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Logistics Review

Cumulative Outstanding Reading

Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige’s book.
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Announcements, Assignments, and Reminders

Homework 1 is out, due Wednesday April 23rd, 11:45pm,
electronically via our assignment dropbox
(https://canvas.uw.edu/courses/895956/assignments).

All homeworks must be done electronically, only PDF file format
accepted.

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

L7: Dual Matroids, other matroid
properties, matroids and greedy

L8:

L9:

L10:

L11:

L12:

L13:

L14:

L15:

L16:

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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System of Distinct Representatives

Let (V,V) be a set system (i.e., V = (Vk : i ∈ I) where Vi ⊆ V for
all i), and I is an index set. Hence, |I| = |V|.
A family (vi : i ∈ I) with vi ∈ V is said to be a system of distinct
representatives of V if ∃ a bijection π : I ↔ I such that vi ∈ Vπ(i)

and vi %= vj for all i %= j.

In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 7.2.1 (transversal)

Given a set system (V,V) as defined above, a set T ⊆ V is a transversal
of V if there is a bijection π : T ↔ I such that

x ∈ Vπ(x) for all x ∈ T (7.1)

Note that due to π : T ↔ I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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Logistics Review

When do transversals exist?
As we saw, a transversal might not always exist. How to tell?

Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all i.
Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (7.1)

so |V (J)| : 2I → Z+ is the set cover func. (we know is submodular).
We have

Theorem 7.2.1 (Hall’s theorem)

Given a set system (V,V), the family of subsets V = (Vi : i ∈ I) has a
transversal (vi : i ∈ I) iff for all J ⊆ I

|V (J)| ≥ |J | (7.2)
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?

Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all i.
Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (7.1)

so |V (J)| : 2I → Z+ is the set cover func. (we know is submodular).
Moreover, we have

Theorem 7.2.2 (Rado’s theorem (1942))

If M = (V, r) is a matroid on V with rank function r, then the family of
subsets (Vi : i ∈ I) of V has a transversal (vi : i ∈ I) that is independent
in M iff for all J ⊆ I

r(V (J)) ≥ |J | (7.3)

Note, a transversal T independent in M means that r(T ) = |T |.
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Application’s of Hall’s theorem

Consider a set of jobs I and a set of applicants V to the jobs. If an
applicant v ∈ V is qualified for job i ∈ I, we add edge (v, i) to the
bipartite graph G = (V, I, E).

We wish all jobs to be filled, and hence Hall’s condition
(∀J ⊆ I, |V (J)| ≥ |J |) is a necessary and sufficient condition for
this to be possible.

Note if |V | = |I|, then Hall’s theorem is the Marriage Theorem
(Frobenious 1917), where an edge (v, i) in the graph indicate
compatibility between two individuals v ∈ V and i ∈ I coming from
two separate groups V and I.

If ∀J ⊆ I, |V (J)| ≥ |J |, then all individuals in each group can be
matched with a compatible mate.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F7/44 (pg.10/174)



Logistics Review

Application’s of Hall’s theorem

Consider a set of jobs I and a set of applicants V to the jobs. If an
applicant v ∈ V is qualified for job i ∈ I, we add edge (v, i) to the
bipartite graph G = (V, I, E).

We wish all jobs to be filled, and hence Hall’s condition
(∀J ⊆ I, |V (J)| ≥ |J |) is a necessary and sufficient condition for
this to be possible.

Note if |V | = |I|, then Hall’s theorem is the Marriage Theorem
(Frobenious 1917), where an edge (v, i) in the graph indicate
compatibility between two individuals v ∈ V and i ∈ I coming from
two separate groups V and I.

If ∀J ⊆ I, |V (J)| ≥ |J |, then all individuals in each group can be
matched with a compatible mate.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F7/44 (pg.11/174)



Logistics Review

Application’s of Hall’s theorem

Consider a set of jobs I and a set of applicants V to the jobs. If an
applicant v ∈ V is qualified for job i ∈ I, we add edge (v, i) to the
bipartite graph G = (V, I, E).

We wish all jobs to be filled, and hence Hall’s condition
(∀J ⊆ I, |V (J)| ≥ |J |) is a necessary and sufficient condition for
this to be possible.

Note if |V | = |I|, then Hall’s theorem is the Marriage Theorem
(Frobenious 1917), where an edge (v, i) in the graph indicate
compatibility between two individuals v ∈ V and i ∈ I coming from
two separate groups V and I.

If ∀J ⊆ I, |V (J)| ≥ |J |, then all individuals in each group can be
matched with a compatible mate.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F7/44 (pg.12/174)



Logistics Review

Application’s of Hall’s theorem

Consider a set of jobs I and a set of applicants V to the jobs. If an
applicant v ∈ V is qualified for job i ∈ I, we add edge (v, i) to the
bipartite graph G = (V, I, E).

We wish all jobs to be filled, and hence Hall’s condition
(∀J ⊆ I, |V (J)| ≥ |J |) is a necessary and sufficient condition for
this to be possible.

Note if |V | = |I|, then Hall’s theorem is the Marriage Theorem
(Frobenious 1917), where an edge (v, i) in the graph indicate
compatibility between two individuals v ∈ V and i ∈ I coming from
two separate groups V and I.

If ∀J ⊆ I, |V (J)| ≥ |J |, then all individuals in each group can be
matched with a compatible mate.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F7/44 (pg.13/174)



Logistics Review

More general conditions for existence of transversals

Theorem 7.2.1 (Polymatroid transversal theorem)

If V = (Vi : i ∈ I) is a finite family of non-empty subsets of V , and
f : 2V → Z+ is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (vi : i ∈ I)
such that

f(∪i∈J{vi}) ≥ |J | for all J ⊆ I (7.1)

if and only if

f(V (J)) ≥ |J | for all J ⊆ I (7.2)

Given Theorem ??, we immediately get Theorem 7.2.1 by taking
f(S) = |S| for S ⊆ V .
We get Theorem ?? by taking f(S) = r(S) for S ⊆ V , the rank
function of the matroid.
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Transversals and Bipartite Matchings
Transversals correspond exactly to matchings in bipartite graphs.

Given a set system (V,V), with V = (Vi : i ∈ I), we can define a
bipartite graph G = (V, I, E) associated with V that has edge set
{(v, i) : v ∈ V, i ∈ I, v ∈ Vi}.
A matching in this graph is a set of edges no two of which that have
a common endpoint. In fact, we easily have:

Lemma 7.2.4

A subset T ⊆ V is a partial transversal of V iff there is a matching in
(V, I, E) in which every edge has one endpoint in T (T matched into I).
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Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 7.2.4

Let (V,V) where V = (V1, V2, . . . , V") be a subset system. Let
I = {1, . . . , "}. Let I be the set of partial transversals of V. Then (V, I)
is a matroid.

Proof.

We note that ∅ ∈ I since the empty set is a transversal of the empty
subfamily of V, thus (I1’) holds.
We already saw that if T is a partial transversal of V, and if T ′ ⊆ T ,
then T ′ is also a partial transversal. So (I2’) holds.

Suppose that T1 and T2 are partial transversals of V such that
|T1| < |T2|. Exercise: show that (I3’) holds.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F10/44 (pg.16/174)



Logistics Review

Representable

Definition 7.2.4 (Matroid isomorphism)

Two matroids M1 and M2 respectively on ground sets V1 and V2 are
isomorphic if there is a bijection π : V1 → V2 which preserves
independence (equivalently, rank, circuits, and so on).

Let F be any field (such as R, Q, or some finite field F, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, ∗, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.
We can more generally define matroids on a field.

Definition 7.2.6 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called
representable over F
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Matroids, other definitions using matroid rank r : 2V → Z+

Definition 7.2.1 (closed/flat/subspace)

A subset A ⊆ E is closed (equivalently, a flat or a subspace) of matroid
M if for all x ∈ E \A, r(A ∪ {x}) = r(A) + 1.

A hyperplane is a flat of rank r(M)− 1.

Definition 7.2.2 (closure)

Given A ⊆ E, the closure (or span) of A, is defined by
span(A) = {b ∈ E : r(A ∪ {b}) = r(A)}.

Therefore, a closed set A has span(A) = A.

Definition 7.2.3 (circuit)

A subset A ⊆ E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a ∈ A,
r(A \ {a}) = |A|− 1).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F12/44 (pg.18/174)



Logistics Review

Spanning Sets

We have the following definitions:

Definition 7.2.6 (spanning set of a set)

Given a matroid M = (V, I), and a set Y ⊆ V , then any set X ⊆ Y
such that r(X) = r(Y ) is called a spanning set of Y .

Definition 7.2.7 (spanning set of a matroid)

Given a matroid M = (V, I), any set A ⊆ V such that r(A) = r(V ) is
called a spanning set of the matroid.

A base of a matroid is a minimal spanning set (and it is
independent) but supersets of a base are also spanning.

V is always trivially spanning.

Consider the terminology: “spanning tree in a graph”, comes from
spanning in a matroid sense.
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Dual of a Matroid

Given a matroid M = (V, I), a dual matroid M∗ = (V, I∗) can be
defined on the same ground set V , but using a very different set of
independent sets I∗.

We define the set of sets I∗ for M∗ as follows:

I∗ = {A ⊆ V : V \A is a spanning set of M} (7.21)

That is, a set A is independent in the dual matroid M∗ if removal of
A from V does not decrease the rank in M :

I∗ = {A ⊆ V : rankM (V \A) = rankM (V )} (7.22)

In other words, a set A ⊆ V is independent in the dual M∗ (i.e.,
A ∈ I∗) if its complement is spanning in M (residual V \A must
contain a base in M).

Dual of the dual: Note, we have that (M∗)∗ = M .
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Dual Matroid Other Matroid Properties Matroid and Greedy

Dual of a Matroid: Bases

Since the smallest spanning sets are bases, the bases of M (when
V \ I is as small as possible while still spanning) are complements of
the bases of M∗ (where I is as large as possible while still being
independent).

In fact, we have that

Theorem 7.3.1 (Dual matroid bases)

Let M = (V, I) be a matroid and B(M) be the set of bases of M . Then
define

B∗(M) = {V \B : B ∈ B(M)}. (7.1)

Then B∗(M) is the set of basis of M∗ (that is, B∗(M) = B(M∗).
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Dual Matroid Other Matroid Properties Matroid and Greedy

Dual of a Matroid: Terminology

B∗(M), the bases of M∗, are called cobases of M .

The circuits of M∗ are called cocircuits of M .

The hyperplanes of M∗ are called cohyperplanes of M .

The independent sets of M∗ are called coindependent sets of M .

The spanning sets of M∗ are called cospanning sets of M .

Proposition 7.3.2 (from Oxley 2011)

Let M = (V, I) be a matroid, and let X ⊆ V . Then

1 X is independent in M iff V \X is cospanning in M (spanning in M∗).

2 X is spanning in M iff V \X is coindependent in M (independent in
M∗).

3 X is a hyperplane in M iff V \X is a cocircuit in M (circuit in M∗).

4 X is a circuit in M iff V \X is a cohyperplane in M (hyperplane in
M∗).
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The independent sets of M∗ are called coindependent sets of M .

The spanning sets of M∗ are called cospanning sets of M .

Proposition 7.3.2 (from Oxley 2011)

Let M = (V, I) be a matroid, and let X ⊆ V . Then

1 X is independent in M iff V \X is cospanning in M (spanning in M∗).

2 X is spanning in M iff V \X is coindependent in M (independent in
M∗).

3 X is a hyperplane in M iff V \X is a cocircuit in M (circuit in M∗).

4 X is a circuit in M iff V \X is a cohyperplane in M (hyperplane in
M∗).
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Example duality: graphic matroid

Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.

Recall, in cycle matroid, a spanning set of G is any set of edges that
are incident to all nodes (i.e., any superset of a spanning forest), a
minimal spanning set is a spanning tree, and a circuit has a nice
visual interpretation (a cycle in the graph).
A cut in a graph G is a set of edges, the removal of which increases
the number of connected components. I.e., X ⊆ E(G) is a cut in G
if k(G) < k(G \X).
A minimal cut in G is a cut X ⊆ E(G) such that X \ {x} is not a
cut for any x ∈ X.
A cocycle (a cocircuit in a graphic matroid) is a “minimal cut” in
the graph. Cocycle matroid sometimes called a “cut matroid”.
All dependent sets in a cocycle matroid are cuts (i.e., a dependent
set is a minimal cut or contains one).
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}

It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that,
if removed, would render the graph non-spanning.
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Example: cocycle matroid (sometimes “cut matroid”)
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spanning tree — i.e., an independent set can’t consist of edges that,
if removed, would render the graph non-spanning.
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that,
if removed, would render the graph non-spanning.

Independent but not spanning 
in M, and not closed in M.

2

1

3

4

7

6

5

8
1

2

3

4

6

7

8

5

9
12

10

11

Dependent in M* (contains 
a cocycle, is a nonminimal cut)

2

1

3

4

7

6

5

8
1

2

3

4

6

7

8

5

9
12

10

11

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F18/44 (pg.46/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that,
if removed, would render the graph non-spanning.
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The dual of a matroid is (indeed) a matroid

Theorem 7.3.3

Let M∗ = (V, I∗) be previously defined. Then M∗ is a matroid.

Proof.

Clearly ∅ ∈ I∗, so (I1’) holds.

Also, if I ⊆ J ∈ I∗, then clearly also I ∈ I∗ since if V \ J is
spanning in M , so must V \ I. Therefore, (I2’) holds.

. . .
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The dual of a matroid is (indeed) a matroid

Theorem 7.3.3

Let M∗ = (V, I∗) be previously defined. Then M∗ is a matroid.

Proof.

Consider I, J ∈ I∗ with |I| < |J |. We need to show that there is
some member v ∈ J \ I such that I + v is independent in M∗, which
means that V \ (I + v) = (V \ I) \ v is still spanning in M . That is,
removing v from V \ I doesn’t make (V \ I) \ v not spanning.

Since V \ J is spanning in M , V \ J contains some base (say
B ⊆ V \J) of M . Also, V \ I contains a base of M , say B′ ⊆ V \ I.
Since B \ I ⊆ V \ I, and B \ I is independent in M , we can choose
the base B′ of M s.t. B \ I ⊆ B′ ⊆ V \ I.
Since B and J are disjoint, we have both: 1) B \ I and J \ I are
disjoint; and 2) B ∩ I ⊆ I \ J . Also note, B′ and I are disjoint.

. . .
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The dual of a matroid is (indeed) a matroid

Theorem 7.3.3

Let M∗ = (V, I∗) be previously defined. Then M∗ is a matroid.

Proof.

Now J \ I %⊆ B′, since otherwise (i.e., assuming J \ I ⊆ B′):

|B| = |B ∩ I|+ |B \ I| (7.2)

≤ |I \ J |+ |B \ I| (7.3)

< |J \ I|+ |B \ I| ≤ |B′| (7.4)

which is a contradiction. The last inequality on the right follows since
J \ I ⊆ B′ (by assumption) and B \ I ⊆ B′ implies that (J \ I) ∪ (B \ I) ⊆ B′,
but since J and B are disjoint, we have that |J \ I|+ |B \ I| ≤ B′.

Therefore, J \ I %⊆ B′, and there is a v ∈ J \ I s.t. v /∈ B′.

So B′ is disjoint with I ∪ {v}, means B′ ⊆ V \ (I ∪ {v}), or
V \ (I ∪ {v}) is spanning in M , and therefore I ∪ {v} ∈ I∗.
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Matroid Duals and Representability

Theorem 7.3.4

Let M be an F-representable matroid (i.e., one that can be represented
by a finite sized matrix over field F). Then M∗ is also F-representable.

Theorem 7.3.5

Let M be a graphic matroid (i.e., one that can be represented by a graph
G = (V,E)). Then M∗ is not necessarily also graphic.
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Dual Matroid Rank

Theorem 7.3.6

The rank function rM∗ of the dual matroid M∗ may be specified in terms
of the rank rM in matroid M as follows. For X ⊆ V :

rM∗(X) = |X|+ rM (V \X)− rM (V ) (7.5)

Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2. I.e.,
|X| is modular, complement f(V \X) is submodular if f is submodular, rM (V )
is a constant, and summing submodular functions and a constant preserves
submodularity.

Non-negativity integral follows since
|X|+ rM (V \X) ≥ rM (X) + rM (V \X) ≥ rM (V ).

Monotone non-decreasing follows since, as X increases by one, |X|
always increases by 1, while rM (V \X) decreases by one or zero.

Therefore, rM∗ is the rank function of a matroid. That it is the dual
matroid rank function is shown in the next proof.
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Dual Matroid Rank

Theorem 7.3.6

The rank function rM∗ of the dual matroid M∗ may be specified in terms
of the rank rM in matroid M as follows. For X ⊆ V :

rM∗(X) = |X|+ rM (V \X)− rM (V ) (7.5)

Proof.

A set X is independent in (V, rM∗) if and only if

rM∗(X) = |X|+ rM (V \X)− rM (V ) = |X| (7.6)

or

rM (V \X) = rM (V ) (7.7)

But a subset X is independent in M∗ only if V \X is spanning in M
(by the definition of the dual matroid).

. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F21/44 (pg.64/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Dual Matroid Rank

Theorem 7.3.6

The rank function rM∗ of the dual matroid M∗ may be specified in terms
of the rank rM in matroid M as follows. For X ⊆ V :

rM∗(X) = |X|+ rM (V \X)− rM (V ) (7.5)

Proof.

A set X is independent in (V, rM∗) if and only if

rM∗(X) = |X|+ rM (V \X)− rM (V ) = |X| (7.6)

or

rM (V \X) = rM (V ) (7.7)

But a subset X is independent in M∗ only if V \X is spanning in M
(by the definition of the dual matroid).

. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F21/44 (pg.65/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Dual Matroid Rank

Theorem 7.3.6

The rank function rM∗ of the dual matroid M∗ may be specified in terms
of the rank rM in matroid M as follows. For X ⊆ V :

rM∗(X) = |X|+ rM (V \X)− rM (V ) (7.5)

Proof.

A set X is independent in (V, rM∗) if and only if

rM∗(X) = |X|+ rM (V \X)− rM (V ) = |X| (7.6)

or

rM (V \X) = rM (V ) (7.7)

But a subset X is independent in M∗ only if V \X is spanning in M
(by the definition of the dual matroid).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F21/44 (pg.66/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Matroid restriction/deletion

Let M = (V, I) be a matroid and let Y ⊆ V , then

IY = {Z : Z ⊆ Y, Z ∈ I} (7.8)

is such that MY = (Y, IY ) is a matroid with rank r(MY ) = r(Y ).

This is called the restriction of M to Y , and is often written M |Y .

If Y = V \X, then we have

IY = {Z : Z ∩X = ∅, Z ∈ I} (7.9)

is considered a deletion of X from M , and is often written M \ Z.

Hence, M |Y = M \ (V \ Y ).

The rank function is of the same form. I.e., rY : 2Y → Z+, where
rY (Z) = r(Z) for Z ⊆ Y .
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Matroid contraction

Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting
Z is written M/Z.

Let Z ⊆ V and let X be a base of Z. Then a subset I of V \ Z is
independent in M/Z iff I ∪X is independent in M .

In fact, it is the case M/Z = (M∗ \ Z)∗ (Exercise: show why).

The rank function takes the form

rM/Z(Y ) = r(Y ∪ Z)− r(Z) = r(Y |Z) (7.10)

So given I ⊆ V \ Z and X is a base of Z, rM/Z(I) = |I| is identical
to r(I ∪Z) = |I|+ r(Z) = |I|+ |X| but r(I ∪Z) = r(I ∪X). This
implies r(I ∪X) = |I|+ |X|, or I ∪X is independent in M .

A minor of a matroid is any matroid obtained via a series of
deletions and contractions of some matroid.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F23/44 (pg.72/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Matroid contraction

Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting
Z is written M/Z.

Let Z ⊆ V and let X be a base of Z. Then a subset I of V \ Z is
independent in M/Z iff I ∪X is independent in M .

In fact, it is the case M/Z = (M∗ \ Z)∗ (Exercise: show why).

The rank function takes the form

rM/Z(Y ) = r(Y ∪ Z)− r(Z) = r(Y |Z) (7.10)

So given I ⊆ V \ Z and X is a base of Z, rM/Z(I) = |I| is identical
to r(I ∪Z) = |I|+ r(Z) = |I|+ |X| but r(I ∪Z) = r(I ∪X). This
implies r(I ∪X) = |I|+ |X|, or I ∪X is independent in M .

A minor of a matroid is any matroid obtained via a series of
deletions and contractions of some matroid.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F23/44 (pg.73/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Matroid contraction

Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting
Z is written M/Z.

Let Z ⊆ V and let X be a base of Z. Then a subset I of V \ Z is
independent in M/Z iff I ∪X is independent in M .

In fact, it is the case M/Z = (M∗ \ Z)∗ (Exercise: show why).

The rank function takes the form

rM/Z(Y ) = r(Y ∪ Z)− r(Z) = r(Y |Z) (7.10)

So given I ⊆ V \ Z and X is a base of Z, rM/Z(I) = |I| is identical
to r(I ∪Z) = |I|+ r(Z) = |I|+ |X| but r(I ∪Z) = r(I ∪X). This
implies r(I ∪X) = |I|+ |X|, or I ∪X is independent in M .

A minor of a matroid is any matroid obtained via a series of
deletions and contractions of some matroid.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F23/44 (pg.74/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Matroid contraction

Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting
Z is written M/Z.

Let Z ⊆ V and let X be a base of Z. Then a subset I of V \ Z is
independent in M/Z iff I ∪X is independent in M .

In fact, it is the case M/Z = (M∗ \ Z)∗ (Exercise: show why).

The rank function takes the form

rM/Z(Y ) = r(Y ∪ Z)− r(Z) = r(Y |Z) (7.10)

So given I ⊆ V \ Z and X is a base of Z, rM/Z(I) = |I| is identical
to r(I ∪Z) = |I|+ r(Z) = |I|+ |X| but r(I ∪Z) = r(I ∪X). This
implies r(I ∪X) = |I|+ |X|, or I ∪X is independent in M .

A minor of a matroid is any matroid obtained via a series of
deletions and contractions of some matroid.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F23/44 (pg.75/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Matroid contraction

Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting
Z is written M/Z.

Let Z ⊆ V and let X be a base of Z. Then a subset I of V \ Z is
independent in M/Z iff I ∪X is independent in M .

In fact, it is the case M/Z = (M∗ \ Z)∗ (Exercise: show why).

The rank function takes the form

rM/Z(Y ) = r(Y ∪ Z)− r(Z) = r(Y |Z) (7.10)

So given I ⊆ V \ Z and X is a base of Z, rM/Z(I) = |I| is identical
to r(I ∪Z) = |I|+ r(Z) = |I|+ |X| but r(I ∪Z) = r(I ∪X). This
implies r(I ∪X) = |I|+ |X|, or I ∪X is independent in M .

A minor of a matroid is any matroid obtained via a series of
deletions and contractions of some matroid.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F23/44 (pg.76/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Matroid contraction

Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting
Z is written M/Z.

Let Z ⊆ V and let X be a base of Z. Then a subset I of V \ Z is
independent in M/Z iff I ∪X is independent in M .

In fact, it is the case M/Z = (M∗ \ Z)∗ (Exercise: show why).

The rank function takes the form

rM/Z(Y ) = r(Y ∪ Z)− r(Z) = r(Y |Z) (7.10)

So given I ⊆ V \ Z and X is a base of Z, rM/Z(I) = |I| is identical
to r(I ∪Z) = |I|+ r(Z) = |I|+ |X| but r(I ∪Z) = r(I ∪X). This
implies r(I ∪X) = |I|+ |X|, or I ∪X is independent in M .
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Matroid Intersection

Let M1 = (V, I1) and M2 = (V, I2) be two matroids. Consider their
common independent sets I1 ∩ I2.

While (V, I1 ∩ I2) is typically not a matroid (Exercise: show
graphical example.), we might be interested in finding the maximum
size common independent set. That is, find max |X| such that both
X ∈ I1 and X ∈ I2.

Theorem 7.4.1

Let M1 and M2 be given as above, with rank functions r1 and r2. Then
the size of the maximum size set in I1 ∩ I2 is given by

(r1 ∗ r2)(V ) ! min
X⊆V

(
r1(X) + r2(V \X)

)
(7.11)

This is an instance of the convolution of two submodular functions,
f1 and f2 that, evaluated at Y ⊆ V , is written as:

(f1 ∗ f2)(Y ) = min
X⊆Y

(
f1(X) + f2(Y \X)

)
(7.12)
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Convolution and Hall’s Theorem

Recall Hall’s theorem, that a transversal exists iff for all X ⊆ V , we
have |Γ(X)| ≥ |X|.

⇔ |Γ(X)|− |X| ≥ 0, ∀X
⇔ minX |Γ(X)|− |X| ≥ 0

⇔ minX |Γ(X)|+ |V |− |X| ≥ |V |

⇔ minX

(
|Γ(X)|+ |V \X|

)
≥ |V |

⇔ [Γ(·) ∗ | · |](V ) ≥ |V |
So Hall’s theorem can be expressed as convolution.

Note, in general, convolution of two submodular functions does not
preserve submodularity (but in certain special cases it does).
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Matroid Union
Definition 7.4.2

Let M1 = (V1, I1), M2 = (V2, I2), . . . , Mk = (Vk, Ik) be matroids. We
define the union of matroids as
M1 ∨M2 ∨ · · · ∨Mk = (V1 1 V2 1 · · · 1 Vk, I1 ∨ I2 ∨ · · · ∨ Ik), where

I1 ∨ I2 ∨ · · · ∨ Ik = {I1 1 I2 1 · · · 1 Ik|I1 ∈ I1, . . . , Ik ∈ Ik} (7.13)

Note A 1B designates the disjoint union of A and B.

Theorem 7.4.3

Let M1 = (V1, I1), M2 = (V2, I2), . . . , Mk = (Vk, Ik) be matroids, with
rank functions r1, . . . , rk. Then the union of these matroids is still a
matroid, having rank function

r(Y ) = min
X⊆Y

(
|Y \X|+ r1(X ∩ V1) + · · ·+ rk(X ∩ Vk)

)
(7.14)

for any Y ⊆ V1 ∪ . . . Vk.
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Exercise: Matroid Union, and Matroid duality

Exercise: Describe M ∨M∗.
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Matroids of three or fewer elements are graphic

All matroids up to and including three elements are graphic.

(a) The only
matroid with zero
elements.

(b) The two
one-element
matroids.

(c) The four
two-element
matroids.

(d) The eight
three-element
matroids.

This is a nice way to show matroids with low ground set sizes. What
about matroids that are low rank but with many elements?

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F28/44 (pg.93/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Matroids of three or fewer elements are graphic

All matroids up to and including three elements are graphic.

(a) The only
matroid with zero
elements.

(b) The two
one-element
matroids.

(c) The four
two-element
matroids.

(d) The eight
three-element
matroids.

This is a nice way to show matroids with low ground set sizes. What
about matroids that are low rank but with many elements?

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F28/44 (pg.94/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Matroids of three or fewer elements are graphic

All matroids up to and including three elements are graphic.

(a) The only
matroid with zero
elements.

(b) The two
one-element
matroids.

(c) The four
two-element
matroids.

(d) The eight
three-element
matroids.

This is a nice way to show matroids with low ground set sizes. What
about matroids that are low rank but with many elements?

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F28/44 (pg.95/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Affine Matroids

Given an n×m matrix with entries over some field F, we say that a
subset S ⊆ {1, . . . ,m} of indices (with corresponding column
vectors {vi : i ∈ S}, with |S| = k) is affinely dependent if m ≥ 1
and there exists elements {a1, . . . , ak} ∈ F, not all zero with∑k

i=1 ai = 0, such that
∑k

i=1 aivi = 0.

Otherwise, the set is called affinely independent.
Concisely: points {v1, v2, . . . , vk} are affinely independent if
v2 − v1, v3 − v1, . . . , vk − v1 are linearly independent.
Example: in 2D, three co-linear points are affinely dependent, and
any 4 or more non co-linear points are affinely dependent.

Proposition 7.4.4 (affine matroid)

Let ground set E = {1, . . . ,m} index column vectors of a matrix, and let
I be the set of subsets X of E such that X indices affinely independent
vectors. Then (E, I) is a matroid.

Exercise: prove this.
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Euclidean Representation of Low-rank Matroids

Consider the affine matroid with n×m = 2× 6 matrix on the field
F = R, and let the elements be
{(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)}.

Hence, we can plot the points
in R2 as follows:

Dependent sets consist of all
subsets with ≥ 4 elements, or 3
collinear elements.

In general, for a matroid M of rank m+ 1 with m ≤ 3, then a
subset X in a geometric representation in Rm is dependent if: 1)
|X| ≥ 2 and the points are identical; 2) |X| ≥ 3 and the points are
collinear; 3) |X| ≥ 4 and the points are coplanar; or 4) |X| ≥ 5 and
the points are in space.
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Euclidean Representation of Low-rank Matroids

Theorem 7.4.5

Any matroid of rank m ≤ 4 can be represented by an affine matroid in
Rm−1.

As another example
on the right, a rank 4
matroid

All sets of 5 points are dependent. The only other sets of dependent
points are coplanar ones of size 4. Namely:
{(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0)},
{(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0)}, and
{(0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 0, 0)}.
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Euclidean Representation of Low-rank Matroids: A test

Loops represented by a separate box indicating how many loops
there are. Parallel elements indicated by a multiplicity next to a
point.
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Euclidean Representation of Low-rank Matroids

Very useful for graphically depicting low-rank matrices but which
still have rich structure. Also useful for answering questions.

Example: Is there a matroid that is not representable (i.e., not linear
for some field)?

Yes, consider the matroid

Called the non-Pappus matroid. Has rank three, but any matric
matroid with the above dependencies would require that {7, 8, 9} is
dependent, hence requiring an additional line in the above.
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Euclidean Representation of Low-rank Matroids: A test

Is this a matroid?

1 2 3

4

7

5

6

Check rank’s submodularity: Let X = {1, 2, 3, 6, 7},
Y = {1, 4, 5, 6, 7}. So r(X) =

3, and r(Y ) =

3

, and r(X ∪ Y ) =

4

,
so we must have, by submodularity, that
r({1, 6, 7}) = r(X ∩ Y ) ≤ r(X) + r(Y )− r(X ∪ Y ) = 2.

However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that r(X ∩ Y ) =

3

If we extend the line from 6-7 to 1, then is it a matroid?

Hence, not all 2D or 3D graphs of points and lines are matroids.
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Euclidean Representation of Low-rank Matroids: Other
Examples

Other examples can be more complex, consider the following two
matroids (from Oxley, 2011):

Hence, lines (in 2D) may be curved and planes (in 3D) can be
twisted.
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Euclidean Rep. of Low-rank Matroids: Conditions
rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines,
planes).

a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).
every line contains at least two points (not dependent unless > 2).
any two distinct points lie on a line (often not drawn when only two)
every plane contains at least three non-collinear points (not
dependent unless > 3)
any three distinct non-collinear points lie on a plane
If diagram has at most one plane, then any two distinct lines meet
in at most one point.
If diagram has more than one plane, then: 1) any two distinct
planes meeting in more than two points do so in a line; 2) any two
distinct lines meeting in a point do so in at most one point and lie in
on a common plane; 3) any line not lying on a plane intersects it in
at most one point.
Matroid of rank at most four (see Oxley 2011 for more details).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F36/44 (pg.128/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Euclidean Rep. of Low-rank Matroids: Conditions
rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines,
planes).
a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).

every line contains at least two points (not dependent unless > 2).
any two distinct points lie on a line (often not drawn when only two)
every plane contains at least three non-collinear points (not
dependent unless > 3)
any three distinct non-collinear points lie on a plane
If diagram has at most one plane, then any two distinct lines meet
in at most one point.
If diagram has more than one plane, then: 1) any two distinct
planes meeting in more than two points do so in a line; 2) any two
distinct lines meeting in a point do so in at most one point and lie in
on a common plane; 3) any line not lying on a plane intersects it in
at most one point.
Matroid of rank at most four (see Oxley 2011 for more details).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F36/44 (pg.129/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Euclidean Rep. of Low-rank Matroids: Conditions
rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines,
planes).
a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).
every line contains at least two points (not dependent unless > 2).

any two distinct points lie on a line (often not drawn when only two)
every plane contains at least three non-collinear points (not
dependent unless > 3)
any three distinct non-collinear points lie on a plane
If diagram has at most one plane, then any two distinct lines meet
in at most one point.
If diagram has more than one plane, then: 1) any two distinct
planes meeting in more than two points do so in a line; 2) any two
distinct lines meeting in a point do so in at most one point and lie in
on a common plane; 3) any line not lying on a plane intersects it in
at most one point.
Matroid of rank at most four (see Oxley 2011 for more details).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F36/44 (pg.130/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Euclidean Rep. of Low-rank Matroids: Conditions
rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines,
planes).
a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).
every line contains at least two points (not dependent unless > 2).
any two distinct points lie on a line (often not drawn when only two)

every plane contains at least three non-collinear points (not
dependent unless > 3)
any three distinct non-collinear points lie on a plane
If diagram has at most one plane, then any two distinct lines meet
in at most one point.
If diagram has more than one plane, then: 1) any two distinct
planes meeting in more than two points do so in a line; 2) any two
distinct lines meeting in a point do so in at most one point and lie in
on a common plane; 3) any line not lying on a plane intersects it in
at most one point.
Matroid of rank at most four (see Oxley 2011 for more details).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F36/44 (pg.131/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Euclidean Rep. of Low-rank Matroids: Conditions
rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines,
planes).
a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).
every line contains at least two points (not dependent unless > 2).
any two distinct points lie on a line (often not drawn when only two)
every plane contains at least three non-collinear points (not
dependent unless > 3)

any three distinct non-collinear points lie on a plane
If diagram has at most one plane, then any two distinct lines meet
in at most one point.
If diagram has more than one plane, then: 1) any two distinct
planes meeting in more than two points do so in a line; 2) any two
distinct lines meeting in a point do so in at most one point and lie in
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at most one point.
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at most one point.
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Matroid Further Reading

“The Coming of the Matroids”, William Cunningham, 2012 (a nice
history)

Welsh, “Matroid Theory”, 1975.

Oxley, “Matroid Theory”, 1992 (and 2011).

Lawler, “Combinatorial Optimization: Networks and Matroids”,
1976.

Schrijver, “Combinatorial Optimization”, 2003
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The greedy algorithm

In combinatorial optimization, the greedy algorithm is often useful
as a heuristic that can work quite well in practice.

The goal is to choose a good subset of items, and the fundamental
tenet of the greedy algorithm is to choose next whatever currently
looks best.

Sometimes, this gives the optimal solution (we saw three greedy
algorithms that can find the maximum weight spanning tree).

Greedy is good since it can be made to run very fast O(n log n).

Often, however, greedy is heuristic (it might work well in practice,
but worst-case performance can be unboundedly poor).

We will next see that the greedy algorithm working is a defining
property of a matroid, and is also a defining property of a
polymatroid function.
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algorithms that can find the maximum weight spanning tree).

Greedy is good since it can be made to run very fast O(n log n).

Often, however, greedy is heuristic (it might work well in practice,
but worst-case performance can be unboundedly poor).

We will next see that the greedy algorithm working is a defining
property of a matroid, and is also a defining property of a
polymatroid function.
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Matroid and the greedy algorithm

Let (E, I) be an independence system, and we are given a
non-negative modular weight function w : E → R+.

Algorithm 1: The Matroid Greedy Algorithm

1 Set X ← ∅ ;
2 while ∃v ∈ E \X s.t. X ∪ {v} ∈ I do
3 v ∈ argmax {w(v) : v ∈ E \X, X ∪ {v} ∈ I} ;
4 X ← X ∪ {v} ;

Same as sorting items by decreasing weight w, and then choosing
items in that order that retain independence.

Theorem 7.5.1

Let (E, I) be an independence system. Then the pair (E, I) is a matroid
if and only if for each weight function w ∈ RE

+, Algorithm 1 leads to a
set I ∈ I of maximum weight w(I).
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 7.5.1 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then
the following are equivalent.

1 B is the collection of bases of a matroid;

2 if B,B′ ∈ B, and x ∈ B′ \B, then B′ − x+ y ∈ B for some
y ∈ B \B′.

3 If B,B′ ∈ B, and x ∈ B′ \B, then B − y + x ∈ B for some
y ∈ B \B′.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of
linear spaces and matrices, and (alternatively) spanning trees.
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Matroid and the greedy algorithm

proof of Theorem 7.5.1.

Assume (E, I) is a matroid and w : E → R+ is given.

Let A = (a1, a2, . . . , ar) be the solution returned by greedy, where
r = r(M) the rank of the matroid, and we order the elements as
they were chosen (so w(a1) ≥ w(a2) ≥ · · · ≥ w(ar)).

A is a base of M , and let B = (b1, . . . , br) be any another base of
M with elements also ordered decreasing by weight.

We next show that not only is w(A) ≥ w(B) but that
w(ai) ≥ w(bi) for all i.

. . .
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Matroid and the greedy algorithm

proof of Theorem 7.5.1.

Assume otherwise, and let k be the first (smallest) integer such that
w(ak) < w(bk). Hence w(aj) ≥ w(bj) for j < k.

Define independent sets Ak−1 = {a1, . . . , ak−1} and
Bk = {b1, . . . , bk}.
Since |Ak−1| < |Bk|, Ak−1 ∪ {bi} ∈ I for some 1 ≤ i ≤ k.

But w(bi) ≥ w(bk) > w(ak), and so the greedy algorithm would
have chosen bi rather than ak, contradicting what greedy does.

. . .
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Matroid and the greedy algorithm

converse proof of Theorem 7.5.1.

Given an independence system (E, I), suppose the greedy algorithm
leads to an independent set of max weight for every non-negative
weight function. We’ll show (E, I) is a matroid.

Emptyset containing and down monotonicity already holds (since
we’ve started with an independence system).

Let I, J ∈ I with |I| < |J |. Suppose to the contrary, that
I ∪ {z} /∈ I for all z ∈ J \ I.
Define the following modular weight function w on E, and define
k = |I|.

w(v) =






k + 2 if v ∈ I,

k + 1 if v ∈ J \ I,
0 if v ∈ E \ (I ∪ J)

(7.15)

. . .
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Matroid and the greedy algorithm

converse proof of Theorem 7.5.1.

Now greedy will, after k iterations, recover I, but it cannot choose
any element in J \ I by assumption. Thus, greedy chooses a set of
weight k(k + 2).

On the other hand, J has weight

w(J) ≥ |J |(k + 1) ≥ (k + 1)(k + 1) > k(k + 2) (7.16)

so J has strictly larger weight but is still independent, contradicting
greedy’s optimality.

Therefore, (E, I) must be a matroid.

. . .
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Matroid and greedy

As given, the theorem asked for a modular function w ∈ RE
+.

This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

We don’t need non-negativity, we can use any w ∈ RE and keep
going until we have a base.

If we stop at a negative value, we’ll once again get a maximum
weight independent set.

We can instead do as small as possible thus giving us a minimum
weight independent set/base.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F43/44 (pg.168/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Matroid and greedy

As given, the theorem asked for a modular function w ∈ RE
+.

This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

We don’t need non-negativity, we can use any w ∈ RE and keep
going until we have a base.

If we stop at a negative value, we’ll once again get a maximum
weight independent set.

We can instead do as small as possible thus giving us a minimum
weight independent set/base.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F43/44 (pg.169/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Matroid and greedy

As given, the theorem asked for a modular function w ∈ RE
+.

This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

We don’t need non-negativity, we can use any w ∈ RE and keep
going until we have a base.

If we stop at a negative value, we’ll once again get a maximum
weight independent set.

We can instead do as small as possible thus giving us a minimum
weight independent set/base.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F43/44 (pg.170/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Matroid and greedy

As given, the theorem asked for a modular function w ∈ RE
+.

This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

We don’t need non-negativity, we can use any w ∈ RE and keep
going until we have a base.

If we stop at a negative value, we’ll once again get a maximum
weight independent set.

We can instead do as small as possible thus giving us a minimum
weight independent set/base.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F43/44 (pg.171/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Matroid and greedy

As given, the theorem asked for a modular function w ∈ RE
+.

This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

We don’t need non-negativity, we can use any w ∈ RE and keep
going until we have a base.

If we stop at a negative value, we’ll once again get a maximum
weight independent set.

We can instead do as small as possible thus giving us a minimum
weight independent set/base.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F43/44 (pg.172/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Matroid and greedy

As given, the theorem asked for a modular function w ∈ RE
+.

This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

We don’t need non-negativity, we can use any w ∈ RE and keep
going until we have a base.

If we stop at a negative value, we’ll once again get a maximum
weight independent set.

We can instead do as small as possible thus giving us a minimum
weight independent set/base.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 7 - April 21st, 2014 F43/44 (pg.173/174)



Dual Matroid Other Matroid Properties Matroid and Greedy

Summary of Important (for us) Matroid Definitions

Given an independence system, matroids are defined equivalently by any
of the following:

All maximally independent sets have the same size.

A monotone non-decreasing submodular integral rank function with
unit increments.

The greedy algorithm achieves the maximum weight independent set
for all weight functions.
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