Submodular Functions, Optimization,

and Applications to Machine Learning

— Spring Quarter, Lecture 7 —
http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_ 2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

April 21st, 2014

- f(A)+ f(B) > f(AUB) + f(ANB)
Affases @O @ ©

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 7 - April 21st, 2014 F1/30 (pg.1/43)

Logistics
{ N

Cumulative Outstanding Reading

@ Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige’s book.
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Announcements, Assignments, and Reminders

@ Homework 1 is out, due Wednesday April 23rd, 11:45pm,
electronically via our assignment dropbox
(https://canvas.uw.edu/courses/895956/assignments).

@ All homeworks must be done electronically, only PDF file format
accepted.

o Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 7 - April 21st, 2014 F3/30 (pg.3/43)

Logistics
(MN ]

Class Road Map - IT-I

@ L1 (3/31): Motivation, Applications, & L11: More properties of polymatroids,
Basic Definitions SFM special cases

(]

@ L2: (4/2): Applications, Basic o L12:

Definitions, Properties @ L13:

@ L3: More examples and properties (e.g., o L14:

closure properties), and examples, ° Li5:

spanning trees ° Li6:

@ L4: proofs of equivalent definitions, ]

. . @ L17:
independence, start matroids

@ L5: matroids, basic definitions and S

examples @ L19:

@ L20:

@ L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

@ L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

@ L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

@ L9: From Matroid Polytopes to
Polymatroids.

@ L10: Polymatroids and Submodularity

Finals Week: June 9th-13th, 2014.
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all i), and I is an index set. Hence, |I| = |V].

@ A family (v; : 4 € I) with v; € V is said to be a system of distinct
representatives of V if 3 a bijection 7 : I <> I such that v; € V5
and v; # v; for all ¢ # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 7.2.1 (transversal)

Given a set system (V,V)) as defined above, a set T C V is a transversal
of V if there is a bijection 7 : T' <+ I such that

T € Vi) forallz €T (7.1)

@ Note that due to 7 : 1" <+ I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
e Given a set system (V,V) with V = (V; :i € I), and V; C V for all i.
Then, for any J C I, let
V(J) =UjesV; (7.1)

so [V (J)|: 2! — Z, is the set cover func. (we know is submodular).
o We have

Theorem 7.2.1 (Hall's theorem)

Given a set system (V, V), the family of subsets V = (V; :i € I) has a
transversal (v; : 1 € I) iff for all J C I

V()| = ]J] (7.2)
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
o Given a set system (V,V) with V = (V; :i € I), and V; C V for all i.
Then, for any J C I, let
V(J) =UjesV; (7.1)

so [V (J)|: 2! — Z, is the set cover func. (we know is submodular).
e Hall's theorem (VJ C I,|V(J)| > |J|) as a bipartite graph.

I v |
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
e Given a set system (V,V) with V = (V; :i € I), and V; C V for all i.
Then, for any J C I, let
V(J) =UjesV; (7.1)

so |[V(J)|: 27 — Z, is the set cover func. (we know is submodular).
@ Moreover, we have

Theorem 7.2.2 (Rado’s theorem (1942))

If M = (V,r) is a matroid on V' with rank function r, then the family of
subsets (V; :i € I) of V has a transversal (v; : i € I) that is independent
in M iff for all J C I

r(V(J)) =z |J] (7.3)

@ Note, a transversal T independent in M means that r(T') = |T|.
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Application’s of Hall's theorem

@ Consider a set of jobs I and a set of applicants V' to the jobs. If an
applicant v € V' is qualified for job i € I, we add edge (v, i) to the
bipartite graph G = (V, I, E).

@ We wish all jobs to be filled, and hence Hall's condition
(VJ C I,|V(J)| > |J|) is a necessary and sufficient condition for
this to be possible.

e Note if |[V| = |I|, then Hall's theorem is the Marriage Theorem
(Frobenious 1917), where an edge (v,%) in the graph indicate
compatibility between two individuals v € V' and ¢ € I coming from
two separate groups V' and I.

o If VJ C I,|V(J)| > |J|, then all individuals in each group can be
matched with a compatible mate.
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More general conditions for existence of transversals

Theorem 7.2.1 (Polymatroid transversal theorem)

IfV = (V; : 1 € 1) is a finite family of non-empty subsets of V', and
f:2Y — Z. is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

f(Useg{vi}) > |J| forall J C 1 (7.1)
if and only if

fV(J)) > |J| forall J C I (7.2)

v

@ Given Theorem 7.2.1, we immediately get Theorem 7.2.1 by taking
f(S) = |S| for S C V. In which case, Eq. 7.7 requires the system of
representatives to be distinct.

@ We get Theorem 7.2.2 by taking f(S) = r(S) for S C V, the rank
function of the matroid. where, Eq. 7.7 insists the system of representatives
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

@ Given a set system (V,V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E)) associated with V' that has edge set
{(v,i):veVyiel,veV}.

@ A matching in this graph is a set of edges no two of which that have
a common endpoint. In fact, we easily have:

A subset T' C V' is a partial transversal of V iff there is a matching in
(V, 1, E) in which every edge has one endpoint in T (T' matched into I ).
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Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 7.2.4

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,¢}. Let T be the set of partial transversals of V. Then (V,T)
is @ matroid.

@ We note that () € Z since the empty set is a transversal of the empty
subfamily of V, thus (I1") holds.

@ We already saw that if T is a partial transversal of V, and if " C T,
then 7" is also a partial transversal. So (I12") holds.

@ Suppose that 17 and T5 are partial transversals of V such that
|T1| < |T2|. Exercise: show that (I3") holds.
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Representable

Definition 7.2.4 (Matroid isomorphism)

Two matroids M; and My respectively on ground sets V; and V5 are
isomorphic if there is a bijection 7 : V; — V5 which preserves
independence (equivalently, rank, circuits, and so on).

@ Let F be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.

@ We can more generally define matroids on a field.

Definition 7.2.5 (linear matroids on a field)

Let X be an n x m matrix and E = {1,...,m}, where X;; € IF for some
field, and let Z be the set of subsets of E such that the columns of X are
linearly independent over IF.
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Representable

Definition 7.2.4 (Matroid isomorphism)

Two matroids M; and My respectively on ground sets V; and V5 are
isomorphic if there is a bijection 7 : V; — V5 which preserves
independence (equivalently, rank, circuits, and so on).

@ Let F be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.

@ We can more generally define matroids on a field.

Definition 7.2.6 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called
representable over I
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Matroids, other definitions using matroid rank 7 : 2" — Z

Definition 7.2.1 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid
M ifforallz e E\ A r(AU{z}) =r(A) + 1.

A hyperplane is a flat of rank (M) — 1.

Definition 7.2.2 (closure)

Given A C F, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(4)}.

Therefore, a closed set A has span(A4) = A.

Definition 7.2.3 (circuit)

A subset A C FE is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A| and for any a € A,

r(A\{a}) = [A] - 1).
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Spanning Sets

@ We have the following definitions:

Definition 7.2.6 (spanning set of a set)

Given a matroid M = (V,Z), and aset Y C V, then anyset X C Y
such that »(X) = r(Y) is called a spanning set of Y.

Definition 7.2.7 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is
independent) but supersets of a base are also spanning.

@ V is always trivially spanning.

@ Consider the terminology: “spanning tree in a graph”, comes from
spanning in a matroid sense.
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Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* = (V,Z*) can be
defined on the same ground set V', but using a very different set of
independent sets Z*.

@ We define the set of sets Z* for M* as follows:
" ={ACV:V\ Ais a spanning set of M} (7.21)

@ That is, a set A is independent in the dual matroid M™ if removal of
A from V does not decrease the rank in M:

T ={ACV :rankpy (V \ A) = ranky (V)} (7.22)

@ In other words, a set A C V is independent in the dual M* (i.e.,
A € T%) if its complement is spanning in M (residual V' \ A must
contain a base in M).

@ Dual of the dual: Note, we have that (M*)* = M.
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Dual of a Matroid: Bases

@ Since the smallest spanning sets are bases, the bases of M (when
V'\ I is as small as possible while still spanning) are complements of
the bases of M* (where [ is as large as possible while still being
independent).

@ In fact, we have that

Theorem 7.3.1 (Dual matroid bases)

Let M = (V,Z) be a matroid and B(M) be the set of bases of M. Then
define

B*(M) = {V\B: B e B(M)}. (7.1)

Then B*(M) is the set of basis of M* (that is, B*(M) = B(M™).
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Dual of a Matroid: Terminology

B*(M), the bases of M*, are called cobases of M.

The circuits of M* are called cocircuits of M.

The hyperplanes of M™ are called cohyperplanes of M.

The independent sets of M™ are called coindependent sets of M.

The spanning sets of M* are called cospanning sets of M.

Proposition 7.3.2 (from Oxley 2011)

Let M = (V,Z) be a matroid, and let X C V. Then
@ X isindependent in M iff V'\ X is cospanning in M (spanning in M*).
@ X is spanning in M iff V '\ X is coindependent in M (independent in
@ X is a hyperplane in M iff V'\ X is a cocircuit in M (circuit in M*).

Q X is acircuit in M iff V '\ X is a cohyperplane in M (hyperplane in

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 7 - April 21st, 2014 F16/30 (pg.19/43)

Dual Matroid
IRl

Example duality: graphic matroid

@ Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.

@ Recall, in cycle matroid, a spanning set of GG is any set of edges that
are incident to all nodes (i.e., any superset of a spanning forest), a
minimal spanning set is a spanning tree, and a circuit has a nice
visual interpretation (a cycle in the graph).

@ A cut in a graph G is a set of edges, the removal of which increases
the number of connected components. l.e., X C F(G) is a cut in G
if K(G) < k(G \ X).

@ A minimal cut in G is a cut X C E(G) such that X \ {z} is not a
cut for any z € X.

@ A cocycle (a cocircuit in a graphic matroid) is a “minimal cut” in
the graph. Cocycle matroid sometimes called a “cut matroid”.

@ All dependent sets in a cocycle matroid are cuts (i.e., a dependent

set is a minimal cut or contains one).
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Dual Matroid

Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I* ={ACV :V\ Ais aspanning set of M}

@ It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that,
if removed, would render the graph non-spanning.
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I* ={ACV :V\ Ais a spanning set of M}
@ It consists of all sets of edges the complement of which contains a

spanning tree — i.e., an independent set can't consist of edges that,
if removed, would render the graph non-spanning.

Minimally spanning in M (and thus Maximally independent in M* (thus
a base (maximally independent) in M) a base, minimally spanning, in M)
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Dual Matroid

Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I* ={ACV :V\ Ais aspanning set of M}
@ It consists of all sets of edges the complement of which contains a

spanning tree — i.e., an independent set can't consist of edges that,
if removed, would render the graph non-spanning.

Minimally spanning in M (and thus Maximally independent in M* (thus
a base (maximally independent) in M)  a base, minimally spanning, in M¥)
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I* ={ACV :V\ Ais aspanning set of M}
@ It consists of all sets of edges the complement of which contains a

spanning tree — i.e., an independent set can't consist of edges that,
if removed, would render the graph non-spanning.

Independent but not spanning Dependent in M* (contains
in M, and not closed in M. a cocycle, is a nonminimal cut)
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I* ={ACV :V\ Ais aspanning set of M}
@ It consists of all sets of edges the complement of which contains a

spanning tree — i.e., an independent set can't consist of edges that,
if removed, would render the graph non-spanning.

Spanning in M, but not a base, and  Independent in M* (does
not independent (has cycles) not contain a cut)
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I* ={ACV :V\ Ais aspanning set of M}
@ It consists of all sets of edges the complement of which contains a

spanning tree — i.e., an independent set can't consist of edges that,
if removed, would render the graph non-spanning.

Independent but not spanning Dependent in M* (contains
in M, and not closed in M. a cocycle, is a nonminimal cut)
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Dual Matroid

Example: cocycle matroid (sometimes “cut matroid”)
@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I* ={ACV :V\ Ais aspanning set of M}
@ It consists of all sets of edges the complement of which contains a

spanning tree — i.e., an independent set can't consist of edges that,
if removed, would render the graph non-spanning.

A hyperplane in M, dependent A cycle in M* (minimally dependent
but not spanning in M in M*, a cocycle, or a minimal cut)
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I* ={ACV :V\ Ais aspanning set of M}
@ It consists of all sets of edges the complement of which contains a

spanning tree — i.e., an independent set can't consist of edges that,
if removed, would render the graph non-spanning.

A hyperplane in M, dependent A cycle in M* (minimally dependent
but not spanning in M in M*, a cocycle, or a minimal cut)
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The dual of a matroid is (indeed) a matroid

Theorem 7.3.3

Given matroid M = (V,I), let M* = (V,Z*) be as previously defined.
Then M™ is a matroid.

@ Clearly § € I'*, so (11) holds.

@ Also, if I C J € Z*, then clearly also I € Z* since if V' \ J is
spanning in M, so must V' \ I. Therefore, (12') holds.
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The dual of a matroid is (indeed) a matroid

Given matroid M = (V,I), let M* = (V,Z*) be as previously defined.
Then M™ is a matroid.

e Consider I,J € Z* with |I| < |J|. We need to show that there is
some member v € J \ I such that I 4 v is independent in M*, which
means that V' \ ( +v) = (V' \ I) \ v is still spanning in M. That is,
removing v from V' \ I doesn't make (V' \ I) \ v not spanning.

@ Since V' \ J is spanning in M, V \ J contains some base (say
B CV\J)of M. Also, V'\ I contains a base of M, say B’ C V'\ I.

@ Since B\ I CV \ I, and B\ I is independent in M, we can choose
the base B  of M st. B\ I C B'CV\I.

@ Since B and J are disjoint, we have both: 1) B\ I and J \ [ are
disjoint; and 2) BNI C I\ J. Also note, B’ and I are disjoint.
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The dual of a matroid is (indeed) a matroid

Theorem 7.3.3

Given matroid M = (V,I), let M* = (V,Z*) be as previously defined.
Then M™ is a matroid.

Proof.
@ Now J\ I Z B’, since otherwise (i.e., assuming J \ I C B’):

| \

Bl =|BNI|+|B\I
<|I\J|+|B\ :
<[J\I|+[B\I| < |B| (7.4)
which is a contradiction. The last inequality on the right follows since

J\ I C B’ (by assumption) and B\ I C B’ implies that (J\ 1)U (B\I) C B’,
but since J and B are disjoint, we have that |J\ I|+|B\ I| < B'.

@ Therefore, J\ I & B’, and thereisav e J\ st v¢ B
@ So B’ is disjoint with T U {v}, means B’ C V' \ (I U {v}), or
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Matroid Duals and Representability

Theorem 7.3.4

Let M be an F-representable matroid (i.e., one that can be represented
by a finite sized matrix over field F). Then M* is also F-representable.

Theorem 7.3.5

Let M be a graphic matroid (i.e., one that can be represented by a graph
G = (V,E)). Then M* is not necessarily also graphic.

o
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Dual Matroid Rank

Theorem 7.3.6

The rank function rys+ of the dual matroid M™* may be specified in terms
of the rank rp; in matroid M as follows. For X C V':

ru+(X) = X +ru(V\ X) —rp(V) (7.5)

@ Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2. I.e,
| X| is modular, complement f(V \ X) is submodular if f is submodular, v (V)
is a constant, and summing submodular functions and a constant preserves
submodularity.

@ Non-negativity integral follows since
1 X|+7rm(V\NX) > ry(X)+ryu(V\X) >ra(V). The right
inequality follows since r; is submodular.

@ Monotone non-decreasing follows since, as X increases by one, | X|
always increases by 1, while 7,(V \ X) decreases by one or zero.

@ Therefore, s+« is the rank function of a matroid. That it is the dual
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Dual Matroid Rank

The rank function rys+ of the dual matroid M™* may be specified in terms
of the rank rp; in matroid M as follows. For X C V':

ra(X) = X +ru(V\ X) —rp(V) (7.5)

A set X is independent in (V,rps+) if and only if

ra=(X) = [X|+ru (VA X) —ru(V) = [X] (7.6)

ra(V\X) =ry(V) (7.7)

But a subset X is independent in M* only if V'\ X is spanning in M
(by the definition of the dual matroid). O

v
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Matroid restriction /deletion

Let M = (V,Z) be a matroid and let Y C V/, then
Iy ={Z:2CY, 2T} (7.8)

is such that My = (Y,Zy) is a matroid with rank r(My ) = r(Y).
@ This is called the restriction of M to Y, and is often written M|Y".
o If Y =V \ X, then we have

Iy ={Z:ZNnX =0,Z € T} (7.9)

is considered a deletion of X from M, and is often written M \ Z.
@ Hence, MY =M\ (V\Y).

@ The rank function is of the same form. l.e., ry : 2¥ — 2y, where
ry(Z)=r(Z) for Z CY.
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Matroid contraction

@ Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting
Z is written M /Z.

@ Let Z CV and let X be a base of Z. Then a subset I of V' \ Z is
independent in M/Z iff I U X is independent in M.

@ In fact, it is the case M/Z = (M* \ Z)* (Exercise: show why).

@ The rank function takes the form
ruiz(Y)=r(YUZ)—-r(Z)=r(Y|Z) (7.10)

@ Sogiven I C V' \ Z and X is a base of Z, ry;/z(I) = |I| is identical
tor(IUZ)=|I|+r(Z)=|I|+|X]|butr(IUZ)=r(IUX). This
implies (I U X)) = |I| 4+ | X|, or I U X is independent in M.

@ A minor of a matroid is any matroid obtained via a series of
deletions and contractions of some matroid.
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Matroid Intersection

o Let My = (V,Z;) and My = (V,Z3) be two matroids. Consider their
common independent sets 71 N 1.

e While (V,Z; NZy) is typically not a matroid (Exercise: show
graphical example.), we might be interested in finding the maximum
size common independent set. That is, find max |X| such that both
X €7y and X € 1.

Theorem 7.4.1

Let My and My be given as above, with rank functions r1 and ro. Then
the size of the maximum size set in 7y N Zy is given by

(ry*r2)(V) 2 min (11 (X) 4+ ra(V'\ X)) (7.11)

v

This is an instance of the convolution of two submodular functions,
f1 and fo that, evaluated at Y C V, is written as:

(frx (V) = min (A(X) + LY\ X)) (7.12)
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Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V', we
have |['(X)| > | X]|.
o & [I'(X)—|X|>0,VX

o & miny [P(X)|— X] >0
o & miny [[(X)[+[V]—[X]| > |V]|
o & ming(|0(X)|+[V\X]) > V]
o & [I()x|-[(V)=]V]

@ So Hall's theorem can be expressed as convolution.

@ Note, in general, convolution of two submodular functions does not
preserve submodularity (but in certain special cases it does).
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Matroid Union

Definition 7.4.2

Let My = (V1,11), My = (Va,15), ..., My = (Vi,Zx) be matroids. We
define the union of matroids as
MV MyV -V My=WVieVo - WV, T3 VIo V- VI), where

Il\/Iz\/"-\/IkI{IlLﬂIQErJ---ErJIk‘Il ely,...,. I EIk} (7.13)

Note A W B designates the disjoint union of A and B.

Theorem 7.4.3

Let My = (‘/1,1-1), My = (VQ,IQ), e, My = (Vk,Ik) be matroids, with
rank functions ri,...,r,. Then the union of these matroids is still a
matroid, having rank function

r(Y) = )r(nci%(w \ X|+ri(X N VA) + - +re(X N Vk)) (7.14)

foranyY CViU... V.

A
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Exercise: Matroid Union, and Matroid duality

Exercise: Describe M Vv M*.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 7 - April 21st, 2014 F27/30 (pg.40/43)



Other Matroid Properties
Lrrrren

Matroids of three or fewer elements are graphic

@ All matroids up to and including three elements are graphic.

——_ —e L ——— )
o<>o—o
*r—1 o0
(a) The only (b) The two (c) The four (d) The eight
matroid with zero one-element two-element three-element
elements. matroids. matroids. matroids.

@ This is a nice way to show matroids with low ground set sizes. What
about matroids that are low rank but with many elements?

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 7 - April 21st, 2014 F28/30 (pg.41/43)

Combinatorial Geometries
1l

Affine Matroids

@ Given an n X m matrix with entries over some field IF, we say that a

subset S C {1,...,m} of indices (with corresponding column
vectors {v; : ¢ € S}, with |S| = k) is affinely dependent if m > 1
and there exists elements {a1,...,a;} € F, not all zero with

Zf:l a; = 0, such that Zle a;v; = 0.

@ Otherwise, the set is called affinely independent.

e Concisely: points {v1,v9,..., v} are affinely independent if
v — V1,V3 — V1,...,V — v1 are linearly independent.

@ Example: in 2D, three collinear points are affinely dependent, three
non-collear points are affinely independent, and > 4 non-collinear
points are affinely dependent.

Proposition 7.5.1 (affine matroid)

Let ground set E = {1,...,m} index column vectors of a matrix, and let
7 be the set of subsets X of E such that X indices affinely independent
vectors. Then (E,T) is a matroid.

Exercise: prove this.
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Euclidean Representation of Low-rank Matroids

@ Consider the affine matroid with n X m = 2 x 6 matrix on the field
F = R, and let the elements be

{(0,0),(1,0),(2,0),(0,1),(0,2), (1,1)}.
@ We can plot the points in R? as on the right:

@ Points have rank 1, lines have rank 2, planes
have rank 3.

e Flats (points, lines, planes, etc.) have rank equal (z,o)y
to one more than their geometric dimension.

@ Any two points constitute a line, but lines with 1,0 (1,1
only two points are not drawn.

@ Lines indicate collinear sets with > 3 points,
while any two points have rank 2.

@ Dependent sets consist of all subsets with > 4
elements (rank 3), or 3 collinear elements (rank
2). Any two points have rank 2.
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