E}_{e}\right|=n$

Submodular Welfare: Submodular Max over matroid

 partition- Create new ground set E^{\prime} as disjoint union of n copies of the ground set. I.e.,

$$
\begin{equation*}
E^{\prime}=\underbrace{E \uplus E \uplus \cdots \uplus E}_{n \times} \tag{14.3}
\end{equation*}
$$

- Let $E^{(i)} \subset E^{\prime}$ be the $i^{\text {th }}$ block of E^{\prime}.
- For any $e \in E$, the corresponding element in $E^{(i)}$ is called $(e, i) \in E^{(i)}$ (each original element is tagged by integer).
- For $e \in E$, define $E_{e}=\left\{\left(e^{\prime}, i\right) \in E^{\prime}: e^{\prime}=e\right\}$.
- Hence, $\left\{E_{e}\right\}_{e \in E}$ is a partition of E^{\prime}, each block of the partition for one of the original elements in E.

Submodular Welfare: Submodular Max over matroid partition

- Create new ground set E^{\prime} as disjoint union of n copies of the ground set. I.e.,

$$
\begin{equation*}
E^{\prime}=\underbrace{E \uplus E \uplus \cdots \uplus E}_{n \times} \tag{14.3}
\end{equation*}
$$

- Let $E^{(i)} \subset E^{\prime}$ be the $i^{\text {th }}$ block of E^{\prime}.
- For any $e \in E$, the corresponding element in $E^{(i)}$ is called $(e, i) \in E^{(i)}$ (each original element is tagged by integer).
- For $e \in E$, define $E_{e}=\left\{\left(e^{\prime}, i\right) \in E^{\prime}: e^{\prime}=e\right\}$.
- Hence, $\left\{E_{e}\right\}_{e \in E}$ is a partition of E^{\prime}, each block of the partition for one of the original elements in E.
- Create a 1-partition matroid $\mathcal{M}=\left(E^{\prime}, \mathcal{I}\right)$ where

$$
\begin{equation*}
\mathcal{I}=\left\{S \subseteq E^{\prime}: \forall e \in E,\left|S \cap E_{e}\right| \leq 1\right\} \tag{14.4}
\end{equation*}
$$

Submodular Welfare: Submodular Max over matroid partition

- Hence, S is independent in matroid $\mathcal{M}=\left(E^{\prime}, I\right)$ if S uses each original element no more than once.

Submodular Welfare: Submodular Max over matroid partition

- Hence, S is independent in matroid $\mathcal{M}=\left(E^{\prime}, I\right)$ if S uses each original element no more than once.
- Create submodular function $f^{\prime}: 2^{E^{\prime}} \rightarrow \mathbb{R}_{+}$with $f^{\prime}(S)=\sum_{i=1}^{n} g_{i}\left(S \cap E^{(i)}\right)$.

Submodular Welfare: Submodular Max over matroid partition

- Hence, S is independent in matroid $\mathcal{M}=\left(E^{\prime}, I\right)$ if S uses each original element no more than once.
- Create submodular function $f^{\prime}: 2^{E^{\prime}} \rightarrow \mathbb{R}_{+}$with $f^{\prime}(S)=\sum_{i=1}^{n} g_{i}\left(S \cap E^{(i)}\right)$.
- Submodular welfare maximization becomes matroid constrained submodular max max $\left\{f^{\prime}(S): S \in \mathcal{I}\right\}$, so greedy algorithm gives a $1 / 2$ approximation.

Submodular Social Welfare

- Have $n=6$ people (who don't like to share) and $|E|=m=7$ pieces of sushi. E.g., $e \in E$ might be $e=$ "salmon roll".

Submodular Social Welfare

解期

- Have $n=6$ people (who don't like to share) and $|E|=m=7$ pieces of sushi. E.g., $e \in E$ might be $e=$ "salmon roll".
- Goal: distribute sushi to people to maximize social welfare.

Submodular Social Welfare

- Have $n=6$ people (who don't like to share) and $|E|=m=7$ pieces of sushi. E.g., $e \in E$ might be $e=$ "salmon roll".
- Goal: distribute sushi to people to maximize social welfare.
- Ground set disjoint union $E \uplus E \uplus E \uplus E \uplus E \uplus E$.

Submodular Social Welfare

力相解

－Have $n=6$ people（who don＇t like to share）and $|E|=m=7$ pieces of sushi．E．g．，$e \in E$ might be $e=$＂salmon roll＂．
－Goal：distribute sushi to people to maximize social welfare．
－Ground set disjoint union $E \uplus E \uplus E \uplus E \uplus E \uplus E$.
－Partition matroid partitions：
$E_{e_{1}} \cup E_{e_{2}} \cup E_{e_{3}} \cup E_{e_{4}} \cup E_{e_{5}} \cup$ $E_{e_{6}} \cup E_{e_{7}}$.

Submodular Social Welfare

力相勋

－Have $n=6$ people（who don＇t like to share）and $|E|=m=7$ pieces of sushi．E．g．，$e \in E$ might be $e=$＂salmon roll＂．
－Goal：distribute sushi to people to maximize social welfare．
－Ground set disjoint union $E \uplus E \uplus E \uplus E \uplus E \uplus E$.
－Partition matroid partitions： $E_{e_{1}} \cup E_{e_{2}} \cup E_{e_{3}} \cup E_{e_{4}} \cup E_{e_{5}} \cup$ $E_{e_{6}} \cup E_{e_{7}}$.
－independent allocation

Submodular Social Welfare

力相勋

－Have $n=6$ people（who don＇t like to share）and $|E|=m=7$ pieces of sushi．E．g．，$e \in E$ might be $e=$＂salmon roll＂．
－Goal：distribute sushi to people to maximize social welfare．
－Ground set disjoint union $E \uplus E \uplus E \uplus E \uplus E \uplus E$.
－Partition matroid partitions： $E_{e_{1}} \cup E_{e_{2}} \cup E_{e_{3}} \cup E_{e_{4}} \cup E_{e_{5}} \cup$ $E_{e_{6}} \cup E_{e_{7}}$ ．
－independent allocation
－non－independent allocation

Monotone Submodular over Knapsack Constraint

- The constraint $|A| \leq k$ is a simple cardinality constraint.

Monotone Submodular over Knapsack Constraint

- The constraint $|A| \leq k$ is a simple cardinality constraint.
- Consider a non-negative integral modular function $c: E \rightarrow \mathbb{Z}_{+}$.

Monotone Submodular over Knapsack Constraint

- The constraint $|A| \leq k$ is a simple cardinality constraint.
- Consider a non-negative integral modular function $c: E \rightarrow \mathbb{Z}_{+}$.
- A knapsack constraint would be of the form $c(A) \leq b$ where B is some integer budget that must not be exceeded. That is
$\max \{f(A): A \subseteq V, c(A) \leq b\}$.

Monotone Submodular over Knapsack Constraint

- The constraint $|A| \leq k$ is a simple cardinality constraint.
- Consider a non-negative integral modular function $c: E \rightarrow \mathbb{Z}_{+}$.
- A knapsack constraint would be of the form $c(A) \leq b$ where B is some integer budget that must not be exceeded. That is $\max \{f(A): A \subseteq V, c(A) \leq b\}$.
- Important: A knapsack constraint yields an independence system (down closed) but it is not a matroid!

Monotone Submodular over Knapsack Constraint

- The constraint $|A| \leq k$ is a simple cardinality constraint.
- Consider a non-negative integral modular function $c: E \rightarrow \mathbb{Z}_{+}$.
- A knapsack constraint would be of the form $c(A) \leq b$ where B is some integer budget that must not be exceeded. That is $\max \{f(A): A \subseteq V, c(A) \leq b\}$.
- Important: A knapsack constraint yields an independence system (down closed) but it is not a matroid!
- $c(e)$ may be seen as the cost of item e and if $c(e)=1$ for all e, then we recover the cardinality constraint we saw earlier.

Monotone Submodular over Knapsack Constraint

- Greedy can be seen as choosing the best gain: Starting with $S_{0}=\emptyset$, we repeat the following greedy step

$$
\begin{equation*}
S_{i+1}=S_{i} \cup\left\{\underset{v \in V \backslash S_{i}}{\operatorname{argmax}}\left(f\left(S_{i} \cup\{v\}\right)-f\left(S_{i}\right)\right)\right\} \tag{14.5}
\end{equation*}
$$

the gain is $f\left(\{v\} \mid S_{i}\right)=f\left(S_{i}+v\right)-f\left(S_{i}\right)$, so greedy just chooses next the currently unselected element with greatest gain.

Monotone Submodular over Knapsack Constraint

- Greedy can be seen as choosing the best gain: Starting with $S_{0}=\emptyset$, we repeat the following greedy step

$$
\begin{equation*}
S_{i+1}=S_{i} \cup\left\{\underset{v \in V \backslash S_{i}}{\operatorname{argmax}}\left(f\left(S_{i} \cup\{v\}\right)-f\left(S_{i}\right)\right)\right\} \tag{14.5}
\end{equation*}
$$

the gain is $f\left(\{v\} \mid S_{i}\right)=f\left(S_{i}+v\right)-f\left(S_{i}\right)$, so greedy just chooses next the currently unselected element with greatest gain.

- Core idea in knapsack case: Greedy can be extended to choose next whatever looks cost-normalized best, i.e., Starting some initial set S_{0}, we repeat the following cost-normalized greedy step

$$
\begin{equation*}
S_{i+1}=S_{i} \cup\left\{\underset{v \in V \backslash S_{i}}{\operatorname{argmax}} \frac{f\left(S_{i} \cup\{v\}\right)-f\left(S_{i}\right)}{c(v)}\right\} \tag{14.6}
\end{equation*}
$$

which we repeat until $c\left(S_{i+1}\right)>b$ and then take S_{i} as the solution.

A Knapsack Constraint

- There are a number of ways of getting approximation bounds using this strategy.
- If we run the normalized greedy procedure starting with $S_{0}=\emptyset$, and compare the solution found with the max of the singletons $\max _{v \in V} f(\{v\})$, choosing the max, then we get a $\left(1-e^{-1 / 2}\right) \approx 0.39$ approximation, in $O\left(n^{2}\right)$ time (Minoux trick also possible for further speed)
- Partial enumeration: On the other hand, we can get a $\left(1-e^{-1}\right) \approx 0.63$ approximation in $O\left(n^{5}\right)$ time if we run the above procedure starting from all sets of cardinality three (so restart for all S_{0} such that $\left|S_{0}\right|=3$), and compare that with the best singleton and pairwise solution.
- Extending something similar to this to d simultaneous knapsack constraints is possible as well.

Local Search Algorithms

From J. Vondrak

- Local search involves switching up to t elements, as long as it provides a (non-trivial) improvement; can iterate in several phases. Some examples follow:
- $1 / 3$ approximation to unconstrained non-monotone maximization [Feige, Mirrokni, Vondrak, 2007]
- $1 /\left(k+2+\frac{1}{k}+\delta_{t}\right)$ approximation for non-monotone maximization subject to k matroids [Lee, Mirrokni, Nagarajan, Sviridenko, 2009]
- $1 /\left(k+\delta_{t}\right)$ approximation for monotone submodular maximization subject to $k \geq 2$ matroids [Lee, Sviridenko, Vondrak, 2010].

What About Non-monotone

- Alternatively, we may wish to maximize non-monotone submodular functions. This includes of course graph cuts, and this problem is APX-hard, so maximizing non-monotone functions, even unconstrainedly, is hard.

What About Non-monotone

- Alternatively, we may wish to maximize non-monotone submodular functions. This includes of course graph cuts, and this problem is APX-hard, so maximizing non-monotone functions, even unconstrainedly, is hard.
- If f is an arbitrary submodular function (so neither polymatroidal, nor necessarily positive or negative), then verifying if the maximum of f is positive or negative is already NP-hard.

What About Non-monotone

- Alternatively, we may wish to maximize non-monotone submodular functions. This includes of course graph cuts, and this problem is APX-hard, so maximizing non-monotone functions, even unconstrainedly, is hard.
- If f is an arbitrary submodular function (so neither polymatroidal, nor necessarily positive or negative), then verifying if the maximum of f is positive or negative is already NP-hard.
- Therefore, submodular function max in such case is inapproximable unless $P=N P$ (since any such procedure would give us the sign of the max).

What About Non-monotone

- Alternatively, we may wish to maximize non-monotone submodular functions. This includes of course graph cuts, and this problem is APX-hard, so maximizing non-monotone functions, even unconstrainedly, is hard.
- If f is an arbitrary submodular function (so neither polymatroidal, nor necessarily positive or negative), then verifying if the maximum of f is positive or negative is already NP-hard.
- Therefore, submodular function max in such case is inapproximable unless $\mathrm{P}=\mathrm{NP}$ (since any such procedure would give us the sign of the max).
- Thus, any approximation algorithm must be for unipolar submodular functions. E.g., non-negative but otherwise arbitrary submodular functions.

What About Non-monotone

- Alternatively, we may wish to maximize non-monotone submodular functions. This includes of course graph cuts, and this problem is APX-hard, so maximizing non-monotone functions, even unconstrainedly, is hard.
- If f is an arbitrary submodular function (so neither polymatroidal, nor necessarily positive or negative), then verifying if the maximum of f is positive or negative is already NP-hard.
- Therefore, submodular function max in such case is inapproximable unless $P=N P$ (since any such procedure would give us the sign of the max).
- Thus, any approximation algorithm must be for unipolar submodular functions. E.g., non-negative but otherwise arbitrary submodular functions.
- We may get a $\left(\frac{1}{3}-\frac{\epsilon}{n}\right)$ approximation for maximizing non-monotone non-negative submodular functions, with most $O\left(\frac{1}{\epsilon} n^{3} \log n\right)$ function calls using approximate local maxima.

Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \backslash S$ (i.e., local in a Hamming ball of radius 1).

Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \backslash S$ (i.e., local in a Hamming ball of radius 1).
- The following interesting result is true for any submodular function:

Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \backslash S$ (i.e., local in a Hamming ball of radius 1).
- The following interesting result is true for any submodular function:

Lemma 14.3.2

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.

Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \backslash S$ (i.e., local in a Hamming ball of radius 1).
- The following interesting result is true for any submodular function:

Lemma 14.3.2

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.

- Idea of proof: Given $v_{1}, v_{2} \in S$, suppose $f\left(S-v_{1}\right) \leq f(S)$ and $f\left(S-v_{2}\right) \leq f(S)$. Submodularity requires $f\left(S-v_{1}\right)+f\left(S-v_{2}\right) \geq f(S)+f\left(S-v_{1}-v_{2}\right)$ which would be impossible unless $f\left(S-v_{1}-v_{2}\right) \leq f(S)$.

Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \backslash S$
(i.e., local in a Hamming ball of radius 1).
- The following interesting result is true for any submodular function:

Lemma 14.3.2

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.

- Idea of proof: Given $v_{1}, v_{2} \in S$, suppose $f\left(S-v_{1}\right) \leq f(S)$ and $f\left(S-v_{2}\right) \leq f(S)$. Submodularity requires $f\left(S-v_{1}\right)+f\left(S-v_{2}\right) \geq f(S)+f\left(S-v_{1}-v_{2}\right)$ which would be impossible unless $f\left(S-v_{1}-v_{2}\right) \leq f(S)$.
- Similarly, given $v_{1}, v_{2} \notin S$, and $f\left(S+v_{1}\right) \leq f(S)$ and $f\left(S+v_{2}\right) \leq f(S)$. Submodularity requires $f\left(S+v_{1}\right)+f\left(S+v_{2}\right) \geq f(S)+f\left(S+v_{1}+v_{2}\right)$ which requires $f\left(S+v_{1}+v_{2}\right) \leq f(S)$.

Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \backslash S$ (i.e., local in a Hamming ball of radius 1).
- The following interesting result is true for any submodular function:

Lemma 14.3.2

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.

- In other words, once we have identified a local maximum, the two intervals in the Boolean lattice $[\emptyset, S]$ and $[S, V]$ can be ruled out as a possible improvement over S.

Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \backslash S$ (i.e., local in a Hamming ball of radius 1).
- The following interesting result is true for any submodular function:

Lemma 14.3.2

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.

- In other words, once we have identified a local maximum, the two intervals in the Boolean lattice $[\emptyset, S]$ and $[S, V]$ can be ruled out as a possible improvement over S.
- Finding a local maximum is already hard (PLS-complete), but it is possible to find an approximate local maximum relatively efficiently.

Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \backslash S$ (i.e., local in a Hamming ball of radius 1).
- The following interesting result is true for any submodular function:

Lemma 14.3.2

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.

- In other words, once we have identified a local maximum, the two intervals in the Boolean lattice $[\emptyset, S]$ and $[S, V]$ can be ruled out as a possible improvement over S.
- Finding a local maximum is already hard (PLS-complete), but it is possible to find an approximate local maximum relatively efficiently.
- This is the approach that yields the $\left(\frac{1}{3}-\frac{\epsilon}{n}\right)$ approximation algorithm.

Linear time algorithm unconstrained non-monotone max

- Tight randomized tight $1 / 2$ approximation algorithm for unconstrained non-monotone non-negative submodular maximization.

Linear time algorithm unconstrained non-monotone max

- Tight randomized tight $1 / 2$ approximation algorithm for unconstrained non-monotone non-negative submodular maximization.
- Buchbinder, Feldman, Naor, Schwartz 2012.

Linear time algorithm unconstrained non-monotone max

- Tight randomized tight $1 / 2$ approximation algorithm for unconstrained non-monotone non-negative submodular maximization.
- Buchbinder, Feldman, Naor, Schwartz 2012. Recall $[a]_{+}=\max (a, 0)$.

Linear time algorithm unconstrained non-monotone max

- Tight randomized tight $1 / 2$ approximation algorithm for unconstrained non-monotone non-negative submodular maximization.
- Buchbinder, Feldman, Naor, Schwartz 2012. Recall $[a]_{+}=\max (a, 0)$.

Algorithm 5: Randomized Linear-time non-monotone submodular max
1 Set $L \leftarrow \emptyset ; U \leftarrow V \quad / *$ Lower L, upper U. Invariant: $L \subseteq U^{* /}$;
2 Order elements of $V=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ arbitrarily ;
3 for $i \leftarrow 0 \ldots|V|$ do
$a \leftarrow\left[f\left(v_{i} \mid L\right)\right]_{+} ; b \leftarrow\left[-f\left(U \mid U \backslash\left\{v_{i}\right\}\right)\right]_{+} ;$
if $a=b=0$ then $p \leftarrow 1 / 2$;
else $p \leftarrow a /(a+b) ; \quad=f\left(r_{i}\right) \cup\left(v_{i}\right)$
;
if Flip of coin with $\operatorname{Pr}($ heads $)=p$ draws heads then $L \leftarrow L \cup\left\{v_{i}\right\}$;
Otherwise /* if the coin drew tails, an event with prob. $1-p^{*} /$

13 return L (which is the same as U at this point)

- Each "sweep" of the algorithm is $O(n)$.
- Each "sweep" of the algorithm is $O(n)$.
- Running the algorithm $1 \times$ (with an arbitrary variable order) results in a $1 / 3$ approximation.

Linear time algorithm unconstrained non-monotone max

- Each "sweep" of the algorithm is $O(n)$.
- Running the algorithm $1 \times$ (with an arbitrary variable order) results in a $1 / 3$ approximation.
- The $1 / 2$ guarantee is in expected value (the expected solution has the $1 / 2$ guarantee).

Linear time algorithm unconstrained non-monotone max

- Each "sweep" of the algorithm is $O(n)$.
- Running the algorithm $1 \times$ (with an arbitrary variable order) results in a $1 / 3$ approximation.
- The $1 / 2$ guarantee is in expected value (the expected solution has the $1 / 2$ guarantee).
- In practice, run it multiple times, each with a different random permutation of the elements, and then take the cumulative best.

Linear time algorithm unconstrained non-monotone max

- Each "sweep" of the algorithm is $O(n)$.
- Running the algorithm $1 \times$ (with an arbitrary variable order) results in a $1 / 3$ approximation.
- The $1 / 2$ guarantee is in expected value (the expected solution has the $1 / 2$ guarantee).
- In practice, run it multiple times, each with a different random permutation of the elements, and then take the cumulative best.
- It may be possible to choose the random order smartly to get better results in practice.

More general still: multiple constraints different types

- In the past several years, there has been a plethora of papers on maximizing both monotone and non-monotone submodular functions under various combinations of one or more knapsack and/or matroid constraints.

More general still: multiple constraints different types

- In the past several years, there has been a plethora of papers on maximizing both monotone and non-monotone submodular functions under various combinations of one or more knapsack and/or matroid constraints.
- The approximation quality is usually some function of the number of matroids, and is often not a function of the number of knapsacks.

More general still: multiple constraints different types

- In the past several years, there has been a plethora of papers on maximizing both monotone and non-monotone submodular functions under various combinations of one or more knapsack and/or matroid constraints.
- The approximation quality is usually some function of the number of matroids, and is often not a function of the number of knapsacks.
- Often the computational costs of the algorithms are prohibitive (e.g., exponential in k) with large constants, so these algorithms might not scale.

More general still: multiple constraints different types

- In the past several years, there has been a plethora of papers on maximizing both monotone and non-monotone submodular functions under various combinations of one or more knapsack and/or matroid constraints.
- The approximation quality is usually some function of the number of matroids, and is often not a function of the number of knapsacks.
- Often the computational costs of the algorithms are prohibitive (e.g., exponential in k) with large constants, so these algorithms might not scale.
- On the other hand, these algorithms offer deep and interesting intuition into submodular functions, beyond what we have covered here.

Some results on submodular maximization

- As we've seen, we can get $1-1 / e$ for non-negative monotone submodular (polymatroid) functions with greedy algorithm under cardinality constraints, and this is tight.

Some results on submodular maximization

- As we've seen, we can get $1-1 / e$ for non-negative monotone submodular (polymatroid) functions with greedy algorithm under cardinality constraints, and this is tight.
- For general matroid, greedy reduces to $1 / 2$ approximation (as we've seen).

Some results on submodular maximization

- As we've seen, we can get $1-1 / e$ for non-negative monotone submodular (polymatroid) functions with greedy algorithm under cardinality constraints, and this is tight.
- For general matroid, greedy reduces to $1 / 2$ approximation (as we've seen).
- We can recover $1-1 / e$ approximation using the continuous greedy algorithm on the multilinear extension and then using pipage rounding to re-integerize the solution (see J. Vondrak's publications).

Some results on submodular maximization

- As we've seen, we can get $1-1 / e$ for non-negative monotone submodular (polymatroid) functions with greedy algorithm under cardinality constraints, and this is tight.
- For general matroid, greedy reduces to $1 / 2$ approximation (as we've seen).
- We can recover $1-1 / e$ approximation using the continuous greedy algorithm on the multilinear extension and then using pipage rounding to re-integerize the solution (see J. Vondrak's publications).
- More general constraints are possible too, as we see on the next table (for references, see Jan Vondrak's publications http://theory.stanford.edu/~jvondrak/).

Submodular Max Summary - From J. Vondrak

Monotone Maximization

Constraint	Approximation	Hardness	Technique
$\|S\| \leq k$	$1-1 / e$	$1-1 / e$	greedy
matroid	$1-1 / e$	$1-1 / e$	multilinear ext.
$O(1)$ knapsacks	$1-1 / e$	$1-1 / e$	multilinear ext.
k matroids	$k+\epsilon$	$k / \log k$	local search
k matroids and $O(1)$ knapsacks	$O(k)$	$k / \log k$	multilinear ext.

Nonmonotone Maximization

Constraint	Approximation	Hardness	Technique
Unconstrained	$1 / 2$	$1 / 2$	combinatorial
matroid	$1 / e$	0.48	multilinear ext.
$O(1)$ knapsacks	$1 / e$	0.49	multilinear ext.
k matroids	$k+O(1)$	$k / \log k$	local search
k matroids and $O(1)$ knapsacks	$O(k)$	$k / \log k$	multilinear ext.

$$
\underbrace{f(\hat{s}) \geq \alpha \cdot \overbrace{\substack{\text { mex } \\
\frac{1}{\alpha} f(s)}}^{\text {opt }} f(\hat{s}) \geq \text { ort }}_{\text {d.OrT }} \quad \begin{array}{ll}
\text { OpT } \\
1 / h=h & \alpha=1 / h
\end{array}
$$

Continuous Extensions of Discrete Set Functions

- Any function $f: 2^{V} \rightarrow \mathbb{R}$ (equivalently $f:\{0,1\}^{V} \rightarrow \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f}:[0,1]^{V} \rightarrow \mathbb{R}$.

Continuous Extensions of Discrete Set Functions

- Any function $f: 2^{V} \rightarrow \mathbb{R}$ (equivalently $f:\{0,1\}_{\tilde{f}}^{V} \rightarrow \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f}:[0,1]^{V} \rightarrow \mathbb{R}$.
- This may be tight (i.e., $\tilde{f}\left(\mathbf{1}_{A}\right)=f(A)$ for all A). I.e., the extension \tilde{f} coincides with f at the hypercube vertices.

Continuous Extensions of Discrete Set Functions

- Any function $f: 2^{V} \rightarrow \mathbb{R}$ (equivalently $f:\{0,1\}^{V} \rightarrow \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f}:[0,1]^{V} \rightarrow \mathbb{R}$.
- This may be tight (i.e., $\tilde{f}\left(\mathbf{1}_{A}\right)=f(A)$ for all A). I.e., the extension \tilde{f} coincides with f at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the n-D hypercube $\{0,1\}^{n}$ has a variety of both convex and concave extensions tight at the vertices (Crama \& Hammer'11). Example $n=1$,

Concave Extensions
$\tilde{f}:[0,1] \rightarrow \mathbb{R}$

Discrete Function
$f:\{0,1\}^{V} \rightarrow \mathbb{R}$

Convex Extensions
$\tilde{f}:[0,1] \rightarrow \mathbb{R}$

Continuous Extensions of Discrete Set Functions

- Any function $f: 2^{V} \rightarrow \mathbb{R}$ (equivalently $f:\{0,1\}^{V} \rightarrow \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f}:[0,1]^{V} \rightarrow \mathbb{R}$.
- This may be tight (i.e., $\tilde{f}\left(\mathbf{1}_{A}\right)=f(A)$ for all A). I.e., the extension \tilde{f} coincides with f at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the n-D hypercube $\{0,1\}^{n}$ has a variety of both convex and concave extensions tight at the vertices (Crama \& Hammer'11). Example $n=1$,

Concave Extensions
$\tilde{f}:[0,1] \rightarrow \mathbb{R}$

Discrete Function
$f:\{0,1\}^{V} \rightarrow \mathbb{R}$

Convex Extensions
$\tilde{f}:[0,1] \rightarrow \mathbb{R}$

- Since there are an exponential number of vertices $\{0,1\}^{n}$, important questions regarding such extensions is:

Continuous Extensions of Discrete Set Functions

- Any function $f: 2^{V} \rightarrow \mathbb{R}$ (equivalently $f:\{0,1\}^{V} \rightarrow \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f}:[0,1]^{V} \rightarrow \mathbb{R}$.
- This may be tight (i.e., $\tilde{f}\left(\mathbf{1}_{A}\right)=f(A)$ for all A). I.e., the extension \tilde{f} coincides with f at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the n - D hypercube $\{0,1\}^{n}$ has a variety of both convex and concave extensions tight at the vertices (Crama \& Hammer'11). Example $n=1$,

Concave Extensions
$\tilde{f}:[0,1] \rightarrow \mathbb{R}$

Discrete Function
$f:\{0,1\}^{V} \rightarrow \mathbb{R}$

Convex Extensions
$\tilde{f}:[0,1] \rightarrow \mathbb{R}$

- Since there are an exponential number of vertices $\{0,1\}^{n}$, important questions regarding such extensions is:
(1) When are they computationally feasible to obtain or estimate?

Continuous Extensions of Discrete Set Functions

- Any function $f: 2^{V} \rightarrow \mathbb{R}$ (equivalently $f:\{0,1\}^{V} \rightarrow \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f}:[0,1]^{V} \rightarrow \mathbb{R}$.
- This may be tight (i.e., $\tilde{f}\left(\mathbf{1}_{A}\right)=f(A)$ for all A). I.e., the extension \tilde{f} coincides with f at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the n - D hypercube $\{0,1\}^{n}$ has a variety of both convex and concave extensions tight at the vertices (Crama \& Hammer'11). Example $n=1$,

Concave Extensions
$\tilde{f}:[0,1] \rightarrow \mathbb{R}$

Discrete Function
$f:\{0,1\}^{V} \rightarrow \mathbb{R}$

Convex Extensions
$\tilde{f}:[0,1] \rightarrow \mathbb{R}$

- Since there are an exponential number of vertices $\{0,1\}^{n}$, important questions regarding such extensions is:
(1) When are they computationally feasible to obtain or estimate?
(2) When do they have nice mathematical properties?

Continuous Extensions of Discrete Set Functions

- Any function $f: 2^{V} \rightarrow \mathbb{R}$ (equivalently $f:\{0,1\}^{V} \rightarrow \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f}:[0,1]^{V} \rightarrow \mathbb{R}$.
- This may be tight (i.e., $\tilde{f}\left(\mathbf{1}_{A}\right)=f(A)$ for all A). I.e., the extension \tilde{f} coincides with f at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the n - D hypercube $\{0,1\}^{n}$ has a variety of both convex and concave extensions tight at the vertices (Crama \& Hammer'11). Example $n=1$,

Concave Extensions
$\tilde{f}:[0,1] \rightarrow \mathbb{R}$

Discrete Function
$f:\{0,1\}^{V} \rightarrow \mathbb{R}$

Convex Extensions
$\tilde{f}:[0,1] \rightarrow \mathbb{R}$

- Since there are an exponential number of vertices $\{0,1\}^{n}$, important questions regarding such extensions is:
(1) When are they computationally feasible to obtain or estimate?
(2) When do they have nice mathematical properties?
(3) When are they useful for something practical?

Def: Convex Envelope of a function

- Given any function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$, define new function $\check{h}: \mathbf{R}^{n} \rightarrow \mathbb{R}$ via:

$$
\begin{equation*}
\check{h}(x)=\sup \left\{g(x): g \text { is convex } \& g(y) \leq h(y), \forall y \in \mathbb{R}^{n}\right\} \tag{14.7}
\end{equation*}
$$

Def: Convex Envelope of a function

- Given any function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$, define new function $\check{h}: \mathbf{R}^{n} \rightarrow \mathbb{R}$ via:

$$
\begin{equation*}
\check{h}(x)=\sup \left\{g(x): g \text { is convex } \& g(y) \leq h(y), \forall y \in \mathbb{R}^{n}\right\} \tag{14.7}
\end{equation*}
$$

- I.e., (1) $h(x)$ is convex, (2) $\overparen{h}(x) \leq h(x), \forall x$, and (3) if $g(x)$ is any convex function having the property that $g(x) \leq h(x), \forall x$, then $g(x) \leq \check{h}(x)$.

Def: Convex Envelope of a function

- Given any function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$, define new function $\check{h}: \mathbf{R}^{n} \rightarrow \mathbb{R}$ via:

$$
\begin{equation*}
\check{h}(x)=\sup \left\{g(x): g \text { is convex } \& g(y) \leq h(y), \forall y \in \mathbb{R}^{n}\right\} \tag{14.7}
\end{equation*}
$$

- I.e., (1) $\check{h}(x)$ is convex, (2) $\check{h}(x) \leq h(x), \forall x$, and (3) if $g(x)$ is any convex function having the property that $g(x) \leq h(x), \forall x$, then $g(x) \leq \breve{h}(x)$.
- Alternatively,

$$
\begin{equation*}
\check{h}(x)=\inf \{t:(x, t) \in \text { convexhull }(\text { epigraph }(h))\} \tag{14.8}
\end{equation*}
$$

Convex Closure of Discrete Set Functions

- Given set function $f: 2^{V} \rightarrow \mathbb{R}$, an arbitrary (i.e., not necessarily submodular nor supermodular) set function, define a function $\check{f}:[0,1]^{V} \rightarrow \mathbb{R}$, as

$$
\begin{equation*}
\check{f}(x)=\min _{p \in \triangle^{n}(x)} \sum_{S \subseteq V} p_{S} f(S) \tag{14.9}
\end{equation*}
$$

where $\triangle^{n}(x)=$

$$
\left\{p \in \mathbb{R}^{2^{n}}: \sum_{S \subseteq V} p_{S}=1, p_{S} \geq 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_{S} \mathbf{1}_{S}=x\right\}
$$

Convex Closure of Discrete Set Functions

- Given set function $f: 2^{V} \rightarrow \mathbb{R}$, an arbitrary (i.e., not necessarily submodular nor supermodular) set function, define a function $\check{f}:[0,1]^{V} \rightarrow \mathbb{R}$, as

$$
\begin{equation*}
\check{f}(x)=\min _{p \in \triangle^{n}(x)} \sum_{S \subseteq V} p_{S} f(S) \tag{14.9}
\end{equation*}
$$

where $\triangle^{n}(x)=$

$$
\left\{p \in \mathbb{R}^{2^{n}}: \sum_{S \subseteq V} p_{S}=1, p_{S} \geq 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_{S} \mathbf{1}_{S}=x\right\}
$$

- Hence, $\triangle^{n}(x)$ is the set of all probability distributions over the 2^{n} vertices of the hypercube, and where the expected value of the characteristic vectors of those points is equal to x, i.e., for any $p \in \triangle^{n}(x), E_{S \sim p}\left(\mathbf{1}_{S}\right)=\sum_{S \subseteq V} p_{S} \mathbf{1}_{S}=x$.

Convex Closure of Discrete Set Functions

- Given set function $f: 2^{V} \rightarrow \mathbb{R}$, an arbitrary (i.e., not necessarily submodular nor supermodular) set function, define a function $\check{f}:[0,1]^{V} \rightarrow \mathbb{R}$, as

$$
\begin{equation*}
\check{f}(x)=\min _{p \in \triangle^{n}(x)} \sum_{S \subseteq V} p_{S} f(S) \tag{14.9}
\end{equation*}
$$

where $\triangle^{n}(x)=$

$$
\left\{p \in \mathbb{R}^{2^{n}}: \sum_{S \subseteq V} p_{S}=1, p_{S} \geq 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_{S} \mathbf{1}_{S}=x\right\}
$$

- Hence, $\triangle^{n}(x)$ is the set of all probability distributions over the 2^{n} vertices of the hypercube, and where the expected value of the characteristic vectors of those points is equal to x, i.e., for any $p \in \triangle^{n}(x), E_{S \sim p}\left(\mathbf{1}_{S}\right)=\sum_{S \subseteq V} p_{S} \mathbf{1}_{S}=x$.
- Hence, $\check{f}(x)=\min _{p \in \Delta^{n}(x)} E_{S \sim p}[f(S)]$

Convex Closure of Discrete Set Functions

- Given set function $f: 2^{V} \rightarrow \mathbb{R}$, an arbitrary (i.e., not necessarily submodular nor supermodular) set function, define a function $\check{f}:[0,1]^{V} \rightarrow \mathbb{R}$, as

$$
\begin{equation*}
\check{f}(x)=\min _{p \in \triangle^{n}(x)} \sum_{S \subseteq V} p_{S} f(S) \tag{14.9}
\end{equation*}
$$

where $\triangle^{n}(x)=$

$$
\left\{p \in \mathbb{R}^{2^{n}}: \sum_{S \subseteq V} p_{S}=1, p_{S} \geq 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_{S} \mathbf{1}_{S}=x\right\}
$$

- Hence, $\triangle^{n}(x)$ is the set of all probability distributions over the 2^{n} vertices of the hypercube, and where the expected value of the characteristic vectors of those points is equal to x, i.e., for any $p \in \triangle^{n}(x), E_{S \sim p}\left(\mathbf{1}_{S}\right)=\sum_{S \subseteq V} p_{S} \mathbf{1}_{S}=x$.
- Hence, $\check{f}(x)=\min _{p \in \Delta^{n}(x)} E_{S \sim p}[f(S)]$
- Note, this is not (necessarily) the Lovász extension, rather this is a convex extension.

Convex Closure of Discrete Set Functions

- Given, $\check{f}(x)=\min _{p \in \triangle^{n}(x)} E_{S \sim p}[f(S)]$, there are several things we'd like to show:

Convex Closure of Discrete Set Functions

- Given, $\check{f}(x)=\min _{p \in \triangle^{n}(x)} E_{S \sim p}[f(S)]$, there are several things we'd like to show:
(1) That \check{f} is tight (i.e., $\forall S \subseteq V$, we have $\check{f}\left(\mathbf{1}_{S}\right)=f(S)$).

Convex Closure of Discrete Set Functions

- Given, $\check{f}(x)=\min _{p \in \triangle^{n}(x)} E_{S \sim p}[f(S)]$, there are several things we'd like to show:
(1) That \check{f} is tight (i.e., $\forall S \subseteq V$, we have $\check{f}\left(\mathbf{1}_{S}\right)=f(S)$).
(2) That \check{f} is convex (and consequently, that any arbitrary set function has a tight convex extension).

Convex Closure of Discrete Set Functions

- Given, $\check{f}(x)=\min _{p \in \triangle^{n}(x)} E_{S \sim p}[f(S)]$, there are several things we'd like to show:
(1) That \check{f} is tight (i.e., $\forall S \subseteq V$, we have $\check{f}\left(\mathbf{1}_{S}\right)=f(S)$).
(2) That \check{f} is convex (and consequently, that any arbitrary set function has a tight convex extension).
(3) That the convex closure \check{f} is the convex envelope of the function defined only on the hypercube vertices, and that takes value $f(S)$ at $\mathbf{1}_{S}$.

Convex Closure of Discrete Set Functions

- Given, $\check{f}(x)=\min _{p \in \triangle^{n}(x)} E_{S \sim p}[f(S)]$, there are several things we'd like to show:
(1) That \check{f} is tight (i.e., $\forall S \subseteq V$, we have $\check{f}\left(\mathbf{1}_{S}\right)=f(S)$).
(2) That \check{f} is convex (and consequently, that any arbitrary set function has a tight convex extension).
(3) That the convex closure \check{f} is the convex envelope of the function defined only on the hypercube vertices, and that takes value $f(S)$ at $\mathbf{1}_{S}$.
(9) The definition of the Lovász extension of a set function, and that \check{f} is the Lovász extension iff f is submodular.

Tightness of Convex Closure

Lemma 14.4.1
$\forall A \subseteq V$, we have $\check{f}\left(\mathbf{1}_{A}\right)=f(A)$.

Proof.

- Define p^{x} to be an achiving argmin in $\check{f}(x)=\min _{p \in \Delta^{n}(x)} E_{S \sim p}[f(S)]$.

Tightness of Convex Closure

Lemma 14.4.1

$\forall A \subseteq V$, we have $\check{f}\left(\mathbf{1}_{A}\right)=f(A)$.

Proof.

- Define p^{x} to be an achiving argmin in $\check{f}(x)=\min _{p \in \Delta^{n}(x)} E_{S \sim p}[f(S)]$.
- Take an arbitrary A, so that $\mathbf{1}_{A}=\sum_{S \subseteq V} p_{S}^{1_{A}} \mathbf{1}_{S}=\mathbf{1}_{A}$.

Tightness of Convex Closure

Lemma 14.4.1

$\forall A \subseteq V$, we have $\check{f}\left(\mathbf{1}_{A}\right)=f(A)$.

Proof.

- Define p^{x} to be an achiving argmin in $\check{f}(x)=\min _{p \in \Delta^{n}(x)} E_{S \sim p}[f(S)]$.
- Take an arbitrary A, so that $\mathbf{1}_{A}=\sum_{S \subseteq V} p_{S}^{\mathbf{1}_{A}} \mathbf{1}_{S}=\mathbf{1}_{A}$.
- Suppose $\exists S^{\prime}$ with $S^{\prime} \backslash A \neq 0$ having $p_{S^{\prime}}^{1_{A}}>0$. This would mean, for any $v \in S^{\prime} \backslash A$, that $\left(\sum_{S} p_{S}^{1_{A}} \mathbf{1}_{S}\right)(v)>0$, a contradiction.

Tightness of Convex Closure

Lemma 14.4.1

$\forall A \subseteq V$, we have $\check{f}\left(\mathbf{1}_{A}\right)=f(A)$.

Proof.

- Define p^{x} to be an achiving argmin in $\check{f}(x)=\min _{p \in \Delta^{n}(x)} E_{S \sim p}[f(S)]$.
- Take an arbitrary A, so that $\mathbf{1}_{A}=\sum_{S \subseteq V} p_{S}^{\mathbf{1}_{A}} \mathbf{1}_{S}=\mathbf{1}_{A}$.
- Suppose $\exists S^{\prime}$ with $S^{\prime} \backslash A \neq 0$ having $p_{S^{\prime}}^{1_{A}}>0$. This would mean, for any $v \in S^{\prime} \backslash A$, that $\left(\sum_{S} p_{S}^{1_{A}} \mathbf{1}_{S}\right)(v)>0$, a contradiction.
- Suppose $\exists S^{\prime}$ s.t. $A \backslash S^{\prime} \neq \emptyset$ with $p_{S^{\prime}}^{\mathbf{1}_{A}}>0$.

Tightness of Convex Closure

Lemma 14.4.1

$\forall A \subseteq V$, we have $\check{f}\left(\mathbf{1}_{A}\right)=f(A)$.

Proof.

- Define p^{x} to be an achiving argmin in $\breve{f}(x)=\min _{p \in \triangle^{n}(x)} E_{S \sim p}[f(S)]$.
- Take an arbitrary A, so that $\mathbf{1}_{A}=\sum_{S \subseteq V} p_{S}^{\mathbf{1}_{A}} \mathbf{1}_{S}=\mathbf{1}_{A}$.
- Suppose $\exists S^{\prime}$ with $S^{\prime} \backslash A \neq 0$ having $p_{S^{\prime}}^{\mathbf{1}_{A}}>0$. This would mean, for any $v \in S^{\prime} \backslash A$, that $\left(\sum_{S} p_{S}^{1_{A}} \mathbf{1}_{S}\right)(v)>0$, a contradiction.
- Suppose $\exists S^{\prime}$ s.t. $A \backslash S^{\prime} \neq \emptyset$ with $p_{S^{\prime}}^{\mathbf{1}_{A}}>0$.
- Then, for any $v \in A \backslash S^{\prime}$, consider below leading to a contradiction

$$
\underbrace{p_{S^{\prime}} \mathbf{1}_{S^{\prime}}}_{>0}+\underbrace{\sum_{\substack{S \subseteq A \\ S \neq S^{\prime}}} p_{S} \mathbf{1}_{S}}_{\text {can't sum to } 1} \Rightarrow\left(\sum_{\substack{S \subseteq A \\ S \neq S^{\prime}}} p_{s} \mathbf{1}_{S}\right)(v)<1
$$

I.e., $v \in A$ so it must get value 1 , but since $v \notin S^{\prime}, v$ is deficient.

Convexity of the Convex Closure

Lemma 14.4.2

$\check{f}(x)=\min _{p \in \triangle^{n}(x)} E_{S \sim p}[f(S)]$ is convex in $[0,1]^{V}$.

Proof.

- Let $x, y \in[0,1]^{V}, 0 \leq \lambda \leq 1$, and $z=\lambda x+(1-\lambda) y$, then

$$
\begin{align*}
\lambda \check{f}(x)+(1-\lambda) \check{f}(y) & =\lambda \sum_{S} p_{S}^{x} f(S)+(1-\lambda) \sum_{S} p_{S}^{y} f(S) \\
& =\sum_{S}\left(\lambda p_{S}^{x}+(1-\lambda) p_{S}^{y}\right) f(S) \tag{14.12}\\
& =\sum_{S} p_{S}^{z^{\prime}} f(S) \geq \min _{p \in \Delta^{n}(z)} E_{S \sim p}[f(S)] \tag{14.13}\\
& =\check{f}(z)=\check{f}(\lambda x+(1-\lambda) y) \tag{14.14}
\end{align*}
$$

Convexity of the Convex Closure

Lemma 14.4.2

$\check{f}(x)=\min _{p \in \Delta^{n}(x)} E_{S \sim p}[f(S)]$ is convex in $[0,1]^{V}$.

Proof.

- Let $x, y \in[0,1]^{V}, 0 \leq \lambda \leq 1$, and $z=\lambda x+(1-\lambda) y$, then

$$
\begin{align*}
\lambda \check{f}(x)+(1-\lambda) \check{f}(y) & =\lambda \sum_{S} p_{S}^{x} f(S)+(1-\lambda) \sum_{S} p_{S}^{y} f(S) \tag{14.11}\\
& =\sum_{S}\left(\lambda p_{S}^{x}+(1-\lambda) p_{S}^{y}\right) f(S) \tag{14.12}\\
& =\sum_{S} p_{S}^{z^{\prime}} f(S) \geq \min _{p \in \Delta^{n}(z)} E_{S \sim p}[f(S)] \tag{14.13}\\
& =\check{f}(z)=\check{f}(\lambda x+(1-\lambda) y) \tag{14.14}
\end{align*}
$$

- Note that $p_{S}^{z^{\prime}}=\lambda p_{S}^{x}+(1-\lambda) p_{S}^{y}$ and is feasible in the min since $\sum_{S} p_{S}^{z^{\prime}}=1, p_{S}^{z^{\prime}} \geq 0$ and $\sum_{S} p_{S}^{z^{\prime}} \mathbf{1}_{S}=z$.

Def: Convex Envelope of a function

- Given any function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$, define new function $\check{h}: \mathbf{R}^{n} \rightarrow \mathbb{R}$ via:

$$
\begin{equation*}
\check{h}(x)=\sup \left\{g(x): g \text { is convex } \& g(y) \leq h(y), \forall y \in \mathbb{R}^{n}\right\} \tag{14.7}
\end{equation*}
$$

Convex Closure is the Convex Envelope

Lemma 14.4.3

$\check{f}(x)=\min _{p \in \triangle^{n}(x)} E_{S \sim p}[f(S)]$ is the convex envelope.

Proof.

- Suppose \exists a convex \bar{f} with $\bar{f}\left(\mathbf{1}_{A}\right)=f(A)=\check{f}\left(\mathbf{1}_{A}\right), \forall A \subseteq V$ and $\exists x \in[0,1]^{V}$ s.t. $\bar{f}(x)>\check{f}(x)$.
- Define p^{x} to be an achiving argmin in $\check{f}(x)=\min _{p \in \triangle^{n}(x)} E_{S \sim p}[f(S)]$. Hence, we have $x=\sum_{S} p_{S}^{x} \mathbf{1}_{S}$. Thus

$$
\begin{align*}
\check{f}(x) & =\sum_{S} p_{S}^{x} f(S)=\sum_{S} p_{S}^{x} \bar{f}\left(\mathbf{1}_{S}\right) \tag{14.15}\\
& <\bar{f}(x)=\bar{f}\left(\sum_{S} p_{S}^{x} \mathbf{1}_{S}\right) \tag{14.16}
\end{align*}
$$

but this contradicts the convexity of \bar{f}.

Polymatroid with labeled edge lengths

- Recall
$f(e \mid A)=f(A+e)-f(A)$
- Notice how
submodularity, $f(e \mid B) \leq f(e \mid A)$ for $A \subseteq B$, defines the shape of the polytope.
- In fact, we have strictness here
$f(e \mid B)<f(e \mid A)$ for $A \subset B$.
- Also, consider how the greedy algorithm proceeds along the edges
 of the polytope.

Polymatroid with labeled edge lengths

- Recall
$f(e \mid A)=f(A+e)-f(A)$
- Notice how submodularity, $f(e \mid B) \leq f(e \mid A)$ for $A \subseteq B$, defines the shape of the polytope.
- In fact, we have strictness here $f(e \mid B)<f(e \mid A)$ for $A \subset B$.
- Also, consider how the greedy algorithm proceeds along the edges of the polytope.

Optimization over P_{f}

- Consider the following optimization. Given $w \in \mathbb{R}^{E}$,

$\operatorname{maximize}$	$w^{\top} x$
subject to	$x \in P_{f}$

(14.17b)

Optimization over P_{f}

- Consider the following optimization. Given $w \in \mathbb{R}^{E}$,

$$
\begin{array}{ll}
\operatorname{maximize} & w^{\top} x \\
\text { subject to } & x \in P_{f} \tag{14.17b}
\end{array}
$$

- Since P_{f} is down closed, if $\exists e \in E$ with $w(e)<0$ then the solution above is unboundedly large.

Optimization over P_{f}

- Consider the following optimization. Given $w \in \mathbb{R}^{E}$,

$$
\begin{array}{ll}
\operatorname{maximize} & w^{\top} x \\
\text { subject to } & x \in P_{f} \tag{14.17b}
\end{array}
$$

- Since P_{f} is down closed, if $\exists e \in E$ with $w(e)<0$ then the solution above is unboundedly large. Hence, assume $w \in \mathbb{R}_{+}^{E}$.

Optimization over P_{f}

- Consider the following optimization. Given $w \in \mathbb{R}^{E}$,

$$
\begin{array}{ll}
\operatorname{maximize} & w^{\top} x \\
\text { subject to } & x \in P_{f} \tag{14.17b}
\end{array}
$$

- Since P_{f} is down closed, if $\exists e \in E$ with $w(e)<0$ then the solution above is unboundedly large. Hence, assume $w \in \mathbb{R}_{+}^{E}$.
- Due to Theorem ??, any $x \in P_{f}$ with $x \notin B_{f}$ is dominated by $x \leq y \in B_{f}$ which can only increase $w^{\top} x \leq w^{\top} y$ when $w \in \mathbb{R}_{+}^{E}$.

Optimization over P_{f}

- Consider the following optimization. Given $w \in \mathbb{R}^{E}$,

$$
\begin{array}{ll}
\operatorname{maximize} & w^{\top} x \\
\text { subject to } & x \in P_{f} \tag{14.17b}
\end{array}
$$

- Since P_{f} is down closed, if $\exists e \in E$ with $w(e)<0$ then the solution above is unboundedly large. Hence, assume $w \in \mathbb{R}_{+}^{E}$.
- Due to Theorem ??, any $x \in P_{f}$ with $x \notin B_{f}$ is dominated by $x \leq y \in B_{f}$ which can only increase $w^{\top} x \leq w^{\top} y$ when $w \in \mathbb{R}_{+}^{E}$.
- Hence, the problem is equivalent to: given $w \in \mathbb{R}_{+}^{E}$,

$$
\begin{array}{ll}
\operatorname{maximize} & w^{\top} x \\
\text { subject to } & x \in B_{f} \tag{14.18b}
\end{array}
$$

Optimization over P_{f}

- Consider the following optimization. Given $w \in \mathbb{R}^{E}$,

$$
\begin{array}{ll}
\operatorname{maximize} & w^{\top} x \\
\text { subject to } & x \in P_{f} \tag{14.17b}
\end{array}
$$

- Since P_{f} is down closed, if $\exists e \in E$ with $w(e)<0$ then the solution above is unboundedly large. Hence, assume $w \in \mathbb{R}_{+}^{E}$.
- Due to Theorem ??, any $x \in P_{f}$ with $x \notin B_{f}$ is dominated by $x \leq y \in B_{f}$ which can only increase $w^{\top} x \leq w^{\top} y$ when $w \in \mathbb{R}_{+}^{E}$.
- Hence, the problem is equivalent to: given $w \in \mathbb{R}_{+}^{E}$,

$$
\begin{array}{ll}
\operatorname{maximize} & w^{\top} x \\
\text { subject to } & x \in B_{f} \tag{14.18b}
\end{array}
$$

- Moreover, we can have $w \in \mathbb{R}^{E}$ if we insist on $x \in B_{f}$.

A continuous extension of f

- Consider again optimization problem. Given $w \in \mathbb{R}^{E}$,

$\operatorname{maximize}$	$w^{\top} x$
subject to	$x \in B_{f}$

(14.19a) (14.19b)

A continuous extension of f

- Consider again optimization problem. Given $w \in \mathbb{R}^{E}$,

$$
\begin{array}{ll}
\operatorname{maximize} & w^{\top} x \tag{14.19a}\\
\text { subject to } & x \in B_{f}
\end{array}
$$

- We may consider this optimization problem a function $\breve{f}: \mathbb{R}^{E} \rightarrow \mathbb{R}$ of $w \in \mathbb{R}^{E}$, defined as:

$$
\begin{equation*}
\breve{f}(w)=\max \left(w x: x \in B_{f}\right) \tag{14.20}
\end{equation*}
$$

A continuous extension of f

- Consider again optimization problem. Given $w \in \mathbb{R}^{E}$,

$$
\begin{array}{ll}
\operatorname{maximize} & w^{\top} x \\
\text { subject to } & x \in B_{f} \tag{14.19b}
\end{array}
$$

- We may consider this optimization problem a function $\breve{f}: \mathbb{R}^{E} \rightarrow \mathbb{R}$ of $w \in \mathbb{R}^{E}$, defined as:

$$
\begin{equation*}
\breve{f}(w)=\max \left(w x: x \in B_{f}\right) \tag{14.20}
\end{equation*}
$$

- Hence, for any w, from the solution to the above theorem (as we have seen), we can compute the value of this function using Edmond's greedy algorithm.

Edmond's Theorem: The Greedy Algorithm

- Edmonds proved that the solution to $\breve{f}(w)=\max \left(w x: x \in B_{f}\right)$ is solved by the greedy algorithm iff f is submodular.
- In particular, sort choose element order $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ based on decreasing w,so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- Define the chain with $i^{\text {th }}$ element $E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$.
- Define a vector $x^{*} \in \mathbb{R}^{V}$ where element e_{i} has value $x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)$ for all $i \in V$.
- Then $\left\langle w, x^{*}\right\rangle=\max \left(w x: x \in B_{f}\right)$

Theorem 14.5.1 (Edmonds)

If $f: 2^{E} \rightarrow \mathbb{R}_{+}$is given, and B is a polytope in \mathbb{R}_{+}^{E} of the form $B=\left\{x \in \mathbb{R}_{+}^{E}: x(A) \leq f(A), \forall A \subseteq E, x(E)=f(E)\right\}$, then the greedy solution to the problem $\max \left(w^{\top} x: x \in P\right)$ is $\forall w$ optimum iff f is monotone non-decreasing submodular (i.e., iff P is a polymatroid).

A continuous extension of submodular f

- That is, given a submodular function f, a $w \in \mathbb{R}^{E}$, choose element order $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ based on decreasing w,so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.

A continuous extension of submodular f

- That is, given a submodular function f, a $w \in \mathbb{R}^{E}$, choose element order $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ based on decreasing w,so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- Define the chain with $i^{\text {th }}$ element $E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$, we have

$$
\breve{f}(w)
$$

A continuous extension of submodular f

- That is, given a submodular function f, a $w \in \mathbb{R}^{E}$, choose element order $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ based on decreasing w,so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- Define the chain with $i^{\text {th }}$ element $E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$, we have

$$
\begin{equation*}
\breve{f}(w)=\max \left(w x: x \in B_{f}\right) \tag{14.21}
\end{equation*}
$$

A continuous extension of submodular f

- That is, given a submodular function f, a $w \in \mathbb{R}^{E}$, choose element order $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ based on decreasing w,so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- Define the chain with $i^{\text {th }}$ element $E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$, we have

$$
\begin{align*}
\breve{f}(w) & =\max \left(w x: x \in B_{f}\right) \tag{14.21}\\
& =\sum_{i=1}^{m} w\left(e_{i}\right) f\left(e_{i} \mid E_{i-1}\right)=\sum_{i=1}^{m} w\left(e_{i}\right) x\left(e_{i}\right) \tag{14.22}
\end{align*}
$$

A continuous extension of submodular f

- That is, given a submodular function f, a $w \in \mathbb{R}^{E}$, choose element order $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ based on decreasing w,so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- Define the chain with $i^{\text {th }}$ element $E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$, we have

$$
\begin{align*}
\breve{f}(w) & =\max \left(w x: x \in B_{f}\right) \tag{14.21}\\
& =\sum_{i=1}^{m} w\left(e_{i}\right) f\left(e_{i} \mid E_{i-1}\right)=\sum_{i=1}^{m} w\left(e_{i}\right) x\left(e_{i}\right) \tag{14.22}\\
& =\sum_{i=1}^{m} w\left(e_{i}\right)\left(f\left(E_{i}\right)-f\left(E_{i-1}\right)\right) \tag{14.23}
\end{align*}
$$

A continuous extension of submodular f

- That is, given a submodular function f, a $w \in \mathbb{R}^{E}$, choose element order $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ based on decreasing w,so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- Define the chain with $i^{\text {th }}$ element $E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$, we have

$$
\begin{align*}
\breve{f}(w) & =\max \left(w x: x \in B_{f}\right) \tag{14.21}\\
& =\sum_{i=1}^{m} w\left(e_{i}\right) f\left(e_{i} \mid E_{i-1}\right)=\sum_{i=1}^{m} w\left(e_{i}\right) x\left(e_{i}\right) \tag{14.22}\\
& =\sum_{i=1}^{m} w\left(e_{i}\right)\left(f\left(E_{i}\right)-f\left(E_{i-1}\right)\right) \tag{14.23}\\
& =w\left(e_{m}\right) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right) f\left(E_{i}\right) \tag{14.24}
\end{align*}
$$

A continuous extension of submodular f

- That is, given a submodular function f, a $w \in \mathbb{R}^{E}$, choose element order $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ based on decreasing w,so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- Define the chain with $i^{\text {th }}$ element $E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$, we have

$$
\begin{align*}
\breve{f}(w) & =\max \left(w x: x \in B_{f}\right) \tag{14.21}\\
& =\sum_{i=1}^{m} w\left(e_{i}\right) f\left(e_{i} \mid E_{i-1}\right)=\sum_{i=1}^{m} w\left(e_{i}\right) x\left(e_{i}\right) \tag{14.22}\\
& =\sum_{i=1}^{m} w\left(e_{i}\right)\left(f\left(E_{i}\right)-f\left(E_{i-1}\right)\right) \tag{14.23}\\
& =w\left(e_{m}\right) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right) f\left(E_{i}\right) \tag{14.24}
\end{align*}
$$

- We say that $\emptyset \triangleq E_{0} \subset E_{1} \subset E_{2} \subset \cdots \subset E_{m}=E$ forms a chain based on w.

A continuous extension of submodular f

- Definition of the continuous extension, once again, for reference:

$$
\begin{equation*}
\breve{f}(w)=\max \left(w x: x \in B_{f}\right) \tag{14.25}
\end{equation*}
$$

A continuous extension of submodular f

- Definition of the continuous extension, once again, for reference:

$$
\begin{equation*}
\breve{f}(w)=\max \left(w x: x \in B_{f}\right) \tag{14.25}
\end{equation*}
$$

- Therefore, if f is a submodular function, we can write

$$
\breve{f}(w)
$$

A continuous extension of submodular f

- Definition of the continuous extension, once again, for reference:

$$
\begin{equation*}
\breve{f}(w)=\max \left(w x: x \in B_{f}\right) \tag{14.25}
\end{equation*}
$$

- Therefore, if f is a submodular function, we can write

$$
\begin{equation*}
\breve{f}(w)=w\left(e_{m}\right) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right) f\left(E_{i}\right) \tag{14.26}
\end{equation*}
$$

A continuous extension of submodular f

- Definition of the continuous extension, once again, for reference:

$$
\begin{equation*}
\breve{f}(w)=\max \left(w x: x \in B_{f}\right) \tag{14.25}
\end{equation*}
$$

- Therefore, if f is a submodular function, we can write

$$
\begin{align*}
\breve{f}(w) & =w\left(e_{m}\right) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right) f\left(E_{i}\right) \tag{14.26}\\
& =\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.27}
\end{align*}
$$

A continuous extension of submodular f

- Definition of the continuous extension, once again, for reference:

$$
\begin{equation*}
\breve{f}(w)=\max \left(w x: x \in B_{f}\right) \tag{14.25}
\end{equation*}
$$

- Therefore, if f is a submodular function, we can write

$$
\begin{align*}
\breve{f}(w) & =w\left(e_{m}\right) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right) f\left(E_{i}\right) \tag{14.26}\\
& =\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.27}
\end{align*}
$$

where $\lambda_{m}=w\left(e_{m}\right)$ and otherwise $\lambda_{i}=w\left(e_{i}\right)-w\left(e_{i+1}\right)$, where the elements are sorted descending according to w as before.

A continuous extension of submodular f

- Definition of the continuous extension, once again, for reference:

$$
\begin{equation*}
\breve{f}(w)=\max \left(w x: x \in B_{f}\right) \tag{14.25}
\end{equation*}
$$

- Therefore, if f is a submodular function, we can write

$$
\begin{align*}
\breve{f}(w) & =w\left(e_{m}\right) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right) f\left(E_{i}\right) \tag{14.26}\\
& =\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.27}
\end{align*}
$$

where $\lambda_{m}=w\left(e_{m}\right)$ and otherwise $\lambda_{i}=w\left(e_{i}\right)-w\left(e_{i+1}\right)$, where the elements are sorted descending according to w as before.

- Convex analysis $\Rightarrow \breve{f}(w)=\max (w x: x \in P)$ is always convex in w for any set $P \subseteq R^{E}$, since a maximum of a set of linear functions (true even when f is not submodular or P is not itself a convex set).

An extension of f

- Recall, for any such $w \in \mathbb{R}^{E}$, we have

$$
\begin{align*}
\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right) & =\underbrace{\left(w_{1}-w_{2}\right)}_{\lambda_{1}}\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)+\underbrace{\left(w_{2}-w_{3}\right)}_{\lambda_{2}}\left(\begin{array}{c}
1 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)+ \\
& \cdots+\underbrace{\left(w_{n-1}-w_{n}\right)}_{\lambda_{m-1}}\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
0
\end{array}\right)+\underbrace{\left(w_{m}\right)}_{\lambda_{m}}\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
1
\end{array}\right) \tag{14.28}
\end{align*}
$$

An extension of f

- Recall, for any such $w \in \mathbb{R}^{E}$, we have

$$
\begin{align*}
\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right) & =\underbrace{\left(w_{1}-w_{2}\right)}_{\lambda_{1}}\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)+\underbrace{\left(w_{2}-w_{3}\right)}_{\lambda_{2}}\left(\begin{array}{c}
1 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)+ \\
& \cdots+\underbrace{\left(w_{n-1}-w_{n}\right)}_{\lambda_{m-1}}\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
0
\end{array}\right)+\underbrace{\left(w_{m}\right)}_{\lambda_{m}}\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
1
\end{array}\right) \tag{14.28}
\end{align*}
$$

- If we take w in decreasing order, then each coefficient of the vectors is non-negative (except possibly the last one, $\lambda_{m}=w_{m}$).

An extension of f

- Recall, for any such $w \in \mathbb{R}^{E}$, we have

$$
\begin{align*}
\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right) & =\underbrace{\left(w_{1}-w_{2}\right)}_{\lambda_{1}}\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)+\underbrace{\left(w_{2}-w_{3}\right)}_{\lambda_{2}}\left(\begin{array}{c}
1 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)+ \\
& \cdots+\underbrace{\left(w_{n-1}-w_{n}\right)}_{\lambda_{m-1}}\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
0
\end{array}\right)+\underbrace{\left(w_{m}\right)}_{\lambda_{m}}\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
1
\end{array}\right) \tag{14.28}
\end{align*}
$$

- If we take w in decreasing order, then each coefficient of the vectors is non-negative (except possibly the last one, $\lambda_{m}=w_{m}$).
- Often, we take $w \in \mathbb{R}_{+}^{V}$ or even $w \in[0,1]^{V}$, where $\lambda_{m} \geq 0$.

An extension of f

- Define sets E_{i} based on this decreasing order of w as follows, for $i=0, \ldots, n$

$$
\begin{equation*}
E_{i} \stackrel{\text { def }}{=}\left\{e_{1}, e_{2}, \ldots, e_{i}\right\} \tag{14.29}
\end{equation*}
$$

An extension of f

- Define sets E_{i} based on this decreasing order of w as follows, for $i=0, \ldots, n$

$$
\begin{equation*}
E_{i} \stackrel{\text { def }}{=}\left\{e_{1}, e_{2}, \ldots, e_{i}\right\} \tag{14.29}
\end{equation*}
$$

- Note that

$$
\left.\mathbf{1}_{E_{0}}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right), \mathbf{1}_{E_{1}}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots, \mathbf{1}_{E_{\ell}}=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
0 \\
\\
0 \\
\vdots \\
0
\end{array}\right\}(n-\ell) \times \begin{array}{l}
\\
0
\end{array}\right), \text { etc. }
$$

An extension of f

- Define sets E_{i} based on this decreasing order of w as follows, for $i=0, \ldots, n$

$$
\begin{equation*}
E_{i} \stackrel{\text { def }}{=}\left\{e_{1}, e_{2}, \ldots, e_{i}\right\} \tag{14.29}
\end{equation*}
$$

- Note that

$$
\mathbf{1}_{E_{0}}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right), \mathbf{1}_{E_{1}}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots, \mathbf{1}_{E_{\ell}}=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
0 \\
\\
0 \\
\vdots \\
0
\end{array}\right\}(n-\ell) \times \quad(\times
$$

- Hence, from the previous and current slide, we have $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$

From \breve{f} back to f, even when f is not submodular

- From the continuous f, we can recover $f(A)$ for any $A \subseteq V$.

From \breve{f} back to f, even when f is not submodular

- From the continuous \vec{f}, we can recover $f(A)$ for any $A \subseteq V$.
- Take $w=\mathbf{1}_{A}$ for some $A \subseteq E$, so w is vertex of the hypercube.

From \breve{f} back to f, even when f is not submodular

- From the continuous f, we can recover $f(A)$ for any $A \subseteq V$.
- Take $w=\mathbf{1}_{A}$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq w\left(e_{3}\right) \geq \cdots \geq w\left(e_{m}\right)$.

From \breve{f} back to f, even when f is not submodular

- From the continuous f, we can recover $f(A)$ for any $A \subseteq V$.
- Take $w=\mathbf{1}_{A}$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq w\left(e_{3}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- This means

$$
\begin{equation*}
w=\left(w\left(e_{1}\right), w\left(e_{2}\right), \ldots, w\left(e_{m}\right)\right)=(\underbrace{1,1,1, \ldots, 1}_{|A| \text { times }}, \underbrace{0,0, \ldots, 0}_{m-|A| \text { times }}) \tag{14.30}
\end{equation*}
$$

so that $1_{A}(i)=1$ if $i \leq|A|$, and $1_{A}(i)=0$ otherwise.

From \breve{f} back to f, even when f is not submodular

- From the continuous f, we can recover $f(A)$ for any $A \subseteq V$.
- Take $w=\mathbf{1}_{A}$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq w\left(e_{3}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- This means

$$
\begin{equation*}
w=\left(w\left(e_{1}\right), w\left(e_{2}\right), \ldots, w\left(e_{m}\right)\right)=(\underbrace{1,1,1, \ldots, 1}_{|A| \text { times }}, \underbrace{0,0, \ldots, 0}_{m-|A| \text { times }}) \tag{14.30}
\end{equation*}
$$

so that $1_{A}(i)=1$ if $i \leq|A|$, and $1_{A}(i)=0$ otherwise.

- For any $f: 2^{E} \rightarrow \mathbb{R}, w=\mathbf{1}_{A}$, since $E_{|A|}=\left\{e_{1}, e_{2}, \ldots, e_{|A|}\right\}=A$:
$\breve{f}(w)$

From \breve{f} back to f, even when f is not submodular

- From the continuous f, we can recover $f(A)$ for any $A \subseteq V$.
- Take $w=\mathbf{1}_{A}$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq w\left(e_{3}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- This means

$$
\begin{equation*}
w=\left(w\left(e_{1}\right), w\left(e_{2}\right), \ldots, w\left(e_{m}\right)\right)=(\underbrace{1,1,1, \ldots, 1}_{|A| \text { times }}, \underbrace{0,0, \ldots, 0}_{m-|A| \text { times }}) \tag{14.30}
\end{equation*}
$$

so that $1_{A}(i)=1$ if $i \leq|A|$, and $1_{A}(i)=0$ otherwise.

- For any $f: 2^{E} \rightarrow \mathbb{R}, w=\mathbf{1}_{A}$, since $E_{|A|}=\left\{e_{1}, e_{2}, \ldots, e_{|A|}\right\}=A$:

$$
\breve{f}(w)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)
$$

From \breve{f} back to f, even when f is not submodular

- From the continuous f, we can recover $f(A)$ for any $A \subseteq V$.
- Take $w=\mathbf{1}_{A}$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq w\left(e_{3}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- This means

$$
\begin{equation*}
w=\left(w\left(e_{1}\right), w\left(e_{2}\right), \ldots, w\left(e_{m}\right)\right)=(\underbrace{1,1,1, \ldots, 1}_{|A| \text { times }}, \underbrace{0,0, \ldots, 0}_{m-|A| \text { times }}) \tag{14.30}
\end{equation*}
$$

so that $1_{A}(i)=1$ if $i \leq|A|$, and $1_{A}(i)=0$ otherwise.

- For any $f: 2^{E} \rightarrow \mathbb{R}, w=\mathbf{1}_{A}$, since $E_{|A|}=\left\{e_{1}, e_{2}, \ldots, e_{|A|}\right\}=A$:

$$
\breve{f}(w)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)=w\left(e_{m}\right) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right) f\left(E_{i}\right)\right.
$$

From \breve{f} back to f, even when f is not submodular

- From the continuous f, we can recover $f(A)$ for any $A \subseteq V$.
- Take $w=\mathbf{1}_{A}$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq w\left(e_{3}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- This means

$$
\begin{equation*}
w=\left(w\left(e_{1}\right), w\left(e_{2}\right), \ldots, w\left(e_{m}\right)\right)=(\underbrace{1,1,1, \ldots, 1}_{|A| \text { times }}, \underbrace{0,0, \ldots, 0}_{m-|A| \text { times }}) \tag{14.30}
\end{equation*}
$$

so that $1_{A}(i)=1$ if $i \leq|A|$, and $1_{A}(i)=0$ otherwise.

- For any $f: 2^{E} \rightarrow \mathbb{R}, w=\mathbf{1}_{A}$, since $E_{|A|}=\left\{e_{1}, e_{2}, \ldots, e_{|A|}\right\}=A$:

$$
\begin{align*}
\breve{f}(w) & =\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)=w\left(e_{m}\right) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right) f\left(E_{i}\right)\right. \\
& =\mathbf{1}_{A}(m) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(\mathbf{1}_{A}(i)-\mathbf{1}_{A}(i+1)\right) f\left(E_{i}\right) \tag{14.31}
\end{align*}
$$

From \breve{f} back to f, even when f is not submodular

- From the continuous f, we can recover $f(A)$ for any $A \subseteq V$.
- Take $w=\mathbf{1}_{A}$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq w\left(e_{3}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- This means

$$
\begin{equation*}
w=\left(w\left(e_{1}\right), w\left(e_{2}\right), \ldots, w\left(e_{m}\right)\right)=(\underbrace{1,1,1, \ldots, 1}_{|A| \text { times }}, \underbrace{0,0, \ldots, 0}_{m-|A| \text { times }}) \tag{14.30}
\end{equation*}
$$

so that $1_{A}(i)=1$ if $i \leq|A|$, and $1_{A}(i)=0$ otherwise.

- For any $f: 2^{E} \rightarrow \mathbb{R}, w=\mathbf{1}_{A}$, since $E_{|A|}=\left\{e_{1}, e_{2}, \ldots, e_{|A|}\right\}=A$:

$$
\begin{align*}
\breve{f}(w) & =\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)=w\left(e_{m}\right) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right) f\left(E_{i}\right)\right. \\
& =\mathbf{1}_{A}(m) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(\mathbf{1}_{A}(i)-\mathbf{1}_{A}(i+1)\right) f\left(E_{i}\right) \tag{14.31}\\
& =\left(\mathbf{1}_{A}(|A|)-\mathbf{1}_{A}(|A|+1)\right) f\left(E_{|A|}\right)=f\left(E_{|A|}\right)
\end{align*}
$$

From \breve{f} back to f, even when f is not submodular

- From the continuous \vec{f}, we can recover $f(A)$ for any $A \subseteq V$.
- Take $w=\mathbf{1}_{A}$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq w\left(e_{3}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- This means

$$
\begin{equation*}
w=\left(w\left(e_{1}\right), w\left(e_{2}\right), \ldots, w\left(e_{m}\right)\right)=(\underbrace{1,1,1, \ldots, 1}_{|A| \text { times }}, \underbrace{0,0, \ldots, 0}_{m-|A| \text { times }}) \tag{14.30}
\end{equation*}
$$

so that $1_{A}(i)=1$ if $i \leq|A|$, and $1_{A}(i)=0$ otherwise.

- For any $f: 2^{E} \rightarrow \mathbb{R}, w=\mathbf{1}_{A}$, since $E_{|A|}=\left\{e_{1}, e_{2}, \ldots, e_{|A|}\right\}=A$:

$$
\begin{align*}
\breve{f}(w) & =\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)=w\left(e_{m}\right) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right) f\left(E_{i}\right)\right. \\
& =\mathbf{1}_{A}(m) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(\mathbf{1}_{A}(i)-\mathbf{1}_{A}(i+1)\right) f\left(E_{i}\right) \tag{14.31}\\
& =\left(\mathbf{1}_{A}(|A|)-\mathbf{1}_{A}(|A|+1)\right) f\left(E_{|A|}\right)=f\left(E_{|A|}\right)=f(A) \tag{14.32}
\end{align*}
$$

From \breve{f} back to f

- We can view $\breve{f}:[0,1]^{E} \rightarrow \mathbb{R}$ defined on the hypercube, with f defined as \breve{f} evaluated on the hypercube extreme points (vertices).

From \vec{f} back to f

- We can view $\breve{f}:[0,1]^{E} \rightarrow \mathbb{R}$ defined on the hypercube, with f defined as \breve{f} evaluated on the hypercube extreme points (vertices).
- To summarize, with $\breve{f}\left(\mathbf{1}_{A}\right)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)$, we have

$$
\begin{equation*}
\breve{f}\left(\mathbf{1}_{A}\right)=f(A), \tag{14.33}
\end{equation*}
$$

From \breve{f} back to f

- We can view $\breve{f}:[0,1]^{E} \rightarrow \mathbb{R}$ defined on the hypercube, with f defined as \breve{f} evaluated on the hypercube extreme points (vertices).
- To summarize, with $\breve{f}\left(\mathbf{1}_{A}\right)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)$, we have

$$
\begin{equation*}
\breve{f}\left(\mathbf{1}_{A}\right)=f(A), \tag{14.33}
\end{equation*}
$$

- ... and when f is submodular, we also have have

$$
\begin{align*}
\breve{f}\left(\mathbf{1}_{A}\right) & =\max \left\{\mathbf{1}_{A}^{\top} x: x \in B_{f}\right\} \tag{14.34}\\
& =\max \left\{\mathbf{1}_{A}^{\top} x: x(B) \leq f(B), \forall B \subseteq E\right\} \tag{14.35}
\end{align*}
$$

From \vec{f} back to f

- We can view $\breve{f}:[0,1]^{E} \rightarrow \mathbb{R}$ defined on the hypercube, with f defined as \breve{f} evaluated on the hypercube extreme points (vertices).
- To summarize, with $\breve{f}\left(\mathbf{1}_{A}\right)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)$, we have

$$
\begin{equation*}
\breve{f}\left(\mathbf{1}_{A}\right)=f(A), \tag{14.33}
\end{equation*}
$$

- ... and when f is submodular, we also have have

$$
\begin{align*}
\breve{f}\left(\mathbf{1}_{A}\right) & =\max \left\{\mathbf{1}_{A}^{\top} x: x \in B_{f}\right\} \tag{14.34}\\
& =\max \left\{\mathbf{1}_{A}^{\top} x: x(B) \leq f(B), \forall B \subseteq E\right\} \tag{14.35}
\end{align*}
$$

- Note when considering only $\breve{f}:[0,1]^{E} \rightarrow \mathbb{R}$, then any $w \in[0,1]^{E}$ is in positive orthant, and we have

$$
\begin{equation*}
\breve{f}(w)=\max \left\{w^{\top} x: x \in P_{f}\right\} \tag{14.36}
\end{equation*}
$$

An extension of an arbitrary $f: 2^{V} \rightarrow \mathbb{R}$

- Thus, for any $f: 2^{E} \rightarrow \mathbb{R}$, even non-submodular f, we can define an extension, having $\breve{f}\left(\mathbf{1}_{A}\right)=f(A), \forall A$, in this way where

$$
\begin{equation*}
\breve{f}(w)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.37}
\end{equation*}
$$

with the $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$'s defined based on sorted descending order of w as in $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$, and where

$$
\text { for } i \in\{1, \ldots, m\}, \quad \lambda_{i}= \begin{cases}w\left(e_{i}\right)-w\left(e_{i+1}\right) & \text { if } i<m \tag{14.38}\\ w\left(e_{m}\right) & \text { if } i=m\end{cases}
$$

so that $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$.

An extension of an arbitrary $f: 2^{V} \rightarrow \mathbb{R}$

- Thus, for any $f: 2^{E} \rightarrow \mathbb{R}$, even non-submodular f, we can define an extension, having $\breve{f}\left(\mathbf{1}_{A}\right)=f(A), \forall A$, in this way where

$$
\begin{equation*}
\breve{f}(w)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.37}
\end{equation*}
$$

with the $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$'s defined based on sorted descending order of w as in $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$, and where

$$
\text { for } i \in\{1, \ldots, m\}, \quad \lambda_{i}= \begin{cases}w\left(e_{i}\right)-w\left(e_{i+1}\right) & \text { if } i<m \tag{14.38}\\ w\left(e_{m}\right) & \text { if } i=m\end{cases}
$$

so that $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$.

- $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$ is an interpolation of certain hypercube vertices.

An extension of an arbitrary $f: 2^{V} \rightarrow \mathbb{R}$

- Thus, for any $f: 2^{E} \rightarrow \mathbb{R}$, even non-submodular f, we can define an extension, having $\breve{f}\left(\mathbf{1}_{A}\right)=f(A), \forall A$, in this way where

$$
\begin{equation*}
\breve{f}(w)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.37}
\end{equation*}
$$

with the $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$'s defined based on sorted descending order of w as in $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$, and where

$$
\text { for } i \in\{1, \ldots, m\}, \quad \lambda_{i}= \begin{cases}w\left(e_{i}\right)-w\left(e_{i+1}\right) & \text { if } i<m \tag{14.38}\\ w\left(e_{m}\right) & \text { if } i=m\end{cases}
$$

so that $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$.

- $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$ is an interpolation of certain hypercube vertices.
- $\breve{f}(w)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)$ is the associated interpolation of the values of f at sets corresponding to each hypercube vertex.

An extension of an arbitrary $f: 2^{V} \rightarrow \mathbb{R}$

- Thus, for any $f: 2^{E} \rightarrow \mathbb{R}$, even non-submodular f, we can define an extension, having $\breve{f}\left(\mathbf{1}_{A}\right)=f(A), \forall A$, in this way where

$$
\begin{equation*}
\breve{f}(w)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.37}
\end{equation*}
$$

with the $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$'s defined based on sorted descending order of w as in $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$, and where

$$
\text { for } i \in\{1, \ldots, m\}, \quad \lambda_{i}= \begin{cases}w\left(e_{i}\right)-w\left(e_{i+1}\right) & \text { if } i<m \tag{14.38}\\ w\left(e_{m}\right) & \text { if } i=m\end{cases}
$$

so that $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$.

- $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$ is an interpolation of certain hypercube vertices.
- $\breve{f}(w)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)$ is the associated interpolation of the values of f at sets corresponding to each hypercube vertex.
- This extension is called the Lovász extension!

Weighted gains vs. weighted functions

- Again sorting E descending in w, the extension summarized:

$$
\begin{align*}
\breve{f}(w) & =\sum_{i=1}^{m} w\left(e_{i}\right) f\left(e_{i} \mid E_{i-1}\right) \tag{14.39}\\
& =\sum_{i=1}^{m} w\left(e_{i}\right)\left(f\left(E_{i}\right)-f\left(E_{i-1}\right)\right) \tag{14.40}\\
& =w\left(e_{m}\right) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right) f\left(E_{i}\right) \tag{14.41}\\
& =\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.42}
\end{align*}
$$

Weighted gains vs. weighted functions

- Again sorting E descending in w, the extension summarized:

$$
\begin{align*}
\breve{f}(w) & =\sum_{i=1}^{m} w\left(e_{i}\right) f\left(e_{i} \mid E_{i-1}\right) \tag{14.39}\\
& =\sum_{i=1}^{m} w\left(e_{i}\right)\left(f\left(E_{i}\right)-f\left(E_{i-1}\right)\right) \tag{14.40}\\
& =w\left(e_{m}\right) f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right) f\left(E_{i}\right) \tag{14.41}\\
& =\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.42}
\end{align*}
$$

- So $\breve{f}(w)$ seen either as sum of weighted gain evaluations (Eqn. (14.39)), or as sum of weighted function evaluations (Eqn. (14.42)).

Summary: comparison of the two extension forms

- So if f is submodular, then we can write $f(w)=\max \left(w x: x \in B_{f}\right)$ (which is clearly convex) in the form:

$$
\begin{equation*}
\breve{f}(w)=\max \left(w x: x \in B_{f}\right)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.43}
\end{equation*}
$$

where $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$ and $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$ defined based on sorted descending order $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.

Summary: comparison of the two extension forms

- So if f is submodular, then we can write $f(w)=\max \left(w x: x \in B_{f}\right)$ (which is clearly convex) in the form:

$$
\begin{equation*}
\breve{f}(w)=\max \left(w x: x \in B_{f}\right)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.43}
\end{equation*}
$$

where $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$ and $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$ defined based on sorted descending order $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.

- On the other hand, for any f (even non-submodular), we can produce an extension \breve{f} having the form

$$
\begin{equation*}
\breve{f}(w)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.44}
\end{equation*}
$$

where $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$ and $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$ defined based on sorted descending order $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.

Summary: comparison of the two extension forms

- So if f is submodular, then we can write $f(w)=\max \left(w x: x \in B_{f}\right)$ (which is clearly convex) in the form:

$$
\begin{equation*}
\breve{f}(w)=\max \left(w x: x \in B_{f}\right)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.43}
\end{equation*}
$$

where $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$ and $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$ defined based on sorted descending order $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.

- On the other hand, for any f (even non-submodular), we can produce an extension \breve{f} having the form

$$
\begin{equation*}
\breve{f}(w)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.44}
\end{equation*}
$$

where $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$ and $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$ defined based on sorted descending order $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.

- In both Eq. (14.43) and Eq. (14.44), we have $f\left(\mathbf{1}_{A}\right)=f(A), \forall A$, but Eq. (14.44), might not be convex.

Summary: comparison of the two extension forms

- So if f is submodular, then we can write $f(w)=\max \left(w x: x \in B_{f}\right)$ (which is clearly convex) in the form:

$$
\begin{equation*}
\breve{f}(w)=\max \left(w x: x \in B_{f}\right)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.43}
\end{equation*}
$$

where $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$ and $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$ defined based on sorted descending order $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.

- On the other hand, for any f (even non-submodular), we can produce an extension \breve{f} having the form

$$
\begin{equation*}
\breve{f}(w)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right) \tag{14.44}
\end{equation*}
$$

where $w=\sum_{i=1}^{m} \lambda_{i} \mathbf{1}_{E_{i}}$ and $E_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$ defined based on sorted descending order $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.

- In both Eq. (14.43) and Eq. (14.44), we have $f\left(\mathbf{1}_{A}\right)=f(A), \forall A$, but Eq. (14.44), might not be convex.
- Submodularity is sufficient for convexity, but is it necessary?

The Lovász extension of $f: 2^{E} \rightarrow \mathbb{R}$

- Lovász showed that if a function $\breve{f}(w)$ defined as in Eqn. (14.37) is convex, then f must be submodular.

The Lovász extension of $f: 2^{E} \rightarrow \mathbb{R}$

- Lovász showed that if a function $\breve{f}(w)$ defined as in Eqn. (14.37) is convex, then f must be submodular.
- This continuous extension \breve{f} of f, in any case (f being submodular or not), is typically called the Lovász extension of f (but also sometimes called the Choquet integral, or the Lovász-Edmonds extension).

Lovász Extension, Submodularity and Convexity

Theorem 14.5.2

A function $f: 2^{E} \rightarrow \mathbb{R}$ is submodular iff its Lovász extension \breve{f} of f is convex.

Proof.

- We've already seen that if f is submodular, its extension can be written via Eqn.(14.37) due to the greedy algorithm, and therefore is also equivalent to $f(w)=\max \left\{w x: x \in P_{f}\right\}$, and thus is convex.

Lovász Extension, Submodularity and Convexity

Theorem 14.5.2

A function $f: 2^{E} \rightarrow \mathbb{R}$ is submodular iff its Lovász extension \breve{f} of f is convex.

Proof.

- We've already seen that if f is submodular, its extension can be written via Eqn.(14.37) due to the greedy algorithm, and therefore is also equivalent to $f(w)=\max \left\{w x: x \in P_{f}\right\}$, and thus is convex.
- Conversely, suppose the Lovász extension $\breve{f}(w)=\sum_{i} \lambda_{i} f\left(E_{i}\right)$ of some function $f: 2^{E} \rightarrow \mathbb{R}$ is a convex function.

Lovász Extension, Submodularity and Convexity

Theorem 14.5.2

A function $f: 2^{E} \rightarrow \mathbb{R}$ is submodular iff its Lovász extension \breve{f} of f is convex.

Proof.

- We've already seen that if f is submodular, its extension can be written via Eqn.(14.37) due to the greedy algorithm, and therefore is also equivalent to $f(w)=\max \left\{w x: x \in P_{f}\right\}$, and thus is convex.
- Conversely, suppose the Lovász extension $\breve{f}(w)=\sum_{i} \lambda_{i} f\left(E_{i}\right)$ of some function $f: 2^{E} \rightarrow \mathbb{R}$ is a convex function.
- We note that, based on the extension definition, in particular the definition of the $\left\{\lambda_{i}\right\}_{i}$, we have that $\breve{f}(\alpha w)=\alpha \breve{f}(w)$ for any $\alpha \in \mathbb{R}_{+}$. l.e., f is a positively homogeneous convex function.

Lovász Extension，Submodularity and Convexity

．．．proof of Thm．14．5．2 cont．
－Earlier，we saw that $\breve{f}\left(\mathbf{1}_{A}\right)=f(A)$ for all $A \subseteq E$ ．

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

- Earlier, we saw that $\breve{f}\left(\mathbf{1}_{A}\right)=f(A)$ for all $A \subseteq E$.
- Now, given $A, B \subseteq E$, we will show that

$$
\begin{align*}
\breve{f}\left(\mathbf{1}_{A}+\mathbf{1}_{B}\right) & =\breve{f}\left(\mathbf{1}_{A \cup B}+\mathbf{1}_{A \cap B}\right) \tag{14.45}\\
& =f(A \cup B)+f(A \cap B) .
\end{align*}
$$

Lovász Extension, Submodularity and Convexity

proof of Thm. 14.5.2 cont.

- Earlier, we saw that $\breve{f}\left(\mathbf{1}_{A}\right)=f(A)$ for all $A \subseteq E$.
- Now, given $A, B \subseteq E$, we will show that

$$
\begin{align*}
\breve{f}\left(\mathbf{1}_{A}+\mathbf{1}_{B}\right) & =\breve{f}\left(\mathbf{1}_{A \cup B}+\mathbf{1}_{A \cap B}\right) \tag{14.45}\\
& =f(A \cup B)+f(A \cap B) . \tag{14.46}
\end{align*}
$$

- Let $C=A \cap B$, order E based on decreasing $w=\mathbf{1}_{A}+\mathbf{1}_{B}$ so that

$$
\begin{aligned}
w & =\left(w\left(e_{1}\right), w\left(e_{2}\right), \ldots, w\left(e_{m}\right)\right) \\
& =(\underbrace{2,2, \ldots, 2}_{i \in C}, \underbrace{1,1, \ldots, 1}_{i \in A \triangle B}, \underbrace{0,0, \ldots, 0}_{i \in E \backslash(A \cup B)})
\end{aligned}
$$

Lovász Extension, Submodularity and Convexity

proof of Thm. 14.5.2 cont.

- Earlier, we saw that $\breve{f}\left(\mathbf{1}_{A}\right)=f(A)$ for all $A \subseteq E$.
- Now, given $A, B \subseteq E$, we will show that

$$
\begin{align*}
\breve{f}\left(\mathbf{1}_{A}+\mathbf{1}_{B}\right) & =\breve{f}\left(\mathbf{1}_{A \cup B}+\mathbf{1}_{A \cap B}\right) \tag{14.45}\\
& =f(A \cup B)+f(A \cap B) . \tag{14.46}
\end{align*}
$$

- Let $C=A \cap B$, order E based on decreasing $w=\mathbf{1}_{A}+\mathbf{1}_{B}$ so that

$$
\begin{align*}
w & =\left(w\left(e_{1}\right), w\left(e_{2}\right), \ldots, w\left(e_{m}\right)\right) \tag{14.47}\\
& =(\underbrace{2,2, \ldots, 2}_{i \in C}, \underbrace{1,1, \ldots, 1}_{i \in A \triangle B}, \underbrace{0,0, \ldots, 0}_{i \in E \backslash(A \cup B)}) \tag{14.48}
\end{align*}
$$

- Then, considering $\breve{f}(w)=\sum_{i} \lambda_{i} f\left(E_{i}\right)$, we have $\lambda_{|C|}=1, \lambda_{|A \cup B|}=1$, and $\lambda_{i}=0$ for $i \notin\{|C|,|A \cup B|\}$.

Lovász Extension, Submodularity and Convexity

proof of Thm. 14.5.2 cont.

- Earlier, we saw that $\breve{f}\left(\mathbf{1}_{A}\right)=f(A)$ for all $A \subseteq E$.
- Now, given $A, B \subseteq E$, we will show that

$$
\begin{align*}
\breve{f}\left(\mathbf{1}_{A}+\mathbf{1}_{B}\right) & =\breve{f}\left(\mathbf{1}_{A \cup B}+\mathbf{1}_{A \cap B}\right) \tag{14.45}\\
& =f(A \cup B)+f(A \cap B) . \tag{14.46}
\end{align*}
$$

- Let $C=A \cap B$, order E based on decreasing $w=\mathbf{1}_{A}+\mathbf{1}_{B}$ so that

$$
\begin{align*}
w & =\left(w\left(e_{1}\right), w\left(e_{2}\right), \ldots, w\left(e_{m}\right)\right) \tag{14.47}\\
& =(\underbrace{2,2, \ldots, 2}_{i \in C}, \underbrace{1,1, \ldots, 1}_{i \in A \triangle B}, \underbrace{0,0, \ldots, 0}_{i \in E \backslash(A \cup B)}) \tag{14.48}
\end{align*}
$$

- Then, considering $\breve{f}(w)=\sum_{i} \lambda_{i} f\left(E_{i}\right)$, we have $\lambda_{|C|}=1, \lambda_{|A \cup B|}=1$, and $\lambda_{i}=0$ for $i \notin\{|C|,|A \cup B|\}$.
- But then $E_{|C|}=A \cap B$ and $E_{|A \cup B|}=A \cup B$. Therefore, $\breve{f}(w)=\breve{f}\left(\mathbf{1}_{A}+\mathbf{1}_{B}\right)=f(A \cap B)+f(A \cup B)$.

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

- Also, since \breve{f} is convex (by assumption) and positively homogeneous, we have for any $A, B \subseteq E$,

$$
0.5[f(A \cap B)+f(A \cup B)]
$$

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

- Also, since \breve{f} is convex (by assumption) and positively homogeneous, we have for any $A, B \subseteq E$,

$$
\begin{equation*}
0.5[f(A \cap B)+f(A \cup B)]=0.5\left[\breve{f}\left(\mathbf{1}_{A}+\mathbf{1}_{B}\right)\right] \tag{14.49}
\end{equation*}
$$

(14.52)

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

- Also, since \breve{f} is convex (by assumption) and positively homogeneous, we have for any $A, B \subseteq E$,

$$
\begin{align*}
0.5[f(A \cap B)+f(A \cup B)] & =0.5\left[\breve{f}\left(\mathbf{1}_{A}+\mathbf{1}_{B}\right)\right] \tag{14.49}\\
& =\breve{f}\left(0.5 \mathbf{1}_{A}+0.5 \mathbf{1}_{B}\right) \tag{14.50}
\end{align*}
$$

(14.52)

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

- Also, since \breve{f} is convex (by assumption) and positively homogeneous, we have for any $A, B \subseteq E$,

$$
\begin{align*}
0.5[f(A \cap B)+f(A \cup B)] & =0.5\left[\breve{f}\left(\mathbf{1}_{A}+\mathbf{1}_{B}\right)\right] \tag{14.49}\\
& =\breve{f}\left(0.5 \mathbf{1}_{A}+0.5 \mathbf{1}_{B}\right) \\
& \leq 0.5 \breve{f}\left(\mathbf{1}_{A}\right)+0.5 \breve{f}\left(\mathbf{1}_{B}\right)
\end{align*}
$$

(14.50)
(14.51)
(14.52)

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 14.5.2 cont.

- Also, since \breve{f} is convex (by assumption) and positively homogeneous, we have for any $A, B \subseteq E$,

$$
\begin{align*}
0.5[f(A \cap B)+f(A \cup B)] & =0.5\left[\breve{f}\left(\mathbf{1}_{A}+\mathbf{1}_{B}\right)\right] \tag{14.49}\\
& =\breve{f}\left(0.5 \mathbf{1}_{A}+0.5 \mathbf{1}_{B}\right) \tag{14.50}\\
& \leq 0.5 \breve{f}\left(\mathbf{1}_{A}\right)+0.5 \breve{f}\left(\mathbf{1}_{B}\right) \tag{14.51}\\
& =0.5(f(A)+f(B))
\end{align*}
$$

(14.52)

Lovász Extension, Submodularity and Convexity

proof of Thm. 14.5.2 cont.

- Also, since \breve{f} is convex (by assumption) and positively homogeneous, we have for any $A, B \subseteq E$,

$$
\begin{align*}
0.5[f(A \cap B)+f(A \cup B)] & =0.5\left[\breve{f}\left(\mathbf{1}_{A}+\mathbf{1}_{B}\right)\right] \tag{14.49}\\
& =\breve{f}\left(0.5 \mathbf{1}_{A}+0.5 \mathbf{1}_{B}\right) \tag{14.50}\\
& \leq 0.5 \breve{f}\left(\mathbf{1}_{A}\right)+0.5 \breve{f}\left(\mathbf{1}_{B}\right) \tag{14.51}\\
& =0.5(f(A)+f(B))
\end{align*}
$$

(14.52)

- Thus, we have shown that for any $A, B \subseteq E$,

$$
\begin{equation*}
f(A \cup B)+f(A \cap B) \leq f(A)+f(B) \tag{14.53}
\end{equation*}
$$

so f must be submodular.

Lovász ext. vs. the concave closure of submodular function

- The above theorem showed that the Lovász extension is convex iff f is submodular.

Lovász ext. vs. the concave closure of submodular function

- The above theorem showed that the Lovász extension is convex iff f is submodular.
- Our next theorem shows that the Lovász extension coincides precisely with the convex closure iff f is submodular.

Lovász ext. vs. the concave closure of submodular function

- The above theorem showed that the Lovász extension is convex iff f is submodular.
- Our next theorem shows that the Lovász extension coincides precisely with the convex closure iff f is submodular.
- I.e., not only is the Lovász extension convex for f submodular, it is the convex closure when f is convex.

Lovász ext. vs. the concave closure of submodular function

- The above theorem showed that the Lovász extension is convex iff f is submodular.
- Our next theorem shows that the Lovász extension coincides precisely with the convex closure iff f is submodular.
- I.e., not only is the Lovász extension convex for f submodular, it is the convex closure when f is convex.
- Hence, convex closure is easy to evaluate when f is submodular and is this particular form iff f is submodular.

Lovász ext. vs. the concave closure of submodular function

Theorem 14.5.3

Let $\breve{f}(w)=\max \left(w x: x \in B_{f}\right)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)$ be the Lovász extension and $\check{f}(x)=\min _{p \in \Delta^{n}(x)} E_{S \sim p}[f(S)]$ be the convex closure. Then \breve{f} and \check{f} coincide iff f is submodular.

Proof.

- Assume f is submodular.

Lovász ext. vs. the concave closure of submodular function

Theorem 14.5.3

Let $\breve{f}(w)=\max \left(w x: x \in B_{f}\right)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)$ be the Lovász extension and $\check{f}(x)=\min _{p \in \Delta^{n}(x)} E_{S \sim p}[f(S)]$ be the convex closure. Then \breve{f} and \check{f} coincide iff f is submodular.

Proof.

- Assume f is submodular.
- Given x, let p^{x} be an achieving argmin in $f(x)$ that also maximizes $\sum_{S} p_{S}^{x}|S|^{2}$.

Lovász ext. vs. the concave closure of submodular function

Theorem 14.5.3

Let $\breve{f}(w)=\max \left(w x: x \in B_{f}\right)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)$ be the Lovász extension and $\check{f}(x)=\min _{p \in \Delta^{n}(x)} E_{S \sim p}[f(S)]$ be the convex closure. Then \breve{f} and \check{f} coincide iff f is submodular.

Proof.

- Assume f is submodular.
- Given x, let p^{x} be an achieving argmin in $\check{f}(x)$ that also maximizes $\sum_{S} p_{S}^{x}|S|^{2}$.
- Suppose $\exists A, B \subseteq V$ that are crossing (i.e., $A \nsubseteq B, B \nsubseteq A$) and positive and w.l.o.g., $p_{A}^{x} \geq p_{B}^{x}>0$.

Lovász ext. vs. the concave closure of submodular function

Theorem 14.5.3

Let $\breve{f}(w)=\max \left(w x: x \in B_{f}\right)=\sum_{i=1}^{m} \lambda_{i} f\left(E_{i}\right)$ be the Lovász extension and $\check{f}(x)=\min _{p \in \Delta^{n}(x)} E_{S \sim p}[f(S)]$ be the convex closure. Then \breve{f} and \check{f} coincide iff f is submodular.

Proof.

- Assume f is submodular.
- Given x, let p^{x} be an achieving argmin in $\check{f}(x)$ that also maximizes $\sum_{S} p_{S}^{x}|S|^{2}$.
- Suppose $\exists A, B \subseteq V$ that are crossing (i.e., $A \nsubseteq B, B \nsubseteq A$) and positive and w.l.o.g., $p_{A}^{x} \geq p_{B}^{x}>0$.
- Then we may update p^{x} as follows:

$$
\begin{array}{rr}
\bar{p}_{A}^{x} \leftarrow p_{A}^{x}-p_{B}^{x} & \bar{p}_{B}^{x} \leftarrow p_{B}^{x}-p_{B}^{x} \tag{14.54}\\
\bar{p}_{A \cup B}^{x} \leftarrow p_{A \cup B}^{x}+p_{B}^{x} & \bar{p}_{A \cap B}^{x} \leftarrow p_{A \cap B}^{x}+p_{B}^{x}
\end{array}
$$

and by submodularity, this does not increase $\sum_{S} p_{S}^{x} f(S)$.

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.

- This does increase $\sum_{S} p_{S}^{x}|S|^{2}$ however since

$$
\begin{aligned}
|A \cup B|^{2}+|A \cap B|^{2} & =(|A|+|B \backslash A|)^{2}+(|B|-|B \backslash A|)^{2} \\
& =|A|^{2}+|B|^{2}+2|B \backslash A|(|A|-|B|+|B \backslash A|) \\
& \geq|A|^{2}+|B|^{2}
\end{aligned}
$$

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.

- This does increase $\sum_{S} p_{S}^{x}|S|^{2}$ however since

$$
\begin{aligned}
|A \cup B|^{2}+|A \cap B|^{2} & =(|A|+|B \backslash A|)^{2}+(|B|-|B \backslash A|)^{2} \\
& =|A|^{2}+|B|^{2}+2|B \backslash A|(|A|-|B|+|B \backslash A|) \\
& \geq|A|^{2}+|B|^{2}
\end{aligned}
$$

- Contradiction! Hence, there can be no crossing sets A, B and we must have, for any A, B with $p_{A}^{x}>0$ and $p_{B}^{x}>0$ either $A \subset B$ or $B \subset A$.

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.

- This does increase $\sum_{S} p_{S}^{x}|S|^{2}$ however since

$$
\begin{align*}
|A \cup B|^{2}+|A \cap B|^{2} & =(|A|+|B \backslash A|)^{2}+(|B|-|B \backslash A|)^{2} \\
& =|A|^{2}+|B|^{2}+2|B \backslash A|(|A|-|B|+|B \backslash A|) \\
& \geq|A|^{2}+|B|^{2}
\end{align*}
$$

- Contradiction! Hence, there can be no crossing sets A, B and we must have, for any A, B with $p_{A}^{x}>0$ and $p_{B}^{x}>0$ either $A \subset B$ or $B \subset A$.
- Hence, the sets $\left\{A \subseteq V: p_{A}^{x}>0\right\}$ form a chain and can be as large only as size $n=|V|$.

Lovász ext. vs. the concave closure of submodular function

proof cont.

- This does increase $\sum_{S} p_{S}^{x}|S|^{2}$ however since

$$
\begin{align*}
|A \cup B|^{2}+|A \cap B|^{2} & =(|A|+|B \backslash A|)^{2}+(|B|-|B \backslash A|)^{2} \\
& =|A|^{2}+|B|^{2}+2|B \backslash A|(|A|-|B|+|B \backslash A|) \\
& \geq|A|^{2}+|B|^{2}
\end{align*}
$$

- Contradiction! Hence, there can be no crossing sets A, B and we must have, for any A, B with $p_{A}^{x}>0$ and $p_{B}^{x}>0$ either $A \subset B$ or $B \subset A$.
- Hence, the sets $\left\{A \subseteq V: p_{A}^{x}>0\right\}$ form a chain and can be as large only as size $n=|V|$.
- This is the same chain that defines the Lovász extension $\breve{f}(x)$, namely $\emptyset=E_{0} \subseteq E_{1} \subseteq E_{2} \subset \ldots$ where $E_{i}=\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$ and e_{i} is orderd so that $x\left(e_{1}\right) \geq x\left(e_{2}\right) \geq \cdots \geq x\left(e_{n}\right)$.

Lovász ext. vs. the concave closure of submodular function

. . . proof cont.

- Next, assume f is not submodular. We must show that the Lovász extension $\breve{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.

. . . proof cont.

- Next, assume f is not submodular. We must show that the Lovász extension $\breve{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.
- Since f is not submodular, $\exists S$ and $i, j \notin S$ such that $f(S)+f(S+i+j)>f(S+i)+f(S+j)$, a strict violation of submodularity.

Lovász ext. vs. the concave closure of submodular function

. . proof cont.

- Next, assume f is not submodular. We must show that the Lovász extension $\breve{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.
- Since f is not submodular, $\exists S$ and $i, j \notin S$ such that $f(S)+f(S+i+j)>f(S+i)+f(S+j)$, a strict violation of submodularity.
- Consider $x=\mathbf{1}_{S}+\frac{1}{2} \mathbf{1}_{\{i, j\}}$.

Lovász ext. vs. the concave closure of submodular function

. . proof cont.

- Next, assume f is not submodular. We must show that the Lovász extension $\breve{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.
- Since f is not submodular, $\exists S$ and $i, j \notin S$ such that $f(S)+f(S+i+j)>f(S+i)+f(S+j)$, a strict violation of submodularity.
- Consider $x=\mathbf{1}_{S}+\frac{1}{2} \mathbf{1}_{\{i, j\}}$.
- Then $\breve{f}(x)=\frac{1}{2} f(S)+\frac{1}{2} f(S+i+j)$ and p^{x} is feasible for \check{f} with $p_{S}^{x}=1 / 2$ and $p_{S+i+j}^{x}=1 / 2$.

Lovász ext. vs. the concave closure of submodular function

proof cont.

- Next, assume f is not submodular. We must show that the Lovász extension $\breve{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.
- Since f is not submodular, $\exists S$ and $i, j \notin S$ such that $f(S)+f(S+i+j)>f(S+i)+f(S+j)$, a strict violation of submodularity.
- Consider $x=\mathbf{1}_{S}+\frac{1}{2} \mathbf{1}_{\{i, j\}}$.
- Then $\breve{f}(x)=\frac{1}{2} f(S)+\frac{1}{2} f(S+i+j)$ and p^{x} is feasible for \check{f} with $p_{S}^{x}=1 / 2$ and $p_{S+i+j}^{x}=1 / 2$.
- An alternate feasible distribution for x in the convex closure is $\bar{p}_{S+i}^{x}=\bar{p}_{S+j}^{x}=1 / 2$.

Lovász ext. vs. the concave closure of submodular function

proof cont.

- Next, assume f is not submodular. We must show that the Lovász extension $\breve{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.
- Since f is not submodular, $\exists S$ and $i, j \notin S$ such that $f(S)+f(S+i+j)>f(S+i)+f(S+j)$, a strict violation of submodularity.
- Consider $x=\mathbf{1}_{S}+\frac{1}{2} \mathbf{1}_{\{i, j\}}$.
- Then $\breve{f}(x)=\frac{1}{2} f(S)+\frac{1}{2} f(S+i+j)$ and p^{x} is feasible for \check{f} with $p_{S}^{x}=1 / 2$ and $p_{S+i+j}^{x}=1 / 2$.
- An alternate feasible distribution for x in the convex closure is $\bar{p}_{S+i}^{x}=\bar{p}_{S+j}^{x}=1 / 2$.
- This gives

$$
\begin{equation*}
\check{f}(x) \leq \frac{1}{2}[f(S+i)+f(S+j)]<\breve{f}(x) \tag{14.59}
\end{equation*}
$$

meaning $\check{f}(x) \neq \breve{f}(x)$.

