Submodular Functions, Optimization,

and Applications to Machine Learning
— Spring Quarter, Lecture 13 —

http://www.ee.washington.edu/people/faculty/bilmes/classes/eeb63_spring_2018/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/ bilmes

May 9th, 2018

M f(A) ()>f(AuB)+f(AmB)
S 00 @ ® £

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F1/57 (pg.1/67)

Logistics
[N

Cumulative Outstanding Reading

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F2/57 (pg.2/67)

Read chapter 1 from Fujishige's book.
Read chapter 2 from Fujishige's book.
Read chapter 3 from Fujishige's book.
Read chapter 4 from Fujishige's book.

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/
http://melodi.ee.washington.edu/~bilmes

Logistics

Announcements, Assignments, and Reminders

@ Next homework is posted on canvas. Due Thursday 5/10, 11:59pm.

@ As always, if you have any questions about anything, please ask then
via our discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
Can meet at odd hours via zoom (send message on canvas to schedule
time to chat).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018

F3/57 (pg.3/67)

Logistics

Class Road Map - EE563

@ L1(3/26): Motivation, Applications, &
Basic Definitions,

@ L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

@ L3(4/2): Info theory exs, more apps,
definitions, graph/combinatorial examples

@ L4(4/4): Graph and Combinatorial
Examples, Matrix Rank, Examples and
Properties, visualizations

@ L5(4/9): More Examples/Properties/
Other Submodular Defs., Independence,

@ L6(4/11): Matroids, Matroid Examples,
Matroid Rank, Partition/Laminar
Matroids

@ L7(4/16): Laminar Matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid Representation, Dual
Matroids

@ L8(4/18): Dual Matroids, Other Matroid
Properties, Combinatorial Geometries,
Matroids and Greedy.

@ L9(4/23): Polyhedra, Matroid Polytopes,
Matroids — Polymatroids

@ L10(4/29): Matroids — Polymatroids,
Polymatroids, Polymatroids and Greedy,

@ L11(4/30): Polymatroids, Polymatroids
and Greedy

@ L12(5/2): Polymatroids and Greedy,
Extreme Points, Cardinality Constrained
Maximization

@ L13(5/7): Constrained Submodular
Maximization

L14(5/9):
L15(5/14):
L16(5/16):
L17(5/21):
L18(5/23):
L—(5/28): Memorial Day (holiday)
L19(5/30):

L21(6/4): Final Presentations
maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018

F4/57 (pg.4/67)

https://canvas.uw.edu/courses/1216339/discussion_topics

eeeee w

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) # 0, can set f'(A) = f(A) — f(0) without destroying
submodularity. This does not change any minima, (i.e.,
argmin 4 f(A) = argmin 4, f'(A)) so we often assume all functions are

normalized f(()) = 0.

Note that due to constraint x(()) < f(0), we must have f()) > 0 since if not (i.e., if
f(0) <0), then P/ doesn't exist.

Another form of normalization can do is:

, F(A) FA£D
A) = 13.1
F1(4) {0 A =0 £
This preserves submodularity due to f(A)+ f(B) > f(AUB) + f(AN B), and if
AN B = then r.h.s. only gets smaller when f()) > 0.
@ We can define several polytopes:

Py ={z e R¥ : 2(S) < £(S),VS C E} (13.2)
Pf=Pin{zeR":z>0} (13.3)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F5/57 (pg.5/67)

f:f €L K . L = A

@ Py is what is sometimes called the extended polytope (sometimes
notated as EP.

Review

Multiple Polytopes in 2D associated with f

Py
I N By
Py Py
Pt =Pn{zeR”:z>0} (13.1)
Py ={z e R¥ : 2(S) < f(S),VS C E} (13.2)
By =Pin{z eR¥ :z(E) = f(E)} (13.3)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F6/57 (pg.6/67)

eeeee w

A polymatroid function's polyhedron is a polymatroid.

Theorem 13.2.1

Let f be a submodular function defined on subsets of E. For any x € R¥,
we have:

rank(z) = max (y(F) :y < x,y € Py) =min(z(4) + f(E\A): ACE)
(13.1)

Essentially the same theorem as Theorem ??, but note Py rather than PJ;F.
Taking x = 0 we get:

Corollary 13.2.2

Let f be a submodular function defined on subsets of E. We have:

rank(0) = max (y(F) : y <0,y € Py) =min(f(A): ACE) (13.2)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F7/57 (pg.7/67)

Review

Polymatroid extreme points

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F8/57 (pg.8/67)

Review
(NN RN

Polymatroid extreme points

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F9/57 (pg.9/67)

Review
Lrrrrnnd

Polymatroid with labeled edge lengths

el\e) %
fle,\Cs /5;/0)
-

@ Recall

Jleld) = fAte)=f(4) =
@ Notice how (e ex®s

submodularity,

7(elB) < £(el A) for

A C B, defines the shape <’
of the polytope. { .

@ In fact, we have
strictness here
7(elB) < f(el A) for
A C B.

@ Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.

fle \exS

(‘s[a)

(EREN

(‘ala)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F10/57 (pg.10/67)

eeeee w

Intuition: why greedy works with polymatroids

Maximal pointin P/

G. ' th I 5 . o .
® Given w, the goal 1S for w in this region.

to find

r = (z(e1), z(e2))
that maximizes

xTw = x(ep)w(er) +
x(e2)w(ez).

o If w(ez) > w(ey) the
upper extreme point
indicated maximizes
xTw over x € PJT.

o If w(ez) < w(er) the
lower extreme point
indicated maximizes
xTw over x € P]?L.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F11/57 (pg.11/67)

eeeee w

The Greedy Algorithm for Submodular Max

A bit more precisely:
Algorithm 1: The Greedy Algorithm

1 Set Sop 0 ;
2 fori<0...|E|—1do
3 Choose v; as follows:

v; € argmax,ey\g, [({v}|S:) = argmax, ey, f(Si U{v}) ;
4 Set S;411 + S; U {UZ} ;

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F12/57 (pg.12/67)

eeeee w

Greedy Algorithm for Card. Constrained Submodular Max

@ This algorithm has a guarantee

Theorem 13.2.1

Given a polymatroid function f , the above greedy algorithm returns sets S;
such that for each i we have f(S;) > (1 — 1/e) maxg<; f(S5).

e To approximately find A* € argmax {f(A) : |A| < k}, we repeat the
greedy step until k =i + 1:

@ Again, since this generalizes max k-cover, Feige (1998) showed that
this can’t be improved. Unless P = N P, no polynomial time algorithm
can do better than (1 — 1/e + ¢) for any € > 0.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F13/57 (pg.13/67)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[AARERERRRRARRA N

The Greedy Algorithm: 1 — 1/e intuition.

@ At step ¢ < k, greedy chooses v; to maximize f(v|.S;).
@ Let S* be optimal solution (of size k) and OPT = f(S*). B
submodularity, we will show:

dv € V\SZ : f(’l)‘SZ) = f(SZ —f—U‘SZ') >

(OPT — f(5:)) (13.1)

| =

uatlon 131 will Ehow

(1 - (1 - 1//@5 al E@iéﬁ@%/ B

0.95

OPT — f(Si+1)

< (1 —1/k)(OPT — f(Si))
I = OPT — f(Sk)

< (1-1/k)*OAT

0.7}

< 1/eOPT
1 1_1/0257 — OPT(1 —1/e f(Sk;)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F14/57 (pg.14/67)

Polymatroids, Greedy, and Cardinality Constrained Maximization
IRt

Cardinality Constrained Polymatroid Max Theorem

Theorem 13.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si},~(to be the chain formed by the greedy algorithm (Eqn. (??)). Then
for all k,¢ € 7., ., we have:

£(S) 2 (1= =) max, f(S) (132)

and in particular, for { =k, we have f(Sy) > (1 — 1/e) maxg. g<i; f(5)-

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k
@ (is size of set we are choosing (i.e., we choose Sy from greedy chain).

@ Bound is how well does Sy (of size ¢) do relative to S*, the optimal set of
size k.

@ Intuitively, bound should get worse when ¢ < k and get better when ¢ > k.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F15/57 (pg.15/67)

Polymatroids, Greedy, and Cardinality Constrained Maximization
LIRLLLLLrrrrntl

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.3.1.

@ Fix ¢ (number of items greedy will chose) and & (size of optimal set to
compare against).

Set S* € argmax {f(5) : |S| < k}
w.l.0.g. assume |S*| = k.

Order S* = (v}, v3,...,v}) arbitrarily.

Let S; = (v1,v9,...,v;) be the greedy order chain chosen by the
algorithm, for ¢ € {1,2,...,¢}.

Then the following inequalities (on the next slide) follow:

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F16/57 (pg.16/67)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(NN RN RERER RN

Cardinality Constrained Polymatroid Max Theorem

.. proof of Theorem 13.3.1 cont.

e Forall 7 < ¢, we have

f(S7) <f(S*U5') = f(Si) + f(S¥[S:) (13.3)
+Zf vf|S; U ot v3, .. vt) (13.4)
)+ Z f(v|S;) (13.5)
vES*

+) fuinalS:) = F(Si) + Y f(SiralSi) (13.6)

vES* VvES*
= f(Si) + kf(Si41|5) (13.7)

@ Therefore, we have Equation 13.1, i.e.,:

f(S%) = f(Si) < kf(Sit1Si) = k(f(Siv1) — £(S:)) (13.8)

EE563/Spring 2018 /Submodularity - Lecture 13 - May 9th, 2018 F17/57 (pg.17/67)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[HERN ANRERER RN

Cardinality Constrained Polymatroid Max Theorem

.. proof of Theorem 13.3.1 cont.

o Define gap 0; = f(S*) — f(S;), s0 &; — d;iy1 = f(Siz1) — f(S;), giving
0; <]43((5@ = 52'4_1) (13.9)

or
1
i1 < (1=)0 (13.10)

@ The relationship between g and dy is then

o < (1— %)550 (13.11)

e Now, dg = f(S*) — f(0) < f(S*) since f > 0.

@ Also, by variational bound 1 — x < e~ for z € R, we have

5y < (1— %)%0 < ek f(5") (13.12)

EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F18/57 (pg.18/67)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[HERNA AR RER RN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.

@ When we identify §; = f(5*) — f(Sp), a bit of rearranging then gives:

F(Se) = (1 —e k) f(S7) (13.13)

[

e With ¢ = k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if Sj is greedy solution of size k, and S* is an
optimal solution of size k, f(S;) > (1 —1/e)f(S*) ~ 0.6321 f(S*).

e What if we want to guarantee a solution no worse than .95f(S*) where
|S*| = k? Set 0.95 = (1 — e~*/¥), which gives
0= [—kIn(l — 0.95)] = 4k. And [—In(1 — 0.999)] = 7.

@ So solution, in the worst case, quickly gets very good. Typical/practical
case is much better.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F19/57 (pg.19/67)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[HERNEN ERRERRENA

Greedy running time

@ Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

@ Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

@ This is called Minoux's 1977 Accelerated Greedy strategy (and has been
rediscovered a few times, e.g., “Lazy greedy”), and runs much faster
while still producing same answer.

@ We describe it next:

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F20/57 (pg.20/67)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[HERNENE ERERRENA

Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, <— f(v|.S;) in sorted priority queue.

Priority queue, O(1) to find max, O(logn) to insert in right place.
Once we choose a max v, then set S;11 < S; + v.

For v ¢ S;11 we have f(v|S;+1) < f(v|S;) by submodularity.
Therefore, if we find a v" such that f(v|S;11) > «, for all v # v/, then
since

f('|Sit1) > o = f(v]Si) > f(v]Sit1) (13.14)

we have the true max, and we need not re-evaluate gains of other
elements again.

@ Strategy is: find the argmax, i\, ,, &, and then compute the real
f(v'|Si+1). If it is greater than all other ay,’s then that's the next
greedy step. Otherwise, replace o, with its real value, resort
(O(logn)), and repeat.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F21/57 (pg.21/67)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[HERNENRE RN

Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700x) over the

standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(n + k), so this limits the
speedup.

@ Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)

@ Can be used used for “big data” sets (e.g., social networks, selecting
blogs of greatest influence, document summarization, etc.).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F22/57 (pg.22/67)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[HERNENEEE ERRENA

Priority Queue

@ Use a priority queue (Q as a data structure: operations include:
o Insert an item (v, «) into queue, with v € V and a € R.

insert(Q, (v,) (13.15)

o Pop the item (v, a) with maximum value « off the queue.
(v, @) < pop(Q) (13.16)
o Query the value of the max item in the queue

max(Q) € R (13.17)

@ On next slide, we call a popped item “fresh” if the value (v, &) popped has
the correct value o = f(v|S;). Use extra “bit" to store this info

o If a popped item is fresh, it must be the maximum — this can happen if, at
given iteration, v was first popped and neither fresh nor maximum so placed
back in the queue, and it then percolates back to the top at which point it
is fresh — thereby avoid extra queue check.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F23/57 (pg.23/67)

Minoux's Accelerated Greedy Algorithm Submodular Max

Algorithm 2: Minoux's Accelerated Greedy Algorithm

1 Set Sy < 0 ;i < 0 ; Initialize priority queue Q ;
2 for v € F do
3 | INSERT(Q, f(v))

4 repeat

5 | (v,a) <= pop(Q) ;

6 if « not “fresh” then

7 L recompute a + f(v]S;)

8 if (popped a in line 5 was “fresh”) OR (o > max(Q)) then
9 Set Siy1 + S; U {U} X

10 11+ 1;

11 else

12 L insert(Q, (v, a))

13 until i = |E

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F24/57 (pg.24/67)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[HERNENREREE RN

(Minimum) Submodular Set Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S) > « (13.18)
SCcv

where « is a “cover’ requirement.

@ Normally take o = f(V') but defining f'(A) = min{f(A), a} we can
take any a. Hence, we have equivalent formulation:

S* € argmin | S| such that f/(S) > f/(V) (13.19)
Scv

@ Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.

@ Greedy Algorithm: Pick the first chain item S; chosen by
aforementioned greedy algorithm such that f(.S;) > « and output that
as solution.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F25/57 (pg.25/67)

Polymatroids, G
111 (RENANE RRN

(Minimum) Submodular Set Cover: Approximation Analysis

@ For integer valued f, this greedy algorithm an O(log(maxscy f({s})))
approximation. Let S* be optimal, and S be greedy solution, then

S5 < 57| H (max f({s})) = |$*|O(log. (max f({s}))) ~ (13.20)

where H is the harmonic function, i.e., H(d) = Z?Zl(l/i).

@ If f is not integral value, then bounds we get are of the form:

f(V)
SC| < |8*|(1 + log, 13.21
SIS s 7y g y) (82
wehre S7 is the final greedy solution that occurs at step 7.

@ Set cover is hard to approximate with a factor better than (1 — ¢€) log «,
where « is the desired cover constraint.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F26/57 (pg.26/67)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[HERNENREREREN RN

Summary: Monotone Submodular Maximization

Only makes sense when there is a constraint.

We discussed cardinality constraint

Generalizes the max k-cover problem, and also similar to the set cover
problem.

Simple greedy algorithm gets 1 — e~*/% approximation, where k is size
of optimal set we compare agamst, and / is size of set greedy algorithm
chooses.

Submodular cover: min. |S| s.t. f(5) > a.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F27/57 (pg.27/67)

Minoux's accelerated greedy trick.

Polymatroids, Greedy, and Cardinality Constrained Maximization
[HERNENRERERENE N

The Greedy Algorithm: 1 — 1/e intuition.

@ At step ¢ < k, greedy chooses v; to maximize f(v|.S;).
@ Let S* be optimal solution (of size k) and OPT = f(S*). B
submodularity, we will show:

dv € V\SZ : f(’l)‘SZ) = f(SZ —f—U‘SZ') >

(OPT — f(5:)) (13.1)

el e

X e——— uatlon (13.10) will how
e Y ey
/ | N OPT — f(Si+1) 7
< (1—1/k)(OPIT — £(S4))
“1 = OPT — f(Sk)
0.75 < . k
1 \ (1-1/k) OET
' B < 1/eOPT
| 1 — 1/0257 S OPT(1 —7@\? f(Sk)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F28/57 (pg.28/67)

Polymatroids, Greedy, and Cardinality Constrained Maximization

Randomized greedy

@ How can we produce a randomized greedy strategy, one where each
greedy sweep produces a set that, on average, has a 1 — 1/e guarantee?

@ Suppose the following holds:

Elf(ai+1]4:)] > f(OPT)k_ f(4:) (13.22)
where A; = (a1, as,...,a;) are the first i elements chosen by the

strategy.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F29/57 (pg.29/67)

Curvature
[AR RN

Curvature of a Submodular function

@ For any submodular function, we have f(j|S) < f(j]0) so that
7(718)/ £(710) < 1 whenever £(j|0) # 0.

o For f:2" — R, (non-negative) functions, we also have
f(71S)/f(7]0) > 0 — and = 0 whenever j is “spanned” by S.

@ The total curvature of a submodular function is defined as follows:

f(1S) IV AY)
st G0 R g B
@ c€[0,1]. When ¢ =0, f(j]5) = f(4]0) for all S, j, a sufficient
condition for modularity, and we saw in Theorem ?7? that greedy is
optimal for max weight indep. set of a matroid.

e For f with curvature ¢, then VA C V, Vv ¢ a, V¢ > ¢

c21-

flA+v) = f(A) = (1) f(v) (13.24)
= f(v f(v]4) V) min (v/|A> =(1l—-c¢)f(v —)f(v
F0) 2 f0l4) = 1)L = fomin LES = (10— 0f@) = (-) f

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018

@ Vvhen ¢ — en submodular Tunction Is maximally curved , I.e.,
exists is a subset that fully spans some other element.

Curvature
N RN

Curvature of a Submodular function

@ By submodularity, total curvature can be computed in either form:

s, w JUIS) L FGIVAGY 500

C min - = N
S.j¢s:f(i1m#0 f(5]0) sfGmz0 f(419)

@ Note: Matroid rank is either modular ¢ = 0 or maximally curved ¢ = 1

— hence, matroid rank can have only the extreme points of curvature,
namely 0 or 1.

@ Polymatroid functions are, in this sense, more nuanced, in that they

allow non-extreme curvature, with ¢ € [0, 1].

@ It will be remembered the notion of “partial dependence” within

polymatroid functions.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F31/57 (pg.31/67)

Curvature
11h

Curvature for f(S) = /5]

Curvature of f(S) = +/|S] as function of £(S) = \/]8] with [V| = n

o
©

o
™

e
3

o
)

I
»

o
w

o
—

(=]

curvature of sqrt(JA|) as func. of |V|
o
[

et
[N}

Vi=n has curvature

1 (Vi — Va—T).

@ Approximation gets worse
with bigger ground set.

@ Functions of the form
f(S) = /m(S) where
m:V — R, approximation
worse with n if
min; ; |m(i) — m(j)| has a

fixed lower bound with

o

20 20 80 80 100 increasing n.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F32/57 (pg.32/67)

Curvature
111nl

Curvature and approximation

@ Curvature limitation can help the greedy algorithm in terms of
approximation bounds.

e Conforti & Cornuéjols showed that greedy gives a 1/(1 + ¢)
approximation to max { f(S) : S € Z} when f has total curvature c.

@ Hence, greedy subject to matroid constraint is a max(1/(1 + ¢), 1/2)
approximation algorithm, and if ¢ < 1 then it is better than 1/2 (e.g.,
with ¢ = 1/4 then we have a 0.8 algorithm).

1 T

0.95F

0.9F

o

®

o
T

For k-uniform matroid
® (i.e., k-cardinality con-

straints), then approxima-

tion factor becomes
c(1—e)

C

approximation bound
o
o N o
~ a1 [
T

S

2}

a
T

0.2 0.4 0.6 0.8 1
curvature
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F33/57 (pg.33/67)

o

Curvature
NN |

Submodular and Supermodular Curvature Approximation

@ Let f be a polymatroid function and let g be a non-negative monotone
non-decreasing supermodular function (e.g., g(A) = ¢(m(A)) where
®() is non-decreasing convex).

o Let kf =1 — min, W be the total submodular total curvature,

g(v)

e Define k9 = 1 — min, —L2—— as a “supermodular curvature”
v 9@\ {o]) P

e 9 €10,1] and k9 = 0 means g is modular, kK9 = 1 means g is “fully
curved”

@ Form function h(A) = f(A) + g(A), then h is neither suBmodular nor
suPermodular, and is known as a BP-function.

@ Then the greedy algorithm on h has a guarantee of:

%(1 — e_(l_"{g)"{f)_

@ For purely supermodular optimization (i.e., ky = 0) we get that greedy
has a guarantee of 1 — k4.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F34/57 (pg.34/67)

Submodular Max w. Other Constraints
[RRNE

Generalizations

@ Consider a k-uniform matroid M = (V,Z) where
Z={S CV:|S| <k}, and consider problem max{f(A): A e I}

@ Hence, the greedy algorithm is 1 — 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

@ Might be useful to allow an arbitrary matroid (e.g., partition matroid
I={XCV: | XNV <kjforalli=1,...,¢}., or a transversal,
etc).

@ Knapsack constraint: if each item v € V' has a cost ¢(v), we may ask
for ¢(S) < b where b is a budget, in units of costs. Q: Is
Z ={I:c(I) < b} the independent sets of a matroid?

@ We may wish to maximize f subject to multiple matroid constraints.
le., S€1y,S €Iy,...,5 € I, where Z; are independent sets of the
i matroid.

e Combinations of the above (e.g., knapsack & multiple matroid
constraints).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F35/57 (pg.35/67)

Submodular Max w. Other Constraints

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.
@ l.e., Starting with Sy = (), we repeat the following greedy step

Siy1 = 5; U argmax f(SZ U {U}) (13.27)
veV\S; : Si+ve_, I;

@ That is, we keep choosing next whatever feasible element looks best.
@ This algorithm is simple and also has a guarantee

Theorem 13.5.1

Given a polymatroid function f, and set of matroids {M; = (E,Z;) 1]?:1,

the above greedy algorithm returns sets S; such that for each i we have
f(Si) > % maxg|<; seny_, 7, f(S), assuming such sets exists.

+1

@ For one matroid, we have a 1/2 approximation.

@ Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints — but the bound is not that good when
there are many matroids.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F36/57 (pg.36/67)

Submodular Max w. Other Constraints
(NN RN

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?

o Consider bipartite graph G = (V| F, /). Define two partition matroids
MV = (E,Iv), and MF = (E,IF).

@ Independence in each matroid corresponds to:

Q@ IcIyif|IN(V,f)|<1forall feF,
Q@ andlecZpif|IN(v,F)|<1forallvelV.

. ® \ ®
Ve —eF V%F

@ Therefore, a matching in G is simultaneously independent in both My,
and My and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.

@ In bipartite graph case, therefore, can be solved in polynomial time.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F37/57 (pg.37/67)

Submodular Max w. Other Constraints
1inl

Matroid Intersection and Network Communication

@ Let Gy = (V1, E) and Gy = (V3, E) be two graphs on an isomorphic
set of edges (lets just give them same names F).

@ Consider two cycle matroids associated with these graphs
M, = (E,Z,) and My = (E,Z). They might be very different (e.g.,
an edge might be between two distinct nodes in G but the same edge
is a loop in multi-graph Gs.)

@ We may wish to find the maximum size edge-induced subgraph that is
still forest in both graphs (i.e., adding any edges will create a circuit in
either My, Ms, or both).

@ This is again a matroid intersection problem.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F38/57 (pg.38/67)

Submodular Max w. Other Constraints
e

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

@ Given directed graph G, goal is to find such a Hamiltonian cycle.

@ From G with n nodes, create G’ with n + 1 nodes by duplicating
(w.l.o.g.) a particular node v; € V(G) to v{,v;, and have all
outgoing edges from v; come instead from v; and all edges incoming
to v go instead to vf’.

@ Let M, be the cycle matroid on G’.

@ Let M> be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I € Z(M>) if
[INd (v)| <1 forallveV(G).

@ Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I € Z(M3) if
IIN&*(v)| <1 forallveV(G).

@ Then a Hamiltonian cycle exists iff there is an n-element intersection of
Ml, M2, and Mg.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F39/57 (pg.39/67)
' AV = Cl [J » JT U T U Y,

given a directed graph, start at a node, visit all cities, and return to the
starting point. Optimization version does this tour at minimum cost.
@ Since TSP is NP-complete, we obviously can't solve matroid

Submodular Max w. Other Constraints
Brrrrrrerrrrrrrned

Greedy over multiple matroids: Generalized Bipartite

Matching

@ Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

@ Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.

e Consider bipartite graph G = (E, F, V') where E and F' are the
left /right set of nodes, respectively, and V' is the set of edges.

@ I corresponds to, say, an English language sentence and F' corresponds
to a French language sentence — goal is to form a matching (an
alignment) between the two.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F40/57 (pg.40/67)

Submodular Max w. Other Constraints
TRErrrrrrrrrrrrrnd

Greedy over > 1 matroids: Multiple Language Alignment

o Consider English string and French string, set up as a bipartite graph.

EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F41/57 (pg.41/67)

Submodular Max w. Other Constraints
TRErrrrrrrrrrrrrnd

Greedy over > 1 matroids: Multiple Language Alignment

@ One possible alignment, a matching, with score as sum of edge weights.

| have ... as an example of public ownership

VNV A

je le ai ... comme exemple de propriété publique

EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F41/57 (pg.42/67)

Submodular Max w. Other Constraints
TRErrrrrrrrrrrrrnd

Greedy over > 1 matroids: Multiple Language Alignment

@ Edges incident to English words constitute an edge partition

je le ai ...
@ The two edge partitions can be used to set up two 1-partition matroids
on the edges.

e For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.

EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F41/57 (pg.43/67)

Submodular Max w. Other Constraints
TRErrrrrrrrrrrrrnd

Greedy over > 1 matroids: Multiple Language Alignment

@ Edges incident to French words constitute an edge partition

je le ai ... comme exemple de propriété publique

@ The two edge partitions can be used to set up two 1-partition matroids
on the edges.

e For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.

EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F41/57 (pg.44/67)

Submodular Max w. Other Constraints
FIRLLLrrrrrrrrennd

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.

@ As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

@ We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 1
. the ... of public ownership . . . the ... of public ownership

.. le ... de propriété publique ... le ... de propriété publique

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F42/57 (pg.45/67)

Submodular Max w. Other Constraints
FIRLLLrrrrrrrrennd

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.

@ As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

@ We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 2
. the ... of public ownership . . . the ... of public ownership

.. le ... de propriété publique ... le ... de propriété publique

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F42/57 (pg.46/67)

Submodular Max w. Other Constraints
LEERrrrrrrrrrrernd

Greedy over > 1 matroids: Multiple Language Alignment

@ Generalizing further, each block of edges in each partition matroid can
have its own “fertility” limit:
IT={XCV: | XNV <kjforalli=1,... ¢}

@ Maximizing submodular function subject to multiple matroid
constraints addresses this problem.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F43/57 (pg.47/67)

Submodular Max w. Other Constraints
FEETRErrrrrrrrernd

Greedy over multiple matroids: Submodular Welfare

@ Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).

@ Each players has a submodular “valuation” function, g; : 2 — R that
measures how “desirable” or “valuable” a given subset A C FE of goods
are to that player.

@ Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

@ Goal of submodular welfare: Partition the goods
E=F,UE,U---UZE, into n blocks in order to maximize the
submodular social welfare, measured as:

n
submodular-social-welfare(F, Es, ..., E,) = ZgZ(EZ) (13.28)
i=1

@ We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . ..

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F44/57 (pg.48/67)

Submodular Max w. Other Constraints
LEErrerrrrrrrrernd

Submodular Welfare: Submodular Max over matroid

partition

@ Create new ground set E’ as disjoint union of n copies of the ground
set. l.e.,

E'=EWEY.--WE (13.29)

nx

Let E®) C E’ be the ith block of E.

For any e € E, the corresponding element in E(®) is called (e, i) € E®
(each original element is tagged by integer).

For e € E, define E, = {(¢/,i) € E' : ¢/ = e}.

Hence, {E.}, . is a partition of E’, each block of the partition for one
of the original elements in E.

Create a 1-partition matroid M = (E’,Z) where

I={SCFE :VYeeE,|SNE]<1} (13.30)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F45/57 (pg.49/67)

Submodular Max w. Other Constraints
(NERREN R RR NN

Submodular Welfare: Submodular Max over matroid

partition

@ Hence, S is independent in matroid M = (E’,I) if S uses each original
element no more than once.

o Create submodular function f’: 28" — R, with
f1(8) = Xis, 9:(S N EW).

@ Submodular welfare maximization becomes matroid constrained
submodular max max {f’(S) : S € Z}, so greedy algorithm gives a 1/2
approximation.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F46/57 (pg.50/67)

Submodular Social Welfare

Submodular Max w. Other Constraints

AL

Have n = 6 people (who don't
like to share) and |E|=m =7
pieces of sushi. E.g., e €
might be e = "salmon roll".
Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
FFUEFWEWEWE.

Partition matroid partitions:
E,UE,UE,UE.,, UE,U
15 U0

independent allocation

non-independent allocation

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F47/57 (pg.51/67)

Submodular Social Welfare

AL

Submodular Max w. Other Constraints

Have n = 6 people (who don't
like to share) and |E|=m =7
pieces of sushi. E.g., e €
might be e = "salmon roll".
Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
FFUFEFWEWEWE.

Partition matroid partitions:
E,UE,UE,UE.,, UE.,U
Eeo UEL,.

independent allocation

non-independent allocation

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F47/57 (pg.52/67)

Submodular Max w. Other Constraints
(NERREEE RN RR NN

Submodular Social Welfare

A

@ Have n = 6 people (who don't
like to share) and |E|=m =7
pieces of sushi. E.g., e € E
might be e = "salmon roll".

@ Goal: distribute sushi to people
to maximize social welfare.

@ Ground set disjoint union
FYEYEYWEWEWE.

e Partition matroid partitions:
E.,UE,,UE,, UE,, UE,, U
Eeg UEL..

@ independent allocation

@ non-independent allocation

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F47/57 (pg.53/67)

Submodular Max w. Other Constraints

Submodular Social Welfare
@ Have n = 6 people (who don't

LU | EE——

\% 8 pieces of sushi. E.g., e € E
<} g
might be e = "salmon roll".
T @ Goal: distribute sushi to people
to maximize social welfare.

(€1

e Ground set disjoint union
FYEYEYWEWEWE.

e Partition matroid partitions:
E,UE,UE,UE.,, UE.,U
E., UE,.

@ independent allocation

@ non-independent allocation

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F47/57 (pg.54/67)

Submodular Max w. Other Constraints
(NERREEE RN RR NN

Submodular Social Welfare

‘ “t R ‘ “ @ Have n = 6 people (who don't
like to share) and |E|=m =7

pieces of sushi. E.g., e €
might be e = "salmon roll".

@ Goal: distribute sushi to people
to maximize social welfare.

@ Ground set disjoint union
FFUEFWEWEWE.

e Partition matroid partitions:
E,UE,UE, ,UE., UE. U
Eey UE,, .

@ independent allocation

@ non-independent allocation

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F47/57 (pg.55/67)

Submodular Max w. Other Constraints

Monotone Submodular over Knapsack Constraint

@ The constraint |A| < k is a simple cardinality constraint.
@ Consider a non-negative integral modular function c: £ — Z. .

@ A knapsack constraint would be of the form ¢(A) < b where B is some
integer budget that must not be exceeded. That is
max {f(A) : A C V,c(A) < b}.

@ Important: A knapsack constraint yields an independence system (down
closed) but it is not a matroid!

@ c(e) may be seen as the cost of item e and if ¢(e) = 1 for all e, then we
recover the cardinality constraint we saw earlier.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F48/57 (pg.56/67)

Submodular Max w. Other Constraints
(NN AR NN

Monotone Submodular over Knapsack Constraint

@ Greedy can be seen as choosing the best gain: Starting with Sy = 0,
we repeat the following greedy step

Siy1=S; U {argmax(f(Si U {v}) — f(Si))} (13.31)
’UEV\Sl‘

the gain is f({v}|S;) = f(S: +v) — f(S;), so greedy just chooses next

the currently unselected element with greatest gain.

@ Core idea in knapsack case: Greedy can be extended to choose next
whatever looks cost-normalized best, i.e., Starting some initial set S,
we repeat the following cost-normalized greedy step

Sit1 =S; U {argmax f(8: U {v}) — f(S) } (13.32)

veEV\S; c(v)

which we repeat until ¢(S;+1) > b and then take S; as the solution.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F48/57 (pg.57/67)

Submodular Max w. Other Constraints
(NN RN RN

A Knapsack Constraint

@ There are a number of ways of getting approximation bounds using this
strategy.

@ If we run the normalized greedy procedure starting with Sy = (), and
compare the solution found with the max of the singletons
max,ey f({v}), choosing the max, then we get a (1 — e1/2) ~ 0.39
approximation, in O(n?) time (Minoux trick also possible for further
speed)

o Partial enumeration: On the other hand, we can get a (1 — e~ 1) ~ 0.63
approximation in O(n°) time if we run the above procedure starting
from all sets of cardinality three (so restart for all Sy such that
|So| = 3), and compare that with the best singleton and pairwise
solution.

@ Extending something similar to this to d simultaneous knapsack
constraints is possible as well.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F49/57 (pg.58/67)

Submodular Max w. Other Constraints
Frrrrrrrrrmerrrenn

Local Search Algorithms

From J. Vondrak

@ Local search involves switching up to ¢ elements, as long as it provides
a (non-trivial) improvement; can iterate in several phases. Some
examples follow:

@ 1/3 approximation to unconstrained non-monotone maximization
[Feige, Mirrokni, Vondrak, 2007]

o 1/(k+2+ 4 + &) approximation for non-monotone maximization
subject to k matroids [Lee, Mirrokni, Nagarajan, Sviridenko, 2009]

@ 1/(k + ;) approximation for monotone submodular maximization
subject to k£ > 2 matroids [Lee, Sviridenko, Vondrak, 2010].

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F50/57 (pg-59/67)

Submodular Max w. Other Constraints
Lrrrrrrerrrerrrenn

What About Non-monotone

@ Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

e If f is an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.

@ Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).

@ Thus, any approximation algorithm must be for unipolar submodular
functions. E.g., non-negative but otherwise arbitrary submodular
functions.

@ We may get a (% — <) approximation for maximizing non-monotone
non-negative submodular functions, with most O(1n3logn) function
calls using approximate local maxima.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F51/57 (pg.60/67)

Submodular Max w. Other Constraints
FEErrrrrrrrrmrrnrnd

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f if
f(S—wv) < f(S) forallve Sand f(S+v) < f(S)forallveV\S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
I 2 S, then f(I) < f(95).

o Idea of proof: Given vy,vy € S, suppose f(S —v1) < f(S) and
f(S —wv2) < f(S). Submodularity requires
f(S —wv1)+ f(S—wv2) > f(S)+ f(S — v1 — v2) which would be
impossible unless f(S —v; —wva) < f(5).

e Similarly, given v1,v9 ¢ S, and f(S 4+ v1) < f(S) and f(S + v2) < f(S).
Submodularity requires f(S + v1) + f(S + v2) > f(S) + f(S + v1 + v9)
which requires f(S + v1 4+ v2) < f(9).

EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F52/57 (pg.61/67)

Submodular Max w. Other Constraints
FEErrrrrrrrrmrrnrnd

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f if
f(S—v) < f(S) forallve Sand f(S+v) < f(S)forallv e V\ S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
I 2 S, then f(I) < f(95).

@ In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [(), S] and [S, V] can be ruled out as a
possible improvement over S.

e Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively efficiently.

@ This is the approach that yields the (% — <) approximation algorithm.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F52/57 (pg.62/67)

© 00 N o g A W N =

10

11
12

13

Submodular Max w. Other Constraints
(NN REREREY RRRN

Linear time algorithm unconstrained non-monotone max

Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012. Recall [a]+ = max(a,0).

Algorithm 3: Randomized Linear-time non-monotone submodular max

Set L+ 0;U+V /*Lower L, upper U. Invariant: L CU */ ;
Order elements of V' = (vy,ve,...,v,) arbitrarily ;
fori«0...|V|do

@ [F@ID]1 b — (AU o)y
ifa=b=0thenp <+ 1/2;

else p < a/(a +b);
if Flip of coin with Pr(heads) = p draws heads then
L L+ LU{v};

Otherwise /* if the coin drew tails, an event with prob. 1 —p */

i LU<—U\{v}

return L (which is the same as U at this point)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F53/57 (pg.63/67)

Submodular Max w. Other Constraints
FEErrrrrrrrrrrmnnd

Linear time algorithm unconstrained non-monotone max

@ Each “sweep” of the algorithm is O(n).

@ Running the algorithm 1x (with an arbitrary variable order) results in a
1/3 approximation.

@ The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).

@ In practice, run it multiple times, each with a different random
permutation of the elements, and then take the cumulative best.

@ It may be possible to choose the random order smartly to get better
results in practice.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F54/57 (pg.64/67)

Submodular Max w. Other Constraints
LErrrrrrrrrrrrrmnd

More general still: multiple constraints different types

@ In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.

@ The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.

@ Often the computational costs of the algorithms are prohibitive (e.g.,
exponential in k) with large constants, so these algorithms might not
scale.

@ On the other hand, these algorithms offer deep and interesting intuition
into submodular functions, beyond what we have covered here.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F55/57 (pg.65/67)

Submodular Max w. Other Constraints
FEErrrrrrrrrrrrrm

Some results on submodular maximization

@ As we've seen, we can get 1 — 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

@ For general matroid, greedy reduces to 1/2 approximation (as we've
seen).

@ We can recover 1 — 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak's publications).

@ More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak's publications
http://theory.stanford.edu/~ jvondrak/).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F56/57 (pg.66/67)

http://theory.stanford.edu/~jvondrak/

Submodular Max w. Other Constraints

Submodular Max Summary - 2012: From J. Vondrak

Monotone Maximization

knapsacks

Constraint Approximation | Hardness Technique
S| <k 1—-1/e 1—-1/e greedy
matroid 1—1/e 1 —1/e | multilinear ext.
O(1) knapsacks 1—-1/e 1 —1/e | multilinear ext.
k matroids k+ € k/log k local search
k matroids and O(1) .

1 Itil :
knapsacks O(k) k/logk | multilinear ext
Nonmonotone Maximization

Constraint Approximation | Hardness Technique
Unconstrained 1/2 1/2 combinatorial
matroid 1/e 0.48 multilinear ext.
O(1) knapsacks 1/e 0.49 multilinear ext.

k matroids k+ O(1) k/log k local search
ko matroids and O(1) O(k) k/logk | multilinear ext.

EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018

F57/57 (pg.67/67)

	Logistics & Review
	Logistics
	

	Review
	

	Current Lecture Part
	Current Lecture
	Polymatroids, Greedy, and Cardinality Constrained Maximization
	

	Curvature
	

	Submodular Max w. Other Constraints
	

	Submodular Max w. Other Constraints
	

