Submodular Functions, Optimization, and Applications to Machine Learning — Spring Quarter, Lecture 14 —

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/

Prof. Jeff Bilmes

University of Washington, Seattle Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

May 14th, 2018

Cumulative Outstanding Reading

- Read chapter 1 from Fujishige's book.
- Read chapter 2 from Fujishige's book.
- Read chapter 3 from Fujishige's book.
- Read chapter 4 from Fujishige's book.

Logistics

Announcements, Assignments, and Reminders

- Next homework is posted on canvas. Due Thursday 5/10, 11:59pm.
- As always, if you have any questions about anything, please ask then via our discussion board (https://canvas.uw.edu/courses/1216339/discussion_topics). Can meet at odd hours via zoom (send message on canvas to schedule time to chat).

Class Road Map - EE563

- L1(3/26): Motivation, Applications, & Basic Definitions,
- L2(3/28): Machine Learning Apps (diversity, complexity, parameter, learning target, surrogate).
- L3(4/2): Info theory exs, more apps, definitions, graph/combinatorial examples
- L4(4/4): Graph and Combinatorial Examples, Matrix Rank, Examples and Properties, visualizations
- L5(4/9): More Examples/Properties/ Other Submodular Defs., Independence,
- L6(4/11): Matroids, Matroid Examples, Matroid Rank, Partition/Laminar Matroids
- L7(4/16): Laminar Matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid Representation, Dual Matroids
- L8(4/18): Dual Matroids, Other Matroid Properties, Combinatorial Geometries, Matroids and Greedy.
- L9(4/23): Polyhedra, Matroid Polytopes, Matroids → Polymatroids
- L10(4/29): Matroids → Polymatroids, Polymatroids, Polymatroids and Greedy,

- L11(4/30): Polymatroids, Polymatroids and Greedy
- L12(5/2): Polymatroids and Greedy, Extreme Points, Cardinality Constrained Maximization
- L13(5/7): Constrained Submodular Maximization
- L14(5/9): Submodular Max w. Other Constraints, Cont. Extensions, Lovasz Extension
- L15(5/14):
- L16(5/16):
- L17(5/21):
- L18(5/23):
- L-(5/28): Memorial Day (holiday)
- L19(5/30):
- L21(6/4): Final Presentations maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

Priority Queue

- Use a priority queue Q as a data structure: operations include:
 - Insert an item (v, α) into queue, with $v \in V$ and $\alpha \in \mathbb{R}$.

• Pop the item (v,α) with maximum value α off the queue.

$$(v, \alpha) \leftarrow \mathsf{pop}(Q)$$
 (14.15)

• Query the value of the max item in the queue

$$\max(Q) \in \mathbb{R}$$
 (14.16)

- On next slide, we call a popped item "fresh" if the value (v, α) popped has the correct value $\alpha = f(v|S_i)$. Use extra "bit" to store this info
- If a popped item is fresh, it must be the maximum this can happen if, at given iteration, v was first popped and neither fresh nor maximum so placed back in the queue, and it then percolates back to the top at which point it is fresh — thereby avoid extra queue check.

Prof. Jeff Bilmes

Minoux's Accelerated Greedy Algorithm Submodular Max

Algorithm 1: Minoux's Accelerated Greedy Algorithm

- 1 Set $S_0 \leftarrow \emptyset$; $i \leftarrow 0$; Initialize priority queue Q ;
- 2 for $v \in E$ do
- 3 \lfloor INSERT(Q, f(v))

4 repeat

5
$$(v, \alpha) \leftarrow \operatorname{pop}(Q);$$

6 if α not "fresh" then

$$\lfloor$$
 recompute $\alpha \leftarrow f(v|S_i)$

8 if (popped
$$\alpha$$
 in line 5 was "fresh") OR ($\alpha \ge \max(Q)$) then
9 Set $S_{i+1} \leftarrow S_i \cup \{v\}$;
10 $i \leftarrow i+1$;

12
$$\left[\text{ insert}(Q,(v,\alpha)) \right]$$

13 until i = |E|;

 $\bullet\,$ Given polymatroid f, goal is to find a covering set of minimum cost:

$$S^* \in \operatorname*{argmin}_{S \subseteq V} |S|$$
 such that $f(S) \ge \alpha$ (14.14)

where α is a "cover" requirement.

• Normally take $\alpha = f(V)$ but defining $f'(A) = \min \{f(A), \alpha\}$ we can take any α . Hence, we have equivalent formulation:

$$S^* \in \operatorname*{argmin}_{S \subseteq V} |S|$$
 such that $f'(S) \ge f'(V)$ (14.15)

- Note that this immediately generalizes standard set cover, in which case f(A) is the cardinality of the union of sets indexed by A.
- Greedy Algorithm: Pick the first chain item S_i chosen by aforementioned greedy algorithm such that $f(S_i) \ge \alpha$ and output that as solution.

• For integer valued f, this greedy algorithm an $O(\log(\max_{s \in V} f(\{s\})))$ approximation. Let S^* be optimal, and S^{G} be greedy solution, then

$$|S^{\mathsf{G}}| \le |S^*| H(\max_{s \in V} f(\{s\})) = |S^*| O(\log_e(\max_{s \in V} f(\{s\})))$$
(14.14) (14.14)

where H is the harmonic function, i.e., $H(d) = \sum_{i=1}^{d} (1/i)$.

• If f is not integral value, then bounds we get are of the form:

$$|S^{\mathsf{G}}| \le |S^*| \left(1 + \log_e \frac{f(V)}{f(V) - f(S_{T-1})} \right)$$
(14.15)

wehre S_T is the final greedy solution that occurs at step T.

• Set cover is hard to approximate with a factor better than $(1 - \epsilon) \log \alpha$, where α is the desired cover constraint.

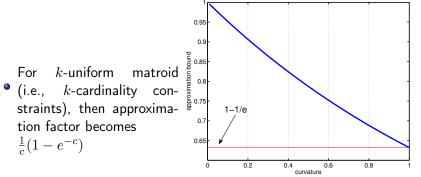
• By submodularity, total curvature can be computed in either form:

$$c \stackrel{\Delta}{=} 1 - \min_{S, j \notin S: f(j|\emptyset) \neq 0} \frac{f(j|S)}{f(j|\emptyset)} = 1 - \min_{j: f(j|\emptyset) \neq 0} \frac{f(j|V \setminus \{j\})}{f(j|\emptyset)} \quad (14.17)$$

- Note: Matroid rank is either modular c = 0 or maximally curved c = 1— hence, matroid rank can have only the extreme points of curvature, namely 0 or 1.
- Polymatroid functions are, in this sense, more nuanced, in that they allow non-extreme curvature, with $c \in [0, 1]$.
- It will be remembered the notion of "partial dependence" within polymatroid functions.

Curvature and approximation

- Curvature limitation can help the greedy algorithm in terms of approximation bounds.
- Conforti & Cornuéjols showed that greedy gives a 1/(1+c) approximation to $\max{\{f(S):S\in\mathcal{I}\}}$ when f has total curvature c.
- Hence, greedy subject to matroid constraint is a $\max(1/(1+c), 1/2)$ approximation algorithm, and if c < 1 then it is better than 1/2 (e.g., with c = 1/4 then we have a 0.8 algorithm).



Generalizations

• Consider a k-uniform matroid $\mathcal{M} = (V, \mathcal{I})$ where $\mathcal{I} = \{S \subseteq V : |S| \le k\}$, and consider problem $\max \{f(A) : A \in \mathcal{I}\}$

Cont. Extension

- Consider a k-uniform matroid $\mathcal{M} = (V, \mathcal{I})$ where $\mathcal{I} = \{S \subseteq V : |S| \le k\}$, and consider problem $\max \{f(A) : A \in \mathcal{I}\}$
- Hence, the greedy algorithm is 1 1/e optimal for maximizing polymatroidal f subject to a k-uniform matroid constraint.

Cont. Extension

- Consider a k-uniform matroid $\mathcal{M} = (V, \mathcal{I})$ where $\mathcal{I} = \{S \subseteq V : |S| \le k\}$, and consider problem $\max \{f(A) : A \in \mathcal{I}\}$
- Hence, the greedy algorithm is 1-1/e optimal for maximizing polymatroidal f subject to a k-uniform matroid constraint.
- Might be useful to allow an arbitrary matroid (e.g., partition matroid $\mathcal{I} = \{X \subseteq V : |X \cap V_i| \le k_i \text{ for all } i = 1, \dots, \ell\}$, or a transversal, etc).

Cont. Extension

- Consider a k-uniform matroid $\mathcal{M} = (V, \mathcal{I})$ where $\mathcal{I} = \{S \subseteq V : |S| \le k\}$, and consider problem $\max \{f(A) : A \in \mathcal{I}\}$
- Hence, the greedy algorithm is 1-1/e optimal for maximizing polymatroidal f subject to a k-uniform matroid constraint.
- Might be useful to allow an arbitrary matroid (e.g., partition matroid $\mathcal{I} = \{X \subseteq V : |X \cap V_i| \le k_i \text{ for all } i = 1, \dots, \ell\}$., or a transversal, etc).
- Knapsack constraint: if each item $v \in V$ has a cost c(v), we may ask for $c(S) \leq b$ where b is a budget, in units of costs.

Cont. Extension

- Consider a k-uniform matroid $\mathcal{M} = (V, \mathcal{I})$ where $\mathcal{I} = \{S \subseteq V : |S| \le k\}$, and consider problem $\max \{f(A) : A \in \mathcal{I}\}$
- Hence, the greedy algorithm is 1-1/e optimal for maximizing polymatroidal f subject to a k-uniform matroid constraint.
- Might be useful to allow an arbitrary matroid (e.g., partition matroid $\mathcal{I} = \{X \subseteq V : |X \cap V_i| \le k_i \text{ for all } i = 1, \dots, \ell\}$., or a transversal, etc).
- Knapsack constraint: if each item $v \in V$ has a cost c(v), we may ask for $c(S) \leq b$ where b is a budget, in units of costs. Q: Is $\mathcal{I} = \{I : c(I) \leq b\}$ the independent sets of a matroid?

Cont. Extension

- Consider a k-uniform matroid $\mathcal{M} = (V, \mathcal{I})$ where $\mathcal{I} = \{S \subseteq V : |S| \le k\}$, and consider problem $\max \{f(A) : A \in \mathcal{I}\}$
- Hence, the greedy algorithm is 1-1/e optimal for maximizing polymatroidal f subject to a k-uniform matroid constraint.
- Might be useful to allow an arbitrary matroid (e.g., partition matroid $\mathcal{I} = \{X \subseteq V : |X \cap V_i| \le k_i \text{ for all } i = 1, \dots, \ell\}$., or a transversal, etc).
- Knapsack constraint: if each item $v \in V$ has a cost c(v), we may ask for $c(S) \leq b$ where b is a budget, in units of costs. Q: Is $\mathcal{I} = \{I : c(I) \leq b\}$ the independent sets of a matroid?
- We may wish to maximize f subject to multiple matroid constraints. I.e., $S \in \mathcal{I}_1, S \in \mathcal{I}_2, \ldots, S \in \mathcal{I}_p$ where \mathcal{I}_i are independent sets of the i^{th} matroid.

Cont. Extension

- Consider a k-uniform matroid $\mathcal{M} = (V, \mathcal{I})$ where $\mathcal{I} = \{S \subseteq V : |S| \le k\}$, and consider problem $\max \{f(A) : A \in \mathcal{I}\}$
- Hence, the greedy algorithm is 1-1/e optimal for maximizing polymatroidal f subject to a k-uniform matroid constraint.
- Might be useful to allow an arbitrary matroid (e.g., partition matroid $\mathcal{I} = \{X \subseteq V : |X \cap V_i| \le k_i \text{ for all } i = 1, \dots, \ell\}$., or a transversal, etc).
- Knapsack constraint: if each item $v \in V$ has a cost c(v), we may ask for $c(S) \leq b$ where b is a budget, in units of costs. Q: Is $\mathcal{I} = \{I : c(I) \leq b\}$ the independent sets of a matroid?
- We may wish to maximize f subject to multiple matroid constraints. I.e., $S \in \mathcal{I}_1, S \in \mathcal{I}_2, \ldots, S \in \mathcal{I}_p$ where \mathcal{I}_i are independent sets of the i^{th} matroid.
- Combinations of the above (e.g., knapsack & multiple matroid constraints).

Greedy over multiple matroids

• Obvious heuristic is to use the greedy step but always stay feasible.

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.
- I.e., Starting with $S_0 = \emptyset$, we repeat the following greedy step

$$S_{i+1} = S_i \cup \left\{ \operatorname*{argmax}_{v \in V \setminus S_i : S_i + v \in \bigcap_{i=1}^p \mathcal{I}_i} f(S_i \cup \{v\}) \right\}$$
(14.1)

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.
- I.e., Starting with $S_0 = \emptyset$, we repeat the following greedy step

$$S_{i+1} = S_i \cup \left\{ \operatorname*{argmax}_{v \in V \setminus S_i : S_i + v \in \bigcap_{i=1}^p \mathcal{I}_i} f(S_i \cup \{v\}) \right\}$$
(14.1)

• That is, we keep choosing next whatever feasible element looks best.

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.
- I.e., Starting with $S_0 = \emptyset$, we repeat the following greedy step

$$S_{i+1} = S_i \cup \left\{ \operatorname*{argmax}_{v \in V \setminus S_i : S_i + v \in \bigcap_{i=1}^p \mathcal{I}_i} f(S_i \cup \{v\}) \right\}$$
(14.1)

- That is, we keep choosing next whatever feasible element looks best.
- This algorithm is simple and also has a guarantee

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.
- I.e., Starting with $S_0 = \emptyset$, we repeat the following greedy step

$$S_{i+1} = S_i \cup \left\{ \operatorname*{argmax}_{v \in V \setminus S_i : S_i + v \in \bigcap_{i=1}^p \mathcal{I}_i} f(S_i \cup \{v\}) \right\}$$
(14.1)

- That is, we keep choosing next whatever feasible element looks best.
- This algorithm is simple and also has a guarantee

Theorem 14.3.1

Given a polymatroid function f, and set of matroids $\{M_j = (E, \mathcal{I}_j)\}_{j=1}^p$, the above greedy algorithm returns sets S_i such that for each i we have $f(S_i) \geq \frac{1}{p+1} \max_{|S| \leq i, S \in \bigcap_{i=1}^p \mathcal{I}_i} f(S)$, assuming such sets exists.

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.
- I.e., Starting with $S_0 = \emptyset$, we repeat the following greedy step

$$S_{i+1} = S_i \cup \left\{ \operatorname*{argmax}_{v \in V \setminus S_i : S_i + v \in \bigcap_{i=1}^p \mathcal{I}_i} f(S_i \cup \{v\}) \right\}$$
(14.1)

- That is, we keep choosing next whatever feasible element looks best.
- This algorithm is simple and also has a guarantee

Theorem 14.3.1

Given a polymatroid function f, and set of matroids $\{M_j = (E, \mathcal{I}_j)\}_{j=1}^p$, the above greedy algorithm returns sets S_i such that for each i we have $f(S_i) \geq \frac{1}{p+1} \max_{|S| \leq i, S \in \bigcap_{i=1}^p \mathcal{I}_i} f(S)$, assuming such sets exists.

• For one matroid, we have a 1/2 approximation.

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.
- I.e., Starting with $S_0 = \emptyset$, we repeat the following greedy step

$$S_{i+1} = S_i \cup \left\{ \operatorname*{argmax}_{v \in V \setminus S_i : S_i + v \in \bigcap_{i=1}^p \mathcal{I}_i} f(S_i \cup \{v\}) \right\}$$
(14.1)

- That is, we keep choosing next whatever feasible element looks best.
- This algorithm is simple and also has a guarantee

Theorem 14.3.1

Given a polymatroid function f, and set of matroids $\{M_j = (E, \mathcal{I}_j)\}_{j=1}^p$, the above greedy algorithm returns sets S_i such that for each i we have $f(S_i) \geq \frac{1}{p+1} \max_{|S| \leq i, S \in \bigcap_{i=1}^p \mathcal{I}_i} f(S)$, assuming such sets exists.

- For one matroid, we have a 1/2 approximation.
- Very easy algorithm, Minoux trick still possible, while addresses multiple matroid constraints

Greedy over multiple matroids

- Obvious heuristic is to use the greedy step but always stay feasible.
- $\bullet\,$ I.e., Starting with $S_0=\emptyset,$ we repeat the following greedy step

$$S_{i+1} = S_i \cup \left\{ \operatorname*{argmax}_{v \in V \setminus S_i : S_i + v \in \bigcap_{i=1}^p \mathcal{I}_i} f(S_i \cup \{v\}) \right\}$$
(14.1)

- That is, we keep choosing next whatever feasible element looks best.
- This algorithm is simple and also has a guarantee

Theorem 14.3.1

Given a polymatroid function f, and set of matroids $\{M_j = (E, \mathcal{I}_j)\}_{j=1}^p$, the above greedy algorithm returns sets S_i such that for each i we have $f(S_i) \geq \frac{1}{p+1} \max_{|S| \leq i, S \in \bigcap_{i=1}^p \mathcal{I}_i} f(S)$, assuming such sets exists.

- For one matroid, we have a 1/2 approximation.
- Very easy algorithm, Minoux trick still possible, while addresses multiple matroid constraints but the bound is not that good when there are many matroids.

Lovász extension

Matroid Intersection and Bipartite Matching

• Why might we want to do matroid intersection?

Cont. Extensions

- Why might we want to do matroid intersection?
- Consider bipartite graph G = (V, F, E). Define two partition matroids $M_V = (E, \mathcal{I}_V)$, and $M_F = (E, \mathcal{I}_F)$.

Cont. Extensions

- Why might we want to do matroid intersection?
- Consider bipartite graph G = (V, F, E). Define two partition matroids $M_V = (E, \mathcal{I}_V)$, and $M_F = (E, \mathcal{I}_F)$.
- Independence in each matroid corresponds to:

Cont. Extensions

- Why might we want to do matroid intersection?
- Consider bipartite graph G = (V, F, E). Define two partition matroids $M_V = (E, \mathcal{I}_V)$, and $M_F = (E, \mathcal{I}_F)$.
- Independence in each matroid corresponds to:
 - $I \in \mathcal{I}_V \text{ if } |I \cap (V, f)| \leq 1 \text{ for all } f \in F,$

Cont. Extensions

- Why might we want to do matroid intersection?
- Consider bipartite graph G = (V, F, E). Define two partition matroids $M_V = (E, \mathcal{I}_V)$, and $M_F = (E, \mathcal{I}_F)$.
- Independence in each matroid corresponds to:
 - $I \in \mathcal{I}_V \text{ if } |I \cap (V, f)| \leq 1 \text{ for all } f \in F,$
 - 2 and $I \in \mathcal{I}_F$ if $|I \cap (v, F)| \leq 1$ for all $v \in V$.

Cont. Extension

Lovász extension

- Why might we want to do matroid intersection?
- Consider bipartite graph G = (V, F, E). Define two partition matroids $M_V = (E, \mathcal{I}_V)$, and $M_F = (E, \mathcal{I}_F)$.
- Independence in each matroid corresponds to:
 - $\ \, {\bf I} \in {\mathcal I}_V \ \, {\rm if} \ \, |I \cap (V,f)| \leq 1 \ \, {\rm for \ \, all} \ \, f \in F,$
 - 2 and $I \in \mathcal{I}_F$ if $|I \cap (v, F)| \le 1$ for all $v \in V$.

Cont. Extensions

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph G = (V, F, E). Define two partition matroids $M_V = (E, \mathcal{I}_V)$, and $M_F = (E, \mathcal{I}_F)$.
- Independence in each matroid corresponds to:
 - $\ \, {\bf I} \in {\mathcal I}_V \ \, {\rm if} \ \, |I \cap (V,f)| \leq 1 \ \, {\rm for \ \, all} \ \, f \in F,$
 - 2 and $I \in \mathcal{I}_F$ if $|I \cap (v, F)| \le 1$ for all $v \in V$.

• Therefore, a matching in G is simultaneously independent in both M_V and M_F and finding the maximum matching is finding the maximum cardinality set independent in both matroids.

Cont. Extensions

- Why might we want to do matroid intersection?
- Consider bipartite graph G = (V, F, E). Define two partition matroids $M_V = (E, \mathcal{I}_V)$, and $M_F = (E, \mathcal{I}_F)$.
- Independence in each matroid corresponds to:
 - $\ \, {\bf I} \in {\mathcal I}_V \ \, {\rm if} \ \, |I \cap (V,f)| \leq 1 \ \, {\rm for \ \, all} \ \, f \in F,$
 - 2 and $I \in \mathcal{I}_F$ if $|I \cap (v, F)| \le 1$ for all $v \in V$.

- Therefore, a matching in G is simultaneously independent in both M_V and M_F and finding the maximum matching is finding the maximum cardinality set independent in both matroids.
- In bipartite graph case, therefore, can be solved in polynomial time.

Matroid Intersection and Network Communication

• Let $G_1 = (V_1, E)$ and $G_2 = (V_2, E)$ be two graphs on an isomorphic set of edges (lets just give them same names E).

Matroid Intersection and Network Communication

- Let $G_1 = (V_1, E)$ and $G_2 = (V_2, E)$ be two graphs on an isomorphic set of edges (lets just give them same names E).
- Consider two cycle matroids associated with these graphs $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$. They might be very different (e.g., an edge might be between two distinct nodes in G_1 but the same edge is a loop in multi-graph G_2 .)

Matroid Intersection and Network Communication

- Let $G_1 = (V_1, E)$ and $G_2 = (V_2, E)$ be two graphs on an isomorphic set of edges (lets just give them same names E).
- Consider two cycle matroids associated with these graphs $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$. They might be very different (e.g., an edge might be between two distinct nodes in G_1 but the same edge is a loop in multi-graph G_2 .)
- We may wish to find the maximum size edge-induced subgraph that is still forest in both graphs (i.e., adding any edges will create a circuit in either M_1 , M_2 , or both).

Matroid Intersection and Network Communication

- Let $G_1 = (V_1, E)$ and $G_2 = (V_2, E)$ be two graphs on an isomorphic set of edges (lets just give them same names E).
- Consider two cycle matroids associated with these graphs $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$. They might be very different (e.g., an edge might be between two distinct nodes in G_1 but the same edge is a loop in multi-graph G_2 .)
- We may wish to find the maximum size edge-induced subgraph that is still forest in both graphs (i.e., adding any edges will create a circuit in either M_1 , M_2 , or both).
- This is again a matroid intersection problem.

• Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From G with n nodes, create G' with n + 1 nodes by duplicating (w.l.o.g.) a particular node $v_1 \in V(G)$ to v_1^+, v_1^- , and have all outgoing edges from v_1 come instead from v_1^- and all edges incoming to v_1 go instead to v_1^+ .

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From G with n nodes, create G' with n + 1 nodes by duplicating (w.l.o.g.) a particular node v₁ ∈ V(G) to v₁⁺, v₁⁻, and have all outgoing edges from v₁ come instead from v₁⁻ and all edges incoming to v₁ go instead to v₁⁺.
- Let M_1 be the cycle matroid on G'.

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From G with n nodes, create G' with n + 1 nodes by duplicating (w.l.o.g.) a particular node $v_1 \in V(G)$ to v_1^+, v_1^- , and have all outgoing edges from v_1 come instead from v_1^- and all edges incoming to v_1 go instead to v_1^+ .
- Let M_1 be the cycle matroid on G'.
- Let M_2 be the partition matroid having as independent sets those that have no more than one edge leaving any node i.e., $I \in \mathcal{I}(M_2)$ if $|I \cap \delta^-(v)| \leq 1$ for all $v \in V(G')$.

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From G with n nodes, create G' with n + 1 nodes by duplicating (w.l.o.g.) a particular node $v_1 \in V(G)$ to v_1^+, v_1^- , and have all outgoing edges from v_1 come instead from v_1^- and all edges incoming to v_1 go instead to v_1^+ .
- Let M_1 be the cycle matroid on G'.
- Let M_2 be the partition matroid having as independent sets those that have no more than one edge leaving any node i.e., $I \in \mathcal{I}(M_2)$ if $|I \cap \delta^-(v)| \leq 1$ for all $v \in V(G')$.
- Let M_3 be the partition matroid having as independent sets those that have no more than one edge entering any node i.e., $I \in \mathcal{I}(M_3)$ if $|I \cap \delta^+(v)| \leq 1$ for all $v \in V(G')$.

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From G with n nodes, create G' with n + 1 nodes by duplicating (w.l.o.g.) a particular node $v_1 \in V(G)$ to v_1^+, v_1^- , and have all outgoing edges from v_1 come instead from v_1^- and all edges incoming to v_1 go instead to v_1^+ .
- Let M_1 be the cycle matroid on G'.
- Let M_2 be the partition matroid having as independent sets those that have no more than one edge leaving any node i.e., $I \in \mathcal{I}(M_2)$ if $|I \cap \delta^-(v)| \leq 1$ for all $v \in V(G')$.
- Let M_3 be the partition matroid having as independent sets those that have no more than one edge entering any node i.e., $I \in \mathcal{I}(M_3)$ if $|I \cap \delta^+(v)| \leq 1$ for all $v \in V(G')$.
- Then a Hamiltonian cycle exists iff there is an n-element intersection of M_1 , M_2 , and M_3 .

• Recall, the traveling salesperson problem (TSP) is the problem to, given a directed graph, start at a node, visit all cities, and return to the starting point. Optimization version does this tour at minimum cost.

- Recall, the traveling salesperson problem (TSP) is the problem to, given a directed graph, start at a node, visit all cities, and return to the starting point. Optimization version does this tour at minimum cost.
- Since TSP is NP-complete, we obviously can't solve matroid intersections of 3 more matroids, unless P=NP.

- Recall, the traveling salesperson problem (TSP) is the problem to, given a directed graph, start at a node, visit all cities, and return to the starting point. Optimization version does this tour at minimum cost.
- Since TSP is NP-complete, we obviously can't solve matroid intersections of 3 more matroids, unless P=NP.
- But bipartite graph example gives us hope for 2 matroids, as in that case we can easily solve $\max |X|$ s.t. $x \in \mathcal{I}_1 \cap \mathcal{I}_2$.

Greedy over multiple matroids: Generalized Bipartite Matching

• Generalized bipartite matching (i.e., max bipartite matching with submodular costs on the edges). Use two partition matroids (as mentioned earlier in class)

Greedy over multiple matroids: Generalized Bipartite Matching

- Generalized bipartite matching (i.e., max bipartite matching with submodular costs on the edges). Use two partition matroids (as mentioned earlier in class)
- Useful in natural language processing: Ex. Computer language translation, find an alignment between two language strings.

Greedy over multiple matroids: Generalized Bipartite Matching

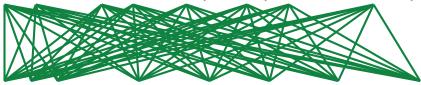
- Generalized bipartite matching (i.e., max bipartite matching with submodular costs on the edges). Use two partition matroids (as mentioned earlier in class)
- Useful in natural language processing: Ex. Computer language translation, find an alignment between two language strings.
- Consider bipartite graph G = (E, F, V) where E and F are the left/right set of nodes, respectively, and V is the set of edges.

Greedy over multiple matroids: Generalized Bipartite Matching

- Generalized bipartite matching (i.e., max bipartite matching with submodular costs on the edges). Use two partition matroids (as mentioned earlier in class)
- Useful in natural language processing: Ex. Computer language translation, find an alignment between two language strings.
- Consider bipartite graph G = (E, F, V) where E and F are the left/right set of nodes, respectively, and V is the set of edges.
- *E* corresponds to, say, an English language sentence and *F* corresponds to a French language sentence goal is to form a matching (an alignment) between the two.

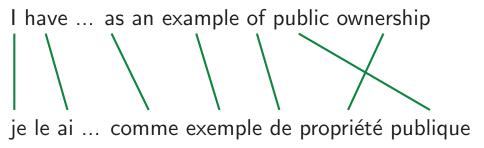
• Consider English string and French string, set up as a bipartite graph.

I have ... as an example of public ownership



je le ai ... comme exemple de propriété publique

• One possible alignment, a matching, with score as sum of edge weights.

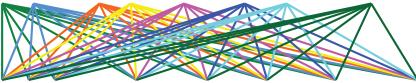


Lovász extension

Greedy over > 1 matroids: Multiple Language Alignment

• Edges incident to English words constitute an edge partition

I have ... as an example of public ownership



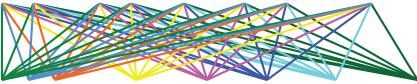
je le ai ... comme exemple de propriété publique

- The two edge partitions can be used to set up two 1-partition matroids on the edges.
- For each matroid, a set of edges is independent only if the set intersects each partition block no more than one time.

Greedy over > 1 matroids: Multiple Language Alignment

• Edges incident to French words constitute an edge partition

I have ... as an example of public ownership



je le ai ... comme exemple de propriété publique

- The two edge partitions can be used to set up two 1-partition matroids on the edges.
- For each matroid, a set of edges is independent only if the set intersects each partition block no more than one time.

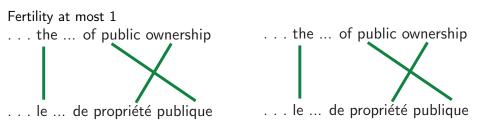
• Typical to use bipartite matching to find an alignment between the two language strings.

- Typical to use bipartite matching to find an alignment between the two language strings.
- As we saw, this is equivalent to two 1-partition matroids and a non-negative modular cost function on the edges.

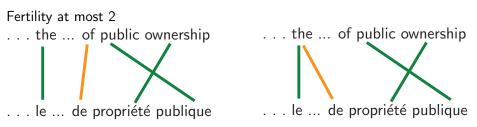
ıbmodular Max w. Other Constraints

- Typical to use bipartite matching to find an alignment between the two language strings.
- As we saw, this is equivalent to two 1-partition matroids and a non-negative modular cost function on the edges.
- We can generalize this using a polymatroid cost function on the edges, and two *k*-partition matroids, allowing for "fertility" in the models:

- Typical to use bipartite matching to find an alignment between the two language strings.
- As we saw, this is equivalent to two 1-partition matroids and a non-negative modular cost function on the edges.
- We can generalize this using a polymatroid cost function on the edges, and two *k*-partition matroids, allowing for "fertility" in the models:



- Typical to use bipartite matching to find an alignment between the two language strings.
- As we saw, this is equivalent to two 1-partition matroids and a non-negative modular cost function on the edges.
- We can generalize this using a polymatroid cost function on the edges, and two *k*-partition matroids, allowing for "fertility" in the models:



- Generalizing further, each block of edges in each partition matroid can have its own "fertility" limit:
 - $\mathcal{I} = \{ X \subseteq V : |X \cap V_i| \le k_i \text{ for all } i = 1, \dots, \ell \}.$

- Generalizing further, each block of edges in each partition matroid can have its own "fertility" limit:
 - $\mathcal{I} = \{ X \subseteq V : |X \cap V_i| \le k_i \text{ for all } i = 1, \dots, \ell \}.$
- Maximizing submodular function subject to multiple matroid constraints addresses this problem.

Greedy over multiple matroids: Submodular Welfare

• Submodular Welfare Maximization: Consider *E* a set of *m* goods to be distributed/partitioned among *n* people ("players").

Submodular Max w. Other Constraints

Cont. Extensions

Greedy over multiple matroids: Submodular Welfare

- Submodular Welfare Maximization: Consider *E* a set of *m* goods to be distributed/partitioned among *n* people ("players").
- Each players has a submodular "valuation" function, $g_i : 2^E \to \mathbb{R}_+$ that measures how "desirable" or "valuable" a given subset $A \subseteq E$ of goods are to that player.

Lovász exte

Greedy over multiple matroids: Submodular Welfare

- Submodular Welfare Maximization: Consider *E* a set of *m* goods to be distributed/partitioned among *n* people ("players").
- Each players has a submodular "valuation" function, $g_i : 2^E \to \mathbb{R}_+$ that measures how "desirable" or "valuable" a given subset $A \subseteq E$ of goods are to that player.
- Assumption: No good can be shared between multiple players, each good must be allocated to a single player.

Greedy over multiple matroids: Submodular Welfare

- Submodular Welfare Maximization: Consider *E* a set of *m* goods to be distributed/partitioned among *n* people ("players").
- Each players has a submodular "valuation" function, $g_i : 2^E \to \mathbb{R}_+$ that measures how "desirable" or "valuable" a given subset $A \subseteq E$ of goods are to that player.
- Assumption: No good can be shared between multiple players, each good must be allocated to a single player.
- Goal of submodular welfare: Partition the goods $E = E_1 \cup E_2 \cup \cdots \cup E_n$ into n blocks in order to maximize the submodular social welfare, measured as:

submodular-social-welfare
$$(E_1, E_2, \dots, E_n) = \sum_{i=1}^n g_i(E_i).$$
 (14.2)

Greedy over multiple matroids: Submodular Welfare

- Submodular Welfare Maximization: Consider E a set of m goods to be distributed/partitioned among n people ("players").
- Each players has a submodular "valuation" function, $g_i : 2^E \to \mathbb{R}_+$ that measures how "desirable" or "valuable" a given subset $A \subseteq E$ of goods are to that player.
- Assumption: No good can be shared between multiple players, each good must be allocated to a single player.
- Goal of submodular welfare: Partition the goods $E = E_1 \cup E_2 \cup \cdots \cup E_n$ into n blocks in order to maximize the submodular social welfare, measured as:

submodular-social-welfare
$$(E_1, E_2, \dots, E_n) = \sum_{i=1}^n g_i(E_i).$$
 (14.2)

• We can solve this via submodular maximization subject to multiple matroid independence constraints as we next describe ...

 \bullet Create new ground set E^\prime as disjoint union of n copies of the ground set. I.e.,

$$E' = \underbrace{E \uplus E \uplus \cdots \uplus E}_{n \times}$$
(14.3)

• Create new ground set E' as disjoint union of n copies of the ground set. I.e.,

$$E' = \underbrace{E \uplus E \uplus \cdots \uplus E}_{n \times}$$
(14.3)

• Let $E^{(i)} \subset E'$ be the i^{th} block of E'.

• Create new ground set E^\prime as disjoint union of n copies of the ground set. I.e.,

$$E' = \underbrace{E \uplus E \uplus \cdots \uplus E}_{n \times}$$
(14.3)

- Let $E^{(i)} \subset E'$ be the i^{th} block of E'.
- For any $e \in E$, the corresponding element in $E^{(i)}$ is called $(e, i) \in E^{(i)}$ (each original element is tagged by integer).

• Create new ground set E^\prime as disjoint union of n copies of the ground set. I.e.,

$$E' = \underbrace{E \uplus E \uplus \cdots \uplus E}_{n \times}$$
(14.3)

- Let $E^{(i)} \subset E'$ be the i^{th} block of E'.
- For any $e \in E$, the corresponding element in $E^{(i)}$ is called $(e, i) \in E^{(i)}$ (each original element is tagged by integer).
- For $e \in E$, define $E_e = \{(e', i) \in E' : e' = e\}$.

• Create new ground set E^\prime as disjoint union of n copies of the ground set. I.e.,

$$E' = \underbrace{E \uplus E \uplus \cdots \uplus E}_{n \times}$$
(14.3)

- Let $E^{(i)} \subset E'$ be the i^{th} block of E'.
- For any $e \in E$, the corresponding element in $E^{(i)}$ is called $(e, i) \in E^{(i)}$ (each original element is tagged by integer).
- For $e \in E$, define $E_e = \{(e', i) \in E' : e' = e\}$.
- Hence, $\{E_e\}_{e \in E}$ is a partition of E', each block of the partition for one of the original elements in E.

• Create new ground set E^\prime as disjoint union of n copies of the ground set. I.e.,

$$E' = \underbrace{E \uplus E \uplus \cdots \uplus E}_{n \times}$$
(14.3)

- Let $E^{(i)} \subset E'$ be the i^{th} block of E'.
- For any $e \in E$, the corresponding element in $E^{(i)}$ is called $(e, i) \in E^{(i)}$ (each original element is tagged by integer).
- For $e \in E$, define $E_e = \{(e', i) \in E' : e' = e\}$.
- Hence, $\{E_e\}_{e \in E}$ is a partition of E', each block of the partition for one of the original elements in E.
- Create a 1-partition matroid $\mathcal{M} = (E', \mathcal{I})$ where

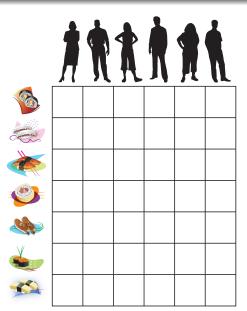
$$\mathcal{I} = \left\{ S \subseteq E' : \forall e \in E, |S \cap E_e| \le 1 \right\}$$
(14.4)

• Hence, S is independent in matroid $\mathcal{M}=(E',I)$ if S uses each original element no more than once.

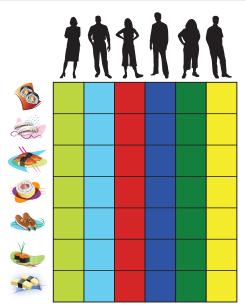
- Hence, S is independent in matroid $\mathcal{M}=(E',I)$ if S uses each original element no more than once.
- Create submodular function $f': 2^{E'} \to \mathbb{R}_+$ with $f'(S) = \sum_{i=1}^n g_i(S \cap E^{(i)}).$

- Hence, S is independent in matroid $\mathcal{M}=(E',I)$ if S uses each original element no more than once.
- Create submodular function $f': 2^{E'} \to \mathbb{R}_+$ with $f'(S) = \sum_{i=1}^n g_i(S \cap E^{(i)}).$
- Submodular welfare maximization becomes matroid constrained submodular max $\max \{f'(S) : S \in \mathcal{I}\}$, so greedy algorithm gives a 1/2 approximation.

• Have n = 6 people (who don't like to share) and |E| = m = 7pieces of sushi. E.g., $e \in E$ might be e = "salmon roll".

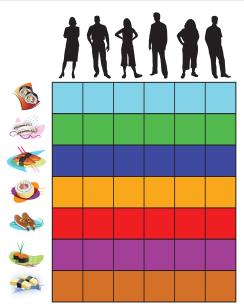


- Have n = 6 people (who don't like to share) and |E| = m = 7pieces of sushi. E.g., $e \in E$ might be e = "salmon roll".
- Goal: distribute sushi to people to maximize social welfare.

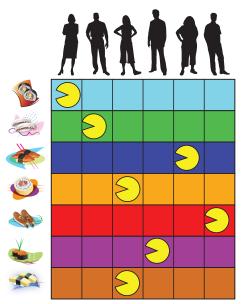


- Have n = 6 people (who don't like to share) and |E| = m = 7pieces of sushi. E.g., $e \in E$ might be e = "salmon roll".
- Goal: distribute sushi to people to maximize social welfare.
- Ground set disjoint union $E \amalg E \amalg E \amalg E \amalg E \amalg E \amalg E$.

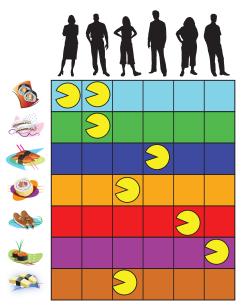
Prof. Jeff Bilmes



- Have n = 6 people (who don't like to share) and |E| = m = 7pieces of sushi. E.g., $e \in E$ might be e = "salmon roll".
- Goal: distribute sushi to people to maximize social welfare.
- Ground set disjoint union $E \amalg E \amalg E \amalg E \amalg E \amalg E \amalg E$.
- Partition matroid partitions: $E_{e_1} \cup E_{e_2} \cup E_{e_3} \cup E_{e_4} \cup E_{e_5} \cup$ $E_{ee} \cup E_{e_7}$.



- Have n = 6 people (who don't like to share) and |E| = m = 7 pieces of sushi. E.g., $e \in E$ might be e = "salmon roll".
- Goal: distribute sushi to people to maximize social welfare.
- Ground set disjoint union $E \uplus E \uplus E \uplus E \uplus E \uplus E \uplus E$.
- Partition matroid partitions: $E_{e_1} \cup E_{e_2} \cup E_{e_3} \cup E_{e_4} \cup E_{e_5} \cup E_{e_6} \cup E_{e_7}.$
- independent allocation



- Have n = 6 people (who don't like to share) and |E| = m = 7 pieces of sushi. E.g., $e \in E$ might be e = "salmon roll".
- Goal: distribute sushi to people to maximize social welfare.
- Ground set disjoint union $E \uplus E \uplus E \uplus E \uplus E \uplus E \uplus E$.
- Partition matroid partitions: $E_{e_1} \cup E_{e_2} \cup E_{e_3} \cup E_{e_4} \cup E_{e_5} \cup E_{e_6} \cup E_{e_7}.$
- independent allocation
- non-independent allocation

Monotone Submodular over Knapsack Constraint

• The constraint $|A| \leq k$ is a simple cardinality constraint.

- The constraint $|A| \leq k$ is a simple cardinality constraint.
- Consider a non-negative integral modular function $c: E \to \mathbb{Z}_+$.

- The constraint $|A| \leq k$ is a simple cardinality constraint.
- Consider a non-negative integral modular function $c: E \to \mathbb{Z}_+$.
- A knapsack constraint would be of the form $c(A) \leq b$ where B is some integer budget that must not be exceeded. That is $\max \{f(A) : A \subseteq V, c(A) \leq b\}.$

Submodular Max w. Other Constraints

Cont. Extensions

- The constraint $|A| \leq k$ is a simple cardinality constraint.
- Consider a non-negative integral modular function $c: E \to \mathbb{Z}_+$.
- A knapsack constraint would be of the form $c(A) \leq b$ where B is some integer budget that must not be exceeded. That is $\max \{f(A) : A \subseteq V, c(A) \leq b\}.$
- Important: A knapsack constraint yields an independence system (down closed) but it is not a matroid!

Submodular Max w. Other Constraints

Cont. Extensions

- The constraint $|A| \leq k$ is a simple cardinality constraint.
- Consider a non-negative integral modular function $c: E \to \mathbb{Z}_+$.
- A knapsack constraint would be of the form $c(A) \leq b$ where B is some integer budget that must not be exceeded. That is $\max \{f(A) : A \subseteq V, c(A) \leq b\}.$
- Important: A knapsack constraint yields an independence system (down closed) but it is not a matroid!
- c(e) may be seen as the cost of item e and if c(e) = 1 for all e, then we recover the cardinality constraint we saw earlier.

Monotone Submodular over Knapsack Constraint

• Greedy can be seen as choosing the best gain: Starting with $S_0 = \emptyset$, we repeat the following greedy step

$$S_{i+1} = S_i \cup \left\{ \operatorname*{argmax}_{v \in V \setminus S_i} \left(f(S_i \cup \{v\}) - f(S_i) \right) \right\}$$
(14.5)

the gain is $f(\{v\}|S_i) = f(S_i + v) - f(S_i)$, so greedy just chooses next the currently unselected element with greatest gain.

Monotone Submodular over Knapsack Constraint

• Greedy can be seen as choosing the best gain: Starting with $S_0 = \emptyset$, we repeat the following greedy step

$$S_{i+1} = S_i \cup \left\{ \operatorname*{argmax}_{v \in V \setminus S_i} \left(f(S_i \cup \{v\}) - f(S_i) \right) \right\}$$
(14.5)

the gain is $f(\{v\}|S_i) = f(S_i + v) - f(S_i)$, so greedy just chooses next the currently unselected element with greatest gain.

• Core idea in knapsack case: Greedy can be extended to choose next whatever looks cost-normalized best, i.e., Starting some initial set S_0 , we repeat the following cost-normalized greedy step

$$S_{i+1} = S_i \cup \left\{ \operatorname*{argmax}_{v \in V \setminus S_i} \frac{f(S_i \cup \{v\}) - f(S_i)}{c(v)} \right\}$$
(14.6)

which we repeat until $c(S_{i+1}) > b$ and then take S_i as the solution.

A Knapsack Constraint

- There are a number of ways of getting approximation bounds using this strategy.
- If we run the normalized greedy procedure starting with $S_0 = \emptyset$, and compare the solution found with the max of the singletons $\max_{v \in V} f(\{v\})$, choosing the max, then we get a $(1 e^{-1/2}) \approx 0.39$ approximation, in $O(n^2)$ time (Minoux trick also possible for further speed)
- Partial enumeration: On the other hand, we can get a $(1 e^{-1}) \approx 0.63$ approximation in $O(n^5)$ time if we run the above procedure starting from all sets of cardinality three (so restart for all S_0 such that $|S_0| = 3$), and compare that with the best singleton and pairwise solution.
- Extending something similar to this to *d* simultaneous knapsack constraints is possible as well.

Local Search Algorithms

From J. Vondrak

- Local search involves switching up to t elements, as long as it provides a (non-trivial) improvement; can iterate in several phases. Some examples follow:
- 1/3 approximation to unconstrained non-monotone maximization [Feige, Mirrokni, Vondrak, 2007]
- $1/(k+2+\frac{1}{k}+\delta_t)$ approximation for non-monotone maximization subject to k matroids [Lee, Mirrokni, Nagarajan, Sviridenko, 2009]
- $1/(k + \delta_t)$ approximation for monotone submodular maximization subject to $k \ge 2$ matroids [Lee, Sviridenko, Vondrak, 2010].

 Alternatively, we may wish to maximize non-monotone submodular functions. This includes of course graph cuts, and this problem is APX-hard, so maximizing non-monotone functions, even unconstrainedly, is hard.

- Alternatively, we may wish to maximize non-monotone submodular functions. This includes of course graph cuts, and this problem is APX-hard, so maximizing non-monotone functions, even unconstrainedly, is hard.
- If f is an arbitrary submodular function (so neither polymatroidal, nor necessarily positive or negative), then verifying if the maximum of f is positive or negative is already NP-hard.

- Alternatively, we may wish to maximize non-monotone submodular functions. This includes of course graph cuts, and this problem is APX-hard, so maximizing non-monotone functions, even unconstrainedly, is hard.
- If f is an arbitrary submodular function (so neither polymatroidal, nor necessarily positive or negative), then verifying if the maximum of f is positive or negative is already NP-hard.
- Therefore, submodular function max in such case is inapproximable unless P=NP (since any such procedure would give us the sign of the max).

- Alternatively, we may wish to maximize non-monotone submodular functions. This includes of course graph cuts, and this problem is APX-hard, so maximizing non-monotone functions, even unconstrainedly, is hard.
- If f is an arbitrary submodular function (so neither polymatroidal, nor necessarily positive or negative), then verifying if the maximum of f is positive or negative is already NP-hard.
- Therefore, submodular function max in such case is inapproximable unless P=NP (since any such procedure would give us the sign of the max).
- Thus, any approximation algorithm must be for unipolar submodular functions. E.g., non-negative but otherwise arbitrary submodular functions.

- Alternatively, we may wish to maximize non-monotone submodular functions. This includes of course graph cuts, and this problem is APX-hard, so maximizing non-monotone functions, even unconstrainedly, is hard.
- If f is an arbitrary submodular function (so neither polymatroidal, nor necessarily positive or negative), then verifying if the maximum of f is positive or negative is already NP-hard.
- Therefore, submodular function max in such case is inapproximable unless P=NP (since any such procedure would give us the sign of the max).
- Thus, any approximation algorithm must be for unipolar submodular functions. E.g., non-negative but otherwise arbitrary submodular functions.
- We may get a $(\frac{1}{3} \frac{\epsilon}{n})$ approximation for maximizing non-monotone non-negative submodular functions, with most $O(\frac{1}{\epsilon}n^3\log n)$ function calls using approximate local maxima.

Submodularity and local optima

• Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \setminus S$ (i.e., local in a Hamming ball of radius 1).

Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \setminus S$ (i.e., local in a Hamming ball of radius 1).
- The following interesting result is true for any submodular function:

Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \setminus S$ (i.e., local in a Hamming ball of radius 1).
- The following interesting result is true for any submodular function:

Lemma 14.3.2

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.

Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \setminus S$ (i.e., local in a Hamming ball of radius 1).
- The following interesting result is true for any submodular function:

Lemma 14.3.2

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.

• Idea of proof: Given $v_1, v_2 \in S$, suppose $f(S - v_1) \leq f(S)$ and $f(S - v_2) \leq f(S)$. Submodularity requires $f(S - v_1) + f(S - v_2) \geq f(S) + f(S - v_1 - v_2)$ which would be impossible unless $f(S - v_1 - v_2) \leq f(S)$.

Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \setminus S$ (i.e., local in a Hamming ball of radius 1).
- The following interesting result is true for any submodular function:

Lemma 14.3.2

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.

- Idea of proof: Given $v_1, v_2 \in S$, suppose $f(S v_1) \leq f(S)$ and $f(S v_2) \leq f(S)$. Submodularity requires $f(S v_1) + f(S v_2) \geq f(S) + f(S v_1 v_2)$ which would be impossible unless $f(S v_1 v_2) \leq f(S)$.
- Similarly, given $v_1, v_2 \notin S$, and $f(S + v_1) \leq f(S)$ and $f(S + v_2) \leq f(S)$. Submodularity requires $f(S + v_1) + f(S + v_2) \geq f(S) + f(S + v_1 + v_2)$ which requires $f(S + v_1 + v_2) \leq f(S)$.

Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \setminus S$ (i.e., local in a Hamming ball of radius 1).
- The following interesting result is true for any submodular function:

Lemma 14.3.2

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.

• In other words, once we have identified a local maximum, the two intervals in the Boolean lattice $[\emptyset, S]$ and [S, V] can be ruled out as a possible improvement over S.

Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \setminus S$ (i.e., local in a Hamming ball of radius 1).
- The following interesting result is true for any submodular function:

Lemma 14.3.2

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.

- In other words, once we have identified a local maximum, the two intervals in the Boolean lattice $[\emptyset, S]$ and [S, V] can be ruled out as a possible improvement over S.
- Finding a local maximum is already hard (PLS-complete), but it is possible to find an approximate local maximum relatively efficiently.

Submodularity and local optima

- Given any submodular function f, a set $S \subseteq V$ is a local maximum of f if $f(S-v) \leq f(S)$ for all $v \in S$ and $f(S+v) \leq f(S)$ for all $v \in V \setminus S$ (i.e., local in a Hamming ball of radius 1).
- The following interesting result is true for any submodular function:

Lemma 14.3.2

Given a submodular function f, if S is a local maximum of f, and $I \subseteq S$ or $I \supseteq S$, then $f(I) \leq f(S)$.

- In other words, once we have identified a local maximum, the two intervals in the Boolean lattice $[\emptyset, S]$ and [S, V] can be ruled out as a possible improvement over S.
- Finding a local maximum is already hard (PLS-complete), but it is possible to find an approximate local maximum relatively efficiently.
- This is the approach that yields the $(\frac{1}{3} \frac{\epsilon}{n})$ approximation algorithm.

• Tight randomized tight 1/2 approximation algorithm for unconstrained non-monotone non-negative submodular maximization.

- Tight randomized tight 1/2 approximation algorithm for unconstrained non-monotone non-negative submodular maximization.
- Buchbinder, Feldman, Naor, Schwartz 2012.

- $\bullet\,$ Tight randomized tight 1/2 approximation algorithm for unconstrained non-monotone non-negative submodular maximization.
- Buchbinder, Feldman, Naor, Schwartz 2012. Recall $[a]_{+} = \max(a, 0)$.

- Tight randomized tight 1/2 approximation algorithm for unconstrained non-monotone non-negative submodular maximization.
- Buchbinder, Feldman, Naor, Schwartz 2012. Recall $[a]_{+} = \max(a, 0)$.

Algorithm 5: Randomized Linear-time non-monotone submodular max

```
1 Set L \leftarrow \emptyset; U \leftarrow V /* Lower L, upper U. Invariant: L \subseteq U */;
2 Order elements of V = (v_1, v_2, \ldots, v_n) arbitrarily;
3 for i \leftarrow 0 \dots |V| do
        a \leftarrow [f(v_i|L)]_+; b \leftarrow [-f(U|U \setminus \{v_i\})]_+;
      if a = b = 0 then p \leftarrow 1/2;
 5
 6
       else p \leftarrow a/(a+b);
 7
 8
        if Flip of coin with Pr(heads) = p draws heads then
 9
        L \leftarrow L \cup \{v_i\};
10
        Otherwise /* if the coin drew tails, an event with prob. 1 - p */
11
         U \leftarrow U \setminus \{v\}
12
```

13 return L (which is the same as U at this point)

Linear time algorithm unconstrained non-monotone max

• Each "sweep" of the algorithm is O(n).

- Each "sweep" of the algorithm is O(n).
- $\bullet\,$ Running the algorithm $1\times$ (with an arbitrary variable order) results in a 1/3 approximation.

- Each "sweep" of the algorithm is O(n).
- Running the algorithm $1\times$ (with an arbitrary variable order) results in a 1/3 approximation.
- The 1/2 guarantee is in expected value (the expected solution has the 1/2 guarantee).

- Each "sweep" of the algorithm is O(n).
- Running the algorithm $1\times$ (with an arbitrary variable order) results in a 1/3 approximation.
- The 1/2 guarantee is in expected value (the expected solution has the 1/2 guarantee).
- In practice, run it multiple times, each with a different random permutation of the elements, and then take the cumulative best.

- Each "sweep" of the algorithm is O(n).
- Running the algorithm $1\times$ (with an arbitrary variable order) results in a 1/3 approximation.
- The 1/2 guarantee is in expected value (the expected solution has the 1/2 guarantee).
- In practice, run it multiple times, each with a different random permutation of the elements, and then take the cumulative best.
- It may be possible to choose the random order smartly to get better results in practice.

 In the past several years, there has been a plethora of papers on maximizing both monotone and non-monotone submodular functions under various combinations of one or more knapsack and/or matroid constraints.

- In the past several years, there has been a plethora of papers on maximizing both monotone and non-monotone submodular functions under various combinations of one or more knapsack and/or matroid constraints.
- The approximation quality is usually some function of the number of matroids, and is often not a function of the number of knapsacks.

- In the past several years, there has been a plethora of papers on maximizing both monotone and non-monotone submodular functions under various combinations of one or more knapsack and/or matroid constraints.
- The approximation quality is usually some function of the number of matroids, and is often not a function of the number of knapsacks.
- Often the computational costs of the algorithms are prohibitive (e.g., exponential in k) with large constants, so these algorithms might not scale.

- In the past several years, there has been a plethora of papers on maximizing both monotone and non-monotone submodular functions under various combinations of one or more knapsack and/or matroid constraints.
- The approximation quality is usually some function of the number of matroids, and is often not a function of the number of knapsacks.
- Often the computational costs of the algorithms are prohibitive (e.g., exponential in k) with large constants, so these algorithms might not scale.
- On the other hand, these algorithms offer deep and interesting intuition into submodular functions, beyond what we have covered here.

Some results on submodular maximization

• As we've seen, we can get 1 - 1/e for non-negative monotone submodular (polymatroid) functions with greedy algorithm under cardinality constraints, and this is tight.

Some results on submodular maximization

- As we've seen, we can get 1-1/e for non-negative monotone submodular (polymatroid) functions with greedy algorithm under cardinality constraints, and this is tight.
- \bullet For general matroid, greedy reduces to 1/2 approximation (as we've seen).

Some results on submodular maximization

- As we've seen, we can get 1-1/e for non-negative monotone submodular (polymatroid) functions with greedy algorithm under cardinality constraints, and this is tight.
- \bullet For general matroid, greedy reduces to 1/2 approximation (as we've seen).
- We can recover 1-1/e approximation using the continuous greedy algorithm on the multilinear extension and then using pipage rounding to re-integerize the solution (see J. Vondrak's publications).

- As we've seen, we can get 1-1/e for non-negative monotone submodular (polymatroid) functions with greedy algorithm under cardinality constraints, and this is tight.
- \bullet For general matroid, greedy reduces to 1/2 approximation (as we've seen).
- We can recover 1-1/e approximation using the continuous greedy algorithm on the multilinear extension and then using pipage rounding to re-integerize the solution (see J. Vondrak's publications).
- More general constraints are possible too, as we see on the next table (for references, see Jan Vondrak's publications http://theory.stanford.edu/~jvondrak/).

Submodular Max w. Other Constraints

Cont. Extensions

Lovász extension

Submodular Max Summary - From J. Vondrak

Monotone Maximization

Constraint	Approximation	Hardness	Technique
$ S \le k$	1 - 1/e	1 - 1/e	greedy
matroid	1 - 1/e	1 - 1/e	multilinear ext.
O(1) knapsacks	1 - 1/e	1 - 1/e	multilinear ext.
k matroids	$k + \epsilon$	$k/\log k$	local search
k matroids and $O(1)knapsacks$	O(k)	$k/\log k$	multilinear ext.

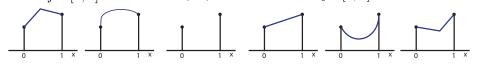
Nonmonotone Maximization

Constraint	Approximation	Hardness	Technique
Unconstrained	1/2	1/2	combinatorial
matroid	1/e	0.48	multilinear ext.
O(1) knapsacks	1/e	0.49	multilinear ext.
k matroids	k + O(1)	$k/\log k$	local search
k matroids and $O(1)knapsacks$	O(k)	$k/\log k$	multilinear ext.

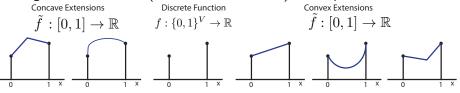
• Any function $f: 2^V \to \mathbb{R}$ (equivalently $f: \{0,1\}^V \to \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f}: [0,1]^V \to \mathbb{R}$.

- Any function $f: 2^V \to \mathbb{R}$ (equivalently $f: \{0, 1\}^V \to \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f}: [0, 1]^V \to \mathbb{R}$.
- This may be tight (i.e., $\tilde{f}(\mathbf{1}_A) = f(A)$ for all A). I.e., the extension \tilde{f} coincides with f at the hypercube vertices.

- Any function $f: 2^V \to \mathbb{R}$ (equivalently $f: \{0, 1\}^V \to \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f}: [0, 1]^V \to \mathbb{R}$.
- This may be tight (i.e., $\tilde{f}(\mathbf{1}_A) = f(A)$ for all A). I.e., the extension \tilde{f} coincides with f at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the *n*-D hypercube $\{0,1\}^n$ has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer'11). Example n = 1, Concave Extensions Discrete Function $\tilde{f}: [0,1] \rightarrow \mathbb{R}$ $f: \{0,1\}^V \rightarrow \mathbb{R}$ $\tilde{f}: [0,1] \rightarrow \mathbb{R}$

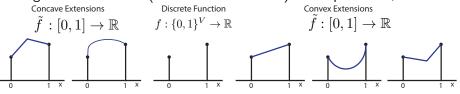


- Any function $f: 2^V \to \mathbb{R}$ (equivalently $f: \{0, 1\}^V \to \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f}: [0, 1]^V \to \mathbb{R}$.
- This may be tight (i.e., $\tilde{f}(\mathbf{1}_A) = f(A)$ for all A). I.e., the extension \tilde{f} coincides with f at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the n-D hypercube {0,1}ⁿ has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer'11). Example n = 1,



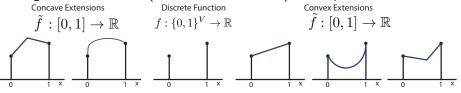
• Since there are an exponential number of vertices $\{0,1\}^n$, important questions regarding such extensions is:

- Any function $f: 2^V \to \mathbb{R}$ (equivalently $f: \{0,1\}^V \to \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f}: [0,1]^V \to \mathbb{R}$.
- This may be tight (i.e., $\tilde{f}(\mathbf{1}_A) = f(A)$ for all A). I.e., the extension \tilde{f} coincides with f at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the n-D hypercube {0,1}ⁿ has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer'11). Example n = 1,



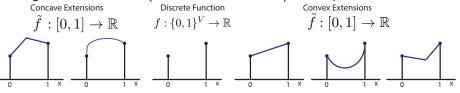
- Since there are an exponential number of vertices $\{0,1\}^n$, important questions regarding such extensions is:
 - When are they computationally feasible to obtain or estimate?

- Any function $f: 2^V \to \mathbb{R}$ (equivalently $f: \{0,1\}^V \to \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f}: [0,1]^V \to \mathbb{R}$.
- This may be tight (i.e., $\tilde{f}(\mathbf{1}_A) = f(A)$ for all A). I.e., the extension \tilde{f} coincides with f at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the n-D hypercube {0,1}ⁿ has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer'11). Example n = 1,



- Since there are an exponential number of vertices $\{0,1\}^n$, important questions regarding such extensions is:
 - When are they computationally feasible to obtain or estimate?
 - When do they have nice mathematical properties?

- Any function $f: 2^V \to \mathbb{R}$ (equivalently $f: \{0,1\}^V \to \mathbb{R}$) can be extended to a continuous function in the sense $\tilde{f}: [0,1]^V \to \mathbb{R}$.
- This may be tight (i.e., $\tilde{f}(\mathbf{1}_A) = f(A)$ for all A). I.e., the extension \tilde{f} coincides with f at the hypercube vertices.
- In fact, any such discrete function defined on the vertices of the n-D hypercube {0,1}ⁿ has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer'11). Example n = 1,



- Since there are an exponential number of vertices $\{0,1\}^n$, important questions regarding such extensions is:
 - When are they computationally feasible to obtain or estimate?
 - When do they have nice mathematical properties?
 - When are they useful for something practical?

Prof. Jeff Bilmes

Lovász extension

Def: Convex Envelope of a function

• Given any function $h : \mathbb{R}^n \to \mathbb{R}$, define new function $\check{h} : \mathbf{R}^n \to \mathbb{R}$ via:

 $\check{h}(x) = \sup \left\{ g(x) : g \text{ is convex } \& g(y) \le h(y), \forall y \in \mathbb{R}^n \right\}$ (14.7)

Lovász extension

Def: Convex Envelope of a function

• Given any function $h : \mathbb{R}^n \to \mathbb{R}$, define new function $\check{h} : \mathbf{R}^n \to \mathbb{R}$ via:

 $\check{h}(x) = \sup \left\{ g(x) : g \text{ is convex \& } g(y) \le h(y), \forall y \in \mathbb{R}^n \right\}$ (14.7)

• I.e., (1) $\check{h}(x)$ is convex, (2) $\check{h}(x) \leq h(x), \forall x$, and (3) if g(x) is any convex function having the property that $g(x) \leq h(x), \forall x$, then $g(x) \leq \check{h}(x)$.

ubmodular Max w. Other Constraints

Cont. Extensions

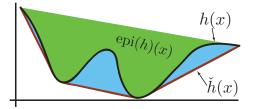
Def: Convex Envelope of a function

• Given any function $h: \mathbb{R}^n \to \mathbb{R}$, define new function $\check{h}: \mathbf{R}^n \to \mathbb{R}$ via:

 $\check{h}(x) = \sup \left\{ g(x) : g \text{ is convex } \& g(y) \le h(y), \forall y \in \mathbb{R}^n \right\}$ (14.7)

- I.e., (1) $\check{h}(x)$ is convex, (2) $\check{h}(x) \leq h(x), \forall x$, and (3) if g(x) is any convex function having the property that $g(x) \leq h(x), \forall x$, then $g(x) \leq \check{h}(x)$.
- Alternatively,

 $\check{h}(x) = \inf \left\{ t : (x, t) \in \mathsf{convexhull}(\mathsf{epigraph}(h)) \right\}$ (14.8)



Submodular Max w. Other Constraints

Cont. Extensions

Lovász extension

Convex Closure of Discrete Set Functions

• Given set function $f: 2^V \to \mathbb{R}$, an arbitrary (i.e., not necessarily submodular nor supermodular) set function, define a function $\check{f}: [0,1]^V \to \mathbb{R}$, as

$$\check{f}(x) = \min_{p \in \triangle^n(x)} \sum_{S \subseteq V} p_S f(S)$$
(14.9)

where
$$\triangle^n(x) = \left\{ p \in \mathbb{R}^{2^n} : \sum_{S \subseteq V} p_S = 1, \ p_S \ge 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_S \mathbf{1}_S = x \right\}$$

Submodular Max w. Other Constraints

Cont. Extensions

Convex Closure of Discrete Set Functions

• Given set function $f: 2^V \to \mathbb{R}$, an arbitrary (i.e., not necessarily submodular nor supermodular) set function, define a function $\check{f}: [0,1]^V \to \mathbb{R}$, as

$$\check{f}(x) = \min_{p \in \triangle^n(x)} \sum_{S \subseteq V} p_S f(S)$$
(14.9)

where
$$\triangle^n(x) = \left\{ p \in \mathbb{R}^{2^n} : \sum_{S \subseteq V} p_S = 1, \ p_S \ge 0 \forall S \subseteq V, \ \& \ \sum_{S \subseteq V} p_S \mathbf{1}_S = x \right\}$$

Hence, $\triangle^n(x)$ is the set of all probability distributions over the 2^n vertices of the hypercube, and where the expected value of the characteristic vectors of those points is equal to x , i.e., for any $p \in \triangle^n(x), \ E_{S \sim p}(\mathbf{1}_S) = \sum_{S \subseteq V} p_S \mathbf{1}_S = x.$

Convex Closure of Discrete Set Functions

• Given set function $f: 2^V \to \mathbb{R}$, an arbitrary (i.e., not necessarily submodular nor supermodular) set function, define a function $\check{f}: [0,1]^V \to \mathbb{R}$, as

$$\check{f}(x) = \min_{p \in \triangle^n(x)} \sum_{S \subseteq V} p_S f(S)$$
(14.9)

where
$$\triangle^n(x) = \left\{ p \in \mathbb{R}^{2^n} : \sum_{S \subseteq V} p_S = 1, \ p_S \ge 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_S \mathbf{1}_S = x \right\}$$

- Hence, △ⁿ(x) is the set of all probability distributions over the 2ⁿ vertices of the hypercube, and where the expected value of the characteristic vectors of those points is equal to x, i.e., for any p ∈ △ⁿ(x), E_{S∼p}(1_S) = ∑_{S⊆V} p_S1_S = x.
- Hence, $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$

Convex Closure of Discrete Set Functions

• Given set function $f: 2^V \to \mathbb{R}$, an arbitrary (i.e., not necessarily submodular nor supermodular) set function, define a function $\check{f}: [0,1]^V \to \mathbb{R}$, as

$$\check{f}(x) = \min_{p \in \triangle^n(x)} \sum_{S \subseteq V} p_S f(S)$$
(14.9)

where
$$\triangle^n(x) = \left\{ p \in \mathbb{R}^{2^n} : \sum_{S \subseteq V} p_S = 1, \ p_S \ge 0 \forall S \subseteq V, \& \sum_{S \subseteq V} p_S \mathbf{1}_S = x \right\}$$

- Hence, △ⁿ(x) is the set of all probability distributions over the 2ⁿ vertices of the hypercube, and where the expected value of the characteristic vectors of those points is equal to x, i.e., for any p ∈ △ⁿ(x), E_{S∼p}(1_S) = ∑_{S⊆V} p_S1_S = x.
- Hence, $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$
- Note, this is not (necessarily) the Lovász extension, rather this is a convex extension.

Convex Closure of Discrete Set Functions

• Given, $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$, there are several things we'd like to show:

- Given, $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$, there are several things we'd like to show:
 - That \check{f} is tight (i.e., $\forall S \subseteq V$, we have $\check{f}(\mathbf{1}_S) = f(S)$).

- Given, $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$, there are several things we'd like to show:
 - **1** That \check{f} is tight (i.e., $\forall S \subseteq V$, we have $\check{f}(\mathbf{1}_S) = f(S)$).
 - **②** That \check{f} is convex (and consequently, that any arbitrary set function has a tight convex extension).

- Given, $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$, there are several things we'd like to show:
 - **1** That \check{f} is tight (i.e., $\forall S \subseteq V$, we have $\check{f}(\mathbf{1}_S) = f(S)$).
 - **2** That \tilde{f} is convex (and consequently, that any arbitrary set function has a tight convex extension).
 - That the convex closure *f* is the convex envelope of the function defined only on the hypercube vertices, and that takes value f(S) at 1_S.

- Given, $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$, there are several things we'd like to show:
 - **1** That \check{f} is tight (i.e., $\forall S \subseteq V$, we have $\check{f}(\mathbf{1}_S) = f(S)$).
 - **2** That \tilde{f} is convex (and consequently, that any arbitrary set function has a tight convex extension).
 - 3 That the convex closure \check{f} is the convex envelope of the function defined only on the hypercube vertices, and that takes value f(S) at $\mathbf{1}_S$.
 - **(a)** The definition of the Lovász extension of a set function, and that \check{f} is the Lovász extension iff f is submodular.

Tightness of Convex Closure

Lemma 14.4.1

$$\forall A \subseteq V$$
, we have $\check{f}(\mathbf{1}_A) = f(A)$.

Proof.

• Define p^x to be an achiving argmin in $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$.

Tightness of Convex Closure

Lemma 14.4.1

$$\forall A \subseteq V$$
, we have $\check{f}(\mathbf{1}_A) = f(A)$.

Proof.

- Define p^x to be an achiving argmin in $\check{f}(x) = \min_{p \in \Delta^n(x)} E_{S \sim p}[f(S)]$.
- Take an arbitrary A, so that $\mathbf{1}_A = \sum_{S \subseteq V} p_S^{\mathbf{1}_A} \mathbf{1}_S = \mathbf{1}_A$.

Tightness of Convex Closure

Lemma 14.4.1

$$\forall A \subseteq V$$
, we have $\check{f}(\mathbf{1}_A) = f(A)$.

Proof.

- Define p^x to be an achiving argmin in $\check{f}(x) = \min_{p \in \Delta^n(x)} E_{S \sim p}[f(S)]$.
- Take an arbitrary A, so that $\mathbf{1}_A = \sum_{S \subseteq V} p_S^{\mathbf{1}_A} \mathbf{1}_S = \mathbf{1}_A$.
- Suppose $\exists S' \text{ with } S' \setminus A \neq 0$ having $p_{S'}^{\mathbf{1}_A} > 0$. This would mean, for any $v \in S' \setminus A$, that $\left(\sum_S p_S^{\mathbf{1}_A} \mathbf{1}_S\right)(v) > 0$, a contradiction.

Tightness of Convex Closure

Lemma 14.4.1

$$\forall A \subseteq V$$
, we have $\check{f}(\mathbf{1}_A) = f(A)$.

Proof.

- Define p^x to be an achiving argmin in $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$.
- Take an arbitrary A, so that $\mathbf{1}_A = \sum_{S \subseteq V} p_S^{\mathbf{1}_A} \mathbf{1}_S = \mathbf{1}_A$.
- Suppose $\exists S'$ with $S' \setminus A \neq 0$ having $p_{S'}^{\mathbf{1}_A} > 0$. This would mean, for any $v \in S' \setminus A$, that $\left(\sum_S p_S^{\mathbf{1}_A} \mathbf{1}_S\right)(v) > 0$, a contradiction.
- Suppose $\exists S' \text{ s.t. } A \setminus S' \neq \emptyset \text{ with } p_{S'}^{\mathbf{1}_A} > 0.$

Tightness of Convex Closure

Lemma 14.4.1

$$\forall A \subseteq V$$
, we have $\check{f}(\mathbf{1}_A) = f(A)$.

Proof.

- Define p^x to be an achiving argmin in $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$.
- Take an arbitrary A, so that $\mathbf{1}_A = \sum_{S \subseteq V} p_S^{\mathbf{1}_A} \mathbf{1}_S = \mathbf{1}_A$.
- Suppose $\exists S'$ with $S' \setminus A \neq 0$ having $p_{S'}^{\mathbf{1}_A} > 0$. This would mean, for any $v \in S' \setminus A$, that $\left(\sum_S p_S^{\mathbf{1}_A} \mathbf{1}_S\right)(v) > 0$, a contradiction.
- Suppose $\exists S'$ s.t. $A \setminus S' \neq \emptyset$ with $p_{S'}^{\mathbf{1}_A} > 0$.
- $\bullet\,$ Then, for any $v\in A\setminus S',$ consider below leading to a contradiction

$$\underbrace{p_{S'}\mathbf{1}_{S'}}_{>0} + \underbrace{\sum_{\substack{S\subseteq A\\S\neq S'}\\\mathsf{can't \ sum \ to \ 1}}}_{\mathsf{can't \ sum \ to \ 1}} \Rightarrow \left(\sum_{\substack{S\subseteq A\\S\neq S'}} p_s\mathbf{1}_S\right)(v) < 1 \quad (14.10)$$

$$v \in A \text{ so it must get value 1, but since } v \notin S', v \text{ is deficient.}$$

l.e., v

Convexity of the Convex Closure

Lemma 14.4.2

$$\check{f}(x) = \min_{p \in riangle^n(x)} E_{S \sim p}[f(S)]$$
 is convex in $[0,1]^V$

Proof.

• Let $x, y \in [0, 1]^V$, $0 \le \lambda \le 1$, and $z = \lambda x + (1 - \lambda)y$, then $\lambda \check{f}(x) + (1-\lambda)\check{f}(y) = \lambda \sum_{\alpha} p_S^x f(S) + (1-\lambda) \sum_{\alpha} p_S^y f(S)$ (14.11) $= \sum (\lambda p_S^x + (1 - \lambda) p_S^y) f(S)$ (14.12) $=\sum_{\alpha} p_S^{z'} f(S) \ge \min_{p \in \Delta^n(z)} E_{S \sim p}[f(S)]$ (14.13) $=\check{f}(z)=\check{f}(\lambda x+(1-\lambda)u)$ (14.14)

Convexity of the Convex Closure

Lemma 14.4.2

$$\check{f}(x) = \min_{p \in riangle^n(x)} E_{S \sim p}[f(S)]$$
 is convex in $[0,1]^V$

Proof.

• Let $x, y \in [0, 1]^V$, $0 \le \lambda \le 1$, and $z = \lambda x + (1 - \lambda)y$, then $\lambda \check{f}(x) + (1-\lambda)\check{f}(y) = \lambda \sum_{s} p_S^x f(S) + (1-\lambda) \sum_{s} p_S^y f(S)$ (14.11) $= \sum (\lambda p_S^x + (1 - \lambda) p_S^y) f(S)$ (14.12) $= \sum p_S^{z'} f(S) \ge \min_{p \in \Delta^n(z)} E_{S \sim p}[f(S)]$ (14.13) $=\check{f}(z)=\check{f}(\lambda x+(1-\lambda)u)$ (14.14)• Note that $p_S^{z'} = \lambda p_S^x + (1 - \lambda) p_S^y$ and is feasible in the min since $\sum_{S} p_{S}^{z'} = 1, \ p_{S}^{z'} \ge 0 \text{ and } \sum_{S} p_{S}^{z'} \mathbf{1}_{S} = z.$

Lovász extension

Def: Convex Envelope of a function

• Given any function $h : \mathbb{R}^n \to \mathbb{R}$, define new function $\check{h} : \mathbf{R}^n \to \mathbb{R}$ via:

 $\check{h}(x) = \sup \left\{ g(x) : g \text{ is convex } \& g(y) \le h(y), \forall y \in \mathbb{R}^n \right\}$ (14.7)

Lovász extension

Convex Closure is the Convex Envelope

Lemma 14.4.3

$$\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$$
 is the convex envelope.

Proof.

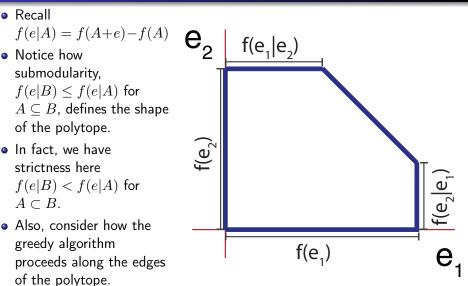
- Suppose \exists a convex \bar{f} with $\bar{f}(\mathbf{1}_A) = f(A) = \check{f}(\mathbf{1}_A), \forall A \subseteq V$ and $\exists x \in [0,1]^V$ s.t. $\bar{f}(x) > \check{f}(x)$.
- Define p^x to be an achiving argmin in $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$. Hence, we have $x = \sum_S p_S^x \mathbf{1}_S$. Thus

$$\check{f}(x) = \sum_{S} p_{S}^{x} f(S) = \sum_{S} p_{S}^{x} \bar{f}(\mathbf{1}_{S})$$

$$< \bar{f}(x) = \bar{f}(\sum_{S} p_{S}^{x} \mathbf{1}_{S})$$
(14.16)

but this contradicts the convexity of \bar{f} .

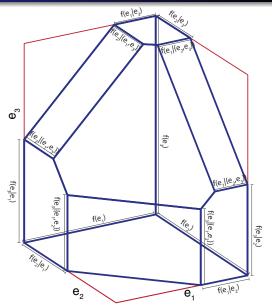
Polymatroid with labeled edge lengths



Polymatroid with labeled edge lengths

Recall f(e|A) = f(A+e) - f(A)Notice how

- submodularity, $f(e|B) \leq f(e|A)$ for $A \subseteq B$, defines the shape of the polytope.
- In fact, we have strictness here f(e|B) < f(e|A) for $A \subset B$.
- Also, consider how the greedy algorithm proceeds along the edges of the polytope.



Cont. Extensions

11111111

Optimization over P_f

• Consider the following optimization. Given $w \in \mathbb{R}^{E}$,

maximize	$w^{T}x$	(14.17a)
subject to	$x \in P_f$	(14.17b)

Cont. Extension:

.....

- Consider the following optimization. Given $w \in \mathbb{R}^{E}$,
 - maximize $w^{\mathsf{T}}x$ (14.17a)subject to $x \in P_f$ (14.17b)
- Since P_f is down closed, if $\exists e \in E$ with w(e) < 0 then the solution above is unboundedly large.

Cont. Extension:

- Consider the following optimization. Given $w \in \mathbb{R}^{E}$,
 - maximize $w^{\intercal}x$ (14.17a)subject to $x \in P_f$ (14.17b)
- Since P_f is down closed, if $\exists e \in E$ with w(e) < 0 then the solution above is unboundedly large. Hence, assume $w \in \mathbb{R}^E_+$.

Cont. Extension:

.....

- Consider the following optimization. Given $w \in \mathbb{R}^{E}$,
 - $\begin{array}{ll} \text{maximize} & w^{\mathsf{T}}x & (14.17a)\\ \text{subject to} & x \in P_f & (14.17b) \end{array}$
- Since P_f is down closed, if $\exists e \in E$ with w(e) < 0 then the solution above is unboundedly large. Hence, assume $w \in \mathbb{R}^E_+$.
- Due to Theorem ??, any $x \in P_f$ with $x \notin B_f$ is dominated by $x \leq y \in B_f$ which can only increase $w^{\mathsf{T}}x \leq w^{\mathsf{T}}y$ when $w \in \mathbb{R}_+^E$.

Cont. Extension:

1111111

- Consider the following optimization. Given $w \in \mathbb{R}^{E}$,
 - $\begin{array}{ll} \text{maximize} & w^{\mathsf{T}}x & (14.17a)\\ \text{subject to} & x \in P_f & (14.17b) \end{array}$
- Since P_f is down closed, if $\exists e \in E$ with w(e) < 0 then the solution above is unboundedly large. Hence, assume $w \in \mathbb{R}^E_+$.
- Due to Theorem ??, any $x \in P_f$ with $x \notin B_f$ is dominated by $x \leq y \in B_f$ which can only increase $w^{\mathsf{T}}x \leq w^{\mathsf{T}}y$ when $w \in \mathbb{R}_+^E$.
- Hence, the problem is equivalent to: given $w \in \mathbb{R}^E_+$,

maximize
$$w^{\mathsf{T}}x$$
(14.18a)subject to $x \in B_f$ (14.18b)

Cont. Extensions

Optimization over P_f

- Consider the following optimization. Given $w \in \mathbb{R}^{E}$,
 - $\begin{array}{ll} \text{maximize} & w^{\mathsf{T}}x & (14.17a)\\ \text{subject to} & x \in P_f & (14.17b) \end{array}$
- Since P_f is down closed, if $\exists e \in E$ with w(e) < 0 then the solution above is unboundedly large. Hence, assume $w \in \mathbb{R}^E_+$.
- Due to Theorem ??, any $x \in P_f$ with $x \notin B_f$ is dominated by $x \leq y \in B_f$ which can only increase $w^{\mathsf{T}}x \leq w^{\mathsf{T}}y$ when $w \in \mathbb{R}_+^E$.
- Hence, the problem is equivalent to: given $w \in \mathbb{R}^E_+$,

maximize
$$w^{\mathsf{T}}x$$
 (14.18a)
subject to $x \in B_f$ (14.18b)

• Moreover, we can have $w \in \mathbb{R}^E$ if we insist on $x \in B_f$.

A continuous extension of f

• Consider again optimization problem. Given $w \in \mathbb{R}^E$,

maximize	$w^\intercal x$	(14.19a)
subject to	$x \in B_f$	(14.19b)

• Consider again optimization problem. Given $w \in \mathbb{R}^E$,

- maximize $w^{\mathsf{T}}x$ (14.19a)subject to $x \in B_f$ (14.19b)
- We may consider this optimization problem a function $\check{f}:\mathbb{R}^E\to\mathbb{R}$ of $w\in\mathbb{R}^E$, defined as:

 $\check{f}(w) = \max(wx : x \in B_f) \tag{14.20}$

• Consider again optimization problem. Given $w \in \mathbb{R}^E$,

- maximize $w^{\mathsf{T}}x$ (14.19a)subject to $x \in B_f$ (14.19b)
- We may consider this optimization problem a function $\check{f}:\mathbb{R}^E\to\mathbb{R}$ of $w\in\mathbb{R}^E$, defined as:

$$\check{f}(w) = \max(wx : x \in B_f) \tag{14.20}$$

• Hence, for any w, from the solution to the above theorem (as we have seen), we can compute the value of this function using Edmond's greedy algorithm.

Edmond's Theorem: The Greedy Algorithm

- Edmonds proved that the solution to $\check{f}(w) = \max(wx : x \in B_f)$ is solved by the greedy algorithm iff f is submodular.
- In particular, sort choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.
- Define the chain with i^{th} element $E_i = \{e_1, e_2, \dots, e_i\}$.
- Define a vector $x^* \in \mathbb{R}^V$ where element e_i has value $x(e_i) = f(e_i | E_{i-1})$ for all $i \in V$.
- Then $\langle w, x^* \rangle = \max(wx : x \in B_f)$

Theorem 14.5.1 (Edmonds)

If $f: 2^E \to \mathbb{R}_+$ is given, and B is a polytope in \mathbb{R}^E_+ of the form $B = \{x \in \mathbb{R}^E_+ : x(A) \le f(A), \forall A \subseteq E, x(E) = f(E)\}$, then the greedy solution to the problem $\max(w^\intercal x : x \in P)$ is $\forall w$ optimum iff f is monotone non-decreasing submodular (i.e., iff P is a polymatroid).

Lovász extension

A continuous extension of submodular f

• That is, given a submodular function f, a $w \in \mathbb{R}^E$, choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.

Cont. Extensions

- That is, given a submodular function f, a $w \in \mathbb{R}^E$, choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.
- \bullet Define the chain with i^{th} element $E_i = \{e_1, e_2, \ldots, e_i\}$, we have $\breve{f}(w)$

Cont. Extensions

- That is, given a submodular function f, a $w \in \mathbb{R}^E$, choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.
- Define the chain with i^{th} element $E_i = \{e_1, e_2, \ldots, e_i\}$, we have

$$\check{f}(w) = \max(wx : x \in B_f) \tag{14.21}$$

Cont. Extensions

- That is, given a submodular function f, a $w \in \mathbb{R}^E$, choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.
- Define the chain with i^{th} element $E_i = \{e_1, e_2, \ldots, e_i\}$, we have

$$\check{f}(w) = \max(wx : x \in B_f) \tag{14.21}$$

$$=\sum_{i=1}^{m} w(e_i) f(e_i | E_{i-1}) = \sum_{i=1}^{m} w(e_i) x(e_i)$$
(14.22)

Cont. Extensions

- That is, given a submodular function f, a $w \in \mathbb{R}^E$, choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.
- Define the chain with i^{th} element $E_i = \{e_1, e_2, \ldots, e_i\}$, we have

$$\check{f}(w) = \max(wx : x \in B_f) \tag{14.21}$$

$$=\sum_{i=1}^{m} w(e_i) f(e_i | E_{i-1}) = \sum_{i=1}^{m} w(e_i) x(e_i)$$
(14.22)

$$=\sum_{i=1}^{m} w(e_i)(f(E_i) - f(E_{i-1}))$$
(14.23)

Cont. Extensions

- That is, given a submodular function f, a $w \in \mathbb{R}^E$, choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.
- Define the chain with i^{th} element $E_i = \{e_1, e_2, \ldots, e_i\}$, we have

$$\check{f}(w) = \max(wx : x \in B_f) \tag{14.21}$$

$$=\sum_{i=1}^{m} w(e_i) f(e_i | E_{i-1}) = \sum_{i=1}^{m} w(e_i) x(e_i)$$
(14.22)

$$=\sum_{i=1}^{m} w(e_i)(f(E_i) - f(E_{i-1}))$$
(14.23)

$$= w(e_m)f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}))f(E_i)$$
 (14.24)

Cont. Extensions

A continuous extension of submodular f

- That is, given a submodular function f, a $w \in \mathbb{R}^E$, choose element order (e_1, e_2, \ldots, e_m) based on decreasing w, so that $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.
- Define the chain with i^{th} element $E_i = \{e_1, e_2, \ldots, e_i\}$, we have

$$\check{f}(w) = \max(wx : x \in B_f) \tag{14.21}$$

$$=\sum_{i=1}^{m} w(e_i) f(e_i | E_{i-1}) = \sum_{i=1}^{m} w(e_i) x(e_i)$$
(14.22)

$$=\sum_{i=1}^{m} w(e_i)(f(E_i) - f(E_{i-1}))$$
(14.23)

$$= w(e_m)f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}))f(E_i)$$
(14.24)

• We say that $\emptyset \triangleq E_0 \subset E_1 \subset E_2 \subset \cdots \subset E_m = E$ forms a chain based

on w.

Prof. Jeff Bilmes

A continuous extension of submodular f

• Definition of the continuous extension, once again, for reference:

$$\check{f}(w) = \max(wx : x \in B_f) \tag{14.25}$$

A continuous extension of submodular f

• Definition of the continuous extension, once again, for reference:

$$\check{f}(w) = \max(wx : x \in B_f) \tag{14.25}$$

• Therefore, if f is a submodular function, we can write

 $\breve{f}(w)$

Cont. Extensions

Lovász extension

A continuous extension of submodular f

• Definition of the continuous extension, once again, for reference:

$$\breve{f}(w) = \max(wx : x \in B_f) \tag{14.25}$$

• Therefore, if f is a submodular function, we can write

$$\check{f}(w) = w(e_m)f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}))f(E_i)$$
 (14.26)

Cont. Extensions

A continuous extension of submodular f

• Definition of the continuous extension, once again, for reference:

$$\breve{f}(w) = \max(wx : x \in B_f) \tag{14.25}$$

• Therefore, if f is a submodular function, we can write

$$\breve{f}(w) = w(e_m)f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}))f(E_i) \quad (14.26)$$

$$= \sum_{i=1}^m \lambda_i f(E_i) \quad (14.27)$$

A continuous extension of submodular f

• Definition of the continuous extension, once again, for reference:

$$\breve{f}(w) = \max(wx : x \in B_f) \tag{14.25}$$

• Therefore, if f is a submodular function, we can write

$$\breve{f}(w) = w(e_m)f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}))f(E_i)$$
(14.26)
$$= \sum_{i=1}^m \lambda_i f(E_i)$$
(14.27)

where $\lambda_m = w(e_m)$ and otherwise $\lambda_i = w(e_i) - w(e_{i+1})$, where the elements are sorted descending according to w as before.

A continuous extension of submodular f

• Definition of the continuous extension, once again, for reference:

$$\check{f}(w) = \max(wx : x \in B_f) \tag{14.25}$$

• Therefore, if f is a submodular function, we can write

$$\breve{f}(w) = w(e_m)f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}))f(E_i)$$
(14.26)
$$= \sum_{i=1}^m \lambda_i f(E_i)$$
(14.27)

where $\lambda_m = w(e_m)$ and otherwise $\lambda_i = w(e_i) - w(e_{i+1})$, where the elements are sorted descending according to w as before.

• Convex analysis $\Rightarrow \check{f}(w) = \max(wx : x \in P)$ is always convex in w for any set $P \subseteq R^E$, since a maximum of a set of linear functions (true even when f is not submodular or P is not itself a convex set).

Cont. Extensions

An extension of f

• Recall, for any such $w \in \mathbb{R}^E$, we have

(14.28)

Cont. Extensions

An extension of f

• Recall, for any such $w \in \mathbb{R}^E$, we have

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \underbrace{(w_1 - w_2)}_{\lambda_1} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \underbrace{(w_2 - w_3)}_{\lambda_2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \underbrace{(w_{n-1} - w_n)}_{\lambda_{m-1}} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 0 \end{pmatrix} + \underbrace{(w_m)}_{\lambda_m} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{pmatrix}$$
(14.28)

• If we take w in decreasing order, then each coefficient of the vectors is non-negative (except possibly the last one, $\lambda_m = w_m$).

Cont. Extensions

An extension of f

• Recall, for any such $w \in \mathbb{R}^E$, we have

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \underbrace{(w_1 - w_2)}_{\lambda_1} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \underbrace{(w_2 - w_3)}_{\lambda_2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \underbrace{(w_{n-1} - w_n)}_{\lambda_{m-1}} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 0 \end{pmatrix} + \underbrace{(w_m)}_{\lambda_m} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{pmatrix}$$
(14.28)

- If we take w in decreasing order, then each coefficient of the vectors is non-negative (except possibly the last one, $\lambda_m = w_m$).
- Often, we take $w \in \mathbb{R}^V_+$ or even $w \in [0,1]^V$, where $\lambda_m \ge 0$.

Cont. Extensions

Lovász extension

An extension of f

$\bullet~$ Define sets E_i based on this decreasing order of w as follows, for $i=0,\ldots,n$

$$E_i \stackrel{\text{def}}{=} \{e_1, e_2, \dots, e_i\}$$
 (14.29)

Cont. Extensions

Lovász extension

An extension of f

• Define sets E_i based on this decreasing order of w as follows, for $i=0,\ldots,n$

$$E_i \stackrel{\text{def}}{=} \{e_1, e_2, \dots, e_i\} \tag{14.29}$$

Note that

$$\mathbf{1}_{E_0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \mathbf{1}_{E_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \mathbf{1}_{E_\ell} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \text{etc.}$$

Cont. Extensions

Lovász extension

An extension of f

• Define sets E_i based on this decreasing order of w as follows, for $i=0,\ldots,n$

$$E_i \stackrel{\text{def}}{=} \{e_1, e_2, \dots, e_i\}$$
 (14.29)

Note that

• Hence, from the previous and current slide, we have $w = \sum_{i=1}^{m} \lambda_i \mathbf{1}_{E_i}$

Prof. Jeff Bilmes

From f back to f, even when f is not submodular

• From the continuous \tilde{f} , we can recover f(A) for any $A \subseteq V$.

- From the continuous \tilde{f} , we can recover f(A) for any $A \subseteq V$.
- Take $w = \mathbf{1}_A$ for some $A \subseteq E$, so w is vertex of the hypercube.

- From the continuous \check{f} , we can recover f(A) for any $A \subseteq V$.
- Take $w = \mathbf{1}_A$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w(e_1) \ge w(e_2) \ge w(e_3) \ge \cdots \ge w(e_m).$

- From the continuous \tilde{f} , we can recover f(A) for any $A \subseteq V$.
- Take $w = \mathbf{1}_A$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w(e_1) \ge w(e_2) \ge w(e_3) \ge \cdots \ge w(e_m)$.
- This means

$$w = (w(e_1), w(e_2), \dots, w(e_m)) = (\underbrace{1, 1, 1, \dots, 1}_{|A| \text{ times}}, \underbrace{0, 0, \dots, 0}_{m-|A| \text{ times}})$$
(14.30)

so that $1_A(i) = 1$ if $i \leq |A|$, and $1_A(i) = 0$ otherwise.

- From the continuous \check{f} , we can recover f(A) for any $A \subseteq V$.
- Take $w = \mathbf{1}_A$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w(e_1) \ge w(e_2) \ge w(e_3) \ge \cdots \ge w(e_m)$.
- This means

$$w = (w(e_1), w(e_2), \dots, w(e_m)) = (\underbrace{1, 1, 1, \dots, 1}_{|A| \text{ times}}, \underbrace{0, 0, \dots, 0}_{m-|A| \text{ times}})$$
(14.30)

so that $1_A(i) = 1$ if $i \le |A|$, and $1_A(i) = 0$ otherwise.

• For any $f: 2^E \to \mathbb{R}$, $w = \mathbf{1}_A$, since $E_{|A|} = \{e_1, e_2, \dots, e_{|A|}\} = A$:

 $\breve{f}(w)$

- From the continuous \check{f} , we can recover f(A) for any $A \subseteq V$.
- Take $w = \mathbf{1}_A$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w(e_1) \ge w(e_2) \ge w(e_3) \ge \cdots \ge w(e_m)$.
- This means

$$w = (w(e_1), w(e_2), \dots, w(e_m)) = (\underbrace{1, 1, 1, \dots, 1}_{|A| \text{ times}}, \underbrace{0, 0, \dots, 0}_{m-|A| \text{ times}})$$
(14.30)

so that $1_A(i) = 1$ if $i \le |A|$, and $1_A(i) = 0$ otherwise. • For any $f: 2^E \to \mathbb{R}$, $w = \mathbf{1}_A$, since $E_{|A|} = \{e_1, e_2, \dots, e_{|A|}\} = A$:

$$\breve{f}(w) = \sum_{i=1}^m \lambda_i f(E_i)$$

- From the continuous \check{f} , we can recover f(A) for any $A \subseteq V$.
- Take $w = \mathbf{1}_A$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w(e_1) \ge w(e_2) \ge w(e_3) \ge \cdots \ge w(e_m)$.
- This means

$$w = (w(e_1), w(e_2), \dots, w(e_m)) = (\underbrace{1, 1, 1, \dots, 1}_{|A| \text{ times}}, \underbrace{0, 0, \dots, 0}_{m-|A| \text{ times}})$$
(14.30)

so that $1_A(i) = 1$ if $i \le |A|$, and $1_A(i) = 0$ otherwise. • For any $f: 2^E \to \mathbb{R}$, $w = \mathbf{1}_A$, since $E_{|A|} = \{e_1, e_2, \dots, e_{|A|}\} = A$:

$$\check{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i) = w(e_m) f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}) f(E_i))$$

- From the continuous \check{f} , we can recover f(A) for any $A \subseteq V$.
- Take $w = \mathbf{1}_A$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w(e_1) \ge w(e_2) \ge w(e_3) \ge \cdots \ge w(e_m).$
- This means

$$w = (w(e_1), w(e_2), \dots, w(e_m)) = (\underbrace{1, 1, 1, \dots, 1}_{|A| \text{ times}}, \underbrace{0, 0, \dots, 0}_{m-|A| \text{ times}})$$
(14.30)

so that $1_A(i) = 1$ if $i \leq |A|$, and $1_A(i) = 0$ otherwise. • For any $f: 2^E \to \mathbb{R}$, $w = \mathbf{1}_A$, since $E_{|A|} = \{e_1, e_2, \dots, e_{|A|}\} = A$:

$$\check{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i) = w(e_m) f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}) f(E_i))$$

$$= \mathbf{1}_{A}(m)f(E_{m}) + \sum_{i=1}^{m-1} (\mathbf{1}_{A}(i) - \mathbf{1}_{A}(i+1))f(E_{i})$$
(14.31)

- From the continuous \check{f} , we can recover f(A) for any $A \subseteq V$.
- Take $w = \mathbf{1}_A$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w(e_1) \ge w(e_2) \ge w(e_3) \ge \cdots \ge w(e_m).$
- This means

$$w = (w(e_1), w(e_2), \dots, w(e_m)) = (\underbrace{1, 1, 1, \dots, 1}_{|A| \text{ times}}, \underbrace{0, 0, \dots, 0}_{m-|A| \text{ times}})$$
(14.30)

so that $1_A(i) = 1$ if $i \leq |A|$, and $1_A(i) = 0$ otherwise. • For any $f: 2^E \to \mathbb{R}$, $w = \mathbf{1}_A$, since $E_{|A|} = \{e_1, e_2, \dots, e_{|A|}\} = A$:

$$\check{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i) = w(e_m) f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}) f(E_i))$$

$$= \mathbf{1}_{A}(m)f(E_{m}) + \sum_{i=1}^{m-1} (\mathbf{1}_{A}(i) - \mathbf{1}_{A}(i+1))f(E_{i})$$
(14.31)
$$= (\mathbf{1}_{A}(|A|) - \mathbf{1}_{A}(|A|+1))f(E_{|A|}) = f(E_{|A|})$$

- From the continuous \check{f} , we can recover f(A) for any $A \subseteq V$.
- Take $w = \mathbf{1}_A$ for some $A \subseteq E$, so w is vertex of the hypercube.
- Order the elements of E in decreasing order of w so that $w(e_1) \ge w(e_2) \ge w(e_3) \ge \cdots \ge w(e_m)$.
- This means

$$w = (w(e_1), w(e_2), \dots, w(e_m)) = (\underbrace{1, 1, 1, \dots, 1}_{|A| \text{ times}}, \underbrace{0, 0, \dots, 0}_{m-|A| \text{ times}})$$
(14.30)

so that $1_A(i) = 1$ if $i \leq |A|$, and $1_A(i) = 0$ otherwise. • For any $f: 2^E \to \mathbb{R}$, $w = \mathbf{1}_A$, since $E_{|A|} = \{e_1, e_2, \dots, e_{|A|}\} = A$:

$$\check{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i) = w(e_m) f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}) f(E_i))$$

$$= \mathbf{1}_{A}(m)f(E_{m}) + \sum_{i=1}^{m-1} (\mathbf{1}_{A}(i) - \mathbf{1}_{A}(i+1))f(E_{i})$$
(14.31)

$$= (\mathbf{1}_{A}(|A|) - \mathbf{1}_{A}(|A|+1))f(E_{|A|}) = f(E_{|A|}) = f(A) \quad (14.32)$$

From \check{f} back to f

• We can view $\check{f} : [0,1]^E \to \mathbb{R}$ defined on the hypercube, with f defined as \check{f} evaluated on the hypercube extreme points (vertices).

From \check{f} back to f

- We can view $\check{f}: [0,1]^E \to \mathbb{R}$ defined on the hypercube, with f defined as \check{f} evaluated on the hypercube extreme points (vertices).
- To summarize, with $\check{f}(\mathbf{1}_A) = \sum_{i=1}^m \lambda_i f(E_i)$, we have

$$\breve{f}(\mathbf{1}_A) = f(A), \tag{14.33}$$

From \check{f} back to f

- We can view $\check{f}: [0,1]^E \to \mathbb{R}$ defined on the hypercube, with f defined as \check{f} evaluated on the hypercube extreme points (vertices).
- To summarize, with $\check{f}(\mathbf{1}_A) = \sum_{i=1}^m \lambda_i f(E_i)$, we have

$$\check{f}(\mathbf{1}_A) = f(A), \tag{14.33}$$

ullet ... and when f is submodular, we also have have

$$\check{f}(\mathbf{1}_A) = \max \left\{ \mathbf{1}_A^{\mathsf{T}} x : x \in B_f \right\}$$

$$= \max \left\{ \mathbf{1}_A^{\mathsf{T}} x : x(B) \le f(B), \forall B \subseteq E \right\}$$
(14.34)
(14.35)

From \check{f} back to f

- We can view $\check{f}: [0,1]^E \to \mathbb{R}$ defined on the hypercube, with f defined as \check{f} evaluated on the hypercube extreme points (vertices).
- To summarize, with $\breve{f}(\mathbf{1}_A) = \sum_{i=1}^m \lambda_i f(E_i)$, we have

$$\breve{f}(\mathbf{1}_A) = f(A), \tag{14.33}$$

 \bullet ... and when f is submodular, we also have have

$$\check{f}(\mathbf{1}_A) = \max \left\{ \mathbf{1}_A^{\mathsf{T}} x : x \in B_f \right\}$$

$$= \max \left\{ \mathbf{1}_A^{\mathsf{T}} x : x(B) \le f(B), \forall B \subseteq E \right\}$$
(14.34)
(14.35)

• Note when considering only $\breve{f}:[0,1]^E\to\mathbb{R}$, then any $w\in[0,1]^E$ is in positive orthant, and we have

$$\check{f}(w) = \max\left\{w^{\mathsf{T}}x : x \in P_f\right\}$$
(14.36)

Cont. Extensions

An extension of an arbitrary $f: 2^V \to \mathbb{R}$

• Thus, for any $f: 2^E \to \mathbb{R}$, even non-submodular f, we can define an extension, having $\check{f}(\mathbf{1}_A) = f(A), \ \forall A$, in this way where

$$\breve{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$$
(14.37)

with the $E_i = \{e_1, \ldots, e_i\}$'s defined based on sorted descending order of w as in $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$, and where

for
$$i \in \{1, \dots, m\}$$
, $\lambda_i = \begin{cases} w(e_i) - w(e_{i+1}) & \text{if } i < m \\ w(e_m) & \text{if } i = m \end{cases}$ (14.38)

so that $w = \sum_{i=1}^m \lambda_i \mathbf{1}_{E_i}$.

An extension of an arbitrary $f: 2^V \to \mathbb{R}$

• Thus, for any $f: 2^E \to \mathbb{R}$, even non-submodular f, we can define an extension, having $\check{f}(\mathbf{1}_A) = f(A), \ \forall A$, in this way where

$$\breve{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$$
(14.37)

with the $E_i = \{e_1, \ldots, e_i\}$'s defined based on sorted descending order of w as in $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$, and where

for
$$i \in \{1, \dots, m\}$$
, $\lambda_i = \begin{cases} w(e_i) - w(e_{i+1}) & \text{if } i < m \\ w(e_m) & \text{if } i = m \end{cases}$ (14.38)

so that $w = \sum_{i=1}^{m} \lambda_i \mathbf{1}_{E_i}$. • $w = \sum_{i=1}^{m} \lambda_i \mathbf{1}_{E_i}$ is an interpolation of certain hypercube vertices.

An extension of an arbitrary $f: 2^V \to \mathbb{R}$

• Thus, for any $f: 2^E \to \mathbb{R}$, even non-submodular f, we can define an extension, having $\check{f}(\mathbf{1}_A) = f(A), \ \forall A$, in this way where

$$\breve{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$$
(14.37)

with the $E_i = \{e_1, \ldots, e_i\}$'s defined based on sorted descending order of w as in $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$, and where

for
$$i \in \{1, \dots, m\}$$
, $\lambda_i = \begin{cases} w(e_i) - w(e_{i+1}) & \text{if } i < m \\ w(e_m) & \text{if } i = m \end{cases}$ (14.38)

so that w = ∑_{i=1}^m λ_i 1_{E_i}.
w = ∑_{i=1}^m λ_i 1_{E_i} is an interpolation of certain hypercube vertices.
ğ(w) = ∑_{i=1}^m λ_i f(E_i) is the associated interpolation of the values of f at sets corresponding to each hypercube vertex.

An extension of an arbitrary $f: 2^V \to \mathbb{R}$

• Thus, for any $f: 2^E \to \mathbb{R}$, even non-submodular f, we can define an extension, having $\check{f}(\mathbf{1}_A) = f(A), \ \forall A$, in this way where

$$\breve{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$$
(14.37)

with the $E_i = \{e_1, \ldots, e_i\}$'s defined based on sorted descending order of w as in $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$, and where

for
$$i \in \{1, \dots, m\}$$
, $\lambda_i = \begin{cases} w(e_i) - w(e_{i+1}) & \text{if } i < m \\ w(e_m) & \text{if } i = m \end{cases}$ (14.38)

so that w = ∑_{i=1}^m λ_i 1_{E_i}.
w = ∑_{i=1}^m λ_i 1_{E_i} is an interpolation of certain hypercube vertices.
ğ(w) = ∑_{i=1}^m λ_if(E_i) is the associated interpolation of the values of f at sets corresponding to each hypercube vertex.
This extension is called the Lovász extension!

Cont. Extensions

Lovász extension

Weighted gains vs. weighted functions

 \bullet Again sorting E descending in w, the extension summarized:

$$\vec{E}(w) = \sum_{i=1}^{m} w(e_i) f(e_i | E_{i-1})$$
(14.39)
$$= \sum_{i=1}^{m} w(e_i) (f(E_i) - f(E_{i-1}))$$
(14.40)
$$= w(e_m) f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1})) f(E_i)$$
(14.41)
$$= \sum_{i=1}^{m} \lambda_i f(E_i)$$
(14.42)

Cont. Extensions

Lovász extension

Weighted gains vs. weighted functions

• Again sorting E descending in w, the extension summarized:

$$\vec{F}(w) = \sum_{i=1}^{m} w(e_i) f(e_i | E_{i-1})$$

$$= \sum_{i=1}^{m} w(e_i) (f(E_i) - f(E_{i-1}))$$
(14.39)
(14.40)
(14.40)

$$= w(e_m)f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}))f(E_i)$$
(14.41)

$$=\sum_{i=1}^{m}\lambda_{i}f(E_{i})$$
(14.42)

• So f(w) seen either as sum of weighted gain evaluations (Eqn. (14.39)), or as sum of weighted function evaluations (Eqn. (14.42)).

Summary: comparison of the two extension forms

• So if f is submodular, then we can write $\check{f}(w) = \max(wx : x \in B_f)$ (which is clearly convex) in the form:

$$\check{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^{m} \lambda_i f(E_i)$$
 (14.43)

m

where $w = \sum_{i=1}^{m} \lambda_i \mathbf{1}_{E_i}$ and $E_i = \{e_1, \ldots, e_i\}$ defined based on sorted descending order $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.

Summary: comparison of the two extension forms

• So if f is submodular, then we can write $\check{f}(w) = \max(wx : x \in B_f)$ (which is clearly convex) in the form:

$$\breve{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^m \lambda_i f(E_i)$$
 (14.43)

where $w = \sum_{i=1}^{m} \lambda_i \mathbf{1}_{E_i}$ and $E_i = \{e_1, \ldots, e_i\}$ defined based on sorted descending order $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.

• On the other hand, for any f (even non-submodular), we can produce an extension \check{f} having the form

$$\breve{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$$
(14.44)

where $w = \sum_{i=1}^{m} \lambda_i \mathbf{1}_{E_i}$ and $E_i = \{e_1, \dots, e_i\}$ defined based on sorted descending order $w(e_1) \ge w(e_2) \ge \dots \ge w(e_m)$.

Summary: comparison of the two extension forms

• So if f is submodular, then we can write $\check{f}(w) = \max(wx : x \in B_f)$ (which is clearly convex) in the form:

$$\breve{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^m \lambda_i f(E_i)$$
 (14.43)

where $w = \sum_{i=1}^{m} \lambda_i \mathbf{1}_{E_i}$ and $E_i = \{e_1, \ldots, e_i\}$ defined based on sorted descending order $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.

• On the other hand, for any f (even non-submodular), we can produce an extension \breve{f} having the form

$$\breve{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$$
(14.44)

where $w = \sum_{i=1}^{m} \lambda_i \mathbf{1}_{E_i}$ and $E_i = \{e_1, \ldots, e_i\}$ defined based on sorted descending order $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.

• In both Eq. (14.43) and Eq. (14.44), we have $\check{f}(\mathbf{1}_A) = f(A), \forall A$, but Eq. (14.44), might not be convex.

Summary: comparison of the two extension forms

• So if f is submodular, then we can write $\check{f}(w) = \max(wx : x \in B_f)$ (which is clearly convex) in the form:

$$\check{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^m \lambda_i f(E_i)$$
 (14.43)

where $w = \sum_{i=1}^{m} \lambda_i \mathbf{1}_{E_i}$ and $E_i = \{e_1, \ldots, e_i\}$ defined based on sorted descending order $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.

• On the other hand, for any f (even non-submodular), we can produce an extension \breve{f} having the form

$$\breve{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$$
(14.44)

where $w = \sum_{i=1}^{m} \lambda_i \mathbf{1}_{E_i}$ and $E_i = \{e_1, \ldots, e_i\}$ defined based on sorted descending order $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.

- In both Eq. (14.43) and Eq. (14.44), we have $\check{f}(\mathbf{1}_A) = f(A), \forall A$, but Eq. (14.44), might not be convex.
- Submodularity is sufficient for convexity, but is it necessary?

Prof. Jeff Bilmes

The Lovász extension of $f: 2^E \to \mathbb{R}$

• Lovász showed that if a function $\check{f}(w)$ defined as in Eqn. (14.37) is convex, then f must be submodular.

The Lovász extension of $f: 2^E \to \mathbb{R}$

- Lovász showed that if a function $\check{f}(w)$ defined as in Eqn. (14.37) is convex, then f must be submodular.
- This continuous extension \check{f} of f, in any case (f being submodular or not), is typically called the Lovász extension of f (but also sometimes called the Choquet integral, or the Lovász-Edmonds extension).

Lovász Extension, Submodularity and Convexity

Theorem 14.5.2

A function $f: 2^E \to \mathbb{R}$ is submodular iff its Lovász extension \check{f} of f is convex.

Proof.

• We've already seen that if f is submodular, its extension can be written via Eqn.(14.37) due to the greedy algorithm, and therefore is also equivalent to $\check{f}(w) = \max \{wx : x \in P_f\}$, and thus is convex.

. . .

Lovász Extension, Submodularity and Convexity

Theorem 14.5.2

A function $f: 2^E \to \mathbb{R}$ is submodular iff its Lovász extension \check{f} of f is convex.

Proof.

- We've already seen that if f is submodular, its extension can be written via Eqn.(14.37) due to the greedy algorithm, and therefore is also equivalent to $\check{f}(w) = \max \{wx : x \in P_f\}$, and thus is convex.
- Conversely, suppose the Lovász extension $\check{f}(w) = \sum_i \lambda_i f(E_i)$ of some function $f: 2^E \to \mathbb{R}$ is a convex function.

. . .

. . .

Lovász Extension, Submodularity and Convexity

Theorem 14.5.2

A function $f: 2^E \to \mathbb{R}$ is submodular iff its Lovász extension \check{f} of f is convex.

Proof.

- We've already seen that if f is submodular, its extension can be written via Eqn.(14.37) due to the greedy algorithm, and therefore is also equivalent to $\check{f}(w) = \max \{wx : x \in P_f\}$, and thus is convex.
- Conversely, suppose the Lovász extension $\check{f}(w) = \sum_i \lambda_i f(E_i)$ of some function $f: 2^E \to \mathbb{R}$ is a convex function.
- We note that, based on the extension definition, in particular the definition of the $\{\lambda_i\}_i$, we have that $\check{f}(\alpha w) = \alpha \check{f}(w)$ for any $\alpha \in \mathbb{R}_+$. I.e., f is a positively homogeneous convex function.

Lovász extension

Lovász Extension, Submodularity and Convexity

... proof of Thm. 14.5.2 cont.

• Earlier, we saw that $\check{f}(\mathbf{1}_A) = f(A)$ for all $A \subseteq E$.

Lovász Extension, Submodularity and Convexity

... proof of Thm. 14.5.2 cont.

- Earlier, we saw that $\check{f}(\mathbf{1}_A) = f(A)$ for all $A \subseteq E$.
- Now, given $A, B \subseteq E$, we will show that

$$\check{f}(\mathbf{1}_A + \mathbf{1}_B) = \check{f}(\mathbf{1}_{A \cup B} + \mathbf{1}_{A \cap B})$$
(14.45)

$$= f(A \cup B) + f(A \cap B).$$

(14.46)

Lovász Extension, Submodularity and Convexity

... proof of Thm. 14.5.2 cont.

- Earlier, we saw that $\check{f}(\mathbf{1}_A) = f(A)$ for all $A \subseteq E$.
- Now, given $A, B \subseteq E$, we will show that $\check{f}(\mathbf{1}_A + \mathbf{1}_B) = \check{f}(\mathbf{1}_{A \cup B} + \mathbf{1}_{A \cap B})$ (14.45) $= f(A \cup B) + f(A \cap B).$ (14.46)
- Let $C = A \cap B$, order E based on decreasing $w = \mathbf{1}_A + \mathbf{1}_B$ so that $w = (w(e_1), w(e_2), \dots, w(e_m))$ (14.47) $= (\underbrace{2, 2, \dots, 2}_{i \in C}, \underbrace{1, 1, \dots, 1}_{i \in A \triangle B}, \underbrace{0, 0, \dots, 0}_{i \in E \setminus (A \cup B)})$ (14.48)

F58/63 (pg.213/239)

Lovász Extension, Submodularity and Convexity

... proof of Thm. 14.5.2 cont.

- Earlier, we saw that $\check{f}(\mathbf{1}_A) = f(A)$ for all $A \subseteq E$.
- Now, given $A, B \subseteq E$, we will show that $\check{f}(\mathbf{1}_A + \mathbf{1}_B) = \check{f}(\mathbf{1}_{A \cup B} + \mathbf{1}_{A \cap B})$ (14.45) $= f(A \cup B) + f(A \cap B).$ (14.46)
- Let $C = A \cap B$, order E based on decreasing $w = \mathbf{1}_A + \mathbf{1}_B$ so that $w = (w(e_1), w(e_2), \dots, w(e_m))$ (14.47) $= (\underbrace{2, 2, \dots, 2}_{i \in C}, \underbrace{1, 1, \dots, 1}_{i \in A \triangle B}, \underbrace{0, 0, \dots, 0}_{i \in E \setminus (A \cup B)})$ (14.48)
- Then, considering $\check{f}(w) = \sum_i \lambda_i f(E_i)$, we have $\lambda_{|C|} = 1$, $\lambda_{|A \cup B|} = 1$, and $\lambda_i = 0$ for $i \notin \{|C|, |A \cup B|\}$.

Lovász Extension, Submodularity and Convexity

... proof of Thm. 14.5.2 cont.

- Earlier, we saw that $\check{f}(\mathbf{1}_A) = f(A)$ for all $A \subseteq E$.
- Now, given $A, B \subseteq E$, we will show that $\check{f}(\mathbf{1}_A + \mathbf{1}_B) = \check{f}(\mathbf{1}_{A \cup B} + \mathbf{1}_{A \cap B})$ $= f(A \cup B) + f(A \cap B).$ (14.46)
- Let $C = A \cap B$, order E based on decreasing $w = \mathbf{1}_A + \mathbf{1}_B$ so that $w = (w(e_1), w(e_2), \dots, w(e_m))$ (14.47) $= (\underbrace{2, 2, \dots, 2}_{i \in C}, \underbrace{1, 1, \dots, 1}_{i \in A \triangle B}, \underbrace{0, 0, \dots, 0}_{i \in E \setminus (A \cup B)})$ (14.48)
- Then, considering $\check{f}(w) = \sum_i \lambda_i f(E_i)$, we have $\lambda_{|C|} = 1$, $\lambda_{|A \cup B|} = 1$, and $\lambda_i = 0$ for $i \notin \{|C|, |A \cup B|\}$.
- But then $E_{|C|} = A \cap B$ and $E_{|A \cup B|} = A \cup B$. Therefore, $\check{f}(w) = \check{f}(\mathbf{1}_A + \mathbf{1}_B) = f(A \cap B) + f(A \cup B)$.

Lovász extension

Lovász Extension, Submodularity and Convexity

... proof of Thm. 14.5.2 cont.

• Also, since \check{f} is convex (by assumption) and positively homogeneous, we have for any $A, B \subseteq E$,

 $0.5[f(A\cap B)+f(A\cup B)]$

(14.52)

Lovász Extension, Submodularity and Convexity

... proof of Thm. 14.5.2 cont.

• Also, since \check{f} is convex (by assumption) and positively homogeneous, we have for any $A,B\subseteq E$,

 $0.5[f(A \cap B) + f(A \cup B)] = 0.5[\breve{f}(\mathbf{1}_A + \mathbf{1}_B)]$ (14.49)

(14.52)

Lovász Extension, Submodularity and Convexity

... proof of Thm. 14.5.2 cont.

• Also, since \check{f} is convex (by assumption) and positively homogeneous, we have for any $A,B\subseteq E$,

$$0.5[f(A \cap B) + f(A \cup B)] = 0.5[\breve{f}(\mathbf{1}_A + \mathbf{1}_B)]$$
(14.49)
= $\breve{f}(0.5\mathbf{1}_A + 0.5\mathbf{1}_B)$ (14.50)

(14.52)

Lovász Extension, Submodularity and Convexity

... proof of Thm. 14.5.2 cont.

• Also, since \check{f} is convex (by assumption) and positively homogeneous, we have for any $A,B\subseteq E$,

$$0.5[f(A \cap B) + f(A \cup B)] = 0.5[\breve{f}(\mathbf{1}_A + \mathbf{1}_B)]$$
(14.49)

$$=\breve{f}(0.5\mathbf{1}_A + 0.5\mathbf{1}_B) \tag{14.50}$$

$$\leq 0.5 \breve{f}(\mathbf{1}_A) + 0.5 \breve{f}(\mathbf{1}_B)$$

(14.51) (14.52)

Lovász Extension, Submodularity and Convexity

... proof of Thm. 14.5.2 cont.

• Also, since \check{f} is convex (by assumption) and positively homogeneous, we have for any $A,B\subseteq E$,

$$0.5[f(A \cap B) + f(A \cup B)] = 0.5[\breve{f}(\mathbf{1}_A + \mathbf{1}_B)]$$
(14.49)

$$=\breve{f}(0.5\mathbf{1}_A + 0.5\mathbf{1}_B) \tag{14.50}$$

$$\leq 0.5\breve{f}(\mathbf{1}_{A}) + 0.5\breve{f}(\mathbf{1}_{B})$$
 (14.51)

$$= 0.5(f(A) + f(B))$$
(14.52)

Lovász Extension, Submodularity and Convexity

... proof of Thm. 14.5.2 cont.

• Also, since \check{f} is convex (by assumption) and positively homogeneous, we have for any $A,B\subseteq E,$

$$0.5[f(A \cap B) + f(A \cup B)] = 0.5[\breve{f}(\mathbf{1}_A + \mathbf{1}_B)]$$
(14.49)

$$=\breve{f}(0.5\mathbf{1}_A + 0.5\mathbf{1}_B) \tag{14.50}$$

$$\leq 0.5 \breve{f}(\mathbf{1}_A) + 0.5 \breve{f}(\mathbf{1}_B)$$
(14.51)
= $0.5(f(A) + f(B))$ (14.52)

• Thus, we have shown that for any $A, B \subseteq E$,

$$f(A \cup B) + f(A \cap B) \le f(A) + f(B)$$
 (14.53)

so f must be submodular.

 $\bullet\,$ The above theorem showed that the Lovász extension is convex iff f is submodular.

- $\bullet\,$ The above theorem showed that the Lovász extension is convex iff f is submodular.
- $\bullet\,$ Our next theorem shows that the Lovász extension coincides precisely with the convex closure iff f is submodular.

- $\bullet\,$ The above theorem showed that the Lovász extension is convex iff f is submodular.
- Our next theorem shows that the Lovász extension coincides precisely with the convex closure iff f is submodular.
- I.e., not only is the Lovász extension convex for f submodular, it is the convex closure when f is convex.

- $\bullet\,$ The above theorem showed that the Lovász extension is convex iff f is submodular.
- Our next theorem shows that the Lovász extension coincides precisely with the convex closure iff f is submodular.
- I.e., not only is the Lovász extension convex for f submodular, it is the convex closure when f is convex.
- Hence, convex closure is easy to evaluate when f is submodular and is this particular form iff f is submodular.

Theorem 14.5.3

Let $\check{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^m \lambda_i f(E_i)$ be the Lovász extension and $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$ be the convex closure. Then \check{f} and \check{f} coincide iff f is submodular.

Proof.

• Assume *f* is submodular.

Theorem 14.5.3

Let $\check{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^m \lambda_i f(E_i)$ be the Lovász extension and $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$ be the convex closure. Then \check{f} and \check{f} coincide iff f is submodular.

Proof.

- Assume *f* is submodular.
- Given x, let p^x be an achieving argmin in $\check{f}(x)$ that also maximizes $\sum_S p^x_S |S|^2.$

Theorem 14.5.3

Let $\check{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^m \lambda_i f(E_i)$ be the Lovász extension and $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$ be the convex closure. Then \check{f} and \check{f} coincide iff f is submodular.

Proof.

- Assume *f* is submodular.
- Given x, let p^x be an achieving argmin in $\check{f}(x)$ that also maximizes $\sum_S p^x_S |S|^2.$
- Suppose $\exists A, B \subseteq V$ that are crossing (i.e., $A \not\subseteq B, B \not\subseteq A$) and positive and w.l.o.g., $p_A^x \ge p_B^x > 0$.

Theorem 14.5.3

Let $\check{f}(w) = \max(wx : x \in B_f) = \sum_{i=1}^m \lambda_i f(E_i)$ be the Lovász extension and $\check{f}(x) = \min_{p \in \triangle^n(x)} E_{S \sim p}[f(S)]$ be the convex closure. Then \check{f} and \check{f} coincide iff f is submodular.

Proof.

- Assume *f* is submodular.
- Given x, let p^x be an achieving argmin in $\check{f}(x)$ that also maximizes $\sum_S p^x_S |S|^2.$
- Suppose $\exists A, B \subseteq V$ that are crossing (i.e., $A \not\subseteq B$, $B \not\subseteq A$) and positive and w.l.o.g., $p_A^x \ge p_B^x > 0$.
- $\bullet\,$ Then we may update p^x as follows:

$$\begin{array}{ccc} \bar{p}_{A}^{x} \leftarrow p_{A}^{x} - p_{B}^{x} & \bar{p}_{B}^{x} \leftarrow p_{B}^{x} - p_{B}^{x} & (14.54) \\ \bar{p}_{A\cup B}^{x} \leftarrow p_{A\cup B}^{x} + p_{B}^{x} & \bar{p}_{A\cap B}^{x} \leftarrow p_{A\cap B}^{x} + p_{B}^{x} & (14.55) \\ \end{array}$$

$$\begin{array}{c} \text{nd by submodularity, this does not increase } \sum_{S} p_{S}^{x} f(S). \end{array}$$

а

... proof cont.

 \bullet This does increase $\sum_S p_S^x |S|^2$ however since

$$|A \cup B|^{2} + |A \cap B|^{2} = (|A| + |B \setminus A|)^{2} + (|B| - |B \setminus A|)^{2}$$
(14.56)
$$= |A|^{2} + |B|^{2} + 2|B \setminus A|(|A| - |B| + |B \setminus A|)$$
(14.57)
$$> |A|^{2} + |B|^{2}$$
(14.58)

... proof cont.

 $\bullet\,$ This does increase $\sum_S p_S^x |S|^2$ however since

$$|A \cup B|^{2} + |A \cap B|^{2} = (|A| + |B \setminus A|)^{2} + (|B| - |B \setminus A|)^{2} \quad (14.56)$$

= $|A|^{2} + |B|^{2} + 2|B \setminus A|(|A| - |B| + |B \setminus A|)$
(14.57)
 $\geq |A|^{2} + |B|^{2} \quad (14.58)$

• Contradiction! Hence, there can be no crossing sets A, B and we must have, for any A, B with $p_A^x > 0$ and $p_B^x > 0$ either $A \subset B$ or $B \subset A$.

... proof cont.

 $\bullet\,$ This does increase $\sum_S p_S^x |S|^2$ however since

- Contradiction! Hence, there can be no crossing sets A, B and we must have, for any A, B with $p_A^x > 0$ and $p_B^x > 0$ either $A \subset B$ or $B \subset A$.
- Hence, the sets $\{A\subseteq V: p^x_A>0\}$ form a chain and can be as large only as size n=|V|.

... proof cont.

 $\bullet\,$ This does increase $\sum_S p_S^x |S|^2$ however since

- Contradiction! Hence, there can be no crossing sets A, B and we must have, for any A, B with $p_A^x > 0$ and $p_B^x > 0$ either $A \subset B$ or $B \subset A$.
- Hence, the sets $\{A\subseteq V: p^x_A>0\}$ form a chain and can be as large only as size n=|V|.
- This is the same chain that defines the Lovász extension $\check{f}(x)$, namely $\emptyset = E_0 \subseteq E_1 \subseteq E_2 \subset \ldots$ where $E_i = \{e_1, e_2, \ldots, e_i\}$ and e_i is orderd so that $x(e_1) \ge x(e_2) \ge \cdots \ge x(e_n)$.

... proof cont.

• Next, assume f is not submodular. We must show that the Lovász extension $\check{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.

- Next, assume f is not submodular. We must show that the Lovász extension $\check{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.
- Since f is not submodular, $\exists S$ and $i, j \notin S$ such that f(S) + f(S + i + j) > f(S + i) + f(S + j), a strict violation of submodularity.

- Next, assume f is not submodular. We must show that the Lovász extension $\check{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.
- Since f is not submodular, $\exists S$ and $i, j \notin S$ such that f(S) + f(S + i + j) > f(S + i) + f(S + j), a strict violation of submodularity.
- Consider $x = \mathbf{1}_S + \frac{1}{2}\mathbf{1}_{\{i,j\}}$.

- Next, assume f is not submodular. We must show that the Lovász extension $\check{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.
- Since f is not submodular, $\exists S$ and $i,j \notin S$ such that f(S)+f(S+i+j) > f(S+i)+f(S+j), a strict violation of submodularity.
- Consider $x = \mathbf{1}_S + \frac{1}{2}\mathbf{1}_{\{i,j\}}$.
- Then $\check{f}(x) = \frac{1}{2}f(S) + \frac{1}{2}f(S+i+j)$ and p^x is feasible for \check{f} with $p_S^x = 1/2$ and $p_{S+i+j}^x = 1/2$.

- Next, assume f is not submodular. We must show that the Lovász extension $\check{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.
- Since f is not submodular, $\exists S$ and $i, j \notin S$ such that f(S) + f(S + i + j) > f(S + i) + f(S + j), a strict violation of submodularity.
- Consider $x = \mathbf{1}_S + \frac{1}{2}\mathbf{1}_{\{i,j\}}$.
- Then $\check{f}(x) = \frac{1}{2}f(S) + \frac{1}{2}f(S+i+j)$ and p^x is feasible for \check{f} with $p_S^x = 1/2$ and $p_{S+i+j}^x = 1/2$.
- An alternate feasible distribution for x in the convex closure is $\bar{p}^x_{S+i}=\bar{p}^x_{S+j}=1/2.$

... proof cont.

- Next, assume f is not submodular. We must show that the Lovász extension $\check{f}(x)$ and the concave closure $\check{f}(x)$ need not coincide.
- Since f is not submodular, $\exists S$ and $i,j \notin S$ such that f(S)+f(S+i+j) > f(S+i)+f(S+j), a strict violation of submodularity.

• Consider
$$x = \mathbf{1}_S + \frac{1}{2}\mathbf{1}_{\{i,j\}}.$$

- Then $\check{f}(x) = \frac{1}{2}f(S) + \frac{1}{2}f(S+i+j)$ and p^x is feasible for \check{f} with $p_S^x = 1/2$ and $p_{S+i+j}^x = 1/2$.
- An alternate feasible distribution for x in the convex closure is $\bar{p}_{S+i}^x = \bar{p}_{S+j}^x = 1/2.$

• This gives

$$\check{f}(x) \le \frac{1}{2} [f(S+i) + f(S+j)] < \check{f}(x)$$

meaning $\check{f}(x) \neq \check{f}(x)$.

(14.59)