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Cumulative Outstanding Reading

@ Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige’s book.
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Announcements, Assignments, and Reminders

@ Homework 1 is out, due Wednesday April 23rd, 11:45pm,
electronically via our assignment dropbox
(https://canvas.uw.edu/courses/895956/assignments).

@ All homeworks must be done electronically, only PDF file format
accepted.

o Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-I

@ L1 (3/31): Motivation, Applications, & @ L11:
Basic Definitions @ Li2:

@ L2: (4/2): Applications, Basic @ L13:
Definitions, Properties o L14:

@ L3: More examples and properties (e.g., @ L15:
cIosur.e properties), and examples, o L16:
spanning trees

@ L4: proofs of equivalent definitions, o Lir
independence, start matroids o L

@ L5: matroids, basic definitions and ® LI9:
examples e L2o:

@ L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

@ L7: Dual Matroids, other matroid
properties, matroids and greedy

@ L8:
@ LO:
@ L10:

Finals Week: June 9th-13th, 2014.
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Matroid

Slight modification (non unit increment) that is equivalent.
Definition 6.2.1 (Matroid-11)

A set system (FE,7) is a Matroid if
(11 peZ
(I2YVIeZ,JcCI=JeZ (or “down-closed")

(I3") VI,J € Z, with |I]| > |J|, then there exists z € I \ J such that
Ju{z} el

Note (11)=(I1"), (12)=(I2"), and we get (I3)=(13") using induction.
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Matroids - important property

Proposition 6.2.1

In a matroid M = (E,Z), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (11),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 6.2.2 (Matroid)
A set system (V,Z) is a Matroid if

(11") 0 € Z (emptyset containing)
(I12") YI € Z,J C I = J € Z (down-closed or subclusive)

(13") ¥X CV, and I, I € maxInd(X), we have |I;| = |I2] (all maximally
independent subsets of X have the same size).
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Matroids - rank

@ Thus, in any matroid M = (E,Z), VU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r3;(U) or just r(U) when the matroid in equation is
unambiguous.

o r(E) = r(g ) is the rank of the matroid, and is the common size of
all the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 6.2.1 (matroid rank function)

The rank of a matroid is a function r : 2F — Z_ defined by

T(A):max{\X|:XQA,XEI}:I)I(la%c\AﬂX| (6.1)
€

@ From the above, we immediately see that 7(A) < |A].
@ Moreover, if r(A) = |A|, then A € Z, meaning A is independent (in

this case, A is a self base).
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Matroids - rank

The rank function r : 2¥ — Z of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.
@ Since M is a matroid, we know that (AN B) = r(X) = |X|, and
r(AUB) =7r(Y) =|Y|. Also, forany U € Z, r(A) > |[ANU|.
© Then we have
r(A)+r(B) > |YNA|+|Y NB| (6.3)
=YN(ANB)|+|Y Nn(AUB)| (6.4)
>|X|+|Y|=r(ANnB)+r(AUB) (6.5)
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Partition Matroid

@ Let V' be our ground set.

o Let V=ViuloU---UV, be a partition of V into blocks or disjoint
sets (disjoint union). Define a set of subsets of V' as

I={XCV: | XnVj|<kjforalli=1,... ¢} (6.3)

where k1, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with ¢ =1, V; =V, and k1 = k.

@ We'll show that property (13') in Def 6.2.2 holds. If X,Y € 7 with
Y| > | X|, then there must be at least one i with
Y NnVi| > |X NV;|. Therefore, adding one element
ec VN (Y \ X) to X won't break independence.
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

/
r(A)=> min(|AN V|, k;) (6.12)

1=1

which we also immediately see is submodular using properties we
spoke about last week. That is:

Q |ANV;]| is submodular (in fact modular) in A

@ min(submodular(A), k;) is submodular in A since |[AN V| is
monotone.

© sums of submodular functions are submodular.

e r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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Partition Matroid, rank as matching

@ Example where £ =5,
(K1, ko, k3, ka, k) =

(2,2,1,1,3). o Recall, T': 2 — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
Vi I {veV(G)\ X : E(X,{v}) # 0}, and
recall that |I'(X)| is submodular.
Vo P @ Here, for X C V, we have I'(X) =

{iel:(v,i) € E(G)and v € X}.
5 @ For such a constructed bipartite graph,
I the rank function of a partition matroid
4 is 7(X) = 0 min(|X N V|, k;) =
the maximum matching involving X.
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System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:i€I)where) CV;CV
for all ), and I is an index set. Hence, |I| = |V].

@ Here, the sets V; € V are like “groups” and any v € V with v € Vj is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

e A family (v; : i € I) with v; € V is said to be a system of
representatives of 1V if 3 a bijection 7 : I — I such that v; € V).

@ v; is the representative of set (or group) V;(;), meaning the gth
representative is meant to represent set V).

@ Example: Consider the house of representatives, v; = “Jim
McDermott, while ¢« = “King County, WA-7".

@ In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have some
v1 € V1 N Vs, where vy represents both V; and V5.

@ We can view this as a bipartite graph.
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System of Distinct Reps
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, £ =6 groups, with V = (V1, V5, ..., Vg)
= ({e, f,h},{d, e,9},{b,c,e,h}, {a, b, h}, {a}, {a}).

@ A system of representatives would
make sure that there is a representative
for each color group. For example,

@ The representatives ({a,c,d, f,h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since
there is only one common choice to
represent both color groups).
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, ¢ = 6 groups, with V = (V1,V5,..., Vs)
= ({e, f,h},{d, e,9},{b,c,e,h}, {a, b, h}, {a}, {a}).

@ A system of representatives would
make sure that there is a representative
for each color group. For example,

@ The representatives ({a,c,d, f,h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since
there is only one common choice to
represent both color groups).
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, £ =6 groups, with V = (V1, V5, ..., Vg)
= ({e, f,h},{d, e,9},{b,c,e,h}, {a, b, h}, {a}, {a}).
V @ A system of representatives would

I make sure that there is a representative
for each color group. For example,

@ The representatives ({a,c,d, f,h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since
there is only one common choice to

represent both color groups).
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System of Distinct Reps
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all i), and I is an index set. Hence, |I| = |V|.

@ A family (v; : 4 € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I <> I such that v; € V5
and v; # v; for all ¢ # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 6.3.1 (transversal)

Given a set system (V,V) as defined above, a set T C V is a transversal
of V if there is a bijection 7 : T' <+ I such that

T € Vi) forallz €T (6.1)

@ Note that due to 7 : I" <+ I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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Transversals
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Transversals are Subclusive

@ Aset X C V is a partial transversal if X is a transversal of some
subfamily V' = (V; : i € I') where I’ C I.

o Therefore, for any transversal T', any subset 7/ C T is a partial
transversal.

@ Thus, transversals are down closed (subclusive).
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
e Given a set system (V,V) with V = (V; :i € I), and V; C V for all i.
Then, for any J C I, let

V(J) =UjesV; (6.2)

so [V (J)|: 2! — Z, is the set cover func. (we know is submodular).
o We have

Theorem 6.4.1 (Hall's theorem)

Given a set system (V, V), the family of subsets V = (V; :i € I) has a
transversal (v; : 1 € I) iff for all J C I

V()| = ]J] (6.3)
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
o Given a set system (V,V) with V = (V; :i € I), and V; C V for all i.
Then, for any J C I, let
V(J) =UjesV; (6.2)

so [V (J)|: 2! — Z, is the set cover func. (we know is submodular).
e Hall's theorem (VJ C I,|V(J)| > |J|) as a bipartite graph.

I v |
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(L AREREN]

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
e Given a set system (V,V) with V = (V; :i € I), and V; C V for all i.
Then, for any J C I, let
V(J) =UjesV; (6.2)

so |[V(J)|: 27 — Z, is the set cover func. (we know is submodular).
@ Moreover, we have

Theorem 6.4.2 (Rado’s theorem (1942))

If M = (V,r) is a matroid on V' with rank function r, then the family of
subsets (V; :i € I) of V has a transversal (v; : i € I) that is independent
in M iff for all J C I

r(V(J)) =z |J] (6.4)

@ Note, a transversal T independent in M means that r(T') = |T|.
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Transversals
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More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

IfV = (Vi : 1 €1) is a finite family of non-empty subsets of V', and
f:2YV — Z. is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

F(Uses {oi}) > |J| forall J C I (6.5)

if and only if

FV (D) > |J| forall JC I (6.6)

@ Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking
f(S) = |S| for S C V. In which case, Eq. 6.5 requires the system of
representatives to be distinct.

@ We get Theorem 6.4.2 by taking f(S) = r(S) for S C V, the rank
function of the matroid. where, Eq. 6.5 insists the system of representatives
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Submodular Composition with Set-to-Set functions

@ Note the condition in Theorem 6.4.3 is f(V(J)) > |J| for all J C I,
where f : 2V — 7. is non-negative, integral, monotone
non-decreasing and submodular, and V(J) = Uje;V; with V; C V.

@ Note V(-) : 2 — 2" is a set-to-set function, composable with a
submodular function.

o Define g : 27 — Z with g(J) = f(V(J)) — |J|, then the condition
for the existence of a system of representatives, with quality
Equation 6.5, becomes:

min g J) 2 (6.7)

@ What kind of function is g7

Proposition 6.4.4
g as given above is submodular.

@ Hence, the condition for existence can be solved by (a special case

of) submodular function minimization, or vice verse!
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Transversals
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More general conditions for existence of transversals

first part proof of Theorem 6.4.3.

@ Suppose V has a system of representatives (v; : i € I) such that
Eq. 6.5 is true.

@ Then since f is monotone, and since V(J) D U;es{v;} when

(v; =@ € I) is a system of representatives, then Eq. 6.6 immediately
follows.
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) > |J|,YJ C 1) is true forV = (V; :i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there
exists v € Vy such that the family of subsets (V1 \ {v}, Va,..., V) also
satisfies Eq 6.6.

Proof.

@ When Eq. 6.6 holds, this means that for any subsets
Ji,Jo C T\ {1}, we have that, for J € {Jy, Jo},

|

f(V(JU{l})) = |JU{1}] (6.8)
and hence

fViuV(J)) > || +1 (6.9)

fViuV(J)) > |J2|+1 (6.10)
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Transversals
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) > |J|,YJ C 1) is true forV = (V; :i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there
exists v € Vy such that the family of subsets (V1 \ {v}, Va,..., V) also
satisfies Eq 6.6.

Proof.

@ Suppose, to the contrary, the consequent is false. Then we may take
any v1,vy € V7 as two distinct elements in V; ...

@ ...and there must exist subsets Ji, Jy of I\ {1} such that

|

f(N\A{on}) UV () <|J1] +1, (6.11)
fF(Vi\A{v2}) UV (J2)) < |Jo| +1, (6.12)

(note that either one or both of Ji, J> could be empty).
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) > |J|,YJ C 1) is true forV = (V; :i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there
exists v € Vy such that the family of subsets (V1 \ {v}, Va,..., V) also
satisfies Eq 6.6.

Proof.

o Taking X = (Vi \ {o1})) UV (Jy) and Y = (V4 \ {v2}) UV (J2), we
have f(X) < |J1|, f(Y) <|J2|, and that:

|

XUYZVlUV(JlLJJz),
(6.13)

XNY D V(Jl N Jg),
(6.14)
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Transversals
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) > |J|,YJ C 1) is true forV = (V; :i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there
exists v € Vy such that the family of subsets (V1 \ {v}, Va,..., V) also
satisfies Eq 6.6.

|

Proof.
@ since f submodular monotone non-decreasing, & Eqs 6.13-6.15,

|J1‘ + ‘JQ‘ > f(V1 U V(J1 U Jg)) = f(V(J1 N Jg)) (616)
@ Since V satisfies Eq. 6.6, 1 ¢ J; U Jo, & Egs 6.9-6.10, this gives
|J1| + |J2] > |J1 U Jo| + 1+ |J1 N Ja (6.17)

which is a contradiction since cardinality is modular.
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More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

IfV = (Vi : 1 € 1) is a finite family of non-empty subsets of V', and
f:2YV — Z. is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

f(Uieg{vi}) > |J| forall J C 1 (6.5)
if and only if

FV (D) > |J| forall JC I (6.6)

v

@ Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking
f(S) = |S| for S C V. In which case, Eq. 6.5 requires the system of
representatives to be distinct.

@ We get Theorem 6.4.2 by taking f(S) = r(S) for S C V, the rank
function of the matroid. where, Eq. 6.5 insists the system of representatives
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Transversals
Lrrrrnnn

More general conditions for existence of transversals

converse proof of Theorem 6.4.3.
@ Conversely, suppose Eq. 6.6 is true.
@ If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let |Vi| > 2, then by Lemma 6.4.5, the family of subsets
(Vi\ {9}, Va,...,V|y) also satisfies Eq 6.6 for the right v.

@ We can continue to reduce the family, deleting elements from V; for
some i while |V;| > 2, until we arrive at a family of singleton sets.

@ This family will be the required system of representatives.

This theorem can be used to produce a variety of other results quite
easily, and shows how submodularity is the key ingredient in its truth.
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Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 6.5.1

If V is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.

@ This means that the transversals of V are the bases of matroid M.

@ Therefore, all maximal partial transversals of V have the same
cardinality!
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Transversal Matroid
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

e Given a set system (V,V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E) associated with V that has edge set
{(v,9):veVyielveV}.

@ A matching in this graph is a set of edges no two of which that have
a common endpoint. In fact, we easily have:

A subset T' C V' is a partial transversal of V iff there is a matching in
(V,I,E) in which every edge has one endpoint in T' (I' matched into I ).
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Transversal Matroid
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Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?

e Consider the following graph (left), and two max-matchings (two
right instances)

Q. ® (R) ®

© © © ©

o {ACY} is a maximum matching, as is {AD, BC'}, but they are not
the same size.
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Transversal Matroid
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Partition Matroid, rank as matching

o Example where ¢ =5,

(kla k?) k37 k47 k5) =

(2,2,1,1,3). @ Recall, I' : 2V — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
Vi I {veV(G)\ X : E(X,{v}) # 0}, and
recall that |I'(X)| is submodular.
Vs l> e Here, for X CV, we have I'(X) =

{iel:(v,i) € E(G)and v € X}.
5 @ For such a constructed bipartite graph,
I the rank function of a partition matroid
. is 7(X) = Y0, min(|X N Vi, k;) =
the maximum matching involving X.
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Transversal Matroid
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Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
\Vi| > ki (also, recall, V(J) = UjesVj).

@ We start with partition matroid rank function in the subsequent

equations.
l
r(A) =) min(|ANVi|, k;) (6.18)
=1
¢
=Y min(ANV(Z)], | L)) (6.19)
=1
¢
_ : [ANV(L)| if Ji #0 N
N P et <{ 0 if J; =0 } + i\ Jz|> (6.20)
y4
= 3" min (V) N4 + |\ ) (6.21)
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Transversal Matroid
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... Morphing Partition Matroid Rank

e Continuing,

¢
r(A)=>" i (VI nV(L)NAl =L |+ L) (6.22)

i=1"""

J4
= min (ZV(J)QV(IZ)QA = ‘IiﬂJ‘ + I¢|) (623)
=1

JCI
— min V() NV(I) N Al = ]| + 1) (6.24)
~ min ([V(J) N 4] = 1J] + 1) (6.25)

@ In fact, this bottom (more general) expression is the expression for
the rank of a transversal matroid.
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Transversal Matroid
INEENEE B

Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 6.5.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,¢}. Let T be the set of partial transversals of V. Then (V,T)
is @ matroid.

Proof.

@ We note that () € Z since the empty set is a transversal of the empty
subfamily of V, thus (I1") holds.

@ We already saw that if T is a partial transversal of V, and if " C T,
then 7" is also a partial transversal. So (I12") holds.

@ Suppose that 17 and T5 are partial transversals of V such that
|T1| < |T2|. Exercise: show that (I3") holds.
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Transversal Matroid
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Transversal Matroid Rank

@ Transversal matroid has rank

r(4) = min ([V(J) VAl = [J] + |1]) (6.26)

@ Therefore, this function is submodular.

@ Note that it is a minimum over a set of modular functions. Is this
true in general? Exercise:
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Matroid and representation
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Matroid loops

A circuit in a matroids is well defined, a subset A C FE is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
foranya € A, r(A\ {a}) = |A] — 1).

@ There is no reason in a matroid such an A could not consist of a
single element.

@ Such an {a} is called a loop.

@ In a matric (i.e., linear) matroid, the only such loop is the value 0,
as all non-zero vectors have rank 1. The O can appear > 1 time
with different indices, as can a self loop in a graph appear on
different nodes.

@ Note, we also say that two elements s, t are said to be parallel if
{s,t} is a circuit.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014 F31/37 (pg.38/45)




Matroid and representation
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Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M; and My respectively on ground sets V; and V5 are
isomorphic if there is a bijection 7 : V; — V5 which preserves
independence (equivalently, rank, circuits, and so on).

@ Let F be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.

@ We can more generally define matroids on a field.

Definition 6.6.2 (linear matroids on a field)

Let X be an n x m matrix and E = {1,...,m}, where X;; € IF for some
field, and let Z be the set of subsets of E such that the columns of X are
linearly independent over IF.
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Matroid and representation
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Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M; and My respectively on ground sets V; and V5 are
isomorphic if there is a bijection 7 : V; — V5 which preserves
independence (equivalently, rank, circuits, and so on).

@ Let F be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.

@ We can more generally define matroids on a field.

Definition 6.6.3 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called
representable over I
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Matroid and representation
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Representability of Transversal Matroids

e Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.

@ In particular:

Theorem 6.6.4

Transversal matroids are representable over all finite fields of sufficiently
large cardinality, and are representable over any infinite field.
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Matroid and representation
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Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 6.6.5

Let V ={1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where Z is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.

@ It can be shown that this is a matroid and is representable.

@ However, this matroid is not isomorphic to any transversal matroid.
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Dual Matroid
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Matroids, other definitions using matroid rank 7 : 2" — Z

Definition 6.7.1 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid
M ifforallz e E\ A r(AU{z}) =r(A) + 1.

A hyperplane is a flat of rank (M) — 1.

Definition 6.7.2 (closure)

Given A C F, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(4)}.

Therefore, a closed set A has span(A4) = A.

Definition 6.7.3 (circuit)

A subset A C FE is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A| and for any a € A,

r(A\{a}) = [A] - 1).
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Dual Matroid
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Spanning Sets

@ We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid M = (V,Z), and aset Y C V, then anyset X C Y
such that »(X) = r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is
independent) but supersets of a base are also spanning.

@ V is always trivially spanning.

@ Consider the terminology: “spanning tree in a graph”, comes from
spanning in a matroid sense.
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Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* = (V,Z*) can be
defined on the same ground set V', but using a very different set of
independent sets Z*.

@ We define the set of sets Z* for M* as follows:
" ={ACV:V\ Ais a spanning set of M} (6.27)

@ That is, a set A is independent in the dual matroid M™ if removal of
A from V does not decrease the rank in M:

T ={ACV :rankpy (V \ A) = ranky (V)} (6.28)

@ In other words, a set A C V is independent in the dual M* (i.e.,
A € T%) if its complement is spanning in M (residual V' \ A must
contain a base in M).

@ Dual of the dual: Note, we have that (M*)* = M.
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