Submodular Functions, Optimization, and Applications to Machine Learning
 - Spring Quarter, Lecture 7 http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

April 21st, 2014

Logistics

Cumulative Outstanding Reading

- Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige's book.

Announcements, Assignments, and Reminders

- Homework 1 is out, due Wednesday April 23rd, 11:45pm, electronically via our assignment dropbox (https://canvas.uw.edu/courses/895956/assignments).
- All homeworks must be done electronically, only PDF file format accepted.
- Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

Logistics
 Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, \& Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes,
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity

System of Distinct Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{k}: i \in I\right)$ where $V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi: I \leftrightarrow I$ such that $v_{i} \in V_{\pi(i)}$ and $v_{i} \neq v_{j}$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Lets re-state (and rename) this as a:

Definition 7.2.1 (transversal)

Given a set system (V, \mathcal{V}) as defined above, a set $T \subseteq V$ is a transversal of \mathcal{V} if there is a bijection $\pi: T \leftrightarrow I$ such that

$$
\begin{equation*}
x \in V_{\pi(x)} \text { for all } x \in T \tag{7.1}
\end{equation*}
$$

- Note that due to $\pi: T \leftrightarrow I$ being a bijection, all of I and T are "covered" (so this makes things distinct automatically).

Logistics

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{7.1}
\end{equation*}
$$

so $|V(J)|: 2^{I} \rightarrow \mathbb{Z}_{+}$is the set cover func. (we know is submodular).

- We have

Theorem 7.2.1 (Hall's theorem)

Given a set system (V, \mathcal{V}), the family of subsets $\mathcal{V}=\left(V_{i}: i \in I\right)$ has a transversal $\left(v_{i}: i \in I\right)$ iff for all $J \subseteq I$

$$
\begin{equation*}
|V(J)| \geq|J| \tag{7.2}
\end{equation*}
$$

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{7.1}
\end{equation*}
$$

so $|V(J)|: 2^{I} \rightarrow \mathbb{Z}_{+}$is the set cover func. (we know is submodular).

- Hall's theorem ($\forall J \subseteq I,|V(J)| \geq|J|)$ as a bipartite graph.

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i.

Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{7.1}
\end{equation*}
$$

so $|V(J)|: 2^{I} \rightarrow \mathbb{Z}_{+}$is the set cover func. (we know is submodular).

- Moreover, we have

Theorem 7.2.2 (Rado's theorem (1942))

If $M=(V, r)$ is a matroid on V with rank function r, then the family of subsets $\left(V_{i}: i \in I\right)$ of V has a transversal $\left(v_{i}: i \in I\right)$ that is independent in M iff for all $J \subseteq I$

$$
\begin{equation*}
r(V(J)) \geq|J| \tag{7.3}
\end{equation*}
$$

- Note, a transversal T independent in M means that $r(T)=|T|$.

Application's of Hall's theorem

- Consider a set of jobs I and a set of applicants V to the jobs. If an applicant $v \in V$ is qualified for job $i \in I$, we add edge (v, i) to the bipartite graph $G=(V, I, E)$.
- We wish all jobs to be filled, and hence Hall's condition ($\forall J \subseteq I,|V(J)| \geq|J|)$ is a necessary and sufficient condition for this to be possible.
- Note if $|V|=|I|$, then Hall's theorem is the Marriage Theorem (Frobenious 1917), where an edge (v, i) in the graph indicate compatibility between two individuals $v \in V$ and $i \in I$ coming from two separate groups V and I.
- If $\forall J \subseteq I,|V(J)| \geq|J|$, then all individuals in each group can be matched with a compatible mate.

Logistics

More general conditions for existence of transversals

Theorem 7.2.1 (Polymatroid transversal theorem)

If $\mathcal{V}=\left(V_{i}: i \in I\right)$ is a finite family of non-empty subsets of V, and $f: 2^{V} \rightarrow \mathbb{Z}_{+}$is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives ($v_{i}: i \in I$) such that

$$
\begin{equation*}
f\left(\cup_{i \in J}\left\{v_{i}\right\}\right) \geq|J| \text { for all } J \subseteq I \tag{7.1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
f(V(J)) \geq|J| \text { for all } J \subseteq I \tag{7.2}
\end{equation*}
$$

- Given Theorem 7.2.1, we immediately get Theorem 7.2.1 by taking $f(S)=|S|$ for $S \subseteq V$. In which case, Eq. 7.7 requires the system of representatives to be distinct.
- We get Theorem 7.2.2 by taking $f(S)=r(S)$ for $S \subseteq V$, the rank function of the matroid. where, Eq. 7.7 insists the system of representatives

Transversals and Bipartite Matchings

- Transversals correspond exactly to matchings in bipartite graphs.
- Given a set system (V, \mathcal{V}), with $\mathcal{V}=\left(V_{i}: i \in I\right)$, we can define a bipartite graph $G=(V, I, E)$ associated with \mathcal{V} that has edge set $\left\{(v, i): v \in V, i \in I, v \in V_{i}\right\}$.
- A matching in this graph is a set of edges no two of which that have a common endpoint. In fact, we easily have:

Lemma 7.2.4

A subset $T \subseteq V$ is a partial transversal of \mathcal{V} iff there is a matching in (V, I, E) in which every edge has one endpoint in T (T matched into I).

Logistics

Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 7.2.4

Let (V, \mathcal{V}) where $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{\ell}\right)$ be a subset system. Let $I=\{1, \ldots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V}. Then (V, \mathcal{I}) is a matroid.

Proof.

- We note that $\emptyset \in \mathcal{I}$ since the empty set is a transversal of the empty subfamily of \mathcal{V}, thus (11^{\prime}) holds.
- We already saw that if T is a partial transversal of \mathcal{V}, and if $T^{\prime} \subseteq T$, then T^{\prime} is also a partial transversal. So (I2') holds.
- Suppose that T_{1} and T_{2} are partial transversals of \mathcal{V} such that $\left|T_{1}\right|<\left|T_{2}\right|$. Exercise: show that (I3') holds.

Representable

Definition 7.2.4 (Matroid isomorphism)

Two matroids M_{1} and M_{2} respectively on ground sets V_{1} and V_{2} are isomorphic if there is a bijection $\pi: V_{1} \rightarrow V_{2}$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R}, \mathbb{Q}, or some finite field \mathbb{F}, such as a Galois field $\mathrm{GF}(p)$ where p is prime (such as $\mathrm{GF}(2)$).
Succinctly: A field is a set with,$+ *$, closure, associativity, commutativity, and additive and multiplictaive identities and inverses.
- We can more generally define matroids on a field.

Definition 7.2.5 (linear matroids on a field)

Let \mathbf{X} be an $n \times m$ matrix and $E=\{1, \ldots, m\}$, where $\mathbf{X}_{i j} \in \mathbb{F}$ for some field, and let \mathcal{I} be the set of subsets of E such that the columns of \mathbf{X} are linearly independent over \mathbb{F}.

Representable

Definition 7.2.4 (Matroid isomorphism)

Two matroids M_{1} and M_{2} respectively on ground sets V_{1} and V_{2} are isomorphic if there is a bijection $\pi: V_{1} \rightarrow V_{2}$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R}, \mathbb{Q}, or some finite field \mathbb{F}, such as a Galois field $\operatorname{GF}(p)$ where p is prime (such as $\operatorname{GF}(2)$).
Succinctly: A field is a set with,$+ *$, closure, associativity, commutativity, and additive and multiplictaive identities and inverses.
- We can more generally define matroids on a field.

Definition 7.2.6 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called representable over \mathbb{F}

Logistics
 Review
 IIIIIIII
 Matroids, other definitions using matroid rank $r: 2^{V} \rightarrow \mathbb{Z}_{+}$

Definition 7.2.1 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \backslash A, r(A \cup\{x\})=r(A)+1$.

A hyperplane is a flat of rank $r(M)-1$.

Definition 7.2.2 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A)=\{b \in E: r(A \cup\{b\})=r(A)\}$.

Therefore, a closed set A has $\operatorname{span}(A)=A$.

Definition 7.2.3 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if $r(A)<|A|$ and for any $a \in A$, $r(A \backslash\{a\})=|A|-1)$.

Spanning Sets

- We have the following definitions:

Definition 7.2.6 (spanning set of a set)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that $r(X)=r(Y)$ is called a spanning set of Y.

Definition 7.2.7 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, any set $A \subseteq V$ such that $r(A)=r(V)$ is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
- V is always trivially spanning.
- Consider the terminology: "spanning tree in a graph", comes from spanning in a matroid sense.

Dual of a Matroid

- Given a matroid $M=(V, \mathcal{I})$, a dual matroid $M^{*}=\left(V, \mathcal{I}^{*}\right)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^{*}.
- We define the set of sets \mathcal{I}^{*} for M^{*} as follows:

$$
\begin{equation*}
\mathcal{I}^{*}=\{A \subseteq V: V \backslash A \text { is a spanning set of } M\} \tag{7.21}
\end{equation*}
$$

- That is, a set A is independent in the dual matroid M^{*} if removal of A from V does not decrease the rank in M :

$$
\begin{equation*}
\mathcal{I}^{*}=\left\{A \subseteq V: \operatorname{rank}_{M}(V \backslash A)=\operatorname{rank}_{M}(V)\right\} \tag{7.22}
\end{equation*}
$$

- In other words, a set $A \subseteq V$ is independent in the dual M^{*} (i.e., $A \in \mathcal{I}^{*}$) if its complement is spanning in M (residual $V \backslash A$ must contain a base in M).
- Dual of the dual: Note, we have that $\left(M^{*}\right)^{*}=M$.

Dual of a Matroid: Bases

- Since the smallest spanning sets are bases, the bases of M (when $V \backslash I$ is as small as possible while still spanning) are complements of the bases of M^{*} (where I is as large as possible while still being independent).
- In fact, we have that

Theorem 7.3.1 (Dual matroid bases)

Let $M=(V, \mathcal{I})$ be a matroid and $\mathcal{B}(M)$ be the set of bases of M. Then define

$$
\begin{equation*}
\mathcal{B}^{*}(M)=\{V \backslash B: B \in \mathcal{B}(M)\} . \tag{7.1}
\end{equation*}
$$

Then $\mathcal{B}^{*}(M)$ is the set of basis of M^{*} (that is, $\mathcal{B}^{*}(M)=\mathcal{B}\left(M^{*}\right)$.

Dual of a Matroid: Terminology

- $\mathcal{B}^{*}(M)$, the bases of M^{*}, are called cobases of M.
- The circuits of M^{*} are called cocircuits of M.
- The hyperplanes of M^{*} are called cohyperplanes of M.
- The independent sets of M^{*} are called coindependent sets of M.
- The spanning sets of M^{*} are called cospanning sets of M.

Proposition 7.3.2 (from Oxley 2011)

Let $M=(V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then
(1) X is independent in M iff $V \backslash X$ is cospanning in M (spanning in M^{*}).
(2) X is spanning in M iff $V \backslash X$ is coindependent in M (independent in M^{*}).
(3) X is a hyperplane in M iff $V \backslash X$ is a cocircuit in M (circuit in M^{*}).
(9) X is a circuit in M iff $V \backslash X$ is a cohyperplane in M (hyperplane in M^{*}).

Example duality: graphic matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree, and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G)<k(G \backslash X)$.
- A minimal cut in G is a cut $X \subseteq E(G)$ such that $X \backslash\{x\}$ is not a cut for any $x \in X$.
- A cocycle (a cocircuit in a graphic matroid) is a "minimal cut" in the graph. Cocycle matroid sometimes called a "cut matroid".
- All dependent sets in a cocycle matroid are cuts (i.e., a dependent set is a minimal cut or contains one).

,

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- It consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

A graph G

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- It consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Minimally spanning in M (and thus Maximally independent in M^{*} (thus a base (maximally independent) in M) a base, minimally spanning, in M^{*})

IIII

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- It consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Minimally spanning in M (and thus a base (maximally independent) in M)

Maximally independent in M^{*} (thus a base, minimally spanning, in M*)

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- It consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Independent but not spanning in M, and not closed in M.

Dependent in M^{*} (contains a cocycle, is a nonminimal cut)

完

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- It consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Spanning in M, but not a base, and not independent (has cycles)

Independent in M^{*} (does not contain a cut)

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- It consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Independent but not spanning in M , and not closed in M .

Dependent in M^{*} (contains a cocycle, is a nonminimal cut)

,

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- It consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

A hyperplane in M, dependent but not spanning in M

A cycle in M^{*} (minimally dependent in M^{*}, a cocycle, or a minimal cut)

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- It consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

A hyperplane in M, dependent but not spanning in M

A cycle in M^{*} (minimally dependent in M^{*}, a cocycle, or a minimal cut)

The dual of a matroid is (indeed) a matroid

Theorem 7.3.3

Given matroid $M=(V, \mathcal{I})$, let $M^{*}=\left(V, \mathcal{I}^{*}\right)$ be as previously defined. Then M^{*} is a matroid.

Proof.

- Clearly $\emptyset \in I^{*}$, so (11^{\prime}) holds.
- Also, if $I \subseteq J \in \mathcal{I}^{*}$, then clearly also $I \in \mathcal{I}^{*}$ since if $V \backslash J$ is spanning in M, so must $V \backslash I$. Therefore, (I2') holds.

The dual of a matroid is (indeed) a matroid

Theorem 7.3.3

Given matroid $M=(V, \mathcal{I})$, let $M^{*}=\left(V, \mathcal{I}^{*}\right)$ be as previously defined. Then M^{*} is a matroid.

Proof.

- Consider $I, J \in \mathcal{I}^{*}$ with $|I|<|J|$. We need to show that there is some member $v \in J \backslash I$ such that $I+v$ is independent in M^{*}, which means that $V \backslash(I+v)=(V \backslash I) \backslash v$ is still spanning in M. That is, removing v from $V \backslash I$ doesn't make ($V \backslash I$) \v not spanning.
- Since $V \backslash J$ is spanning in $M, V \backslash J$ contains some base (say $B \subseteq V \backslash J$) of M. Also, $V \backslash I$ contains a base of M, say $B^{\prime} \subseteq V \backslash I$.
- Since $B \backslash I \subseteq V \backslash I$, and $B \backslash I$ is independent in M, we can choose the base B^{\prime} of M s.t. $B \backslash I \subseteq B^{\prime} \subseteq V \backslash I$.
- Since B and J are disjoint, we have both: 1) $B \backslash I$ and $J \backslash I$ are disjoint; and 2) $B \cap I \subseteq I \backslash J$. Also note, B^{\prime} and I are disjoint.

The dual of a matroid is (indeed) a matroid

Theorem 7.3.3

Given matroid $M=(V, \mathcal{I})$, let $M^{*}=\left(V, \mathcal{I}^{*}\right)$ be as previously defined. Then M^{*} is a matroid.

Proof.

- Now $J \backslash I \nsubseteq B^{\prime}$, since otherwise (i.e., assuming $J \backslash I \subseteq B^{\prime}$):

$$
\begin{align*}
|B| & =|B \cap I|+|B \backslash I| \tag{7.2}\\
& \leq|I \backslash J|+|B \backslash I| \tag{7.3}\\
& <|J \backslash I|+|B \backslash I| \leq\left|B^{\prime}\right| \tag{7.4}
\end{align*}
$$

which is a contradiction. The last inequality on the right follows since $J \backslash I \subseteq B^{\prime}$ (by assumption) and $B \backslash I \subseteq B^{\prime}$ implies that $(J \backslash I) \cup(B \backslash I) \subseteq B^{\prime}$, but since J and B are disjoint, we have that $|J \backslash I|+|B \backslash I| \leq B^{\prime}$.

- Therefore, $J \backslash I \nsubseteq B^{\prime}$, and there is a $v \in J \backslash I$ s.t. $v \notin B^{\prime}$.
- So B^{\prime} is disjoint with $I \cup\{v\}$, means $B^{\prime} \subseteq V \backslash(I \cup\{v\})$, or

Matroid Duals and Representability

Theorem 7.3.4

Let M be an \mathbb{F}-representable matroid (i.e., one that can be represented by a finite sized matrix over field \mathbb{F}). Then M^{*} is also \mathbb{F}-representable.

Theorem 7.3.5

Let M be a graphic matroid (i.e., one that can be represented by a graph $G=(V, E)$). Then M^{*} is not necessarily also graphic.

Dual Matroid Rank

Theorem 7.3.6

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V) \tag{7.5}
\end{equation*}
$$

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2. I.e., $|X|$ is modular, complement $f(V \backslash X)$ is submodular if f is submodular, $r_{M}(V)$ is a constant, and summing submodular functions and a constant preserves submodularity.
- Non-negativity integral follows since $|X|+r_{M}(V \backslash X) \geq r_{M}(X)+r_{M}(V \backslash X) \geq r_{M}(V)$. The right inequality follows since r_{M} is submodular.
- Monotone non-decreasing follows since, as X increases by one, $|X|$ always increases by 1 , while $r_{M}(V \backslash X)$ decreases by one or zero.
- Therefore, $r_{M^{*}}$ is the rank function of a matroid. That it is the dual

Dual Matroid Rank

Theorem 7.3.6

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V) \tag{7.5}
\end{equation*}
$$

Proof.

A set X is independent in $\left(V, r_{M^{*}}\right)$ if and only if

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V)=|X| \tag{7.6}
\end{equation*}
$$

or

$$
\begin{equation*}
r_{M}(V \backslash X)=r_{M}(V) \tag{7.7}
\end{equation*}
$$

But a subset X is independent in M^{*} only if $V \backslash X$ is spanning in M (by the definition of the dual matroid).

Matroid restriction/deletion

- Let $M=(V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \subseteq Y, Z \in \mathcal{I}\} \tag{7.8}
\end{equation*}
$$

is such that $M_{Y}=\left(Y, \mathcal{I}_{Y}\right)$ is a matroid with rank $r\left(M_{Y}\right)=r(Y)$.

- This is called the restriction of M to Y, and is often written $M \mid Y$.
- If $Y=V \backslash X$, then we have

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \cap X=\emptyset, Z \in \mathcal{I}\} \tag{7.9}
\end{equation*}
$$

is considered a deletion of X from M, and is often written $M \backslash Z$.

- Hence, $M \mid Y=M \backslash(V \backslash Y)$.
- The rank function is of the same form. I.e., $r_{Y}: 2^{Y} \rightarrow \mathbb{Z}_{+}$, where $r_{Y}(Z)=r(Z)$ for $Z \subseteq Y$.

Matroid contraction

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M / Z.
- Let $Z \subseteq V$ and let X be a base of Z. Then a subset I of $V \backslash Z$ is independent in M / Z iff $I \cup X$ is independent in M.
- In fact, it is the case $M / Z=\left(M^{*} \backslash Z\right)^{*}$ (Exercise: show why).
- The rank function takes the form

$$
\begin{equation*}
r_{M / Z}(Y)=r(Y \cup Z)-r(Z)=r(Y \mid Z) \tag{7.10}
\end{equation*}
$$

- So given $I \subseteq V \backslash Z$ and X is a base of $Z, r_{M / Z}(I)=|I|$ is identical to $r(I \cup Z)=|I|+r(Z)=|I|+|X|$ but $r(I \cup Z)=r(I \cup X)$. This implies $r(I \cup X)=|I|+|X|$, or $I \cup X$ is independent in M.
- A minor of a matroid is any matroid obtained via a series of deletions and contractions of some matroid.

Matroid Intersection

- Let $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ be two matroids. Consider their common independent sets $\mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- While ($V, \mathcal{I}_{1} \cap \mathcal{I}_{2}$) is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_{1}$ and $X \in \mathcal{I}_{2}$.

Theorem 7.4.1

Let M_{1} and M_{2} be given as above, with rank functions r_{1} and r_{2}. Then the size of the maximum size set in $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ is given by

$$
\begin{equation*}
\left(r_{1} * r_{2}\right)(V) \triangleq \min _{X \subseteq V}\left(r_{1}(X)+r_{2}(V \backslash X)\right) \tag{7.11}
\end{equation*}
$$

This is an instance of the convolution of two submodular functions, f_{1} and f_{2} that, evaluated at $Y \subseteq V$, is written as:

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(Y)=\min _{X \subseteq Y}\left(f_{1}(X)+f_{2}(Y \backslash X)\right) \tag{7.12}
\end{equation*}
$$

Dual Matroid Other Matroid Properties

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.
- $\Leftrightarrow|\Gamma(X)|-|X| \geq 0, \forall X$
- $\Leftrightarrow \min _{X}|\Gamma(X)|-|X| \geq 0$
$\bullet \Leftrightarrow \min _{X}|\Gamma(X)|+|V|-|X| \geq|V|$
- $\Leftrightarrow \min _{X}(|\Gamma(X)|+|V \backslash X|) \geq|V|$
- $\Leftrightarrow \quad[\Gamma(\cdot) *|\cdot|](V) \geq|V|$
- So Hall's theorem can be expressed as convolution.
- Note, in general, convolution of two submodular functions does not preserve submodularity (but in certain special cases it does).

Matroid Union

Definition 7.4.2

Let $M_{1}=\left(V_{1}, \mathcal{I}_{1}\right), M_{2}=\left(V_{2}, \mathcal{I}_{2}\right), \ldots, M_{k}=\left(V_{k}, \mathcal{I}_{k}\right)$ be matroids. We define the union of matroids as

$$
M_{1} \vee M_{2} \vee \cdots \vee M_{k}=\left(V_{1} \uplus V_{2} \uplus \cdots \uplus V_{k}, \mathcal{I}_{1} \vee \mathcal{I}_{2} \vee \cdots \vee \mathcal{I}_{k}\right), \text { where }
$$

$$
\begin{equation*}
I_{1} \vee \mathcal{I}_{2} \vee \cdots \vee \mathcal{I}_{k}=\left\{I_{1} \uplus I_{2} \uplus \cdots \uplus I_{k} \mid I_{1} \in \mathcal{I}_{1}, \ldots, I_{k} \in \mathcal{I}_{k}\right\} \tag{7.13}
\end{equation*}
$$

Note $A \uplus B$ designates the disjoint union of A and B.

Theorem 7.4.3

Let $M_{1}=\left(V_{1}, \mathcal{I}_{1}\right), M_{2}=\left(V_{2}, \mathcal{I}_{2}\right), \ldots, M_{k}=\left(V_{k}, \mathcal{I}_{k}\right)$ be matroids, with rank functions r_{1}, \ldots, r_{k}. Then the union of these matroids is still a matroid, having rank function

$$
\begin{equation*}
r(Y)=\min _{X \subseteq Y}\left(|Y \backslash X|+r_{1}\left(X \cap V_{1}\right)+\cdots+r_{k}\left(X \cap V_{k}\right)\right) \tag{7.14}
\end{equation*}
$$

for any $Y \subseteq V_{1} \cup \ldots V_{k}$.

Exercise: Matroid Union, and Matroid duality

Exercise: Describe $M \vee M^{*}$.

Matroids of three or fewer elements are graphic

- All matroids up to and including three elements are graphic.

- This is a nice way to show matroids with low ground set sizes. What about matroids that are low rank but with many elements?

Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F}, we say that a subset $S \subseteq\{1, \ldots, m\}$ of indices (with corresponding column vectors $\left\{v_{i}: i \in S\right\}$, with $|S|=k$) is affinely dependent if $m \geq 1$ and there exists elements $\left\{a_{1}, \ldots, a_{k}\right\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^{k} a_{i}=0$, such that $\sum_{i=1}^{k} a_{i} v_{i}=0$.
- Otherwise, the set is called affinely independent.
- Concisely: points $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ are affinely independent if $v_{2}-v_{1}, v_{3}-v_{1}, \ldots, v_{k}-v_{1}$ are linearly independent.
- Example: in 2D, three collinear points are affinely dependent, three non-collear points are affinely independent, and ≥ 4 non-collinear points are affinely dependent.

Proposition 7.5.1 (affine matroid)

Let ground set $E=\{1, \ldots, m\}$ index column vectors of a matrix, and let \mathcal{I} be the set of subsets X of E such that X indices affinely independent vectors. Then (E, \mathcal{I}) is a matroid.

Dual Matroid
 Euclidean Representation of Low-rank Matroids

- Consider the affine matroid with $n \times m=2 \times 6$ matrix on the field $\mathbb{F}=\mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}$.
- We can plot the points in \mathbb{R}^{2} as on the right:
- Points have rank 1 , lines have rank 2, planes have rank 3.
- Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.
- Any two points constitute a line, but lines with only two points are not drawn.
- Lines indicate collinear sets with ≥ 3 points, while any two points have rank 2.

- Dependent sets consist of all subsets with ≥ 4 elements (rank 3), or 3 collinear elements (rank 2). Any two points have rank 2.

