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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
Read chapter 2 from Fujishige’s book.
Read chapter 3 from Fujishige’s book.
Read chapter 4 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

Next homework is posted on canvas. Due Thursday 5/10, 11:59pm.
As always, if you have any questions about anything, please ask then
via our discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
Can meet at odd hours via zoom (send message on canvas to schedule
time to chat).
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Logistics Review

Class Road Map - EE563
L1(3/26): Motivation, Applications, &
Basic Definitions,
L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).
L3(4/2): Info theory exs, more apps,
definitions, graph/combinatorial examples
L4(4/4): Graph and Combinatorial
Examples, Matrix Rank, Examples and
Properties, visualizations
L5(4/9): More Examples/Properties/
Other Submodular Defs., Independence,
L6(4/11): Matroids, Matroid Examples,
Matroid Rank, Partition/Laminar
Matroids
L7(4/16): Laminar Matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid Representation, Dual
Matroids
L8(4/18): Dual Matroids, Other Matroid
Properties, Combinatorial Geometries,
Matroids and Greedy.
L9(4/23): Polyhedra, Matroid Polytopes,
Matroids → Polymatroids
L10(4/29): Matroids → Polymatroids,
Polymatroids, Polymatroids and Greedy,

L11(4/30): Polymatroids, Polymatroids
and Greedy
L12(5/2): Polymatroids and Greedy,
Extreme Points, Cardinality Constrained
Maximization
L13(5/7): Constrained Submodular
Maximization
L14(5/9):
L15(5/14):
L16(5/16):
L17(5/21):
L18(5/23):
L–(5/28): Memorial Day (holiday)
L19(5/30):
L21(6/4): Final Presentations
maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Logistics Review

Multiple Polytopes associated with arbitrary f

Given an arbitrary submodular function f : 2V → R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).
If f(∅) 6= 0, can set f ′(A) = f(A)− f(∅) without destroying
submodularity. This does not change any minima, (i.e.,
argminA f(A) = argminA′ f

′(A)) so we often assume all functions are
normalized f(∅) = 0.
We can define several polytopes:

Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(13.1)

P+
f = Pf ∩

{
x ∈ RE : x ≥ 0

}
(13.2)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(13.3)

Pf is what is sometimes called the extended polytope (sometimes
notated as EPf .
P+
f is Pf restricted to the positive orthant.
Bf is called the base polytope, analogous to the base in matroid.
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Logistics Review

Multiple Polytopes in 2D associated with f

Pf Pf

P+
f

Bf

P+
f = Pf ∩

{
x ∈ RE : x ≥ 0

}
(13.1)

Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(13.2)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(13.3)
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Logistics Review

A polymatroid function’s polyhedron is a polymatroid.

Theorem 13.2.1

Let f be a submodular function defined on subsets of E. For any x ∈ RE ,
we have:

rank(x) = max (y(E) : y ≤ x, y ∈ Pf ) = min (x(A) + f(E \A) : A ⊆ E)
(13.1)

Essentially the same theorem as Theorem ??, but note Pf rather than P+
f .

Taking x = 0 we get:

Corollary 13.2.2
Let f be a submodular function defined on subsets of E. We have:

rank(0) = max (y(E) : y ≤ 0, y ∈ Pf ) = min (f(A) : A ⊆ E) (13.2)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F7/57 (pg.7/233)



Logistics Review

Polymatroid extreme points

Theorem 13.2.1
For a given ordering E = (e1, . . . , em) of E and a given Ei = (e1, . . . , ei)
and x generated by Ei using the greedy procedure (x(ei) = f(ei|Ei−1)),
then x is an extreme point of Pf when f is submodular.

Proof.
We already saw that x ∈ Pf (Theorem ??).
To show that x is an extreme point of Pf , note that it is the unique
solution of the following system of equations

x(Ej) = f(Ej) for 1 ≤ j ≤ i ≤ m (13.4)
x(e) = 0 for e ∈ E \ Ei (13.5)

There are i ≤ m equations and i ≤ m unknowns, and simple Gaussian
elimination gives us back the x constructed via the Greedy algorithm!!
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Logistics Review

Polymatroid extreme points
Moreover, we have (and will ultimately prove)

Corollary 13.2.2
If x is an extreme point of Pf and B ⊆ E is given such that
supp(x) = {e ∈ E : x(e) 6= 0} ⊆ B ⊆ ∪(A : x(A) = f(A)) = sat(x), then
x is generated using greedy by some ordering of B.

Note, sat(x) = cl(x) = ∪(A : x(A) = f(A)) is also called the closure
of x (recall that sets A such that x(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture
10, Theorem ??)
Thus, cl(x) is a tight set.
Also, supp(x) = {e ∈ E : x(e) 6= 0} is called the support of x.
For arbitrary x, supp(x) is not necessarily tight, but for an extreme
point, supp(x) is.
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Logistics Review

Polymatroid with labeled edge lengths
Recall
f(e|A) = f(A+e)−f(A)
Notice how
submodularity,
f(e|B) ≤ f(e|A) for
A ⊆ B, defines the shape
of the polytope.
In fact, we have
strictness here
f(e|B) < f(e|A) for
A ⊂ B.
Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.
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Intuition: why greedy works with polymatroids

Given w, the goal is
to find
x = (x(e1), x(e2))
that maximizes
xᵀw = x(e1)w(e1) +
x(e2)w(e2).
If w(e2) > w(e1) the
upper extreme point
indicated maximizes
xᵀw over x ∈ P+

f .
If w(e2) < w(e1) the
lower extreme point
indicated maximizes
xᵀw over x ∈ P+

f . e1
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The Greedy Algorithm for Submodular Max

A bit more precisely:

Algorithm 1: The Greedy Algorithm
1 Set S0 ← ∅ ;
2 for i← 0 . . . |E| − 1 do
3 Choose vi as follows:

vi ∈ argmaxv∈V \Si
f({v}|Si) = argmaxv∈V \Si

f(Si ∪ {v}) ;
4 Set Si+1 ← Si ∪ {vi} ;
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Logistics Review

Greedy Algorithm for Card. Constrained Submodular Max

This algorithm has a guarantee

Theorem 13.2.1
Given a polymatroid function f , the above greedy algorithm returns sets Si
such that for each i we have f(Si) ≥ (1− 1/e)max|S|≤i f(S).

To approximately find A∗ ∈ argmax {f(A) : |A| ≤ k}, we repeat the
greedy step until k = i+ 1:
Again, since this generalizes max k-cover, Feige (1998) showed that
this can’t be improved. Unless P = NP , no polynomial time algorithm
can do better than (1− 1/e+ ε) for any ε > 0.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F13/57 (pg.13/233)



Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints Submodular Max w. Other Constraints

The Greedy Algorithm: 1− 1/e intuition.
At step i < k, greedy chooses vi to maximize f(v|Si).

Let S∗ be optimal solution (of size k) and OPT = f(S∗).

By
submodularity, we will show:

∃v ∈ V \ Si : f(v|Si) = f(Si + v|Si) ≥
1

k
(OPT− f(Si)) (13.1)
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Equation (13.10) will show
that Equation (13.1) ⇒:

OPT− f(Si+1)

≤ (1− 1/k)(OPT− f(Si))
⇒ OPT− f(Sk)
≤ (1− 1/k)kOPT
≤ 1/eOPT

⇒ OPT(1− 1/e) ≤ f(Sk)
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Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints Submodular Max w. Other Constraints

Cardinality Constrained Polymatroid Max Theorem

Theorem 13.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V → R+, define
{Si}i≥0 to be the chain formed by the greedy algorithm (Eqn. (??)). Then
for all k, ` ∈ Z++, we have:

f(S`) ≥ (1− e−`/k) max
S:|S|≤k

f(S) (13.2)

and in particular, for ` = k, we have f(Sk) ≥ (1− 1/e)maxS:|S|≤k f(S).

k is size of optimal set, i.e., OPT = f(S∗) with |S∗| = k

` is size of set we are choosing (i.e., we choose S` from greedy chain).
Bound is how well does S` (of size `) do relative to S∗, the optimal set of
size k.
Intuitively, bound should get worse when ` < k and get better when ` > k.
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Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 13.3.1.

Fix ` (number of items greedy will chose) and k (size of optimal set to
compare against).
Set S∗ ∈ argmax {f(S) : |S| ≤ k}
w.l.o.g. assume |S∗| = k.
Order S∗ = (v∗1, v

∗
2, . . . , v

∗
k) arbitrarily.

Let Si = (v1, v2, . . . , vi) be the greedy order chain chosen by the
algorithm, for i ∈ {1, 2, . . . , `}.
Then the following inequalities (on the next slide) follow:

. . .
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Let Si = (v1, v2, . . . , vi) be the greedy order chain chosen by the
algorithm, for i ∈ {1, 2, . . . , `}.
Then the following inequalities (on the next slide) follow:
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Cardinality Constrained Polymatroid Max Theorem
. . . proof of Theorem 13.3.1 cont.

For all i < `, we have
f(S∗)

≤ f(S∗ ∪ Si) = f(Si) + f(S∗|Si) (13.3)

= f(Si) +

k∑

j=1

f(v∗j |Si ∪
{
v∗1, v

∗
2, . . . , v

∗
j−1

}
) (13.4)

≤ f(Si) +
∑

v∈S∗
f(v|Si) (13.5)

≤ f(Si) +
∑

v∈S∗
f(vi+1|Si) = f(Si) +

∑

v∈S∗
f(Si+1|Si) (13.6)

= f(Si) + kf(Si+1|Si) (13.7)

Therefore, we have Equation 13.1, i.e.,:
f(S∗)− f(Si) ≤ kf(Si+1|Si) = k(f(Si+1)− f(Si)) (13.8)

. . .
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Cardinality Constrained Polymatroid Max Theorem
. . . proof of Theorem 13.3.1 cont.

Define gap δi , f(S∗)− f(Si), so δi − δi+1 = f(Si+1)− f(Si),

giving
δi ≤ k(δi − δi+1) (13.9)

or

δi+1 ≤ (1− 1

k
)δi (13.10)

The relationship between δ0 and δ` is then

δl ≤ (1− 1

k
)`δ0 (13.11)

Now, δ0 = f(S∗)− f(∅) ≤ f(S∗) since f ≥ 0.
Also, by variational bound 1− x ≤ e−x for x ∈ R, we have

δ` ≤ (1− 1

k
)`δ0 ≤ e−`/kf(S∗) (13.12)
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Cardinality Constrained Polymatroid Max Theorem

. . . proof of Theorem 13.3.1 cont.

When we identify δl = f(S∗)− f(S`), a bit of rearranging then gives:

f(S`) ≥ (1− e−`/k)f(S∗) (13.13)

With ` = k, when picking k items, greedy gets (1− 1/e) ≈ 0.6321
bound. This means that if Sk is greedy solution of size k, and S∗ is an
optimal solution of size k, f(Sk) ≥ (1− 1/e)f(S∗) ≈ 0.6321f(S∗).
What if we want to guarantee a solution no worse than .95f(S∗) where
|S∗| = k?

Set 0.95 = (1− e−`/k), which gives
` = d−k ln(1− 0.95)e = 4k. And d− ln(1− 0.999)e = 7.

So solution, in the worst case, quickly gets very good. Typical/practical
case is much better.
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case is much better.
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Greedy running time

Greedy computes a new maximum n = |V | times, and each maximum
computation requires O(n) comparisons, leading to O(n2) computation
for greedy.

This is the best we can do for arbitrary functions, but O(n2) is not
practical to some.
Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.
This is called Minoux’s 1977 Accelerated Greedy strategy (and has been
rediscovered a few times, e.g., “Lazy greedy”), and runs much faster
while still producing same answer.
We describe it next:
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Minoux’s Accelerated Greedy for Submodular Functions

At stage i in the algorithm, we have a set of gains f(v|Si) for all
v /∈ Si. Store these values αv ← f(v|Si) in sorted priority queue.

Priority queue, O(1) to find max, O(log n) to insert in right place.
Once we choose a max v, then set Si+1 ← Si + v.
For v /∈ Si+1 we have f(v|Si+1) ≤ f(v|Si) by submodularity.
Therefore, if we find a v′ such that f(v′|Si+1) ≥ αv for all v 6= v′, then
since

f(v′|Si+1) ≥ αv = f(v|Si) ≥ f(v|Si+1) (13.14)

we have the true max, and we need not re-evaluate gains of other
elements again.
Strategy is: find the argmaxv′∈V \Si+1

αv′ , and then compute the real
f(v′|Si+1). If it is greater than all other αv’s then that’s the next
greedy step. Otherwise, replace αv′ with its real value, resort
(O(log n)), and repeat.
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Minoux’s Accelerated Greedy for Submodular Functions

Minoux’s algorithm is exact, in that it has the same guarantees as does
the standard O(n2) greedy algorithm (will return the same answers,
i.e., those having the 1− 1/e guarantee).

In practice: Minoux’s trick has enormous speedups (≈ 700×) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).
When choosing a of size k, naïve greedy algorithm is O(nk) but
accelerated variant at the very best does O(n+ k), so this limits the
speedup.
Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)
Can be used used for “big data” sets (e.g., social networks, selecting
blogs of greatest influence, document summarization, etc.).
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Priority Queue

Use a priority queue Q as a data structure: operations include:

Insert an item (v, α) into queue, with v ∈ V and α ∈ R.

insert(Q, (v, α)) (13.15)

Pop the item (v, α) with maximum value α off the queue.

(v, α)← pop(Q) (13.16)

Query the value of the max item in the queue

max(Q) ∈ R (13.17)

On next slide, we call a popped item “fresh” if the value (v, α) popped has
the correct value α = f(v|Si). Use extra “bit” to store this info
If a popped item is fresh, it must be the maximum — this can happen if, at
given iteration, v was first popped and neither fresh nor maximum so placed
back in the queue, and it then percolates back to the top at which point it
is fresh — thereby avoid extra queue check.
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Minoux’s Accelerated Greedy Algorithm Submodular Max

Algorithm 2: Minoux’s Accelerated Greedy Algorithm
1 Set S0 ← ∅ ; i← 0 ; Initialize priority queue Q ;
2 for v ∈ E do
3 INSERT(Q, f(v))

4 repeat
5 (v, α)← pop(Q) ;
6 if α not “fresh” then
7 recompute α← f(v|Si)
8 if (popped α in line 5 was “fresh”) OR (α ≥ max(Q)) then
9 Set Si+1 ← Si ∪ {v} ;

10 i← i+ 1 ;

11 else
12 insert(Q, (v, α))

13 until i = |E|;
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(Minimum) Submodular Set Cover

Given polymatroid f , goal is to find a covering set of minimum cost:

S∗ ∈ argmin
S⊆V

|S| such that f(S) ≥ α (13.18)

where α is a “cover” requirement.

Normally take α = f(V ) but defining f ′(A) = min {f(A), α} we can
take any α. Hence, we have equivalent formulation:

S∗ ∈ argmin
S⊆V

|S| such that f ′(S) ≥ f ′(V ) (13.19)

Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.
Greedy Algorithm: Pick the first chain item Si chosen by
aforementioned greedy algorithm such that f(Si) ≥ α and output that
as solution.
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(Minimum) Submodular Set Cover: Approximation Analysis

For integer valued f , this greedy algorithm an O(log(maxs∈V f({s})))
approximation. Let S∗ be optimal, and SG be greedy solution, then

|SG| ≤ |S∗|H(max
s∈V

f({s})) = |S∗|O(loge(max
s∈V

f({s}))) (13.20)

where H is the harmonic function, i.e., H(d) =
∑d

i=1(1/i).

If f is not integral value, then bounds we get are of the form:

|SG| ≤ |S∗|
(
1 + loge

f(V )

f(V )− f(ST−1)

)
(13.21)

wehre ST is the final greedy solution that occurs at step T .
Set cover is hard to approximate with a factor better than (1− ε) logα,
where α is the desired cover constraint.
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Summary: Monotone Submodular Maximization

Only makes sense when there is a constraint.

We discussed cardinality constraint
Generalizes the max k-cover problem, and also similar to the set cover
problem.
Simple greedy algorithm gets 1− e−`/k approximation, where k is size
of optimal set we compare against, and ` is size of set greedy algorithm
chooses.
Submodular cover: min. |S| s.t. f(S) ≥ α.
Minoux’s accelerated greedy trick.
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The Greedy Algorithm: 1− 1/e intuition.
At step i < k, greedy chooses vi to maximize f(v|Si).
Let S∗ be optimal solution (of size k) and OPT = f(S∗). By
submodularity, we will show:

∃v ∈ V \ Si : f(v|Si) = f(Si + v|Si) ≥
1

k
(OPT− f(Si)) (13.1)

k1 2 3 4 5 6 7 8 9 10
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1− 1/e

(1− (1− 1/k)k) ≤ f(Sk)/OPT Equation (13.10) will show
that Equation (13.1) ⇒:

OPT− f(Si+1)

≤ (1− 1/k)(OPT− f(Si))
⇒ OPT− f(Sk)
≤ (1− 1/k)kOPT
≤ 1/eOPT

⇒ OPT(1− 1/e) ≤ f(Sk)
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Randomized greedy

How can we produce a randomized greedy strategy, one where each
greedy sweep produces a set that, on average, has a 1− 1/e guarantee?

Suppose the following holds:

E[f(ai+1|Ai)] ≥
f(OPT )− f(Ai)

k
(13.22)

where Ai = (a1, a2, . . . , ai) are the first i elements chosen by the
strategy.
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Curvature of a Submodular function
For any submodular function, we have f(j|S) ≤ f(j|∅) so that
f(j|S)/f(j|∅) ≤ 1 whenever f(j|∅) 6= 0.

For f : 2V → R+ (non-negative) functions, we also have
f(j|S)/f(j|∅) ≥ 0 — and = 0 whenever j is “spanned” by S.
The total curvature of a submodular function is defined as follows:

c
∆
= 1− min

S,j /∈S:f(j|∅) 6=0

f(j|S)
f(j|∅) = 1− min

f(j)6=0

f(j|V \ j)
f(j)

(13.23)

c ∈ [0, 1].

When c = 0, f(j|S) = f(j|∅) for all S, j, a sufficient
condition for modularity, and we saw in Theorem ?? that greedy is
optimal for max weight indep. set of a matroid.

For f with curvature c, then ∀A ⊆ V , ∀v /∈ a, ∀c′ ≥ c:
f(A+ v)− f(A) ≥ (1− c′)f(v) (13.24)

When c = 1 then submodular function is “maximally curved”, i.e., there
exists is a subset that fully spans some other element.
Matroid rank functions with some dependence is maximally curved.
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f(v) ≥ f(v|A) = f(v)
f(v|A)

f(v)
≥ f(v)min

v′

f(v′|A)

f(v′)
= (1− c)f(v) ≥ (1− c′)f(v)

(13.25)

When c = 1 then submodular function is “maximally curved”, i.e., there
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f(j|S)/f(j|∅) ≥ 0 — and = 0 whenever j is “spanned” by S.
The total curvature of a submodular function is defined as follows:

c
∆
= 1− min

S,j /∈S:f(j|∅) 6=0

f(j|S)
f(j|∅) = 1− min

f(j)6=0

f(j|V \ j)
f(j)

(13.23)

c ∈ [0, 1]. When c = 0, f(j|S) = f(j|∅) for all S, j, a sufficient
condition for modularity, and we saw in Theorem ?? that greedy is
optimal for max weight indep. set of a matroid.
For f with curvature c, then ∀A ⊆ V , ∀v /∈ a, ∀c′ ≥ c:

f(A+ v)− f(A) ≥ (1− c′)f(v) (13.24)

When c = 1 then submodular function is “maximally curved”, i.e., there
exists is a subset that fully spans some other element.

Matroid rank functions with some dependence is maximally curved.
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Curvature of a Submodular function

By submodularity, total curvature can be computed in either form:

c
∆
= 1− min

S,j /∈S:f(j|∅)6=0

f(j|S)
f(j|∅) = 1− min

j:f(j|∅)6=0

f(j|V \ {j})
f(j|∅) (13.25)

Note: Matroid rank is either modular c = 0 or maximally curved c = 1
— hence, matroid rank can have only the extreme points of curvature,
namely 0 or 1.
Polymatroid functions are, in this sense, more nuanced, in that they
allow non-extreme curvature, with c ∈ [0, 1].
It will be remembered the notion of “partial dependence” within
polymatroid functions.
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Functions of the form
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Curvature and approximation
Curvature limitation can help the greedy algorithm in terms of
approximation bounds.

Conforti & Cornuéjols showed that greedy gives a 1/(1 + c)
approximation to max {f(S) : S ∈ I} when f has total curvature c.
Hence, greedy subject to matroid constraint is a max(1/(1 + c), 1/2)
approximation algorithm, and if c < 1 then it is better than 1/2 (e.g.,
with c = 1/4 then we have a 0.8 algorithm).

For k-uniform matroid
(i.e., k-cardinality con-
straints), then approxima-
tion factor becomes
1
c (1− e−c)
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Submodular and Supermodular Curvature Approximation

Let f be a polymatroid function and let g be a non-negative monotone
non-decreasing supermodular function (e.g., g(A) = φ(m(A)) where
φ() is non-decreasing convex).

Let κf = 1−minv
f(v|V \{v})

f(v) be the total submodular total curvature,

Define κg = 1−minv
g(v)

g(v|V \{v}) as a “supermodular curvature”

κg ∈ [0, 1] and κg = 0 means g is modular, κg = 1 means g is “fully
curved”
Form function h(A) = f(A) + g(A), then h is neither suBmodular nor
suPermodular, and is known as a BP-function.
Then the greedy algorithm on h has a guarantee of:
1
κf
(1− e−(1−κg)κf ).

For purely supermodular optimization (i.e., κf = 0) we get that greedy
has a guarantee of 1− κg.
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Generalizations

Consider a k-uniform matroidM = (V, I) where
I = {S ⊆ V : |S| ≤ k}, and consider problem max {f(A) : A ∈ I}

Hence, the greedy algorithm is 1− 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.
Might be useful to allow an arbitrary matroid (e.g., partition matroid
I = {X ⊆ V : |X ∩ Vi| ≤ ki for all i = 1, . . . , `}., or a transversal,
etc).
Knapsack constraint: if each item v ∈ V has a cost c(v), we may ask
for c(S) ≤ b where b is a budget, in units of costs.

Q: Is
I = {I : c(I) ≤ b} the independent sets of a matroid?

We may wish to maximize f subject to multiple matroid constraints.
I.e., S ∈ I1, S ∈ I2, . . . , S ∈ Ip where Ii are independent sets of the
ith matroid.
Combinations of the above (e.g., knapsack & multiple matroid
constraints).
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Greedy over multiple matroids
Obvious heuristic is to use the greedy step but always stay feasible.

I.e., Starting with S0 = ∅, we repeat the following greedy step

Si+1 = Si ∪
{

argmax
v∈V \Si : Si+v∈

⋂p
i=1 Ii

f(Si ∪ {v})
}

(13.26)

That is, we keep choosing next whatever feasible element looks best.
This algorithm is simple and also has a guarantee

Theorem 13.5.1
Given a polymatroid function f , and set of matroids {Mj = (E, Ij)}pj=1,
the above greedy algorithm returns sets Si such that for each i we have
f(Si) ≥ 1

p+1 max|S|≤i,S∈
⋂p

i=1 Ii f(S), assuming such sets exists.

For one matroid, we have a 1/2 approximation.
Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints

— but the bound is not that good when
there are many matroids.
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Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?

Consider bipartite graph G = (V, F,E). Define two partition matroids
MV = (E, IV ), and MF = (E, IF ).
Independence in each matroid corresponds to:

1 I ∈ IV if |I ∩ (V, f)| ≤ 1 for all f ∈ F ,
2 and I ∈ IF if |I ∩ (v, F )| ≤ 1 for all v ∈ V .

V F V F

Therefore, a matching in G is simultaneously independent in both MV

and MF and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.
In bipartite graph case, therefore, can be solved in polynomial time.
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Matroid Intersection and Network Communication

Let G1 = (V1, E) and G2 = (V2, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).

Consider two cycle matroids associated with these graphs
M1 = (E, I1) and M2 = (E, I2). They might be very different (e.g.,
an edge might be between two distinct nodes in G1 but the same edge
is a loop in multi-graph G2.)
We may wish to find the maximum size edge-induced subgraph that is
still forest in both graphs (i.e., adding any edges will create a circuit in
either M1, M2, or both).
This is again a matroid intersection problem.
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Matroid Intersection and TSP

Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

Given directed graph G, goal is to find such a Hamiltonian cycle.
From G with n nodes, create G′ with n+ 1 nodes by duplicating
(w.l.o.g.) a particular node v1 ∈ V (G) to v+

1 , v
−
1 , and have all

outgoing edges from v1 come instead from v−1 and all edges incoming
to v1 go instead to v+

1 .
Let M1 be the cycle matroid on G′.
Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I ∈ I(M2) if
|I ∩ δ−(v)| ≤ 1 for all v ∈ V (G′).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I ∈ I(M3) if
|I ∩ δ+(v)| ≤ 1 for all v ∈ V (G′).
Then a Hamiltonian cycle exists iff there is an n-element intersection of
M1, M2, and M3.
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have no more than one edge leaving any node — i.e., I ∈ I(M2) if
|I ∩ δ−(v)| ≤ 1 for all v ∈ V (G′).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I ∈ I(M3) if
|I ∩ δ+(v)| ≤ 1 for all v ∈ V (G′).
Then a Hamiltonian cycle exists iff there is an n-element intersection of
M1, M2, and M3.
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−
1 , and have all
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Let M1 be the cycle matroid on G′.
Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I ∈ I(M2) if
|I ∩ δ−(v)| ≤ 1 for all v ∈ V (G′).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I ∈ I(M3) if
|I ∩ δ+(v)| ≤ 1 for all v ∈ V (G′).
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(w.l.o.g.) a particular node v1 ∈ V (G) to v+
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−
1 , and have all

outgoing edges from v1 come instead from v−1 and all edges incoming
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Let M1 be the cycle matroid on G′.
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have no more than one edge leaving any node — i.e., I ∈ I(M2) if
|I ∩ δ−(v)| ≤ 1 for all v ∈ V (G′).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I ∈ I(M3) if
|I ∩ δ+(v)| ≤ 1 for all v ∈ V (G′).
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Matroid Intersection and TSP

Recall, the traveling salesperson problem (TSP) is the problem to,
given a directed graph, start at a node, visit all cities, and return to the
starting point. Optimization version does this tour at minimum cost.

Since TSP is NP-complete, we obviously can’t solve matroid
intersections of 3 more matroids, unless P=NP.
But bipartite graph example gives us hope for 2 matroids, as in that
case we can easily solve max |X| s.t. x ∈ I1 ∩ I2.
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Recall, the traveling salesperson problem (TSP) is the problem to,
given a directed graph, start at a node, visit all cities, and return to the
starting point. Optimization version does this tour at minimum cost.
Since TSP is NP-complete, we obviously can’t solve matroid
intersections of 3 more matroids, unless P=NP.
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Greedy over multiple matroids: Generalized Bipartite
Matching

Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.
Consider bipartite graph G = (E,F, V ) where E and F are the
left/right set of nodes, respectively, and V is the set of edges.
E corresponds to, say, an English language sentence and F corresponds
to a French language sentence — goal is to form a matching (an
alignment) between the two.
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Greedy over multiple matroids: Generalized Bipartite
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Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)
Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.
Consider bipartite graph G = (E,F, V ) where E and F are the
left/right set of nodes, respectively, and V is the set of edges.
E corresponds to, say, an English language sentence and F corresponds
to a French language sentence — goal is to form a matching (an
alignment) between the two.
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Greedy over > 1 matroids: Multiple Language Alignment

Consider English string and French string, set up as a bipartite graph.

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique
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Greedy over > 1 matroids: Multiple Language Alignment

One possible alignment, a matching, with score as sum of edge weights.

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique
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Greedy over > 1 matroids: Multiple Language Alignment

Edges incident to English words constitute an edge partition

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique

The two edge partitions can be used to set up two 1-partition matroids
on the edges.
For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.
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Greedy over > 1 matroids: Multiple Language Alignment

Edges incident to French words constitute an edge partition

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique

The two edge partitions can be used to set up two 1-partition matroids
on the edges.
For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.
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Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.

As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.
We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:
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Typical to use bipartite matching to find an alignment between the two
language strings.
As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.
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and two k-partition matroids, allowing for “fertility” in the models:
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Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.
As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.
We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:
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Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.
As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.
We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 1
. . . the ... of public ownership

. . . le ... de propriété publique

. . . the ... of public ownership

. . . le ... de propriété publique
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Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.
As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.
We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 2
. . . the ... of public ownership

. . . le ... de propriété publique

. . . the ... of public ownership

. . . le ... de propriété publique
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Greedy over > 1 matroids: Multiple Language Alignment

Generalizing further, each block of edges in each partition matroid can
have its own “fertility” limit:
I = {X ⊆ V : |X ∩ Vi| ≤ ki for all i = 1, . . . , `}.

Maximizing submodular function subject to multiple matroid
constraints addresses this problem.
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Greedy over > 1 matroids: Multiple Language Alignment

Generalizing further, each block of edges in each partition matroid can
have its own “fertility” limit:
I = {X ⊆ V : |X ∩ Vi| ≤ ki for all i = 1, . . . , `}.
Maximizing submodular function subject to multiple matroid
constraints addresses this problem.
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Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).

Each players has a submodular “valuation” function, gi : 2E → R+ that
measures how “desirable” or “valuable” a given subset A ⊆ E of goods
are to that player.
Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.
Goal of submodular welfare: Partition the goods
E = E1 ∪ E2 ∪ · · · ∪ En into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En) =

n∑

i=1

gi(Ei). (13.27)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .
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distributed/partitioned among n people (“players”).
Each players has a submodular “valuation” function, gi : 2E → R+ that
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Assumption: No good can be shared between multiple players, each
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submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En) =
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gi(Ei). (13.27)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .
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Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).
Each players has a submodular “valuation” function, gi : 2E → R+ that
measures how “desirable” or “valuable” a given subset A ⊆ E of goods
are to that player.
Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

Goal of submodular welfare: Partition the goods
E = E1 ∪ E2 ∪ · · · ∪ En into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En) =

n∑

i=1

gi(Ei). (13.27)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .
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Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).
Each players has a submodular “valuation” function, gi : 2E → R+ that
measures how “desirable” or “valuable” a given subset A ⊆ E of goods
are to that player.
Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.
Goal of submodular welfare: Partition the goods
E = E1 ∪ E2 ∪ · · · ∪ En into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En) =

n∑

i=1

gi(Ei). (13.27)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .
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Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).
Each players has a submodular “valuation” function, gi : 2E → R+ that
measures how “desirable” or “valuable” a given subset A ⊆ E of goods
are to that player.
Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.
Goal of submodular welfare: Partition the goods
E = E1 ∪ E2 ∪ · · · ∪ En into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En) =

n∑

i=1

gi(Ei). (13.27)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .
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Submodular Welfare: Submodular Max over matroid
partition

Create new ground set E′ as disjoint union of n copies of the ground
set. I.e.,

E′ = E ] E ] · · · ] E︸ ︷︷ ︸
n×

(13.28)

Let E(i) ⊂ E′ be the ith block of E′.
For any e ∈ E, the corresponding element in E(i) is called (e, i) ∈ E(i)

(each original element is tagged by integer).
For e ∈ E, define Ee = {(e′, i) ∈ E′ : e′ = e}.
Hence, {Ee}e∈E is a partition of E′, each block of the partition for one
of the original elements in E.
Create a 1-partition matroidM = (E′, I) where

I =
{
S ⊆ E′ : ∀e ∈ E, |S ∩ Ee| ≤ 1

}
(13.29)
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set. I.e.,
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(13.28)

Let E(i) ⊂ E′ be the ith block of E′.
For any e ∈ E, the corresponding element in E(i) is called (e, i) ∈ E(i)

(each original element is tagged by integer).

For e ∈ E, define Ee = {(e′, i) ∈ E′ : e′ = e}.
Hence, {Ee}e∈E is a partition of E′, each block of the partition for one
of the original elements in E.
Create a 1-partition matroidM = (E′, I) where

I =
{
S ⊆ E′ : ∀e ∈ E, |S ∩ Ee| ≤ 1

}
(13.29)
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Submodular Welfare: Submodular Max over matroid
partition

Hence, S is independent in matroidM = (E′, I) if S uses each original
element no more than once.

Create submodular function f ′ : 2E
′ → R+ with

f ′(S) =
∑n

i=1 gi(S ∩ E(i)).
Submodular welfare maximization becomes matroid constrained
submodular max max {f ′(S) : S ∈ I}, so greedy algorithm gives a 1/2
approximation.
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Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e ∈ E
might be e = "salmon roll".

Goal: distribute sushi to people
to maximize social welfare.
Ground set disjoint union
E ] E ] E ] E ] E ] E.
Partition matroid partitions:
Ee1 ∪ Ee2 ∪ Ee3 ∪ Ee4 ∪ Ee5 ∪
Ee6 ∪ Ee7 .
independent allocation
non-independent allocation
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Monotone Submodular over Knapsack Constraint

The constraint |A| ≤ k is a simple cardinality constraint.

Consider a non-negative integral modular function c : E → Z+.
A knapsack constraint would be of the form c(A) ≤ b where B is some
integer budget that must not be exceeded. That is
max {f(A) : A ⊆ V, c(A) ≤ b}.
Important: A knapsack constraint yields an independence system (down
closed) but it is not a matroid!
c(e) may be seen as the cost of item e and if c(e) = 1 for all e, then we
recover the cardinality constraint we saw earlier.
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Monotone Submodular over Knapsack Constraint

Greedy can be seen as choosing the best gain: Starting with S0 = ∅,
we repeat the following greedy step

Si+1 = Si ∪
{
argmax
v∈V \Si

(
f(Si ∪ {v})− f(Si)

)}
(13.30)

the gain is f({v}|Si) = f(Si + v)− f(Si), so greedy just chooses next
the currently unselected element with greatest gain.

Core idea in knapsack case: Greedy can be extended to choose next
whatever looks cost-normalized best, i.e., Starting some initial set S0,
we repeat the following cost-normalized greedy step

Si+1 = Si ∪
{
argmax
v∈V \Si

f(Si ∪ {v})− f(Si)
c(v)

}
(13.31)

which we repeat until c(Si+1) > b and then take Si as the solution.
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A Knapsack Constraint

There are a number of ways of getting approximation bounds using this
strategy.
If we run the normalized greedy procedure starting with S0 = ∅, and
compare the solution found with the max of the singletons
maxv∈V f({v}), choosing the max, then we get a (1− e−1/2) ≈ 0.39
approximation, in O(n2) time (Minoux trick also possible for further
speed)
Partial enumeration: On the other hand, we can get a (1− e−1) ≈ 0.63
approximation in O(n5) time if we run the above procedure starting
from all sets of cardinality three (so restart for all S0 such that
|S0| = 3), and compare that with the best singleton and pairwise
solution.
Extending something similar to this to d simultaneous knapsack
constraints is possible as well.
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Local Search Algorithms

From J. Vondrak
Local search involves switching up to t elements, as long as it provides
a (non-trivial) improvement; can iterate in several phases. Some
examples follow:
1/3 approximation to unconstrained non-monotone maximization
[Feige, Mirrokni, Vondrak, 2007]
1/(k + 2 + 1

k + δt) approximation for non-monotone maximization
subject to k matroids [Lee, Mirrokni, Nagarajan, Sviridenko, 2009]
1/(k + δt) approximation for monotone submodular maximization
subject to k ≥ 2 matroids [Lee, Sviridenko, Vondrak, 2010].
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What About Non-monotone

Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

If f is an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.
Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).
Thus, any approximation algorithm must be for unipolar submodular
functions. E.g., non-negative but otherwise arbitrary submodular
functions.
We may get a (1

3 − ε
n) approximation for maximizing non-monotone

non-negative submodular functions, with most O(1
εn

3 log n) function
calls using approximate local maxima.
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Submodularity and local optima

Given any submodular function f , a set S ⊆ V is a local maximum of f if
f(S − v) ≤ f(S) for all v ∈ S and f(S + v) ≤ f(S) for all v ∈ V \ S
(i.e., local in a Hamming ball of radius 1).

The following interesting result is true for any submodular function:

Lemma 13.6.1
Given a submodular function f , if S is a local maximum of f , and I ⊆ S or
I ⊇ S, then f(I) ≤ f(S).
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Submodularity and local optima

Given any submodular function f , a set S ⊆ V is a local maximum of f if
f(S − v) ≤ f(S) for all v ∈ S and f(S + v) ≤ f(S) for all v ∈ V \ S
(i.e., local in a Hamming ball of radius 1).
The following interesting result is true for any submodular function:

Lemma 13.6.1
Given a submodular function f , if S is a local maximum of f , and I ⊆ S or
I ⊇ S, then f(I) ≤ f(S).

Idea of proof: Given v1, v2 ∈ S, suppose f(S − v1) ≤ f(S) and
f(S − v2) ≤ f(S). Submodularity requires
f(S − v1) + f(S − v2) ≥ f(S) + f(S − v1 − v2) which would be
impossible unless f(S − v1 − v2) ≤ f(S).

Similarly, given v1, v2 /∈ S, and f(S + v1) ≤ f(S) and f(S + v2) ≤ f(S).
Submodularity requires f(S + v1) + f(S + v2) ≥ f(S) + f(S + v1 + v2)
which requires f(S + v1 + v2) ≤ f(S).
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Submodularity and local optima

Given any submodular function f , a set S ⊆ V is a local maximum of f if
f(S − v) ≤ f(S) for all v ∈ S and f(S + v) ≤ f(S) for all v ∈ V \ S
(i.e., local in a Hamming ball of radius 1).
The following interesting result is true for any submodular function:

Lemma 13.6.1
Given a submodular function f , if S is a local maximum of f , and I ⊆ S or
I ⊇ S, then f(I) ≤ f(S).

Idea of proof: Given v1, v2 ∈ S, suppose f(S − v1) ≤ f(S) and
f(S − v2) ≤ f(S). Submodularity requires
f(S − v1) + f(S − v2) ≥ f(S) + f(S − v1 − v2) which would be
impossible unless f(S − v1 − v2) ≤ f(S).
Similarly, given v1, v2 /∈ S, and f(S + v1) ≤ f(S) and f(S + v2) ≤ f(S).
Submodularity requires f(S + v1) + f(S + v2) ≥ f(S) + f(S + v1 + v2)
which requires f(S + v1 + v2) ≤ f(S).
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Submodularity and local optima

Given any submodular function f , a set S ⊆ V is a local maximum of f if
f(S − v) ≤ f(S) for all v ∈ S and f(S + v) ≤ f(S) for all v ∈ V \ S
(i.e., local in a Hamming ball of radius 1).
The following interesting result is true for any submodular function:

Lemma 13.6.1
Given a submodular function f , if S is a local maximum of f , and I ⊆ S or
I ⊇ S, then f(I) ≤ f(S).

In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [∅, S] and [S, V ] can be ruled out as a
possible improvement over S.

Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively efficiently.
This is the approach that yields the (1

3 − ε
n) approximation algorithm.
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f(S − v) ≤ f(S) for all v ∈ S and f(S + v) ≤ f(S) for all v ∈ V \ S
(i.e., local in a Hamming ball of radius 1).
The following interesting result is true for any submodular function:

Lemma 13.6.1
Given a submodular function f , if S is a local maximum of f , and I ⊆ S or
I ⊇ S, then f(I) ≤ f(S).

In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [∅, S] and [S, V ] can be ruled out as a
possible improvement over S.
Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively efficiently.

This is the approach that yields the (1
3 − ε

n) approximation algorithm.
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Submodularity and local optima

Given any submodular function f , a set S ⊆ V is a local maximum of f if
f(S − v) ≤ f(S) for all v ∈ S and f(S + v) ≤ f(S) for all v ∈ V \ S
(i.e., local in a Hamming ball of radius 1).
The following interesting result is true for any submodular function:

Lemma 13.6.1
Given a submodular function f , if S is a local maximum of f , and I ⊆ S or
I ⊇ S, then f(I) ≤ f(S).

In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [∅, S] and [S, V ] can be ruled out as a
possible improvement over S.
Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively efficiently.
This is the approach that yields the (1

3 − ε
n) approximation algorithm.
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Linear time algorithm unconstrained non-monotone max
Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.

Buchbinder, Feldman, Naor, Schwartz 2012.

Recall [a]+ = max(a, 0).

Algorithm 3: Randomized Linear-time non-monotone submodular max
1 Set L← ∅ ; U ← V /* Lower L, upper U . Invariant: L ⊆ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i← 0 . . . |V | do
4 a← [f(vi|L)]+; b← [−f(U |U \ {vi})]+ ;
5 if a = b = 0 then p← 1/2 ;
6 ;
7 else p← a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L← L ∪ {vi} ;
11 Otherwise /* if the coin drew tails, an event with prob. 1− p */
12 U ← U \ {v}

13 return L (which is the same as U at this point)
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Linear time algorithm unconstrained non-monotone max
Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012.

Recall [a]+ = max(a, 0).

Algorithm 4: Randomized Linear-time non-monotone submodular max
1 Set L← ∅ ; U ← V /* Lower L, upper U . Invariant: L ⊆ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i← 0 . . . |V | do
4 a← [f(vi|L)]+; b← [−f(U |U \ {vi})]+ ;
5 if a = b = 0 then p← 1/2 ;
6 ;
7 else p← a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L← L ∪ {vi} ;
11 Otherwise /* if the coin drew tails, an event with prob. 1− p */
12 U ← U \ {v}

13 return L (which is the same as U at this point)
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Linear time algorithm unconstrained non-monotone max
Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012. Recall [a]+ = max(a, 0).

Algorithm 5: Randomized Linear-time non-monotone submodular max
1 Set L← ∅ ; U ← V /* Lower L, upper U . Invariant: L ⊆ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i← 0 . . . |V | do
4 a← [f(vi|L)]+; b← [−f(U |U \ {vi})]+ ;
5 if a = b = 0 then p← 1/2 ;
6 ;
7 else p← a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L← L ∪ {vi} ;
11 Otherwise /* if the coin drew tails, an event with prob. 1− p */
12 U ← U \ {v}

13 return L (which is the same as U at this point)
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Linear time algorithm unconstrained non-monotone max
Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012. Recall [a]+ = max(a, 0).

Algorithm 6: Randomized Linear-time non-monotone submodular max
1 Set L← ∅ ; U ← V /* Lower L, upper U . Invariant: L ⊆ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i← 0 . . . |V | do
4 a← [f(vi|L)]+; b← [−f(U |U \ {vi})]+ ;
5 if a = b = 0 then p← 1/2 ;
6 ;
7 else p← a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L← L ∪ {vi} ;
11 Otherwise /* if the coin drew tails, an event with prob. 1− p */
12 U ← U \ {v}

13 return L (which is the same as U at this point)
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Linear time algorithm unconstrained non-monotone max

Each “sweep” of the algorithm is O(n).

Running the algorithm 1× (with an arbitrary variable order) results in a
1/3 approximation.
The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).
In practice, run it multiple times, each with a different random
permutation of the elements, and then take the cumulative best.
It may be possible to choose the random order smartly to get better
results in practice.
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Each “sweep” of the algorithm is O(n).
Running the algorithm 1× (with an arbitrary variable order) results in a
1/3 approximation.
The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).
In practice, run it multiple times, each with a different random
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Linear time algorithm unconstrained non-monotone max

Each “sweep” of the algorithm is O(n).
Running the algorithm 1× (with an arbitrary variable order) results in a
1/3 approximation.
The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).
In practice, run it multiple times, each with a different random
permutation of the elements, and then take the cumulative best.
It may be possible to choose the random order smartly to get better
results in practice.
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More general still: multiple constraints different types

In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.

The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.
Often the computational costs of the algorithms are prohibitive (e.g.,
exponential in k) with large constants, so these algorithms might not
scale.
On the other hand, these algorithms offer deep and interesting intuition
into submodular functions, beyond what we have covered here.
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Some results on submodular maximization

As we’ve seen, we can get 1− 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

For general matroid, greedy reduces to 1/2 approximation (as we’ve
seen).
We can recover 1− 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak’s publications).
More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak’s publications
http://theory.stanford.edu/~jvondrak/).
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As we’ve seen, we can get 1− 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.
For general matroid, greedy reduces to 1/2 approximation (as we’ve
seen).

We can recover 1− 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak’s publications).
More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak’s publications
http://theory.stanford.edu/~jvondrak/).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 13 - May 9th, 2018 F56/57 (pg.230/233)

http://theory.stanford.edu/~jvondrak/


Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints Submodular Max w. Other Constraints

Some results on submodular maximization

As we’ve seen, we can get 1− 1/e for non-negative monotone
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Some results on submodular maximization

As we’ve seen, we can get 1− 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.
For general matroid, greedy reduces to 1/2 approximation (as we’ve
seen).
We can recover 1− 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak’s publications).
More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak’s publications
http://theory.stanford.edu/~jvondrak/).
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Submodular Max Summary - 2012: From J. Vondrak
Monotone Maximization

Constraint Approximation Hardness Technique
|S| ≤ k 1− 1/e 1− 1/e greedy
matroid 1− 1/e 1− 1/e multilinear ext.

O(1) knapsacks 1− 1/e 1− 1/e multilinear ext.
k matroids k + ε k/ log k local search

k matroids and O(1)
knapsacks

O(k) k/ log k multilinear ext.

Nonmonotone Maximization
Constraint Approximation Hardness Technique

Unconstrained 1/2 1/2 combinatorial
matroid 1/e 0.48 multilinear ext.

O(1) knapsacks 1/e 0.49 multilinear ext.
k matroids k +O(1) k/ log k local search

k matroids and O(1)
knapsacks

O(k) k/ log k multilinear ext.
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