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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
Read chapter 2 from Fujishige’s book.
Read chapter 3 from Fujishige’s book.
Read chapter 4 from Fujishige’s book.
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Announcements, Assignments, and Reminders

Next homework posted on canvas this evening (will include material
from today’s lecture).
As always, if you have any questions about anything, please ask then
via our discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
Can meet at odd hours via zoom (send message on canvas to schedule
time to chat).
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Class Road Map - EE563

L1(3/26): Motivation, Applications, &

Basic Definitions,

L2(3/28): Machine Learning Apps

(diversity, complexity, parameter, learning

target, surrogate).

L3(4/2): Info theory exs, more apps,

definitions, graph/combinatorial examples

L4(4/4): Graph and Combinatorial

Examples, Matrix Rank, Examples and

Properties, visualizations

L5(4/9): More Examples/Properties/

Other Submodular Defs., Independence,

L6(4/11): Matroids, Matroid Examples,

Matroid Rank, Partition/Laminar

Matroids

L7(4/16): Laminar Matroids, System of

Distinct Reps, Transversals, Transversal

Matroid, Matroid Representation, Dual

Matroids

L8(4/18): Dual Matroids, Other Matroid

Properties, Combinatorial Geometries,

Matroids and Greedy.

L9(4/23): Polyhedra, Matroid Polytopes,

Matroids ! Polymatroids

L10(4/29): Matroids ! Polymatroids,

Polymatroids, Polymatroids and Greedy,

L11(4/30):

L12(5/2):

L13(5/7):

L14(5/9):

L15(5/14):

L16(5/16):

L17(5/21):

L18(5/23):

L–(5/28): Memorial Day (holiday)

L19(5/30):

L21(6/4): Final Presentations

maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Summary of Important (for us) Matroid Definitions

Given an independence system, matroids are defined equivalently by any of
the following:

All maximally independent sets have the same size.
A monotone non-decreasing submodular integral rank function with
unit increments.
The greedy algorithm achieves the maximum weight independent set
for all weight functions.
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Independence Polyhedra

For each I 2 I of a matroid M = (E, I), we can form the incidence
vector 1I 2 {0, 1}E ⇢ [0, 1]E ⇢ RE

+.
Taking the convex hull, we get the independent set polytope, that is

Pind. set = conv

(
[

I2I
{1I}

)
✓ [0, 1]E (10.8)

Now take the rank function r of M , and define the following
polyhedron:

P+
r ,

�
x 2 RE : x � 0, x(A)  r(A), 8A ✓ E

 
(10.9)

Examples of P+
r are forthcoming.

Since {1I : I 2 I} ✓ Pind. set ✓ P+
r , we have max {w(I) : I 2 I} 

max {w|x : x 2 Pind. set}  max {w|x : x 2 P+
r }

Now, take any x 2 Pind. set, then we have that x 2 P+
r (or

Pind. set ✓ P+
r ). We show this next.
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Matroid Polyhedron in 2D

P+
r =

�
x 2 RE : x � 0, x(A)  r(A), 8A ✓ E

 
(10.8)

Consider this in two dimensions. We have equations of the form:

x1 � 0 and x2 � 0 (10.9)
x1  r({v1}) 2 {0, 1} (10.10)
x2  r({v2}) 2 {0, 1} (10.11)

x1 + x2  r({v1, v2}) 2 {0, 1, 2} (10.12)

Because r is submodular, we have

r({v1}) + r({v2}) � r({v1, v2}) + r(;) (10.13)

so since r({v1, v2})  r({v1}) + r({v2}), the last inequality is either
superfluous (r(v1, v2) = r(v1) + r(v2), “inactive”) or “active.”
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Matroid Polyhedron in 2D

x1

x2

x1

x2

r(v1)=1

r(v1)=1

r(v2)=1

r(v2)=0

x1 + = 2x2 = r({v1, v2})

x1 + = 1x2 = r({v1, v2})

= 1r({v1, v2})

= 0r({v1, v2})

x1

x2

x1

x2

r(v1)=1

r(v2)=1

x1 � 0

x2 � 0

x1  r({v1})

x2  r({v2})
x
1 +

x
2 

r({v
1 , v

2 })

And, if v2 is a loop ...
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Matroid Polyhedron in 3D

P+
r =

�
x 2 RE : x � 0, x(A)  r(A), 8A ✓ E

 
(10.8)

Consider three dimensions, E = {1, 2, 3}. Get equations of the form:

x1 � 0 and x2 � 0 and x3 � 0 (10.9)
x1  r({v1}) (10.10)
x2  r({v2}) (10.11)
x3  r({v3}) (10.12)

x1 + x2  r({v1, v2}) (10.13)
x2 + x3  r({v2, v3}) (10.14)
x1 + x3  r({v1, v3}) (10.15)

x1 + x2 + x3  r({v1, v2, v3}) (10.16)
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Matroid Polyhedron in 3D

Two view of P+
r associated with a matroid

({e1, e2, e3}, {;, {e1}, {e2}, {e3}, {e1, e2}, {e1, e3}, {e2, e3}}).
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Maximum weight independent set via greedy weighted rank

Theorem 10.2.5

Let M = (V, I) be a matroid, with rank function r, then for any weight
function w 2 RV

+, there exists a chain of sets U1 ⇢ U2 ⇢ · · · ⇢ Un ✓ V
such that

max {w(I)|I 2 I} =
nX

i=1

�ir(Ui) (10.8)

where �i � 0 satisfy

w =
nX

i=1

�i1Ui (10.9)
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Polytope Equivalence (Summarizing the above)

For each I 2 I of a matroid M = (E, I), we can form the incidence
vector 1I .
Taking the convex hull, we get the independent set polytope, that is

Pind. set = conv {[I2I{1I}} (10.11)

Now take the rank function r of M , and define the following polytope:

P+
r =

�
x 2 RE : x � 0, x(A)  r(A), 8A ✓ E

 
(10.12)

Theorem 10.2.5

P+
r = Pind. set (10.13)
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Greedy solves a linear programming problem

So we can describe the independence polytope of a matroid using the
set of inequalities (an exponential number of them).
In fact, considering equations starting at Eq ??, the LP problem with
exponential number of constraints max {w|x : x 2 P+

r } is identical to
the maximum weight independent set problem in a matroid, and since
greedy solves the latter problem exactly, we have also proven:

Theorem 10.2.5
The LP problem max {w|x : x 2 P+

r } can be solved exactly using the
greedy algorithm.

Note that this LP problem has an exponential number of constraints
(since P+

r is described as the intersection of an exponential number of
half spaces).
This means that if LP problems have certain structure, they can be
solved much easier than immediately implied by the equations.
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P -basis of x given compact set P ✓ RE
+

Definition 10.2.6 (subvector)
y is a subvector of x if y  x (meaning y(e)  x(e) for all e 2 E).

Definition 10.2.7 (P -basis)

Given a compact set P ✓ RE
+, for any x 2 RE

+, a subvector y of x is called
a P -basis of x if y maximal in P .
In other words, y is a P -basis of x if y is a maximal P -contained subvector
of x.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z � y+ ✏1e for some e 2 E and ✏ > 0) having the properties of
y (the properties of y being: in P , and a subvector of x).
In still other words: y is a P -basis of x if:

1 y  x (y is a subvector of x); and
2 y 2 P and y + ✏1e /2 P for all e 2 E where y(e) < x(e) and 8✏ > 0 (y

is maximal P -contained).
Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 10 - April 30th, 2018 F14/66 (pg.14/209)



Logistics Review

A vector form of rank

Recall the definition of rank from a matroid M = (E, I).

rank(A) = max {|I| : I ✓ A, I 2 I} = max
I2I

|A \ I| (10.23)

vector rank: Given a compact set P ✓ RE
+, we can define a form of

“vector rank” relative to this P in the following way: Given an x 2 RE ,
we define the vector rank, relative to P , as:

rank(x) = max (y(E) : y  x, y 2 P ) = max
y2P

(x ^ y)(E) (10.24)

where y  x is componentwise inequality (yi  xi, 8i), and where
(x ^ y) 2 RE

+ has (x ^ y)(i) = min(x(i), y(i)).
If Bx is the set of P -bases of x, than rank(x) = maxy2Bx y(E).
If x 2 P , then rank(x) = x(E) (x is its own unique self P -basis).
If xmin = minx2P x(E), and x  xmin what then? �1?
In general, might be hard to compute and/or have ill-defined properties.
Next, we look at an object that restrains and cultivates this form of rank.
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Matroids ! Polymatroids Polymatroids Polymatroids and Greedy

Polymatroidal polyhedron (or a “polymatroid”)

Definition 10.3.1 (polymatroid)

A polymatroid is a compact set P ✓ RE
+ satisfying

1 0 2 P

2 If y  x 2 P then y 2 P (called down monotone).
3 For every x 2 RE

+, any maximal vector y 2 P with y  x (i.e., any
P -basis of x), has the same component sum y(E)
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Matroids ! Polymatroids Polymatroids Polymatroids and Greedy

Polymatroidal polyhedron (or a “polymatroid”)

Definition 10.3.1 (polymatroid)

A polymatroid is a compact set P ✓ RE
+ satisfying

1 0 2 P

2 If y  x 2 P then y 2 P (called down monotone).
3 For every x 2 RE

+, any maximal vector y 2 P with y  x (i.e., any
P -basis of x), has the same component sum y(E)

Condition 3 restated: That is for any two distinct maximal vectors
y1, y2 2 P , with y1  x & y2  x, with y1 6= y2, we must have
y1(E) = y2(E).

Condition 3 restated (again): For every vector x 2 RE
+, every maximal

independent (i.e., 2 P ) subvector y of x has the same component sum
y(E) = rank(x).
Condition 3 restated (yet again): All P -bases of x have the same
component sum.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition 10.3.1 (polymatroid)

A polymatroid is a compact set P ✓ RE
+ satisfying

1 0 2 P

2 If y  x 2 P then y 2 P (called down monotone).
3 For every x 2 RE

+, any maximal vector y 2 P with y  x (i.e., any
P -basis of x), has the same component sum y(E)

Condition 3 restated: That is for any two distinct maximal vectors
y1, y2 2 P , with y1  x & y2  x, with y1 6= y2, we must have
y1(E) = y2(E).
Condition 3 restated (again): For every vector x 2 RE

+, every maximal
independent (i.e., 2 P ) subvector y of x has the same component sum
y(E) = rank(x).

Condition 3 restated (yet again): All P -bases of x have the same
component sum.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition 10.3.1 (polymatroid)

A polymatroid is a compact set P ✓ RE
+ satisfying

1 0 2 P

2 If y  x 2 P then y 2 P (called down monotone).
3 For every x 2 RE

+, any maximal vector y 2 P with y  x (i.e., any
P -basis of x), has the same component sum y(E)

Condition 3 restated: That is for any two distinct maximal vectors
y1, y2 2 P , with y1  x & y2  x, with y1 6= y2, we must have
y1(E) = y2(E).
Condition 3 restated (again): For every vector x 2 RE

+, every maximal
independent (i.e., 2 P ) subvector y of x has the same component sum
y(E) = rank(x).
Condition 3 restated (yet again): All P -bases of x have the same
component sum.
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Matroids ! Polymatroids Polymatroids Polymatroids and Greedy

Polymatroidal polyhedron (or a “polymatroid”)

Definition 10.3.1 (polymatroid)

A polymatroid is a compact set P ✓ RE
+ satisfying

1 0 2 P

2 If y  x 2 P then y 2 P (called down monotone).
3 For every x 2 RE

+, any maximal vector y 2 P with y  x (i.e., any
P -basis of x), has the same component sum y(E)

Vectors within P (i.e., any y 2 P ) are called independent, and any
vector outside of P is called dependent.

Since all P -bases of x have the same component sum, if Bx is the set
of P -bases of x, than rank(x) = y(E) for any y 2 Bx.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition 10.3.1 (polymatroid)

A polymatroid is a compact set P ✓ RE
+ satisfying

1 0 2 P

2 If y  x 2 P then y 2 P (called down monotone).
3 For every x 2 RE

+, any maximal vector y 2 P with y  x (i.e., any
P -basis of x), has the same component sum y(E)

Vectors within P (i.e., any y 2 P ) are called independent, and any
vector outside of P is called dependent.
Since all P -bases of x have the same component sum, if Bx is the set
of P -bases of x, than rank(x) = y(E) for any y 2 Bx.
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Matroids ! Polymatroids Polymatroids Polymatroids and Greedy

Matroid and Polymatroid: side-by-side

A Matroid is:

1 a set system (E, I)
2 empty-set containing ; 2 I
3 down closed, ; ✓ I 0 ✓ I 2 I ) I 0 2 I.
4 any maximal set I in I, bounded by another set A, has the same

matroid rank (any maximal independent subset I ✓ A has same size
|I|).

A Polymatroid is:

1 a compact set P ✓ RE
+

2 zero containing, 0 2 P

3 down monotone, 0  y  x 2 P ) y 2 P

4 any maximal vector y in P , bounded by another vector x, has the same
vector rank (any maximal independent subvector y  x has same sum
y(E)).
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Matroid and Polymatroid: side-by-side

A Matroid is:
1 a set system (E, I)

2 empty-set containing ; 2 I
3 down closed, ; ✓ I 0 ✓ I 2 I ) I 0 2 I.
4 any maximal set I in I, bounded by another set A, has the same

matroid rank (any maximal independent subset I ✓ A has same size
|I|).

A Polymatroid is:
1 a compact set P ✓ RE

+

2 zero containing, 0 2 P

3 down monotone, 0  y  x 2 P ) y 2 P

4 any maximal vector y in P , bounded by another vector x, has the same
vector rank (any maximal independent subvector y  x has same sum
y(E)).
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Matroid and Polymatroid: side-by-side

A Matroid is:
1 a set system (E, I)
2 empty-set containing ; 2 I

3 down closed, ; ✓ I 0 ✓ I 2 I ) I 0 2 I.
4 any maximal set I in I, bounded by another set A, has the same

matroid rank (any maximal independent subset I ✓ A has same size
|I|).

A Polymatroid is:
1 a compact set P ✓ RE

+

2 zero containing, 0 2 P

3 down monotone, 0  y  x 2 P ) y 2 P

4 any maximal vector y in P , bounded by another vector x, has the same
vector rank (any maximal independent subvector y  x has same sum
y(E)).
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Matroid and Polymatroid: side-by-side

A Matroid is:
1 a set system (E, I)
2 empty-set containing ; 2 I
3 down closed, ; ✓ I 0 ✓ I 2 I ) I 0 2 I.

4 any maximal set I in I, bounded by another set A, has the same
matroid rank (any maximal independent subset I ✓ A has same size
|I|).

A Polymatroid is:
1 a compact set P ✓ RE

+

2 zero containing, 0 2 P

3 down monotone, 0  y  x 2 P ) y 2 P

4 any maximal vector y in P , bounded by another vector x, has the same
vector rank (any maximal independent subvector y  x has same sum
y(E)).
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Matroid and Polymatroid: side-by-side

A Matroid is:
1 a set system (E, I)
2 empty-set containing ; 2 I
3 down closed, ; ✓ I 0 ✓ I 2 I ) I 0 2 I.
4 any maximal set I in I, bounded by another set A, has the same

matroid rank (any maximal independent subset I ✓ A has same size
|I|).

A Polymatroid is:
1 a compact set P ✓ RE

+

2 zero containing, 0 2 P

3 down monotone, 0  y  x 2 P ) y 2 P

4 any maximal vector y in P , bounded by another vector x, has the same
vector rank (any maximal independent subvector y  x has same sum
y(E)).
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Matroids ! Polymatroids Polymatroids Polymatroids and Greedy

Polymatroidal polyhedron (or a “polymatroid”)

x

{ xpossible y possible y
y1

y2

y1

y2P P

Left: 9 multiple maximal y  x Right: 9 only one maximal y  x,

Polymatroid condition here: 8 maximal y 2 P, with y  x (which here
means y1  x1 and y2  x2), we just have y(E) = y1 + y2 = const.

On the left, we see there are multiple possible maximal y 2 P such that
y  x. Each such y must have the same value y(E).
On the right, there is only one maximal y 2 P . Since there is only one,
the condition on the same value of y(E), 8y is vacuous.
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Polymatroidal polyhedron (or a “polymatroid”)

x

{ xpossible y possible y
y1

y2

y1

y2P P

Left: 9 multiple maximal y  x Right: 9 only one maximal y  x,

Polymatroid condition here: 8 maximal y 2 P, with y  x (which here
means y1  x1 and y2  x2), we just have y(E) = y1 + y2 = const.
On the left, we see there are multiple possible maximal y 2 P such that
y  x. Each such y must have the same value y(E).

On the right, there is only one maximal y 2 P . Since there is only one,
the condition on the same value of y(E), 8y is vacuous.
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Polymatroidal polyhedron (or a “polymatroid”)

x

{ xpossible y possible y
y1

y2

y1

y2P P

Left: 9 multiple maximal y  x Right: 9 only one maximal y  x,

Polymatroid condition here: 8 maximal y 2 P, with y  x (which here
means y1  x1 and y2  x2), we just have y(E) = y1 + y2 = const.
On the left, we see there are multiple possible maximal y 2 P such that
y  x. Each such y must have the same value y(E).
On the right, there is only one maximal y 2 P . Since there is only one,
the condition on the same value of y(E), 8y is vacuous.
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Matroids ! Polymatroids Polymatroids Polymatroids and Greedy

Polymatroidal polyhedron (or a “polymatroid”)

x
possible y

y1

y2 P

9 only one maximal y  x.

If x 2 P already, then x is its own P -basis, i.e., it is a self P -basis.

In a matroid, a base of A is the maximally contained independent set.
If A is already independent, then A is a self-base of A (as we saw in
previous Lectures)
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Polymatroidal polyhedron (or a “polymatroid”)

x
possible y

y1

y2 P

9 only one maximal y  x.

If x 2 P already, then x is its own P -basis, i.e., it is a self P -basis.
In a matroid, a base of A is the maximally contained independent set.
If A is already independent, then A is a self-base of A (as we saw in
previous Lectures)
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Matroids ! Polymatroids Polymatroids Polymatroids and Greedy

Polymatroid as well?

x

possible y

y1

y2
P

{
x

possible y

y1

y2
P

{

Left and right: 9 multiple maximal y  x as indicated.

On the left, we see there are multiple possible maximal such y 2 P that
are y  x. Each such y must have the same value y(E), but since the
equation for the curve is y21 + y22 = const. 6= y1 + y2, we see this is
not a polymatroid.

On the right, we have a similar situation, just the set of potential
values that must have the y(E) condition changes, but the values of
course are still not constant.
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Polymatroid as well? no
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Left and right: 9 multiple maximal y  x as indicated.

On the left, we see there are multiple possible maximal such y 2 P that
are y  x. Each such y must have the same value y(E), but since the
equation for the curve is y21 + y22 = const. 6= y1 + y2, we see this is
not a polymatroid.
On the right, we have a similar situation, just the set of potential
values that must have the y(E) condition changes, but the values of
course are still not constant.
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Other examples: Polymatroid or not?
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Some possible polymatroid forms in 2D
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45˚

It appears that we have five possible forms of polymatroid in 2D, when
neither of the elements {v1, v2} are self-dependent.

1 On the left: full dependence between v1 and v2

2 Next: full independence between v1 and v2
3 Next: partial independence between v1 and v2
4 Right two: other forms of partial independence between v1 and v2
- The P -bases (or single P -base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the

polytope. Dependent vectors are exterior to the polytope.
- The set of P -bases for a polytope is called the base polytope.
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Some possible polymatroid forms in 2D
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It appears that we have five possible forms of polymatroid in 2D, when
neither of the elements {v1, v2} are self-dependent.

1 On the left: full dependence between v1 and v2
2 Next: full independence between v1 and v2

3 Next: partial independence between v1 and v2
4 Right two: other forms of partial independence between v1 and v2
- The P -bases (or single P -base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the

polytope. Dependent vectors are exterior to the polytope.
- The set of P -bases for a polytope is called the base polytope.
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Some possible polymatroid forms in 2D
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It appears that we have five possible forms of polymatroid in 2D, when
neither of the elements {v1, v2} are self-dependent.

1 On the left: full dependence between v1 and v2
2 Next: full independence between v1 and v2
3 Next: partial independence between v1 and v2

4 Right two: other forms of partial independence between v1 and v2
- The P -bases (or single P -base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the

polytope. Dependent vectors are exterior to the polytope.
- The set of P -bases for a polytope is called the base polytope.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 10 - April 30th, 2018 F22/66 (pg.37/209)



Matroids ! Polymatroids Polymatroids Polymatroids and Greedy

Some possible polymatroid forms in 2D
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It appears that we have five possible forms of polymatroid in 2D, when
neither of the elements {v1, v2} are self-dependent.

1 On the left: full dependence between v1 and v2
2 Next: full independence between v1 and v2
3 Next: partial independence between v1 and v2
4 Right two: other forms of partial independence between v1 and v2

- The P -bases (or single P -base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the

polytope. Dependent vectors are exterior to the polytope.
- The set of P -bases for a polytope is called the base polytope.
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Some possible polymatroid forms in 2D
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It appears that we have five possible forms of polymatroid in 2D, when
neither of the elements {v1, v2} are self-dependent.

1 On the left: full dependence between v1 and v2
2 Next: full independence between v1 and v2
3 Next: partial independence between v1 and v2
4 Right two: other forms of partial independence between v1 and v2
- The P -bases (or single P -base in the middle case) are as indicated.

- Independent vectors are those within or on the boundary of the
polytope. Dependent vectors are exterior to the polytope.

- The set of P -bases for a polytope is called the base polytope.
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It appears that we have five possible forms of polymatroid in 2D, when
neither of the elements {v1, v2} are self-dependent.

1 On the left: full dependence between v1 and v2
2 Next: full independence between v1 and v2
3 Next: partial independence between v1 and v2
4 Right two: other forms of partial independence between v1 and v2
- The P -bases (or single P -base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the

polytope. Dependent vectors are exterior to the polytope.

- The set of P -bases for a polytope is called the base polytope.
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neither of the elements {v1, v2} are self-dependent.

1 On the left: full dependence between v1 and v2
2 Next: full independence between v1 and v2
3 Next: partial independence between v1 and v2
4 Right two: other forms of partial independence between v1 and v2
- The P -bases (or single P -base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the

polytope. Dependent vectors are exterior to the polytope.
- The set of P -bases for a polytope is called the base polytope.
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Polymatroidal polyhedron (or a “polymatroid”)

Note that if x contains any zeros (i.e., suppose that x 2 RE
+ has E \ S

s.t. x(E \ S) = 0, so S indicates the non-zero elements, or
S = supp(x)), then this also forces y(E \ S) = 0, so that
y(E) = y(S). This is true either for x 2 P or x /2 P .

Therefore, in this case, it is the non-zero elements of x, corresponding
to elements S (i.e., the support supp(x) of x), determine the common
component sum.
For the case of either x /2 P or right at the boundary of P , we might
give a “name” to this component sum, lets say f(S) for any given set S
of non-zero elements of x. We could name rank(1✏1S) , f(S) for ✏
small enough. What kind of function might f be?
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Polymatroidal polyhedron (or a “polymatroid”)

Note that if x contains any zeros (i.e., suppose that x 2 RE
+ has E \ S

s.t. x(E \ S) = 0, so S indicates the non-zero elements, or
S = supp(x)), then this also forces y(E \ S) = 0, so that
y(E) = y(S). This is true either for x 2 P or x /2 P .
Therefore, in this case, it is the non-zero elements of x, corresponding
to elements S (i.e., the support supp(x) of x), determine the common
component sum.

For the case of either x /2 P or right at the boundary of P , we might
give a “name” to this component sum, lets say f(S) for any given set S
of non-zero elements of x. We could name rank(1✏1S) , f(S) for ✏
small enough. What kind of function might f be?
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Polymatroidal polyhedron (or a “polymatroid”)

Note that if x contains any zeros (i.e., suppose that x 2 RE
+ has E \ S

s.t. x(E \ S) = 0, so S indicates the non-zero elements, or
S = supp(x)), then this also forces y(E \ S) = 0, so that
y(E) = y(S). This is true either for x 2 P or x /2 P .
Therefore, in this case, it is the non-zero elements of x, corresponding
to elements S (i.e., the support supp(x) of x), determine the common
component sum.
For the case of either x /2 P or right at the boundary of P , we might
give a “name” to this component sum, lets say f(S) for any given set S
of non-zero elements of x. We could name rank(1✏1S) , f(S) for ✏
small enough. What kind of function might f be?

x
possible y
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y2 P

 = f(1)
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Polymatroid function and its polyhedron.

Definition 10.3.2
A polymatroid function is a real-valued function f defined on subsets of E
which is normalized, non-decreasing, and submodular. That is we have

1 f(;) = 0 (normalized)
2 f(A)  f(B) for any A ✓ B ✓ E (monotone non-decreasing)
3 f(A [B) + f(A \B)  f(A) + f(B) for any A,B ✓ E (submodular)

We can define the polyhedron P+
f associated with a polymatroid function as

follows

P+
f =

�
y 2 RE

+ : y(A)  f(A) for all A ✓ E
 

(10.1)

=
�
y 2 RE : y � 0, y(A)  f(A) for all A ✓ E

 
(10.2)
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Associated polyhedron with a polymatroid function

P+
f =

�
x 2 RE : x � 0, x(A)  f(A), 8A ✓ E

 
(10.3)

Consider this in three dimensions. We have equations of the form:

x1 � 0 and x2 � 0 and x3 � 0 (10.4)
x1  f({v1}) (10.5)
x2  f({v2}) (10.6)
x3  f({v3}) (10.7)

x1 + x2  f({v1, v2}) (10.8)
x2 + x3  f({v2, v3}) (10.9)
x1 + x3  f({v1, v3}) (10.10)

x1 + x2 + x3  f({v1, v2, v3}) (10.11)
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Associated polyhedron with a polymatroid function

Consider the asymmetric graph cut function on the simple chain graph
v1 � v2 � v3. That is, f(S) = |{(v, s) 2 E(G) : v 2 V, s 2 S}| is count
of any edges within S or between S and V \ S, so that
�(S) = f(S) + f(V \ S)� f(V ) is the standard graph cut.

Observe: P+
f (at two views):

which axis is which?
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Associated polyhedron with a polymatroid function

Consider the asymmetric graph cut function on the simple chain graph
v1 � v2 � v3. That is, f(S) = |{(v, s) 2 E(G) : v 2 V, s 2 S}| is count
of any edges within S or between S and V \ S, so that
�(S) = f(S) + f(V \ S)� f(V ) is the standard graph cut.
Observe: P+

f (at two views):
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Associated polyhedron with a polymatroid function

Consider the asymmetric graph cut function on the simple chain graph
v1 � v2 � v3. That is, f(S) = |{(v, s) 2 E(G) : v 2 V, s 2 S}| is count
of any edges within S or between S and V \ S, so that
�(S) = f(S) + f(V \ S)� f(V ) is the standard graph cut.
Observe: P+

f (at two views):
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Associated polyhedron with a polymatroid function

Consider: f(;) = 0, f({v1}) = 1.5, f({v2}) = 2, f({v1, v2}) = 2.5,
f({v3}) = 3, f({v3, v1}) = 3.5, f({v3, v2}) = 4, f({v3, v2, v1}) = 4.3.

Observe: P+
f (at two views):

which axis is which?
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Associated polyhedron with a polymatroid function

Consider: f(;) = 0, f({v1}) = 1.5, f({v2}) = 2, f({v1, v2}) = 2.5,
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Associated polyhedron with a polymatroid function

Consider: f(;) = 0, f({v1}) = 1.5, f({v2}) = 2, f({v1, v2}) = 2.5,
f({v3}) = 3, f({v3, v1}) = 3.5, f({v3, v2}) = 4, f({v3, v2, v1}) = 4.3.
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Associated polyhedron with a polymatroid function

Consider modular function w : V ! R+ as w = (1, 1.5, 2)|, and then
the submodular function f(S) =

p
w(S).

Observe: P+
f (at two views):

which axis is which?
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Associated polyhedron with a polymatroid function

Consider modular function w : V ! R+ as w = (1, 1.5, 2)|, and then
the submodular function f(S) =
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Associated polyhedron with a polymatroid function

Consider modular function w : V ! R+ as w = (1, 1.5, 2)|, and then
the submodular function f(S) =
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Associated polytope with a non-submodular function

Consider function on integers: g(0) = 0, g(1) = 3, g(2) = 4, and
g(3) = 5.5.

Is f(S) = g(|S|) submodular? f(S) = g(|S|) is not
submodular since f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
f({e1, e2, e3}) + f({e1}) = 5.5 + 3 = 8.5. Alternatively, consider
concavity violation, 1 = g(1 + 1)� g(1) < g(2 + 1)� g(2) = 1.5.
Observe: P+

f (at two views), maximal independent subvectors not
constant rank, hence not a polymatroid.
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Associated polytope with a non-submodular function

Consider function on integers: g(0) = 0, g(1) = 3, g(2) = 4, and
g(3) = 5.5. Is f(S) = g(|S|) submodular?

f(S) = g(|S|) is not
submodular since f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
f({e1, e2, e3}) + f({e1}) = 5.5 + 3 = 8.5. Alternatively, consider
concavity violation, 1 = g(1 + 1)� g(1) < g(2 + 1)� g(2) = 1.5.
Observe: P+

f (at two views), maximal independent subvectors not
constant rank, hence not a polymatroid.
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Associated polytope with a non-submodular function

Consider function on integers: g(0) = 0, g(1) = 3, g(2) = 4, and
g(3) = 5.5. Is f(S) = g(|S|) submodular? f(S) = g(|S|) is not
submodular since f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
f({e1, e2, e3}) + f({e1}) = 5.5 + 3 = 8.5.

Alternatively, consider
concavity violation, 1 = g(1 + 1)� g(1) < g(2 + 1)� g(2) = 1.5.
Observe: P+

f (at two views), maximal independent subvectors not
constant rank, hence not a polymatroid.
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Associated polytope with a non-submodular function

Consider function on integers: g(0) = 0, g(1) = 3, g(2) = 4, and
g(3) = 5.5. Is f(S) = g(|S|) submodular? f(S) = g(|S|) is not
submodular since f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
f({e1, e2, e3}) + f({e1}) = 5.5 + 3 = 8.5. Alternatively, consider
concavity violation, 1 = g(1 + 1)� g(1) < g(2 + 1)� g(2) = 1.5.

Observe: P+
f (at two views), maximal independent subvectors not

constant rank, hence not a polymatroid.
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Associated polytope with a non-submodular function

Consider function on integers: g(0) = 0, g(1) = 3, g(2) = 4, and
g(3) = 5.5. Is f(S) = g(|S|) submodular? f(S) = g(|S|) is not
submodular since f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
f({e1, e2, e3}) + f({e1}) = 5.5 + 3 = 8.5. Alternatively, consider
concavity violation, 1 = g(1 + 1)� g(1) < g(2 + 1)� g(2) = 1.5.
Observe: P+

f (at two views), maximal independent subvectors not
constant rank, hence not a polymatroid.
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A polymatroid vs. a polymatroid function’s polyhedron

Summarizing the above, we have:

Given a polymatroid function f , its associated polytope is given as

P+
f =

�
y 2 RE

+ : y(A)  f(A) for all A ✓ E
 

(10.12)

We also have the definition of a polymatroidal polytope P (compact
subset, zero containing, down-monotone, and 8x any maximal
independent subvector y  x has same component sum y(E)).

Is there any relationship between these two polytopes?
In the next theorem, we show that any P+

f -basis has the same
component sum, when f is a polymatroid function, and P+

f satisfies
the other properties so that P+

f is a polymatroid.
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A polymatroid vs. a polymatroid function’s polyhedron

Summarizing the above, we have:
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independent subvector y  x has same component sum y(E)).

Is there any relationship between these two polytopes?
In the next theorem, we show that any P+

f -basis has the same
component sum, when f is a polymatroid function, and P+
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the other properties so that P+

f is a polymatroid.
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A polymatroid vs. a polymatroid function’s polyhedron

Summarizing the above, we have:

Given a polymatroid function f , its associated polytope is given as
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f =
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We also have the definition of a polymatroidal polytope P (compact
subset, zero containing, down-monotone, and 8x any maximal
independent subvector y  x has same component sum y(E)).

Is there any relationship between these two polytopes?
In the next theorem, we show that any P+

f -basis has the same
component sum, when f is a polymatroid function, and P+
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the other properties so that P+

f is a polymatroid.
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A polymatroid vs. a polymatroid function’s polyhedron

Summarizing the above, we have:

Given a polymatroid function f , its associated polytope is given as

P+
f =

�
y 2 RE

+ : y(A)  f(A) for all A ✓ E
 

(10.12)

We also have the definition of a polymatroidal polytope P (compact
subset, zero containing, down-monotone, and 8x any maximal
independent subvector y  x has same component sum y(E)).

Is there any relationship between these two polytopes?

In the next theorem, we show that any P+
f -basis has the same

component sum, when f is a polymatroid function, and P+
f satisfies

the other properties so that P+
f is a polymatroid.
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A polymatroid vs. a polymatroid function’s polyhedron

Summarizing the above, we have:

Given a polymatroid function f , its associated polytope is given as

P+
f =

�
y 2 RE

+ : y(A)  f(A) for all A ✓ E
 

(10.12)

We also have the definition of a polymatroidal polytope P (compact
subset, zero containing, down-monotone, and 8x any maximal
independent subvector y  x has same component sum y(E)).

Is there any relationship between these two polytopes?
In the next theorem, we show that any P+

f -basis has the same
component sum, when f is a polymatroid function, and P+

f satisfies
the other properties so that P+

f is a polymatroid.
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 10.4.1
Let f be a polymatroid function defined on subsets of E. For any x 2 RE

+,
and any P+

f -basis yx 2 RE
+ of x, the component sum of yx is

yx(E) = rank(x) = max
⇣
y(E) : y  x, y 2 P+

f

⌘

= min (x(A) + f(E \A) : A ✓ E) (10.13)

As a consequence, P+
f is a polymatroid, since r.h.s. is constant w.r.t. yx.

Taking E \B = supp(x) (so elements B are all zeros in x), and for b /2 B
we make x(b) is big enough, the r.h.s. min has solution A⇤ = B. We recover
submodular function from the polymatroid polyhedron via the following:

rank
✓
1

✏
1E\B

◆
= f(E \B) = max

n
y(E \B) : y 2 P+

f

o
(10.14)

In fact, we will ultimately see a number of important consequences of this
theorem (other than just that P+

f is a polymatroid)
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 10.4.1
Let f be a polymatroid function defined on subsets of E. For any x 2 RE
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and any P+

f -basis yx 2 RE
+ of x, the component sum of yx is

yx(E) = rank(x) = max
⇣
y(E) : y  x, y 2 P+

f

⌘

= min (x(A) + f(E \A) : A ✓ E) (10.13)

As a consequence, P+
f is a polymatroid, since r.h.s. is constant w.r.t. yx.

Taking E \B = supp(x) (so elements B are all zeros in x), and for b /2 B
we make x(b) is big enough, the r.h.s. min has solution A⇤ = B. We recover
submodular function from the polymatroid polyhedron via the following:

rank
✓
1

✏
1E\B

◆
= f(E \B) = max

n
y(E \B) : y 2 P+

f

o
(10.14)

In fact, we will ultimately see a number of important consequences of this
theorem (other than just that P+

f is a polymatroid)
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 10.4.1
Let f be a polymatroid function defined on subsets of E. For any x 2 RE

+,
and any P+

f -basis yx 2 RE
+ of x, the component sum of yx is

yx(E) = rank(x) = max
⇣
y(E) : y  x, y 2 P+

f

⌘

= min (x(A) + f(E \A) : A ✓ E) (10.13)

As a consequence, P+
f is a polymatroid, since r.h.s. is constant w.r.t. yx.

Taking E \B = supp(x) (so elements B are all zeros in x), and for b /2 B
we make x(b) is big enough, the r.h.s. min has solution A⇤ = B. We recover
submodular function from the polymatroid polyhedron via the following:

rank
✓
1

✏
1E\B

◆
= f(E \B) = max

n
y(E \B) : y 2 P+

f

o
(10.14)

In fact, we will ultimately see a number of important consequences of this
theorem (other than just that P+

f is a polymatroid)
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A polymatroid function’s polyhedron is a polymatroid.

Proof.
Clearly 0 2 P+

f since f is non-negative.

Also, for any y 2 P+
f then any x  y is also such that x 2 P+

f . So, P+
f

is down-monotone.
Now suppose that we are given an x 2 RE

+, and maximal yx 2 P+
f with

yx  x (i.e., yx is a P+
f -basis of x).

Goal is to show that any such yx has yx(E) = const, dependent only
on x and also f (which defines the polytope) but not dependent on yx,
the particular P+

f -basis.

Doing so will thus establish that P+
f is a polymatroid.

. . .
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A polymatroid function’s polyhedron is a polymatroid.

Proof.
Clearly 0 2 P+

f since f is non-negative.

Also, for any y 2 P+
f then any x  y is also such that x 2 P+

f . So, P+
f

is down-monotone.

Now suppose that we are given an x 2 RE
+, and maximal yx 2 P+

f with
yx  x (i.e., yx is a P+

f -basis of x).
Goal is to show that any such yx has yx(E) = const, dependent only
on x and also f (which defines the polytope) but not dependent on yx,
the particular P+

f -basis.

Doing so will thus establish that P+
f is a polymatroid.

. . .
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A polymatroid function’s polyhedron is a polymatroid.

Proof.
Clearly 0 2 P+

f since f is non-negative.

Also, for any y 2 P+
f then any x  y is also such that x 2 P+

f . So, P+
f

is down-monotone.
Now suppose that we are given an x 2 RE

+, and maximal yx 2 P+
f with

yx  x (i.e., yx is a P+
f -basis of x).

Goal is to show that any such yx has yx(E) = const, dependent only
on x and also f (which defines the polytope) but not dependent on yx,
the particular P+

f -basis.

Doing so will thus establish that P+
f is a polymatroid.
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A polymatroid function’s polyhedron is a polymatroid.

Proof.
Clearly 0 2 P+

f since f is non-negative.

Also, for any y 2 P+
f then any x  y is also such that x 2 P+

f . So, P+
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is down-monotone.
Now suppose that we are given an x 2 RE

+, and maximal yx 2 P+
f with

yx  x (i.e., yx is a P+
f -basis of x).

Goal is to show that any such yx has yx(E) = const, dependent only
on x and also f (which defines the polytope) but not dependent on yx,
the particular P+

f -basis.

Doing so will thus establish that P+
f is a polymatroid.
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A polymatroid function’s polyhedron is a polymatroid.

Proof.
Clearly 0 2 P+

f since f is non-negative.

Also, for any y 2 P+
f then any x  y is also such that x 2 P+

f . So, P+
f

is down-monotone.
Now suppose that we are given an x 2 RE

+, and maximal yx 2 P+
f with

yx  x (i.e., yx is a P+
f -basis of x).

Goal is to show that any such yx has yx(E) = const, dependent only
on x and also f (which defines the polytope) but not dependent on yx,
the particular P+

f -basis.

Doing so will thus establish that P+
f is a polymatroid.
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.
First trivial case: could have yx = x, which happens if
x(A)  f(A), 8A ✓ E (i.e., x 2 P+

f strictly). In such case,

min (x(A) + f(E \A) : A ✓ E) (10.15)
= x(E) + min (f(E \A)� x(E \A) : A ✓ E) (10.16)
= x(E) + min (f(A)� x(A) : A ✓ E) (10.17)
= x(E) (10.18)

When x 2 P+
f , y = x is clearly the solution to

max
⇣
y(E) : y  x, y 2 P+

f

⌘
, so this is tight, and rank(x) = x(E).

This is a value dependent only on x, a self basis, unique P+
f -base.

. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.
First trivial case: could have yx = x, which happens if
x(A)  f(A), 8A ✓ E (i.e., x 2 P+

f strictly). In such case,

min (x(A) + f(E \A) : A ✓ E) (10.15)
= x(E) + min (f(E \A)� x(E \A) : A ✓ E) (10.16)
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f , y = x is clearly the solution to
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⇣
y(E) : y  x, y 2 P+

f

⌘
, so this is tight, and rank(x) = x(E).

This is a value dependent only on x, a self basis, unique P+
f -base.

. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.
First trivial case: could have yx = x, which happens if
x(A)  f(A), 8A ✓ E (i.e., x 2 P+

f strictly). In such case,

min (x(A) + f(E \A) : A ✓ E) (10.15)
= x(E) + min (f(E \A)� x(E \A) : A ✓ E) (10.16)
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= x(E) (10.18)
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f , y = x is clearly the solution to

max
⇣
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⌘
, so this is tight, and rank(x) = x(E).

This is a value dependent only on x, a self basis, unique P+
f -base.
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

2nd trivial case: x(A) > f(A), 8A ✓ E (i.e., x /2 P+
f every direction),

Then for any order (a1, a2, . . . ) of the elements and
Ai , (a1, a2, . . . , ai), we have x(ai) � f(ai) � f(ai|Ai�1), the second
inequality by submodularity.

This gives
min (x(A) + f(E \A) : A ✓ E) (10.19)

= x(E) + min (f(A)� x(A) : A ✓ E) (10.20)

= x(E) + min

 
X

i

f(ai|Ai�1)�
X

i

x(ai) : A ✓ E

!
(10.21)

= x(E) + min

0

BB@
X

i

⇣
f(ai|Ai�1)� x(ai)

⌘

| {z }
0

: A ✓ E

1

CCA (10.22)

= x(E) + f(E)� x(E) = f(E) = max(y(E) : y 2 P+
f ).

(10.23)

. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

2nd trivial case: x(A) > f(A), 8A ✓ E (i.e., x /2 P+
f every direction),

Then for any order (a1, a2, . . . ) of the elements and
Ai , (a1, a2, . . . , ai), we have x(ai) � f(ai) � f(ai|Ai�1), the second
inequality by submodularity.

This gives
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

2nd trivial case: x(A) > f(A), 8A ✓ E (i.e., x /2 P+
f every direction),

Then for any order (a1, a2, . . . ) of the elements and
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inequality by submodularity. This gives
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Assume neither trivial case. Because yx 2 P+
f , we have that

yx(A)  f(A) for all A ✓ E.

We show that the constant is given by
yx(E) = min (x(A) + f(E \A) : A ✓ E) (10.24)

For any P+
f -basis yx of x, and any A ✓ E, we have weak relationship:

yx(E) = yx(A) + yx(E \A) (10.25)
 x(A) + f(E \A). (10.26)

This follows since yx  x and since yx 2 P+
f .

This ensures
max

⇣
y(E) : y  x, y 2 P+

f

⌘
 min (x(A) + f(E \A) : A ✓ E) (10.27)

Given an A where equality in Eqn. (10.26) holds, above min result follows.

. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Assume neither trivial case. Because yx 2 P+
f , we have that

yx(A)  f(A) for all A ✓ E.
We show that the constant is given by

yx(E) = min (x(A) + f(E \A) : A ✓ E) (10.24)

For any P+
f -basis yx of x, and any A ✓ E, we have weak relationship:

yx(E) = yx(A) + yx(E \A) (10.25)
 x(A) + f(E \A). (10.26)

This follows since yx  x and since yx 2 P+
f .

This ensures
max

⇣
y(E) : y  x, y 2 P+

f

⌘
 min (x(A) + f(E \A) : A ✓ E) (10.27)

Given an A where equality in Eqn. (10.26) holds, above min result follows.

. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Assume neither trivial case. Because yx 2 P+
f , we have that

yx(A)  f(A) for all A ✓ E.
We show that the constant is given by

yx(E) = min (x(A) + f(E \A) : A ✓ E) (10.24)

For any P+
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Assume neither trivial case. Because yx 2 P+
f , we have that

yx(A)  f(A) for all A ✓ E.
We show that the constant is given by

yx(E) = min (x(A) + f(E \A) : A ✓ E) (10.24)

For any P+
f -basis yx of x, and any A ✓ E, we have weak relationship:
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 x(A) + f(E \A). (10.26)
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This ensures
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Assume neither trivial case. Because yx 2 P+
f , we have that

yx(A)  f(A) for all A ✓ E.
We show that the constant is given by

yx(E) = min (x(A) + f(E \A) : A ✓ E) (10.24)

For any P+
f -basis yx of x, and any A ✓ E, we have weak relationship:

yx(E) = yx(A) + yx(E \A) (10.25)
 x(A) + f(E \A). (10.26)

This follows since yx  x and since yx 2 P+
f .

This ensures
max

⇣
y(E) : y  x, y 2 P+

f

⌘
 min (x(A) + f(E \A) : A ✓ E) (10.27)

Given an A where equality in Eqn. (10.26) holds, above min result follows.
. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

For any y 2 P+
f , call a set B ✓ E tight if y(B) = f(B). The union

(and intersection) of tight sets B,C is again tight, since

f(B) + f(C)

= y(B) + y(C) (10.28)
= y(B \ C) + y(B [ C) (10.29)
 f(B \ C) + f(B [ C) (10.30)
 f(B) + f(C) (10.31)

which requires equality everywhere above.
Because y(A)  f(A), 8A, this means y(B \ C) = f(B \ C) and
y(B [ C) = f(B [ C), so both also are tight.
For y 2 P+

f , it will be ultimately useful to define this lattice family of
tight sets: D(y) , {A : A ✓ E, y(A) = f(A)}.

. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Also, we define sat(y)
def
=

S
{T : T 2 D(y)}, so y(sat(y)) = f(sat(y)).

Consider again a P+
f -basis yx (so maximal).

Given a e 2 E, either yx(e) is cut off due to x (so yx(e) = x(e)) or e is
saturated by f , meaning it is an element of some tight set and
e 2 sat(yx) (since if e 2 T 2 D(yx), then e 2 sat(yx)).
Let E \A = sat(yx) be the union of all such tight sets (which is also
tight, so yx(E \A) = f(E \A)).
Hence, we have

yx(E) = yx(A) + yx(E \A) = x(A) + f(E \A) (10.32)

So we identified the A to be the elements that are non-tight, and
achieved the min, as desired.
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.
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A polymatroid function’s polyhedron is a polymatroid.
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def
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Consider again a P+
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Given a e 2 E, either yx(e) is cut off due to x (so yx(e) = x(e)) or e is
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tight, so yx(E \A) = f(E \A)).

Hence, we have

yx(E) = yx(A) + yx(E \A) = x(A) + f(E \A) (10.32)

So we identified the A to be the elements that are non-tight, and
achieved the min, as desired.
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A polymatroid is a polymatroid function’s polytope

So, when f is a polymatroid function, P+
f is a polymatroid.

Is it the case that, conversely, for any polymatroid P , there is an
associated polymatroidal function f such that P = P+

f ?

Theorem 10.4.2

For any polymatroid P (compact subset of RE
+, zero containing, down-monotone, and

8x 2 RE
+ any maximal independent subvector y  x has same component sum

y(E) = rank(x)), there is a polymatroid function f : 2E ! R (normalized,
monotone non-decreasing, submodular) such that P = P+

f where
P+
f =

�
x 2 RE : x � 0, x(A)  f(A), 8A ✓ E

 
.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 10 - April 30th, 2018 F38/66 (pg.99/209)



Matroids ! Polymatroids Polymatroids Polymatroids and Greedy

A polymatroid is a polymatroid function’s polytope

So, when f is a polymatroid function, P+
f is a polymatroid.

Is it the case that, conversely, for any polymatroid P , there is an
associated polymatroidal function f such that P = P+

f ?

Theorem 10.4.2

For any polymatroid P (compact subset of RE
+, zero containing, down-monotone, and

8x 2 RE
+ any maximal independent subvector y  x has same component sum

y(E) = rank(x)), there is a polymatroid function f : 2E ! R (normalized,
monotone non-decreasing, submodular) such that P = P+

f where
P+
f =

�
x 2 RE : x � 0, x(A)  f(A), 8A ✓ E

 
.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 10 - April 30th, 2018 F38/66 (pg.100/209)



Matroids ! Polymatroids Polymatroids Polymatroids and Greedy

A polymatroid is a polymatroid function’s polytope

So, when f is a polymatroid function, P+
f is a polymatroid.

Is it the case that, conversely, for any polymatroid P , there is an
associated polymatroidal function f such that P = P+

f ?

Theorem 10.4.2

For any polymatroid P (compact subset of RE
+, zero containing, down-monotone, and

8x 2 RE
+ any maximal independent subvector y  x has same component sum

y(E) = rank(x)), there is a polymatroid function f : 2E ! R (normalized,
monotone non-decreasing, submodular) such that P = P+

f where
P+
f =

�
x 2 RE : x � 0, x(A)  f(A), 8A ✓ E

 
.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 10 - April 30th, 2018 F38/66 (pg.101/209)



Matroids ! Polymatroids Polymatroids Polymatroids and Greedy

Tight sets D(y) are closed, and max tight set sat(y)

Recall the definition of the set of tight sets at y 2 P+
f :

D(y) , {A : A ✓ E, y(A) = f(A)} (10.33)

Theorem 10.4.3

For any y 2 P+
f , with f a polymatroid function, then D(y) is closed under

union and intersection.

Proof.
We have already proven this as part of Theorem ??

Also recall the definition of sat(y), the maximal set of tight elements
relative to y 2 RE

+.

sat(y)
def
=

[
{T : T 2 D(y)} (10.34)
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Join _ and meet ^ for x, y 2 RE
+

For x, y 2 RE
+, define vectors x ^ y 2 RE

+ and x_ y 2 RE
+ such that, for all

e 2 E

(x _ y)(e) = max(x(e), y(e)) (10.35)
(x ^ y)(e) = min(x(e), y(e)) (10.36)

Hence,

x _ y ,
 
max

⇣
x(e1), y(e1)

⌘
,max

⇣
x(e2), y(e2)

⌘
, . . . ,max

⇣
x(en), y(en)

⌘!

and similarly

x ^ y ,
 
min

⇣
x(e1), y(e1)

⌘
,min

⇣
x(e2), y(e2)

⌘
, . . . ,min

⇣
x(en), y(en)

⌘!

From this, we can define things like an lattices, and other constructs.
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Join _ and meet ^ for x, y 2 RE
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For x, y 2 RE
+, define vectors x ^ y 2 RE

+ and x_ y 2 RE
+ such that, for all
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(x _ y)(e) = max(x(e), y(e)) (10.35)
(x ^ y)(e) = min(x(e), y(e)) (10.36)

Hence,

x _ y ,
 
max
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x(e1), y(e1)

⌘
,max

⇣
x(e2), y(e2)

⌘
, . . . ,max

⇣
x(en), y(en)

⌘!

and similarly

x ^ y ,
 
min

⇣
x(e1), y(e1)

⌘
,min

⇣
x(e2), y(e2)

⌘
, . . . ,min

⇣
x(en), y(en)

⌘!

From this, we can define things like an lattices, and other constructs.
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Vector rank, rank(x), is submodular

Recall that the matroid rank function is submodular.

The vector rank function rank(x) also satisfies a form of submodularity,
namely one defined on the real lattice.

Theorem 10.4.4 (vector rank and submodularity)

Let P be a polymatroid polytope. The vector rank function rank : RE
+ ! R

with rank(x) = max (y(E) : y  x, y 2 P ) satisfies, for all u, v 2 RE
+

rank(u) + rank(v) � rank(u _ v) + rank(u ^ v) (10.37)
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Vector rank rank(x) is submodular, proof

Proof of Theorem 10.4.4.
Let a 2 RE

+ be a P -basis of u ^ v, so rank(u ^ v) = a(E).

By the polymatroid property, 9 an independent b 2 P such that:
a  b  u _ v

and also such that rank(b) = b(E) = rank(u _ v), so b is
a P -basis of u _ v, and thus b  u _ v.

Given e 2 E, if a(e) is maximal due to P , then a(e) = b(e)
 min(u(e), v(e)).
If a(e) is maximal due to (u ^ v)(e), then
a(e) = min(u(e), v(e))  b(e).
Therefore, in either case, a = b ^ (u ^ v) . . .
. . . and since b  u _ v, we get

a+ b

= b ^ u ^ v + b = b ^ u+ b ^ v

(10.38)

To see this, consider each case where either b is the minimum, or u is minimum
with b  v, or v is minimum with b  u.

. . .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 10 - April 30th, 2018 F42/66 (pg.110/209)



Matroids ! Polymatroids Polymatroids Polymatroids and Greedy

Vector rank rank(x) is submodular, proof

Proof of Theorem 10.4.4.
Let a 2 RE

+ be a P -basis of u ^ v, so rank(u ^ v) = a(E).
By the polymatroid property, 9 an independent b 2 P such that:
a  b  u _ v

and also such that rank(b) = b(E) = rank(u _ v), so b is
a P -basis of u _ v, and thus b  u _ v.
Given e 2 E, if a(e) is maximal due to P , then a(e) = b(e)
 min(u(e), v(e)).
If a(e) is maximal due to (u ^ v)(e), then
a(e) = min(u(e), v(e))  b(e).
Therefore, in either case, a = b ^ (u ^ v) . . .
. . . and since b  u _ v, we get

a+ b

= b ^ u ^ v + b = b ^ u+ b ^ v

(10.38)

To see this, consider each case where either b is the minimum, or u is minimum
with b  v, or v is minimum with b  u.
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Vector rank rank(x) is submodular, proof

Proof of Theorem 10.4.4.
Let a 2 RE

+ be a P -basis of u ^ v, so rank(u ^ v) = a(E).
By the polymatroid property, 9 an independent b 2 P such that:
a  b  u _ v and also such that rank(b) = b(E) = rank(u _ v), so b is
a P -basis of u _ v, and thus b  u _ v.

Given e 2 E, if a(e) is maximal due to P , then a(e) = b(e)
 min(u(e), v(e)).
If a(e) is maximal due to (u ^ v)(e), then
a(e) = min(u(e), v(e))  b(e).
Therefore, in either case, a = b ^ (u ^ v) . . .
. . . and since b  u _ v, we get

a+ b

= b ^ u ^ v + b = b ^ u+ b ^ v

(10.38)

To see this, consider each case where either b is the minimum, or u is minimum
with b  v, or v is minimum with b  u.
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Vector rank rank(x) is submodular, proof

Proof of Theorem 10.4.4.
Let a 2 RE

+ be a P -basis of u ^ v, so rank(u ^ v) = a(E).
By the polymatroid property, 9 an independent b 2 P such that:
a  b  u _ v and also such that rank(b) = b(E) = rank(u _ v), so b is
a P -basis of u _ v, and thus b  u _ v.
Given e 2 E, if a(e) is maximal due to P , then a(e) = b(e)
 min(u(e), v(e)).

If a(e) is maximal due to (u ^ v)(e), then
a(e) = min(u(e), v(e))  b(e).
Therefore, in either case, a = b ^ (u ^ v) . . .
. . . and since b  u _ v, we get

a+ b

= b ^ u ^ v + b = b ^ u+ b ^ v

(10.38)

To see this, consider each case where either b is the minimum, or u is minimum
with b  v, or v is minimum with b  u.
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Vector rank rank(x) is submodular, proof

Proof of Theorem 10.4.4.
Let a 2 RE

+ be a P -basis of u ^ v, so rank(u ^ v) = a(E).
By the polymatroid property, 9 an independent b 2 P such that:
a  b  u _ v and also such that rank(b) = b(E) = rank(u _ v), so b is
a P -basis of u _ v, and thus b  u _ v.
Given e 2 E, if a(e) is maximal due to P , then a(e) = b(e)
 min(u(e), v(e)).
If a(e) is maximal due to (u ^ v)(e), then
a(e) = min(u(e), v(e))  b(e).

Therefore, in either case, a = b ^ (u ^ v) . . .
. . . and since b  u _ v, we get

a+ b

= b ^ u ^ v + b = b ^ u+ b ^ v

(10.38)

To see this, consider each case where either b is the minimum, or u is minimum
with b  v, or v is minimum with b  u.
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Vector rank rank(x) is submodular, proof

Proof of Theorem 10.4.4.
Let a 2 RE

+ be a P -basis of u ^ v, so rank(u ^ v) = a(E).
By the polymatroid property, 9 an independent b 2 P such that:
a  b  u _ v and also such that rank(b) = b(E) = rank(u _ v), so b is
a P -basis of u _ v, and thus b  u _ v.
Given e 2 E, if a(e) is maximal due to P , then a(e) = b(e)
 min(u(e), v(e)).
If a(e) is maximal due to (u ^ v)(e), then
a(e) = min(u(e), v(e))  b(e).
Therefore, in either case, a = b ^ (u ^ v) . . .

. . . and since b  u _ v, we get
a+ b

= b ^ u ^ v + b = b ^ u+ b ^ v

(10.38)

To see this, consider each case where either b is the minimum, or u is minimum
with b  v, or v is minimum with b  u.
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Vector rank rank(x) is submodular, proof

Proof of Theorem 10.4.4.
Let a 2 RE

+ be a P -basis of u ^ v, so rank(u ^ v) = a(E).
By the polymatroid property, 9 an independent b 2 P such that:
a  b  u _ v and also such that rank(b) = b(E) = rank(u _ v), so b is
a P -basis of u _ v, and thus b  u _ v.
Given e 2 E, if a(e) is maximal due to P , then a(e) = b(e)
 min(u(e), v(e)).
If a(e) is maximal due to (u ^ v)(e), then
a(e) = min(u(e), v(e))  b(e).
Therefore, in either case, a = b ^ (u ^ v) . . .
. . . and since b  u _ v, we get

a+ b

= b ^ u ^ v + b = b ^ u+ b ^ v

(10.38)

To see this, consider each case where either b is the minimum, or u is minimum
with b  v, or v is minimum with b  u.
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Vector rank rank(x) is submodular, proof

Proof of Theorem 10.4.4.
Let a 2 RE

+ be a P -basis of u ^ v, so rank(u ^ v) = a(E).
By the polymatroid property, 9 an independent b 2 P such that:
a  b  u _ v and also such that rank(b) = b(E) = rank(u _ v), so b is
a P -basis of u _ v, and thus b  u _ v.
Given e 2 E, if a(e) is maximal due to P , then a(e) = b(e)
 min(u(e), v(e)).
If a(e) is maximal due to (u ^ v)(e), then
a(e) = min(u(e), v(e))  b(e).
Therefore, in either case, a = b ^ (u ^ v) . . .
. . . and since b  u _ v, we get

a+ b = b ^ u ^ v + b

= b ^ u+ b ^ v

(10.38)

To see this, consider each case where either b is the minimum, or u is minimum
with b  v, or v is minimum with b  u.
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Vector rank rank(x) is submodular, proof

Proof of Theorem 10.4.4.
Let a 2 RE

+ be a P -basis of u ^ v, so rank(u ^ v) = a(E).
By the polymatroid property, 9 an independent b 2 P such that:
a  b  u _ v and also such that rank(b) = b(E) = rank(u _ v), so b is
a P -basis of u _ v, and thus b  u _ v.
Given e 2 E, if a(e) is maximal due to P , then a(e) = b(e)
 min(u(e), v(e)).
If a(e) is maximal due to (u ^ v)(e), then
a(e) = min(u(e), v(e))  b(e).
Therefore, in either case, a = b ^ (u ^ v) . . .
. . . and since b  u _ v, we get

a+ b = b ^ u ^ v + b = b ^ u+ b ^ v (10.38)

To see this, consider each case where either b is the minimum, or u is minimum
with b  v, or v is minimum with b  u.
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Vector rank rank(x) is submodular, proof

Proof of Theorem 10.4.4.
Let a 2 RE

+ be a P -basis of u ^ v, so rank(u ^ v) = a(E).
By the polymatroid property, 9 an independent b 2 P such that:
a  b  u _ v and also such that rank(b) = b(E) = rank(u _ v), so b is
a P -basis of u _ v, and thus b  u _ v.
Given e 2 E, if a(e) is maximal due to P , then a(e) = b(e)
 min(u(e), v(e)).
If a(e) is maximal due to (u ^ v)(e), then
a(e) = min(u(e), v(e))  b(e).
Therefore, in either case, a = b ^ (u ^ v) . . .
. . . and since b  u _ v, we get

a+ b = b ^ u ^ v + b = b ^ u+ b ^ v (10.38)
To see this, consider each case where either b is the minimum, or u is minimum
with b  v, or v is minimum with b  u.
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Vector rank rank(x) is submodular, proof

. . . proof of Theorem 10.4.4.
b is independent, and b ^ u and b ^ v are independent subvectors of u
and v respectively, so (b ^ u)(E)  rank(u) and (b ^ v)(E)  rank(v).

Hence,
rank(u ^ v) + rank(u _ v)

= a(E) + b(E) (10.39)
= (b ^ u)(E) + (b ^ v)(E) (10.40)
 rank(u) + rank(v) (10.41)
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Vector rank rank(x) is submodular, proof

. . . proof of Theorem 10.4.4.
b is independent, and b ^ u and b ^ v are independent subvectors of u
and v respectively, so (b ^ u)(E)  rank(u) and (b ^ v)(E)  rank(v).
Hence,

rank(u ^ v) + rank(u _ v)

= a(E) + b(E) (10.39)
= (b ^ u)(E) + (b ^ v)(E) (10.40)
 rank(u) + rank(v) (10.41)
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Vector rank rank(x) is submodular, proof

. . . proof of Theorem 10.4.4.
b is independent, and b ^ u and b ^ v are independent subvectors of u
and v respectively, so (b ^ u)(E)  rank(u) and (b ^ v)(E)  rank(v).
Hence,

rank(u ^ v) + rank(u _ v) = a(E) + b(E) (10.39)

= (b ^ u)(E) + (b ^ v)(E) (10.40)
 rank(u) + rank(v) (10.41)
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Vector rank rank(x) is submodular, proof

. . . proof of Theorem 10.4.4.
b is independent, and b ^ u and b ^ v are independent subvectors of u
and v respectively, so (b ^ u)(E)  rank(u) and (b ^ v)(E)  rank(v).
Hence,

rank(u ^ v) + rank(u _ v) = a(E) + b(E) (10.39)
= (b ^ u)(E) + (b ^ v)(E) (10.40)

 rank(u) + rank(v) (10.41)
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Vector rank rank(x) is submodular, proof

. . . proof of Theorem 10.4.4.
b is independent, and b ^ u and b ^ v are independent subvectors of u
and v respectively, so (b ^ u)(E)  rank(u) and (b ^ v)(E)  rank(v).
Hence,

rank(u ^ v) + rank(u _ v) = a(E) + b(E) (10.39)
= (b ^ u)(E) + (b ^ v)(E) (10.40)
 rank(u) + rank(v) (10.41)
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A polymatroid function’s polyhedron vs. a polymatroid.

Note the remarkable similarity between the proof of Theorem 10.4.4
and the proof of Theorem 6.5.1 that the standard matroid rank
function is submodular.

Next, we prove Theorem 10.4.2, that any polymatroid polytope P has
a polymatroid function f such that P = P+

f .
Given this result, we can conclude that a polymatroid is really an
extremely natural polyhedral generalization of a matroid. This was all
realized by Jack Edmonds in the mid 1960s (and published in 1969 in
his landmark paper “Submodular Functions, Matroids, and Certain
Polyhedra”).
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A polymatroid function’s polyhedron vs. a polymatroid.

Note the remarkable similarity between the proof of Theorem 10.4.4
and the proof of Theorem 6.5.1 that the standard matroid rank
function is submodular.
Next, we prove Theorem 10.4.2, that any polymatroid polytope P has
a polymatroid function f such that P = P+

f .

Given this result, we can conclude that a polymatroid is really an
extremely natural polyhedral generalization of a matroid. This was all
realized by Jack Edmonds in the mid 1960s (and published in 1969 in
his landmark paper “Submodular Functions, Matroids, and Certain
Polyhedra”).
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A polymatroid function’s polyhedron vs. a polymatroid.

Note the remarkable similarity between the proof of Theorem 10.4.4
and the proof of Theorem 6.5.1 that the standard matroid rank
function is submodular.
Next, we prove Theorem 10.4.2, that any polymatroid polytope P has
a polymatroid function f such that P = P+

f .
Given this result, we can conclude that a polymatroid is really an
extremely natural polyhedral generalization of a matroid. This was all
realized by Jack Edmonds in the mid 1960s (and published in 1969 in
his landmark paper “Submodular Functions, Matroids, and Certain
Polyhedra”).
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We are given a polymatroid P .

Define ↵max , max {x(E) : x 2 P}, and note that ↵max > 0 when P
is non-empty, and ↵max = lim↵!1 rank(↵1E) = rank(↵max1E).
Hence, for any x 2 P , and 8e 2 E, we have x(e)  x(E)  ↵max.
Define a function f : 2V ! R as, for any A ✓ E,

f(A) , rank(↵max1A) (10.42)

Then f is submodular since

f(A) + f(B)

= rank(↵max1A) + rank(↵max1B) (10.43)
� rank(↵max1A _ ↵max1B) + rank(↵max1A ^ ↵max1B) (10.44)
= rank(↵max1A[B) + rank(↵max1A\B) (10.45)
= f(A [B) + f(A \B) (10.46)

. . .
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We are given a polymatroid P .
Define ↵max , max {x(E) : x 2 P}, and note that ↵max > 0 when P
is non-empty, and ↵max = lim↵!1 rank(↵1E) = rank(↵max1E).

Hence, for any x 2 P , and 8e 2 E, we have x(e)  x(E)  ↵max.
Define a function f : 2V ! R as, for any A ✓ E,

f(A) , rank(↵max1A) (10.42)

Then f is submodular since

f(A) + f(B)

= rank(↵max1A) + rank(↵max1B) (10.43)
� rank(↵max1A _ ↵max1B) + rank(↵max1A ^ ↵max1B) (10.44)
= rank(↵max1A[B) + rank(↵max1A\B) (10.45)
= f(A [B) + f(A \B) (10.46)
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We are given a polymatroid P .
Define ↵max , max {x(E) : x 2 P}, and note that ↵max > 0 when P
is non-empty, and ↵max = lim↵!1 rank(↵1E) = rank(↵max1E).
Hence, for any x 2 P , and 8e 2 E, we have x(e)  x(E)  ↵max.

Define a function f : 2V ! R as, for any A ✓ E,

f(A) , rank(↵max1A) (10.42)

Then f is submodular since

f(A) + f(B)

= rank(↵max1A) + rank(↵max1B) (10.43)
� rank(↵max1A _ ↵max1B) + rank(↵max1A ^ ↵max1B) (10.44)
= rank(↵max1A[B) + rank(↵max1A\B) (10.45)
= f(A [B) + f(A \B) (10.46)
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We are given a polymatroid P .
Define ↵max , max {x(E) : x 2 P}, and note that ↵max > 0 when P
is non-empty, and ↵max = lim↵!1 rank(↵1E) = rank(↵max1E).
Hence, for any x 2 P , and 8e 2 E, we have x(e)  x(E)  ↵max.
Define a function f : 2V ! R as, for any A ✓ E,

f(A) , rank(↵max1A) (10.42)

Then f is submodular since

f(A) + f(B)

= rank(↵max1A) + rank(↵max1B) (10.43)
� rank(↵max1A _ ↵max1B) + rank(↵max1A ^ ↵max1B) (10.44)
= rank(↵max1A[B) + rank(↵max1A\B) (10.45)
= f(A [B) + f(A \B) (10.46)
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We are given a polymatroid P .
Define ↵max , max {x(E) : x 2 P}, and note that ↵max > 0 when P
is non-empty, and ↵max = lim↵!1 rank(↵1E) = rank(↵max1E).
Hence, for any x 2 P , and 8e 2 E, we have x(e)  x(E)  ↵max.
Define a function f : 2V ! R as, for any A ✓ E,

f(A) , rank(↵max1A) (10.42)

Then f is submodular since

f(A) + f(B)

= rank(↵max1A) + rank(↵max1B) (10.43)
� rank(↵max1A _ ↵max1B) + rank(↵max1A ^ ↵max1B) (10.44)
= rank(↵max1A[B) + rank(↵max1A\B) (10.45)
= f(A [B) + f(A \B) (10.46)
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We are given a polymatroid P .
Define ↵max , max {x(E) : x 2 P}, and note that ↵max > 0 when P
is non-empty, and ↵max = lim↵!1 rank(↵1E) = rank(↵max1E).
Hence, for any x 2 P , and 8e 2 E, we have x(e)  x(E)  ↵max.
Define a function f : 2V ! R as, for any A ✓ E,

f(A) , rank(↵max1A) (10.42)

Then f is submodular since

f(A) + f(B) = rank(↵max1A) + rank(↵max1B) (10.43)

� rank(↵max1A _ ↵max1B) + rank(↵max1A ^ ↵max1B) (10.44)
= rank(↵max1A[B) + rank(↵max1A\B) (10.45)
= f(A [B) + f(A \B) (10.46)
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We are given a polymatroid P .
Define ↵max , max {x(E) : x 2 P}, and note that ↵max > 0 when P
is non-empty, and ↵max = lim↵!1 rank(↵1E) = rank(↵max1E).
Hence, for any x 2 P , and 8e 2 E, we have x(e)  x(E)  ↵max.
Define a function f : 2V ! R as, for any A ✓ E,

f(A) , rank(↵max1A) (10.42)

Then f is submodular since

f(A) + f(B) = rank(↵max1A) + rank(↵max1B) (10.43)
� rank(↵max1A _ ↵max1B) + rank(↵max1A ^ ↵max1B) (10.44)

= rank(↵max1A[B) + rank(↵max1A\B) (10.45)
= f(A [B) + f(A \B) (10.46)
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We are given a polymatroid P .
Define ↵max , max {x(E) : x 2 P}, and note that ↵max > 0 when P
is non-empty, and ↵max = lim↵!1 rank(↵1E) = rank(↵max1E).
Hence, for any x 2 P , and 8e 2 E, we have x(e)  x(E)  ↵max.
Define a function f : 2V ! R as, for any A ✓ E,

f(A) , rank(↵max1A) (10.42)

Then f is submodular since

f(A) + f(B) = rank(↵max1A) + rank(↵max1B) (10.43)
� rank(↵max1A _ ↵max1B) + rank(↵max1A ^ ↵max1B) (10.44)
= rank(↵max1A[B) + rank(↵max1A\B) (10.45)

= f(A [B) + f(A \B) (10.46)
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We are given a polymatroid P .
Define ↵max , max {x(E) : x 2 P}, and note that ↵max > 0 when P
is non-empty, and ↵max = lim↵!1 rank(↵1E) = rank(↵max1E).
Hence, for any x 2 P , and 8e 2 E, we have x(e)  x(E)  ↵max.
Define a function f : 2V ! R as, for any A ✓ E,

f(A) , rank(↵max1A) (10.42)

Then f is submodular since

f(A) + f(B) = rank(↵max1A) + rank(↵max1B) (10.43)
� rank(↵max1A _ ↵max1B) + rank(↵max1A ^ ↵max1B) (10.44)
= rank(↵max1A[B) + rank(↵max1A\B) (10.45)
= f(A [B) + f(A \B) (10.46)
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Moreover, we have that f is non-negative, normalized with f(;) = 0,
and monotone non-decreasing (since rank is monotone).

Hence, f is a polymatroid function.
Definition: for any A ✓ E, define xA 2 RE

+ as

xA(e) =

(
x(e) if e 2 A

0 else
(10.47)

note this is an analogous definition to 1A but for a not necessarily unity vector x.
Hence xA(A) = x(A) and xA(E \A) = 0.
Consider the polytope P+

f defined as:

P+
f =

�
x 2 RE

+ : x(A)  f(A), 8A ✓ E
 

(10.48)

. . .
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Moreover, we have that f is non-negative, normalized with f(;) = 0,
and monotone non-decreasing (since rank is monotone).
Hence, f is a polymatroid function.

Definition: for any A ✓ E, define xA 2 RE
+ as

xA(e) =

(
x(e) if e 2 A

0 else
(10.47)

note this is an analogous definition to 1A but for a not necessarily unity vector x.
Hence xA(A) = x(A) and xA(E \A) = 0.
Consider the polytope P+

f defined as:

P+
f =

�
x 2 RE

+ : x(A)  f(A), 8A ✓ E
 

(10.48)
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Moreover, we have that f is non-negative, normalized with f(;) = 0,
and monotone non-decreasing (since rank is monotone).
Hence, f is a polymatroid function.
Definition: for any A ✓ E, define xA 2 RE

+ as

xA(e) =

(
x(e) if e 2 A

0 else
(10.47)

note this is an analogous definition to 1A but for a not necessarily unity vector x.

Hence xA(A) = x(A) and xA(E \A) = 0.
Consider the polytope P+

f defined as:

P+
f =

�
x 2 RE

+ : x(A)  f(A), 8A ✓ E
 

(10.48)
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Moreover, we have that f is non-negative, normalized with f(;) = 0,
and monotone non-decreasing (since rank is monotone).
Hence, f is a polymatroid function.
Definition: for any A ✓ E, define xA 2 RE

+ as

xA(e) =

(
x(e) if e 2 A

0 else
(10.47)

note this is an analogous definition to 1A but for a not necessarily unity vector x.
Hence xA(A) = x(A) and xA(E \A) = 0.

Consider the polytope P+
f defined as:

P+
f =

�
x 2 RE

+ : x(A)  f(A), 8A ✓ E
 

(10.48)
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Moreover, we have that f is non-negative, normalized with f(;) = 0,
and monotone non-decreasing (since rank is monotone).
Hence, f is a polymatroid function.
Definition: for any A ✓ E, define xA 2 RE

+ as

xA(e) =

(
x(e) if e 2 A

0 else
(10.47)

note this is an analogous definition to 1A but for a not necessarily unity vector x.
Hence xA(A) = x(A) and xA(E \A) = 0.
Consider the polytope P+

f defined as:

P+
f =

�
x 2 RE

+ : x(A)  f(A), 8A ✓ E
 

(10.48)
. . .
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Given an x 2 P , then for any A ✓ E, xA  ↵max1A, and
x(A)  ↵max|A|.

Therefore,

x(A)  max {z(A) : z 2 P, zA  ↵max1A} (10.49)
= max {z(A) : z 2 P, z  ↵max1A} (10.50)
 max {z(E) : z 2 P, z  ↵max1A} (10.51)
= rank(↵max1A) (10.52)
= f(A) (10.53)

Therefore x 2 P+
f .

Hence, P ✓ P+
f .

We will next show that P+
f ✓ P to complete the proof.

. . .
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Given an x 2 P , then for any A ✓ E, xA  ↵max1A, and
x(A)  ↵max|A|.
Therefore,

x(A)  max {z(A) : z 2 P, zA  ↵max1A} (10.49)
= max {z(A) : z 2 P, z  ↵max1A} (10.50)
 max {z(E) : z 2 P, z  ↵max1A} (10.51)
= rank(↵max1A) (10.52)
= f(A) (10.53)

Therefore x 2 P+
f .

Hence, P ✓ P+
f .

We will next show that P+
f ✓ P to complete the proof.
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Given an x 2 P , then for any A ✓ E, xA  ↵max1A, and
x(A)  ↵max|A|.
Therefore,

x(A)  max {z(A) : z 2 P, zA  ↵max1A} (10.49)
= max {z(A) : z 2 P, z  ↵max1A} (10.50)
 max {z(E) : z 2 P, z  ↵max1A} (10.51)
= rank(↵max1A) (10.52)
= f(A) (10.53)

Therefore x 2 P+
f .

Hence, P ✓ P+
f .

We will next show that P+
f ✓ P to complete the proof.
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Given an x 2 P , then for any A ✓ E, xA  ↵max1A, and
x(A)  ↵max|A|.
Therefore,

x(A)  max {z(A) : z 2 P, zA  ↵max1A} (10.49)
= max {z(A) : z 2 P, z  ↵max1A} (10.50)
 max {z(E) : z 2 P, z  ↵max1A} (10.51)
= rank(↵max1A) (10.52)
= f(A) (10.53)

Therefore x 2 P+
f .

Hence, P ✓ P+
f .

We will next show that P+
f ✓ P to complete the proof.
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Let x 2 P+

f be chosen arbitrarily (goal is to show that x 2 P ).

Suppose x /2 P .

Then, choose y to be a P -basis of x that maximizes
the number of y elements strictly less than the corresponding x
element. I.e., that maximizes |N(y)|, where

N(y) = {e 2 E : y(e) < x(e)} (10.54)

Choose w between y and x, so that

y  w , (y + x)/2  x (10.55)

so y is also a P -basis of w.
Hence, rank(x) = rank(w) = y(E), and the set of P -bases of w are
also P -bases of x.

. . .
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Let x 2 P+

f be chosen arbitrarily (goal is to show that x 2 P ).
Suppose x /2 P .

Then, choose y to be a P -basis of x that maximizes
the number of y elements strictly less than the corresponding x
element. I.e., that maximizes |N(y)|, where

N(y) = {e 2 E : y(e) < x(e)} (10.54)

Choose w between y and x, so that

y  w , (y + x)/2  x (10.55)

so y is also a P -basis of w.
Hence, rank(x) = rank(w) = y(E), and the set of P -bases of w are
also P -bases of x.
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Let x 2 P+

f be chosen arbitrarily (goal is to show that x 2 P ).
Suppose x /2 P . Then, choose y to be a P -basis of x that maximizes
the number of y elements strictly less than the corresponding x
element. I.e., that maximizes |N(y)|, where

N(y) = {e 2 E : y(e) < x(e)} (10.54)

Choose w between y and x, so that

y  w , (y + x)/2  x (10.55)

so y is also a P -basis of w.
Hence, rank(x) = rank(w) = y(E), and the set of P -bases of w are
also P -bases of x.
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Let x 2 P+

f be chosen arbitrarily (goal is to show that x 2 P ).
Suppose x /2 P . Then, choose y to be a P -basis of x that maximizes
the number of y elements strictly less than the corresponding x
element. I.e., that maximizes |N(y)|, where

N(y) = {e 2 E : y(e) < x(e)} (10.54)

Choose w between y and x, so that

y  w , (y + x)/2  x (10.55)

so y is also a P -basis of w.

Hence, rank(x) = rank(w) = y(E), and the set of P -bases of w are
also P -bases of x.
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Let x 2 P+

f be chosen arbitrarily (goal is to show that x 2 P ).
Suppose x /2 P . Then, choose y to be a P -basis of x that maximizes
the number of y elements strictly less than the corresponding x
element. I.e., that maximizes |N(y)|, where

N(y) = {e 2 E : y(e) < x(e)} (10.54)

Choose w between y and x, so that

y  w , (y + x)/2  x (10.55)

so y is also a P -basis of w.
Hence, rank(x) = rank(w) = y(E), and the set of P -bases of w are
also P -bases of x.
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Now, we have

y(N(y)) < w(N(y))  f(N(y)) = rank(↵max1N(y)) (10.56)

the last inequality follows since w  x 2 P+
f , and y  w.

Thus, y ^ xN(y) is not a P -basis of w ^ xN(y) since, over N(y), it is
neither tight at w nor tight at the rank (i.e., not a maximal
independent subvector on N(y)).

. . .
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
Now, we have

y(N(y)) < w(N(y))  f(N(y)) = rank(↵max1N(y)) (10.56)

the last inequality follows since w  x 2 P+
f , and y  w.

Thus, y ^ xN(y) is not a P -basis of w ^ xN(y) since, over N(y), it is
neither tight at w nor tight at the rank (i.e., not a maximal
independent subvector on N(y)).
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We can extend y ^ xN(y) to be a P -basis of w ^ xN(y) since
y ^ xN(y) < w ^ xN(y).

This P -basis, in turn, can be extended to be a P -basis ŷ of w & x.
Now, we have ŷ(N(y)) > y(N(y)),
and also that ŷ(E) = y(E) (since both are P -bases),
hence ŷ(e) < y(e) for some e /2 N(y).
Thus, ŷ is a base of x, which violates the maximality of |N(y)|.
This contradiction means that we must have had x 2 P .
Therefore, P+

f = P .

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 10 - April 30th, 2018 F50/66 (pg.153/209)



Matroids ! Polymatroids Polymatroids Polymatroids and Greedy

Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We can extend y ^ xN(y) to be a P -basis of w ^ xN(y) since
y ^ xN(y) < w ^ xN(y).
This P -basis, in turn, can be extended to be a P -basis ŷ of w & x.

Now, we have ŷ(N(y)) > y(N(y)),
and also that ŷ(E) = y(E) (since both are P -bases),
hence ŷ(e) < y(e) for some e /2 N(y).
Thus, ŷ is a base of x, which violates the maximality of |N(y)|.
This contradiction means that we must have had x 2 P .
Therefore, P+

f = P .
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We can extend y ^ xN(y) to be a P -basis of w ^ xN(y) since
y ^ xN(y) < w ^ xN(y).
This P -basis, in turn, can be extended to be a P -basis ŷ of w & x.
Now, we have ŷ(N(y)) > y(N(y)),

and also that ŷ(E) = y(E) (since both are P -bases),
hence ŷ(e) < y(e) for some e /2 N(y).
Thus, ŷ is a base of x, which violates the maximality of |N(y)|.
This contradiction means that we must have had x 2 P .
Therefore, P+

f = P .
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We can extend y ^ xN(y) to be a P -basis of w ^ xN(y) since
y ^ xN(y) < w ^ xN(y).
This P -basis, in turn, can be extended to be a P -basis ŷ of w & x.
Now, we have ŷ(N(y)) > y(N(y)),
and also that ŷ(E) = y(E) (since both are P -bases),

hence ŷ(e) < y(e) for some e /2 N(y).
Thus, ŷ is a base of x, which violates the maximality of |N(y)|.
This contradiction means that we must have had x 2 P .
Therefore, P+

f = P .
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We can extend y ^ xN(y) to be a P -basis of w ^ xN(y) since
y ^ xN(y) < w ^ xN(y).
This P -basis, in turn, can be extended to be a P -basis ŷ of w & x.
Now, we have ŷ(N(y)) > y(N(y)),
and also that ŷ(E) = y(E) (since both are P -bases),
hence ŷ(e) < y(e) for some e /2 N(y).

Thus, ŷ is a base of x, which violates the maximality of |N(y)|.
This contradiction means that we must have had x 2 P .
Therefore, P+

f = P .
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We can extend y ^ xN(y) to be a P -basis of w ^ xN(y) since
y ^ xN(y) < w ^ xN(y).
This P -basis, in turn, can be extended to be a P -basis ŷ of w & x.
Now, we have ŷ(N(y)) > y(N(y)),
and also that ŷ(E) = y(E) (since both are P -bases),
hence ŷ(e) < y(e) for some e /2 N(y).
Thus, ŷ is a base of x, which violates the maximality of |N(y)|.

This contradiction means that we must have had x 2 P .
Therefore, P+

f = P .
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We can extend y ^ xN(y) to be a P -basis of w ^ xN(y) since
y ^ xN(y) < w ^ xN(y).
This P -basis, in turn, can be extended to be a P -basis ŷ of w & x.
Now, we have ŷ(N(y)) > y(N(y)),
and also that ŷ(E) = y(E) (since both are P -bases),
hence ŷ(e) < y(e) for some e /2 N(y).
Thus, ŷ is a base of x, which violates the maximality of |N(y)|.
This contradiction means that we must have had x 2 P .

Therefore, P+
f = P .
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Proof of Theorem 10.4.2

Proof of Theorem 10.4.2.
We can extend y ^ xN(y) to be a P -basis of w ^ xN(y) since
y ^ xN(y) < w ^ xN(y).
This P -basis, in turn, can be extended to be a P -basis ŷ of w & x.
Now, we have ŷ(N(y)) > y(N(y)),
and also that ŷ(E) = y(E) (since both are P -bases),
hence ŷ(e) < y(e) for some e /2 N(y).
Thus, ŷ is a base of x, which violates the maximality of |N(y)|.
This contradiction means that we must have had x 2 P .
Therefore, P+

f = P .
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More on polymatroids

Theorem 10.4.5
A polymatroid can equivalently be defined as a pair (E,P ) where E is a
finite ground set and P ✓ RE

+ is a compact non-empty set of independent
vectors such that

1 every subvector of an independent vector is independent (if x 2 P and
y  x then y 2 P , i.e., down closed)

2 If u, v 2 P (i.e., are independent) and u(E) <
v(E), then there exists a vector w 2 P such
that

u < w  u _ v (10.57)

Corollary 10.4.6

The independent vectors of a polymatroid form a convex polyhedron in RE
+.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 10 - April 30th, 2018 F51/66 (pg.161/209)



Matroids ! Polymatroids Polymatroids Polymatroids and Greedy

More on polymatroids

Theorem 10.4.5
A polymatroid can equivalently be defined as a pair (E,P ) where E is a
finite ground set and P ✓ RE

+ is a compact non-empty set of independent
vectors such that

1 every subvector of an independent vector is independent (if x 2 P and
y  x then y 2 P , i.e., down closed)

2 If u, v 2 P (i.e., are independent) and u(E) <
v(E), then there exists a vector w 2 P such
that

u < w  u _ v (10.57)
u

v u_v

w1

w2

Corollary 10.4.6

The independent vectors of a polymatroid form a convex polyhedron in RE
+.
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More on polymatroids

Theorem 10.4.5
A polymatroid can equivalently be defined as a pair (E,P ) where E is a
finite ground set and P ✓ RE

+ is a compact non-empty set of independent
vectors such that

1 every subvector of an independent vector is independent (if x 2 P and
y  x then y 2 P , i.e., down closed)

2 If u, v 2 P (i.e., are independent) and u(E) <
v(E), then there exists a vector w 2 P such
that

u < w  u _ v (10.57)
u

v u_v

w1

w2

Corollary 10.4.6

The independent vectors of a polymatroid form a convex polyhedron in RE
+.
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Review

The next slide comes from lecture 6.
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 10.4.3 (Matroid (by bases))
Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

1 B is the collection of bases of a matroid;
2 if B,B0 2 B, and x 2 B0 \B, then B0�x+ y 2 B for some y 2 B \B0.
3 If B,B0 2 B, and x 2 B0 \B, then B� y+ x 2 B for some y 2 B \B0.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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More on polymatroids

For any compact set P , b is a base of P if it is a maximal subvector within
P . Recall the bases of matroids. In fact, we can define a polymatroid via
vector bases (analogous to how a matroid can be defined via matroid bases).

Theorem 10.4.7
A polymatroid can equivalently be defined as a pair (E,P ) where E is a
finite ground set and P ✓ RE

+ is a compact non-empty set of independent
vectors such that

1 every subvector of an independent vector is independent (if x 2 P and
y  x then y 2 P , i.e., down closed)

2 if b, c are bases of P and d is such that b ^ c < d < b, then there exists
an f , with d ^ c < f  c such that d _ f is a base of P

3 All of the bases of P have the same rank.

Note, all three of the above are required for a polymatroid (a matroid
analogy would require the equivalent of only the first two).
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A word on terminology & notation

Recall how a matroid is sometimes given as (E, r) where r is the rank
function.

We mention also that the term “polymatroid” is sometimes not used for
the polytope itself, but instead but for the pair (E, f),
But now we see that (E, f) is equivalent to a polymatroid polytope, so
this is sensible.
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Where are we going with this?

Consider the right hand side of Theorem ??:
min (x(A) + f(E \A) : A ✓ E)

We are going to study this problem, and approaches that address it, as
part of our ultimate goal which is to present strategies for submodular
function minimization (that we will ultimately get to, in near future
lectures).
As a bit of a hint on what’s to come, recall that we can write it as:
x(E) +min (f(A)� x(A) : A ✓ E) where f is a polymatroid function.
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Another Interesting Fact: Matroids from polymatroid

functions

Theorem 10.4.8
Given integral polymatroid function f , let (E,F) be a set system with
ground set E and set of subsets F such that

8F 2 F , 8; ⇢ S ✓ F, |S|  f(S) (10.58)

Then M = (E,F) is a matroid.

Proof.
Exercise

And its rank function is Exercise.
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Matroid instance of Theorem ??

Considering Theorem ??, the matroid case is now a special case, where
we have that:

Corollary 10.4.9
We have that:

max {y(E) : y 2 Pind. set(M), y  x} = min {rM (A) + x(E \A) : A ✓ E}
(10.59)

where rM is the matroid rank function of some matroid.
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Review

The next two slides come respectively from Lecture 11 and Lecture 10.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition 10.5.1 (polymatroid)

A polymatroid is a compact set P ✓ RE
+ satisfying

1 0 2 P

2 If y  x 2 P then y 2 P (called down monotone).
3 For every x 2 RE

+, any maximal vector y 2 P with y  x (i.e., any
P -basis of x), has the same component sum y(E)

Vectors within P (i.e., any y 2 P ) are called independent, and any
vector outside of P is called dependent.
Since all P -bases of x have the same component sum, if Bx is the set
of P -bases of x, than rank(x) = y(E) for any y 2 Bx.
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Maximum weight independent set via greedy weighted rank

Theorem 10.5.5

Let M = (V, I) be a matroid, with rank function r, then for any weight
function w 2 RV

+, there exists a chain of sets U1 ⇢ U2 ⇢ · · · ⇢ Un ✓ V
such that

max {w(I)|I 2 I} =
nX

i=1

�ir(Ui) (10.8)

where �i � 0 satisfy

w =
nX

i=1

�i1Ui (10.9)
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Polymatroidal polyhedron and greedy

Let (E, I) be a set system and w 2 RE
+ be a weight vector.

Recall greedy algorithm: Set A = ;, and repeatedly choose y 2 E \A
such that A [ {y} 2 I with w(y) as large as possible, stopping when
no such y exists.
For a matroid, we saw that independence system (E, I) is a matroid iff
for each weight function w 2 RE

+, the greedy algorithm leads to a set
I 2 I of maximum weight w(I).
Stated succinctly, considering max {w(I) : I 2 I}, then (E, I) is a
matroid iff greedy works for this maximization.
Can we also characterize a polymatroid in this way?

That is, if we consider max
n
wx : x 2 P+

f

o
, where P+

f represents the

“independent vectors”, is it the case that P+
f is a polymatroid iff greedy

works for this maximization?
Can we, ultimately, even relax things so that w 2 RE?
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Polymatroidal polyhedron and greedy

What is the greedy solution in this setting, when w 2 RE?

Sort elements of E w.r.t. w so that, w.l.o.g.
E = (e1, e2, . . . , em) with w(e1) � w(e2) � · · · � w(em).
Let k + 1 be the first point (if any) at which we are non-positive, i.e.,
w(ek) > 0 and 0 � w(ek+1).
Next define partial accumulated sets Ei, for i = 0 . . .m, we have w.r.t.
the above sorted order:

Ei
def
= {e1, e2, . . . ei} (10.61)

(note E0 = ;, f(E0) = 0, and E and Ei is always sorted w.r.t w).
The greedy solution is the vector x 2 RE

+ with elements defined as:

x(e1)
def
= f(E1) = f(e1) = f(e1|E0) = f(e1|;) (10.62)

x(ei)
def
= f(Ei)� f(Ei�1) = f(ei|Ei�1) for i = 2 . . . k (10.63)

x(ei)
def
= 0 for i = k + 1 . . .m = |E| (10.64)
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Some Intuition: greedy and gain

Note x(ei) = f(ei|Ei�1)  f(ei|E0) for any E0 ✓ Ei�1

So x(e1) = f(e1) and this corresponds to w(e1) � w(ei) for all i 6= 1.
Hence, for the largest value of w (namely w(e1)), we use for x(e1) the
largest possible gain value of e1 (namely f(e1|;) � f(e1|A) for any
A ✓ E \ {e1}).
For the next largest value of w (namely w(e2)), we use for x(e2) the
next largest gain value of e2 (namely f(e2|e1)), while still ensuring (as
we will soon see in Theorem 10.5.1) that the resulting x 2 Pf .
This process continues, using the next largest possible gain of ei for
x(ei) while ensuring (as we will show) we do not leave the polytope,
given the values we’ve already chosen for x(ei0) for i0 < i.
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given the values we’ve already chosen for x(ei0) for i0 < i.
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Polymatroidal polyhedron and greedy

Theorem 10.5.1

The vector x 2 RE
+ as previously defined using the greedy algorithm

maximizes wx over P+
f , with w 2 RE

+, if f is submodular.

Proof.

. . .
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Polymatroidal polyhedron and greedy

Theorem 10.5.1

The vector x 2 RE
+ as previously defined using the greedy algorithm

maximizes wx over P+
f , with w 2 RE

+, if f is submodular.

Proof.
Consider the LP strong duality equation:

max(wx : x 2 P+
f ) = min

⇣X

A✓E

yAf(A) : y 2 R2E
+ ,

X

A✓E

yA1A � w
⌘

(10.65)

Sort E by w descending, and define the following vector y 2 R2E
+ as

yEi  w(ei)� w(ei+1) for i = 1 . . . (m� 1), (10.66)
yE  w(em), and (10.67)
yA  0 otherwise (10.68)

. . .
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The vector x 2 RE
+ as previously defined using the greedy algorithm

maximizes wx over P+
f , with w 2 RE

+, if f is submodular.

Proof.
Consider the LP strong duality equation:

max(wx : x 2 P+
f ) = min

⇣X

A✓E

yAf(A) : y 2 R2E
+ ,

X

A✓E

yA1A � w
⌘

(10.65)

Sort E by w descending, and define the following vector y 2 R2E
+ as

yEi  w(ei)� w(ei+1) for i = 1 . . . (m� 1), (10.66)
yE  w(em), and (10.67)
yA  0 otherwise (10.68)

. . .
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Proof.
We first will see that greedy x 2 P+

f (that is x(A)  f(A), 8A).

Order A = (a1, a2, . . . , ak) based on order (e1, e2, . . . , em).
a1 a2 a3 a4 a5 . . .

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 . . . em

Define e�1 : E ! {1, . . . ,m} so that e�1(ei) = i.
Then, we have x 2 P+

f since for all A:

f(A) =
kX

i=1

f(ai|a1:i�1) (10.69)

�
kX

i=1

f(ai|e1:e�1(ai)�1) (10.70)

=
X

a2A
f(a|e1:e�1(a)�1) = x(A) (10.71)

. . .
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Proof.
We first will see that greedy x 2 P+

f (that is x(A)  f(A), 8A).
Order A = (a1, a2, . . . , ak) based on order (e1, e2, . . . , em).

a1 a2 a3 a4 a5 . . .
e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 . . . em

Define e�1 : E ! {1, . . . ,m} so that e�1(ei) = i.
This means that with A = {a1, a2, . . . , ak}, and 8j  k

{a1, a2, . . . , aj} ✓
n
e1, e2, . . . , ee�1(aj)

o
(10.69)

and

{a1, a2, . . . , aj�1} ✓
n
e1, e2, . . . , ee�1(aj)�1

o
(10.70)

Also recall matlab notation: a1:j ⌘ {a1, a2, . . . , aj}.
E.g., with j = 4 we get e�1(a4) = 9, and

{a1, a2, a3, a4} ✓ {e1, e2, . . . , e9} (10.71)

Then, we have x 2 P+
f since for all A:

f(A) =
kX

i=1

f(ai|a1:i�1) (10.72)

�
kX

i=1

f(ai|e1:e�1(ai)�1) (10.73)

=
X

a2A
f(a|e1:e�1(a)�1) = x(A) (10.74)

. . .
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�
kX
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X
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Proof.
Next, y is also feasible for the dual constraints in Eq. 10.65 since:

Next, we check that y is dual feasible. Clearly, y � 0,
and also, considering y component wise, for any i, we have that

X

A:ei2A
yA =

X

j�i

yEj =
m�1X

j=i

(w(ej)� w(ej+1)) + w(em) = w(ei).

Now optimality for x and y follows from strong duality, i.e.:

wx =
X

e2E
w(e)x(e) =

mX

i=1

w(ei)f(ei|Ei�1) =
mX

i=1

w(ei)
⇣
f(Ei)� f(Ei�1)

⌘

=
m�1X

i=1

f(Ei)
⇣
w(ei)� w(ei+1)

⌘
+ f(E)w(em) =

X

A✓E

yAf(A)

. . .
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Polymatroidal polyhedron and greedy

Proof.
The equality in prev. Eq. follows via Abel summation:

wx =
mX

i=1

wixi (10.72)

=
mX

i=1

wi

⇣
f(Ei)� f(Ei�1)

⌘
(10.73)

=
mX

i=1

wif(Ei)�
m�1X

i=1

wi+1f(Ei) (10.74)

= wmf(Em) +
m�1X

i=1

�
wi � wi+1

�
f(Ei) (10.75)
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What about w 2 RE

When w contains negative elements, we have x(ei) = 0 for
i = k + 1, . . . ,m, where k is the last positive element of w when it is
sorted in decreasing order.

Exercise: show a modification of the previous proof that works for
arbitrary w 2 RE
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