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Logistics Review

Cumulative Outstanding Reading

Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige’s book.

Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.
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Logistics Review

Announcements, Assignments, and Reminders

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics Review

Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

L9: From Matroid Polytopes to
Polymatroids.

L10:

L11:

L12:

L13:

L14:

L15:

L16:

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Logistics Review

Matroid and the greedy algorithm

Let (E, I) be an independence system, and we are given a
non-negative modular weight function w : E → R+.

Algorithm 1: The Matroid Greedy Algorithm

1 Set X ← ∅ ;
2 while ∃v ∈ E \X s.t. X ∪ {v} ∈ I do
3 v ∈ argmax {w(v) : v ∈ E \X, X ∪ {v} ∈ I} ;
4 X ← X ∪ {v} ;

Same as sorting items by decreasing weight w, and then choosing
items in that order that retain independence.

Theorem 9.2.2

Let (E, I) be an independence system. Then the pair (E, I) is a matroid
if and only if for each weight function w ∈ RE

+, Algorithm ?? leads to a
set I ∈ I of maximum weight w(I).
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Logistics Review

Matroid Polyhedron in 2D

P+
r =

{
x ∈ RE : x ≥ 0, x(A) ≤ r(A), ∀A ⊆ E

}
(9.10)

Consider this in two dimensions. We have equations of the form:

x1 ≥ 0 and x2 ≥ 0 (9.11)

x1 ≤ r({v1}) (9.12)

x2 ≤ r({v2}) (9.13)

x1 + x2 ≤ r({v1, v2}) (9.14)

Because r is submodular, we have

r({v1}) + r({v2}) ≥ r({v1, v2}) + r(∅) (9.15)

so since r({v1, v2}) ≤ r({v1}) + r({v2}), the last inequality is either
touching or active.
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Logistics Review

Matroid Polyhedron in 2D

x1

x2

x1

x2

r(v1)=1

r(v1)=1

r(v2)=1

r(v2)=0

x1 + = 2x2 = r({v1, v2})

x1 + = 1x2 = r({v1, v2})

= 1r({v1, v2})

= 0r({v1, v2})

x1

x2

x1

x2

r(v1)=1

r(v2)=1

x1 ≥ 0

x2 ≥ 0

x1 ≤ r({v1})

x2 ≤ r({v2})
x
1 +

x
2 ≤

r({v
1 , v

2 })

And, if v2 is a loop ...

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F7/67 (pg.7/220)



Logistics Review

Independence Polyhedra

For each I ∈ I of a matroid M = (E, I), we can form the incidence
vector 1I .

Taking the convex hull, we get the independent set polytope, that is

Pind. set = conv

{
⋃

I∈I
{1I}

}
(9.10)

Since {1I : I ∈ I} ⊆ Pind. set, we have
max {w(I) : I ∈ I} ≤ max {wᵀx : x ∈ Pind. set}.
Now take the rank function r of M , and define the following
polyhedron:

P+
r =

{
x ∈ RE : x ≥ 0, x(A) ≤ r(A), ∀A ⊆ E

}
(9.11)

Now, take any x ∈ Pind. set, then we have that x ∈ P+
r (or

Pind. set ⊆ P+
r ). We show this next.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F8/67 (pg.8/220)



Logistics Review

Pind. set ⊆ P+
r

If x ∈ Pind. set, then

x =
∑

i

λi1Ii (9.10)

for some appropriate vector λ = (λ1,λ2, . . . ,λn).

Clearly, for such x, x ≥ 0.

Now, for any A ⊆ E,

x(A) = xᵀ1A =
∑

i

λi1Ii
ᵀ1A (9.11)

≤
∑

i

λi max
j:Ij⊆A

1Ij (E) (9.12)

= max
j:Ij⊆A

1Ij (E) (9.13)

= r(A) (9.14)

Thus, x ∈ P+
r and hence Pind. set ⊆ P+

r .
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Logistics Review

Matroid Independence Polyhedron

So recall from a moment ago, that we have that

Pind. set = conv {∪I∈I{1I}}
⊆ P+

r =
{
x ∈ RE : x ≥ 0, x(A) ≤ r(A), ∀A ⊆ E

}
(9.19)

In fact, the two polyhedra are identical (and thus both are
polytopes).

We’ll show this in the next few theorems.
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Logistics Review

Maximum weight independent set via greedy weighted rank

Theorem 9.2.6

Let M = (V, I) be a matroid, with rank function r, then for any weight
function w ∈ RV

+, there exists a chain of sets U1 ⊂ U2 ⊂ · · · ⊂ Un ⊆ V
such that

max {w(I)|I ∈ I} =

n∑

i=1

λir(Ui) (9.19)

where λi ≥ 0 satisfy

w =

n∑

i=1

λi1Ui (9.20)
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Logistics Review

Maximum weight independent set via weighted rank
Proof.

Firstly, note that for any such w ∈ RE , we have





w1

w2

...
wn




=

(
w1 − w2

)





1
0
...
0




+
(
w2 − w3

)





1
1
0
...
0




+

· · ·+
(
wn−1 − wn

)





1
1
...
1
0




+
(
wn

)





1
1
...
1
1




(9.19)

If we can take w in decreasing order (w1 ≥ w2 ≥ · · · ≥ wn), then
each coefficient of the vectors is non-negative (except possibly the
last one, wn). . . .
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Logistics Review

Maximum weight independent set via weighted rank
Proof.

Now, again assuming w ∈ RE
+, order the elements of V as

(v1, v2, . . . , vn) such that w(v1) ≥ w(v2) ≥ · · · ≥ w(vn)

Define the sets Ui based on this order as follows, for i = 0, . . . , n

Ui
def
= {v1, v2, . . . , vi} (9.20)

Define the set I as those elements where the rank increases, i.e.:

I
def
= {vi|r(Ui) > r(Ui−1)} (9.21)

Therefore, I is the output of the greedy algorithm for
max {w(I)|I ∈ I}.
And therefore, I is a maximum weight independent set (even a base,
actually).

. . .
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Logistics Review

Maximum weight independent set via weighted rank
Proof.

Now, we define λi as follows

λi
def
= w(vi)− w(vi+1) for i = 1, . . . , n− 1 (9.22)

λn
def
= w(vn) (9.23)

And the weight of the independent set w(I) is given by

w(I) =
∑

v∈I
w(v) =

n∑

i=1

w(vi)
(
r(Ui)− r(Ui−1)

)
(9.24)

= w(vn)r(Un) +

n−1∑

i=1

(
w(vi)− w(vi+1)

)
r(Ui) =

n∑

i=1

λir(Ui) (9.25)

Since we took v1, v2, . . . in decreasing order, for all i, and since
w ∈ RE

+, we have λi ≥ 0
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Matroid Polytopes Polymatroid

Linear Program LP

Consider the linear programming primal problem

maximize wᵀx

subject to xv ≥ 0 (v ∈ V )

x(U) ≤ r(U) (∀U ⊆ V )

(9.1)

And its convex dual (note y ∈ R2n
+ , yU is a scalar element within this

exponentially big vector):

minimize
∑

U⊆V yUr(U),

subject to yU ≥ 0 (∀U ⊆ V )
∑

U⊆V yU1U ≥ w

(9.2)

Thanks to strong duality, the solutions to these are equal to each other.
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Matroid Polytopes Polymatroid

Linear Program LP

Consider the linear programming primal problem

maximize wᵀx
s.t. xv ≥ 0 (v ∈ V )

x(U) ≤ r(U) (∀U ⊆ V )
(9.3)

This is identical to the problem

maxwᵀx such that x ∈ P+
r (9.4)

where, again, P+
r =

{
x ∈ RE : x ≥ 0, x(A) ≤ r(A), ∀A ⊆ E

}
.

Therefore, since Pind. set ⊆ P+
r , the above problem can only have a

larger solution. I.e.,

maxwᵀx s.t. x ∈ Pind. set ≤ maxwᵀx s.t. x ∈ P+
r . (9.5)
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Matroid Polytopes Polymatroid

Polytope equivalence

Hence, we have the following relations:

max {w(I) : I ∈ I} ≤ max {wᵀx : x ∈ Pind. set} (9.6)

≤ max
{
wᵀx : x ∈ P+

r

}
(9.7)

def
= αmin = min





∑

U⊆V

yUr(U) : y ≥ 0,
∑

U⊆V

yU1U ≥ w






(9.8)
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Polytope equivalence

Hence, we have the following relations:
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≤ max
{
wᵀx : x ∈ P+

r

}
(9.7)
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



∑

U⊆V

yUr(U) : y ≥ 0,
∑

U⊆V

yU1U ≥ w






(9.8)Theorem 8.6.1 states that

max {w(I) : I ∈ I} =

n∑

i=1

λir(Ui) (9.9)

for the chain of Ui’s and λi ≥ 0 that satisfies w =
∑n

i=1 λi1Ui (i.e.,
the r.h.s. of Eq. 9.9 is feasible w.r.t. the dual LP).

Therefore, we also have

max {w(I) : I ∈ I} =
n∑

i=1

λir(Ui) ≥ αmin (9.10)
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Matroid Polytopes Polymatroid

Polytope equivalence

Hence, we have the following relations:

max {w(I) : I ∈ I} ≤ max {wᵀx : x ∈ Pind. set} (9.6)

≤ max
{
wᵀx : x ∈ P+

r

}
(9.7)

def
= αmin = min





∑

U⊆V

yUr(U) : y ≥ 0,
∑

U⊆V

yU1U ≥ w






(9.8)
Therefore, all the inequalities above are equalities.

And since w ∈ RE
+ is an arbitrary direction into the positive orthant,

we see that P+
r = Pind. set

That is, we have just proven:

Theorem 9.3.1

P+
r = Pind. set (9.11)
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Matroid Polytopes Polymatroid

Polytope Equivalence (Summarizing the above)

For each I ∈ I of a matroid M = (E, I), we can form the incidence
vector 1I .

Taking the convex hull, we get the independent set polytope, that is

Pind. set = conv {∪I∈I{1I}} (9.12)

Now take the rank function r of M , and define the following
polyhedron:

P+
r =

{
x ∈ RE : x ≥ 0, x(A) ≤ r(A), ∀A ⊆ E

}
(9.13)

Theorem 9.3.2

P+
r = Pind. set (9.14)
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P+
r = Pind. set (9.14)
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Greedy solves a linear programming problem

So we can describe the independence polytope of a matroid using
the set of inequalities (an exponential number of them).

In fact, considering equations starting at Eq 9.6, the LP problem
with exponential number of constraints max {wᵀx : x ∈ P+

r } is
identical to the maximum weight independent set problem in a
matroid, and since greedy solves the latter problem exactly, we have
also proven:

Theorem 9.3.3

The LP problem max {wᵀx : x ∈ P+
r } can be solved exactly using the

greedy algorithm.

Note that this LP problem has an exponential number of constraints
(since P+

r is described as the intersection of an exponential number
of half spaces).

This means that if LP problems have certain structure, they can be
solved much easier than immediately implied by the equations.
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Base Polytope Equivalence

Consider convex hull of indicator vectors just of the bases of a
matroid, rather than all of the independent sets.

Consider a polytope defined by the following constraints:

x ≥ 0 (9.15)

x(A) ≤ r(A) ∀A ⊆ V (9.16)

x(V ) = r(V ) (9.17)

Note the third requirement, x(V ) = r(V ).

By essentially the same argument as above (Exercise:), we can
shown that the convex hull of the incidence vectors of the bases of a
matroid is a polytope that can be described by Eq. 9.15- 9.17 above.

What does this look like?
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Spanning set polytope

Recall, a set A is spanning in a matroid M = (E, I) if r(A) = r(E).

Consider convex hull of incidence vectors of spanning sets of a
matroid M , and call this Pspanning(M).

Theorem 9.3.4

The spanning set polytope is determined by the following equations:

0 ≤ xe ≤ 1 for e ∈ E (9.18)

x(A) ≥ r(E)− r(E \A) for A ⊆ E (9.19)

Example of spanning set
polytope in 2D.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F21/67 (pg.40/220)



Matroid Polytopes Polymatroid

Spanning set polytope

Recall, a set A is spanning in a matroid M = (E, I) if r(A) = r(E).
Consider convex hull of incidence vectors of spanning sets of a
matroid M , and call this Pspanning(M).

Theorem 9.3.4

The spanning set polytope is determined by the following equations:

0 ≤ xe ≤ 1 for e ∈ E (9.18)

x(A) ≥ r(E)− r(E \A) for A ⊆ E (9.19)

Example of spanning set
polytope in 2D.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F21/67 (pg.41/220)



Matroid Polytopes Polymatroid

Spanning set polytope

Recall, a set A is spanning in a matroid M = (E, I) if r(A) = r(E).
Consider convex hull of incidence vectors of spanning sets of a
matroid M , and call this Pspanning(M).

Theorem 9.3.4

The spanning set polytope is determined by the following equations:

0 ≤ xe ≤ 1 for e ∈ E (9.18)

x(A) ≥ r(E)− r(E \A) for A ⊆ E (9.19)

Example of spanning set
polytope in 2D.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F21/67 (pg.42/220)



Matroid Polytopes Polymatroid

Spanning set polytope

Recall, a set A is spanning in a matroid M = (E, I) if r(A) = r(E).
Consider convex hull of incidence vectors of spanning sets of a
matroid M , and call this Pspanning(M).

Theorem 9.3.4

The spanning set polytope is determined by the following equations:

0 ≤ xe ≤ 1 for e ∈ E (9.18)

x(A) ≥ r(E)− r(E \A) for A ⊆ E (9.19)

Example of spanning set
polytope in 2D.

x1

x2

r(v1)=1

r(v2)=1

x1 + = 1x2 = r({v1, v2})
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Spanning set polytope

Proof.

Recall that any A is spanning in M iff E \A is independent in M∗

(the dual matroid).

For any x ∈ RE , we have that

x ∈ Pspanning(M) ⇔ 1− x ∈ Pind. set(M
∗) (9.20)

as we show next . . .

. . .
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Spanning set polytope

. . . proof continued.

This follows since if x ∈ Pspanning(M), we can represent x as a
convex combination:

x =
∑

i

λi1Ai (9.21)

where Ai is spanning in M .

Consider

1− x = 1E − x = 1E −
∑

i

λi1Ai =
∑

i

λi1E\Ai
, (9.22)

which follows since
∑

i λi1 = 1E , so 1− x is a convex combination
of independent sets in M∗ and so 1− x ∈ Pind. set(M

∗).

. . .
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Spanning set polytope

. . . proof continued.

This follows since if x ∈ Pspanning(M), we can represent x as a
convex combination:

x =
∑

i

λi1Ai (9.21)

where Ai is spanning in M .

Consider

1− x = 1E − x = 1E −
∑
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λi1Ai =
∑

i

λi1E\Ai
, (9.22)

which follows since
∑

i λi1 = 1E , so 1− x is a convex combination
of independent sets in M∗ and so 1− x ∈ Pind. set(M

∗). . . .
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Spanning set polytope

. . . proof continued.

which means, from the definition of Pind. set(M
∗), that

1− x ≥ 0 (9.23)

1A − x(A) = |A|− x(A) ≤ rM∗(A) for A ⊆ E (9.24)

And we know the dual rank function is

rM∗(A) = |A|+ rM (E \A)− rM (E) (9.25)

giving

x(A) ≥ rM (E)− rM (E \A) for all A ⊆ E (9.26)

. . .
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Spanning set polytope
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Matroids
where are we going with this?

We’ve been discussing results about matroids (independence
polytope, etc.).

By now, it is clear that matroid rank functions are special cases of
submodular functions. We ultimately will be reviewing submodular
function minimization procedures, but in some cases it it worth
showing a result for a general submodular function first.

Henceforth, we will skip between submodular functions and
matroids, each lecture talking less about matroids specifically and
taking more about submodular functions more generally ...

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F23/67 (pg.50/220)



Matroid Polytopes Polymatroid

Matroids
where are we going with this?

We’ve been discussing results about matroids (independence
polytope, etc.).

By now, it is clear that matroid rank functions are special cases of
submodular functions. We ultimately will be reviewing submodular
function minimization procedures, but in some cases it it worth
showing a result for a general submodular function first.

Henceforth, we will skip between submodular functions and
matroids, each lecture talking less about matroids specifically and
taking more about submodular functions more generally ...

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F23/67 (pg.51/220)



Matroid Polytopes Polymatroid

Matroids
where are we going with this?

We’ve been discussing results about matroids (independence
polytope, etc.).

By now, it is clear that matroid rank functions are special cases of
submodular functions. We ultimately will be reviewing submodular
function minimization procedures, but in some cases it it worth
showing a result for a general submodular function first.

Henceforth, we will skip between submodular functions and
matroids, each lecture talking less about matroids specifically and
taking more about submodular functions more generally ...

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F23/67 (pg.52/220)



Matroid Polytopes Polymatroid

Maximal points in a set

Regarding sets, a subset X of S is a maximal subset of S possessing
a given property P if X possesses property P and no set properly
containing X (i.e., any X ′ ⊃ X with X ′ \X ⊆ V \X) possesses P.

Given any compact (essentially closed & bounded) set P ⊆ RE , we
say that a vector x is maximal within P if it is the case that for any
ε > 0, and for all e ∈ E, we have that

x+ ε1e /∈ P (9.27)
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Maximal points in a set

Regarding sets, a subset X of S is a maximal subset of S possessing
a given property P if X possesses property P and no set properly
containing X (i.e., any X ′ ⊃ X with X ′ \X ⊆ V \X) possesses P.

Given any compact (essentially closed & bounded) set P ⊆ RE , we
say that a vector x is maximal within P if it is the case that for any
ε > 0, and for all e ∈ E, we have that

x+ ε1e /∈ P (9.27)

Examples of maximal regions (in red)
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Maximal points in a set

Regarding sets, a subset X of S is a maximal subset of S possessing
a given property P if X possesses property P and no set properly
containing X (i.e., any X ′ ⊃ X with X ′ \X ⊆ V \X) possesses P.

Given any compact (essentially closed & bounded) set P ⊆ RE , we
say that a vector x is maximal within P if it is the case that for any
ε > 0, and for all e ∈ E, we have that

x+ ε1e /∈ P (9.27)

Examples of non-maximal regions (in green)
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Review

The next slide comes from Lecture 5.
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Matroids, independent sets, and bases

Independent sets: Given a matroid M = (E, I), a subset A ⊆ E is
called independent if A ∈ I and otherwise A is called dependent.

A base of U ⊆ E: For U ⊆ E, a subset B ⊆ U is called a base of U
if B is inclusionwise maximally independent subset of U . That is,
B ∈ I and there is no Z ∈ I with B ⊂ Z ⊆ U .

A base of a matroid: If U = E, then a “base of E” is just called a
base of the matroid M (this corresponds to a basis in a linear space).
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P -basis of x given compact set P ⊆ RE
+

Definition 9.4.1 (subvector)

y is a subvector of x if y ≤ x (meaning y(e) ≤ x(e) for all e ∈ E).

Definition 9.4.2 (P -basis)

Given a compact set P ⊆ RE
+, for any x ∈ RE

+, a subvector y of x is
called a P -basis of x if y maximal in P .
In other words, y is a P -basis of x if y is a maximal P -contained
subvector of x.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z ≥ y + ε1e for some e ∈ E and ε > 0) having the
properties of y (the properties of y being: in P , and a subvector of x).
In still other words: y is a P -basis of x if:

1 y ≤ x (y is a subvector of x); and
2 y ∈ P and y + ε1e /∈ P for all e ∈ E, ε > 0 (y is maximal

P -contained).
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1 y ≤ x (y is a subvector of x); and
2 y ∈ P and y + ε1e /∈ P for all e ∈ E, ε > 0 (y is maximal

P -contained).
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A vector form of rank

Recall the definition of rank from a matroid M = (E, I).

rank(A) = max {|I| : I ⊆ A, I ∈ I} (9.28)

vector rank: Given a compact set P ⊆ RE
+, we can define a form of

“vector rank” relative to this P in the following way: Given an
x ∈ RE , we define the vector rank, relative to P , as:

rank(x) = max (y(E) : y ≤ x, y ∈ P ) (9.29)

where y ≤ x is componentwise inequality (yi ≤ xi, ∀i).
If Bx is the set of P -bases of x, than rank(x) = maxy∈Bx y(E).

If x ∈ P , then rank(x) = x(E) (x is its own unique self P -basis).

In general, this might be hard to compute and/or have ill-defined
properties. We next look at an object that restrains and cultivates
this form of rank.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition 9.4.3 (polymatroid)

A polymatroid is a compact set P ⊆ RE
+ satisfying

1 0 ∈ P

2 If y ≤ x ∈ P then y ∈ P (called down monotone).

3 For every x ∈ RE
+, any maximal vector y ∈ P with y ≤ x (i.e., any

P -basis of x), has the same component sum y(E)
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Polymatroidal polyhedron (or a “polymatroid”)

Definition 9.4.3 (polymatroid)

A polymatroid is a compact set P ⊆ RE
+ satisfying

1 0 ∈ P

2 If y ≤ x ∈ P then y ∈ P (called down monotone).

3 For every x ∈ RE
+, any maximal vector y ∈ P with y ≤ x (i.e., any

P -basis of x), has the same component sum y(E)

Condition 3 restated: That is for any two distinct maximal vectors
y1, y2 ∈ P , with y1 ≤ x & y2 ≤ x, with y1 /= y2, we must have
y1(E) = y2(E).

Condition 3 restated (again): For every vector x ∈ RE
+, every

maximal independent subvector y of x has the same component sum
y(E) = rank(x).

Condition 3 restated (yet again): All P -bases of x have the same
component sum.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition 9.4.3 (polymatroid)

A polymatroid is a compact set P ⊆ RE
+ satisfying

1 0 ∈ P

2 If y ≤ x ∈ P then y ∈ P (called down monotone).

3 For every x ∈ RE
+, any maximal vector y ∈ P with y ≤ x (i.e., any

P -basis of x), has the same component sum y(E)

Vectors within P (i.e., any y ∈ P ) are called independent, and any
vector outside of P is called dependent.

Since all P -bases of x have the same component sum, if Bx is the
set of P -bases of x, than rank(x) = y(E) for any y ∈ Bx.
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Matroid and Polymatroid: side-by-side

A Matroid is:

1 a set system (E, I)
2 empty-set containing ∅ ∈ I
3 down closed, ∅ ⊆ I ′ ⊆ I ∈ I ⇒ I ′ ∈ I.
4 any maximal set I in I, bounded by another set A, has the same

matroid rank (any maximal independent subset I ⊆ A has same size
|I|).

A Polymatroid is:

1 a compact set P ⊆ RE
+

2 zero containing, 0 ∈ P

3 down monotone, 0 ≤ y ≤ x ∈ P ⇒ y ∈ P

4 any maximal vector y in P , bounded by another vector x, has the
same vector rank (any maximal independent subvector y ≤ x has
same sum y(E)).
.
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Polymatroidal polyhedron (or a “polymatroid”)

x

{ xpossible y possible y
y1

y2

y1

y2P P

Left: ∃ multiple maximal y ≤ x Right: ∃ only one maximal y ≤ x,

Polymatroid condition here: ∀ maximal y ∈ P, with y ≤ x (which
here means y1 ≤ x1 and y2 ≤ x2), we just have
y(E) = y1 + y2 = const.

On the left, we see there are multiple possible maximal y ∈ P such
that y ≤ x. Each such y must have the same value y(E).

On the right, there is only one maximal y ∈ P . Since there is only
one, the condition on the same value of y(E), ∀y is vacuous.
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Polymatroidal polyhedron (or a “polymatroid”)

x
possible y

y1

y2 P

∃ only one maximal y ≤ x.

If x ∈ P already, then x is its own P -basis, i.e., it is a self P -basis.

In a matroid, a base of A is the maximally contained independent
set. If A is already independent, then A is a self-base of A (as we
saw in Lecture 5)
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Polymatroid as well?

x

possible y

y1

y2
P

{
x

possible y
y1

y2
P

{

Left and right: ∃ multiple maximal y ≤ x as indicated.

On the left, we see there are multiple possible maximal such y ∈ P
that are y ≤ x. Each such y must have the same value y(E), but
since the equation for the curve is y21 + y22 = const. /= y1 + y2, we
see this is not a polymatroid.

On the right, we have a similar situation, just the set of potential
values that must have the y(E) condition changes, but the values of
course are still not constant.
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Other examples: Polymatroid or not?

x x
x

x x x

x x x
x

x

x
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Some possible polymatroid forms in 2D

independent
vectors

dependent
vectors

dependent
vectors

P-base

P-bases

P-bases

dependent

vectors

dependent

vectors

independent

vectors

independent

vectors

45˚

45˚

It appears that we have three possible forms of polymatroid in 2D, when
neither of the elements {v1, v2} are self-dependent.

1 On the left: full dependence between v1 and v2
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It appears that we have three possible forms of polymatroid in 2D, when
neither of the elements {v1, v2} are self-dependent.

1 On the left: full dependence between v1 and v2
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3 On the right: partial independence between v1 and v2
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Some possible polymatroid forms in 2D

independent
vectors

dependent
vectors

dependent
vectors

P-base

P-bases

P-bases

dependent

vectors

dependent

vectors

independent

vectors

independent

vectors

45˚

45˚

It appears that we have three possible forms of polymatroid in 2D, when
neither of the elements {v1, v2} are self-dependent.

1 On the left: full dependence between v1 and v2
2 In the middle: full independence between v1 and v2
3 On the right: partial independence between v1 and v2
- The P -bases (or single P -base in the middle case) are as indicated.
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Some possible polymatroid forms in 2D

independent
vectors

dependent
vectors

dependent
vectors

P-base

P-bases

P-bases

dependent

vectors

dependent

vectors

independent

vectors

independent

vectors

45˚

45˚

It appears that we have three possible forms of polymatroid in 2D, when
neither of the elements {v1, v2} are self-dependent.

1 On the left: full dependence between v1 and v2
2 In the middle: full independence between v1 and v2
3 On the right: partial independence between v1 and v2
- The P -bases (or single P -base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the

polytope. Dependent vectors are exterior to the polytope.
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Some possible polymatroid forms in 2D

independent
vectors

dependent
vectors

dependent
vectors

P-base

P-bases

P-bases

dependent

vectors

dependent

vectors

independent

vectors

independent

vectors

45˚

45˚

It appears that we have three possible forms of polymatroid in 2D, when
neither of the elements {v1, v2} are self-dependent.

1 On the left: full dependence between v1 and v2
2 In the middle: full independence between v1 and v2
3 On the right: partial independence between v1 and v2
- The P -bases (or single P -base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the

polytope. Dependent vectors are exterior to the polytope.
- The set of P -bases for a polytope is called the base polytope.
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Polymatroidal polyhedron (or a “polymatroid”)

Note that if x contains any zeros (i.e., suppose that x ∈ RE
+ has

E \ S s.t. x(E \ S) = 0, so S indicates the non-zero elements, or
S = supp(x)), then this also forces y(E \ S) = 0, so that
y(E) = y(S). This is true either for x ∈ P or x /∈ P .

Therefore, in this case, it is the non-zero elements of x,
corresponding to elements S (i.e., the support supp(x) of x),
determine the common component sum.
For the case of either x /∈ P or right at the boundary of P , we might
give a “name” to this component sum, lets say f(S) for any given
set S of non-zero elements of x. We could name rank(1ε1S) " f(S)
for ε very small. What kind of function might f be?
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set S of non-zero elements of x. We could name rank(1ε1S) " f(S)
for ε very small. What kind of function might f be?
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Polymatroidal polyhedron (or a “polymatroid”)

Note that if x contains any zeros (i.e., suppose that x ∈ RE
+ has

E \ S s.t. x(E \ S) = 0, so S indicates the non-zero elements, or
S = supp(x)), then this also forces y(E \ S) = 0, so that
y(E) = y(S). This is true either for x ∈ P or x /∈ P .
Therefore, in this case, it is the non-zero elements of x,
corresponding to elements S (i.e., the support supp(x) of x),
determine the common component sum.
For the case of either x /∈ P or right at the boundary of P , we might
give a “name” to this component sum, lets say f(S) for any given
set S of non-zero elements of x. We could name rank(1ε1S) " f(S)
for ε very small. What kind of function might f be?

x
possible y

y1

y2 P

 = f(1)
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Polymatroid function and its polyhedron.

Definition 9.4.4

A polymatroid function is a real-valued function f defined on subsets of
E which is normalized, non-decreasing, and submodular. That is we have

1 f(∅) = 0 (normalized)

2 f(A) ≤ f(B) for any A ⊆ B ⊆ E (monotone non-decreasing)

3 f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) for any A,B ⊆ E
(submodular)

We can define the polyhedron P+
f associated with a polymatroid function

as follows

P+
f =

{
y ∈ RE

+ : y(A) ≤ f(A) for all A ⊆ E
}

(9.30)

=
{
y ∈ RE : y ≥ 0, y(A) ≤ f(A) for all A ⊆ E

}
(9.31)
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Associated polyhedron with a polymatroid function

P+
f =

{
x ∈ RE : x ≥ 0, x(A) ≤ f(A), ∀A ⊆ E

}
(9.32)

Consider this in three dimensions. We have equations of the form:

x1 ≥ 0 and x2 ≥ 0 and x3 ≥ 0 (9.33)

x1 ≤ f({v1}) (9.34)

x2 ≤ f({v2}) (9.35)

x3 ≤ f({v3}) (9.36)

x1 + x2 ≤ f({v1, v2}) (9.37)

x2 + x3 ≤ f({v2, v3}) (9.38)

x1 + x3 ≤ f({v1, v3}) (9.39)

x1 + x2 + x3 ≤ f({v1, v2, v3}) (9.40)
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Associated polyhedron with a polymatroid function

Consider the asymmetric graph cut function on the simple chain
graph v1− v2− v3. That is, f(S) = |{(v, s) ∈ E(G) : v ∈ V, s ∈ S}|
is count of any edges within S or between S and V \ S, so that
δ(S) = f(S) + f(V \ S)− f(V ) is the standard graph cut.
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Associated polyhedron with a polymatroid function

Consider the asymmetric graph cut function on the simple chain
graph v1− v2− v3. That is, f(S) = |{(v, s) ∈ E(G) : v ∈ V, s ∈ S}|
is count of any edges within S or between S and V \ S, so that
δ(S) = f(S) + f(V \ S)− f(V ) is the standard graph cut.

Observe: P+
f (at two views):
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Associated polyhedron with a polymatroid function

Consider the asymmetric graph cut function on the simple chain
graph v1− v2− v3. That is, f(S) = |{(v, s) ∈ E(G) : v ∈ V, s ∈ S}|
is count of any edges within S or between S and V \ S, so that
δ(S) = f(S) + f(V \ S)− f(V ) is the standard graph cut.

Observe: P+
f (at two views):
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Associated polyhedron with a polymatroid function

Consider: f(∅) = 0, f({v1}) = 1.5, f({v2}) = 2, f({v1, v2}) = 2.5,
f({v3}) = 3, f({v3, v1}) = 3.5, f({v3, v2}) = 4,
f({v3, v2, v1}) = 4.3.
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Associated polyhedron with a polymatroid function

Consider: f(∅) = 0, f({v1}) = 1.5, f({v2}) = 2, f({v1, v2}) = 2.5,
f({v3}) = 3, f({v3, v1}) = 3.5, f({v3, v2}) = 4,
f({v3, v2, v1}) = 4.3.

Observe: P+
f (at two views):

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

0

0.5

1

1.5

0
0.5

1
1.5

2
2.5

3 0
0.5

1
1.5

2

0

0.5

1

1.5

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F40/67 (pg.104/220)



Matroid Polytopes Polymatroid

Associated polyhedron with a polymatroid function

Consider: f(∅) = 0, f({v1}) = 1.5, f({v2}) = 2, f({v1, v2}) = 2.5,
f({v3}) = 3, f({v3, v1}) = 3.5, f({v3, v2}) = 4,
f({v3, v2, v1}) = 4.3.

Observe: P+
f (at two views):
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Associated polyhedron with a polymatroid function

Consider modular function w : V → R+ as w = (1, 1.5, 2)ᵀ, and
then the submodular function f(S) =

√
w(S).
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Associated polyhedron with a polymatroid function

Consider modular function w : V → R+ as w = (1, 1.5, 2)ᵀ, and
then the submodular function f(S) =

√
w(S).
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Associated polyhedron with a polymatroid function

Consider modular function w : V → R+ as w = (1, 1.5, 2)ᵀ, and
then the submodular function f(S) =

√
w(S).

Observe: P+
f (at two views):
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Associated polytope with a non-submodular function

Consider function on integers: g(0) = 0, g(1) = 3, g(2) = 4, and
g(3) = 5.5.
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Associated polytope with a non-submodular function

Consider function on integers: g(0) = 0, g(1) = 3, g(2) = 4, and
g(3) = 5.5. Is f(S) = g(|S|) submodular?
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Associated polytope with a non-submodular function

Consider function on integers: g(0) = 0, g(1) = 3, g(2) = 4, and
g(3) = 5.5. Is f(S) = g(|S|) submodular? f(S) = g(|S|) is not
submodular since f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
f({e1, e2, e3}) + f({e1}) = 5.5 + 3 = 8.5.
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Associated polytope with a non-submodular function

Consider function on integers: g(0) = 0, g(1) = 3, g(2) = 4, and
g(3) = 5.5. Is f(S) = g(|S|) submodular? f(S) = g(|S|) is not
submodular since f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
f({e1, e2, e3}) + f({e1}) = 5.5 + 3 = 8.5. Alternatively, consider
concavity violation, 1 = g(1 + 1)− g(1) < g(2 + 1)− g(2) = 1.5.
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Associated polytope with a non-submodular function

Consider function on integers: g(0) = 0, g(1) = 3, g(2) = 4, and
g(3) = 5.5. Is f(S) = g(|S|) submodular? f(S) = g(|S|) is not
submodular since f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
f({e1, e2, e3}) + f({e1}) = 5.5 + 3 = 8.5. Alternatively, consider
concavity violation, 1 = g(1 + 1)− g(1) < g(2 + 1)− g(2) = 1.5.
Observe: P+

f (at two views), maximal independent subvectors not
constant rank, hence not a polymatroid.
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A polymatroid vs. a polymatroid function’s polyhedron

Summarizing the above, we have:

Given a polymatroid function f , its associated polytope is given as

P+
f =

{
y ∈ RE

+ : y(A) ≤ f(A) for all A ⊆ E
}

(9.41)

We also have the definition of a polymatroid polytope (compact
subset, zero containing, down-monotone, and ∀x any maximal
independent subvector y ≤ x has same component sum y(E)).

Is there any relationship between these two polytopes?

In the next theorem, we show that any P+
f -basis has the same

component sum, when f is a polymatroid function, and P+
f satisfies

the other properties so that P+
f is a polymatroid.
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A polymatroid vs. a polymatroid function’s polyhedron

Summarizing the above, we have:

Given a polymatroid function f , its associated polytope is given as

P+
f =

{
y ∈ RE

+ : y(A) ≤ f(A) for all A ⊆ E
}

(9.41)

We also have the definition of a polymatroid polytope (compact
subset, zero containing, down-monotone, and ∀x any maximal
independent subvector y ≤ x has same component sum y(E)).

Is there any relationship between these two polytopes?

In the next theorem, we show that any P+
f -basis has the same

component sum, when f is a polymatroid function, and P+
f satisfies

the other properties so that P+
f is a polymatroid.
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A polymatroid vs. a polymatroid function’s polyhedron

Summarizing the above, we have:

Given a polymatroid function f , its associated polytope is given as

P+
f =

{
y ∈ RE

+ : y(A) ≤ f(A) for all A ⊆ E
}

(9.41)

We also have the definition of a polymatroid polytope (compact
subset, zero containing, down-monotone, and ∀x any maximal
independent subvector y ≤ x has same component sum y(E)).

Is there any relationship between these two polytopes?

In the next theorem, we show that any P+
f -basis has the same

component sum, when f is a polymatroid function, and P+
f satisfies

the other properties so that P+
f is a polymatroid.
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A polymatroid vs. a polymatroid function’s polyhedron

Summarizing the above, we have:

Given a polymatroid function f , its associated polytope is given as

P+
f =

{
y ∈ RE

+ : y(A) ≤ f(A) for all A ⊆ E
}

(9.41)

We also have the definition of a polymatroid polytope (compact
subset, zero containing, down-monotone, and ∀x any maximal
independent subvector y ≤ x has same component sum y(E)).

Is there any relationship between these two polytopes?

In the next theorem, we show that any P+
f -basis has the same

component sum, when f is a polymatroid function, and P+
f satisfies

the other properties so that P+
f is a polymatroid.
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A polymatroid vs. a polymatroid function’s polyhedron

Summarizing the above, we have:

Given a polymatroid function f , its associated polytope is given as

P+
f =

{
y ∈ RE

+ : y(A) ≤ f(A) for all A ⊆ E
}

(9.41)

We also have the definition of a polymatroid polytope (compact
subset, zero containing, down-monotone, and ∀x any maximal
independent subvector y ≤ x has same component sum y(E)).

Is there any relationship between these two polytopes?

In the next theorem, we show that any P+
f -basis has the same

component sum, when f is a polymatroid function, and P+
f satisfies

the other properties so that P+
f is a polymatroid.
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 9.4.5

Let f be a polymatroid function defined on subsets of E. For any
x ∈ RE

+, and any P+
f -basis yx ∈ RE

+ of x, the component sum of yx is

yx(E) = rank(x) = max
(
y(E) : y ≤ x, y ∈ P+

f

)

= min (x(A) + f(E \A) : A ⊆ E) (9.42)

As a consequence, P+
f is a polymatroid, since r.h.s. is constant w.r.t. yx.

By taking B = supp(x) (so elements E \B are zero in x), and for b ∈ B,
x(b) is big enough, the r.h.s. min has solution A∗ = E \B. We recover
submodular function from the polymatroid polyhedron via the following:

f(B) = max
{
y(B) : y ∈ P+

f

}
(9.43)

In fact, we will ultimately see a number of important consequences of
this theorem (other than just that P+

f is a polymatroid)
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 9.4.5

Let f be a polymatroid function defined on subsets of E. For any
x ∈ RE

+, and any P+
f -basis yx ∈ RE

+ of x, the component sum of yx is

yx(E) = rank(x) = max
(
y(E) : y ≤ x, y ∈ P+

f

)

= min (x(A) + f(E \A) : A ⊆ E) (9.42)

As a consequence, P+
f is a polymatroid, since r.h.s. is constant w.r.t. yx.

By taking B = supp(x) (so elements E \B are zero in x), and for b ∈ B,
x(b) is big enough, the r.h.s. min has solution A∗ = E \B. We recover
submodular function from the polymatroid polyhedron via the following:

f(B) = max
{
y(B) : y ∈ P+

f

}
(9.43)

In fact, we will ultimately see a number of important consequences of
this theorem (other than just that P+

f is a polymatroid)
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 9.4.5

Let f be a polymatroid function defined on subsets of E. For any
x ∈ RE

+, and any P+
f -basis yx ∈ RE

+ of x, the component sum of yx is

yx(E) = rank(x) = max
(
y(E) : y ≤ x, y ∈ P+

f

)

= min (x(A) + f(E \A) : A ⊆ E) (9.42)

As a consequence, P+
f is a polymatroid, since r.h.s. is constant w.r.t. yx.

By taking B = supp(x) (so elements E \B are zero in x), and for b ∈ B,
x(b) is big enough, the r.h.s. min has solution A∗ = E \B. We recover
submodular function from the polymatroid polyhedron via the following:

f(B) = max
{
y(B) : y ∈ P+

f

}
(9.43)

In fact, we will ultimately see a number of important consequences of
this theorem (other than just that P+

f is a polymatroid)
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A polymatroid function’s polyhedron is a polymatroid.

Proof.

Clearly 0 ∈ P+
f since f is non-negative.

Also, for any y ∈ P+
f then any x <= y is also such that x ∈ P+

f .

So, P+
f is down-monotone.

Now suppose that we are given an x ∈ RE
+, and maximal yx ∈ P+

f

with yx ≤ x (i.e., yx is a P+
f -basis of x).

Goal is to show that any such yx has yx(E) = const, dependent
only on x and also f (which defines the polytope) but not
dependent on yx, the particular P -basis.

Doing so will thus establish that P+
f is a polymatroid.

. . .
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A polymatroid function’s polyhedron is a polymatroid.

Proof.

Clearly 0 ∈ P+
f since f is non-negative.

Also, for any y ∈ P+
f then any x <= y is also such that x ∈ P+

f .

So, P+
f is down-monotone.

Now suppose that we are given an x ∈ RE
+, and maximal yx ∈ P+

f

with yx ≤ x (i.e., yx is a P+
f -basis of x).

Goal is to show that any such yx has yx(E) = const, dependent
only on x and also f (which defines the polytope) but not
dependent on yx, the particular P -basis.

Doing so will thus establish that P+
f is a polymatroid.

. . .
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A polymatroid function’s polyhedron is a polymatroid.

Proof.

Clearly 0 ∈ P+
f since f is non-negative.

Also, for any y ∈ P+
f then any x <= y is also such that x ∈ P+

f .

So, P+
f is down-monotone.

Now suppose that we are given an x ∈ RE
+, and maximal yx ∈ P+

f

with yx ≤ x (i.e., yx is a P+
f -basis of x).

Goal is to show that any such yx has yx(E) = const, dependent
only on x and also f (which defines the polytope) but not
dependent on yx, the particular P -basis.

Doing so will thus establish that P+
f is a polymatroid.

. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F45/67 (pg.124/220)



Matroid Polytopes Polymatroid

A polymatroid function’s polyhedron is a polymatroid.

Proof.

Clearly 0 ∈ P+
f since f is non-negative.

Also, for any y ∈ P+
f then any x <= y is also such that x ∈ P+

f .

So, P+
f is down-monotone.

Now suppose that we are given an x ∈ RE
+, and maximal yx ∈ P+

f

with yx ≤ x (i.e., yx is a P+
f -basis of x).

Goal is to show that any such yx has yx(E) = const, dependent
only on x and also f (which defines the polytope) but not
dependent on yx, the particular P -basis.

Doing so will thus establish that P+
f is a polymatroid.

. . .
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A polymatroid function’s polyhedron is a polymatroid.

Proof.

Clearly 0 ∈ P+
f since f is non-negative.

Also, for any y ∈ P+
f then any x <= y is also such that x ∈ P+

f .

So, P+
f is down-monotone.

Now suppose that we are given an x ∈ RE
+, and maximal yx ∈ P+

f

with yx ≤ x (i.e., yx is a P+
f -basis of x).

Goal is to show that any such yx has yx(E) = const, dependent
only on x and also f (which defines the polytope) but not
dependent on yx, the particular P -basis.

Doing so will thus establish that P+
f is a polymatroid.

. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

First trivial case: could have yx = x, which happens if
x(A) < f(A), ∀A ⊆ E (i.e., x ∈ P+

f strictly). In such case,
min (x(A) + f(E \A) : A ⊆ E) = x(E).

2nd trivial case is when x(A) > f(A), ∀A ⊆ E (i.e., x /∈ P+
f

strictly), meaning
min (x(A) + f(E \A) : A ⊆ E) = f(E) = yx(E).

. . .
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First trivial case: could have yx = x, which happens if
x(A) < f(A), ∀A ⊆ E (i.e., x ∈ P+

f strictly). In such case,
min (x(A) + f(E \A) : A ⊆ E) = x(E).
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Assume neither trivial case. Because yx ∈ P+
f , we have that

yx(A) ≤ f(A) for all A.

We show that the constant is given by

yx(E) = min (x(A) + f(E \A) : A ⊆ E) (9.44)

For any P+
f -basis yx of x, and any A ⊆ E, we have that

yx(E) = yx(A) + yx(E \A) (9.45)

≤ x(A) + f(E \A). (9.46)

This follows since yx ≤ x and since yx ∈ P+
f .

Given one A where equality holds, the above min result follows.

. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F47/67 (pg.129/220)



Matroid Polytopes Polymatroid

A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Assume neither trivial case. Because yx ∈ P+
f , we have that

yx(A) ≤ f(A) for all A.

We show that the constant is given by

yx(E) = min (x(A) + f(E \A) : A ⊆ E) (9.44)

For any P+
f -basis yx of x, and any A ⊆ E, we have that

yx(E) = yx(A) + yx(E \A) (9.45)

≤ x(A) + f(E \A). (9.46)

This follows since yx ≤ x and since yx ∈ P+
f .

Given one A where equality holds, the above min result follows.

. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F47/67 (pg.130/220)



Matroid Polytopes Polymatroid

A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Assume neither trivial case. Because yx ∈ P+
f , we have that

yx(A) ≤ f(A) for all A.

We show that the constant is given by

yx(E) = min (x(A) + f(E \A) : A ⊆ E) (9.44)

For any P+
f -basis yx of x, and any A ⊆ E, we have that

yx(E) = yx(A) + yx(E \A) (9.45)

≤ x(A) + f(E \A). (9.46)

This follows since yx ≤ x and since yx ∈ P+
f .

Given one A where equality holds, the above min result follows.

. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F47/67 (pg.131/220)



Matroid Polytopes Polymatroid

A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Assume neither trivial case. Because yx ∈ P+
f , we have that

yx(A) ≤ f(A) for all A.

We show that the constant is given by

yx(E) = min (x(A) + f(E \A) : A ⊆ E) (9.44)

For any P+
f -basis yx of x, and any A ⊆ E, we have that

yx(E) = yx(A) + yx(E \A) (9.45)

≤ x(A) + f(E \A). (9.46)

This follows since yx ≤ x and since yx ∈ P+
f .

Given one A where equality holds, the above min result follows.
. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F47/67 (pg.132/220)



Matroid Polytopes Polymatroid

A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

For any y ∈ P+
f , call a set B ⊆ E tight if y(B) = f(B). The union

(and intersection) of tight sets B,C is again tight, since

f(B) + f(C)

= y(B) + y(C) (9.47)

= y(B ∩ C) + y(B ∪ C) (9.48)

≤ f(B ∩ C) + f(B ∪ C) (9.49)

≤ f(B) + f(C) (9.50)

which requires equality everywhere above.

Because y(B) ≤ f(B), ∀B, this means y(B ∩ C) = f(B ∩ C) and
y(B ∪ C) = f(B ∪ C), so both also are tight.

For y ∈ P+
f , it will be ultimately useful to define this lattice family

of tight sets: D(y) ! {A : A ⊆ E, y(A) = f(A)}.

. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Also, define sat(y)
def
=

⋃
{T : T ∈ D(y)}

Consider again a P+
f -basis yx (so maximal).

Given a e ∈ E, either yx(e) is cut off due to x (so yx(e) = x(e)) or
e is saturated by f , meaning it is an element of some tight set and
e ∈ sat(yx).

Let E \A = sat(yx) be the union of all such tight sets (which is
also tight, so y(E \A) = f(E \A)).

Hence, we have

y(E) = y(A) + y(E \A) = x(A) + f(E \A) (9.51)

So we identified the A to be the elements that are non-tight, and
achieved the min, as desired.
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A polymatroid is a polymatroid function’s polytope

So, when f is a polymatroid function, P+
f is a polymatroid.

Is it the case that, conversely, for any polymatroid P , there is an
associated polymatroidal function f such that P = P+

f ?

Theorem 9.4.6

For any polymatroid P (compact subset of RE
+, zero containing, down-monotone,

and ∀x ∈ RE
+ any maximal independent subvector y ≤ x has same component sum

y(E) = rank(x)), there is a polymatroid function f : 2E → R (normalized,

monotone non-decreasing, submodular) such that P = P+
f where

P+
f =

{
x ∈ RE : x ≥ 0, x(A) ≤ f(A), ∀A ⊆ E

}
.
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First, a bit on D(y)

Recall the definition of the set of tight sets at y ∈ P+
f :

D(y) ! {A : A ⊆ E, y(A) = f(A)} (9.52)

Theorem 9.4.7

For any y ∈ P+
f , with f a polymatroid function, then D(y) is closed

under union and intersection.

Proof.

We have already proven this as part of Theorem 9.4.5

Also recall the definition of sat(y), the maximal set of tight elements
relative to y ∈ RE

+.

sat(y)
def
=

⋃
{T : T ∈ D(y)} (9.53)
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Next, a bit on rank(x), join and meet for x, y ∈ RE
+

For x, y ∈ RE
+, define vectors x ∧ y ∈ RE

+ and x ∨ y ∈ RE
+ such that,

for all e ∈ E

(x ∨ y)(e) = max(x(e), y(e)) (9.54)

(x ∧ y)(e) = min(x(e), y(e)) (9.55)

Hence,

x ∨ y = (max(x(e1), y(e1)),max(x(e2), y(e2)), . . . ,max(x(en), y(en)))

and similarly

x ∧ y = (min(x(e1), y(e1)),min(x(e2), y(e2)), . . . ,min(x(en), y(en)))

From this, we can define things like an lattices, and other constructs.
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Matroid Polytopes Polymatroid

Next, a bit on rank(x)

Recall that the matroid rank function is submodular.

The vector rank function rank(x) also satisfies a form of
submodularity.

Theorem 9.4.8 (vector rank and submodularity)

Let P be a polymatroid polytope. The vector rank function
rank : RE

+ → R with rank(x) = max (y(E) : y ≤ x, y ∈ P ) satisfies, for
all u, v ∈ RE

+

rank(u) + rank(v) ≥ rank(u ∨ v) + rank(u ∧ v) (9.56)
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Next, a bit on rank(x)

Proof of Theorem 9.4.8.

Let a be a P -basis of u ∧ v, so rank(u ∧ v) = a(E).

By the polymatroid property, ∃ an independent b ∈ P such that:
a ≤ b ≤ u ∨ v

and also such that rank(b) = b(E) = rank(u ∨ v).

Given e ∈ E, if a(e) is maximal due to P , then then
a(e) = b(e) ≤ min(u(e), v(e)).

If a(e) is maximal due to (u ∧ v)(e), then
a(e) = min(u(e), v(e)) ≤ b(e).
Therefore, a = b ∧ (u ∧ u).

Since a = b ∧ (u ∧ v)

and since b ≤ u ∨ v, we get

a+ b

= b+ b ∧ u ∧ v = b ∧ u+ b ∧ v

(9.57)

To see this, consider each case where either b is the minimum, or u is minimum

with b ≤ v, or v is minimum with b ≤ u.

. . .
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Next, a bit on rank(x)

. . . proof of Theorem 9.4.8.

But b ∧ u and b ∧ v are independent subvectors of u and v
respectively, so (b ∧ u)(E) ≤ rank(u) and (b ∧ v)(E) ≤ rank(v).

Hence,
rank(u ∧ v) + rank(u ∨ v)

= a(E) + b(E) (9.58)

= (b ∧ u)(E) + (b ∧ v)(E) (9.59)

≤ rank(u) + rank(v) (9.60)
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A polymatroid function’s polyhedron vs. a polymatroid.

Note the remarkable similarity between the proof of Theorem 9.4.8
and the proof of Theorem 5.5.1 that the standard matroid rank
function is submodular.

Next, we prove Theorem 9.4.6, that any polymatroid polytope P
has a polymatroid function f such that P = P+

f .

Given this result, we can conclude that a polymatroid is really an
extremely natural polyhedral generalization of a matroid. This was
all realized by Jack Edmonds in the mid 1960s (and published in
1969 in his landmark paper “Submodular Functions, Matroids, and
Certain Polyhedra”).
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Proof of Theorem 9.4.6

Proof of Theorem 9.4.6.

We are given a polymatroid P .

Define αmax ! max {x(E) : x ∈ P}, and note that αmax > 0 when
P is non-empty, and αmax = rank(∞1E) = rank(αmax1E).

Hence, for any x ∈ P , x(e) ≤ αmax, ∀e ∈ E.

Define a function f : 2V → R as, for any A ⊆ E,

f(A) ! rank(αmax1A) (9.61)

Then f is submodular since

f(A) + f(B)

= rank(αmax1A) + rank(αmax1B) (9.62)

≥ rank(αmax1A ∨ αmax1B) + rank(αmax1A ∧ αmax1B) (9.63)

= rank(αmax1A∪B) + rank(αmax1A∩B) (9.64)

= f(A ∪B) + f(A ∩B) (9.65)

. . .
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Proof of Theorem 9.4.6.

We are given a polymatroid P .

Define αmax ! max {x(E) : x ∈ P}, and note that αmax > 0 when
P is non-empty, and αmax = rank(∞1E) = rank(αmax1E).

Hence, for any x ∈ P , x(e) ≤ αmax, ∀e ∈ E.

Define a function f : 2V → R as, for any A ⊆ E,

f(A) ! rank(αmax1A) (9.61)

Then f is submodular since
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Proof of Theorem 9.4.6.

Moreover, we have that f is non-negative, normalized with
f(∅) = 0, and monotone non-decreasing (since rank is monotone).

Hence, f is a polymatroid function.

Consider the polytope P+
f defined as:

P+
f =

{
x ∈ RE

+ : x(A) ≤ f(A), ∀A ⊆ E
}

(9.66)

Given an x ∈ P , then for any A ⊆ E,
x(A) ≤ max {z(E) : z ∈ P, z ≤ αmax1A} = rank(αmax1A) = f(A),

therefore x ∈ P+
f .

Hence, P ⊆ P+
f .

We will next show that P+
f ⊆ P to complete the proof.

. . .
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Proof of Theorem 9.4.6

Proof of Theorem 9.4.6.

Let x ∈ P+
f be chosen arbitrarily (goal is to show that x ∈ P ).

Suppose x /∈ P .

Then, choose y to be a P -basis of x that
maximizes the number of y elements strictly less than the
corresponding x element. I.e., that maximizes |N(y)|, where

N(y) = {e ∈ E : y(e) < x(e)} (9.67)

Choose w between y and x, so that

y ≤ w ! (y + x)/2 ≤ x (9.68)

so y is also a P -basis of w.

Hence, rank(x) = rank(w), and the set of P -bases of w are also
P -bases of x.

. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F59/67 (pg.193/220)



Matroid Polytopes Polymatroid

Proof of Theorem 9.4.6

Proof of Theorem 9.4.6.

Let x ∈ P+
f be chosen arbitrarily (goal is to show that x ∈ P ).

Suppose x /∈ P .

Then, choose y to be a P -basis of x that
maximizes the number of y elements strictly less than the
corresponding x element. I.e., that maximizes |N(y)|, where

N(y) = {e ∈ E : y(e) < x(e)} (9.67)

Choose w between y and x, so that

y ≤ w ! (y + x)/2 ≤ x (9.68)

so y is also a P -basis of w.

Hence, rank(x) = rank(w), and the set of P -bases of w are also
P -bases of x.

. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F59/67 (pg.194/220)



Matroid Polytopes Polymatroid

Proof of Theorem 9.4.6

Proof of Theorem 9.4.6.

Let x ∈ P+
f be chosen arbitrarily (goal is to show that x ∈ P ).

Suppose x /∈ P . Then, choose y to be a P -basis of x that
maximizes the number of y elements strictly less than the
corresponding x element. I.e., that maximizes |N(y)|, where

N(y) = {e ∈ E : y(e) < x(e)} (9.67)

Choose w between y and x, so that

y ≤ w ! (y + x)/2 ≤ x (9.68)

so y is also a P -basis of w.

Hence, rank(x) = rank(w), and the set of P -bases of w are also
P -bases of x.

. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F59/67 (pg.195/220)



Matroid Polytopes Polymatroid

Proof of Theorem 9.4.6

Proof of Theorem 9.4.6.

Let x ∈ P+
f be chosen arbitrarily (goal is to show that x ∈ P ).

Suppose x /∈ P . Then, choose y to be a P -basis of x that
maximizes the number of y elements strictly less than the
corresponding x element. I.e., that maximizes |N(y)|, where

N(y) = {e ∈ E : y(e) < x(e)} (9.67)

Choose w between y and x, so that

y ≤ w ! (y + x)/2 ≤ x (9.68)

so y is also a P -basis of w.

Hence, rank(x) = rank(w), and the set of P -bases of w are also
P -bases of x.

. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F59/67 (pg.196/220)



Matroid Polytopes Polymatroid

Proof of Theorem 9.4.6

Proof of Theorem 9.4.6.

Let x ∈ P+
f be chosen arbitrarily (goal is to show that x ∈ P ).

Suppose x /∈ P . Then, choose y to be a P -basis of x that
maximizes the number of y elements strictly less than the
corresponding x element. I.e., that maximizes |N(y)|, where

N(y) = {e ∈ E : y(e) < x(e)} (9.67)

Choose w between y and x, so that

y ≤ w ! (y + x)/2 ≤ x (9.68)

so y is also a P -basis of w.

Hence, rank(x) = rank(w), and the set of P -bases of w are also
P -bases of x.

. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 9 - April 28th, 2014 F59/67 (pg.197/220)



Matroid Polytopes Polymatroid

Proof of Theorem 9.4.6

Proof of Theorem 9.4.6.

For any A ⊆ E, define xA ∈ RE
+ as

xA(e) =

{
x(e) if e ∈ A

0 else
(9.69)

note this is an analogous definition to 1A but for a non-unity vector.

Now, we have

y(N(y)) < w(N(y)) ≤ f(N(y)) = rank(αmax1N(y)) (9.70)

the last inequality follows since w ≤ x ∈ P+
f .

Thus, y ∧ xN(y) is not a P -basis of w ∧ xN(y) since, over N(y), it is
neither tight at w nor tight at the rank (i.e., not a maximal
independent subvector on N(y)).
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Proof of Theorem 9.4.6

Proof of Theorem 9.4.6.

We can extend y ∧ xN(y) to be a P -basis of w ∧ xN(y).

This P -basis, in turn, can be extended to be a P -basis ŷ of w.

Now, we have ŷ(N(y)) > y(N(y)),

and also that ŷ(E) = y(E) (since both are P -bases),

hence ŷ(e) < y(e) for some e /∈ N(y).

Thus, ŷ is a base of x, which violates the maximality of |N(y)|.
This contradiction means that we must have had x ∈ P .

Therefore, P+
f = P .
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and also that ŷ(E) = y(E) (since both are P -bases),
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Now, we have ŷ(N(y)) > y(N(y)),
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More on polymatroids

Theorem 9.4.9

A polymatroid can equivalently be defined as a pair (E,P ) where E is a
finite ground set and P ⊆ RE

+ is a compact non-empty set of
independent vectors such that

1 every subvector of an independent vector is independent (if x ∈ P
and y ≤ x then y ∈ P , i.e., down closed)

2 If u, v ∈ P (i.e., are independent) and
u(E) < v(E), then there exists a vector
w ∈ P such that

u < w ≤ u ∨ v (9.71)

Corollary 9.4.10

The independent vectors of a polymatroid form a convex polyhedron in
RE
+.
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Theorem 9.4.9

A polymatroid can equivalently be defined as a pair (E,P ) where E is a
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independent vectors such that

1 every subvector of an independent vector is independent (if x ∈ P
and y ≤ x then y ∈ P , i.e., down closed)

2 If u, v ∈ P (i.e., are independent) and
u(E) < v(E), then there exists a vector
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+.
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More on polymatroids
For any compact set P , b is a base of P if it is a maximal subvector
within P . Recall the bases of polymatroids. In fact, we can define a
polymatroid via vector bases (analogous to how a matroid can be defined
via matroid bases).

Theorem 9.4.11

A polymatroid can equivalently be defined as a pair (E,P ) where E is a
finite ground set and P ⊆ RE

+ is a compact non-empty set of
independent vectors such that

1 every subvector of an independent vector is independent (if x ∈ P
and y ≤ x then y ∈ P , i.e., down closed)

2 if b, c are bases of P and d is such that b ∧ c < d < b, then there
exists an f , with d ∧ c < f ≤ c such that d ∨ f is a base of P

3 All of the bases of P have the same rank.

Note, all three of the above are required for a polymatroid (a matroid
analogy would require the equivalent of only the first two).
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also, a word on terminology

Recall how a matroid is sometimes given as (E, r) where r is the
rank function.

We mention also that the term “polymatroid” is sometimes not used
for the polytope itself, but instead but for the pair (E, f),

But now we see that (E, f) is equivalent to a polymatroid polytope,
so this is sensible.
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Where are we going with this?

Consider the right hand side of Theorem 9.4.5:
min (x(A) + f(E \A) : A ⊆ E)

We are going to study this problem, and approaches that address it,
as part of our ultimate goal which is to present strategies for
submodular function minimization (that we will ultimately get to, in
near future lectures).

As a bit of a hint on what’s to come, note that we can write it as:
x(E) + min (f(A)− x(A) : A ⊆ E) where f is a polymatroid
function.
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Another Interesting Fact: Matroids from polymatroid
functions

Theorem 9.4.12

Given integral polymatroid function f , let (E,F) be a set system with
ground set E and set of subsets F such that

∀F ∈ F , ∀∅ ⊂ S ⊆ F, |S| ≤ f(S) (9.72)

Then M = (E,F) is a matroid.

Proof.

Exercise

And its rank function is Exercise.
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Matroid instance of Theorem 9.4.5

Considering Theorem 9.4.5, the matroid case is now a special case,
where we have that:

Corollary 9.4.13

We have that:

max {y(E) : y ∈ Pind. set(M), y ≤ x} = min {rM (A) + x(E \A) : A ⊆ E}
(9.73)

where rM is the matroid rank function of some matroid.
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