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Logistics Review

Cumulative Outstanding Reading

Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

Homework 1 is out, due Wednesday April 23rd, 11:45pm,
electronically via our assignment dropbox
(https://canvas.uw.edu/courses/895956/assignments).

All homeworks must be done electronically, only PDF file format
accepted.

Weekly O�ce Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).

Prof. Je↵ Bilmes EE596b/Spring 2014/Submodularity - Lecture 8 - April 23rd, 2014 F3/54 (pg.3/195)



Logistics Review

Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &

Basic Definitions

L2: (4/2): Applications, Basic

Definitions, Properties

L3: More examples and properties (e.g.,

closure properties), and examples,

spanning trees

L4: proofs of equivalent definitions,

independence, start matroids

L5: matroids, basic definitions and

examples

L6: More on matroids, System of

Distinct Reps, Transversals, Transversal

Matroid, Matroid and representation

L7: Dual Matroids, other matroid

properties, Combinatorial Geometries

L8: Combinatorial Geometries, matroids

and greedy, Polyhedra, Matroid

Polytopes,

L9:

L10:

L11:

L12:

L13:

L14:

L15:

L16:

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Logistics Review

Matroid Operations

Matroid restriction/deletion

Matroid contraction

Matroid minor (series of deletions & contractions)

Matroid intersection and its rank (convolution)

Matroid union and its rank (convolution)
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Logistics Review

Matroids of three or fewer elements are graphic

All matroids up to and including three elements are graphic.

(a) The only
matroid with zero
elements.

(b) The two
one-element
matroids.

(c) The four
two-element
matroids.

(d) The eight
three-element
matroids.

This is a nice way to show matroids with low ground set sizes. What
about matroids that are low rank but with many elements?
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Logistics Review

A�ne Matroids

Given an n⇥m matrix with entries over some field F, we say that a
subset S ✓ {1, . . . ,m} of indices (with corresponding column
vectors {vi : i 2 S}, with |S| = k) is a�nely dependent if m � 1

and there exists elements {a1, . . . , ak} 2 F, not all zero with
Pk

i=1 ai = 0, such that
Pk

i=1 aivi = 0.
Otherwise, the set is called a�nely independent.
Concisely: points {v1, v2, . . . , vk} are a�nely independent if
v2 � v1, v3 � v1, . . . , vk � v1 are linearly independent.
Example: in 2D, three collinear points are a�nely dependent, three
non-collear points are a�nely independent, and � 4 non-collinear
points are a�nely dependent.

Proposition 8.2.7 (a�ne matroid)

Let ground set E = {1, . . . ,m} index column vectors of a matrix, and let
I be the set of subsets X of E such that X indices a�nely independent
vectors. Then (E, I) is a matroid.

Exercise: prove this.
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Logistics Review

Euclidean Representation of Low-rank Matroids

Consider the a�ne matroid with n⇥m = 2⇥ 6 matrix on the field
F = R, and let the elements be
{(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)}.

We can plot the points in R2 as on the right:

Points have rank 1, lines have rank 2, planes
have rank 3.

Flats (points, lines, planes, etc.) have rank equal
to one more than their geometric dimension.

Any two points constitute a line, but lines with
only two points are not drawn.

Lines indicate collinear sets with � 3 points,
while any two points have rank 2.

Dependent sets consist of all subsets with � 4

elements (rank 3), or 3 collinear elements (rank
2). Any two points have rank 2.

x

y

(0,1) (0,2)

(1,1)(1,0)

(2,0)

(0,0)
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Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Euclidean Representation of Low-rank Matroids

As another example
on the right, a rank 4
matroid (0,0,0)

(0,0,1)
(0,1,1)

(0,1,0)

(1,1,0)
(1,0,0)

A
B

C D

E F

All sets of 5 points are dependent. The only other sets of dependent
points are coplanar ones of size 4. Namely:
{(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0)},
{(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0)}, and
{(0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 0, 0)}.
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Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Euclidean Representation of Low-rank Matroids

As another example
on the right, a rank 4
matroid (0,0,0)

(0,0,1)
(0,1,1)

(0,1,0)

(1,1,0)
(1,0,0)

A
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C D

E F

All sets of 5 points are dependent. The only other sets of dependent
points are coplanar ones of size 4. Namely:
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{(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0)}, and
{(0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 0, 0)}.

Prof. Je↵ Bilmes EE596b/Spring 2014/Submodularity - Lecture 8 - April 23rd, 2014 F9/54 (pg.10/195)



Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Euclidean Representation of Low-rank Matroids

In general, for a matroid M of rank m+ 1 with m  3, then a
subset X in a geometric representation in Rm is dependent if:

1 |X| � 2 and the points are identical;
2 |X| � 3 and the points are collinear;
3 |X| � 4 and the points are coplanar; or
4 |X| � 5 and the points are in space.

When they exist, loops are represented in a geometry by a separate
box indicating how many loops there are.

Parallel elements, when they exist in a matroid, are indicated by a
multiplicity next to a point.

Theorem 8.3.1

Any matroid of rank m  4 can be represented by an a�ne matroid in
Rm�1.
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Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes
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Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Euclidean Rep. of Low-rank Matroids: Conditions
rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines,
planes).

a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).
every line contains at least two points (not dependent unless > 2).
any two distinct points lie on a line (often not drawn when only two)
every plane contains at least three non-collinear points (not
dependent unless > 3)
any three distinct non-collinear points lie on a plane
If diagram has at most one plane, then any two distinct lines meet
in at most one point.
If diagram has more than one plane, then: 1) any two distinct
planes meeting in more than two points do so in a line; 2) any two
distinct lines meeting in a point do so in at most one point and lie in
on a common plane; 3) any line not lying on a plane intersects it in
at most one point.
(see Oxley 2011 for more details).
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Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes
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Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes
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Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes
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Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Euclidean Representation of Low-rank Matroids

Very useful for graphically depicting low-rank matrices but which
still have rich structure. Also useful for answering questions.

Example: Is there a matroid that is not representable (i.e., not linear
for some field)?

Yes, consider the matroid

Called the non-Pappus matroid. Has rank three, but any matric
matroid with the above dependencies would require that {7, 8, 9} is
dependent, hence requiring an additional line in the above.
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Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Euclidean Representation of Low-rank Matroids

Very useful for graphically depicting low-rank matrices but which
still have rich structure. Also useful for answering questions.

Example: Is there a matroid that is not representable (i.e., not linear
for some field)? Yes, consider the matroid

1

7
8

9

2 3

654
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Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Euclidean Representation of Low-rank Matroids: A test

Is this a matroid?

1 2 3

4

7

5

6

Check rank’s submodularity: Let X = {1, 2, 3, 6, 7},
Y = {1, 4, 5, 6, 7}. So r(X) =

3, and r(Y ) =

3

, and r(X [ Y ) =

4

,
so we must have, by submodularity, that
r({1, 6, 7}) = r(X \ Y )  r(X) + r(Y )� r(X [ Y ) = 2.

However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that r(X \ Y ) =

3

If we extend the line from 6-7 to 1, then is it a matroid?

Hence, not all 2D or 3D graphs of points and lines are matroids.

Prof. Je↵ Bilmes EE596b/Spring 2014/Submodularity - Lecture 8 - April 23rd, 2014 F13/54 (pg.32/195)



Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Euclidean Representation of Low-rank Matroids: A test

Is this a matroid?

1 2 3

4

7

5

6

Check rank’s submodularity: Let X = {1, 2, 3, 6, 7},
Y = {1, 4, 5, 6, 7}. So r(X) =

Prof. Je↵ Bilmes EE596b/Spring 2014/Submodularity - Lecture 8 - April 23rd, 2014 F13/54 (pg.33/195)



Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Euclidean Representation of Low-rank Matroids: A test
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Check rank’s submodularity: Let X = {1, 2, 3, 6, 7},
Y = {1, 4, 5, 6, 7}. So r(X) = 3
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Euclidean Representation of Low-rank Matroids: A test

Is this a matroid?

1 2 3
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7
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Check rank’s submodularity: Let X = {1, 2, 3, 6, 7},
Y = {1, 4, 5, 6, 7}. So r(X) = 3, and r(Y ) =
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Euclidean Representation of Low-rank Matroids: A test

Is this a matroid?

1 2 3

4

7

5

6

Check rank’s submodularity: Let X = {1, 2, 3, 6, 7},
Y = {1, 4, 5, 6, 7}. So r(X) = 3, and r(Y ) = 3

, and r(X [ Y ) =

4

,
so we must have, by submodularity, that
r({1, 6, 7}) = r(X \ Y )  r(X) + r(Y )� r(X [ Y ) = 2.

However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that r(X \ Y ) =

3

If we extend the line from 6-7 to 1, then is it a matroid?

Hence, not all 2D or 3D graphs of points and lines are matroids.
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Check rank’s submodularity: Let X = {1, 2, 3, 6, 7},
Y = {1, 4, 5, 6, 7}. So r(X) = 3, and r(Y ) = 3, and r(X [ Y ) = 4,
so we must have, by submodularity, that
r({1, 6, 7}) = r(X \ Y )  r(X) + r(Y )� r(X [ Y ) = 2.
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Hence, not all 2D or 3D graphs of points and lines are matroids.
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so we must have, by submodularity, that
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Euclidean Representation of Low-rank Matroids: A test

Is this a matroid?
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If we extend the line from 6-7 to 1, then is it a matroid?

Hence, not all 2D or 3D graphs of points and lines are matroids.
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Matroid?

Consider the following geometry on |V | = 8 points with
V = {a, b, c, d, e, f, g, h}.

a

b

c

de

f

g

hh

Note, we are given that the points {b, d, h, f} are not coplanar.
However, the following sets of points are coplanar: {a, b, e, f},
{d, c, g, h}, {a, d, h, e}, {b, c, g, f}, {b, c, d, a}, {f, g, h, e}, and
{a, c, g, e}.
Exercise: Is this a matroid? Exercise: If so, is it representable?
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Matroid?

Consider the following geometry on |V | = 8 points with
V = {a, b, c, d, e, f, g, h}.

a

b

c

de

f

g

hh

Note, we are given that the points {b, d, h, f} are not coplanar.
However, the following sets of points are coplanar: {a, b, e, f},
{d, c, g, h}, {a, d, h, e}, {b, c, g, f}, {b, c, d, a}, {f, g, h, e}, and
{a, c, g, e}.
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Matroid?

Consider the following geometry on |V | = 8 points with
V = {a, b, c, d, e, f, g, h}.

a

b

c

de

f

g

hh

Note, we are given that the points {b, d, h, f} are not coplanar.
However, the following sets of points are coplanar: {a, b, e, f},
{d, c, g, h}, {a, d, h, e}, {b, c, g, f}, {b, c, d, a}, {f, g, h, e}, and
{a, c, g, e}.
Exercise: Is this a matroid? Exercise: If so, is it representable?
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Projective Geometries: Other Examples

Other examples can be more complex, consider the following two
matroids (from Oxley, 2011):

a b c

d e f

g
h i

m

j
l

k
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Projective Geometries: Other Examples

Other examples can be more complex, consider the following two
matroids (from Oxley, 2011):

a b c

d e f

g
h i

m

j
l

k

Right: a matroid (and a 2D depiction of a geometry) over the field
GF(3) = {0, 1, 2} mod 3 and is “coordinatizable” in GF(3)3.
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Projective Geometries: Other Examples

Other examples can be more complex, consider the following two
matroids (from Oxley, 2011):

a b c

d e f

g
h i

m

j
l

k

Right: a matroid (and a 2D depiction of a geometry) over the field
GF(3) = {0, 1, 2} mod 3 and is “coordinatizable” in GF(3)3.
Hence, lines (in 2D) which are rank 2 sets may be curved; planes (in
3D) can be twisted.
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Matroids, Representation and Equivalence: Summary

Matroids with |V |  3 are graphic.

Matroids with r(V )  4 can be geometrically represented in R3.

Not all matroids are linear (i.e., matric) matroids.

Matroids can be seen as related to projective geometries (and are
sometimes called combinatorial geometries).

Exists much research on di↵erent subclasses of matroids, and
if/when they are contained in (or isomorphic to) each other.
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Matroid Further Reading

“The Coming of the Matroids”, William Cunningham, 2012 (a nice
history)

Welsh, “Matroid Theory”, 1975.

Oxley, “Matroid Theory”, 1992 (and 2011) (perhaps best “single
source” on matroids right now).

Crapo & Rota, “On the Foundations of Combinatorial Theory:
Combinatorial Geometries”, 1970 (while this is old, it is very
readable).

Lawler, “Combinatorial Optimization: Networks and Matroids”,
1976.

Schrijver, “Combinatorial Optimization”, 2003
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The greedy algorithm

In combinatorial optimization, the greedy algorithm is often useful
as a heuristic that can work quite well in practice.

The goal is to choose a good subset of items, and the fundamental
tenet of the greedy algorithm is to choose next whatever currently
looks best, without the possibility of later recall or backtracking.

Sometimes, this gives the optimal solution (we saw three greedy
algorithms that can find the maximum weight spanning tree).

Greedy is good since it can be made to run very fast O(n log n).

Often, however, greedy is heuristic (it might work well in practice,
but worst-case performance can be unboundedly poor).

We will next see that the greedy algorithm working is a defining
property of a matroid, and is also a defining property of a
polymatroid function.
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Matroid and the greedy algorithm

Let (E, I) be an independence system, and we are given a
non-negative modular weight function w : E ! R+.
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Matroid and the greedy algorithm

Let (E, I) be an independence system, and we are given a
non-negative modular weight function w : E ! R+.

Algorithm 1: The Matroid Greedy Algorithm

1 Set X  ; ;
2 while 9v 2 E \X s.t. X [ {v} 2 I do

3 v 2 argmax {w(v) : v 2 E \X, X [ {v} 2 I} ;
4 X  X [ {v} ;
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Matroid and the greedy algorithm

Let (E, I) be an independence system, and we are given a
non-negative modular weight function w : E ! R+.

Algorithm 1: The Matroid Greedy Algorithm

1 Set X  ; ;
2 while 9v 2 E \X s.t. X [ {v} 2 I do

3 v 2 argmax {w(v) : v 2 E \X, X [ {v} 2 I} ;
4 X  X [ {v} ;

Same as sorting items by decreasing weight w, and then choosing
items in that order that retain independence.

Theorem 8.4.1

Let (E, I) be an independence system. Then the pair (E, I) is a matroid
if and only if for each weight function w 2 RE

+, Algorithm 1 leads to a
set I 2 I of maximum weight w(I).
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items in that order that retain independence.

Theorem 8.4.1

Let (E, I) be an independence system. Then the pair (E, I) is a matroid
if and only if for each weight function w 2 RE

+, Algorithm 1 leads to a
set I 2 I of maximum weight w(I).
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Review

The next slide is from Lecture 5.
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 8.4.1 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then
the following are equivalent.

1 B is the collection of bases of a matroid;

2 if B,B0 2 B, and x 2 B0 \B, then B0 � x+ y 2 B for some
y 2 B \B0.

3 If B,B0 2 B, and x 2 B0 \B, then B � y + x 2 B for some
y 2 B \B0.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of
linear spaces and matrices, and (alternatively) spanning trees.
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Matroid and the greedy algorithm

proof of Theorem 8.4.1.

Assume (E, I) is a matroid and w : E ! R+ is given.

Let A = (a1, a2, . . . , ar) be the solution returned by greedy, where
r = r(M) the rank of the matroid, and we order the elements as
they were chosen (so w(a1) � w(a2) � · · · � w(ar)).

A is a base of M , and let B = (b1, . . . , br) be any another base of
M with elements also ordered decreasing by weight.

We next show that not only is w(A) � w(B) but that
w(ai) � w(bi) for all i.

. . .

Prof. Je↵ Bilmes EE596b/Spring 2014/Submodularity - Lecture 8 - April 23rd, 2014 F22/54 (pg.73/195)



Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Matroid and the greedy algorithm

proof of Theorem 8.4.1.

Assume (E, I) is a matroid and w : E ! R+ is given.

Let A = (a1, a2, . . . , ar) be the solution returned by greedy, where
r = r(M) the rank of the matroid, and we order the elements as
they were chosen (so w(a1) � w(a2) � · · · � w(ar)).

. . .
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Matroid and the greedy algorithm

proof of Theorem 8.4.1.

Assume (E, I) is a matroid and w : E ! R+ is given.

Let A = (a1, a2, . . . , ar) be the solution returned by greedy, where
r = r(M) the rank of the matroid, and we order the elements as
they were chosen (so w(a1) � w(a2) � · · · � w(ar)).

A is a base of M , and let B = (b1, . . . , br) be any another base of
M with elements also ordered decreasing by weight.

. . .
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Matroid and the greedy algorithm

proof of Theorem 8.4.1.

Assume (E, I) is a matroid and w : E ! R+ is given.

Let A = (a1, a2, . . . , ar) be the solution returned by greedy, where
r = r(M) the rank of the matroid, and we order the elements as
they were chosen (so w(a1) � w(a2) � · · · � w(ar)).

A is a base of M , and let B = (b1, . . . , br) be any another base of
M with elements also ordered decreasing by weight.

We next show that not only is w(A) � w(B) but that
w(ai) � w(bi) for all i. . . .
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Matroid and the greedy algorithm

proof of Theorem 8.4.1.

Assume otherwise, and let k be the first (smallest) integer such that
w(ak) < w(bk). Hence w(aj) � w(bj) for j < k.

. . .
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Matroid and the greedy algorithm

proof of Theorem 8.4.1.

Assume otherwise, and let k be the first (smallest) integer such that
w(ak) < w(bk). Hence w(aj) � w(bj) for j < k.

Define independent sets Ak�1 = {a1, . . . , ak�1} and
Bk = {b1, . . . , bk}.

. . .

Prof. Je↵ Bilmes EE596b/Spring 2014/Submodularity - Lecture 8 - April 23rd, 2014 F22/54 (pg.78/195)



Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Matroid and the greedy algorithm

proof of Theorem 8.4.1.

Assume otherwise, and let k be the first (smallest) integer such that
w(ak) < w(bk). Hence w(aj) � w(bj) for j < k.

Define independent sets Ak�1 = {a1, . . . , ak�1} and
Bk = {b1, . . . , bk}.
Since |Ak�1| < |Bk|, there exists a bi /2 Ak�1 where
Ak�1 [ {bi} 2 I for some 1  i  k.

. . .
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Matroid and the greedy algorithm

proof of Theorem 8.4.1.

Assume otherwise, and let k be the first (smallest) integer such that
w(ak) < w(bk). Hence w(aj) � w(bj) for j < k.

Define independent sets Ak�1 = {a1, . . . , ak�1} and
Bk = {b1, . . . , bk}.
Since |Ak�1| < |Bk|, there exists a bi /2 Ak�1 where
Ak�1 [ {bi} 2 I for some 1  i  k.

But w(bi) � w(bk) > w(ak), and so the greedy algorithm would
have chosen bi rather than ak, contradicting what greedy does.
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Matroid and the greedy algorithm

converse proof of Theorem 8.4.1.

Given an independence system (E, I), suppose the greedy algorithm
leads to an independent set of max weight for every non-negative
weight function. We’ll show (E, I) is a matroid.

Emptyset containing and down monotonicity already holds (since
we’ve started with an independence system).

Let I, J 2 I with |I| < |J |. Suppose to the contrary, that
I [ {z} /2 I for all z 2 J \ I.
Define the following modular weight function w on E, and define
k = |I|.

w(v) =

8

>

<

>

:

k + 2 if v 2 I,

k + 1 if v 2 J \ I,
0 if v 2 E \ (I [ J)

(8.1)

. . .
Prof. Je↵ Bilmes EE596b/Spring 2014/Submodularity - Lecture 8 - April 23rd, 2014 F23/54 (pg.81/195)



Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Matroid and the greedy algorithm

converse proof of Theorem 8.4.1.

Given an independence system (E, I), suppose the greedy algorithm
leads to an independent set of max weight for every non-negative
weight function. We’ll show (E, I) is a matroid.

Emptyset containing and down monotonicity already holds (since
we’ve started with an independence system).

Let I, J 2 I with |I| < |J |. Suppose to the contrary, that
I [ {z} /2 I for all z 2 J \ I.
Define the following modular weight function w on E, and define
k = |I|.

w(v) =

8

>

<

>

:

k + 2 if v 2 I,

k + 1 if v 2 J \ I,
0 if v 2 E \ (I [ J)

(8.1)
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Matroid and the greedy algorithm

converse proof of Theorem 8.4.1.

Given an independence system (E, I), suppose the greedy algorithm
leads to an independent set of max weight for every non-negative
weight function. We’ll show (E, I) is a matroid.

Emptyset containing and down monotonicity already holds (since
we’ve started with an independence system).

Let I, J 2 I with |I| < |J |. Suppose to the contrary, that
I [ {z} /2 I for all z 2 J \ I.
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Matroid and the greedy algorithm

converse proof of Theorem 8.4.1.

Given an independence system (E, I), suppose the greedy algorithm
leads to an independent set of max weight for every non-negative
weight function. We’ll show (E, I) is a matroid.

Emptyset containing and down monotonicity already holds (since
we’ve started with an independence system).

Let I, J 2 I with |I| < |J |. Suppose to the contrary, that
I [ {z} /2 I for all z 2 J \ I.
Define the following modular weight function w on E, and define
k = |I|.

w(v) =

8

>

<

>

:

k + 2 if v 2 I,

k + 1 if v 2 J \ I,
0 if v 2 E \ (I [ J)

(8.1)

. . .
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Matroid and the greedy algorithm

converse proof of Theorem 8.4.1.

Now greedy will, after k iterations, recover I, but it cannot choose
any element in J \ I by assumption. Thus, greedy chooses a set of
weight k(k + 2).

. . .
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Matroid and the greedy algorithm

converse proof of Theorem 8.4.1.

Now greedy will, after k iterations, recover I, but it cannot choose
any element in J \ I by assumption. Thus, greedy chooses a set of
weight k(k + 2).

On the other hand, J has weight

w(J) � |J |(k + 1) � (k + 1)(k + 1) > k(k + 2) (8.2)

so J has strictly larger weight but is still independent, contradicting
greedy’s optimality.

. . .
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Matroid and the greedy algorithm

converse proof of Theorem 8.4.1.

Now greedy will, after k iterations, recover I, but it cannot choose
any element in J \ I by assumption. Thus, greedy chooses a set of
weight k(k + 2).

On the other hand, J has weight

w(J) � |J |(k + 1) � (k + 1)(k + 1) > k(k + 2) (8.2)

so J has strictly larger weight but is still independent, contradicting
greedy’s optimality.

Therefore, there must be a z 2 J \ I such that I [ {z} /2 I, and
since I and J are arbitrary, (E, I) must be a matroid.
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Matroid and greedy

As given, the theorem asked for a modular function w 2 RE
+.

This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

We don’t need non-negativity, we can use any w 2 RE and keep
going until we have a base.

If we stop at a negative value, we’ll once again get a maximum
weight independent set.

Exercise: what if we keep going until a base even if we encounter
negative values?

We can instead do as small as possible thus giving us a minimum
weight independent set/base.
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Matroid and greedy

As given, the theorem asked for a modular function w 2 RE
+.

This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

We don’t need non-negativity, we can use any w 2 RE and keep
going until we have a base.

If we stop at a negative value, we’ll once again get a maximum
weight independent set.

Exercise: what if we keep going until a base even if we encounter
negative values?

We can instead do as small as possible thus giving us a minimum
weight independent set/base.

Prof. Je↵ Bilmes EE596b/Spring 2014/Submodularity - Lecture 8 - April 23rd, 2014 F24/54 (pg.89/195)



Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Matroid and greedy

As given, the theorem asked for a modular function w 2 RE
+.

This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

We don’t need non-negativity, we can use any w 2 RE and keep
going until we have a base.

If we stop at a negative value, we’ll once again get a maximum
weight independent set.

Exercise: what if we keep going until a base even if we encounter
negative values?

We can instead do as small as possible thus giving us a minimum
weight independent set/base.
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Matroid and greedy

As given, the theorem asked for a modular function w 2 RE
+.

This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

We don’t need non-negativity, we can use any w 2 RE and keep
going until we have a base.

If we stop at a negative value, we’ll once again get a maximum
weight independent set.

Exercise: what if we keep going until a base even if we encounter
negative values?

We can instead do as small as possible thus giving us a minimum
weight independent set/base.
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Matroid and greedy

As given, the theorem asked for a modular function w 2 RE
+.

This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

We don’t need non-negativity, we can use any w 2 RE and keep
going until we have a base.

If we stop at a negative value, we’ll once again get a maximum
weight independent set.

Exercise: what if we keep going until a base even if we encounter
negative values?

We can instead do as small as possible thus giving us a minimum
weight independent set/base.
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Matroid and greedy

As given, the theorem asked for a modular function w 2 RE
+.

This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

We don’t need non-negativity, we can use any w 2 RE and keep
going until we have a base.

If we stop at a negative value, we’ll once again get a maximum
weight independent set.

Exercise: what if we keep going until a base even if we encounter
negative values?

We can instead do as small as possible thus giving us a minimum
weight independent set/base.
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Matroid and greedy

As given, the theorem asked for a modular function w 2 RE
+.

This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

We don’t need non-negativity, we can use any w 2 RE and keep
going until we have a base.

If we stop at a negative value, we’ll once again get a maximum
weight independent set.

Exercise: what if we keep going until a base even if we encounter
negative values?

We can instead do as small as possible thus giving us a minimum
weight independent set/base.
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Summary of Important (for us) Matroid Definitions

Given an independence system, matroids are defined equivalently by any
of the following:

All maximally independent sets have the same size.

A monotone non-decreasing submodular integral rank function with
unit increments.

The greedy algorithm achieves the maximum weight independent set
for all weight functions.
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Convex Polyhedra

Convex polyhedra a rich topic, we will only draw what we need.

Definition 8.5.1

A subset P ✓ RE is a polyhedron if there exists an m⇥ n matrix A and
vector b 2 RE (for some m � 0) such that

P = {x : Ax  b} (8.3)

Thus, P is intersection of finitely many a�ne halfspaces, which are
of the form aix  bi where ai is a row vector and bi a real scalar.
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Convex Polyhedra

Convex polyhedra a rich topic, we will only draw what we need.

Definition 8.5.1

A subset P ✓ RE is a polyhedron if there exists an m⇥ n matrix A and
vector b 2 RE (for some m � 0) such that

P = {x : Ax  b} (8.3)

Prof. Je↵ Bilmes EE596b/Spring 2014/Submodularity - Lecture 8 - April 23rd, 2014 F26/54 (pg.97/195)



Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Convex Polyhedra

Convex polyhedra a rich topic, we will only draw what we need.

Definition 8.5.1

A subset P ✓ RE is a polyhedron if there exists an m⇥ n matrix A and
vector b 2 RE (for some m � 0) such that

P = {x : Ax  b} (8.3)

Thus, P is intersection of finitely many a�ne halfspaces, which are
of the form aix  bi where ai is a row vector and bi a real scalar.
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Convex Polytope

A polytope is defined as follows

Definition 8.5.2

A subset P ✓ RE is a polytope if it is the convex hull of finitely many
vectors in RE . That is, if 9, x1, x2, . . . , xk 2 RE such that for all x 2 P ,
there exits {�i} with

P

i �i = 1 and �i � 0 8i with x =

P

i �ixi.

We define the convex hull operator as follows:

conv(x1, x2, . . . , xk)
def
=

(

k
X

i=1

�ixi : 8i, �i � 0, and
X

i

�i = 1

)

(8.4)
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Convex Polytope

A polytope is defined as follows

Definition 8.5.2

A subset P ✓ RE is a polytope if it is the convex hull of finitely many
vectors in RE . That is, if 9, x1, x2, . . . , xk 2 RE such that for all x 2 P ,
there exits {�i} with

P

i �i = 1 and �i � 0 8i with x =

P

i �ixi.
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Convex Polytope

A polytope is defined as follows

Definition 8.5.2

A subset P ✓ RE is a polytope if it is the convex hull of finitely many
vectors in RE . That is, if 9, x1, x2, . . . , xk 2 RE such that for all x 2 P ,
there exits {�i} with

P

i �i = 1 and �i � 0 8i with x =

P

i �ixi.

We define the convex hull operator as follows:

conv(x1, x2, . . . , xk)
def
=

(

k
X

i=1

�ixi : 8i, �i � 0, and
X

i

�i = 1

)

(8.4)

Prof. Je↵ Bilmes EE596b/Spring 2014/Submodularity - Lecture 8 - April 23rd, 2014

F27/54 (pg.101/195)



Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Convex Polytope - key representation theorem

A polytope can be defined in a number of ways, two of which include

Theorem 8.5.3

A subset P ✓ RE is a polytope iff it can be described in either of the
following (equivalent) ways:

P is the convex hull of a finite set of points.

If it is a bounded intersection of halfspaces, that is there exits matrix A
and vector b such that

P = {x : Ax  b} (8.5)
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Convex Polytope - key representation theorem

A polytope can be defined in a number of ways, two of which include

Theorem 8.5.3

A subset P ✓ RE is a polytope iff it can be described in either of the
following (equivalent) ways:

P is the convex hull of a finite set of points.

If it is a bounded intersection of halfspaces, that is there exits matrix A
and vector b such that

P = {x : Ax  b} (8.5)

This result follows directly from results proven by Fourier, Motzkin,
Farkas, and Carátheodory.
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Linear Programming

Theorem 8.5.4 (weak duality)

Let A be a matrix and b and c vectors, then

max {c|x|Ax  b}  min {y|b : y � 0, y|A = c|} (8.6)
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Linear Programming

Theorem 8.5.4 (weak duality)

Let A be a matrix and b and c vectors, then

max {c|x|Ax  b}  min {y|b : y � 0, y|A = c|} (8.6)

Theorem 8.5.5 (strong duality)

Let A be a matrix and b and c vectors, then

max {c|x|Ax  b} = min {y|b : y � 0, y|A = c|} (8.7)
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Linear Programming duality forms

There are many ways to construct the dual. For example,

max {c|x|x � 0, Ax  b} = min {y|b|y � 0, y|A � c|} (8.8)
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Linear Programming duality forms

There are many ways to construct the dual. For example,

max {c|x|x � 0, Ax  b} = min {y|b|y � 0, y|A � c|} (8.8)

max {c|x|x � 0, Ax = b} = min {y|b|y|A � c|} (8.9)
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Linear Programming duality forms

There are many ways to construct the dual. For example,

max {c|x|x � 0, Ax  b} = min {y|b|y � 0, y|A � c|} (8.8)

max {c|x|x � 0, Ax = b} = min {y|b|y|A � c|} (8.9)

min {c|x|x � 0, Ax � b} = max {y|b|y � 0, y|A  c|} (8.10)

min {c|x|Ax � b} = max {y|b|y � 0, y|A = c|} (8.11)
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Linear Programming duality forms

How to form the dual in general? We quote V. Vazirani (2001)

Intuitively, why is [one set of equations] the dual of [another
quite di↵erent set of equations]? In our experience, this is not
the right question to be asked. As stated in Section 12.1, there
is a purely mechanical procedure for obtaining the dual of a
linear program. Once the dual is obtained, one can devise
intuitive, and possibly physical meaningful, ways of thinking
about it. Using this mechanical procedure, one can obtain the
dual of a complex linear program in a fairly straightforward
manner. Indeed, the LP-duality-based approach derives its wide
applicability from this fact.

Also see the text “Convex Optimization” by Boyd and Vandenberghe,
chapter 5, for a great discussion on duality.
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Linear Programming duality forms

How to form the dual in general? We quote V. Vazirani (2001)

Intuitively, why is [one set of equations] the dual of [another
quite di↵erent set of equations]? In our experience, this is not
the right question to be asked. As stated in Section 12.1, there
is a purely mechanical procedure for obtaining the dual of a
linear program. Once the dual is obtained, one can devise
intuitive, and possibly physical meaningful, ways of thinking
about it. Using this mechanical procedure, one can obtain the
dual of a complex linear program in a fairly straightforward
manner. Indeed, the LP-duality-based approach derives its wide
applicability from this fact.

Also see the text “Convex Optimization” by Boyd and Vandenberghe,
chapter 5, for a great discussion on duality.
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Vector, modular, incidence

Recall, any vector x 2 RE can be seen as a modular function, as for
any A ✓ E, we have

x(A) =

X

a2A
xa (8.12)

Given an A ✓ E, define the the incidence vector 1A 2 {0, 1}E on
the unit hypercube as follows:

1A
def
=

n

x 2 {0, 1}E : xi = 1 iff i 2 A
o

(8.13)

equivalently,

1A(j)
def
=

(

1 if j 2 A

0 if j /2 A
(8.14)
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Given an A ✓ E, define the the incidence vector 1A 2 {0, 1}E on
the unit hypercube as follows:
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def
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equivalently,
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def
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Matroid

Slight modification (non unit increment) that is equivalent.

Definition 8.6.1 (Matroid-II)

A set system (E, I) is a Matroid if

(I1’) ; 2 I
(I2’) 8I 2 I, J ⇢ I ) J 2 I (or “down-closed”)

(I3’) 8I, J 2 I, with |I| > |J |, then there exists x 2 I \ J such that
J [ {x} 2 I

Note (I1)=(I1’), (I2)=(I2’), and we get (I3)⌘(I3’) using induction.
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Independence Polyhedra

For each I 2 I of a matroid M = (E, I), we can form the incidence
vector 1I .
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Independence Polyhedra

For each I 2 I of a matroid M = (E, I), we can form the incidence
vector 1I .

Taking the convex hull, we get the independent set polytope, that is

P
ind. set

= conv

(

[

I2I
{1I}

)

(8.15)
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Independence Polyhedra

For each I 2 I of a matroid M = (E, I), we can form the incidence
vector 1I .

Taking the convex hull, we get the independent set polytope, that is

P
ind. set

= conv

(

[

I2I
{1I}

)

(8.15)

Since {1I : I 2 I} ✓ P
ind. set

, we have
max {w(I) : I 2 I}  max {w|x : x 2 P

ind. set

}.
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Independence Polyhedra

For each I 2 I of a matroid M = (E, I), we can form the incidence
vector 1I .

Taking the convex hull, we get the independent set polytope, that is

P
ind. set

= conv

(

[

I2I
{1I}

)

(8.15)

Since {1I : I 2 I} ✓ P
ind. set

, we have
max {w(I) : I 2 I}  max {w|x : x 2 P

ind. set

}.
Now take the rank function r of M , and define the following
polyhedron:

P+
r =

�

x 2 RE
: x � 0, x(A)  r(A), 8A ✓ E

 

(8.16)
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Independence Polyhedra

For each I 2 I of a matroid M = (E, I), we can form the incidence
vector 1I .

Taking the convex hull, we get the independent set polytope, that is

P
ind. set

= conv

(

[

I2I
{1I}

)

(8.15)

Since {1I : I 2 I} ✓ P
ind. set

, we have
max {w(I) : I 2 I}  max {w|x : x 2 P

ind. set

}.
Now take the rank function r of M , and define the following
polyhedron:

P+
r =

�

x 2 RE
: x � 0, x(A)  r(A), 8A ✓ E

 

(8.16)

Now, take any x 2 P
ind. set

, then we have that x 2 P+
r (or

P
ind. set

✓ P+
r ). We show this next.
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Pind. set ✓ P+

r

If x 2 P
ind. set

, then

x =

X

i

�i1Ii (8.17)

for some appropriate vector � = (�1,�2, . . . ,�n).
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Pind. set ✓ P+

r

If x 2 P
ind. set

, then

x =

X

i

�i1Ii (8.17)

for some appropriate vector � = (�1,�2, . . . ,�n).
Clearly, for such x, x � 0.
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Pind. set ✓ P+

r

If x 2 P
ind. set

, then

x =

X

i

�i1Ii (8.17)

for some appropriate vector � = (�1,�2, . . . ,�n).
Clearly, for such x, x � 0.
Now, for any A ✓ E,

x(A) = x|1A =

X

i

�i1Ii
|1A (8.18)

Prof. Je↵ Bilmes EE596b/Spring 2014/Submodularity - Lecture 8 - April 23rd, 2014

F35/54 (pg.122/195)



Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Pind. set ✓ P+

r

If x 2 P
ind. set

, then

x =

X

i

�i1Ii (8.17)

for some appropriate vector � = (�1,�2, . . . ,�n).
Clearly, for such x, x � 0.
Now, for any A ✓ E,

x(A) = x|1A =

X

i

�i1Ii
|1A (8.18)


X

i

�i max

j:Ij✓A
1Ij (E) (8.19)
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Pind. set ✓ P+

r

If x 2 P
ind. set

, then

x =

X

i

�i1Ii (8.17)

for some appropriate vector � = (�1,�2, . . . ,�n).
Clearly, for such x, x � 0.
Now, for any A ✓ E,

x(A) = x|1A =

X

i

�i1Ii
|1A (8.18)


X

i

�i max

j:Ij✓A
1Ij (E) (8.19)

= max

j:Ij✓A
1Ij (E) (8.20)
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Pind. set ✓ P+

r

If x 2 P
ind. set

, then

x =

X

i

�i1Ii (8.17)

for some appropriate vector � = (�1,�2, . . . ,�n).
Clearly, for such x, x � 0.
Now, for any A ✓ E,

x(A) = x|1A =

X

i

�i1Ii
|1A (8.18)


X

i

�i max

j:Ij✓A
1Ij (E) (8.19)

= max

j:Ij✓A
1Ij (E) (8.20)

= r(A) (8.21)

Thus, x 2 P+
r and hence P

ind. set

✓ P+
r .
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Pind. set ✓ P+

r

If x 2 P
ind. set

, then

x =

X

i

�i1Ii (8.17)

for some appropriate vector � = (�1,�2, . . . ,�n).
Clearly, for such x, x � 0.
Now, for any A ✓ E,

x(A) = x|1A =

X

i

�i1Ii
|1A (8.18)


X

i

�i max

j:Ij✓A
1Ij (E) (8.19)

= max

j:Ij✓A
1Ij (E) (8.20)

= r(A) (8.21)

Thus, x 2 P+
r and hence P

ind. set

✓ P+
r .
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Matroid Polyhedron in 2D

P+
r =

�

x 2 RE
: x � 0, x(A)  r(A), 8A ✓ E

 

(8.22)

Consider this in two dimensions. We have equations of the form:

x1 � 0 and x2 � 0 (8.23)

x1  r({v1}) (8.24)

x2  r({v2}) (8.25)

x1 + x2  r({v1, v2}) (8.26)

Prof. Je↵ Bilmes EE596b/Spring 2014/Submodularity - Lecture 8 - April 23rd, 2014

F36/54 (pg.127/195)



Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Matroid Polyhedron in 2D

P+
r =

�

x 2 RE
: x � 0, x(A)  r(A), 8A ✓ E

 

(8.22)

Consider this in two dimensions. We have equations of the form:

x1 � 0 and x2 � 0 (8.23)

x1  r({v1}) (8.24)

x2  r({v2}) (8.25)

x1 + x2  r({v1, v2}) (8.26)

Because r is submodular, we have

r({v1}) + r({v2}) � r({v1, v2}) + r(;) (8.27)

so since r({v1, v2})  r({v1}) + r({v2}), the last inequality is either
touching or active.
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Matroid Polyhedron in 2D

x
1

� 0

x
2

� 0

x
1

 r({v
1

})

x
2

 r({v
2

})
x
1 +

x
2 

r({v
1 , v

2 })
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Matroid Polyhedron in 2D

x1

x2

r(v1)=1

r(v2)=1
x
1

+ = 1x
2

= r({v
1

, v
2

})
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Matroid Polyhedron in 2D

x1

x2

= 0r({v
1

, v
2

})
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Matroid Polyhedron in 2D

x
1

+ = 2x
2

= r({v
1

, v
2

})

x1

x2

r(v1)=1

r(v2)=1
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Matroid Polyhedron in 2D

r(v1)=1

r(v2)=0

= 1r({v
1

, v
2

})

x1

x2

And, if v2 is a loop ...
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Matroid Polyhedron in 2D

x
1

� 0

x
2

� 0

x
1

 r({v
1

})

x
2

 r({v
2

})

x
1

+ x
2

 r({v
1

, v
2

})Poss
ible

N
ot
Possible

Not
Possible
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Matroid Polyhedron in 3D

P+
r =

�

x 2 RE
: x � 0, x(A)  r(A), 8A ✓ E

 

(8.28)

Consider this in three dimensions. We have equations of the form:

x1 � 0 and x2 � 0 and x3 � 0 (8.29)

x1  r({v1}) (8.30)

x2  r({v2}) (8.31)

x3  r({v3}) (8.32)

x1 + x2  r({v1, v2}) (8.33)

x2 + x3  r({v2, v3}) (8.34)

x1 + x3  r({v1, v3}) (8.35)

x1 + x2 + x3  r({v1, v2, v3}) (8.36)
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Matroid Polyhedron in 3D

Consider the simple cycle matroid on a graph consisting of a 3-cycle,
G = (V,E) with matroid M = (E, I) where I 2 I is a forest.

So any set of either one or two edges is independent, and has rank
equal to cardinality.

The set of three edges is dependent, and has rank 2.
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Matroid Polyhedron in 3D

Consider the simple cycle matroid on a graph consisting of a 3-cycle,
G = (V,E) with matroid M = (E, I) where I 2 I is a forest.

So any set of either one or two edges is independent, and has rank
equal to cardinality.

The set of three edges is dependent, and has rank 2.
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Matroid Polyhedron in 3D

Consider the simple cycle matroid on a graph consisting of a 3-cycle,
G = (V,E) with matroid M = (E, I) where I 2 I is a forest.

So any set of either one or two edges is independent, and has rank
equal to cardinality.

The set of three edges is dependent, and has rank 2.
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Matroid Polyhedron in 3D

Two view of P+
r associated with a matroid

({e1, e2, e3}, {;, {e1}, {e2}, {e3}, {e1, e2}, {e1, e3}, {e2, e3}}).
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Matroid Polyhedron in 3D

P+
r associated with the “free” matroid in 3D.
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Matroid Polyhedron in 3D

P+
r associated with the “free” matroid in 3D.
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Another Polytope in 3D

Thought question: what kind of polytope might this be?
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Another Polytope in 3D
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Matroid Independence Polyhedron

So recall from a moment ago, that we have that

P
ind. set

= conv {[I2I{1I}}
✓ P+

r =

�

x 2 RE
: x � 0, x(A)  r(A), 8A ✓ E

 

(8.37)
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Matroid Independence Polyhedron

So recall from a moment ago, that we have that

P
ind. set

= conv {[I2I{1I}}
✓ P+

r =

�

x 2 RE
: x � 0, x(A)  r(A), 8A ✓ E

 

(8.37)

In fact, the two polyhedra are identical (and thus both are
polytopes).

We’ll show this in the next few theorems.
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So recall from a moment ago, that we have that
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= conv {[I2I{1I}}
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x 2 RE
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In fact, the two polyhedra are identical (and thus both are
polytopes).

We’ll show this in the next few theorems.

Prof. Je↵ Bilmes EE596b/Spring 2014/Submodularity - Lecture 8 - April 23rd, 2014

F44/54 (pg.146/195)



Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Maximum weight independent set via greedy weighted rank

Theorem 8.6.1

Let M = (V, I) be a matroid, with rank function r, then for any weight
function w 2 RV

+, there exists a chain of sets U1 ⇢ U2 ⇢ · · · ⇢ Un ✓ V
such that

max {w(I)|I 2 I} =

n
X

i=1

�ir(Ui) (8.38)

where �i � 0 satisfy

w =

n
X

i=1

�i1Ui (8.39)
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Maximum weight independent set via weighted rank
Proof.

Firstly, note that for any such w 2 RE , we have
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�

0

B

B

B

B

B

@

1

1

...
1

0

1

C

C

C

C

C

A

+

�

wn

�

0

B

B

B

B

B

@

1

1

...
1

1

1

C

C

C

C

C

A

(8.40)
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Maximum weight independent set via weighted rank
Proof.

Firstly, note that for any such w 2 RE , we have

0

B

B

B

@

w1

w2
...
wn

1

C

C

C

A

=

�

w1 � w2

�

0

B

B

B

@

1

0

...
0

1

C

C

C

A

+

�

w2 � w3

�

0

B

B

B

B

B

@

1

1

0

...
0

1

C

C

C

C

C

A

+

· · ·+
�

wn�1 � wn

�

0

B

B

B

B

B

@

1

1

...
1

0

1

C

C

C

C

C

A

+

�

wn

�

0

B

B

B

B

B

@

1

1

...
1

1

1

C

C

C

C

C

A

(8.40)

If we can take w in decreasing order (w1 � w2 � · · · � wn), then
each coe�cient of the vectors is non-negative (except possibly the
last one, wn). . . .
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Maximum weight independent set via weighted rank
Proof.

Now, again assuming w 2 RE
+, order the elements of V as

(v1, v2, . . . , vn) such that w(v1) � w(v2) � · · · � w(vn)
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Maximum weight independent set via weighted rank
Proof.

Now, again assuming w 2 RE
+, order the elements of V as

(v1, v2, . . . , vn) such that w(v1) � w(v2) � · · · � w(vn)

Define the sets Ui based on this order as follows, for i = 0, . . . , n

Ui
def
= {v1, v2, . . . , vi} (8.41)

Note that

1U0 =

0

B

B

B

@

0

0

...
0

1

C

C

C

A

,1U1 =

0

B

B

B

B

B

@

1

0

0

...
0

1

C

C

C

C

C

A

, . . . ,1U` =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

9

>

>

=

>

>

;

`⇥1

...
1

0

9

>

>

>

>

=

>

>

>

>

;

(n� `)⇥0

...
0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, etc.

(8.42)
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Maximum weight independent set via weighted rank
Proof.

Now, again assuming w 2 RE
+, order the elements of V as

(v1, v2, . . . , vn) such that w(v1) � w(v2) � · · · � w(vn)

Define the sets Ui based on this order as follows, for i = 0, . . . , n

Ui
def
= {v1, v2, . . . , vi} (8.41)

Define the set I as those elements where the rank increases, i.e.:

I
def
= {vi|r(Ui) > r(Ui�1)} (8.42)
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Maximum weight independent set via weighted rank
Proof.

Now, again assuming w 2 RE
+, order the elements of V as

(v1, v2, . . . , vn) such that w(v1) � w(v2) � · · · � w(vn)

Define the sets Ui based on this order as follows, for i = 0, . . . , n

Ui
def
= {v1, v2, . . . , vi} (8.41)

Define the set I as those elements where the rank increases, i.e.:

I
def
= {vi|r(Ui) > r(Ui�1)} (8.42)

Therefore, I is the output of the greedy algorithm for
max {w(I)|I 2 I}. since items vi are ordered decreasing by w(vi), and we

only choose the ones that increase the rank, which means they don’t violate

independence.
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Maximum weight independent set via weighted rank
Proof.

Now, again assuming w 2 RE
+, order the elements of V as

(v1, v2, . . . , vn) such that w(v1) � w(v2) � · · · � w(vn)

Define the sets Ui based on this order as follows, for i = 0, . . . , n

Ui
def
= {v1, v2, . . . , vi} (8.41)

Define the set I as those elements where the rank increases, i.e.:

I
def
= {vi|r(Ui) > r(Ui�1)} (8.42)

Therefore, I is the output of the greedy algorithm for
max {w(I)|I 2 I}.
And therefore, I is a maximum weight independent set (even a base,
actually).
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Maximum weight independent set via weighted rank
Proof.

Now, we define �i as follows

�i
def
= w(vi)� w(vi+1) for i = 1, . . . , n� 1 (8.43)

�n
def
= w(vn) (8.44)
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Maximum weight independent set via weighted rank
Proof.

Now, we define �i as follows

�i
def
= w(vi)� w(vi+1) for i = 1, . . . , n� 1 (8.43)

�n
def
= w(vn) (8.44)

And the weight of the independent set w(I) is given by

w(I) =
X

v2I
w(v) =

(8.46)
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Maximum weight independent set via weighted rank
Proof.

Now, we define �i as follows

�i
def
= w(vi)� w(vi+1) for i = 1, . . . , n� 1 (8.43)

�n
def
= w(vn) (8.44)

And the weight of the independent set w(I) is given by

w(I) =
X

v2I
w(v) =

n
X

i=1

w(vi)
�

r(Ui)� r(Ui�1)
�

(8.45)

(8.46)
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Maximum weight independent set via weighted rank
Proof.

Now, we define �i as follows

�i
def
= w(vi)� w(vi+1) for i = 1, . . . , n� 1 (8.43)

�n
def
= w(vn) (8.44)

And the weight of the independent set w(I) is given by

w(I) =
X

v2I
w(v) =

n
X

i=1

w(vi)
�

r(Ui)� r(Ui�1)
�

(8.45)

= w(vn)r(Un) +

n�1
X

i=1

�

w(vi)� w(vi+1)
�

r(Ui) (8.46)
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Maximum weight independent set via weighted rank
Proof.

Now, we define �i as follows

�i
def
= w(vi)� w(vi+1) for i = 1, . . . , n� 1 (8.43)

�n
def
= w(vn) (8.44)

And the weight of the independent set w(I) is given by

w(I) =
X

v2I
w(v) =

n
X

i=1

w(vi)
�

r(Ui)� r(Ui�1)
�

(8.45)

= w(vn)r(Un) +

n�1
X

i=1

�

w(vi)� w(vi+1)
�

r(Ui) =

n
X

i=1

�ir(Ui) (8.46)
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Maximum weight independent set via weighted rank
Proof.

Now, we define �i as follows

�i
def
= w(vi)� w(vi+1) for i = 1, . . . , n� 1 (8.43)

�n
def
= w(vn) (8.44)

And the weight of the independent set w(I) is given by

w(I) =
X

v2I
w(v) =

n
X

i=1

w(vi)
�

r(Ui)� r(Ui�1)
�

(8.45)

= w(vn)r(Un) +

n�1
X

i=1

�

w(vi)� w(vi+1)
�

r(Ui) =

n
X

i=1

�ir(Ui) (8.46)

Since we took v1, v2, . . . in decreasing order, for all i, and since
w 2 RE

+, we have �i � 0
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Linear Program LP

Consider the linear programming primal problem

maximize w|x

subject to xv � 0 (v 2 V )

x(U)  r(U) (8U ✓ V )

(8.47)

And its convex dual (note y 2 R2n
+ , yU is a scalar element within this

exponentially big vector):

minimize
P

U✓V yUr(U),

subject to yU � 0 (8U ✓ V )

P

U✓V yU1U � w

(8.48)

Thanks to strong duality, the solutions to these are equal to each other.
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Linear Program LP

Consider the linear programming primal problem

maximize w|x

subject to xv � 0 (v 2 V )

x(U)  r(U) (8U ✓ V )

(8.47)

And its convex dual (note y 2 R2n
+ , yU is a scalar element within this

exponentially big vector):

minimize
P

U✓V yUr(U),

subject to yU � 0 (8U ✓ V )

P

U✓V yU1U � w

(8.48)

Thanks to strong duality, the solutions to these are equal to each other.
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Linear Program LP

Consider the linear programming primal problem

maximize w|x

subject to xv � 0 (v 2 V )

x(U)  r(U) (8U ✓ V )

(8.47)

And its convex dual (note y 2 R2n
+ , yU is a scalar element within this

exponentially big vector):

minimize
P

U✓V yUr(U),

subject to yU � 0 (8U ✓ V )

P

U✓V yU1U � w

(8.48)

Thanks to strong duality, the solutions to these are equal to each other.
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Linear Program LP

Consider the linear programming primal problem

maximize w|x
s.t. xv � 0 (v 2 V )

x(U)  r(U) (8U ✓ V )

(8.49)

This is identical to the problem

maxw|x such that x 2 P+
r (8.50)

where, again, P+
r =

�

x 2 RE
: x � 0, x(A)  r(A), 8A ✓ E

 

.

Therefore, since P
ind. set

✓ P+
r , the above problem can only have a

larger solution. I.e.,

maxw|x s.t. x 2 P
ind. set

 maxw|x s.t. x 2 P+
r . (8.51)
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Linear Program LP

Consider the linear programming primal problem

maximize w|x
s.t. xv � 0 (v 2 V )

x(U)  r(U) (8U ✓ V )

(8.49)

This is identical to the problem

maxw|x such that x 2 P+
r (8.50)

where, again, P+
r =

�

x 2 RE
: x � 0, x(A)  r(A), 8A ✓ E

 

.

Therefore, since P
ind. set

✓ P+
r , the above problem can only have a

larger solution. I.e.,

maxw|x s.t. x 2 P
ind. set

 maxw|x s.t. x 2 P+
r . (8.51)
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Linear Program LP

Consider the linear programming primal problem

maximize w|x
s.t. xv � 0 (v 2 V )

x(U)  r(U) (8U ✓ V )

(8.49)

This is identical to the problem

maxw|x such that x 2 P+
r (8.50)

where, again, P+
r =

�

x 2 RE
: x � 0, x(A)  r(A), 8A ✓ E

 

.

Therefore, since P
ind. set

✓ P+
r , the above problem can only have a

larger solution. I.e.,

maxw|x s.t. x 2 P
ind. set

 maxw|x s.t. x 2 P+
r . (8.51)
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Polytope equivalence

Hence, we have the following relations:

max {w(I) : I 2 I}  max {w|x : x 2 P
ind. set

} (8.52)

 max

�

w|x : x 2 P+
r

 

(8.53)

def
= ↵

min

= min

8

<

:

X

U✓V

yUr(U) : y � 0,
X

U✓V

yU1U � w

9

=

;

(8.54)

Prof. Je↵ Bilmes EE596b/Spring 2014/Submodularity - Lecture 8 - April 23rd, 2014

F49/54 (pg.167/195)



Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Polytope equivalence

Hence, we have the following relations:

max {w(I) : I 2 I}  max {w|x : x 2 P
ind. set

} (8.52)

 max

�

w|x : x 2 P+
r

 

(8.53)

def
= ↵

min

= min

8

<

:

X

U✓V

yUr(U) : y � 0,
X

U✓V

yU1U � w

9

=

;

(8.54)Theorem 8.6.1 states that

max {w(I) : I 2 I} =

n
X

i=1

�ir(Ui) (8.55)

for the chain of Ui’s and �i � 0 that satisfies w =

Pn
i=1 �i1Ui (i.e.,

the r.h.s. of Eq. 8.55 is feasible w.r.t. the dual LP).

Therefore, we also have

max {w(I) : I 2 I} =

n
X

i=1

�ir(Ui) � ↵
min

(8.56)
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Polytope equivalence

Hence, we have the following relations:

max {w(I) : I 2 I}  max {w|x : x 2 P
ind. set

} (8.52)

 max

�

w|x : x 2 P+
r

 

(8.53)

def
= ↵

min

= min

8

<

:

X

U✓V

yUr(U) : y � 0,
X

U✓V

yU1U � w

9

=

;

(8.54)Theorem 8.6.1 states that

max {w(I) : I 2 I} =

n
X

i=1

�ir(Ui) (8.55)

for the chain of Ui’s and �i � 0 that satisfies w =

Pn
i=1 �i1Ui (i.e.,

the r.h.s. of Eq. 8.55 is feasible w.r.t. the dual LP).

Therefore, we also have

max {w(I) : I 2 I} =

n
X

i=1

�ir(Ui) � ↵
min

(8.56)
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Polytope equivalence

Hence, we have the following relations:

max {w(I) : I 2 I}  max {w|x : x 2 P
ind. set

} (8.52)

 max

�

w|x : x 2 P+
r

 

(8.53)

def
= ↵

min

= min

8

<

:

X

U✓V

yUr(U) : y � 0,
X

U✓V

yU1U � w

9

=

;

(8.54)
Therefore, all the inequalities above are equalities.

And since w 2 RE
+ is an arbitrary direction into the positive orthant,

we see that P+
r = P

ind. set

That is, we have just proven:

Theorem 8.6.2

P+
r = Pind. set (8.57)
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Polytope equivalence

Hence, we have the following relations:

max {w(I) : I 2 I} = max {w|x : x 2 P
ind. set

} (8.52)

= max

�

w|x : x 2 P+
r

 

(8.53)

def
= ↵

min

= min

8

<

:

X

U✓V

yUr(U) : y � 0,
X

U✓V

yU1U � w

9

=

;

(8.54)
Therefore, all the inequalities above are equalities.

And since w 2 RE
+ is an arbitrary direction into the positive orthant,

we see that P+
r = P

ind. set

That is, we have just proven:

Theorem 8.6.2

P+
r = Pind. set (8.57)
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Polytope equivalence

Hence, we have the following relations:

max {w(I) : I 2 I} = max {w|x : x 2 P
ind. set

} (8.52)

= max

�

w|x : x 2 P+
r

 

(8.53)

def
= ↵

min

= min

8

<

:

X

U✓V

yUr(U) : y � 0,
X

U✓V

yU1U � w

9

=

;

(8.54)
Therefore, all the inequalities above are equalities.

And since w 2 RE
+ is an arbitrary direction into the positive orthant,

we see that P+
r = P

ind. set

That is, we have just proven:

Theorem 8.6.2

P+
r = Pind. set (8.57)
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Polytope Equivalence (Summarizing the above)

For each I 2 I of a matroid M = (E, I), we can form the incidence
vector 1I .

Taking the convex hull, we get the independent set polytope, that is

P
ind. set

= conv {[I2I{1I}} (8.58)

Now take the rank function r of M , and define the following
polyhedron:

P+
r =

�

x 2 RE
: x � 0, x(A)  r(A), 8A ✓ E

 

(8.59)

Theorem 8.6.3

P+
r = Pind. set (8.60)
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Polytope Equivalence (Summarizing the above)
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Polytope Equivalence (Summarizing the above)

For each I 2 I of a matroid M = (E, I), we can form the incidence
vector 1I .

Taking the convex hull, we get the independent set polytope, that is

P
ind. set

= conv {[I2I{1I}} (8.58)

Now take the rank function r of M , and define the following
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Greedy solves a linear programming problem

So we can describe the independence polytope of a matroid using
the set of inequalities (an exponential number of them).

In fact, considering equations starting at Eq 8.52, the LP problem
with exponential number of constraints max {w|x : x 2 P

ind. set

} is
identical to the maximum weight independent set problem in a
matroid, and since greedy solves the latter problem exactly, we have
also proven:

Theorem 8.6.4

The LP problem max {w|x : x 2 Pind. set} can be solved exactly using
the greedy algorithm.

Note that this LP problem has an exponential number of constraints
(since P

ind. set

is described as the intersection of an exponential
number of half spaces).

This means that if LP problems have certain structure, they can be
solved much easier than immediately implied by the equations.
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Base Polytope Equivalence

Consider convex hull of indicator vectors of bases of a matroid,
rather than just independent sets.

Consider a polytope defined by the following constraints:

x � 0 (8.61)

x(A)  r(A) 8A ✓ V (8.62)

x(V ) = r(V ) (8.63)

Note the third requirement, x(V ) = r(V ).

By essentially the same argument as above (Exercise:), we can
shown that the convex hull of the incidence vectors of the bases of a
matroid is a polytope that can be described by Eq. 8.61- 8.63 above.

What does this look like?
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Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Spanning set polytope

Recall, a set A is spanning in a matroid M = (E, I) if r(A) = r(E).

Consider convex hull of incidence vectors of spanning sets of a
matroid M , and call this P

spanning

(M).

Theorem 8.6.5

The spanning set polytope is determined by the following equations:

0  xe  1 for e 2 E (8.64)

x(A) � r(E)� r(E \A) for A ✓ E (8.65)

Example of spanning set
polytope in 2D.
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Spanning set polytope

Recall, a set A is spanning in a matroid M = (E, I) if r(A) = r(E).
Consider convex hull of incidence vectors of spanning sets of a
matroid M , and call this P

spanning

(M).

Theorem 8.6.5

The spanning set polytope is determined by the following equations:

0  xe  1 for e 2 E (8.64)

x(A) � r(E)� r(E \A) for A ✓ E (8.65)

Example of spanning set
polytope in 2D.
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Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes

Spanning set polytope

Proof.

Recall that any A is spanning in M iff E \A is independent in M⇤

(the dual matroid).

For any x 2 RE , we have that

x 2 P
spanning

(M), 1� x 2 P
ind. set

(M⇤
) (8.66)

as we show next . . .

. . .
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Spanning set polytope

. . . proof continued.

This follows since if x 2 P
spanning

(M), we can represent x as a
convex combination:

x =

X

i

�i1Ai (8.67)

where Ai is spanning in M .

Consider

1� x = 1E � x = 1E �
X

i

�i1Ai =

X

i

�i1E\Ai
, (8.68)

which follows since
P

i �i1 = 1E , so 1� x is a convex combination
of independent sets in M⇤ and so 1� x 2 P

ind. set

(M⇤
).

. . .
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Spanning set polytope

. . . proof continued.

This follows since if x 2 P
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convex combination:
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X

i

�i1Ai (8.67)

where Ai is spanning in M .
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X
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�i1Ai =
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, (8.68)
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P
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ind. set

(M⇤
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Spanning set polytope

. . . proof continued.

which means, from the definition of P
ind. set

(M⇤
), that

1� x � 0 (8.69)

1A � x(A) = |A|� x(A)  rM⇤
(A) for A ✓ E (8.70)

And we know the dual rank function is

rM⇤
(A) = |A|+ rM (E \A)� rM (E) (8.71)

giving

x(A) � rM (E)� rM (E \A) for all A ✓ E (8.72)

. . .
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