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Logistics Review

Cumulative Outstanding Reading

Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

Homework 1 is out, due Wednesday April 23rd, 11:45pm,
electronically via our assignment dropbox
(https://canvas.uw.edu/courses/895956/assignments).

All homeworks must be done electronically, only PDF file format
accepted.

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics Review

Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation,
Dual Matroid

L7:

L8:

L9:

L10:

L11:

L12:

L13:

L14:

L15:

L16:

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Logistics Review

Matroid

Slight modification (non unit increment) that is equivalent.

Definition 6.2.1 (Matroid-II)

A set system (E, I) is a Matroid if

(I1’) ∅ ∈ I
(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (or “down-closed”)

(I3’) ∀I, J ∈ I, with |I| > |J |, then there exists x ∈ I \ J such that
J ∪ {x} ∈ I

Note (I1)=(I1’), (I2)=(I2’), and we get (I3)≡(I3’) using induction.
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Logistics Review

Matroids - important property

Proposition 6.2.1

In a matroid M = (E, I), for any U ⊆ E(M), any two bases of U have
the same size.

In matrix terms, given a set of vectors U , all sets of independent
vectors that span the space spanned by U have the same size.
In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 6.2.2 (Matroid)

A set system (V, I) is a Matroid if

(I1’) ∅ ∈ I (emptyset containing)

(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3’) ∀X ⊆ V , and I1, I2 ∈ maxInd(X), we have |I1| = |I2| (all maximally
independent subsets of X have the same size).
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Logistics Review

Matroids - rank

Thus, in any matroid M = (E, I), ∀U ⊆ E(M), any two bases of
U have the same size.
The common size of all the bases of U is called the rank of U ,
denoted rM (U) or just r(U) when the matroid in equation is
unambiguous.
r(E) = r(E,I) is the rank of the matroid, and is the common size of
all the bases of the matroid.
We can a bit more formally define the rank function this way.

Definition 6.2.1 (matroid rank function)

The rank of a matroid is a function r : 2E → Z+ defined by

r(A) = max {|X| : X ⊆ A,X ∈ I} = max
X∈I

|A ∩X| (6.1)

From the above, we immediately see that r(A) ≤ |A|.
Moreover, if r(A) = |A|, then A ∈ I, meaning A is independent (in
this case, A is a self base).
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Logistics Review

Matroids - rank
Lemma 6.2.1

The rank function r : 2E → Z+ of a matroid is submodular, that is
r(A) + r(B) ≥ r(A ∪B) + r(A ∩B)

Proof.

1 Let X ∈ I be an inclusionwise maximal set with X ⊆ A ∩B

2 Let Y ∈ I be inclusionwise maximal set with X ⊆ Y ⊆ A ∪B.

3 Since M is a matroid, we know that r(A ∩B) = r(X) = |X|, and
r(A ∪B) = r(Y ) = |Y |. Also, for any U ∈ I, r(A) ≥ |A ∩ U |.

4 Then we have

r(A) + r(B) ≥ |Y ∩A|+ |Y ∩B| (6.3)

= |Y ∩ (A ∩B)|+ |Y ∩ (A ∪B)| (6.4)

≥ |X|+ |Y | = r(A ∩B) + r(A ∪B) (6.5)
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Logistics Review

Partition Matroid

Let V be our ground set.

Let V = V1 ∪ V2 ∪ · · ·∪ V! be a partition of V into blocks or disjoint
sets (disjoint union). Define a set of subsets of V as

I = {X ⊆ V : |X ∩ Vi| ≤ ki for all i = 1, . . . , !}. (6.3)

where k1, . . . , k! are fixed parameters, ki ≥ 0. Then M = (V, I) is a
matroid.

Note that a k-uniform matroid is a trivial example of a partition
matroid with ! = 1, V1 = V , and k1 = k.

We’ll show that property (I3’) in Def ?? holds. If X,Y ∈ I with
|Y | > |X|, then there must be at least one i with
|Y ∩ Vi| > |X ∩ Vi|. Therefore, adding one element
e ∈ Vi ∩ (Y \X) to X won’t break independence.
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Logistics Review

Partition Matroid

What is the partition matroid’s rank function?

A partition matroids rank function:

r(A) =
!∑

i=1

min(|A ∩ Vi|, ki) (6.12)

which we also immediately see is submodular using properties we
spoke about last week. That is:

1 |A ∩ Vi| is submodular (in fact modular) in A
2 min(submodular(A), ki) is submodular in A since |A ∩ Vi| is

monotone.
3 sums of submodular functions are submodular.

r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014 F10/60 (pg.10/230)



Logistics Review

Partition Matroid, rank as matching

Example where ! = 5,
(k1, k2, k3, k4, k5) =
(2, 2, 1, 1, 3).

I1

I2

I3

I4

I5

V1

V2

V3

V4

V5

V I
Recall, Γ : 2V → R as the neighbor
function in a bipartite graph, the
neighbors of X is defined as Γ(X) =
{v ∈ V (G) \X : E(X, {v}) -= ∅}, and
recall that |Γ(X)| is submodular.

Here, for X ⊆ V , we have Γ(X) =
{i ∈ I : (v, i) ∈ E(G) and v ∈ X}.
For such a constructed bipartite graph,
the rank function of a partition matroid
is r(X) =

∑!
i=1min(|X ∩ Vi|, ki) =

the maximum matching involving X.
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System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

System of Representatives

Let (V,V) be a set system (i.e., V = (Vi : i ∈ I) where ∅ ⊂ Vi ⊆ V
for all i), and I is an index set. Hence, |I| = |V|.

Here, the sets Vi ∈ V are like “groups” and any v ∈ V with v ∈ Vi is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

A family (vi : i ∈ I) with vi ∈ V is said to be a system of
representatives of V if ∃ a bijection π : I → I such that vi ∈ Vπ(i).

vi is the representative of set (or group) Vπ(i), meaning the ith

representative is meant to represent set Vπ(i).

Example: Consider the house of representatives, vi = “Jim
McDermott, while i = “King County, WA-7”.

In a system of representatives, there is no requirement for the
representatives to be distinct. I.e., we could have some
v1 ∈ V1 ∩ V2, where v1 represents both V1 and V2.

We can view this as a bipartite graph.
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System of Representatives

We can view this as a bipartite graph. The groups of V are marked
by color tags on the left, and also via right neighbors in the graph.

Here, ! = 6 groups, with V = (V1, V2, . . . , V6)
= ({e, f, h}, {d, e, g}, {b, c, e, h}, {a, b, h}, {a}, {a}).

V I

1

2

3

4

5

6a
b
c
d
e
f
g

h

A system of representatives would
make sure that there is a representative
for each color group. For example,

The representatives ({a, c, d, f, h}) are
shown as colors on the left.

Here, the set of representatives is not
distinct. Why?

In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since
there is only one common choice to
represent both color groups).
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System of Distinct Representatives

Let (V,V) be a set system (i.e., V = (Vk : i ∈ I) where Vi ⊆ V for
all i), and I is an index set. Hence, |I| = |V|.

A family (vi : i ∈ I) with vi ∈ V is said to be a system of distinct
representatives of V if ∃ a bijection π : I ↔ I such that vi ∈ Vπ(i)

and vi -= vj for all i -= j.

In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 6.3.1 (transversal)

Given a set system (V,V) as defined above, a set T ⊆ V is a transversal
of V if there is a bijection π : T ↔ I such that

x ∈ Vπ(x) for all x ∈ T (6.1)

Note that due to π : T ↔ I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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Definition 6.3.1 (transversal)

Given a set system (V,V) as defined above, a set T ⊆ V is a transversal
of V if there is a bijection π : T ↔ I such that

x ∈ Vπ(x) for all x ∈ T (6.1)

Note that due to π : T ↔ I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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all i), and I is an index set. Hence, |I| = |V|.
A family (vi : i ∈ I) with vi ∈ V is said to be a system of distinct
representatives of V if ∃ a bijection π : I ↔ I such that vi ∈ Vπ(i)

and vi -= vj for all i -= j.

In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 6.3.1 (transversal)

Given a set system (V,V) as defined above, a set T ⊆ V is a transversal
of V if there is a bijection π : T ↔ I such that

x ∈ Vπ(x) for all x ∈ T (6.1)

Note that due to π : T ↔ I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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Transversals are Subclusive

A set X ⊆ V is a partial transversal if X is a transversal of some
subfamily V ′ = (Vi : i ∈ I ′) where I ′ ⊆ I.

Therefore, for any transversal T , any subset T ′ ⊆ T is a partial
transversal.

Thus, transversals are down closed (subclusive).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014 F15/60 (pg.29/230)



System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

Transversals are Subclusive

A set X ⊆ V is a partial transversal if X is a transversal of some
subfamily V ′ = (Vi : i ∈ I ′) where I ′ ⊆ I.

Therefore, for any transversal T , any subset T ′ ⊆ T is a partial
transversal.

Thus, transversals are down closed (subclusive).
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Transversals are Subclusive

A set X ⊆ V is a partial transversal if X is a transversal of some
subfamily V ′ = (Vi : i ∈ I ′) where I ′ ⊆ I.

Therefore, for any transversal T , any subset T ′ ⊆ T is a partial
transversal.

Thus, transversals are down closed (subclusive).
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?

Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all
i. Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (6.2)

so |V (J)| is the set cover function (which we know is submodular).
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As we saw, a transversal might not always exist. How to tell?

Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all
i. Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (6.2)

so |V (J)| is the set cover function (which we know is submodular).
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?

Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all
i. Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (6.2)

so |V (J)| is the set cover function (which we know is submodular).
We have

Theorem 6.4.1 (Hall’s theorem)

Given a set system (V,V), the family of subsets V = (Vi : i ∈ I) has a
transversal (vi : i ∈ I) iff for all J ⊆ I

|V (J)| ≥ |J | (6.3)
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?

Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all
i. Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (6.2)

so |V (J)| is the set cover function (which we know is submodular).
Hall’s theorem (∀J, |V (J)| ≥ |J |) as a bipartite graph.

V I

1

2

3

4
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?

Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all
i. Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (6.2)

so |V (J)| is the set cover function (which we know is submodular).
Hall’s theorem (∀J, |V (J)| ≥ |J |) as a bipartite graph.

V I
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3
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?

Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all
i. Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (6.2)

so |V (J)| is the set cover function (which we know is submodular).
Moreover, we have

Theorem 6.4.2 (Rado’s theorem)

If M = (V, r) is a matroid on V with rank function r, then the family of
subsets (Vi : i ∈ I) of V has a transversal (vi : i ∈ I) that is independent
in M iff for all J ⊆ I

r(V (J)) ≥ |J | (6.4)

Note, a transversal T independent in M means that r(T ) = |T |.
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?

Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all
i. Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (6.2)

so |V (J)| is the set cover function (which we know is submodular).
Moreover, we have

Theorem 6.4.2 (Rado’s theorem)

If M = (V, r) is a matroid on V with rank function r, then the family of
subsets (Vi : i ∈ I) of V has a transversal (vi : i ∈ I) that is independent
in M iff for all J ⊆ I

r(V (J)) ≥ |J | (6.4)

Note, a transversal T independent in M means that r(T ) = |T |.
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More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

If V = (Vi : i ∈ I) is a finite family of non-empty subsets of V , and
f : 2V → Z+ is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (vi : i ∈ I)
such that

f(∪i∈J{vi}) ≥ |J | for all J ⊆ I (6.5)

if and only if

f(V (J)) ≥ |J | for all J ⊆ I (6.6)

Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking
f(S) = |S| for S ⊆ V .
We get Theorem 6.4.2 by taking f(S) = r(S) for S ⊆ V , the rank
function of the matroid.
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More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

If V = (Vi : i ∈ I) is a finite family of non-empty subsets of V , and
f : 2V → Z+ is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (vi : i ∈ I)
such that

f(∪i∈J{vi}) ≥ |J | for all J ⊆ I (6.5)

if and only if

f(V (J)) ≥ |J | for all J ⊆ I (6.6)

Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking
f(S) = |S| for S ⊆ V . In which case, Eq. 6.5 requires the system of
representatives to be distinct.

We get Theorem 6.4.2 by taking f(S) = r(S) for S ⊆ V , the rank
function of the matroid.
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More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

If V = (Vi : i ∈ I) is a finite family of non-empty subsets of V , and
f : 2V → Z+ is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (vi : i ∈ I)
such that

f(∪i∈J{vi}) ≥ |J | for all J ⊆ I (6.5)

if and only if

f(V (J)) ≥ |J | for all J ⊆ I (6.6)

Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking
f(S) = |S| for S ⊆ V .
We get Theorem 6.4.2 by taking f(S) = r(S) for S ⊆ V , the rank
function of the matroid. where, Eq. 6.5 insists the system of representatives
is independent in M .
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Submodular Composition with Set-to-Set functions

Note the condition in Theorem 6.4.3 is f(V (J)) ≥ |J | for all J ⊆ I,
where f : 2V → Z+ is non-negative, integral, monotone
non-decreasing and submodular, and V (J) = ∪j∈JVj with Vi ⊆ V .

Define g : 2I → Z with g(J) = f(V (J))− |J |, then the condition
for the existence of a system of representatives, with quality
Equation 6.5, becomes:

min
J⊆I

g(J) ≥ 0 (6.7)

What kind of function is g?

Proposition 6.4.4

g as given above is submodular.

Hence, the condition for existence can be solved by (a special case
of) submodular function minimization, or vice verse!
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Submodular Composition with Set-to-Set functions

Note the condition in Theorem 6.4.3 is f(V (J)) ≥ |J | for all J ⊆ I,
where f : 2V → Z+ is non-negative, integral, monotone
non-decreasing and submodular, and V (J) = ∪j∈JVj with Vi ⊆ V .

Define g : 2I → Z with g(J) = f(V (J))− |J |, then the condition
for the existence of a system of representatives, with quality
Equation 6.5, becomes:

min
J⊆I

g(J) ≥ 0 (6.7)

What kind of function is g?

Proposition 6.4.4

g as given above is submodular.

Hence, the condition for existence can be solved by (a special case
of) submodular function minimization, or vice verse!
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Submodular Composition with Set-to-Set functions

Note the condition in Theorem 6.4.3 is f(V (J)) ≥ |J | for all J ⊆ I,
where f : 2V → Z+ is non-negative, integral, monotone
non-decreasing and submodular, and V (J) = ∪j∈JVj with Vi ⊆ V .

Define g : 2I → Z with g(J) = f(V (J))− |J |, then the condition
for the existence of a system of representatives, with quality
Equation 6.5, becomes:

min
J⊆I

g(J) ≥ 0 (6.7)

What kind of function is g?

Proposition 6.4.4

g as given above is submodular.

Hence, the condition for existence can be solved by (a special case
of) submodular function minimization, or vice verse!
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Submodular Composition with Set-to-Set functions

Note the condition in Theorem 6.4.3 is f(V (J)) ≥ |J | for all J ⊆ I,
where f : 2V → Z+ is non-negative, integral, monotone
non-decreasing and submodular, and V (J) = ∪j∈JVj with Vi ⊆ V .

Define g : 2I → Z with g(J) = f(V (J))− |J |, then the condition
for the existence of a system of representatives, with quality
Equation 6.5, becomes:

min
J⊆I

g(J) ≥ 0 (6.7)

What kind of function is g?

Proposition 6.4.4

g as given above is submodular.

Hence, the condition for existence can be solved by (a special case
of) submodular function minimization, or vice verse!
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Submodular Composition with Set-to-Set functions

Note the condition in Theorem 6.4.3 is f(V (J)) ≥ |J | for all J ⊆ I,
where f : 2V → Z+ is non-negative, integral, monotone
non-decreasing and submodular, and V (J) = ∪j∈JVj with Vi ⊆ V .

Define g : 2I → Z with g(J) = f(V (J))− |J |, then the condition
for the existence of a system of representatives, with quality
Equation 6.5, becomes:

min
J⊆I

g(J) ≥ 0 (6.7)

What kind of function is g?

Proposition 6.4.4

g as given above is submodular.

Hence, the condition for existence can be solved by (a special case
of) submodular function minimization, or vice verse!
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More general conditions for existence of transversals

first part proof of Theorem 6.4.3.

Suppose V has a system of representatives (vi : i ∈ I) such that
Eq. 6.5 is true.

Then since f is monotone, and since V (J) ⊇ ∪i∈J{vi} when
(vi : i ∈ I) is a system of representatives, then Eq. 6.6 immediately
follows.

. . .
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More general conditions for existence of transversals

first part proof of Theorem 6.4.3.

Suppose V has a system of representatives (vi : i ∈ I) such that
Eq. 6.5 is true.

Then since f is monotone, and since V (J) ⊇ ∪i∈J{vi} when
(vi : i ∈ I) is a system of representatives, then Eq. 6.6 immediately
follows.

. . .
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V (J)) ≥ |J |, ∀J ⊆ I) is true for V = (Vi : i ∈ I),
and there exists an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there
exists v̄ ∈ V1 such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also
satisfies Eq 6.6.

Proof.

When Eq. 6.6 holds, this means that for any subsets
J1, J2 ⊆ I \ {1}, we have that, for J ∈ {J1, J2},

f(V (J ∪ {1})) ≥ |J ∪ {1}| (6.8)

and hence

f(V1 ∪ V (J1)) ≥ |J1|+ 1 (6.9)

f(V1 ∪ V (J2)) ≥ |J2|+ 1 (6.10)
. . .
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V (J)) ≥ |J |, ∀J ⊆ I) is true for V = (Vi : i ∈ I),
and there exists an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there
exists v̄ ∈ V1 such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also
satisfies Eq 6.6.

Proof.

Suppose, to the contrary, the consequent is false. Then we may take
any v̄1, v̄2 ∈ V1 as two distinct elements in V1 . . .

. . . and there must exist subsets J1, J2 of I \ {1} such that

f((V1 \ {v̄1}) ∪ V (J1)) < |J1|+ 1, (6.11)

f((V1 \ {v̄2}) ∪ V (J2)) < |J2|+ 1, (6.12)

(note that either one or both of J1, J2 could be empty).

. . .
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V (J)) ≥ |J |, ∀J ⊆ I) is true for V = (Vi : i ∈ I),
and there exists an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there
exists v̄ ∈ V1 such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also
satisfies Eq 6.6.

Proof.

Suppose, to the contrary, the consequent is false. Then we may take
any v̄1, v̄2 ∈ V1 as two distinct elements in V1 . . .

. . . and there must exist subsets J1, J2 of I \ {1} such that

f((V1 \ {v̄1}) ∪ V (J1)) < |J1|+ 1, (6.11)

f((V1 \ {v̄2}) ∪ V (J2)) < |J2|+ 1, (6.12)

(note that either one or both of J1, J2 could be empty).
. . .
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V (J)) ≥ |J |, ∀J ⊆ I) is true for V = (Vi : i ∈ I),
and there exists an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there
exists v̄ ∈ V1 such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also
satisfies Eq 6.6.

Proof.

Taking X = (V1 \ {v̄1}) ∪ V (J1) and Y = (V1 \ {v̄2}) ∪ V (J2), we
have f(X) ≤ |J1|, f(Y ) ≤ |J2|, and that:

X ∪ Y = V1 ∪ V (J1 ∪ J2),
(6.13)

X ∩ Y ⊇ V (J1 ∩ J2),
(6.14)

and

|J1|+ |J2| ≥ f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).
(6.15)

. . .
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V (J)) ≥ |J |, ∀J ⊆ I) is true for V = (Vi : i ∈ I),
and there exists an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there
exists v̄ ∈ V1 such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also
satisfies Eq 6.6.

Proof.

since f submodular monotone non-decreasing, & Eqs 6.13-6.15,

|J1|+ |J2| ≥ f(V1 ∪ V (J1 ∪ J2)) + f(V (J1 ∩ J2)) (6.16)

Since V satisfies Eq. 6.6, 1 /∈ J1 ∪ J2, & Eqs 6.9-6.10, this gives

|J1|+ |J2| ≥ |J1 ∪ J2|+ 1 + |J1 ∩ J2| (6.17)

which is a contradiction since cardinality is modular.

. . .
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V (J)) ≥ |J |, ∀J ⊆ I) is true for V = (Vi : i ∈ I),
and there exists an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there
exists v̄ ∈ V1 such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also
satisfies Eq 6.6.

Proof.

since f submodular monotone non-decreasing, & Eqs 6.13-6.15,

|J1|+ |J2| ≥ f(V1 ∪ V (J1 ∪ J2)) + f(V (J1 ∩ J2)) (6.16)

Since V satisfies Eq. 6.6, 1 /∈ J1 ∪ J2, & Eqs 6.9-6.10, this gives

|J1|+ |J2| ≥ |J1 ∪ J2|+ 1 + |J1 ∩ J2| (6.17)

which is a contradiction since cardinality is modular.
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More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

If V = (Vi : i ∈ I) is a finite family of non-empty subsets of V , and
f : 2V → Z+ is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (vi : i ∈ I)
such that

f(∪i∈J{vi}) ≥ |J | for all J ⊆ I (6.5)

if and only if

f(V (J)) ≥ |J | for all J ⊆ I (6.6)

Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking
f(S) = |S| for S ⊆ V .
We get Theorem 6.4.2 by taking f(S) = r(S) for S ⊆ V , the rank
function of the matroid.
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More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

Conversely, suppose Eq. 6.6 is true.

If each Vi is a singleton set, then the result follows immediately.

W.l.o.g., let |V1| ≥ 2, then by Lemma 6.4.5, the family of subsets
(V1 \ {v̄}, V2, . . . , V|I|) also satisfies Eq 6.6 for the right v̄.

We can continue to reduce the family, deleting elements from Vi for
some i while |Vi| ≥ 2, until we arrive at a family of singleton sets.

This family will be the required system of representatives.

This theorem can be used to produce a variety of other results quite
easily, and shows how submodularity is the key ingredient in its truth.
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Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 6.5.1

If V is a family of finite subsets of a ground set V , then the collection of
partial transversals of V is the set of independent sets of a matroid
M = (V,V) on V .

This means that the transversals of V are the bases of matroid M .

Therefore, all maximal partial transversals of V have the same
cardinality!
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Transversals and Bipartite Matchings

Transversals correspond exactly to matchings in bipartite graphs (as
we’ve already strongly hinted at).

Given a set system (V,V), with V = (Vi : i ∈ I), we can define a
bipartite graph G = (V, I, E) associated with V that has edge set
{(v, i) : v ∈ V, i ∈ I, v ∈ Vi}.
A matching in this graph is a set of edges no two of which that have
a common endpoint.

In fact, we easily have

Lemma 6.5.2

A subset T ⊆ V is a partial transversal of V iff there is a matching in
(V, I, E) in which every edge has one endpoint in T .

We say that T is matched into I.
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Arbitrary Matchings and Matroids?

Are arbitrary matchings matroids?

Consider the following graph (left), and two max-matchings (two
right instances)

{AC} is a maximum matching, as is {AD,BC}, but they are not
the same size.
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Partition Matroid, rank as matching

Example where ! = 5,
(k1, k2, k3, k4, k5) =
(2, 2, 1, 1, 3).

I1

I2

I3

I4

I5

V1

V2

V3

V4

V5

V I
Recall, Γ : 2V → R as the neighbor
function in a bipartite graph, the
neighbors of X is defined as Γ(X) =
{v ∈ V (G) \X : E(X, {v}) -= ∅}, and
recall that |Γ(X)| is submodular.

Here, for X ⊆ V , we have Γ(X) =
{i ∈ I : (v, i) ∈ E(G) and v ∈ X}.
For such a constructed bipartite graph,
the rank function of a partition matroid
is r(X) =

∑!
i=1min(|X ∩ Vi|, ki) =

the maximum matching involving X.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014 F26/60 (pg.72/230)



System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

Morphing Partition Matroid Rank

Recall the partition matroid rank function. Note, ki = |Ii| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
|Vi| ≥ ki (also, recall, V (J) = ∪j∈JVj).

We start with partition matroid rank function in the subsequent
equations.

r(A) =

!∑

i=1

min(|A ∩ Vi|, ki) (6.18)

=

!∑

i=1

min(|A ∩ V (Ii)|, |Ii|) (6.19)

=
!∑

i=1

min
Ji⊆Ii

({
|A ∩ V (Ii)| if Ji -= ∅

0 if Ji = ∅

}
+ |Ii \ Ji|

)
(6.20)

=

!∑

i=1

min
Ji⊆Ii

(|V (Ji) ∩A|+ |Ii \ Ji|) (6.21)
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... Morphing Partition Matroid Rank

Continuing,

r(A) =

!∑

i=1

min
Ji⊆Ii

(|V (Ji) ∩ V (Ii) ∩A|− |Ii ∩ Ji|+ |Ii|) (6.22)

= min
J⊆I

(
!∑

i=1

|V (J) ∩ V (Ii) ∩A|− |Ii ∩ J |+ |Ii|
)

(6.23)

= min
J⊆I

(|V (J) ∩ V (I) ∩A|− |J |+ |I|) (6.24)

= min
J⊆I

(|V (J) ∩A|− |J |+ |I|) (6.25)

In fact, this bottom (more general) expression is the expression for
the rank of a transversal matroid.
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Partial Transversals Are Matroids

In fact, we have

Theorem 6.5.3

Let (V,V) where V = (V1, V2, . . . , V!) be a subset system. Let
I = {1, . . . , !}. Let I be the set of partial transversals of V. Then (V, I)
is a matroid.

Proof.

We note that ∅ ∈ I since the empty set is a transversal of the empty
subfamily of V, thus (I1’) holds.
We already saw that if T is a partial transversal of V, and if T ′ ⊆ T ,
then T ′ is also a partial transversal. So (I2’) holds.

Suppose that T1 and T2 are partial transversals of V such that
|T1| < |T2|. Exercise: show that (I3’) holds.
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I = {1, . . . , !}. Let I be the set of partial transversals of V. Then (V, I)
is a matroid.

Proof.

We note that ∅ ∈ I since the empty set is a transversal of the empty
subfamily of V, thus (I1’) holds.
We already saw that if T is a partial transversal of V, and if T ′ ⊆ T ,
then T ′ is also a partial transversal. So (I2’) holds.

Suppose that T1 and T2 are partial transversals of V such that
|T1| < |T2|. Exercise: show that (I3’) holds.
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Transversal Matroid Rank

Transversal matroid has rank

r(A) = min
J⊆I

(|V (J) ∩A|− |J |+ |I|) (6.26)

Therefore, this function is submodular.

Note that it is a minimum over a set of modular functions. Is this
true in general?

Exercise:
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Matroid loops

A circuit in a matroids is well defined, a subset A ⊆ E is circuit if it
is an inclusionwise minimally dependent set (i.e., if r(A) < |A| and
for any a ∈ A, r(A \ {a}) = |A|− 1).

There is no reason in a matroid such an A could not consist of a
single element.

Such an {a} is called a loop.

In a matric (i.e., linear) matroid, the only such loop is the value 0,
as all non-zero vectors have rank 1. The 0 can appear > 1 time
with different indices, as can a self loop in a graph appear on
different nodes.

Note, we also say that two elements s, t are said to be parallel if
{s, t} is a circuit.
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Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M1 and M2 respectively on ground sets V1 and V2 are
isomorphic if there is a bijection π : V1 → V2 which preserves
independence (equivalently, rank, circuits, and so on).

Let F be any field (such as R, Q, or some finite field F, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, ∗, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.
We can more generally define matroids on a field.
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commutativity, and additive and multiplictaive identities and
inverses.
We can more generally define matroids on a field.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014 F32/60 (pg.97/230)



System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M1 and M2 respectively on ground sets V1 and V2 are
isomorphic if there is a bijection π : V1 → V2 which preserves
independence (equivalently, rank, circuits, and so on).

Let F be any field (such as R, Q, or some finite field F, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, ∗, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.
We can more generally define matroids on a field.

Definition 6.6.2 (linear matroids on a field)

Let X be an n×m matrix and E = {1, . . . ,m}, where Xij ∈ F for some
field, and let I be the set of subsets of E such that the columns of X are
linearly independent over F.
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Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M1 and M2 respectively on ground sets V1 and V2 are
isomorphic if there is a bijection π : V1 → V2 which preserves
independence (equivalently, rank, circuits, and so on).

Let F be any field (such as R, Q, or some finite field F, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, ∗, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.
We can more generally define matroids on a field.

Definition 6.6.3 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called
representable over F
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Representability of Transversal Matroids

Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.

In particular:

Theorem 6.6.4

Transversal matroids are representable over all finite fields of sufficiently
large cardinality, and are representable over any infinite field.
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Theorem 6.6.4
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large cardinality, and are representable over any infinite field.
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Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 6.6.5

Let V = {1, 2, 3, 4, 5, 6} be a ground set and let M = (V, I) be a set
system where I is all subsets of V of cardinality ≤ 2 except for the pairs
{1, 2}, {3, 4}, {5, 6}.

It can be shown that this is a matroid and is representable.

However, this matroid is not isomorphic to any transversal matroid.
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Matroids, other definitions using matroid rank r : 2V → Z+

Definition 6.7.1 (closed/flat/subspace)

A subset A ⊆ E is closed (equivalently, a flat or a subspace) of matroid
M if for all x ∈ E \A, r(A ∪ {x}) = r(A) + 1.

Definition 6.7.2 (closure)

Given A ⊆ E, the closure (or span) of A, is defined by
span(A) = {b ∈ E : r(A ∪ {b}) = r(A)}.

Therefore, a closed set A has span(A) = A.

Definition 6.7.3 (circuit)

A subset A ⊆ E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a ∈ A,
r(A \ {a}) = |A|− 1).
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Spanning Sets

We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid M = (V, I), and a set Y ⊆ V , then any set X ⊆ Y
such that r(X) = r(Y ) is called a spanning set of Y .

Definition 6.7.2 (spanning set of a matroid)

Given a matroid M = (V, I), any set A ⊆ V such that r(A) = r(V ) is
called a spanning set of the matroid.

A base of a matroid is a minimal spanning set (and it is
independent) but supersets of a base are also spanning.

V is always trivially spanning.

Consider the terminology: “spanning tree in a graph”, comes from
spanning in a matroid sense.
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Dual of a Matroid

Given a matroid M = (V, I), a dual matroid M∗ can be defined in a
way such that (M∗)∗ = M .

We define a set

I∗ = {I ⊆ V : V \ I is a spanning set of M} (6.27)

Hence, a set I is independent in the dual M∗ if its complement is
spanning in M (residual V \ I must contain a base in M).

Recall, in cycle matroid of a graph, a spanning set of G is any set of
edges that are incident to all nodes (i.e., any superset of a spanning
forest).

Since the smallest spanning sets are bases, the bases of M (when
V \ I is as small as possible while still spanning) are complements of
the bases of M∗ (where I is as large as possible).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014 F37/60 (pg.112/230)



System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

Dual of a Matroid

Given a matroid M = (V, I), a dual matroid M∗ can be defined in a
way such that (M∗)∗ = M .

We define a set

I∗ = {I ⊆ V : V \ I is a spanning set of M} (6.27)

Hence, a set I is independent in the dual M∗ if its complement is
spanning in M (residual V \ I must contain a base in M).

Recall, in cycle matroid of a graph, a spanning set of G is any set of
edges that are incident to all nodes (i.e., any superset of a spanning
forest).

Since the smallest spanning sets are bases, the bases of M (when
V \ I is as small as possible while still spanning) are complements of
the bases of M∗ (where I is as large as possible).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014 F37/60 (pg.113/230)



System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

Dual of a Matroid

Given a matroid M = (V, I), a dual matroid M∗ can be defined in a
way such that (M∗)∗ = M .

We define a set

I∗ = {I ⊆ V : V \ I is a spanning set of M} (6.27)

Hence, a set I is independent in the dual M∗ if its complement is
spanning in M (residual V \ I must contain a base in M).

Recall, in cycle matroid of a graph, a spanning set of G is any set of
edges that are incident to all nodes (i.e., any superset of a spanning
forest).

Since the smallest spanning sets are bases, the bases of M (when
V \ I is as small as possible while still spanning) are complements of
the bases of M∗ (where I is as large as possible).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014 F37/60 (pg.114/230)



System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

Dual of a Matroid

Given a matroid M = (V, I), a dual matroid M∗ can be defined in a
way such that (M∗)∗ = M .

We define a set

I∗ = {I ⊆ V : V \ I is a spanning set of M} (6.27)

Hence, a set I is independent in the dual M∗ if its complement is
spanning in M (residual V \ I must contain a base in M).

Recall, in cycle matroid of a graph, a spanning set of G is any set of
edges that are incident to all nodes (i.e., any superset of a spanning
forest).

Since the smallest spanning sets are bases, the bases of M (when
V \ I is as small as possible while still spanning) are complements of
the bases of M∗ (where I is as large as possible).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014 F37/60 (pg.115/230)



System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

Dual of a Matroid

Given a matroid M = (V, I), a dual matroid M∗ can be defined in a
way such that (M∗)∗ = M .

We define a set

I∗ = {I ⊆ V : V \ I is a spanning set of M} (6.27)

Hence, a set I is independent in the dual M∗ if its complement is
spanning in M (residual V \ I must contain a base in M).

Recall, in cycle matroid of a graph, a spanning set of G is any set of
edges that are incident to all nodes (i.e., any superset of a spanning
forest).

Since the smallest spanning sets are bases, the bases of M (when
V \ I is as small as possible while still spanning) are complements of
the bases of M∗ (where I is as large as possible).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014 F37/60 (pg.116/230)



System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

Dual of a Matroid

Theorem 6.7.3

Let M∗ be defined as on previous slide. Then M∗ is a matroid.

Proof.

Clearly ∅ ∈ I∗, so (I1’) holds.

Also, if I ⊆ J ∈ I∗, then clearly also I ∈ I∗ since if V \ J is
spanning in M , so must V \ I. Therefore, (I2’) holds.

. . .
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Proof.

Clearly ∅ ∈ I∗, so (I1’) holds.
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Dual of a Matroid

Theorem 6.7.3

Let M∗ be defined as on previous slide. Then M∗ is a matroid.

Proof.

Consider I, J ∈ I∗ with |I| < |J |. We need to show that there is
some member v ∈ J \ I such that I + v is a base in M∗, which
means that V \ (I + v) = (V \ I) \ v is still spanning in M . That is,
removing v from V \ I doesn’t make (V \ I) \ v not spanning.

Since V \ J is spanning in M , V \ J contain some base (say
B ⊆ V \J) of M . Also, V \ I contains a base of M , say B′ ⊆ V \ I.
Since B \ I ⊆ V \ I, and B \ I is independent in M , we can choose
the base B′ of M s.t. B \ I ⊆ B′ ⊆ V \ I.
Since B and J are disjoint, we have both: 1) B \ I and J \ I are
disjoint; and 2) B ∩ I ⊆ I \ J . Also note, B′ and I are disjoint.

. . .
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Dual of a Matroid

Theorem 6.7.3

Let M∗ be defined as on previous slide. Then M∗ is a matroid.

Proof.

Consider I, J ∈ I∗ with |I| < |J |. We need to show that there is
some member v ∈ J \ I such that I + v is a base in M∗, which
means that V \ (I + v) = (V \ I) \ v is still spanning in M . That is,
removing v from V \ I doesn’t make (V \ I) \ v not spanning.

Since V \ J is spanning in M , V \ J contain some base (say
B ⊆ V \J) of M . Also, V \ I contains a base of M , say B′ ⊆ V \ I.

Since B \ I ⊆ V \ I, and B \ I is independent in M , we can choose
the base B′ of M s.t. B \ I ⊆ B′ ⊆ V \ I.
Since B and J are disjoint, we have both: 1) B \ I and J \ I are
disjoint; and 2) B ∩ I ⊆ I \ J . Also note, B′ and I are disjoint.

. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014 F38/60 (pg.120/230)



System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

Dual of a Matroid

Theorem 6.7.3

Let M∗ be defined as on previous slide. Then M∗ is a matroid.

Proof.

Consider I, J ∈ I∗ with |I| < |J |. We need to show that there is
some member v ∈ J \ I such that I + v is a base in M∗, which
means that V \ (I + v) = (V \ I) \ v is still spanning in M . That is,
removing v from V \ I doesn’t make (V \ I) \ v not spanning.

Since V \ J is spanning in M , V \ J contain some base (say
B ⊆ V \J) of M . Also, V \ I contains a base of M , say B′ ⊆ V \ I.
Since B \ I ⊆ V \ I, and B \ I is independent in M , we can choose
the base B′ of M s.t. B \ I ⊆ B′ ⊆ V \ I.

Since B and J are disjoint, we have both: 1) B \ I and J \ I are
disjoint; and 2) B ∩ I ⊆ I \ J . Also note, B′ and I are disjoint.
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Dual of a Matroid

Theorem 6.7.3

Let M∗ be defined as on previous slide. Then M∗ is a matroid.

Proof.

Consider I, J ∈ I∗ with |I| < |J |. We need to show that there is
some member v ∈ J \ I such that I + v is a base in M∗, which
means that V \ (I + v) = (V \ I) \ v is still spanning in M . That is,
removing v from V \ I doesn’t make (V \ I) \ v not spanning.

Since V \ J is spanning in M , V \ J contain some base (say
B ⊆ V \J) of M . Also, V \ I contains a base of M , say B′ ⊆ V \ I.
Since B \ I ⊆ V \ I, and B \ I is independent in M , we can choose
the base B′ of M s.t. B \ I ⊆ B′ ⊆ V \ I.
Since B and J are disjoint, we have both: 1) B \ I and J \ I are
disjoint; and 2) B ∩ I ⊆ I \ J . Also note, B′ and I are disjoint. . . .
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Dual of a Matroid

Theorem 6.7.3

Let M∗ be defined as on previous slide. Then M∗ is a matroid.

Proof.

Now J \ I -⊆ B′, since otherwise (i.e., assuming J \ I ⊆ B′):

|B| = |B ∩ I|+ |B \ I| (6.28)

≤ |I \ J |+ |B \ I| (6.29)

< |J \ I|+ |B \ I| ≤ |B′| (6.30)

which is a contradiction. The last inequality on the right follows since
J \ I ⊆ B′ (by assumption) and B \ I ⊆ B′ implies that (J \ I) ∪ (B \ I) ⊆ B′,
but since J and B are disjoint, we have that |J \ I|+ |B \ I| ≤ B′.

Therefore, J \ I -⊆ B′, and there is a v ∈ J \ I s.t. v /∈ B′.

So B′ is disjoint with I ∪ {v}, meaning B′ ⊆ V \ (I ∪ {v}), or
V \ (I ∪ {v}) is spanning in M , and therefore I ∪ {v} ∈ I∗.
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|B| = |B ∩ I|+ |B \ I| (6.28)

≤ |I \ J |+ |B \ I| (6.29)

< |J \ I|+ |B \ I| ≤ |B′| (6.30)
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Therefore, J \ I -⊆ B′, and there is a v ∈ J \ I s.t. v /∈ B′.

So B′ is disjoint with I ∪ {v}, meaning B′ ⊆ V \ (I ∪ {v}), or
V \ (I ∪ {v}) is spanning in M , and therefore I ∪ {v} ∈ I∗.
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Dual of a Matroid

Theorem 6.7.3

Let M∗ be defined as on previous slide. Then M∗ is a matroid.

Proof.

Now J \ I -⊆ B′, since otherwise (i.e., assuming J \ I ⊆ B′):

|B| = |B ∩ I|+ |B \ I| (6.28)

≤ |I \ J |+ |B \ I| (6.29)

< |J \ I|+ |B \ I| ≤ |B′| (6.30)

which is a contradiction.

Therefore, J \ I -⊆ B′, and there is a v ∈ J \ I s.t. v /∈ B′.

So B′ is disjoint with I ∪ {v}, meaning B′ ⊆ V \ (I ∪ {v}), or
V \ (I ∪ {v}) is spanning in M , and therefore I ∪ {v} ∈ I∗.
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Dual Matroid Rank

Theorem 6.7.4

The rank function rM∗ of the dual matroid M∗ may be specified in terms
of the rank rM in matroid M as follows. For X ⊆ V :

rM∗(X) = |X|+ rM (V \X)− rM (V ) (6.31)

Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2. I.e.,
|X| is modular, complement f(V \X) is submodular if f is submodular, rM (V )
is a constant, and summing submodular functions and a constant preserves
submodularity.

Non-negativity integral follows since
|X|+ rM (V \X) ≥ rM (X) + rM (V \X) ≥ rM (V ).

Monotone non-decreasing follows since, as X increases by one, |X|
always increases by 1, while rM (V \X) decreases by one or zero.

Therefore, rM∗ is the rank function of a matroid. That it is the dual
matroid rank function is shown in the next proof.
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Dual Matroid Rank

Theorem 6.7.4

The rank function rM∗ of the dual matroid M∗ may be specified in terms
of the rank rM in matroid M as follows. For X ⊆ V :

rM∗(X) = |X|+ rM (V \X)− rM (V ) (6.31)

Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2.

Non-negativity integral follows since
|X|+ rM (V \X) ≥ rM (X) + rM (V \X) ≥ rM (V ). The right
inequality follows since rM is submodular.

Monotone non-decreasing follows since, as X increases by one, |X|
always increases by 1, while rM (V \X) decreases by one or zero.

Therefore, rM∗ is the rank function of a matroid. That it is the dual
matroid rank function is shown in the next proof.
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Theorem 6.7.4

The rank function rM∗ of the dual matroid M∗ may be specified in terms
of the rank rM in matroid M as follows. For X ⊆ V :

rM∗(X) = |X|+ rM (V \X)− rM (V ) (6.31)

Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2.

Non-negativity integral follows since
|X|+ rM (V \X) ≥ rM (X) + rM (V \X) ≥ rM (V ).

Monotone non-decreasing follows since, as X increases by one, |X|
always increases by 1, while rM (V \X) decreases by one or zero.

Therefore, rM∗ is the rank function of a matroid. That it is the dual
matroid rank function is shown in the next proof.
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Dual Matroid Rank

Theorem 6.7.4

The rank function rM∗ of the dual matroid M∗ may be specified in terms
of the rank rM in matroid M as follows. For X ⊆ V :

rM∗(X) = |X|+ rM (V \X)− rM (V ) (6.31)

Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2.

Non-negativity integral follows since
|X|+ rM (V \X) ≥ rM (X) + rM (V \X) ≥ rM (V ).

Monotone non-decreasing follows since, as X increases by one, |X|
always increases by 1, while rM (V \X) decreases by one or zero.

Therefore, rM∗ is the rank function of a matroid. That it is the dual
matroid rank function is shown in the next proof.
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Dual Matroid Rank

Theorem 6.7.4

The rank function rM∗ of the dual matroid M∗ may be specified in terms
of the rank rM in matroid M as follows. For X ⊆ V :

rM∗(X) = |X|+ rM (V \X)− rM (V ) (6.31)

Proof.

A set X is independent in (V, rM∗) if and only if

rM∗(X) = |X|+ rM (V \X)− rM (V ) = |X| (6.32)

or

rM (V \X) = rM (V ) (6.33)

But a subset X is independent in M∗ only if V \X is spanning in M
(by the definition of the dual matroid).

. . .
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Dual Matroid Rank

Theorem 6.7.4

The rank function rM∗ of the dual matroid M∗ may be specified in terms
of the rank rM in matroid M as follows. For X ⊆ V :

rM∗(X) = |X|+ rM (V \X)− rM (V ) (6.31)

Proof.

A set X is independent in (V, rM∗) if and only if

rM∗(X) = |X|+ rM (V \X)− rM (V ) = |X| (6.32)

or

rM (V \X) = rM (V ) (6.33)

But a subset X is independent in M∗ only if V \X is spanning in M
(by the definition of the dual matroid).
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Dual Matroid Rank

Theorem 6.7.4

The rank function rM∗ of the dual matroid M∗ may be specified in terms
of the rank rM in matroid M as follows. For X ⊆ V :

rM∗(X) = |X|+ rM (V \X)− rM (V ) (6.31)

Proof.

A set X is independent in (V, rM∗) if and only if

rM∗(X) = |X|+ rM (V \X)− rM (V ) = |X| (6.32)

or

rM (V \X) = rM (V ) (6.33)

But a subset X is independent in M∗ only if V \X is spanning in M
(by the definition of the dual matroid).
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Example duality: cocycle matroid

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {I ⊆ V : V \ I is a spanning set of M}

It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that,
if removed, would render the graph non-spanning.
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Example duality: cocycle matroid

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {I ⊆ V : V \ I is a spanning set of M}
It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that,
if removed, would render the graph non-spanning.
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Example duality: cocycle matroid

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {I ⊆ V : V \ I is a spanning set of M}
It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that,
if removed, would render the graph non-spanning.
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Example duality: cocycle matroid

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {I ⊆ V : V \ I is a spanning set of M}
It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that,
if removed, would render the graph non-spanning.
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Example duality: cocycle matroid

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {I ⊆ V : V \ I is a spanning set of M}
It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that,
if removed, would render the graph non-spanning.
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Example duality: cocycle matroid

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {I ⊆ V : V \ I is a spanning set of M}
It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that,
if removed, would render the graph non-spanning.
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Example duality: cocycle matroid

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {I ⊆ V : V \ I is a spanning set of M}
It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that,
if removed, would render the graph non-spanning.
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Example duality: cocycle matroid

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {I ⊆ V : V \ I is a spanning set of M}
It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that,
if removed, would render the graph non-spanning.
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Matroid and the greedy algorithm

Let I be a set of subsets of E that is down-closed. Consider a
non-negative modular weight function w : E → R+, and we want to
find the A ∈ I that maximizes w(A).

Consider the greedy algorithm: Set A = ∅, and repeatedly choose
y ∈ E \A such that: 1) A ∪ {y} ∈ I, and 2) w(y) is as large as
possible. We stop when no such y exists.

Theorem 6.8.1

Let I be a non-empty collection of subsets of a set E, down-closed (i.e.,
an independence system). Then the pair (E, I) is a matroid if and only if
for each weight function w ∈ RE

+, the greedy algorithm leads to a set
I ∈ I of maximum weight w(I).
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 6.8.1 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then
the following are equivalent.

1 B is the collection of bases of a matroid;

2 if B,B′ ∈ B, and x ∈ B′ \B, then B′ − x+ y ∈ B for some
y ∈ B \B′.

3 If B,B′ ∈ B, and x ∈ B′ \B, then B − y + x ∈ B for some
y ∈ B \B′.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of
linear spaces and matrices, and (alternatively) spanning trees.
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Matroid and the greedy algorithm

proof of Theorem 6.8.1.

Assume (E, I) is a matroid and w : E → R+ is given.

Let A = (a1, a2, . . . , ar) be the solution returned by greedy, where
r = r(M) the rank of the matroid, and we order the elements as
they were chosen (so w(a1) ≥ w(a2) ≥ · · · ≥ w(ar)).

A is a base of M , and let B = (b1, . . . , br) be any another base of
M with elements also ordered decreasing by weight.

We next show that not only is w(A) ≥ w(B) but that
w(ai) ≥ w(bi) for all i.

. . .
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Matroid and the greedy algorithm

proof of Theorem 6.8.1.

Assume (E, I) is a matroid and w : E → R+ is given.

Let A = (a1, a2, . . . , ar) be the solution returned by greedy, where
r = r(M) the rank of the matroid, and we order the elements as
they were chosen (so w(a1) ≥ w(a2) ≥ · · · ≥ w(ar)).

A is a base of M , and let B = (b1, . . . , br) be any another base of
M with elements also ordered decreasing by weight.

We next show that not only is w(A) ≥ w(B) but that
w(ai) ≥ w(bi) for all i.

. . .
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Matroid and the greedy algorithm

proof of Theorem 6.8.1.

Assume (E, I) is a matroid and w : E → R+ is given.

Let A = (a1, a2, . . . , ar) be the solution returned by greedy, where
r = r(M) the rank of the matroid, and we order the elements as
they were chosen (so w(a1) ≥ w(a2) ≥ · · · ≥ w(ar)).
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Matroid and the greedy algorithm

proof of Theorem 6.8.1.

Assume otherwise, and let k be the first (smallest) integer such that
w(ak) < w(bk). Hence w(aj) ≥ w(bj) for j < k.

Define independent sets Ak−1 = {a1, . . . , ak−1} and
Bk = {b1, . . . , bk}.
Since |Ak−1| < |Bk|, Ak−1 ∪ {bi} ∈ I for some 1 ≤ i ≤ k.

But w(bi) ≥ w(bk) > w(ak), and so the greedy algorithm would
have chosen bi rather than ak, contradicting what greedy does.

. . .
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Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

Given an independence system (E, I), suppose the greedy algorithm
leads to an independent set of max weight for every such weight
function. We’ll show (E, I) is a matroid.

Down monotonicity already holds (since we’ve started with an
independence system).

Let I, J ∈ I with |I| < |J |. Suppose to the contrary, that
I ∪ {z} /∈ I for all z ∈ J \ I.
Define the following modular weight function w on V , and define
k = |I|.

w(v) =






k + 2 if v ∈ I,

k + 1 if v ∈ J \ I,
0 if v ∈ S \ (I ∪ J)

(6.34)

. . .
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Down monotonicity already holds (since we’ve started with an
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Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

Now greedy will clearly, after k iterations recover I, but can not
choose any element in J \ I by assumption. Thus, greedy chooses a
set of weight k(k + 2).

On the other hand, J has weight

w(J) ≥ |J |(k + 1) ≥ (k + 1)(k + 1) > k(k + 2) (6.35)

so J has strictly larger weight but is still independent, contradicting
greedy’s optimality.

Therefore, (E, I) must be a matroid.

. . .
Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014 F44/60 (pg.155/230)



System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

Now greedy will clearly, after k iterations recover I, but can not
choose any element in J \ I by assumption. Thus, greedy chooses a
set of weight k(k + 2).

On the other hand, J has weight

w(J) ≥ |J |(k + 1) ≥ (k + 1)(k + 1) > k(k + 2) (6.35)

so J has strictly larger weight but is still independent, contradicting
greedy’s optimality.

Therefore, (E, I) must be a matroid.

. . .
Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014 F44/60 (pg.156/230)



System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

Now greedy will clearly, after k iterations recover I, but can not
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On the other hand, J has weight

w(J) ≥ |J |(k + 1) ≥ (k + 1)(k + 1) > k(k + 2) (6.35)

so J has strictly larger weight but is still independent, contradicting
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Matroid and greedy

As given, the theorem asked for a modular function w ∈ RE
+.

This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

If we don’t want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

We don’t need non-negativity, we can use any w ∈ RE and keep
going until we have a base.

If we stop at a negative value, we’ll once again get a maximum
weight independent set.

We can instead do as small as possible thus giving us a minimum
weight independent set/base.
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Matroid restriction/deletion

Let M = (V, I) be a matroid and let Y ⊆ V , then

IY = {Z : Z ⊆ Y, Z ∈ I} (6.36)

is such that MY = (Y, IY ) is a matroid with rank r(MY ) = r(Y ).

This is called the restriction of M to Y , and is often written M |Y .

If Y = V \X, then we have

IY = {Z : Z ∩X = ∅, Z ∈ I} (6.37)

is considered a deletion of X from M , and is often written M \ Z.

Hence, M |Y = M \ (V \ Y ).

The rank function is of the same form. I.e., rY : 2Y → Z+, where
rY (Z) = r(Z) for Z ⊆ Y .
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Matroid contraction

Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting
Z is written M/Z.

Let Z ⊆ V and let X be a base of Z. Then a subset I of V \ Z is
independent in M/Z iff I ∪X is independent in M .

In fact, it is the case M/Z = (M∗ \ Z)∗ (Exercise: show why).

The rank function takes the form

rM/Z(Y ) = r(Y ∪ Z)− r(Z) = r(Y |Z) (6.38)

So given I ⊆ V \ Z and X is a base of Z, rM/Z(I) = |I| is identical
to r(I ∪ Z) = |I|+ r(Z) = |I|+ |X| = r(I ∪X), so I ∪X
independent in M .

A minor of a matroid is any matroid obtained via a series of
deletions and contractions of some matroid.
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Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting
Z is written M/Z.

Let Z ⊆ V and let X be a base of Z. Then a subset I of V \ Z is
independent in M/Z iff I ∪X is independent in M .

In fact, it is the case M/Z = (M∗ \ Z)∗ (Exercise: show why).

The rank function takes the form

rM/Z(Y ) = r(Y ∪ Z)− r(Z) = r(Y |Z) (6.38)

So given I ⊆ V \ Z and X is a base of Z, rM/Z(I) = |I| is identical
to r(I ∪ Z) = |I|+ r(Z) = |I|+ |X| = r(I ∪X), so I ∪X
independent in M .

A minor of a matroid is any matroid obtained via a series of
deletions and contractions of some matroid.
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Matroid Intersection

Let M1 = (V, I1) and M2 = (V, I2) be two matroids. Consider their
common independent sets I1 ∩ I2.

While (V, I1 ∩ I2) is typically not a matroid (Exercise: show
graphical example.), we might be interested in finding the maximum
size common independent set. That is, find max |X| such that both
X ∈ I1 and X ∈ I2.

Theorem 6.9.1

Let M1 and M2 be given as above, with rank functions r1 and r2. Then
the size of the maximum size set in I1 ∩ I2 is given by

(r1 ∗ r2)(V ) ! min
X⊆V

(
r1(X) + r2(V \X)

)
(6.39)

This is an instance of the convolution of two submodular functions,
f1 and f2 that, evaluated at Y ⊆ V , is written as:

(f1 ∗ f2)(Y ) = min
X⊆Y

(
f1(X) + f2(Y \X)

)
(6.40)
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Convolution and Hall’s Theorem

Recall Hall’s theorem, that a transversal exists iff for all X ⊆ V , we
have |Γ(X)| ≥ |X|.

⇔ |Γ(X)|− |X| ≥ 0, ∀X
⇔ minX |Γ(X)|− |X| ≥ 0

⇔ minX |Γ(X)|+ |V |− |X| ≥ |V |
⇔ minX |Γ(X)|+ |V \X| ≥ |V |
⇔ [Γ(·) ∗ | · |](V ) ≥ |V |
So Hall’s theorem can be expressed as convolution.

Note, in general, convolution of two submodular functions does not
preserve submodularity (but in certain special cases it does).
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Matroid Union
Definition 6.9.2

Let M1 = (V1, I1), M2 = (V2, I2), . . . , Mk = (Vk, Ik) be matroids. We
define the union of matroids as
M1 ∨M2 ∨ · · · ∨Mk = (V1 6 V2 6 · · · 6 Vk, I1 ∨ I2 ∨ · · · ∨ Ik), where

I1 ∨ I2 ∨ · · · ∨ Ik = {I1 6 I2 6 · · · 6 Ik|I1 ∈ I1, . . . , Ik ∈ Ik} (6.41)

Note A 6B designates the disjoint union of A and B.

Theorem 6.9.3

Let M1 = (V1, I1), M2 = (V2, I2), . . . , Mk = (Vk, Ik) be matroids, with
rank functions r1, . . . , rk. Then the union of these matroids is still a
matroid, having rank function

r(Y ) = min
X⊆Y

(
|Y \X|+ r1(X ∩ V1) + · · ·+ rk(X ∩ Vk)

)
(6.42)

for any Y ⊆ V1 ∪ . . . Vk.
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Exercise: Matroid Union, and Matroid duality

Exercise: Describe M ∨M∗.
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Matroids of three or fewer elements are graphic

All matroids up to and including three elements are graphic.

(a) The only
matroid with zero
elements.

(b) The two
one-element
matroids.

(c) The four
two-element
matroids.

(d) The eight
three-element
matroids.

Nice way to show low element size matroids. What about matroids
that are low rank but with many elements?
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Affine Matroids

Given an n×m matrix with entries over some field F, we say that a
subset S ⊆ {1, . . . ,m} of indices (with corresponding column
vectors {vi : i ∈ S}, with |S| = k is affinely dependent if m ≥ 1 and
there exists elements {a1, . . . , ak} ∈ F, not all zero, such that∑k

i=1 aivi = 0 and
∑k

i=1 ai = 0, and otherwise affinely independent.

Concisely: points {v1, v2, . . . , vk} are affinely independent if
v2 − v1, v3 − v1, . . . , vk − v1 are linearly independent.

Proposition 6.9.4 (affine matroid)

Let ground set E = {1, . . . ,m} index column vectors of a matrix, and let
I be the set of subsets X of E such that X indices affinely independent
vectors. Then (E, I) is a matroid.

Proof.

Exercise:
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Euclidean Representation of Low-rank Matroids

Consider the affine matroid with n×m = 2× 6 matrix on the field
F = R, and let the elements be
{(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)}.

Hence, we can plot the points
in R2 as follows:

Dependent sets consist of all
subsets with ≥ 4 elements, or 3
collinear elements.

In general, for a matroid M of rank m+ 1 with m ≤ 3, then a
subset X in a geometric representation in Rm is dependent if: 1)
|X| ≥ 2 and the points are identical; 2) |X| ≥ 3 and the points are
collinear; 3) |X| ≥ 4 and the points are coplanar; or 4) |X| ≥ 5 and
the points are in space.
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Euclidean Representation of Low-rank Matroids

Theorem 6.9.5

Any matroid of rank m ≤ 4 can be represented by an affine matroid in
Rm−1.

As another example
on the right, a rank 4
matroid

All sets of 5 points are dependent. The only other sets of dependent
points are coplanar ones of size 4. Namely:
{(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0)},
{(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0)}, and
{(0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 0, 0)}.
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{(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0)},
{(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0)}, and
{(0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 0, 0)}.
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Euclidean Representation of Low-rank Matroids

Theorem 6.9.5
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{(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0)}, and
{(0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 0, 0)}.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014 F55/60 (pg.202/230)



System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

Euclidean Representation of Low-rank Matroids: A test

Loops represented by a separate box indicating how many loops
there are. Parallel elements indicated by a multiplicity next to a
point.
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Euclidean Representation of Low-rank Matroids

Very useful for graphically depicting low-rank matrices but which
still have rich structure. Also useful for answering questions.

Example: Is there a matroid that is not representable (i.e., not linear
for some field)?

Yes, consider the matroid

Called the non-Pappus matroid. Has rank three, but any matric
matroid with the above dependencies would require that {7, 8, 9} is
dependent, hence requiring an additional line in the above.
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Euclidean Representation of Low-rank Matroids

Very useful for graphically depicting low-rank matrices but which
still have rich structure. Also useful for answering questions.

Example: Is there a matroid that is not representable (i.e., not linear
for some field)? Yes, consider the matroid

1

7
8

9

2 3
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Called the non-Pappus matroid. Has rank three, but any matric
matroid with the above dependencies would require that {7, 8, 9} is
dependent, hence requiring an additional line in the above.
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Euclidean Representation of Low-rank Matroids

Very useful for graphically depicting low-rank matrices but which
still have rich structure. Also useful for answering questions.

Example: Is there a matroid that is not representable (i.e., not linear
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dependent, hence requiring an additional line in the above.
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Euclidean Representation of Low-rank Matroids: A test

Is this a matroid?

1 2 3

4

7

5

6

Check rank’s submodularity: Let X = {1, 2, 3, 6, 7},
Y = {1, 4, 5, 6, 7}. So r(X) =

3, and r(Y ) =

3

, and r(X ∪ Y ) =

4

,
so we must have, by submodularity, that
r({1, 6, 7}) = r(X ∩ Y ) ≤ r(X) + r(Y )− r(X ∪ Y ) = 2.

However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that r(X ∩ Y ) =

3

If we extend the line from 6-7 to 1, then is it a matroid?

Hence, not all 2D or 3D graphs of points and lines are matroids.
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However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that r(X ∩ Y ) =

3

If we extend the line from 6-7 to 1, then is it a matroid?

Hence, not all 2D or 3D graphs of points and lines are matroids.
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Euclidean Representation of Low-rank Matroids: A test
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Y = {1, 4, 5, 6, 7}. So r(X) = 3, and r(Y ) = 3, and r(X ∪ Y ) =

4,
so we must have, by submodularity, that
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However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that r(X ∩ Y ) =

3

If we extend the line from 6-7 to 1, then is it a matroid?

Hence, not all 2D or 3D graphs of points and lines are matroids.
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However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that r(X ∩ Y ) =
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If we extend the line from 6-7 to 1, then is it a matroid?

Hence, not all 2D or 3D graphs of points and lines are matroids.
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so we must have, by submodularity, that
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However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that r(X ∩ Y ) =

3

If we extend the line from 6-7 to 1, then is it a matroid?

Hence, not all 2D or 3D graphs of points and lines are matroids.
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so we must have, by submodularity, that
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However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that r(X ∩ Y ) =
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If we extend the line from 6-7 to 1, then is it a matroid?

Hence, not all 2D or 3D graphs of points and lines are matroids.
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However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that r(X ∩ Y ) = 3

If we extend the line from 6-7 to 1, then is it a matroid?

Hence, not all 2D or 3D graphs of points and lines are matroids.
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Euclidean Representation of Low-rank Matroids: A test
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However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that r(X ∩ Y ) = 3

If we extend the line from 6-7 to 1, then is it a matroid?

Hence, not all 2D or 3D graphs of points and lines are matroids.
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Euclidean Representation of Low-rank Matroids: A test
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so we must have, by submodularity, that
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However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that r(X ∩ Y ) = 3

If we extend the line from 6-7 to 1, then is it a matroid?

Hence, not all 2D or 3D graphs of points and lines are matroids.
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Euclidean Representation of Low-rank Matroids: Other
Examples

Other examples can be more complex, consider the following two
matroids (from Oxley, 2011):

Hence, lines (in 2D) may be curved and planes (in 3D) can be
twisted.
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Euclidean Representation of Low-rank Matroids: Other
Examples

Other examples can be more complex, consider the following two
matroids (from Oxley, 2011):

Hence, lines (in 2D) may be curved and planes (in 3D) can be
twisted.
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Euclidean Rep. of Low-rank Matroids: Conditions
rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines,
planes).

a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).
every line contains at least two points (not dependent unless > 2).
any two distinct points lie on a line (often not drawn when only two)
every plane contains at least three non-collinear points (not
dependent unless > 3)
any three distinct non-collinear points lie on a plane
If diagram has at most one plane, then any two distinct lines meet
in at most one point.
If diagram has more than one plane, then: 1) any two distinct
planes meeting in more than two points do so in a line; 2) any two
distinct lines meeting in a point do so in at most one point and lie in
on a common plane; 3) any line not lying on a plane intersects it in
at most one point.
Matroid of rank at most four (see Oxley 2011 for more details).
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Euclidean Rep. of Low-rank Matroids: Conditions
rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines,
planes).
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every line contains at least two points (not dependent unless > 2).
any two distinct points lie on a line (often not drawn when only two)
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in at most one point.

If diagram has more than one plane, then: 1) any two distinct
planes meeting in more than two points do so in a line; 2) any two
distinct lines meeting in a point do so in at most one point and lie in
on a common plane; 3) any line not lying on a plane intersects it in
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rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines,
planes).
a set of parallel points (could be size 1) does not touch another set
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every line contains at least two points (not dependent unless > 2).
any two distinct points lie on a line (often not drawn when only two)
every plane contains at least three non-collinear points (not
dependent unless > 3)
any three distinct non-collinear points lie on a plane
If diagram has at most one plane, then any two distinct lines meet
in at most one point.
If diagram has more than one plane, then: 1) any two distinct
planes meeting in more than two points do so in a line; 2) any two
distinct lines meeting in a point do so in at most one point and lie in
on a common plane; 3) any line not lying on a plane intersects it in
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Matroid of rank at most four (see Oxley 2011 for more details).
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System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

Euclidean Rep. of Low-rank Matroids: Conditions
rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines,
planes).
a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).
every line contains at least two points (not dependent unless > 2).
any two distinct points lie on a line (often not drawn when only two)
every plane contains at least three non-collinear points (not
dependent unless > 3)
any three distinct non-collinear points lie on a plane
If diagram has at most one plane, then any two distinct lines meet
in at most one point.
If diagram has more than one plane, then: 1) any two distinct
planes meeting in more than two points do so in a line; 2) any two
distinct lines meeting in a point do so in at most one point and lie in
on a common plane; 3) any line not lying on a plane intersects it in
at most one point.
Matroid of rank at most four (see Oxley 2011 for more details).
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