Submodular Functions, Optimization, and Applications to Machine Learning
 - Spring Quarter, Lecture 8 http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

April 23rd, 2014

Cumulative Outstanding Reading

- Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige's book.

Announcements, Assignments, and Reminders

- Homework 1 is out, due Wednesday April 23rd, 11:45pm, electronically via our assignment dropbox (https://canvas.uw.edu/courses/895956/assignments).
- All homeworks must be done electronically, only PDF file format accepted.
- Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

Logistics
 Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, \& Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes,
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity
- Matroid restriction/deletion
- Matroid contraction
- Matroid minor (series of deletions \& contractions)
- Matroid intersection and its rank (convolution)
- Matroid union and its rank (convolution)

Logistics
 Matroids of three or fewer elements are graphic

Review

- All matroids up to and including three elements are graphic.

- This is a nice way to show matroids with low ground set sizes. What about matroids that are low rank but with many elements?

Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F}, we say that a subset $S \subseteq\{1, \ldots, m\}$ of indices (with corresponding column vectors $\left\{v_{i}: i \in S\right\}$, with $|S|=k$) is affinely dependent if $m \geq 1$ and there exists elements $\left\{a_{1}, \ldots, a_{k}\right\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^{k} a_{i}=0$, such that $\sum_{i=1}^{k} a_{i} v_{i}=0$.
- Otherwise, the set is called affinely independent.
- Concisely: points $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ are affinely independent if $v_{2}-v_{1}, v_{3}-v_{1}, \ldots, v_{k}-v_{1}$ are linearly independent.
- Example: in 2D, three collinear points are affinely dependent, three non-collear points are affinely independent, and ≥ 4 non-collinear points are affinely dependent.

Proposition 8.2.7 (affine matroid)

Let ground set $E=\{1, \ldots, m\}$ index column vectors of a matrix, and let \mathcal{I} be the set of subsets X of E such that X indices affinely independent vectors. Then (E, \mathcal{I}) is a matroid.

Exercise: prove this.

Logistics

Euclidean Representation of Low-rank Matroids

- Consider the affine matroid with $n \times m=2 \times 6$ matrix on the field $\mathbb{F}=\mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}$.
- We can plot the points in \mathbb{R}^{2} as on the right:
- Points have rank 1 , lines have rank 2, planes have rank 3.
- Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.
- Any two points constitute a line, but lines with only two points are not drawn.
- Lines indicate collinear sets with ≥ 3 points, while any two points have rank 2.

- Dependent sets consist of all subsets with ≥ 4 elements (rank 3), or 3 collinear elements (rank $2)$. Any two points have rank 2.

Euclidean Representation of Low-rank Matroids

As another example

- on the right, a rank 4 matroid

- All sets of 5 points are dependent. The only other sets of dependent points are coplanar ones of size 4 . Namely:
$\{(0,0,0),(0,1,0),(1,1,0),(1,0,0)\}$,
$\{(0,0,0),(0,0,1),(0,1,1),(0,1,0)\}$, and
$\{(0,0,1),(0,1,1),(1,1,0),(1,0,0)\}$.

Euclidean Representation of Low-rank Matroids

- In general, for a matroid \mathcal{M} of rank $m+1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^{m} is dependent if:
(1) $|X| \geq 2$ and the points are identical;
(2) $|X| \geq 3$ and the points are collinear;
(3) $|X| \geq 4$ and the points are coplanar; or
(9) $|X| \geq 5$ and the points are in space.
- When they exist, loops are represented in a geometry by a separate box indicating how many loops there are.
- Parallel elements, when they exist in a matroid, are indicated by a multiplicity next to a point.

Theorem 8.3.1

Any matroid of rank $m \leq 4$ can be represented by an affine matroid in \mathcal{R}^{m-1}.

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless >2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless >3)
- any three distinct non-collinear points lie on a plane
- If diagram has at most one plane, then any two distinct lines meet in at most one point.
- If diagram has more than one plane, then: 1) any two distinct planes meeting in more than two points do so in a line; 2) any two distinct lines meeting in a point do so in at most one point and lie in on a common plane; 3) any line not lying on a plane intersects it in at most one point.
- (see Oxley 2011 for more details).

Euclidean Representation of Low-rank Matroids

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.
- Example: Is there a matroid that is not representable (i.e., not linear for some field)? Yes, consider the matroid

- Called the non-Pappus matroid. Has rank three, but any matric matroid with the above dependencies would require that $\{7,8,9\}$ is dependent, hence requiring an additional line in the above.

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=3$, and $r(X \cup Y)=4$, so we must have, by submodularity, that $r(\{1,6,7\})=r(X \cap Y) \leq r(X)+r(Y)-r(X \cup Y)=2$.
- However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y)=3$

Combinatorial Geometries
 Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- If we extend the line from $6-7$ to 1 , then is it a matroid?
- Hence, not all 2D or 3D graphs of points and lines are matroids.

Matroid?

- Consider the following geometry on $|V|=8$ points with $V=\{a, b, c, d, e, f, g, h\}$.

- Note, we are given that the points $\{b, d, h, f\}$ are not coplanar. However, the following sets of points are coplanar: $\{a, b, e, f\}$, $\{d, c, g, h\},\{a, d, h, e\},\{b, c, g, f\},\{b, c, d, a\},\{f, g, h, e\}$, and $\{a, c, g, e\}$.
- Exercise: Is this a matroid? Exercise: If so, is it representable?

Combinatorial Geometries
 Projective Geometries: Other Examples

- Other examples can be more complex, consider the following two matroids (from Oxley, 2011):

- Right: a matroid (and a 2D depiction of a geometry) over the field $\mathrm{GF}(3)=\{0,1,2\} \bmod 3$ and is "coordinatizable" in $\mathrm{GF}(3)^{3}$.
- Hence, lines (in 2D) which are rank 2 sets may be curved; planes (in 3D) can be twisted.

Matroids, Representation and Equivalence: Summary

- Matroids with $|V| \leq 3$ are graphic.
- Matroids with $r(V) \leq 4$ can be geometrically represented in \mathbb{R}^{3}.
- Not all matroids are linear (i.e., matric) matroids.
- Matroids can be seen as related to projective geometries (and are sometimes called combinatorial geometries).
- Exists much research on different subclasses of matroids, and if/when they are contained in (or isomorphic to) each other.

Combinatorial Geometries
 Matroid and Greed
 Matroid Further Reading

- "The Coming of the Matroids", William Cunningham, 2012 (a nice history)
- Welsh, "Matroid Theory", 1975.
- Oxley, "Matroid Theory", 1992 (and 2011) (perhaps best "single source" on matroids right now).
- Crapo \& Rota, "On the Foundations of Combinatorial Theory: Combinatorial Geometries", 1970 (while this is old, it is very readable).
- Lawler, "Combinatorial Optimization: Networks and Matroids", 1976.
- Schrijver, "Combinatorial Optimization", 2003

The greedy algorithm

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.
- The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever currently looks best, without the possibility of later recall or backtracking.
- Sometimes, this gives the optimal solution (we saw three greedy algorithms that can find the maximum weight spanning tree).
- Greedy is good since it can be made to run very fast $O(n \log n)$.
- Often, however, greedy is heuristic (it might work well in practice, but worst-case performance can be unboundedly poor).
- We will next see that the greedy algorithm working is a defining property of a matroid, and is also a defining property of a polymatroid function.

 Matroid and the greedy algorithm

- Let (E, \mathcal{I}) be an independence system, and we are given a non-negative modular weight function $w: E \rightarrow \mathbb{R}_{+}$.
Algorithm 1: The Matroid Greedy Algorithm
1 Set $X \leftarrow \emptyset$;
2 while $\exists v \in E \backslash X$ s.t. $X \cup\{v\} \in \mathcal{I}$ do
$3 \mid v \in \operatorname{argmax}\{w(v): v \in E \backslash X, X \cup\{v\} \in \mathcal{I}\}$;
4
$X \leftarrow X \cup\{v\} ;$
- Same as sorting items by decreasing weight w, and then choosing items in that order that retain independence.

Theorem 8.4.1

Let (E, \mathcal{I}) be an independence system. Then the pair (E, \mathcal{I}) is a matroid if and only if for each weight function $w \in \mathcal{R}_{+}^{E}$, Algorithm 1 leads to a set $I \in \mathcal{I}$ of maximum weight $w(I)$.

- The next slide is from Lecture 5 .

Matroids by bases

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 8.4.1 (Matroid (by bases))

Let E be a set and \mathcal{B} be a nonempty collection of subsets of E. Then the following are equivalent.
(1) \mathcal{B} is the collection of bases of a matroid;
(2) if $B, B^{\prime} \in \mathcal{B}$, and $x \in B^{\prime} \backslash B$, then $B^{\prime}-x+y \in \mathcal{B}$ for some $y \in B \backslash B^{\prime}$.
(3) If $B, B^{\prime} \in \mathcal{B}$, and $x \in B^{\prime} \backslash B$, then $B-y+x \in \mathcal{B}$ for some $y \in B \backslash B^{\prime}$.

Properties 2 and 3 are called "exchange properties."
Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.

Matroid and the greedy algorithm

proof of Theorem 8.4.1.

- Assume (E, \mathcal{I}) is a matroid and $w: E \rightarrow \mathcal{R}_{+}$is given.
- Let $A=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ be the solution returned by greedy, where $r=r(M)$ the rank of the matroid, and we order the elements as they were chosen (so $w\left(a_{1}\right) \geq w\left(a_{2}\right) \geq \cdots \geq w\left(a_{r}\right)$).
- A is a base of M, and let $B=\left(b_{1}, \ldots, b_{r}\right)$ be any another base of M with elements also ordered decreasing by weight.
- We next show that not only is $w(A) \geq w(B)$ but that $w\left(a_{i}\right) \geq w\left(b_{i}\right)$ for all i.

Combinatorial Geometries

Matroid and the greedy algorithm

proof of Theorem 8.4.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w\left(a_{k}\right)<w\left(b_{k}\right)$. Hence $w\left(a_{j}\right) \geq w\left(b_{j}\right)$ for $j<k$.
- Define independent sets $A_{k-1}=\left\{a_{1}, \ldots, a_{k-1}\right\}$ and $B_{k}=\left\{b_{1}, \ldots, b_{k}\right\}$.
- Since $\left|A_{k-1}\right|<\left|B_{k}\right|$, there exists a $b_{i} \notin A_{k-1}$ where $A_{k-1} \cup\left\{b_{i}\right\} \in \mathcal{I}$ for some $1 \leq i \leq k$.
- But $w\left(b_{i}\right) \geq w\left(b_{k}\right)>w\left(a_{k}\right)$, and so the greedy algorithm would have chosen b_{i} rather than a_{k}, contradicting what greedy does.

Matroid and the greedy algorithm

converse proof of Theorem 8.4.1.

- Given an independence system (E, \mathcal{I}), suppose the greedy algorithm leads to an independent set of max weight for every non-negative weight function. We'll show (E, \mathcal{I}) is a matroid.
- Emptyset containing and down monotonicity already holds (since we've started with an independence system).
- Let $I, J \in \mathcal{I}$ with $|I|<|J|$. Suppose to the contrary, that $I \cup\{z\} \notin \mathcal{I}$ for all $z \in J \backslash I$.
- Define the following modular weight function w on E, and define $k=|I|$.

$$
w(v)= \begin{cases}k+2 & \text { if } v \in I \tag{8.1}\\ k+1 & \text { if } v \in J \backslash I \\ 0 & \text { if } v \in E \backslash(I \cup J)\end{cases}
$$

Matroid and the greedy algorithm

converse proof of Theorem 8.4.1.

- Now greedy will, after k iterations, recover I, but it cannot choose any element in $J \backslash I$ by assumption. Thus, greedy chooses a set of weight $k(k+2)$.
- On the other hand, J has weight

$$
\begin{equation*}
w(J) \geq|J|(k+1) \geq(k+1)(k+1)>k(k+2) \tag{8.2}
\end{equation*}
$$

so J has strictly larger weight but is still independent, contradicting greedy's optimality.

- Therefore, there must be a $z \in J \backslash I$ such that $I \cup\{z\} \in \mathcal{I}$, and since I and J are arbitrary, (E, \mathcal{I}) must be a matroid.

Matroid and greedy

- As given, the theorem asked for a modular function $w \in \mathbb{R}_{+}^{E}$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0 .
- If we don't want elements with weight 0 , we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^{E}$ and keep going until we have a base.
- If we stop at a negative value, we'll once again get a maximum weight independent set.
- Exercise: what if we keep going until a base even if we encounter negative values?
- We can instead do as small as possible thus giving us a minimum weight independent set/base.

Combinatorial Geometries Matroid and Greedy
 Summary of Important (for us) Matroid Definitions

Given an independence system, matroids are defined equivalently by any of the following:

- All maximally independent sets have the same size.
- A monotone non-decreasing submodular integral rank function with unit increments.
- The greedy algorithm achieves the maximum weight independent set for all weight functions.

Convex Polyhedra

- Convex polyhedra a rich topic, we will only draw what we need.

Definition 8.5.1

A subset $P \subseteq \mathbb{R}^{E}$ is a polyhedron if there exists an $m \times n$ matrix A and vector $b \in \mathbb{R}^{E}$ (for some $m \geq 0$) such that

$$
\begin{equation*}
P=\{x: A x \leq b\} \tag{8.3}
\end{equation*}
$$

- Thus, P is intersection of finitely many affine halfspaces, which are of the form $a_{i} x \leq b_{i}$ where a_{i} is a row vector and b_{i} a real scalar.

Combinatorial Geometries
 Convex Polytope

- A polytope is defined as follows

Definition 8.5.2

A subset $P \subseteq \mathbb{R}^{E}$ is a polytope if it is the convex hull of finitely many vectors in \mathcal{R}^{E}. That is, if $\exists, x_{1}, x_{2}, \ldots, x_{k} \in \mathcal{R}^{E}$ such that for all $x \in P$, there exits $\left\{\lambda_{i}\right\}$ with $\sum_{i} \lambda_{i}=1$ and $\lambda_{i} \geq 0 \forall i$ with $x=\sum_{i} \lambda_{i} x_{i}$.

- We define the convex hull operator as follows:

$$
\begin{equation*}
\operatorname{conv}\left(x_{1}, x_{2}, \ldots, x_{k}\right) \stackrel{\text { def }}{=}\left\{\sum_{i=1}^{k} \lambda_{i} x_{i}: \forall i, \lambda_{i} \geq 0, \text { and } \sum_{i} \lambda_{i}=1\right\} \tag{8.4}
\end{equation*}
$$

Convex Polytope - key representation theorem

- A polytope can be defined in a number of ways, two of which include

Theorem 8.5.3

A subset $P \subseteq \mathbb{R}^{E}$ is a polytope iff it can be described in either of the following (equivalent) ways:

- P is the convex hull of a finite set of points.
- If it is a bounded intersection of halfspaces, that is there exits matrix A and vector b such that

$$
\begin{equation*}
P=\{x: A x \leq b\} \tag{8.5}
\end{equation*}
$$

- This result follows directly from results proven by Fourier, Motzkin, Farkas, and Carátheodory.

Theorem 8.5.4 (weak duality)

Let A be a matrix and b and c vectors, then

$$
\begin{equation*}
\max \left\{c^{\top} x \mid A x \leq b\right\} \leq \min \left\{y^{\top} b: y \geq 0, y^{\top} A=c^{\top}\right\} \tag{8.6}
\end{equation*}
$$

Theorem 8.5 .5 (strong duality)

Let A be a matrix and b and c vectors, then

$$
\begin{equation*}
\max \left\{c^{\top} x \mid A x \leq b\right\}=\min \left\{y^{\top} b: y \geq 0, y^{\top} A=c^{\top}\right\} \tag{8.7}
\end{equation*}
$$

There are many ways to construct the dual. For example,

$$
\begin{array}{r}
\max \left\{c^{\top} x \mid x \geq 0, A x \leq b\right\}=\min \left\{y^{\top} b \mid y \geq 0, y^{\top} A \geq c^{\top}\right\} \\
\max \left\{c^{\top} x \mid x \geq 0, A x=b\right\}=\min \left\{y^{\top} b \mid y^{\top} A \geq c^{\top}\right\} \\
\min \left\{c^{\top} x \mid x \geq 0, A x \geq b\right\}=\max \left\{y^{\top} b \mid y \geq 0, y^{\top} A \leq c^{\top}\right\} \\
\min \left\{c^{\top} x \mid A x \geq b\right\}=\max \left\{y^{\top} b \mid y \geq 0, y^{\top} A=c^{\top}\right\} \tag{8.11}
\end{array}
$$

Combinatorial Geometries Matroid and Greedy Polyhedra
 Linear Programming duality forms

How to form the dual in general? We quote V. Vazirani (2001)
Intuitively, why is [one set of equations] the dual of [another quite different set of equations]? In our experience, this is not the right question to be asked. As stated in Section 12.1, there is a purely mechanical procedure for obtaining the dual of a linear program. Once the dual is obtained, one can devise intuitive, and possibly physical meaningful, ways of thinking about it. Using this mechanical procedure, one can obtain the dual of a complex linear program in a fairly straightforward manner. Indeed, the LP-duality-based approach derives its wide applicability from this fact.

Also see the text "Convex Optimization" by Boyd and Vandenberghe, chapter 5, for a great discussion on duality.

- Recall, any vector $x \in \mathbb{R}^{E}$ can be seen as a modular function, as for any $A \subseteq E$, we have

$$
\begin{equation*}
x(A)=\sum_{a \in A} x_{a} \tag{8.12}
\end{equation*}
$$

- Given an $A \subseteq E$, define the the incidence vector $\mathbf{1}_{A} \in\{0,1\}^{E}$ on the unit hypercube as follows:

$$
\begin{equation*}
\mathbf{1}_{A} \stackrel{\text { def }}{=}\left\{x \in\{0,1\}^{E}: x_{i}=1 \text { iff } i \in A\right\} \tag{8.13}
\end{equation*}
$$

equivalently,

$$
\mathbf{1}_{A}(j) \stackrel{\text { def }}{=} \begin{cases}1 & \text { if } j \in A \tag{8.14}\\ 0 & \text { if } j \notin A\end{cases}
$$

Matroid

Slight modification (non unit increment) that is equivalent.

Definition 8.6.1 (Matroid-II)

A set system (E, \mathcal{I}) is a Matroid if
(I1') $\emptyset \in \mathcal{I}$
(12') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (or "down-closed")
(I3') $\forall I, J \in \mathcal{I}$, with $|I|>|J|$, then there exists $x \in I \backslash J$ such that $J \cup\{x\} \in \mathcal{I}$

Note $(11)=\left(11^{\prime}\right),(12)=\left(12^{\prime}\right)$, and we get $(13) \equiv\left(13^{\prime}\right)$ using induction.

Independence Polyhedra

- For each $I \in \mathcal{I}$ of a matroid $M=(E, \mathcal{I})$, we can form the incidence vector $\mathbf{1}_{I}$.
- Taking the convex hull, we get the independent set polytope, that is

$$
\begin{equation*}
P_{\text {ind. set }}=\operatorname{conv}\left\{\bigcup_{I \in \mathcal{I}}\left\{\mathbf{1}_{I}\right\}\right\} \tag{8.15}
\end{equation*}
$$

- Since $\left\{\mathbf{1}_{I}: I \in \mathcal{I}\right\} \subseteq P_{\text {ind. set }}$, we have

$$
\max \{w(I): I \in \mathcal{I}\} \leq \max \left\{w^{\top} x: x \in P_{\text {ind. set }}\right\}
$$

- Now take the rank function r of M, and define the following polyhedron:

$$
\begin{equation*}
P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r(A), \forall A \subseteq E\right\} \tag{8.16}
\end{equation*}
$$

- Now, take any $x \in P_{\text {ind. set }}$, then we have that $x \in P_{r}^{+}$(or $\left.P_{\text {ind. set }} \subseteq P_{r}^{+}\right)$. We show this next.
- If $x \in P_{\text {ind. set }}$, then

$$
\begin{equation*}
x=\sum_{i} \lambda_{i} \mathbf{1}_{I_{i}} \tag{8.17}
\end{equation*}
$$

for some appropriate vector $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.

- Clearly, for such $x, x \geq 0$.
- Now, for any $A \subseteq E$,

$$
\begin{align*}
x(A) & =x^{\top} \mathbf{1}_{A}=\sum_{i} \lambda_{i} \mathbf{1}_{I_{i}}{ }^{\top} \mathbf{1}_{A} \tag{8.18}\\
& \leq \sum_{i} \lambda_{i} \max _{j: I_{j} \subseteq A} \mathbf{1}_{I_{j}}(E) \tag{8.19}\\
& =\max _{j: I_{j} \subseteq A} \mathbf{1}_{I_{j}}(E) \tag{8.20}\\
& =r(A) \tag{8.21}
\end{align*}
$$

- Thus, $x \in P_{r}^{+}$and hence $P_{\text {ind. set }} \subseteq P_{r}^{+}$.

Matroid Polyhedron in 2D

$$
\begin{equation*}
P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r(A), \forall A \subseteq E\right\} \tag{8.22}
\end{equation*}
$$

- Consider this in two dimensions. We have equations of the form:

$$
\begin{align*}
x_{1} & \geq 0 \text { and } x_{2} \geq 0 \tag{8.23}\\
x_{1} & \leq r\left(\left\{v_{1}\right\}\right) \tag{8.24}\\
x_{2} & \leq r\left(\left\{v_{2}\right\}\right) \tag{8.25}\\
x_{1}+x_{2} & \leq r\left(\left\{v_{1}, v_{2}\right\}\right) \tag{8.26}
\end{align*}
$$

- Because r is submodular, we have

$$
\begin{equation*}
r\left(\left\{v_{1}\right\}\right)+r\left(\left\{v_{2}\right\}\right) \geq r\left(\left\{v_{1}, v_{2}\right\}\right)+r(\emptyset) \tag{8.27}
\end{equation*}
$$

so since $r\left(\left\{v_{1}, v_{2}\right\}\right) \leq r\left(\left\{v_{1}\right\}\right)+r\left(\left\{v_{2}\right\}\right)$, the last inequality is either touching or active.

Combinatorial Geometries Matroid and Greedy
 Matroid Polyhedron in 2D

Matroid Polyhedron in 2D

Matroid Polyhedron in 3D

$$
\begin{equation*}
P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r(A), \forall A \subseteq E\right\} \tag{8.28}
\end{equation*}
$$

- Consider this in three dimensions. We have equations of the form:

$$
\begin{align*}
x_{1} \geq 0 \text { and } x_{2} & \geq 0 \text { and } x_{3} \geq 0 \tag{8.29}\\
x_{1} & \leq r\left(\left\{v_{1}\right\}\right) \tag{8.30}\\
x_{2} & \leq r\left(\left\{v_{2}\right\}\right) \tag{8.31}\\
x_{3} & \leq r\left(\left\{v_{3}\right\}\right) \tag{8.32}\\
x_{1}+x_{2} & \leq r\left(\left\{v_{1}, v_{2}\right\}\right) \tag{8.33}\\
x_{2}+x_{3} & \leq r\left(\left\{v_{2}, v_{3}\right\}\right) \tag{8.34}\\
x_{1}+x_{3} & \leq r\left(\left\{v_{1}, v_{3}\right\}\right) \tag{8.35}\\
x_{1}+x_{2}+x_{3} & \leq r\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right) \tag{8.36}
\end{align*}
$$

Matroid Polyhedron in 3D

- Consider the simple cycle matroid on a graph consisting of a 3-cycle, $G=(V, E)$ with matroid $M=(E, \mathcal{I})$ where $I \in \mathcal{I}$ is a forest.
- So any set of either one or two edges is independent, and has rank equal to cardinality.
- The set of three edges is dependent, and has rank 2.

Matroid Polyhedron in 3D

Two view of P_{r}^{+}associated with a matroid
$\left(\left\{e_{1}, e_{2}, e_{3}\right\},\left\{\emptyset,\left\{e_{1}\right\},\left\{e_{2}\right\},\left\{e_{3}\right\},\left\{e_{1}, e_{2}\right\},\left\{e_{1}, e_{3}\right\},\left\{e_{2}, e_{3}\right\}\right\}\right)$.

Matroid Polyhedron in 3D

P_{r}^{+}associated with the "free" matroid in 3D.

Another Polytope in 3D

Thought question: what kind of polytope might this be?

Matroid Independence Polyhedron

- So recall from a moment ago, that we have that

$$
\begin{align*}
P_{\text {ind. set }} & =\operatorname{conv}\left\{\cup_{I \in \mathcal{I}}\left\{\mathbf{1}_{I}\right\}\right\} \\
& \subseteq P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r(A), \forall A \subseteq E\right\} \tag{8.37}
\end{align*}
$$

- In fact, the two polyhedra are identical (and thus both are polytopes).
- We'll show this in the next few theorems.

Maximum weight independent set via greedy weighted rank

Theorem 8.6.1

Let $M=(V, \mathcal{I})$ be a matroid, with rank function r, then for any weight function $w \in \mathbb{R}_{+}^{V}$, there exists a chain of sets $U_{1} \subset U_{2} \subset \cdots \subset U_{n} \subseteq V$ such that

$$
\begin{equation*}
\max \{w(I) \mid I \in \mathcal{I}\}=\sum_{i=1}^{n} \lambda_{i} r\left(U_{i}\right) \tag{8.38}
\end{equation*}
$$

where $\lambda_{i} \geq 0$ satisfy

$$
\begin{equation*}
w=\sum_{i=1}^{n} \lambda_{i} \mathbf{1}_{U_{i}} \tag{8.39}
\end{equation*}
$$

Maximum weight independent set via weighted rank

Proof.

- Firstly, note that for any such $w \in \mathbb{R}^{E}$, we have

$$
\begin{gather*}
\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right)=\left(w_{1}-w_{2}\right)\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)+\left(w_{2}-w_{3}\right)\left(\begin{array}{c}
1 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)+ \\
\cdots+\left(w_{n-1}-w_{n}\right)\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
0
\end{array}\right)+\left(w_{n}\right)\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
1
\end{array}\right) \tag{8.40}
\end{gather*}
$$

- If we can take w in decreasing order $\left(w_{1} \geq w_{2} \geq \cdots \geq w_{n}\right)$, then each coefficient of the vectors is non-negative (except possibly the last one, w_{n}).

Maximum weight independent set via weighted rank

Proof.

- Now, again assuming $w \in \mathbb{R}_{+}^{E}$, order the elements of V as $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ such that $w\left(v_{1}\right) \geq w\left(v_{2}\right) \geq \cdots \geq w\left(v_{n}\right)$
- Define the sets U_{i} based on this order as follows, for $i=0, \ldots, n$

$$
\begin{equation*}
U_{i} \stackrel{\text { def }}{=}\left\{v_{1}, v_{2}, \ldots, v_{i}\right\} \tag{8.41}
\end{equation*}
$$

- Define the set I as those elements where the rank increases, i.e.:

$$
\begin{equation*}
I \stackrel{\text { def }}{=}\left\{v_{i} \mid r\left(U_{i}\right)>r\left(U_{i-1}\right)\right\} \tag{8.42}
\end{equation*}
$$

- Therefore, I is the output of the greedy algorithm for $\max \{w(I) \mid I \in \mathcal{I}\}$. since items v_{i} are ordered decreasing by $w\left(v_{i}\right)$, and we only choose the ones that increase the rank, which means they don't violate independence.
- And therefore, I is a maximum weight independent set (even a base, actually).

Combinatorial Geometries
 Maximum weight independent set via weighted rank

Proof.

- Now, we define λ_{i} as follows

$$
\begin{align*}
& \lambda_{i} \stackrel{\text { def }}{=} w\left(v_{i}\right)-w\left(v_{i+1}\right) \text { for } i=1, \ldots, n-1 \tag{8.43}\\
& \lambda_{n} \stackrel{\text { def }}{=} w\left(v_{n}\right) \tag{8.44}
\end{align*}
$$

- And the weight of the independent set $w(I)$ is given by

$$
\begin{align*}
w(I) & =\sum_{v \in I} w(v)=\sum_{i=1}^{n} w\left(v_{i}\right)\left(r\left(U_{i}\right)-r\left(U_{i-1}\right)\right) \tag{8.45}\\
& =w\left(v_{n}\right) r\left(U_{n}\right)+\sum_{i=1}^{n-1}\left(w\left(v_{i}\right)-w\left(v_{i+1}\right)\right) r\left(U_{i}\right)=\sum_{i=1}^{n} \lambda_{i} r\left(U_{i}\right) \tag{8.46}
\end{align*}
$$

- Since we took v_{1}, v_{2}, \ldots in decreasing order, for all i, and since $w \in \mathbb{R}_{+}^{E}$, we have $\lambda_{i} \geq 0$

