Submodular Functions, Optimization, and Applications to Machine Learning

— Spring Quarter, Lecture 7 —

http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

April 21st, 2014

 $\begin{array}{ll} f(A)+f(B) \geq f(A\cup B) + f(A\cap B) \\ & = f(A)+2f(C)+f(B) & = f(A)+f(C)+f(B) & = f(A\cap B) \end{array}$

Cumulative Outstanding Reading

• Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige's book.

Announcements, Assignments, and Reminders

- Homework 1 is out, due Wednesday April 23rd, 11:45pm, electronically via our assignment dropbox (https://canvas.uw.edu/courses/895956/assignments).
- All homeworks must be done electronically, only PDF file format accepted.
- Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

- L1 (3/31): Motivation, Applications, & Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes,
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity

- L11: More properties of polymatroids, SFM special cases
- L12:
- I 13・
- L14:
- L15:
- L16:
 I 17:
- L17:
- L19:
- L19:L20:

Finals Week: June 9th-13th, 2014.

System of Distinct Representatives

- Let (V, V) be a set system (i.e., $V = (V_k : i \in I)$ where $V_i \subseteq V$ for all i), and I is an index set. Hence, |I| = |V|.
- A family $(v_i: i \in I)$ with $v_i \in V$ is said to be a system of distinct representatives of $\mathcal V$ if \exists a bijection $\pi: I \leftrightarrow I$ such that $v_i \in V_{\pi(i)}$ and $v_i \neq v_j$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Lets re-state (and rename) this as a:

Definition 7.2.1 (transversal)

Given a set system (V, \mathcal{V}) as defined above, a set $T \subseteq V$ is a transversal of \mathcal{V} if there is a bijection $\pi: T \leftrightarrow I$ such that

$$x \in V_{\pi(x)}$$
 for all $x \in T$ (7.1)

• Note that due to $\pi: T \leftrightarrow I$ being a bijection, all of I and T are "covered" (so this makes things distinct automatically).

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{7.1}$$

so $|V(J)|: 2^I \to \mathbb{Z}_+$ is the set cover func. (we know is submodular).

We havé

Theorem 7.2.1 (Hall's theorem)

Given a set system (V, \mathcal{V}) , the family of subsets $\mathcal{V} = (V_i : i \in I)$ has a transversal $(v_i : i \in I)$ iff for all $J \subset I$

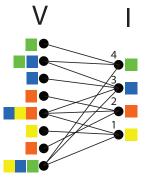
$$|V(J)| \ge |J| \tag{7.2}$$

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{7.1}$$

so $|V(J)|:2^I o \mathbb{Z}_+$ is the set cover func. (we know is submodular).

• Hall's theorem $(\forall J \subseteq I, |V(J)| \ge |J|)$ as a bipartite graph.

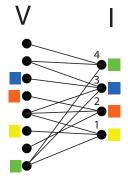


- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{7.1}$$

so $|V(J)|:2^I \to \mathbb{Z}_+$ is the set cover func. (we know is submodular).

• Hall's theorem $(\forall J \subseteq I, |V(J)| \ge |J|)$ as a bipartite graph.



- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{7.1}$$

so $|V(J)|:2^I o \mathbb{Z}_+$ is the set cover func. (we know is submodular).

Moreovér, we have

Theorem 7.2.2 (Rado's theorem (1942))

If M=(V,r) is a matroid on V with rank function r, then the family of subsets $(V_i:i\in I)$ of V has a transversal $(v_i:i\in I)$ that is independent in M iff for all $J\subseteq I$

$$r(V(J)) \ge |J| \tag{7.3}$$

• Note, a transversal T independent in M means that r(T) = |T|.

ullet Consider a set of jobs I and a set of applicants V to the jobs. If an applicant $v \in V$ is qualified for job $i \in I$, we add edge (v,i) to the bipartite graph G = (V,I,E).

- Consider a set of jobs I and a set of applicants V to the jobs. If an applicant $v \in V$ is qualified for job $i \in I$, we add edge (v,i) to the bipartite graph G = (V,I,E).
- We wish all jobs to be filled, and hence Hall's condition $(\forall J \subseteq I, |V(J)| \ge |J|)$ is a necessary and sufficient condition for this to be possible.

- Consider a set of jobs I and a set of applicants V to the jobs. If an applicant $v \in V$ is qualified for job $i \in I$, we add edge (v,i) to the bipartite graph G = (V,I,E).
- We wish all jobs to be filled, and hence Hall's condition $(\forall J\subseteq I, |V(J)|\geq |J|)$ is a necessary and sufficient condition for this to be possible.
- ullet Note if |V|=|I|, then Hall's theorem is the Marriage Theorem (Frobenious 1917), where an edge (v,i) in the graph indicate compatibility between two individuals $v\in V$ and $i\in I$ coming from two separate groups V and I.

- Consider a set of jobs I and a set of applicants V to the jobs. If an applicant $v \in V$ is qualified for job $i \in I$, we add edge (v,i) to the bipartite graph G = (V,I,E).
- We wish all jobs to be filled, and hence Hall's condition $(\forall J\subseteq I, |V(J)|\geq |J|)$ is a necessary and sufficient condition for this to be possible.
- Note if |V|=|I|, then Hall's theorem is the Marriage Theorem (Frobenious 1917), where an edge (v,i) in the graph indicate compatibility between two individuals $v\in V$ and $i\in I$ coming from two separate groups V and I.
- If $\forall J\subseteq I, |V(J)|\geq |J|$, then all individuals in each group can be matched with a compatible mate.

More general conditions for existence of transversals

Theorem 7.2.1 (Polymatroid transversal theorem)

If $\mathcal{V}=(V_i:i\in I)$ is a finite family of non-empty subsets of V, and $f:2^V\to\mathbb{Z}_+$ is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $(v_i:i\in I)$ such that

$$f(\cup_{i\in J}\{v_i\}) \ge |J| \text{ for all } J \subseteq I$$
 (7.1)

if and only if

$$f(V(J)) \ge |J| \text{ for all } J \subseteq I$$
 (7.2)

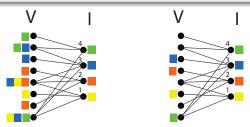
- Given Theorem $\ref{eq:condition}$, we immediately get Theorem 7.2.1 by taking f(S) = |S| for $S \subseteq V$.
- We get Theorem $\ref{eq:substitute}$ by taking f(S) = r(S) for $S \subseteq V$, the rank function of the matroid.

Transversals and Bipartite Matchings

- Transversals correspond exactly to matchings in bipartite graphs.
- Given a set system (V, \mathcal{V}) , with $\mathcal{V} = (V_i : i \in I)$, we can define a bipartite graph G = (V, I, E) associated with \mathcal{V} that has edge set $\{(v, i) : v \in V, i \in I, v \in V_i\}$.
- A matching in this graph is a set of edges no two of which that have a common endpoint. In fact, we easily have:

Lemma 7.2.4

A subset $T\subseteq V$ is a partial transversal of $\mathcal V$ iff there is a matching in (V,I,E) in which every edge has one endpoint in T (T matched into I).



Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 7.2.4

Let (V, \mathcal{V}) where $\mathcal{V} = (V_1, V_2, \dots, V_\ell)$ be a subset system. Let $I = \{1, \dots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V} . Then (V, \mathcal{I}) is a matroid.

Proof.

- We note that $\emptyset \in \mathcal{I}$ since the empty set is a transversal of the empty subfamily of \mathcal{V} , thus (I1') holds.
- We already saw that if T is a partial transversal of \mathcal{V} , and if $T' \subseteq T$, then T' is also a partial transversal. So (I2') holds.
- Suppose that T_1 and T_2 are partial transversals of $\mathcal V$ such that $|T_1|<|T_2|$. Exercise: show that (I3') holds.

Representable

Definition 7.2.4 (Matroid isomorphism)

Two matroids M_1 and M_2 respectively on ground sets V_1 and V_2 are isomorphic if there is a bijection $\pi:V_1\to V_2$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R} , \mathbb{Q} , or some finite field \mathbb{F} , such as a Galois field $\operatorname{GF}(p)$ where p is prime (such as $\operatorname{GF}(2)$). Succinctly: A field is a set with +, *, closure, associativity, commutativity, and additive and multiplictaive identities and inverses.
- We can more generally define matroids on a field.

Definition 7.2.6 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called representable over \mathbb{F}

Matroids, other definitions using matroid rank $r: 2^V o \mathbb{Z}_+$

Definition 7.2.1 (closed/flat/subspace)

A subset $A\subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x\in E\setminus A$, $r(A\cup\{x\})=r(A)+1$.

A hyperplane is a flat of rank r(M) - 1.

Definition 7.2.2 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$

Therefore, a closed set A has span(A) = A.

Definition 7.2.3 (circuit)

A subset $A\subseteq E$ is circuit or a cycle if it is an $\underline{\text{inclusionwise-minimal}}$ $\underline{\text{dependent set}}$ (i.e., if r(A)<|A| and for any $a\in A$, $\overline{r(A\setminus\{a\})}=|A|-1$).

Spanning Sets

• We have the following definitions:

Definition 7.2.6 (spanning set of a set)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, and a set $Y\subseteq V$, then any set $X\subseteq Y$ such that r(X)=r(Y) is called a spanning set of Y.

Definition 7.2.7 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, any set $A\subseteq V$ such that r(A)=r(V) is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
- ullet V is always trivially spanning.
- Consider the terminology: "spanning tree in a graph", comes from spanning in a matroid sense.

Dual of a Matroid

- Given a matroid $M=(V,\mathcal{I})$, a dual matroid $M^*=(V,\mathcal{I}^*)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^* .
- We define the set of sets \mathcal{I}^* for M^* as follows:

$$\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$$
 (7.21)

• That is, a set A is independent in the dual matroid M^* if removal of A from V does not decrease the rank in M:

$$\mathcal{I}^* = \{ A \subseteq V : \mathsf{rank}_M(V \setminus A) = \mathsf{rank}_M(V) \} \tag{7.22}$$

- In other words, a set $A \subseteq V$ is independent in the dual M^* (i.e., $A \in \mathcal{I}^*$) if its complement is spanning in M (residual $V \setminus A$ must contain a base in M).
- Dual of the dual: Note, we have that $(M^*)^* = M$.

• Since the smallest spanning sets are bases, the bases of M (when $V\setminus I$ is as small as possible while still spanning) are complements of the bases of M^* (where I is as large as possible while still being independent).

- Since the smallest spanning sets are bases, the bases of M (when $V\setminus I$ is as small as possible while still spanning) are complements of the bases of M^* (where I is as large as possible while still being independent).
- In fact, we have that

Dual of a Matroid: Bases

- ullet Since the smallest spanning sets are bases, the bases of M (when $V \setminus I$ is as small as possible while still spanning) are complements of the bases of M^* (where I is as large as possible while still being independent).
- In fact, we have that

Theorem 7.3.1 (Dual matroid bases)

Let $M = (V, \mathcal{I})$ be a matroid and $\mathcal{B}(M)$ be the set of bases of M. Then define

$$\mathcal{B}^*(M) = \{V \setminus B : B \in \mathcal{B}(M)\}. \tag{7.1}$$

Then $\mathcal{B}^*(M)$ is the set of basis of M^* (that is, $\mathcal{B}^*(M) = \mathcal{B}(M^*)$.

• $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- ullet The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

Let $M = (V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

Let $M = (V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then

lacktriangledown X is independent in M iff $V \setminus X$ is cospanning in M (spanning in M^*).

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

Let $M = (V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then

- ullet X is independent in M $\underline{ ext{iff}}\,V\,ackslash\,X$ is cospanning in M (spanning in M^*).
- ② X is spanning in M iff $V \setminus X$ is coindependent in M (independent in M^*).

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

Let $M=(V,\mathcal{I})$ be a matroid, and let $X\subseteq V$. Then

- ullet X is independent in M $\underline{ ext{iff}}\,V\,ackslash\,X$ is cospanning in M (spanning in M^*).
- ② X is spanning in M <u>iff</u> $V \setminus X$ is coindependent in M (independent in M^*).
- **3** X is a hyperplane in M <u>iff</u> $V \setminus X$ is a cocircuit in M (circuit in M^*).

Dual of a Matroid: Terminology

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

Proposition 7.3.2 (from Oxley 2011)

Let $M = (V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then

- lacksquare X is independent in M iff $V\setminus X$ is cospanning in M (spanning in M^*).
- $oldsymbol{Q} X$ is spanning in M iff $V\setminus X$ is coindependent in M (independent in M^*).
- ullet X is a hyperplane in M iff $V \setminus X$ is a cocircuit in M (circuit in M^*).
- lacktriangledown X is a cohyperplane in M (hyperplane in M^*).

 Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.

Dual Matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that
 are incident to all nodes (i.e., any superset of a spanning forest), a
 minimal spanning set is a spanning tree, and a circuit has a nice
 visual interpretation (a cycle in the graph).

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree, and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G) < k(G \setminus X)$.

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that
 are incident to all nodes (i.e., any superset of a spanning forest), a
 minimal spanning set is a spanning tree, and a circuit has a nice
 visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G) < k(G \setminus X)$.
- ullet A minimal cut in G is a cut $X\subseteq E(G)$ such that $X\setminus\{x\}$ is not a cut for any $x\in X$.

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree, and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G) < k(G \setminus X)$.
- A minimal cut in G is a cut $X \subseteq E(G)$ such that $X \setminus \{x\}$ is not a cut for any $x \in X$.
- A cocycle (a cocircuit in a graphic matroid) is a "minimal cut" in the graph. Cocycle matroid sometimes called a "cut matroid".

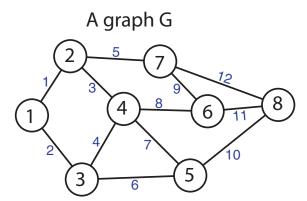
matroid can have.

• Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a

- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree, and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X\subseteq E(G)$ is a cut in G if $k(G)< k(G\setminus X)$.
- A minimal cut in G is a cut $X \subseteq E(G)$ such that $X \setminus \{x\}$ is not a cut for any $x \in X$.
- A cocycle (a cocircuit in a graphic matroid) is a "minimal cut" in the graph. Cocycle matroid sometimes called a "cut matroid".
- All dependent sets in a cocycle matroid are cuts (i.e., a dependent set is a minimal cut or contains one).

ullet The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$

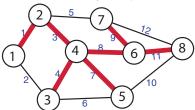
- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- It consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

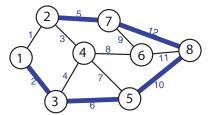


- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- It consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Minimally spanning in M (and thus a base (maximally independent) in M)

Maximally independent in M* (thus a base, minimally spanning, in M*)

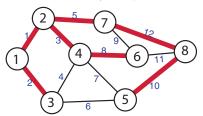


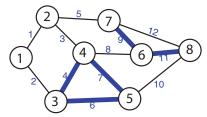


- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- It consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Minimally spanning in M (and thus a base (maximally independent) in M)

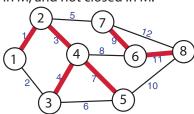
Maximally independent in M* (thus a base, minimally spanning, in M*)



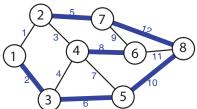


- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- It consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Independent but not spanning in M, and not closed in M.

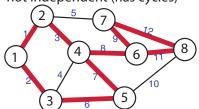


Dependent in M* (contains a cocycle, is a nonminimal cut)

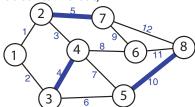


- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$
- It consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Spanning in M, but not a base, and not independent (has cycles)

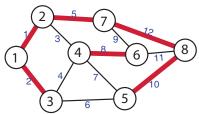


Independent in M* (does not contain a cut)

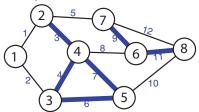


- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- It consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Independent but not spanning in M, and not closed in M.

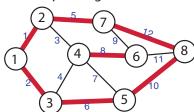


Dependent in M* (contains a cocycle, is a nonminimal cut)

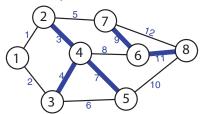


- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- It consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

A hyperplane in M, dependent but not spanning in M

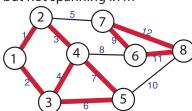


A cycle in M* (minimally dependent in M*, a cocycle, or a minimal cut)

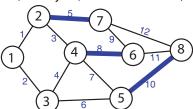


- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- It consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

A hyperplane in M, dependent but not spanning in M



A cycle in M* (minimally dependent in M*, a cocycle, or a minimal cut)



Theorem 7.3.3

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

• Clearly $\emptyset \in I^*$, so (I1') holds.

...

Theorem 7.3.3

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

- Clearly $\emptyset \in I^*$, so (I1') holds.
- Also, if $I \subseteq J \in \mathcal{I}^*$, then clearly also $I \in \mathcal{I}^*$ since if $V \setminus J$ is spanning in M, so must $V \setminus I$. Therefore, (I2') holds.

Theorem 7.3.3

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

• Consider $I,J\in\mathcal{I}^*$ with |I|<|J|. We need to show that there is some member $v\in J\setminus I$ such that I+v is independent in M^* , which means that $V\setminus (I+v)=(V\setminus I)\setminus v$ is still spanning in M. That is, removing v from $V\setminus I$ doesn't make $(V\setminus I)\setminus v$ not spanning.

. . .)

Theorem 7.3.3

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

- Consider $I,J\in\mathcal{I}^*$ with |I|<|J|. We need to show that there is some member $v\in J\setminus I$ such that I+v is independent in M^* , which means that $V\setminus (I+v)=(V\setminus I)\setminus v$ is still spanning in M. That is, removing v from $V\setminus I$ doesn't make $(V\setminus I)\setminus v$ not spanning.
- Since $V \setminus J$ is spanning in M, $V \setminus J$ contains some base (say $B \subseteq V \setminus J$) of M. Also, $V \setminus I$ contains a base of M, say $B' \subseteq V \setminus I$.

F19/30 (pg.52/108)

Theorem 7.3.3

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

- Consider $I,J\in\mathcal{I}^*$ with |I|<|J|. We need to show that there is some member $v\in J\setminus I$ such that I+v is independent in M^* , which means that $V\setminus (I+v)=(V\setminus I)\setminus v$ is still spanning in M. That is, removing v from $V\setminus I$ doesn't make $(V\setminus I)\setminus v$ not spanning.
- Since $V \setminus J$ is spanning in M, $V \setminus J$ contains some base (say $B \subseteq V \setminus J$) of M. Also, $V \setminus I$ contains a base of M, say $B' \subseteq V \setminus I$.
- Since $B \setminus I \subseteq V \setminus I$, and $B \setminus I$ is independent in M, we can choose the base B' of M s.t. $B \setminus I \subseteq B' \subseteq V \setminus I$.

Theorem 7.3.3

Given matroid $M = (V, \mathcal{I})$, let $M^* = (V, \mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

- Consider $I, J \in \mathcal{I}^*$ with |I| < |J|. We need to show that there is some member $v \in J \setminus I$ such that I + v is independent in M^* , which means that $V \setminus (I + v) = (V \setminus I) \setminus v$ is still spanning in M. That is, removing v from $V \setminus I$ doesn't make $(V \setminus I) \setminus v$ not spanning.
- Since $V \setminus J$ is spanning in $M, V \setminus J$ contains some base (say $B \subseteq V \setminus J$) of M. Also, $V \setminus I$ contains a base of M, say $B' \subseteq V \setminus I$.
- Since $B \setminus I \subset V \setminus I$, and $B \setminus I$ is independent in M, we can choose the base B' of M s.t. $B \setminus I \subset B' \subset V \setminus I$.
- Since B and J are disjoint, we have both: 1) $B \setminus I$ and $J \setminus I$ are disjoint; and 2) $B \cap I \subseteq I \setminus J$. Also note, B' and I are disjoint.

Theorem 7.3.3

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

• Now $J \setminus I \not\subseteq B'$, since otherwise (i.e., assuming $J \setminus I \subseteq B'$):

$$|B| = |B \cap I| + |B \setminus I| \tag{7.2}$$

$$\leq |I \setminus J| + |B \setminus I| \tag{7.3}$$

$$<|J\setminus I|+|B\setminus I|\le |B'|\tag{7.4}$$

which is a contradiction. The last inequality on the right follows since $J\setminus I\subseteq B'$ (by assumption) and $B\setminus I\subseteq B'$ implies that $(J\setminus I)\cup (B\setminus I)\subseteq B'$, but since J and B are disjoint, we have that $|J\setminus I|+|B\setminus I|\leq B'$.

Theorem 7.3.3

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

• Now $J \setminus I \not\subseteq B'$, since otherwise (i.e., assuming $J \setminus I \subseteq B'$):

$$|B| = |B \cap I| + |B \setminus I| \tag{7.2}$$

$$\leq |I \setminus J| + |B \setminus I| \tag{7.3}$$

$$<|J\setminus I|+|B\setminus I|\le |B'|\tag{7.4}$$

which is a contradiction.

• Therefore, $J \setminus I \not\subseteq B'$, and there is a $v \in J \setminus I$ s.t. $v \notin B'$.

. . .

Theorem 7.3.3

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

• Now $J \setminus I \not\subseteq B'$, since otherwise (i.e., assuming $J \setminus I \subseteq B'$):

$$|B| = |B \cap I| + |B \setminus I| \tag{7.2}$$

$$\leq |I \setminus J| + |B \setminus I| \tag{7.3}$$

$$<|J\setminus I|+|B\setminus I|\le |B'|\tag{7.4}$$

which is a contradiction.

- Therefore, $J \setminus I \not\subseteq B'$, and there is a $v \in J \setminus I$ s.t. $v \notin B'$.
- So B' is disjoint with $I \cup \{v\}$, means $B' \subseteq V \setminus (I \cup \{v\})$, or $V \setminus (I \cup \{v\})$ is spanning in M, and therefore $I \cup \{v\} \in \mathcal{I}^*$.

Matroid Duals and Representability

Theorem 7.3.4

Let M be an \mathbb{F} -representable matroid (i.e., one that can be represented by a finite sized matrix over field \mathbb{F}). Then M^* is also \mathbb{F} -representable.

Matroid Duals and Representability

Theorem 7.3.4

Let M be an \mathbb{F} -representable matroid (i.e., one that can be represented by a finite sized matrix over field \mathbb{F}). Then M^* is also \mathbb{F} -representable.

Theorem 7.3.5

Let M be a graphic matroid (i.e., one that can be represented by a graph G=(V,E)). Then M^* is not necessarily also graphic.

Theorem 7.3.6

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
 (7.5)

 Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2. *I.e.*, |X| is modular, complement $f(V \setminus X)$ is submodular if f is submodular, $r_M(V)$ is a constant, and summing submodular functions and a constant preserves submodularity.

Theorem 7.3.6

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
 (7.5)

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since $|X| + r_M(V \setminus X) \ge r_M(X) + r_M(V \setminus X) \ge r_M(V)$. The right inequality follows since r_M is submodular.

Theorem 7.3.6

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
 (7.5)

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since $|X| + r_M(V \setminus X) > r_M(X) + r_M(V \setminus X) > r_M(V).$
- Monotone non-decreasing follows since, as X increases by one, |X|always increases by 1, while $r_M(V \setminus X)$ decreases by one or zero.

Theorem 7.3.6

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
 (7.5)

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since $|X| + r_M(V \setminus X) \ge r_M(X) + r_M(V \setminus X) \ge r_M(V)$.
- Monotone non-decreasing follows since, as X increases by one, |X| always increases by 1, while $r_M(V \setminus X)$ decreases by one or zero.
- Therefore, r_{M^*} is the rank function of a matroid. That it is the dual matroid rank function is shown in the next proof.

Theorem 7.3.6

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
 (7.5)

Proof.

A set X is independent in (V, r_{M^*}) if and only if

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) = |X|$$
 (7.6)

. . .

Theorem 7.3.6

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) \tag{7.5}$$

Proof.

A set X is independent in (V, r_{M^*}) if and only if

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) = |X|$$
 (7.6)

or

$$r_M(V \setminus X) = r_M(V) \tag{7.7}$$

 \cdots

Theorem 7.3.6

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
 (7.5)

Proof.

A set X is independent in (V, r_{M^*}) if and only if

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) = |X|$$
 (7.6)

or

$$r_M(V \setminus X) = r_M(V) \tag{7.7}$$

But a subset X is independent in M^* only if $V \setminus X$ is spanning in M (by the definition of the dual matroid).

• Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{ Z : Z \subseteq Y, Z \in \mathcal{I} \} \tag{7.8}$$

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

• Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{ Z : Z \subseteq Y, Z \in \mathcal{I} \} \tag{7.8}$$

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

• This is called the restriction of M to Y, and is often written M|Y.

• Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{ Z : Z \subseteq Y, Z \in \mathcal{I} \} \tag{7.8}$$

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

- This is called the restriction of M to Y, and is often written M|Y.
- If $Y = V \setminus X$, then we have

$$\mathcal{I}_Y = \{ Z : Z \cap X = \emptyset, Z \in \mathcal{I} \}$$
 (7.9)

is considered a deletion of X from M, and is often written $M \setminus Z$.

• Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{ Z : Z \subseteq Y, Z \in \mathcal{I} \} \tag{7.8}$$

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

- This is called the restriction of M to Y, and is often written M|Y.
- If $Y = V \setminus X$, then we have

$$\mathcal{I}_Y = \{ Z : Z \cap X = \emptyset, Z \in \mathcal{I} \}$$
 (7.9)

is considered a deletion of X from M, and is often written $M \setminus Z$.

• Hence, $M|Y = M \setminus (V \setminus Y)$.

• Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{ Z : Z \subseteq Y, Z \in \mathcal{I} \} \tag{7.8}$$

is such that $M_Y=(Y,\mathcal{I}_Y)$ is a matroid with rank $r(M_Y)=r(Y)$.

- This is called the restriction of M to Y, and is often written M|Y.
- ullet If $Y=V\setminus X$, then we have

$$\mathcal{I}_Y = \{ Z : Z \cap X = \emptyset, Z \in \mathcal{I} \}$$
 (7.9)

is considered a deletion of X from M, and is often written $M \setminus Z$.

- Hence, $M|Y = M \setminus (V \setminus Y)$.
- The rank function is of the same form. I.e., $r_Y: 2^Y \to \mathbb{Z}_+$, where $r_Y(Z) = r(Z)$ for $Z \subseteq Y$.

Z is written M/Z.

• Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M/Z.
- Let $Z \subseteq V$ and let X be a base of Z. Then a subset I of $V \setminus Z$ is independent in M/Z iff $I \cup X$ is independent in M.

Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting

- Z is written M/Z. • Let $Z\subseteq V$ and let X be a base of Z. Then a subset I of $V\setminus Z$ is independent in M/Z iff $I\cup X$ is independent in M.
- In fact, it is the case $M/Z = (M^* \setminus Z)^*$ (Exercise: show why).

Matroid contraction

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M/Z.
- Let $Z \subseteq V$ and let X be a base of Z. Then a subset I of $V \setminus Z$ is independent in M/Z iff $I \cup X$ is independent in M.
- In fact, it is the case $M/Z = (M^* \setminus Z)^*$ (Exercise: show why).
- The rank function takes the form

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y|Z)$$
 (7.10)

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M/Z.
- Let $Z \subseteq V$ and let X be a base of Z. Then a subset I of $V \setminus Z$ is independent in M/Z iff $I \cup X$ is independent in M.
- In fact, it is the case $M/Z = (M^* \setminus Z)^*$ (Exercise: show why).
- The rank function takes the form

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y|Z)$$
 (7.10)

 $\bullet \text{ So given } I \subseteq V \setminus Z \text{ and } X \text{ is a base of } Z, \ r_{M/Z}(I) = |I| \text{ is identical to } r(I \cup Z) = |I| + r(Z) = |I| + |X| \text{ but } r(I \cup Z) = r(I \cup X). \text{ This implies } r(I \cup X) = |I| + |X|, \text{ or } I \cup X \text{ is independent in } M.$

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M/Z.
- Let $Z \subseteq V$ and let X be a base of Z. Then a subset I of $V \setminus Z$ is independent in M/Z iff $I \cup X$ is independent in M.
- In fact, it is the case $M/Z = (M^* \setminus Z)^*$ (Exercise: show why).
- The rank function takes the form

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y|Z)$$
 (7.10)

- So given $I\subseteq V\setminus Z$ and X is a base of Z, $r_{M/Z}(I)=|I|$ is identical to $r(I\cup Z)=|I|+r(Z)=|I|+|X|$ but $r(I\cup Z)=r(I\cup X)$. This implies $r(I\cup X)=|I|+|X|$, or $I\cup X$ is independent in M.
- A minor of a matroid is any matroid obtained via a series of deletions and contractions of some matroid.

• Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.

- Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.
- While $(V, \mathcal{I}_1 \cap \mathcal{I}_2)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_1$ and $X \in \mathcal{I}_2$.

- Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.
- While $(V, \mathcal{I}_1 \cap \mathcal{I}_2)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_1$ and $X \in \mathcal{I}_2$.

Theorem 7.4.1

Let M_1 and M_2 be given as above, with rank functions r_1 and r_2 . Then the size of the maximum size set in $\mathcal{I}_1 \cap \mathcal{I}_2$ is given by

$$(r_1 * r_2)(V) \triangleq \min_{X \subseteq V} \left(r_1(X) + r_2(V \setminus X) \right) \tag{7.11}$$

- Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.
- While $(V, \mathcal{I}_1 \cap \mathcal{I}_2)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_1$ and $X \in \mathcal{I}_2$.

Theorem 7.4.1

Let M_1 and M_2 be given as above, with rank functions r_1 and r_2 . Then the size of the maximum size set in $\mathcal{I}_1 \cap \mathcal{I}_2$ is given by

$$(r_1 * r_2)(V) \triangleq \min_{X \subseteq V} \left(r_1(X) + r_2(V \setminus X) \right) \tag{7.11}$$

This is an instance of the convolution of two submodular functions, f_1 and f_2 that, evaluated at $Y \subseteq V$, is written as:

$$(f_1 * f_2)(Y) = \min_{X \subset Y} \left(f_1(X) + f_2(Y \setminus X) \right) \tag{7.12}$$

• Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \ge |X|$.

- Recall Hall's theorem, that a transversal exists iff for all $X\subseteq V$, we have $|\Gamma(X)|\geq |X|$.
- $\bullet \Leftrightarrow |\Gamma(X)| |X| \ge 0, \forall X$

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \ge |X|$.
- \Leftrightarrow $|\Gamma(X)| |X| \ge 0, \forall X$
- $\bullet \Leftrightarrow \min_{X} |\Gamma(X)| |X| \ge 0$

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \ge |X|$.
- \Leftrightarrow $|\Gamma(X)| |X| \ge 0, \forall X$
- \Leftrightarrow $\min_X |\Gamma(X)| |X| \ge 0$
- $\bullet \Leftrightarrow \min_X |\Gamma(X)| + |V| |X| \ge |V|$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \ge |X|$.
- $\bullet \Leftrightarrow |\Gamma(X)| |X| \ge 0, \forall X$
- \Leftrightarrow $\min_X |\Gamma(X)| |X| \ge 0$
- \Leftrightarrow $\min_X |\Gamma(X)| + |V| |X| \ge |V|$
- $\bullet \Leftrightarrow \min_{X} (|\Gamma(X)| + |V \setminus X|) \ge |V|$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X\subseteq V$, we have $|\Gamma(X)|\geq |X|$.
- $\bullet \Leftrightarrow |\Gamma(X)| |X| \ge 0, \forall X$
- \Leftrightarrow $\min_X |\Gamma(X)| |X| \ge 0$
- \Leftrightarrow $\min_X |\Gamma(X)| + |V| |X| \ge |V|$
- \Leftrightarrow $\min_X (|\Gamma(X)| + |V \setminus X|) \ge |V|$
- $\bullet \Leftrightarrow [\Gamma(\cdot) * |\cdot|](V) \ge |V|$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \ge |X|$.
- $\bullet \Leftrightarrow |\Gamma(X)| |X| \ge 0, \forall X$
- \Leftrightarrow $\min_X |\Gamma(X)| |X| \ge 0$
- \Leftrightarrow $\min_X |\Gamma(X)| + |V| |X| \ge |V|$
- $\bullet \; \Leftrightarrow \; \; \min_{X} \Bigl(|\Gamma(X)| + |V \setminus X| \Bigr) \geq |V|$
- $\bullet \; \Leftrightarrow \; \; [\Gamma(\cdot) * |\cdot|](V) \geq |V|$
- So Hall's theorem can be expressed as convolution.

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \ge |X|$.
- $\bullet \Leftrightarrow |\Gamma(X)| |X| \ge 0, \forall X$
- \Leftrightarrow $\min_X |\Gamma(X)| |X| \ge 0$
- \Leftrightarrow $\min_X |\Gamma(X)| + |V| |X| \ge |V|$
- $\bullet \; \Leftrightarrow \; \; \min_{X} \Bigl(|\Gamma(X)| + |V \setminus X| \Bigr) \geq |V|$
- \Leftrightarrow $[\Gamma(\cdot) * |\cdot|](V) \ge |V|$
- So Hall's theorem can be expressed as convolution.
- Note, in general, convolution of two submodular functions does not preserve submodularity (but in certain special cases it does).

Definition 7.4.2

Let $M_1=(V_1,\mathcal{I}_1)$, $M_2=(V_2,\mathcal{I}_2)$, ..., $M_k=(V_k,\mathcal{I}_k)$ be matroids. We define the union of matroids as $M_1\vee M_2\vee\cdots\vee M_k=(V_1\uplus V_2\uplus\cdots\uplus V_k,\mathcal{I}_1\vee\mathcal{I}_2\vee\cdots\vee\mathcal{I}_k)$, where

$$I_1 \vee \mathcal{I}_2 \vee \cdots \vee \mathcal{I}_k = \{I_1 \uplus I_2 \uplus \cdots \uplus I_k | I_1 \in \mathcal{I}_1, \dots, I_k \in \mathcal{I}_k\}$$
 (7.13)

Note $A \uplus B$ designates the disjoint union of A and B.

Matroid Union

Definition 7.4.2

Let $M_1=(V_1,\mathcal{I}_1)$, $M_2=(V_2,\mathcal{I}_2)$, ..., $M_k=(V_k,\mathcal{I}_k)$ be matroids. We define the union of matroids as

$$M_1 \vee M_2 \vee \cdots \vee M_k = (V_1 \uplus V_2 \uplus \cdots \uplus V_k, \mathcal{I}_1 \vee \mathcal{I}_2 \vee \cdots \vee \mathcal{I}_k)$$
, where

$$I_1 \vee \mathcal{I}_2 \vee \cdots \vee \mathcal{I}_k = \{I_1 \uplus I_2 \uplus \cdots \uplus I_k | I_1 \in \mathcal{I}_1, \dots, I_k \in \mathcal{I}_k\}$$
 (7.13)

Note $A \uplus B$ designates the disjoint union of A and B.

Theorem 7.4.3

Let $M_1=(V_1,\mathcal{I}_1)$, $M_2=(V_2,\mathcal{I}_2)$, ..., $M_k=(V_k,\mathcal{I}_k)$ be matroids, with rank functions r_1,\ldots,r_k . Then the union of these matroids is still a matroid, having rank function

$$r(Y) = \min_{X \subseteq Y} \left(|Y \setminus X| + r_1(X \cap V_1) + \dots + r_k(X \cap V_k) \right)$$
 (7.14)

for any $Y \subseteq V_1 \cup \dots V_k$.

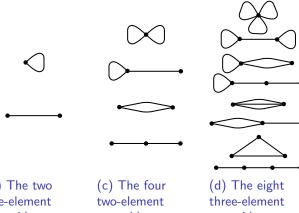
Exercise: Matroid Union, and Matroid duality

Exercise: Describe $M \vee M^*$.

• All matroids up to and including three elements are graphic.

Matroids of three or fewer elements are graphic

All matroids up to and including three elements are graphic.

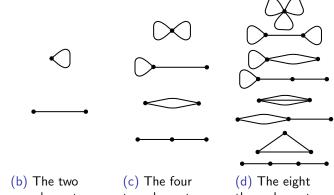


- (a) The only matroid with zero elements.
- (b) The two one-element matroids.

- matroids.
- matroids.

Matroids of three or fewer elements are graphic

All matroids up to and including three elements are graphic.



- (a) The only matroid with zero elements.
- one-element matroids.

- two-element matroids.
- three-element matroids.
- This is a nice way to show matroids with low ground set sizes. What about matroids that are low rank but with many elements?

• Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1,\ldots,m\}$ of indices (with corresponding column vectors $\{v_i:i\in S\}$, with |S|=k) is affinely dependent if $m\geq 1$ and there exists elements $\{a_1,\ldots,a_k\}\in \mathbb{F}$, not all zero with $\sum_{i=1}^k a_i = 0$, such that $\sum_{i=1}^k a_i v_i = 0$.

- Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1,\ldots,m\}$ of indices (with corresponding column vectors $\{v_i:i\in S\}$, with |S|=k) is affinely dependent if $m\geq 1$ and there exists elements $\{a_1,\ldots,a_k\}\in \mathbb{F}$, not all zero with $\sum_{i=1}^k a_i = 0$, such that $\sum_{i=1}^k a_i v_i = 0$.
- Otherwise, the set is called affinely independent.

- Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1,\ldots,m\}$ of indices (with corresponding column vectors $\{v_i: i \in S\}$, with |S|=k) is affinely dependent if $m \geq 1$ and there exists elements $\{a_1,\ldots,a_k\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^k a_i = 0$, such that $\sum_{i=1}^k a_i v_i = 0$.
- Otherwise, the set is called affinely independent.
- Concisely: points $\{v_1, v_2, \dots, v_k\}$ are affinely independent if $v_2 v_1, v_3 v_1, \dots, v_k v_1$ are linearly independent.

- Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1,\ldots,m\}$ of indices (with corresponding column vectors $\{v_i: i \in S\}$, with |S|=k) is affinely dependent if $m \geq 1$ and there exists elements $\{a_1,\ldots,a_k\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^k a_i = 0$, such that $\sum_{i=1}^k a_i v_i = 0$.
- Otherwise, the set is called affinely independent.
- Concisely: points $\{v_1, v_2, \dots, v_k\}$ are affinely independent if $v_2 v_1, v_3 v_1, \dots, v_k v_1$ are linearly independent.
- Example: in 2D, three collinear points are affinely dependent, three non-collear points are affinely independent, and ≥ 4 non-collinear points are affinely dependent.

- Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1,\ldots,m\}$ of indices (with corresponding column vectors $\{v_i: i \in S\}$, with |S|=k) is affinely dependent if $m \geq 1$ and there exists elements $\{a_1,\ldots,a_k\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^k a_i = 0$, such that $\sum_{i=1}^k a_i v_i = 0$.
- Otherwise, the set is called affinely independent.
- Concisely: points $\{v_1, v_2, \dots, v_k\}$ are affinely independent if $v_2 v_1, v_3 v_1, \dots, v_k v_1$ are linearly independent.
- Example: in 2D, three collinear points are affinely dependent, three non-collear points are affinely independent, and ≥ 4 non-collinear points are affinely dependent.

Proposition 7.5.1 (affine matroid)

Let ground set $E = \{1, \dots, m\}$ index column vectors of a matrix, and let $\mathcal I$ be the set of subsets X of E such that X indices affinely independent vectors. Then $(E, \mathcal I)$ is a matroid.

Dual Matroid

- Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1,\ldots,m\}$ of indices (with corresponding column vectors $\{v_i: i \in S\}$, with |S|=k) is affinely dependent if $m \geq 1$ and there exists elements $\{a_1,\ldots,a_k\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^k a_i = 0$, such that $\sum_{i=1}^k a_i v_i = 0$.
- Otherwise, the set is called affinely independent.
- Concisely: points $\{v_1,v_2,\ldots,v_k\}$ are affinely independent if $v_2-v_1,v_3-v_1,\ldots,v_k-v_1$ are linearly independent.
- Example: in 2D, three collinear points are affinely dependent, three non-collear points are affinely independent, and ≥ 4 non-collinear points are affinely dependent.

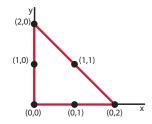
Proposition 7.5.1 (affine matroid)

Let ground set $E=\{1,\ldots,m\}$ index column vectors of a matrix, and let $\mathcal I$ be the set of subsets X of E such that X indices affinely independent vectors. Then $(E,\mathcal I)$ is a matroid.

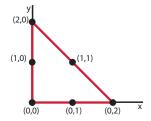
Exercise: prove this.

• Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}.$

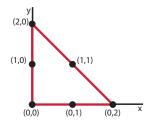
- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}.$
- We can plot the points in \mathbb{R}^2 as on the right:



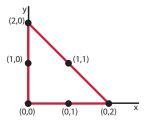
- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}.$
- ullet We can plot the points in \mathbb{R}^2 as on the right:
- Points have rank 1, lines have rank 2, planes have rank 3.



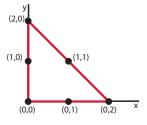
- ullet Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}.$
- We can plot the points in \mathbb{R}^2 as on the right:
- Points have rank 1, lines have rank 2, planes have rank 3.
- Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.



- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}.$
- ullet We can plot the points in \mathbb{R}^2 as on the right:
- Points have rank 1, lines have rank 2, planes have rank 3.
- Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.
- Any two points constitute a line, but lines with only two points are not drawn.



- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}.$
- We can plot the points in \mathbb{R}^2 as on the right:
- Points have rank 1, lines have rank 2, planes have rank 3.
- Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.
- Any two points constitute a line, but lines with only two points are not drawn.
- Lines indicate collinear sets with ≥ 3 points, while any two points have rank 2.



- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}.$
- ullet We can plot the points in \mathbb{R}^2 as on the right:
- Points have rank 1, lines have rank 2, planes have rank 3.
- Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.
- Any two points constitute a line, but lines with only two points are not drawn.
- Lines indicate collinear sets with ≥ 3 points, while any two points have rank 2.
- Dependent sets consist of all subsets with ≥ 4 elements (rank 3), or 3 collinear elements (rank 2). Any two points have rank 2.

