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Cumulative Outstanding Reading

Read chapter 1 from Fujishige's book.
Read chapter 2 from Fujishige's book.
Read chapter 3 from Fujishige's book.
Read chapter 4 from Fujishige’s book.
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Announcements, Assignments, and Reminders

o Next homework is posted on canvas. Due Thursday 5/10, 11:59pm.

@ As always, if you have any questions about anything, please ask then

via our discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
Can meet at odd hours via zoom (send message on canvas to schedule

time to chat).

F3/57 (pg.3/233)
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Logistics

Class Road Map - EE563

@ L1(3/26): Motivation, Applications, &
Basic Definitions,

@ L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

@ L3(4/2): Info theory exs, more apps,
definitions, graph/combinatorial examples

@ L4(4/4): Graph and Combinatorial
Examples, Matrix Rank, Examples and
Properties, visualizations

@ L5(4/9): More Examples/Properties/
Other Submodular Defs., Independence,

@ L6(4/11): Matroids, Matroid Examples,
Matroid Rank, Partition/Laminar
Matroids

@ L7(4/16): Laminar Matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid Representation, Dual
Matroids

@ 18(4/18): Dual Matroids, Other Matroid
Properties, Combinatorial Geometries,
Matroids and Greedy.

@ L9(4/23): Polyhedra, Matroid Polytopes,
Matroids — Polymatroids

@ L10(4/29): Matroids — Polymatroids,
Polymatroids, Polymatroids and Greedy,

@ L11(4/30): Polymatroids, Polymatroids
and Greedy

@ L12(5/2): Polymatroids and Greedy,
Extreme Points, Cardinality Constrained
Maximization

@ L13(5/7): Constrained Submodular
Maximization

L14(5/9):

L15(5/14):

L16(5/16):

L17(5/21):

L18(5/23):

L-(5/28): Memorial Day (holiday)
L19(5/30):

L21(6/4): Final Presentations
maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Multiple Polytopes associated with arbitrary f

e Given an arbitrary submodular function f : 2" — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, can set f'(A) = f(A) — f(0) without destroying
submodularity. This does not change any minima, (i.e.,
argmin 4 f(A) = argminy f/(A)) so we often assume all functions are
normalized f(0) = 0.

@ We can define several polytopes:

Pp={z e R” : 2(5) < f(9),VS C E} (13.1)
Pl =Pin{zeR”:z>0} (13.2)
By=Prn{zeR” :2(E) = f(E)} (13.3)

@ Py is what is sometimes called the extended polytope (sometimes
notated as EPy.

° PJT is Py restricted to the positive orthant.

@ By is called the base polytope, analogous to the base in matroid.
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Multiple Polytopes in 2D associated with f

Py =P;n{zreR¥:2>0} (13.1)
Py = {z e R : (S) < f(5),VS C E} (13.2)
By=P;n{z e R :2(E) = f(E)} (13.3)
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A polymatroid function's polyhedron is a polymatroid.

Theorem 13.2.1

Let f be a submodular function defined on subsets of E. For any x € RF,
we have:

rank(x) = max (y(F) : y < x,y € Py) =min (z(A) + f(E\A): ACE)
(13.1)

Essentially the same theorem as Theorem ??, but note Py rather than PJT.
Taking z = 0 we get:

Corollary 13.2.2

Let f be a submodular function defined on subsets of E. We have:

rank(0) = max (y(F) :y <0,y € Pf) =min(f(4): ACE) (13.2)
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Polymatroid extreme points

Theorem 13.2.1

For a given ordering E = (ey1,...,en) of E and a given E; = (e1,...,e;)
and x generated by E; using the greedy procedure (z(e;) = f(ei|Ei—1)),
then x is an extreme point of Py when f is submodular.

Proof.
e We already saw that « € P; (Theorem ?77?).

@ To show that x is an extreme point of P, note that it is the unique
solution of the following system of equations

z(E;) = f(Ej)for1<j<i<m (13.4)
z(e)=0foree E\ E; (13.5)

There are ¢ < m equations and ¢ < m unknowns, and simple Gaussian
elimination gives us back the x constructed via the Greedy algorithm!!
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R
[NNRE RRRN

Polymatroid extreme points
@ Moreover, we have (and wi

ultimately prove

Corollary 13.2.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:z(e) #0} C B CU(A: x(A) = f(A)) = sat(z), then
x Is generated using greedy by some ordering of B.

e Note, sat(x) = cl(x) = U(A : z(A) = f(A)) is also called the closure
of x (recall that sets A such that z(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture
10, Theorem ?7?)

@ Thus, cl(z) is a tight set.

@ Also, supp(z) = {e € E: z(e) # 0} is called the support of .

e For arbitrary z, supp(x) is not necessarily tight, but for an extreme
point, supp(z) is.
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Review
[NNRRE RN

Polymatroid with labeled edge lengths

o Recall
fle|A) = f(A+e)—f(A)
@ Notice how
submodularity,
F(elB) < f(e|A) for
A C B, defines the shape e
of the polytope.

@ In fact, we have
strictness here
F(elB) < fe|4) for
ACB.

@ Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.

(‘3[%2)

(‘32
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Intuition: why greedy works with polymatroids

o Given w, the goal is
to find
z = (z(e1), z(e2))
that maximizes
2Tw = z(e1)w(er) +
x(e2)w(eg).

o If w(ez) > w(ey) the
upper extreme point
indicated maximizes
xTw over x € PJZL.

o If w(ez) < w(ep) the
lower extreme point
indicated maximizes
xzTw over x € PJT.

Maximal pointin P
for w in this region.

f(e,le,) )

N
<N
\S\

7
&

459
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The Greedy Algorithm for Submodular Max

A bit more precisely:
Algorithm 1: The Greedy Algorithm

1 Set Sy + 0;
> for i - 0...|E|—1do
3 Choose v; as follows:

v; € argmax,eys, f({v}]5i) = argmax, ey g, f(Si U{v}) ;
4 Set Si+1 ~— S; U {Ul} ;
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Greedy Algorithm for Card. Constrained Submodular Max

@ This algorithm has a guarantee

Theorem 13.2.1

Given a polymatroid function f , the above greedy algorithm returns sets S;
such that for each i we have f(S;) > (1 — 1/e) max|g<; f(5).

e To approximately find A* € argmax {f(A) : |A| < k}, we repeat the
greedy step until k =7+ 1:

@ Again, since this generalizes max k-cover, Feige (1998) showed that
this can’t be improved. Unless P = N P, no polynomial time algorithm
can do better than (1 — 1/e + ¢€) for any € > 0.
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Polymatroids, Greedy, and Cardinality
[ ARRRRRRARRRRRAN]

The Greedy Algorithm: 1 — 1/e intuition.
o At step ¢ < k, greedy chooses v; to maximize f(v].S;).
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Polymatroids, Greedy, and Cardinality
[ ARRRRRRARRRRRAN]

The Greedy Algorithm: 1 — 1/e intuition.

o At step i < k, greedy chooses v; to maximize f(vl]S;).
@ Let S* be optimal solution (of size k) and OPT = f(S™).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[ ARRRRRRARRRRRAN]

The Greedy Algorithm: 1 — 1/e intuition.

o At step i < k, greedy chooses v; to maximize f(vl]S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Fv e V\Si: f(v]Si) = f(Si+v[Si) = ~-(OPT — f(S))) (13.1)

=
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[ ARRRRRRARRRRRAN]

The Greedy Algorithm: 1 — 1/e intuition.

o At step i < k, greedy chooses v; to maximize f(vl]S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Ju e V\ Si: f(u]Si) = F(Si +[S;) > (OPT £(S))  (13.1)
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The Greedy Algorithm: 1 — 1/e intuition.

o At step i < k, greedy chooses v; to maximize f(vl]S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Jo e VS F(0]Si) = F(S:+v]S) > %(OPT CHS)) (131)

F14/57 (pg.18/233)



Polymatroids, Greedy, and Cardinality Constrained Maximization
I\HHHHHHH

The Greedy Algorithm: 1 — 1/e intuition.

o At step i < k, greedy chooses v; to maximize f(vl]S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Ju e V\ Si: f(u]Si) = F(Si +[S;) > (OPT £(S))  (13.1)

Lo
€oss » Equation (13.10) will show
o (17%)k that Equation (13.1) =
025 OPT — f(Si+1)
< (1= 1/k)(OPT — f(S5:))
— OPT - (S))
< (1—1/k)*OPT
< 1/eOPT

= OPT(1—1/e) < f(Sp)
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The Greedy Algorlthm 1 — 1/e intuition.

o At step i < k, greedy chooses v; to maximize f(v]S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Jv e V\Si: f(v]Si) = f(Si+v[Si) = ~-(OPT — f(S))) (13.1)

| =

wf\ (1= (1=1/k)%) < £(S,)/OPT Equation (13.10) will show
that Equation (13.1) ==

OPT — f(Si+1)

. < (1—1/k)(OPT — f(S)))
= OPT — f£(Si)
< (1-1/k)*OPT
| < 1/eOPT
1-1/e = OPT(1 - 1/e) < f(Sk)
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[ERRRRRRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

Theorem 13.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si}i>o to be the chain formed by the greedy algorithm (Eqn. (?7)). Then
for all k, ¢ € 7+, we have:

F(Se) = (1—e~/%) Jmax f(5) (13.2)

and in particular, for £ = k, we have f(Sk) > (1 — 1/e) maxg, g<i f(S5).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[ERRRRRRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

Theorem 13.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si}i>o to be the chain formed by the greedy algorithm (Eqn. (?7)). Then
for all k, ¢ € 7+, we have:

F(Se) = (1—e~/%) Jmax f(5) (13.2)

and in particular, for £ = k, we have f(Sk) > (1 — 1/e) maxg, g<i f(S5).

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[ERRRRRRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

Theorem 13.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si}i>o to be the chain formed by the greedy algorithm (Eqn. (?7)). Then
for all k, ¢ € 7+, we have:

F(Se) = (1—e~/%) Jmax f(5) (13.2)

and in particular, for £ = k, we have f(Sk) > (1 — 1/e) maxg, g<i f(S5).

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k
@ [/ is size of set we are choosing (i.e., we choose S; from greedy chain).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[ERRRRRRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

Theorem 13.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si}i>o to be the chain formed by the greedy algorithm (Eqn. (?7)). Then
for all k, ¢ € 7+, we have:

F(Se) = (1—e~/%) Jmax f(5) (13.2)

and in particular, for £ = k, we have f(Sk) > (1 — 1/e) maxg, g<i f(S5).

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k
@ / is size of set we are choosing (i.e., we choose S; from greedy chain).

@ Bound is how well does S; (of size ¢) do relative to S*, the optimal set of
size k.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[ERRRRRRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

Theorem 13.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si}i>o to be the chain formed by the greedy algorithm (Eqn. (?7)). Then
for all k, ¢ € 7+, we have:

F(Se) = (1—e~/%) Jmax f(5) (13.2)

and in particular, for £ = k, we have f(Sk) > (1 — 1/e) maxg, g<i f(S5).

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k
@ / is size of set we are choosing (i.e., we choose S; from greedy chain).

e Bound is how well does Sy (of size ¢) do relative to S*, the optimal set of
size k.

@ Intuitively, bound should get worse when ¢ < k and get better when ¢ > k.
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Polymatroids, Greedy, and Cardinalit
[RERRRRRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.3.1.
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Polymatroids, Greedy, and Cardinalit
[RERRRRRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.3.1.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).
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Polymatroids, Greedy, and Cardi
[RERRRRRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.3.1.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

@ Set S* € argmax {f(9) : |5] < k}
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Polymatroids, Greedy, and Cardi
[RERRRRRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.3.1.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

@ Set S* € argmax {f(95) : |5] < k}

@ w.l.o.g. assume |S*| = k.
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Polymatroids, Greedy, and Cardinalit
[RERRRRRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.3.1.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

@ Set S* € argmax {f(95) : |5] < k}

o w.l.o.g. assume |S*| = k.

@ Order S* = (v],v3,...,v}) arbitrarily.

F16/57 (pg.30/233)
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Polymatroids, Greedy, and Cardi
[RERRRRRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.3.1.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

@ Set S* € argmax {f(95) : |5] < k}

o w.l.o.g. assume |S*| = k.

e Order S* = (v],v3,...,v}) arbitrarily.

@ Let S; = (v1,v2,...,v;) be the greedy order chain chosen by the
algorithm, for i € {1,2,...,¢}.
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Polymatroids, Greedy, and Cardi
[RERRRRRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.3.1.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

Set S* € argmax {f(95) : [5] < k}
w.l.o.g. assume |S*| = k.

Order S* = (v}, v3,...,v}) arbitrarily.

Let S; = (v1,v2,...,v;) be the greedy order chain chosen by the
algorithm, for i € {1,2,...,¢}.

Then the following inequalities (on the next slide) follow:
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.

o For all : < ¢, we have

f(5%)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.

o For all ¢ < ¢, we have
f(8%) < f(STUSy)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.

@ For all © < ¢, we have
f(S*) < f(S*US;) = f(Si) + f(S¥]S:) (13.3)
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edy, and Cardinality Constrained Maximization
[NNRRENRN!

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.

o For all ¢ < ¢, we have

f(S8%) < f(STUS) = f(Si) + f(57]Si) (13.3)
k

= £(Si)+ > fiISi U {vf,05,.. ., 071 }) (13.4)
F=l
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RRLRRRRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.

o For all ¢ < ¢, we have

f(S*) < f(S*US;) = f(S:) + f(S*|S:) (13.3)
k
= F(Si)+ > fiISi U {vf,05,..., 071 }) (13.4)
j=1
< f(S)+ ) f(vlSi) (13.5)
vES*
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P dy, ane
[RRLRRRRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.

o For all ¢ < ¢, we have

f(87) < f(STUSH) = F(Si) + f(57[S) (133)
= f(S;) + i}f@ﬁ&- U {v],v5,...,05_1}) (13.4)
< f(S:) + JZ*f<v|Si> (13.5)
< f(Si) +v§; f(vig1]Si)
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P dy, ane
[RRLRRRRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.

o For all ¢ < ¢, we have

f(87) < f(STUSH) = F(Si) + f(57[S) (133)
= f(S;) + i}f@ﬁ&- U {v],v5,...,05_1}) (13.4)
< f(S:) + JZ*f<v|Si> (13.5)
< f(S:) + tz:* fina]Si) = F(Si) + ; f(Siy1]Si)  (13.6)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.

@ For all 7 < £, we have
F(S™) < F(S*US:) = £(S:) + £(S1S:) (13.3)
= f(S;) + i}f@ﬁ&- U {v],v5,...,05_1}) (13.4)
< f(Si) + JZS* f(@lSy) (13.5)
< f(S) + i i) = £(S) + D f(SinlS)  (136)
= f(Si) + ffi&ﬂsm - (13.7)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.

@ For all © < ¢, we have
f(S*) < f(S*US;) = f(S:i) + f(S*]S:) (13.3)
k
= F(Si)+ > fiISi U {vf,05,..., 071 }) (13.4)
j=1
< f(S)+ ) f(0lSi) (13.5)
VES*
< f(S:) + Z fita]Si) = f(Si) + Z f(Sita]Si)  (13.6)
VES* vES*
= f(S:) + kf(Si+1]S:) (13.7)
@ Therefore, we have Equation 13.1, i.e.,:
f(8%) = f(Si) < kf(Siy1|Si) = k(f(Si+1) — f(Si)) (13.8)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.

@ Define gap 0; = f(S*) — f(Si), s0 &; — 841 = f(Siv1) — £(Si),
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.

o Define gap 0; 2 f(S*) — f(Si), s0 6; — 841 = f(Siz1) — £(S;), giving
8 < k(8 — div1) (13.9)

or
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edy, and Cardinality Constrained Maximization
[NNRRENRN!

... proof of Theorem 13.3.1 cont.

o Define gap 0; = f(S*) — f(Si), s0 6; — 841 = f(Siv1) — f(S;), giving
0; < ]C((SZ = (52'4_1) (139)

or
Sip1 < (1= 2)6; (13.10)
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edy, and Cardinality Constrained Maximization
[NNRRENRN!

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.

o Define gap 0; = f(S*) — f(Si), s0 6; — 841 = f(Siv1) — f(S;), giving

0; < ]C((SZ = 52'4_1) (139)
or .
biv1 < (1= )0 (13.10)
@ The relationship between §y and dy is then
- 1.
n<(1- Z) 0o (13.11)
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERR ERRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.

o Define gap 0; = f(S*) — f(Si), s0 6; — 841 = f(Siv1) — f(S;), giving
0; < ]C((SZ = (52'4_1) (139)

or 1
Sip1 < (1= )i (13.10)

@ The relationship between &g and d, is then

& < (1-— %)% (13.11)

e Now, dp = f(S*) — f(0) < f(S*) since f > 0.
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P dy, ane
[RERR ERRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.

o Define gap 0; = f(S*) — f(Si), s0 6; — 841 = f(Siv1) — f(S;), giving
0; < ]C((SZ = 52'4_1) (139)

or

i1 < (1— %)&- (13.10)

@ The relationship between &g and d, is then

& < (1-— %)% (13.11)

e Now, dg = f(S5*) — f(0) < f(S*) since f > 0.

@ Also, by variational bound 1 — 2 < e™* for z € R, we have

5 < (1— %)@50 < etk f(5%) (13.12)
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Polymatro

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.
@ When we identify §; = f(S*) — f(Sy), a bit of rearranging then gives:

F(S)) > (1 —e 7 f(S7) (13.13)

Ol

V.
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edy, and Cardinality Constrained Maximization
[NNRRENRN!

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.
@ When we identify 0; = f(S*) — f(S¢), a bit of rearranging then gives:

F(Se) 2 (1 —e ) f(57) (13.13)

Ol

V.

e With ¢ =k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if Sy is greedy solution of size k, and S* is an
optimal solution of size k, f(Sk) > (1 —1/e)f(S*) ~ 0.6321f(5™).
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edy, and Cardinality Constrained Maximization
[NNRRENRN!

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.
@ When we identify 0; = f(S*) — f(S¢), a bit of rearranging then gives:

F(Se) 2 (1 —e ) f(57) (13.13)

Ol

e With ¢ =k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if S}, is greedy solution of size k, and S* is an
optimal solution of size k, f(Sk) > (1 —1/e) f(S*) =~ 0.6321f(S™).

@ What if we want to guarantee a solution no worse than .95f(S*) where
|S*| = k7
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRE RRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.
@ When we identify 0; = f(S*) — f(S¢), a bit of rearranging then gives:

F(Se) 2 (1 —e ) f(57) (13.13)

Ol

e With ¢ =k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if S}, is greedy solution of size k, and S* is an
optimal solution of size k, f(Sk) > (1 —1/e) f(S*) =~ 0.6321f(S™).

e What if we want to guarantee a solution no worse than .95 f(S*) where
|S*| = k7 Set 0.95 = (1 — e~ /%), which gives
¢=]-kIn(1—0.95)] = 4k.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRE RRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.
@ When we identify 0; = f(S*) — f(S¢), a bit of rearranging then gives:

F(Se) 2 (1 —e ) f(57) (13.13)

Ol

e With ¢ =k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if S}, is greedy solution of size k, and S* is an
optimal solution of size k, f(Sk) > (1 —1/e)f(S*) ~ 0.6321f(S5™).

e What if we want to guarantee a solution no worse than .95 f(S*) where
|S*| = k? Set 0.95 = (1 — e~%/*), which gives
¢ = [—kIn(l —0.95)] = 4k. And [—In(1 — 0.999)] = 7.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRE RRRRRRRRAN]

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 13.3.1 cont.
@ When we identify 0; = f(S*) — f(S¢), a bit of rearranging then gives:

F(Se) 2 (1 —e ) f(57) (13.13)

Ol

e With ¢ =k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if S}, is greedy solution of size k, and S* is an
optimal solution of size k, f(Sk) > (1 —1/e) f(S*) =~ 0.6321f(S™).

e What if we want to guarantee a solution no worse than .95 f(S*) where
|S*| = k? Set 0.95 = (1 — e~!/F), which gives
¢=]-kIn(1 —0.95)] =4k. And [—In(1 —0.999)] = 7.

@ So solution, in the worst case, quickly gets very good. Typical/practical
case is much better.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRR NRRRRRRAN]

Greedy running time

@ Greedy computes a new maximum n = |V| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRR NRRRRRRAN]

Greedy running time

o Greedy computes a new maximum n = |V| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRR NRRRRRRAN]

Greedy running time

o Greedy computes a new maximum n = |V| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

@ Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRR NRRRRRRAN]

Greedy running time

o Greedy computes a new maximum n = |V| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

@ Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

@ This is called Minoux's 1977 Accelerated Greedy strategy (and has been
rediscovered a few times, e.g., “Lazy greedy”), and runs much faster
while still producing same answer.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRRR NRRRRRRAN]

Greedy running time

Greedy computes a new maximum n = |V| times, and each maximum
computation requires O(n) comparisons, leading to O(n?) computation
for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

This is called Minoux's 1977 Accelerated Greedy strategy (and has been
rediscovered a few times, e.g., “Lazy greedy”), and runs much faster
while still producing same answer.

We describe it next:
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Minoux's Accelerated Greedy for Submodular Functions

@ At stage ¢ in the algorithm, we have a set of gains f(v]S;) for all
v ¢ S;. Store these values a,, «— f(v|S;) in sorted priority queue.
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Minoux's Accelerated Greedy for Submodular Functions

@ At stage ¢ in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, «— f(v|S;) in sorted priority queue.
@ Priority queue, O(1) to find max, O(logn) to insert in right place.
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Minoux's Accelerated Greedy for Submodular Functions

@ At stage ¢ in the algorithm, we have a set of gains f(v|S;) for all

v ¢ S;. Store these values a,, «— f(v|S;) in sorted priority queue.
@ Priority queue, O(1) to find max, O(logn) to insert in right place.
@ Once we choose a max v, then set S;11 + S; + v.
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Minoux's Accelerated Greedy for Submodular Functions

@ At stage ¢ in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, «— f(v|S;) in sorted priority queue.

@ Priority queue, O(1) to find max, O(logn) to insert in right place.

@ Once we choose a max v, then set S;41 < S; + v.

@ For v ¢ S;11 we have f(v|Si+1) < f(v|S;) by submodularity.
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Minoux's Accelerated Greedy for Submodular Functions

At stage i in the algorithm, we have a set of gains f(v|S;) for all

v ¢ S;. Store these values a,, «— f(v|S;) in sorted priority queue.
Priority queue, O(1) to find max, O(logn) to insert in right place.
Once we choose a max v, then set S;11 < S; + v.

For v ¢ Si11 we have f(v]Sit1) < f(v|S;) by submodularity.
Therefore, if we find a v’ such that f(v/[Si+1) > a, for all v # v/, then
since

f'1Si41) = o = f(v]Si) = f(v]Sit1) (13.14)

we have the true max, and we need not re-evaluate gains of other
elements again.
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Minoux's Accelerated Greedy for Submodular Functions

At stage i in the algorithm, we have a set of gains f(v|S;) for all

v ¢ S;. Store these values a,, «— f(v|S;) in sorted priority queue.
Priority queue, O(1) to find max, O(logn) to insert in right place.
Once we choose a max v, then set S;11 < S; + v.

For v ¢ Si11 we have f(v]Sit1) < f(v|S;) by submodularity.
Therefore, if we find a v’ such that f(v'[Si+1) > a, for all v # v/, then
since

f@'[Sit1) = aw = f(v|S) = f(v]Sita) (13.14)

we have the true max, and we need not re-evaluate gains of other
elements again.

Strategy is: find the argmax,cy\g,,, @, and then compute the real
f('|Sit1). If it is greater than all other «,'s then that's the next
greedy step. Otherwise, replace a,, with its real value, resort
(O(logn)), and repeat.
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux’s algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700x) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700x ) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but

accelerated variant at the very best does O(n + k), so this limits the
speedup.
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700x ) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(n + k), so this limits the
speedup.

@ Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the standard O(n?) greedy algorithm (will return the same answers,
i.e., those having the 1 — 1/e guarantee).

In practice: Minoux's trick has enormous speedups (=~ 700x) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(n + k), so this limits the
speedup.

Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)

Can be used used for “big data” sets (e.g., social networks, selecting
blogs of greatest influence, document summarization, etc.).

EES563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F22/57 (pg.72/233)



Polymatroids, Greedy, and Cardinality Constrained Maxi
[RERRERARE NRRRAN]

Priority Queue

@ Use a priority queue (Q as a data structure: operations include:
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Priority Queue

@ Use a priority queue () as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

insert(Q, (v, a)) (13.15)

Prof. Jeff Bilmes EES563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F23/57 (pg.74/233)



Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRERARE NRRRAN]

Priority Queue

@ Use a priority queue () as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

insert(Q, (v, o)) (13.15)

e Pop the item (v, &) with maximum value « off the queue.

(v, @) + pop(Q) (13.16)
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRERARE NRRRAN]

Priority Queue

@ Use a priority queue () as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

insert(Q, (v, o)) (13.15)
e Pop the item (v, @) with maximum value « off the queue.

(v, ) < pop(Q) (13.16)
e Query the value of the max item in the queue

max(Q) € R (13.17)
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRERARE NRRRAN]

Priority Queue

@ Use a priority queue () as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

insert(Q, (v, o)) (13.15)

e Pop the item (v, @) with maximum value « off the queue.

(v, @) < pop(Q) (13.16)
o Query the value of the max item in the queue

max(Q) € R (13.17)

@ On next slide, we call a popped item “fresh” if the value (v, ) popped has
the correct value o = f(v]S;). Use extra “bit" to store this info
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Priority Queue

@ Use a priority queue () as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

insert(Q, (v, o)) (13.15)

e Pop the item (v, @) with maximum value « off the queue.

(v, @) < pop(Q) (13.16)
o Query the value of the max item in the queue

max(Q) € R (13.17)

@ On next slide, we call a popped item “fresh” if the value (v, ) popped has
the correct value o = f(v]S;). Use extra “bit" to store this info

@ If a popped item is fresh, it must be the maximum — this can happen if, at
given iteration, v was first popped and neither fresh nor maximum so placed
back in the queue, and it then percolates back to the top at which point it
is fresh — thereby avoid extra queue check.
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Minoux's Accelerated Greedy Algorithm Submodular Max

Algorithm 2: Minoux's Accelerated Greedy Algorithm

1 Set Sy < 0 ; i < 0 ; Initialize priority queue Q ;
2 forve Fdo
3 | INSERT(Q, f(v))

repeat

4

5 | (v,2) < pop(Q) ;

6 if a not “fresh” then

7 L recompute o < f(v|S;)

8 if (popped « in line 5 was “fresh”) OR (ov > max(Q®)) then
9 Set Si+1 «— S; U {’U} X

1 1+1;
11 else

12 L insert(Q, (v, a))

13 until i = |E|;
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(Minimum) Submodular Set Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin | S| such that f(S) > « (13.18)
scv

where « is a “cover’ requirement.
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Polymatroids, Greedy, and Cardinality

(Minimum) Submodular Set Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(5) > « (13.18)
scv
where « is a “cover” requirement.

e Normally take aw = f(V) but defining f/(A) = min {f(A), o} we can
take any «. Hence, we have equivalent formulation:

S* € argmin | S| such that f/(S) > f (V) (13.19)
SCV
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Polymatro

(Minimum) Submodular Set Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(5) > « (13.18)
Nak

where « is a “cover” requirement.

e Normally take o = f (V) but defining f'(A) = min {f(A), a} we can
take any «. Hence, we have equivalent formulation:

S* € argmin | S| such that f/(S) > f(V) (13.19)
Scv

@ Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.
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(Minimum) Submodular Set Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(5) > « (13.18)
scv
where « is a “cover” requirement.
e Normally take o = f (V) but defining f'(A) = min {f(A), a} we can

take any «. Hence, we have equivalent formulation:

S* € argmin | S| such that f/(S) > f(V) (13.19)
Scv

@ Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.
@ Greedy Algorithm: Pick the first chain item S; chosen by

aforementioned greedy algorithm such that f(S;) > « and output that
as solution.
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(Minimum) Submodular Set Cover: Approximation Analysis

@ For integer valued f, this greedy algorithm an O(log(maxscy f({s})))
approximation. Let S* be optimal, and S® be greedy solution, then

1891 < 15" (max f({s})) = |S°|O(log, (max f({s}))) ~ (13.20)

where H is the harmonic function, i.e., H(d) = Zle(l/z)
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Polym: edy, and Cardinality Constrained Maximization
[RRARRN] [RLARN

(Minimum) Submodular Set Cover: Approximation Analysis

o For integer valued f, this greedy algorithm an O(log(maxscy f({s})))
approximation. Let S* be optimal, and S be greedy solution, then

[S%] < |S*|H (max f({s})) = |$*|O(log.(max f({s}))) ~ (13.20)

where H is the harmonic function, i.e., H(d) = Zle(l/i).

@ If f is not integral value, then bounds we get are of the form:

|5¢] < \S*\(l + log, ) Ji(jj()STl)) (13.21)

wehre St is the final greedy solution that occurs at step 7.
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(Minimum) Submodular Set Cover: Approximation Analysis

o For integer valued f, this greedy algorithm an O(log(maxscy f({s})))
approximation. Let S* be optimal, and S be greedy solution, then

[S%] < |S*|H (max f({s})) = |$*|O(log.(max f({s}))) ~ (13.20)

where H is the harmonic function, i.e., H(d) = Z?Zl(l/i).

o If f is not integral value, then bounds we get are of the form:

fvV)
SO < |S5*|(1 + log, 13.21
21510+ ow iy S y) 082
wehre St is the final greedy solution that occurs at step 7.

@ Set cover is hard to approximate with a factor better than (1 —€) log «,
where « is the desired cover constraint.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRERRRRRNNE NN

Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRERRRRRNNE NN

Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.

@ We discussed cardinality constraint
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRERRRRRNNE NN

Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.
@ We discussed cardinality constraint

@ Generalizes the max k-cover problem, and also similar to the set cover
problem.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRERRRRRNNE NN

Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.
@ We discussed cardinality constraint

@ Generalizes the max k-cover problem, and also similar to the set cover
problem.

@ Simple greedy algorithm gets 1 — e~*/* approximation, where k is size

of optimal set we compare against, and ¢ is size of set greedy algorithm

chooses.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRERRRRRNNE NN

Summary: Monotone Submodular Maximization

Only makes sense when there is a constraint.

We discussed cardinality constraint

Generalizes the max k-cover problem, and also similar to the set cover
problem.

Simple greedy algorithm gets 1 — e~*/* approximation, where k is size
of optimal set we compare against, and ¢ is size of set greedy algorithm
chooses.

e Submodular cover: min. |S|s.t. f(S) > a.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[RERRERRRRRNNE NN

Summary: Monotone Submodular Maximization

Only makes sense when there is a constraint.

We discussed cardinality constraint

Generalizes the max k-cover problem, and also similar to the set cover
problem.

Simple greedy algorithm gets 1 — e~*/* approximation, where k is size
of optimal set we compare against, and ¢ is size of set greedy algorithm
chooses.

Submodular cover: min. |S| s.t. f(S) > a.

Minoux's accelerated greedy trick.
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The Greedy Algorlthm 1 — 1/e intuition.

o At step i < k, greedy chooses v; to maximize f(v]S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Fv e V\Si: f(v]Si) = f(Si+v[Si) = ~-(OPT — f(S))) (13.1)

| =

s\ (1= (1=1/k)%) < £(S,)/OPT Equation (13.10) will show
that Equation (13.1) =

OPT — f(Si+1)
< (1-1/k)(OPT — f(Sy))
= OPT — £(S)
< (1-1/k)*OPT
, <1/eOPT
L-1/e = OPT(1—1/e) < f(Sk)

1 2 3 4 5 6 7 8 skm
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Randomized greedy

@ How can we produce a randomized greedy strategy, one where each
greedy sweep produces a set that, on average, has a 1 — 1 /e guarantee?
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Polymatroids, Greedy, an

Randomized greedy

@ How can we produce a randomized greedy strategy, one where each
greedy sweep produces a set that, on average, has a 1 — 1/e guarantee?

@ Suppose the following holds:

fOPT) — f(Ai)

13.22
’ (13.22)

Elf(ait1|4:)] >

where A; = (a1, as,...,a;) are the first ¢ elements chosen by the
strategy.

EES563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F29/57 (pg.95/233)




Curvature of a Submodular function

@ For any submodular function, we have f(j]S) < f(j|0) so that
£(i18)/f(j10) < 1 whenever f(j|0) # 0.
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Curvature of a Submodular function

@ For any submodular function, we have f(j|S) < f(j|0) so that
f(i18)/£(j10) < 1 whenever f(3[0) # 0.

e For f:2Y — R, (non-negative) functions, we also have
f(71S)/f(]0) > 0 — and = 0 whenever j is “spanned” by S.
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Curvature of a Submodular function

@ For any submodular function, we have f(j|S) < f(j|0) so that
f(i18)/£(j10) < 1 whenever f(3[0) # 0.
e For f:2Y — R, (non-negative) functions, we also have
f(71S)/f(j]0) > 0 — and = 0 whenever j is “spanned” by S.
@ The total curvature of a submodular function is defined as follows:
A : f(19) VI AY))
R T R v I N
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Curvature of a Submodular function

@ For any submodular function, we have f(j|S) < f(j|0) so that
£(715)/£(i10) < 1 whenever £(j|0) # 0.

e For f:2Y — R, (non-negative) functions, we also have
f(71S)/f(j]0) > 0 — and = 0 whenever j is “spanned” by S.

@ The total curvature of a submodular function is defined as follows:

A : FUlS) o Ly FUIV D) (13.23)

c=1 =

— min N 3
s.jgs:f(j10)20 f(5]0) fG#o  f()
e cc[0,1].
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Curvature of a Submodular function

@ For any submodular function, we have f(j|S) < f(j|0) so that
£(715)/£(i10) < 1 whenever £(j|0) # 0.

e For f:2Y — R, (non-negative) functions, we also have
f(71S)/f(j]0) > 0 — and = 0 whenever j is “spanned” by S.

@ The total curvature of a submodular function is defined as follows:

A : FUlS) o Ly FUIV D) (13.23)

c=1 =

— min N 3
s.jgs:f(j10)20 f(5]0) fG#o  f()

@ ce€[0,1]. When ¢ =0, f(j]5) = f(j|0) for all S, j, a sufficient
condition for modularity, and we saw in Theorem 77 that greedy is
optimal for max weight indep. set of a matroid.
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Curvature
[NRRN

Curvature of a Submodular function

e For any submodular function, we have f(j|S) < f(j|0) so that
f(318)/£(10) < 1 whenever f(j[0) # 0.

e For f:2" — R, (non-negative) functions, we also have
f(71S)/f(5]0) > 0 — and = 0 whenever j is “spanned” by S.

@ The total curvature of a submodular function is defined as follows:

Ay g U SUVAG) (13.23)

c=1

sigs:amzo f(710) — T fo#o  fG)
e ce€[0,1]. When ¢ =0, f(j]5) = f(j|0) for all S, j, a sufficient
condition for modularity, and we saw in Theorem 77 that greedy is

optimal for max weight indep. set of a matroid.
@ For f with curvature ¢, then VA C V, Vv ¢ a, V¢ > ¢

JA+0) = f(A) > (1= ) f(v) (13.24)

=(1=o)f(v)>1-c)f(v)
(13.25)

EES563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F30/57 (pg.101/233)

f(0) > f(0]A) = fw)L =




For any submodular function, we have f(j]S) < f(j]0) so that
f(i18)/£(j10) < 1 whenever f(3[0) # 0.

For f: 2" — R, (non-negative) functions, we also have
f(71S)/f(j]0) > 0 — and = 0 whenever j is “spanned” by S.
The total curvature of a submodular function is defined as follows:

A : FUlS) o Ly FUIV D) (13.23)

c=1 =

— min N 3
s.jgs:f(j10)20 f(5]0) fG#o  f()

c € [0,1]. When ¢ =0, f(j|S) = f(4]0) for all S, j, a sufficient
condition for modularity, and we saw in Theorem 77 that greedy is
optimal for max weight indep. set of a matroid.

For f with curvature ¢, then VA CV, Vv ¢ a, V¢ > ¢

flA+v) = f(A) = (1 =) f(v) (13.24)

When ¢ = 1 then submodular function is “maximally curved”, i.e., there
exists is a subset that fully spans some other element.
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For any submodular function, we have f(j]S) < f(j]0) so that
f(i18)/£(j10) < 1 whenever f(3[0) # 0.

For f: 2" — R, (non-negative) functions, we also have
f(71S)/f(j]0) > 0 — and = 0 whenever j is “spanned” by S.
The total curvature of a submodular function is defined as follows:

— min " N
S,j¢S:f(i0)#0 f(7]0) ro#  f()

c € [0,1]. When ¢ =0, f(j|S) = f(4]0) for all S, j, a sufficient

condition for modularity, and we saw in Theorem 77 that greedy is

optimal for max weight indep. set of a matroid.
For f with curvature ¢, then VA CV, Vv ¢ a, V¢ > ¢

flA+v) = f(A) = (1 =) f(v) (13.24)

When ¢ = 1 then submodular function is “maximally curved’, i.e., there
exists is a subset that fully spans some other element.
Matroid rank functions with some dependence is maximally curved.

A : FUlS) o Ly FUIV D) (13.23)

c=1 =
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Curvature of a Submodular function

@ By submodularity, total curvature can be computed in either form:

min f(j’S):l— min M (13.25)

A
T sggssGm#o f(4]0) ifGlo£o  f(510)

c=1
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Curvature of a Submodular function

@ By submodularity, total curvature can be computed in either form:

U9 0 ey fUIVALD (13.25)

A .
c=1-— min - -
S.jgs:f(jl0)20 f(4]0) gfGlozo  f(510)

@ Note: Matroid rank is either modular ¢ = 0 or maximally curved ¢ =1
— hence, matroid rank can have only the extreme points of curvature,
namely 0 or 1.
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Curvature of a Submodular function

@ By submodularity, total curvature can be computed in either form:

FGIS) ) TUVAGD (g0

A .

c=1-— min - -

S.3¢S:£(ilo)#0 f(4|0) srGiozo0  f(510)

@ Note: Matroid rank is either modular ¢ = 0 or maximally curved ¢ =1
— hence, matroid rank can have only the extreme points of curvature,
namely 0 or 1.

@ Polymatroid functions are, in this sense, more nuanced, in that they
allow non-extreme curvature, with ¢ € [0, 1].
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Curvature of a Submodular function

By submodularity, total curvature can be computed in either form:

FGIS) ) TUVAGD (g0

A .
c=1-— min - -
S.3¢S:£(ilo)#0 f(4|0) srGiozo0  f(510)
Note: Matroid rank is either modular ¢ = 0 or maximally curved ¢ =1
— hence, matroid rank can have only the extreme points of curvature,
namely 0 or 1.

Polymatroid functions are, in this sense, more nuanced, in that they
allow non-extreme curvature, with ¢ € [0, 1].

It will be remembered the notion of “partial dependence” within
polymatroid functions.
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Curvature of f(S) = +/|S| as function of
V] =mn

o
3

4
o

curvature of sqrt(|A|) as func. of |V|

o f(9) = /|S] with |[V| =n

has curvature

4
©

N
~

4
w

1— (Vn—vn—1).

20 40 60 80 100
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Curvature of f(S) = +/|S| as function of
V] =mn

o
3

4
o

curvature of sqrt(|A|) as func. of |V|

o f(S)=+/|S| with |V|=n

has curvature

4
©

N
~

4
w

1 - (Vi —va—1).

@ Approximation gets worse
with bigger ground set.

20 40 60 80 100
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Curvature for f(S) = /|9

Curvature of f(S) = +/|S| as function of

N ®

o

S

w

curvature of sqrt(|A|) as func. of |V|

S

o f(S)=+/|S| with |V|=n
has curvature

1— (VA —va—T).
Approximation gets worse
with bigger ground set.

Functions of the form

f(S) = +/m(S) where

m: V — Ry, approximation
worse with n if

min; j |m(i) — m(j)| has a
fixed lower bound with
increasing n.

EES563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F32/57 (pg.110/233)



Curvature and approximation

@ Curvature limitation can help the greedy algorithm in terms of
approximation bounds.
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Curvature and approximation

@ Curvature limitation can help the greedy algorithm in terms of
approximation bounds.

e Conforti & Cornuéjols showed that greedy gives a 1/(1 + ¢)
approximation to max {f(S) : S € Z} when f has total curvature c.
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Curvature and approximation

@ Curvature limitation can help the greedy algorithm in terms of
approximation bounds.

e Conforti & Cornuéjols showed that greedy gives a 1/(1 + ¢)
approximation to max { f(S) : S € Z} when f has total curvature c.

@ Hence, greedy subject to matroid constraint is a max(1/(1 + ¢),1/2)
approximation algorithm, and if ¢ < 1 then it is better than 1/2 (e.g.,
with ¢ = 1/4 then we have a 0.8 algorithm).
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Curvature and approximation

@ Curvature limitation can help the greedy algorithm in terms of
approximation bounds.

e Conforti & Cornuéjols showed that greedy gives a 1/(1 + ¢)
approximation to max { f(S) : S € Z} when f has total curvature c.

@ Hence, greedy subject to matroid constraint is a max(1/(1 + ¢),1/2)
approximation algorithm, and if ¢ < 1 then it is better than 1/2 (e.g.,
with ¢ = 1/4 then we have a 0.8 algorithm).

1

0.95

0.9

o
©
[l

For  k-uniform  matroid
® (i.e., k-cardinality con-

straints), then approxima-

tion factor becomes

L1 —e)

approximation bound
1)
2 =)
u 0

o
3

=
@
o

0.2 0.4 0.6 0.8 1
curvature

o
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Submodular and Supermodular Curvature Approximation

@ Let f be a polymatroid function and let g be a non-negative monotone
non-decreasing supermodular function (e.g., g(4) = ¢(m(A)) where
®() is non-decreasing convex).
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Submodular and Supermodular Curvature Approximation

@ Let f be a polymatroid function and let g be a non-negative monotone
non-decreasing supermodular function (e.g., g(4) = ¢(m(A)) where
®() is non-decreasing convex).

o Let Ky =1 — min, W be the total submodular total curvature,
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Submodular and Supermodular Curvature Approximation

@ Let f be a polymatroid function and let g be a non-negative monotone
non-decreasing supermodular function (e.g., g(4) = ¢(m(A)) where
®() is non-decreasing convex).

o Let Ky =1 — min, W be the total submodular total curvature,

(v)

@ Define x9 = 1 —min, Ty as a “supermodular curvature”
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Let f be a polymatroid function and let g be a non-negative monotone
non-decreasing supermodular function (e.g., g(4) = ¢(m(A)) where
®() is non-decreasing convex).

Let ky = 1 — min, W be the total submodular total curvature,

, g1 g(v) " "
Define x 1 — min,, S 23S 2 supermodular curvature

k9 € [0,1] and k9 = 0 means g is modular, K9 = 1 means g is “fully
curved”
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Let f be a polymatroid function and let g be a non-negative monotone
non-decreasing supermodular function (e.g., g(4) = ¢(m(A)) where
®() is non-decreasing convex).

Let ky = 1 — min, W be the total submodular total curvature,

Ce el — 1 — i g9(v) “ o
Define x 1 — min, SV @S 2 supermodular curvature
k9 € [0,1] and k9 = 0 means g is modular, K9 = 1 means g is “fully
curved”

Form function h(A) = f(A) + g(A), then h is neither suBmodular nor
suPermodular, and is known as a BP-function.
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Let f be a polymatroid function and let g be a non-negative monotone
non-decreasing supermodular function (e.g., g(4) = ¢(m(A)) where
®() is non-decreasing convex).

Let ky = 1 — min, W be the total submodular total curvature,

, g1 g(v) " "
Define x 1 — min,, S 23S 2 supermodular curvature

k9 € [0,1] and k9 = 0 means g is modular, K9 = 1 means g is “fully
curved”

Form function h(A) = f(A) + g(A), then h is neither suBmodular nor
suPermodular, and is known as a BP-function.

Then the greedy algorithm on 1 has a guarantee of:

%(1 — 67(17H9)Hf)_
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Let f be a polymatroid function and let g be a non-negative monotone
non-decreasing supermodular function (e.g., g(4) = ¢(m(A)) where
®() is non-decreasing convex).

Let ky = 1 — min, W be the total submodular total curvature,

, g1 g(v) " "
Define x 1 — min,, S 23S 2 supermodular curvature

k9 € [0,1] and k9 = 0 means g is modular, K9 = 1 means g is “fully
curved”

Form function h(A) = f(A) + g(A), then h is neither suBmodular nor
suPermodular, and is known as a BP-function.

Then the greedy algorithm on h has a guarantee of:
11 _ o,—(A=kg)Ky

w; (I—e 288

For purely supermodular optimization (i.e., Ky = 0) we get that greedy
has a guarantee of 1 — k.
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Submodular Max w. Other Constraints

Generalizations

e Consider a k-uniform matroid M = (V,Z) where
Z={S CV:|S| <k}, and consider problem max{f(A): A€ T}
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Submodular Max w. Other Cor
[ NRNR

Generalizations

e Consider a k-uniform matroid M = (V,Z) where
Z={S CV:|S| <k}, and consider problem max{f(A): A€ I}
@ Hence, the greedy algorithm is 1 — 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.
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Submodular Max w. Other Cor
[ NRNR

Generalizations

e Consider a k-uniform matroid M = (V,Z) where
Z={S CV:|S| <k}, and consider problem max{f(A): A€ I}

@ Hence, the greedy algorithm is 1 — 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

@ Might be useful to allow an arbitrary matroid (e.g., partition matroid
IT={XCV:|XNVj| <k foralli=1,...,¢}., ora transversal,
etc).
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Submodular Max w. Other Constraints
[ NRNR

Generalizations

e Consider a k-uniform matroid M = (V,Z) where
Z={S CV:|S| <k}, and consider problem max{f(A): A€ I}

@ Hence, the greedy algorithm is 1 — 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

@ Might be useful to allow an arbitrary matroid (e.g., partition matroid
IT={XCV: | XNV <kiforalli=1,...,¢}., ora transversal,
etc).

e Knapsack constraint: if each item v € V' has a cost ¢(v), we may ask
for ¢(S) < b where b is a budget, in units of costs.
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Submodular Max w. Other Constraints
[ NRNR

Generalizations

e Consider a k-uniform matroid M = (V,Z) where
Z={S CV:|S| <k}, and consider problem max{f(A): A€ I}

@ Hence, the greedy algorithm is 1 — 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

@ Might be useful to allow an arbitrary matroid (e.g., partition matroid
IT={XCV: | XNV <kiforalli=1,...,¢}., ora transversal,
etc).

o Knapsack constraint: if each item v € V' has a cost ¢(v), we may ask
for ¢(S) < b where b is a budget, in units of costs. Q: Is
Z ={I:c(I) <b} the independent sets of a matroid?
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Submodular Max w. Other Constraints
[ NRNR

Generalizations

e Consider a k-uniform matroid M = (V,Z) where
Z={S CV:|S| <k}, and consider problem max{f(A): A€ I}

@ Hence, the greedy algorithm is 1 — 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

@ Might be useful to allow an arbitrary matroid (e.g., partition matroid
IT={XCV: | XNV <kiforalli=1,...,¢}., ora transversal,
etc).

o Knapsack constraint: if each item v € V' has a cost ¢(v), we may ask
for ¢(S) < b where b is a budget, in units of costs. Q: Is
Z ={I:¢(I) < b} the independent sets of a matroid?

@ We may wish to maximize f subject to multiple matroid constraints.
le., Se€Zy,5 €Iy,...,5 € I, where Z; are independent sets of the

ith matroid.
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Submodular Max w. Other Constraints
[ NRNR

Generalizations

e Consider a k-uniform matroid M = (V,Z) where
Z={S CV:|S| <k}, and consider problem max{f(A): A€ I}

@ Hence, the greedy algorithm is 1 — 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

@ Might be useful to allow an arbitrary matroid (e.g., partition matroid
IT={XCV: | XNV <kiforalli=1,...,¢}., ora transversal,
etc).

o Knapsack constraint: if each item v € V' has a cost ¢(v), we may ask
for ¢(S) < b where b is a budget, in units of costs. Q: Is
Z ={I:¢(I) < b} the independent sets of a matroid?

@ We may wish to maximize f subject to multiple matroid constraints.
le., Se€Zy,5 €Iy,...,5 € I, where Z; are independent sets of the

ith matroid.

e Combinations of the above (e.g., knapsack & multiple matroid
constraints).
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Submodular Max w. Other Constraints
(LENR

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.
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Submodular Max w. Other Constraints
(LENR

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.
@ l.e., Starting with Sy = (), we repeat the following greedy step

Siy1 =5 U argmax f(S; U{v}) (13.26)
veV\S; : SL-—I—UEﬂ?:l Z;
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Submodular Max w. Other Cor
(LENR

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.
@ l.e., Starting with Sy = (), we repeat the following greedy step

Siy1=S; U argmax f(S;u{v}) (13.26)
veEV\S; 1 Si+veNl_, I;

@ That is, we keep choosing next whatever feasible element looks best.
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Submodular Max w. Other Cor
(LENR

Greedy over multiple matroids

Obvious heuristic is to use the greedy step but always stay feasible.
l.e., Starting with Sy = (), we repeat the following greedy step

Siy1=S; U argmax f(S;u{v}) (13.26)
veEV\S; 1 Si+veNl_, I;

That is, we keep choosing next whatever feasible element looks best.
This algorithm is simple and also has a guarantee
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Submodular Max w. Other Constraints
(LENR

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.
@ l.e., Starting with Sy = (), we repeat the following greedy step

Siy1=S; U { argmax f(S; U {v})} (13.26)

veEV\S; 1 Si+veNl_, I;

@ That is, we keep choosing next whatever feasible element looks best.
@ This algorithm is simple and also has a guarantee

Theorem 13.5.1

Given a polymatroid function f, and set of matroids {M; = (E,L-)}?ZI,
the above greedy algorithm returns sets S; such that for each i we have

f(S:) > % maxg|<; seny_, 7, / (5), assuming such sets exists.
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Submodular Max w. Other Constraints
(LENR

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.
@ l.e., Starting with Sy = (), we repeat the following greedy step

Siy1=S; U { argmax f(S; U {v})} (13.26)

veEV\S; 1 Si+veNl_, I;

@ That is, we keep choosing next whatever feasible element looks best.
@ This algorithm is simple and also has a guarantee

Theorem 13.5.1

Given a polymatroid function f, and set of matroids {M; = (E,L-)}?ZI,
the above greedy algorithm returns sets S; such that for each i we have

f(S:) > % maxg|<; seny_, 7, / (5), assuming such sets exists.

@ For one matroid, we have a 1/2 approximation.
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Submodular Max w. Other Cor
(LENR

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.
@ l.e., Starting with Sy = (), we repeat the following greedy step

Siy1=S; U { argmax f(S; U {v})} (13.26)

veEV\S; 1 Si+veNl_, I;

@ That is, we keep choosing next whatever feasible element looks best.
@ This algorithm is simple and also has a guarantee

Theorem 13.5.1

Given a polymatroid function f, and set of matroids {M; = (E,L-)}?ZI,
the above greedy algorithm returns sets S; such that for each i we have

f(S:) > % maxg|<; seny_, 7, / (5), assuming such sets exists.

@ For one matroid, we have a 1/2 approximation.

@ Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints
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Submodular Max w. Other Cor
(LENR

Greedy over multiple matroids

Obvious heuristic is to use the greedy step but always stay feasible.
l.e., Starting with Sy = (), we repeat the following greedy step

Siy1=S; U argmax f(S;u{v}) (13.26)
veEV\S; 1 Si+veNl_, I;

That is, we keep choosing next whatever feasible element looks best.
This algorithm is simple and also has a guarantee

Theorem 13.5.1

Given a polymatroid function f, and set of matroids {M; = (E,L-)}?ZI,

the above greedy algorithm returns sets S; such that for each i we have
f(S:) > % maxg|<; seny_, 7, / (5), assuming such sets exists.

@ For one matroid, we have a 1/2 approximation.

@ Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints — but the bound is not that good when
there are many matroids.
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Submodular Max w. Other Constraints
1n

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?
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Submodular Max w. Other Constraints
1n

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?

e Consider bipartite graph G = (V, F, E). Define two partition matroids
]\/f\/ = (E./Iv), and A[F = (E,IF>
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Submodular Max w. Other Constraints
1n

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?

e Consider bipartite graph G = (V, F, E). Define two partition matroids
MV = (E,I\/), and MF = (E,IF)
@ Independence in each matroid corresponds to:
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Submodular Max w. Other Constraints
1n

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?
e Consider bipartite graph G = (V, F, E). Define two partition matroids
MV = (E,I\/), and MF = (E,IF)
@ Independence in each matroid corresponds to:
Q@ IcZyif|IN(V,f)|<1forall feF,
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Submodular Max w. Other Constraints
1n

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?
e Consider bipartite graph G = (V, F, E). Define two partition matroids
MV = (E,I\/), and MF = (E,IF)
@ Independence in each matroid corresponds to:
Q@ IeZyifIN(V,f)|<1forall feF,
Q@ andlcZpif|IN(v,F)|<1forallvelV.
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Submodular Max w. Other Constraints
1n

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?
e Consider bipartite graph G = (V, F, E). Define two partition matroids
MV = (E,Iv), and MF = (E,IF)
@ Independence in each matroid corresponds to:
QIcZyif|lIN(V,f)|<1lforall feF,
Q@ andlcZpif|IN(v,F)|<1forallveV.
[

V,<:F V
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Submodular Max w. Other Constraints
1n

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?
e Consider bipartite graph G = (V, F, E). Define two partition matroids
MV = (E,Iv), and MF = (E,IF)
@ Independence in each matroid corresponds to:
QIcZyif|lIN(V,f)|<1lforall feF,
Q@ andlcZpif|IN(v,F)|<1forallveV.
[

L
Ve I3 1%
~.
[
@ Therefore, a matching in GG is simultaneously independent in both M,

and My and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.

F
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Submodular Max w. Other Constraints
1n

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?
e Consider bipartite graph G = (V, F, E). Define two partition matroids
MV = (E,Iv), and MF = (E,IF)
@ Independence in each matroid corresponds to:
QIcZyif|lIN(V,f)|<1lforall feF,
Q@ andlcZpif|IN(v,F)|<1forallveV.
[

L
Ve I3 1%
~.
[
@ Therefore, a matching in G is simultaneously independent in both My

and My and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.

F

@ In bipartite graph case, therefore, can be solved in polynomial time.
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Submodular Max w. Other Cor
1

Matroid Intersection and Network Communication

e Let Gy = (V1, E) and Gy = (Vi, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).
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Submodular Max w. Other Constraints
1

Matroid Intersection and Network Communication

e Let Gy = (V1, E) and Gy = (Vi, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).

o Consider two cycle matroids associated with these graphs
M, = (E,Z;) and My = (E,Z3). They might be very different (e.g.,
an edge might be between two distinct nodes in GG; but the same edge
is a loop in multi-graph Gs.)

F38/57 (pg.146/233)
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Matroid Intersection and Network Communication

e Let Gy = (V1, E) and Gy = (Vi, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).

o Consider two cycle matroids associated with these graphs
M, = (E,Z;) and My = (E,Z3). They might be very different (e.g.,
an edge might be between two distinct nodes in GG; but the same edge
is a loop in multi-graph Gs.)

@ We may wish to find the maximum size edge-induced subgraph that is
still forest in both graphs (i.e., adding any edges will create a circuit in
either My, My, or both).
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Matroid Intersection and Network Communication

e Let Gy = (V1, E) and Gy = (Vi, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).

o Consider two cycle matroids associated with these graphs
M, = (E,Z;) and My = (E,Z3). They might be very different (e.g.,
an edge might be between two distinct nodes in GG; but the same edge
is a loop in multi-graph Gs.)

@ We may wish to find the maximum size edge-induced subgraph that is
still forest in both graphs (i.e., adding any edges will create a circuit in
either My, My, or both).

@ This is again a matroid intersection problem.
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Submodular Max w. Other Constraints

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.
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Submodular Max w. Other Constraints
(RENL}

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.
@ Given directed graph G, goal is to find such a Hamiltonian cycle.
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Submodular Max w. Other Constraints
(RENL}

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

@ Given directed graph G, goal is to find such a Hamiltonian cycle.

e From G with n nodes, create G’ with n + 1 nodes by duplicating
(w.l.o.g.) a particular node v; € V(G) to v;", v, and have all
outgoing edges from v; come instead from v; and all edges incoming
to v1 go instead to vy

F39/57 (pg.151/233)
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Submodular Max w. Other Cor
(RENL}

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

@ Given directed graph G, goal is to find such a Hamiltonian cycle.

e From G with n nodes, create G’ with n + 1 nodes by duplicating
(w.l.o.g.) a particular node v; € V(G) to v;", v, and have all
outgoing edges from v; come instead from v; and all edges incoming
to v1 go instead to vy

@ Let M be the cycle matroid on G’.

F39/57 (pg.152/233)
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Submodular Max w. Other Cor
(RENL}

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

@ Given directed graph G, goal is to find such a Hamiltonian cycle.

e From G with n nodes, create G’ with n + 1 nodes by duplicating
(w.l.o.g.) a particular node v; € V(G) to v;", v, and have all
outgoing edges from v; come instead from v; and all edges incoming
to v1 go instead to vy

@ Let M be the cycle matroid on G’.

@ Let M be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I € Z(M>) if
IINd(v)] <1forallveV(F).
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Submodular Max w. Other Constraints
(RENL}

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

@ Given directed graph G, goal is to find such a Hamiltonian cycle.

e From G with n nodes, create G’ with n + 1 nodes by duplicating
(w.l.o.g.) a particular node v; € V(G) to v;", v, and have all
outgoing edges from v; come instead from v; and all edges incoming
to v1 go instead to vy

@ Let M be the cycle matroid on G’.

@ Let M be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I € Z(M>) if
IINd(v)] <1forallveV(F).

@ Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I € Z(M3) if
[IN§t(v)| <1forallve V(G).
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Submodular Max w. Other Constraints
(RENL}

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

@ Given directed graph G, goal is to find such a Hamiltonian cycle.

e From G with n nodes, create G’ with n + 1 nodes by duplicating
(w.l.o.g.) a particular node v; € V(G) to v;", v, and have all
outgoing edges from v; come instead from v; and all edges incoming
to v1 go instead to vy

@ Let M be the cycle matroid on G’.

@ Let M be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I € Z(M>) if
IINd(v)] <1forallveV(F).

@ Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I € Z(M3) if
[IN§t(v)| <1forallve V(G).

@ Then a Hamiltonian cycle exists iff there is an n-element intersection of
Ml, MQ, and Mg.
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Submodular Max w. Other Constraints
(RENL}

Matroid Intersection and TSP

@ Recall, the traveling salesperson problem (TSP) is the problem to,
given a directed graph, start at a node, visit all cities, and return to the
starting point. Optimization version does this tour at minimum cost.
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Submodular Max w. Other Constraints

Matroid Intersection and TSP

@ Recall, the traveling salesperson problem (TSP) is the problem to,
given a directed graph, start at a node, visit all cities, and return to the
starting point. Optimization version does this tour at minimum cost.

@ Since TSP is NP-complete, we obviously can't solve matroid
intersections of 3 more matroids, unless P=NP.

F39/57 (pg.157,/233)
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Submodular Max w. Other Constraints
(RENL}

Matroid Intersection and TSP

@ Recall, the traveling salesperson problem (TSP) is the problem to,
given a directed graph, start at a node, visit all cities, and return to the
starting point. Optimization version does this tour at minimum cost.

@ Since TSP is NP-complete, we obviously can't solve matroid
intersections of 3 more matroids, unless P=NP.

@ But bipartite graph example gives us hope for 2 matroids, as in that
case we can easily solve max | X| s.t. z € 7y N Z,.
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Submodular Max w. Other Constraints
(AR NAR RN RNRRN

Greedy over multiple matroids: Generalized Bipartite

Matching

@ Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)
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Submodular Max w. Other Constraints
(AR NAR RN RNRRN

Greedy over multiple matroids: Generalized Bipartite

Matching

@ Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

@ Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.

Prof. Jeff Bilmes
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Submodular Max w. Other Constraints
(AR NAR RN RNRRN

Greedy over multiple matroids: Generalized Bipartite

Matching

@ Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

@ Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.

e Consider bipartite graph G = (E, F, V') where E and F are the
left/right set of nodes, respectively, and V' is the set of edges.
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Submodular Max w. Other Constraints
(AR NAR RN RNRRN

Greedy over multiple matroids: Generalized Bipartite

Matching

@ Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

@ Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.

o Consider bipartite graph G = (E, F, V') where E and F are the
left/right set of nodes, respectively, and V' is the set of edges.

@ F corresponds to, say, an English language sentence and F' corresponds
to a French language sentence — goal is to form a matching (an
alignment) between the two.
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Submodular Max w. Other Constraints
(LR N NN RRNRNN

Greedy over > 1 matroids: Multiple Language Alignment

o Consider English string and French string, set up as a bipartite graph.

| have ... as an example of public ownership

je le ai ... comme exemple de propriété publique
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Greedy over > 1 matroids: Multiple Language Alignment

@ One possible alignment, a matching, with score as sum of edge weights.

| have ... as an example of public ownership

VAV A

je le ai ... comme exemple de propriété publique
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Submodular M
(LR N NN RRNRNN

Greedy over > 1 matroids: Multiple Language Alignment
@ Edges incident to English words constitute an edge partition

| have ... as an example of public ownership

je le ai ... comme exemple de propriété publique
@ The two edge partitions can be used to set up two 1-partition matroids
on the edges.

@ For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.
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Submodular Max w. Other Constraints

Greedy over > 1 matroids: Multiple Language Alignment

@ Edges incident to French words constitute an edge partition

je le ai ... comme exemple de propriété publique
@ The two edge partitions can be used to set up two 1-partition matroids
on the edges.

@ For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.
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Submodular Max w. Other Constraints
(R RN RRRNRNY

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.
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Submodular Max w. Other Constraints
(R RN RRRNRNY

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.

@ As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.
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Submodular Max w. Other Constraints
(R RN RRRNRNY

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.

@ As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

@ We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:
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Submodular Max w. Other Constraints
(R RN RRRNRNY

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.

@ As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

@ We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 1
... the ... of public ownership .. . the ... of public ownership

.. le ... de propriété publique ... le ... de propriété publique
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Submodular Max w. Other Constraints
(R RN RRRNRNY

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.

@ As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

@ We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 2
... the ... of public ownership .. . the ... of public ownership

.. le ... de propriété publique ... le ... de propriété publique
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Submodular Max w. Other Constraints
(L AR RRRNNNY

Greedy over > 1 matroids: Multiple Language Alignment

@ Generalizing further, each block of edges in each partition matroid can
have its own “fertility” limit:
I={XCV: | XNnVj|<kjforalli=1,... ¢}

EES563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F43/57 (pg.172/233)



Greedy over > 1 matroids: Multiple Language Alignment

e Generalizing further, each block of edges in each partition matroid can
have its own “fertility” limit:
I={XCV: XNV <kjforalli=1,... ¢}

@ Maximizing submodular function subject to multiple matroid
constraints addresses this problem.
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Submodular Max w. Other Constraints
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Greedy over multiple matroids: Submodular Welfare

@ Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).
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Submodular Max w. Other Constraints
(RRRE ARRRNNRRRNARY

Greedy over multiple matroids: Submodular Welfare

@ Submodular Welfare Maximization: Consider E a set of m goods to be
distributed /partitioned among n people (“players”).

e Each players has a submodular “valuation” function, g; : 2¥ — R that
measures how “desirable” or “valuable” a given subset A C E of goods
are to that player.
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Submodular Max w. Other Constraints
(RRRE ARRRNNRRRNARY

Greedy over multiple matroids: Submodular Welfare

@ Submodular Welfare Maximization: Consider E a set of m goods to be
distributed /partitioned among n people (“players”).

e Each players has a submodular “valuation” function, g; : 2% — R that
measures how “desirable” or “valuable” a given subset A C FE of goods
are to that player.

@ Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.
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Submodular Max w. Other Constraints
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Greedy over multiple matroids: Submodular Welfare

@ Submodular Welfare Maximization: Consider E a set of m goods to be
distributed /partitioned among n people (“players”).

e Each players has a submodular “valuation” function, g; : 2% — R that
measures how “desirable” or “valuable” a given subset A C FE of goods
are to that player.

@ Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

@ Goal of submodular welfare: Partition the goods
E=FE{UEFEyU---UE, into n blocks in order to maximize the
submodular social welfare, measured as:

n
submodular-social-welfare(Eq, Ea, ..., E,) = Z gi(E;).  (13.27)
i=1
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Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed /partitioned among n people (“players”).

Each players has a submodular “valuation” function, g; : 2 — R, that
measures how “desirable” or “valuable” a given subset A C FE of goods
are to that player.

Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

Goal of submodular welfare: Partition the goods
E=FE{UEFEyU---UE, into n blocks in order to maximize the
submodular social welfare, measured as:

n
submodular-social-welfare(E1, Es, . .., E,) = ZgZ(El) (13.27)
i=1

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . ..
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Submodular Welfare: Submodular Max over matroid

partition

o Create new ground set E’ as disjoint union of n copies of the ground
set. l.e.,

E=FWEW---WE (13.28)

nx
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Submodular Welfare: Submodular Max over matroid

partition

o Create new ground set E’ as disjoint union of n copies of the ground
set. l.e.,

E'=EJEY---WE (13.28)

nx

e Let £  E’ be the ith block of F'.
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Submodular Welfare: Submodular Max over matroid

partition

o Create new ground set E’ as disjoint union of n copies of the ground
set. l.e.,

E'=EJEY---WE (13.28)

nx

o Let E@ c E’ be the ith block of F'.
e For any e € E, the corresponding element in E() is called (e, i) € E®
(each original element is tagged by integer).
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Submodular Max w. Other Constraints

Submodular Welfare: Submodular Max over matroid

partition

o Create new ground set E’ as disjoint union of n copies of the ground
set. l.e.,

EF=EWEW.. WE (13.28)
e
e Let E() C E’ be the ith block of E'.

e For any e € E, the corresponding element in E() is called (e, i) € E®)
(each original element is tagged by integer).
@ For e € E, define E, = {(¢/,i) € E' : ¢/ = ¢}.
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Submodular Max w. Other Constraints

Submodular Welfare: Submodular Max over matroid

partition

o Create new ground set E’ as disjoint union of n copies of the ground
set. l.e.,

E=FYWEW---WE (13.28)

nx

Let E() C E’ be the it" block of E'.

For any e € E, the corresponding element in E() is called (e,i) € E®)
(each original element is tagged by integer).

For e € E, define E, = {(¢’,i) € E' : ¢’ = e}.

Hence, {Ee}eeE is a partition of E’, each block of the partition for one
of the original elements in E.
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Submodular Welfare: Submodular Max over matroid

partition

o Create new ground set E’ as disjoint union of n copies of the ground
set. l.e.,

E'=EJEY---WE (13.28)

nx

o Let E@ c E’ be the ith block of F'.

e For any e € E, the corresponding element in E() is called (e, i) € E®)
(each original element is tagged by integer).

e For e € E, define E, = {(¢/,i) € E' : ¢/ = ¢}.

@ Hence, {Ee}eEE is a partition of E’, each block of the partition for one
of the original elements in E.

@ Create a 1-partition matroid M = (E’,Z) where

I={SCE :VeeE, |SNE,]|<1} (13.29)
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Submodular Welfare: Submodular Max over matroid

partition

@ Hence, S is independent in matroid M = (E’,I) if S uses each original
element no more than once.
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Submodular Welfare: Submodular Max over matroid

partition

e Hence, S is independent in matroid M = (E’, I) if S uses each original
element no more than once.

e Create submodular function f’: 2" — R with
F1(8) =31 g:i(Sn EY).
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Submodular Max w. Other Constraints

Submodular Welfare: Submodular Max over matroid

partition

e Hence, S is independent in matroid M = (E’, I) if S uses each original
element no more than once.

o Create submodular function f’: 2" — R with
F1(8) =i g:i(Sn EY).

@ Submodular welfare maximization becomes matroid constrained
submodular max max {f'(S) : S € Z}, so greedy algorithm gives a 1/2

approximation.
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Submodular Max w. Other Constraints

Submodular Social Welfare

AL

@ Have n = 6 people (who don't
like to share) and |E| =m =7

G~ pieces of sushi. E.g.,, e € E

2y .

might be e = "salmon roll".
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Submodular Social Welfare

AL

@ Have n = 6 people (who don't
like to share) and |E|=m =7

A pieces of sushi. E.g., e € E

: might be e = "salmon roll".

= @ Goal: distribute sushi to people
% to maximize social welfare.

)

|
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Submodular Max w. Other Constraints

Submodular Social Welfare

LALELA

@ Have n = 6 people (who don't
like to share) and |E|=m =7

2\ pieces of sushi. E.g., e € E
. might be e = "salmon roll".
E=n @ Goal: distribute sushi to people

to maximize social welfare.

@ Ground set disjoint union
FdFJEWEWEWE.
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Submodular Social Welfare

Submodular Max w. Other Constraints

Have n = 6 people (who don't
like to share) and |E| =m =7
pieces of sushi. E.g., e € E
might be e = "salmon roll".

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
FOEWFEFWEWEWE.
Partition matroid partitions:
E., UB,UFE., UE, UFE.,U
Eey UE,.
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Submodular Social Welfare

Submodular Max w. Other Constraints
(RRRRENT ARNRRRNARN

Have n = 6 people (who don't
like to share) and |E| =m =7
pieces of sushi. E.g., e € E
might be e = "salmon roll".

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
FOEWFEFWEWEWE.
Partition matroid partitions:
B, UB, UFE., UE,, UFE.U
Eey UE,.

independent allocation
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Submodular Social Welfare

Submodular Max w. Other Constraints
(RRRRENT ARNRRRNARN

Have n = 6 people (who don't
like to share) and |E| =m =7
pieces of sushi. E.g., e € E
might be e = "salmon roll".
Goal: distribute sushi to people
to maximize social welfare.
Ground set disjoint union
FWFYJFYEWEWE.
Partition matroid partitions:
Ee, UE., UE, UE,, UE,, U
Eey U B, .

independent allocation

non-independent allocation
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Monotone Submodular over Knapsack Constraint

@ The constraint |A| < k is a simple cardinality constraint.
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Submodular Max w. Other Constraints
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Monotone Submodular over Knapsack Constraint

@ The constraint |A| < k is a simple cardinality constraint.

o Consider a non-negative integral modular function ¢: E — Z.
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Submodular Max w. Other Constraints
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Monotone Submodular over Knapsack Constraint

@ The constraint |A| < k is a simple cardinality constraint.
@ Consider a non-negative integral modular function ¢: £ — 7Z, .

@ A knapsack constraint would be of the form ¢(A) < b where B is some
integer budget that must not be exceeded. That is
max {f(A4) : A CV,c(A) <b}.
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Monotone Submodular over Knapsack Constraint

@ The constraint |A| < k is a simple cardinality constraint.
@ Consider a non-negative integral modular function ¢: £ — 7Z, .

@ A knapsack constraint would be of the form ¢(A) < b where B is some
integer budget that must not be exceeded. That is
max {f(A4) : A CV,c(A) <b}.

e Important: A knapsack constraint yields an independence system (down
closed) but it is not a matroid!
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Monotone Submodular over Knapsack Constraint

@ The constraint |A| < k is a simple cardinality constraint.
@ Consider a non-negative integral modular function ¢: £ — 7Z, .

@ A knapsack constraint would be of the form ¢(A) < b where B is some
integer budget that must not be exceeded. That is
max {f(A4) : A CV,c(A) <b}.

e Important: A knapsack constraint yields an independence system (down
closed) but it is not a matroid!

@ c(e) may be seen as the cost of item e and if ¢c(e) = 1 for all e, then we
recover the cardinality constraint we saw earlier.
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Monotone Submodular over Knapsack Constraint

@ Greedy can be seen as choosing the best gain: Starting with Sy = 0,
we repeat the following greedy step

’UEV\Si

Sii1=S; U {argmax( £(S; U {v}) — f(Si))} (13.30)

the gain is f({v}|Si) = f(Si +v) — f(S;), so greedy just chooses next
the currently unselected element with greatest gain.
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Monotone Submodular over Knapsack Constraint

@ Greedy can be seen as choosing the best gain: Starting with Sy = 0,
we repeat the following greedy step

’UEV\Si

Sii1=S; U {argmax( £(S; U {v}) — f(Si))} (13.30)

the gain is f({v}|Si) = f(Si +v) — f(S;), so greedy just chooses next
the currently unselected element with greatest gain.

@ Core idea in knapsack case: Greedy can be extended to choose next
whatever looks cost-normalized best, i.e., Starting some initial set Sy,
we repeat the following cost-normalized greedy step

Sit1=5; U {argmax (5 U {v}) — £(5:) } (13.31)

UEV\SZ' C(U)

which we repeat until ¢(S;+1) > b and then take S; as the solution.
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Submodular Max w. Other Constraints
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A Knapsack Constraint

@ There are a number of ways of getting approximation bounds using this
strategy.

@ If we run the normalized greedy procedure starting with Sy = (), and
compare the solution found with the max of the singletons
max,cy f({v}), choosing the max, then we get a (1 — e~ 1/2) ~ 0.39
approximation, in O(n?) time (Minoux trick also possible for further
speed)

e Partial enumeration: On the other hand, we can get a (1 —e™!) &~ 0.63
approximation in O(n®) time if we run the above procedure starting
from all sets of cardinality three (so restart for all Sy such that
|So| = 3), and compare that with the best singleton and pairwise
solution.

e Extending something similar to this to d simultaneous knapsack
constraints is possible as well.

EES563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F49/57 (pg.201/233)



Submodular Max w. Other Constraints

Local Search Algorithms

From J. Vondrak
@ Local search involves switching up to t elements, as long as it provides
a (non-trivial) improvement; can iterate in several phases. Some
examples follow:

@ 1/3 approximation to unconstrained non-monotone maximization
[Feige, Mirrokni, Vondrak, 2007]

e 1/(k+2+ } + ;) approximation for non-monotone maximization
subject to k& matroids [Lee, Mirrokni, Nagarajan, Sviridenko, 2009]

e 1/(k + o) approximation for monotone submodular maximization
subject to k& > 2 matroids [Lee, Sviridenko, Vondrak, 2010].
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Submodular Max w. Other Constraints

What About Non-monotone

o Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.
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What About Non-monotone

o Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

e If f is an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.
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What About Non-monotone

o Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

e If fis an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.

@ Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).
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Submodular Max w. Other Constraints

What About Non-monotone

o Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

e If fis an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.

@ Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).

@ Thus, any approximation algorithm must be for unipolar submodular
functions. E.g., non-negative but otherwise arbitrary submodular
functions.
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What About Non-monotone

o Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

e If fis an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.

@ Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).

@ Thus, any approximation algorithm must be for unipolar submodular
functions. E.g., non-negative but otherwise arbitrary submodular
functions.

o We may get a (% — £) approximation for maximizing non-monotone
non-negative submodular functions, with most O(1n?logn) function
calls using approximate local maxima.
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Submodular Max w. Other Constraints

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f if
f(S—v) < f(S)forallveSand f(S+v) < f(S) forallve V\S
(i.e., local in a Hamming ball of radius 1).

EES563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F52/57 (pg.208/233)



Submodular Max w. Other Constraints
(RRRRRNRRNNN] RNRRN

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f if
f(S—v) < f(S) forallveSand f(S+wv) < f(S)forallve V\S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:
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Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f if
f(S—v) < f(S) forallveSand f(S+wv) < f(S)forallve V\S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
ID S, then f(I) < f(95).
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Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f if
f(S—v) < f(S) forallveSand f(S+wv) < f(S)forallve V\S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
ID S, then f(I) < f(95).

@ Idea of proof: Given vy,vy € S, suppose f(S —wv1) < f(S) and
f(S —wv2) < f(S). Submodularity requires
f(S —v1)+ f(S—wv2) > f(S) + f(S — v1 — v2) which would be
impossible unless f(S —v; —v2) < f(9).
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Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f if
f(S—v) < f(S) forallveSand f(S+wv) < f(S)forallve V\S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
ID S, then f(I) < f(95).

@ Idea of proof: Given vy,vy € S, suppose f(S —wv1) < f(S) and
f(S —wv2) < f(S). Submodularity requires
f(S —v1)+ f(S—wv2) > f(S) + f(S — v1 — v2) which would be
impossible unless f(S —v; —v2) < f(S).

e Similarly, given vy,vy ¢ S, and f(S +v1) < f(S) and f(S +v9) < f(95).
Submodularity requires f(S +v1) 4+ f(S 4+ v2) > f(S) + f(S +v1 + v2)
which requires f(S + v +v2) < f(S).
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Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f if
f(S—v) < f(S) forallveSand f(S+wv) < f(S)forallve V\S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
ID S, then f(I) < f(95).

@ In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [(}, S| and [S, V] can be ruled out as a
possible improvement over S.
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Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f if
f(S—v) < f(S) forallveSand f(S+wv) < f(S)forallve V\S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
ID S, then f(I) < f(95).

@ In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [, S] and [S, V] can be ruled out as a
possible improvement over S.

@ Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively efficiently.
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Submodular Max w. Other Constraints

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f if
f(S—v) < f(S) forallveSand f(S+wv) < f(S)forallve V\S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
ID S, then f(I) < f(95).

@ In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [, S] and [S, V] can be ruled out as a
possible improvement over S.

e Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively efficiently.

@ This is the approach that yields the (% — ) approximation algorithm.
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Submodular Max w. Other Constraints

Linear time algorithm unconstrained non-monotone max

@ Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
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Linear time algorithm unconstrained non-monotone max

@ Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
@ Buchbinder, Feldman, Naor, Schwartz 2012.
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Linear time algorithm unconstrained non-monotone max

@ Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
@ Buchbinder, Feldman, Naor, Schwartz 2012. Recall [a]+ = max(a,0).
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Submodular Max w. Other Constraints

Linear time algorithm unconstrained non-monotone max

Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012. Recall [a]+ = max(a, 0).

Algorithm 6: Randomized Linear-time non-monotone submodular max

Set L+ 0 ; U+ V  /* Lower L, upper U. Invariant: L CU */ ;
Order elements of V' = (v, ve,...,v,) arbitrarily ;

fori« 0...]V] do

0 [F@IL)): b (U0 {oibls

if a=b=0thenp+ 1/2;

else p + a/(a +b);

if Flip of coin with Pr(heads) = p draws heads then
L L+ LU{v};
Otherwise /* if the coin drew tails, an event with prob. 1 — p */

LUueu\

return L (which is the same as U at this point)
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Submodular Max w. Other Constraints
(RRRRRNRRNNRNRY ARN

Linear time algorithm unconstrained non-monotone max

@ Each “sweep” of the algorithm is O(n).
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Submodular Max w. Other Constraints
(RRRRRNRRNNRNRY ARN

Linear time algorithm unconstrained non-monotone max

@ Each “sweep” of the algorithm is O(n).

@ Running the algorithm 1x (with an arbitrary variable order) results in a
1/3 approximation.
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Submodular Max w. Other Constraints
(RRRRRNNNNNRNNT ]

Linear time algorithm unconstrained non-monotone max

e Each “sweep” of the algorithm is O(n).

@ Running the algorithm 1x (with an arbitrary variable order) results in a
1/3 approximation.

@ The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).
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Submodular Max w. Other Constraints
(RRRRRNNNNNRNNT ]

Linear time algorithm unconstrained non-monotone max

Each “sweep” of the algorithm is O(n).

Running the algorithm 1x (with an arbitrary variable order) results in a
1/3 approximation.

The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).

In practice, run it multiple times, each with a different random
permutation of the elements, and then take the cumulative best.
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Submodular Max w. Oth
[RRRRRRRNRRRRN

Linear time algorithm unconstrained non-monotone max

e Each “sweep” of the algorithm is O(n).

@ Running the algorithm 1x (with an arbitrary variable order) results in a
1/3 approximation.

@ The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).

@ In practice, run it multiple times, each with a different random
permutation of the elements, and then take the cumulative best.

@ It may be possible to choose the random order smartly to get better
results in practice.
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Submodular Max w. Other Constraints
(RRRRRNRRNNRRRNY AN

More general still: multiple constraints different types

@ In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.
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Submodular Max w. Other Constraints

More general still: multiple constraints different types

@ In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.

@ The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.
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Submodular Max w. Other Constraints
(RRRRRNRRNNRRRNY AN

More general still: multiple constraints different types

@ In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.

@ The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.

@ Often the computational costs of the algorithms are prohibitive (e.g.,
exponential in k) with large constants, so these algorithms might not
scale.
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Submodular Max w. Other Constraints
(RRRRRNRRNNRRRNY AN

More general still: multiple constraints different types

@ In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.

@ The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.

@ Often the computational costs of the algorithms are prohibitive (e.g.,
exponential in k) with large constants, so these algorithms might not
scale.

@ On the other hand, these algorithms offer deep and interesting intuition
into submodular functions, beyond what we have covered here.
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Submodular Max w. Other Constraints
(RRRRRNRRRNRRRNEY }

Some results on submodular maximization

@ As we've seen, we can get 1 — 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.
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Some results on submodular maximization

@ As we've seen, we can get 1 — 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

@ For general matroid, greedy reduces to 1/2 approximation (as we've
seen).
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Submodular Max w. Other Constraints
(RRRRRNRRRNRRRNEY }

Some results on submodular maximization

@ As we've seen, we can get 1 — 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

@ For general matroid, greedy reduces to 1/2 approximation (as we've
seen).

@ We can recover 1 — 1/e approximation using the continuous greedy

algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak's publications).
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Submodular Max w. Other
[RRRRRNRRRRRRR]

Some results on submodular maximization

@ As we've seen, we can get 1 — 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

@ For general matroid, greedy reduces to 1/2 approximation (as we've
seen).

@ We can recover 1 — 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak's publications).

@ More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak's publications
http://theory.stanford.edu/"~ jvondrak/).
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Subm:
[RRRRRRRRRRRARNN

Submodular Max Summary - 2012: From J. Vondrak

Monotone Maximization

’ Constraint Approximation ‘ Hardness ‘ Technique ‘
S| <k 1-1/e 1—-1/e greedy
matroid 1—-1/e 1 —1/e | multilinear ext.

O(1) knapsacks 1-1/e 1—1/e | multilinear ext.
k matroids k+e k/logk local search
Iina::sa:gi:sds and O(1) O(k) k/logk | multilinear ext.

Nonmonotone Maximization

’ Constraint Approximation ‘ Hardness ‘ Technique ‘
Unconstrained 1/2 1/2 combinatorial
matroid 1/e 0.48 multilinear ext.
O(1) knapsacks 1/e 0.49 multilinear ext.
k matroids kE+ O(1) k/logk local search
ki matroids and O(1) O(k) k/logk | multilinear ext.

knapsacks
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