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Cumulative Outstanding Reading

@ Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige's book.
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Announcements, Assignments, and Reminders

@ Homework 1 is out, due Wednesday April 23rd, 11:45pm,
electronically via our assignment dropbox
(https://canvas.uw.edu/courses/895956/assignments).

@ All homeworks must be done electronically, only PDF file format
accepted.

o Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-

@ L1 (3/31): Motivation, Applications, & @ L11:
Basic Definitions @ L12:

@ L2: (4/2): Applications, Basic e L13:
Definitions, Properties o L14:

@ L3: More examples and properties (e.g., ¢ L15:
cIosurfe properties), and examples, o Li6:
spanning trees

@ L4: proofs of equivalent definitions, o Lir:
independence, start matroids ° L8

@ L5: matroids, basic definitions and o L19:
examples @ L20:

@ L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation,
Dual Matroid

L7:
L8:
L9:
L10:

Finals Week: June 9th-13th, 2014.
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Matroid

Slight modification (non unit increment) that is equivalent.

Definition 6.2.1 (Matroid-I1)

A set system (F,Z) is a Matroid if
(11" beZ
(12yVIeZ,JCI= JeZ (or "down-closed”)

(13") VI,J € Z, with |I| > |.J|, then there exists x € I \ J such that
Ju{z}eZ

Note (11)=(I1"), (12)=(12"), and we get (13)=(I3") using induction.

Prof. Jeff Bilmes

EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014 F5/60 (pg.5/230)



Review
1

Matroids - important property

Proposition 6.2.1
In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 6.2.2 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
(12") VI € Z,J C I = J € T (down-closed or subclusive)

(13") VX CV, and I, I € maxInd(X), we have |I;| = |I2| (all maximally
independent subsets of X have the same size).
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just #(U) when the matroid in equation is
unambiguous.

o 7(E) = r(gz) is the rank of the matroid, and is the common size of
all the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 6.2.1 (matroid rank function)

The rank of a matroid is a function 7 : 28 — 7. defined by

T(A):max{]X|:XQA,XEI}zr)r(la%(MﬁX] (6.1)
€

@ From the above, we immediately see that r(A) < |A|.
@ Moreover, if r(A) = |A|, then A € Z, meaning A is independent (in
this case, A is a self base).
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Matroids - rank

Lemma 6.2.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

@ Since M is a matroid, we know that 7(AN B) = r(X) = | X|, and
r(AUB) =r(Y) =1Y|. Also, forany U € Z, r(A) > |ANU|.

@ Then we have

r(A)+r(B) > Y NA|l+|Y N B| :
=|YN(ANB)|+|Y N(AUB)| (6.4)
>|X|+|Y|=r(ANB)+r(AUB) (6.5)
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Partition Matroid

@ Let V be our ground set.

o Let V=ViUVoU---UV, be a partition of V into blocks or disjoint
sets (disjoint union). Define a set of subsets of V" as

T={XCV:|XNV|<kiforalli=1,... 0} (6.3)

where ki, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with £ =1, V; =V, and k1 = k.

o We'll show that property (I13") in Def ?? holds. If X, Y € Z with
|Y'| > | X|, then there must be at least one i with
Y N Vi| > | X NV;|. Therefore, adding one element
ecViN(Y\X) to X won't break independence.
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

¢
r(A) => min(|ANVi|, k) (6.12)
=1

which we also immediately see is submodular using properties we
spoke about last week. That is:

Q@ |ANYV;| is submodular (in fact modular) in A

@ min(submodular(A), k;) is submodular in A since |[ANV;] is

monotone.
© sums of submodular functions are submodular.

e r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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Partition Matroid, rank as matching

@ Example where £ =5,
(k1, ko, ks, ka, k5) =
(2,2,1,1,3 @ Recall, T': 2V — R as the neighbor

function in a bipartite graph, the

neighbors of X is defined as I'(X) =

{veV(G)\ X : E(X,{v}) # 0}, and

recall that |I'(X)| is submodular.

6 Here, for X CV, we have I'(X) =

{iel:(v,i) € E(G) and v € X}.

@ For such a constructed bipartite graph,
the rank function of a partition matroid

is r(X) = S0, min(|X N Vi], ki) =

tRe maximum matching involving X.
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System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:ie€l)where ) CV; CV
for all i), and I is an index set. Hence, |I| = |V].
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System of Distinct Reps
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System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:ie€l)where ) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

@ Here, the sets V; € V are like “groups” and any v € V with v € V; is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).
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System of Distinct Reps
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System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:ie€l)where ) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

o Here, the sets V; € V are like “groups” and any v € V with v € V} is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

@ A family (v; : i € I) with v; € V is said to be a system of
representatives of 1V if 3 a bijection 7 : [ — I such that v; € V).
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System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:ie€l)where ) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

o Here, the sets V; € V are like “groups” and any v € V with v € V} is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

o A family (v; : i € I) with v; € V is said to be a system of
representatives of 1V if 3 a bijection 7 : [ — I such that v; € V).

@ v; is the representative of set (or group) Vi (i, meaning the i
representative is meant to represent set V).
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System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:ie€l)where ) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

o Here, the sets V; € V are like “groups” and any v € V with v € V} is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

e A family (v; : i € I) with v; € V is said to be a system of
representatives of 1V if 3 a bijection 7 : I — I such that v; € V).

@ v; is the representative of set (or group) Vi (i, meaning the ith
representative is meant to represent set V. ;).

@ Example: Consider the house of representatives, v; = “Jim
McDermott, while ¢ = “King County, WA-7".
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System of Distinct Reps

System of Representatives

Let (V.V) be a set system (i.e., V= (V;:i€I)where ) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

Here, the sets V; € V are like “groups” and any v € V with v € V; is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

A family (v; : ¢ € I) with v; € V is said to be a system of
representatives of 1V if 3 a bijection 7 : [ — I such that v; € V().
v; is the representative of set (or group) Vi (i, meaning the ith
representative is meant to represent set V. ;).

Example: Consider the house of representatives, v; = "“Jim
McDermott, while ¢ = “King County, WA-7".

In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have some

v1 € V1 N Vs, where vy represents both V7 and V5.
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System of Distinct Reps
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System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:ie€l)where ) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

o Here, the sets V; € V are like “groups” and any v € V with v € V} is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

e A family (v; : i € I) with v; € V is said to be a system of
representatives of 1V if 3 a bijection 7 : I — I such that v; € V).

@ v; is the representative of set (or group) Vi (i, meaning the ith
representative is meant to represent set V. ;).

@ Example: Consider the house of representatives, v; = “Jim
McDermott, while ¢ = “King County, WA-7".

@ In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have some
v1 € V1 N Vs, where vy represents both V; and V5.

@ We can view this as a bipartite graph.
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System of Distinct Reps

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, ¢ = 6 groups, with V = (V1, V4, ..., Vg)
= ({e, f,h}.{d, e, g}, {b,c,e, h}, {a,b, h},{a},{a}).

V I
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System of Distinct Reps
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, ¢ = 6 groups, with V = (V1, V4, ..., Vg)
= ({e, f,h}.{d, e, g}, {b,c,e, h}, {a,b, h},{a},{a}).
@ A system of representatives would

make sure that there is a representative
for each color group. For example,
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System of Distinct Reps
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, ¢ = 6 groups, with V = (V1, V4, ..., Vg)
= ({e, f,h}.{d, e, g}, {b,c,e, h}, {a,b, h},{a},{a}).
@ A system of representatives would

make sure that there is a representative
for each color group. For example,

@ The representatives ({a,c,d, f,h}) are
shown as colors on the left.
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, ¢ = 6 groups, with V = (V1, V4, ..., Vg)
= ({e, f,h}.{d, e, g}, {b,c,e, h}, {a,b, h},{a},{a}).

@ A system of representatives would
make sure that there is a representative
for each color group. For example,

@ The representatives ({a,c,d, f,h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why?
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System of Distinct Reps

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, ¢ = 6 groups, with V = (V1, V4, ..., Vg)
= ({e, f,h}.{d, e, g}, {b,c,e, h}, {a,b, h},{a},{a}).

@ A system of representatives would
make sure that there is a representative
for each color group. For example,

@ The representatives ({a,c,d, f,h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since
there is only one common choice to
represent both color groups).
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System of Distinct Reps
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System of Distinct Representatives

@ Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; C V for
all i), and I is an index set. Hence, |I| = |V].
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System of Distinct Reps
i

System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all i), and I is an index set. Hence, |I]| = |V].

e A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I > I such that v; € V)
and v; # v; for all ¢ # j.
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System of Distinct Reps
i

System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all i), and I is an index set. Hence, |I]| = |V].

o A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I > I such that v; € V)
and v; # v; for all ¢ # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:
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System of Distinct Reps
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all i), and I is an index set. Hence, |I]| = |V].

o A fami . € I) with v; € V is said to be a system of distinct

epresentatives of WNf 3 a bijection 7 : I <+ I such that v; € V(;

o\In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 6.3.1 (transversal)

Given a set system (V. V) as defined above, a set T'C V is a transversal
of V if there is a bijection 7 : T <> I such that

T € Vi forallz eT (6.1)
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all i), and I is an index set. Hence, |I]| = |V].

o A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I > I such that v; € V)
and v; # v; for all ¢ # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 6.3.1 (transversal)

Given a set system (V,V) as defin ove, a set T'C V is a transversal
of V if there is a bijection 7 : T h that
T € Vi forallzeT (6.1)

@ Note that due to 7 : T <+ I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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Transversals are Subclusive

@ A set X C V is a partial transversal if X is a transversal of some
subfamily V' = (V; 14 € I') where I' C I.
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Transversals
[ NRNNARN]

Transversals are Subclusive

@ A set X CV is a partial transversal if X is a transversal of some
subfamily V' = (V; :i € I') where I' C I,

@ Therefore, for any transversal T, any subset 7/ C T is a partial
transversal.
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Transversals
[ NRNNARN]

Transversals are Subclusive

@ A set X CV is a partial transversal if X is a transversal of some
subfamily V' = (V; :i € I') where I' C I,

@ Therefore, for any transversal T, any subset 7/ C T is a partial
transversal.

@ Thus, transversals are down closed (subclusive).
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Transversals
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When do transversals exist?
@ As we saw, a transversal might not always exist. How to tell?
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Transversals
(LERNRRN]

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I), and V; CV for all
i. Then, for any J C I, let

I,V(J) = UjeJV}'7 (6.2)

so |V(J)| is the set cover function (which we know is submodular).

N 7
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Transversals
(LERNRRN]

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
e Given a set system (V,V) with V = (V;:i € I),and V; CV for all
i. Then, for any J C I, let
V(J) = UjesV; (6.2)

so |V(J)| is the set cover function (which we know is submodular).
@ We have

Theorem 6.4.1 (Hall's theorem)

Given a set system (V,V), the family of subsets V = (V; : i € I) has a
transversal (v; : i € I) iff for all J C I

V(D) = |J] (6.3)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014 F16/60 (pg.34/230)



Transversals
(LERNRRN]

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
e Given a set system (V,V) with V = (V;:i € I),and V; CV for all
i. Then, for any J C I, let

V(J) =UjesV; (6.2)

so |V(J)| is the set cover function (which we know is submodular).
e Hall's theorem (V.J, |V (J)| > |.J|) as a bipartite graph.
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Transversals
(LERNRRN]

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
e Given a set system (V,V) with V = (V;:i € I),and V; CV for all
i. Then, for any J C I, let
V(J) = UjesV; (6.2)

so |V(J)| is the set cover function (which we know is submodular).
e Hall's theorem (V.J, |V (J)| > |J|) as a bipartite graph.

V I
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Transversals
(LERNRRN]

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
e Given a set system (V,V) with V = (V;:i € I),and V; CV for all
i. Then, for any J C I, let
V(J) = UjesV; (6.2)

so |V(J)| is the set cover function (which we know is submodular).
@ Moreover, we have

Theorem 6.4.2 (Rado’s theorem)
If M = (V,r) is a matroid on V' with rank function r, then the family of

subsets (V; :i € I) of V has a transversal (v; : i € I) that is independent
in M iff for all J C I

r(V(J)) = |J| (6.4)
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Transversals
(LERNRRN]

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I),and V; CV for all
i. Then, for any J C I, let
V(J) = UjesV; (6.2)

so |V(J)| is the set cover function (which we know is submodular).
@ Moreover, we have

Theorem 6.4.2 (Rado’s theorem)
If M = (V,r) is a matroid on V' with rank function r, then the family of

subsets (V; :i € I) of V has a transversal (v; : i € I) that is independent
in M iff forall J C I

r(V(J)) = |J| (6.4)

e Note, a transversal T independent in M means that »(T") = |T].
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Transversals
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More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

IfV = (V; :i €I) is a finite family of non-empty subsets of V', and
f:2Y = Z, is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

(6.5)

fUieg{vi}) > |J| forall J C I

if and only if

FV(I) > |J| forall J € I (6.6)
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Transversals
(NLRNRRN]

More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

IfV = (V; :i € 1) is a finite family of non-empty subsets of V', and
f:2Y = Z, is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

f(UieJ{vi}) > ‘J’ forall J C I (65)
if and only if

FV(D) > |J| forall J C T (6.6)

@ Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking
f(S) =S| for S C V. In which case, Eq. 6.5 requires the system of
representatives to be distinct.
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Transversals
(NLRNRRN]

More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

IfV = (V; :i € 1) is a finite family of non-empty subsets of V', and
f:2Y = Z, is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system 3f representatives (v; : i € I)

such that

if and only if

2

\J| for all J C T (6.6)

Jall J C I (6.5)
72U

;

@ Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking
f(S)=1S| for SCV.

o We get Theorem 6.4.2 by taking f(5) = r(S5) for S C V, the rank
function of the matroid. where, Eq. 6.5 insists the system of representatives

ndependent yn )\
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Transversals
(AR NRRN]

Submodular Composition with Set-to-Set functions

@ Note the condition in Theorem 6.4.3 is f(V(J)) > |J| for all J C I,
where f: 2V — 7. is non-negative, integral, monotone
non-decreasing and submodular, and V(J) = Ujc;V; with V; C V.

V(ij | }T—?}\/
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Transversals
(AR NRRN]

Submodular Composition with Set-to-Set functions

@ Note the condition in Theorem 6.4.3is f(V(J)) > |J| for all J C I,
where f: 2V — 7. is non-negative, integral, monotone
non-decreasing and submodular, and V' (J) = Uje;V; with V; C V.

o Define g : 2 — 7Z with g(J) = f(V(J)) — |J|, then the condition
for the existence of a system of representatives, with quality
Equation 6.5, becomes:

. - |
itugld) 2 @ (6.7)
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Transversals
(NRR NRRN]

Submodular Composition with Set-to-Set functions

@ Note the condition in Theorem 6.4.3is f(V(J)) > |J| for all J C I,
where f: 2V — 7. is non-negative, integral, monotone
non-decreasing and submodular, and V' (J) = Uje;V; with V; C V.

o Define g : 2/ — Z with g(J) = f(V(J)) — | J|, then the condition
for the existence of a system of representatives, with quality
Equation 6.5, becomes:

. - |
ming(J) >0 (6.7)

@ What kind of function is g7
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Transversals
(NRR NRRN]

Submodular Composition with Set-to-Set functions

@ Note the condition in Theorem 6.4.3is f(V(J)) > |J| for all J C I,
where f: 2V — 7. is non-negative, integral, monotone
non-decreasing and submodular, and V' (J) = Uje;V; with V; C V.

o Define g : 2/ — Z with g(J) = f(V(J)) — | J|, then the condition
for the existence of a system of representatives, with quality
Equation 6.5, becomes:

. - |
ming(J) >0 (6.7)

e What kind of function is g7

Proposition 6.4.4
g as given above is submodular.
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Transversals
(AR NRRN]

Submodular Composition with Set-to-Set functions

@ Note the condition in Theorem 6.4.3is f(V(J)) > |J| for all J C I,
where f: 2V — 7. is non-negative, integral, monotone
non-decreasing and submodular, and V' (J) = Uje;V; with V; C V.

o Define g : 2/ — Z with g(J) = f(V(J)) — | J|, then the condition
for the existence of a system of representatives, with quality
Equation 6.5, becomes:

. - |
ming(J) >0 (6.7)

e What kind of function is g7

Proposition 6.4.4
g as given above is submodular.

@ Hence, the condition for existence can be solved by (a special case
of) submodular function minimization, or vice verse!
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Transversals
(NENR AR

More general conditions for existence of transversals

f

irst part proof of Theorem 6.4.3.

@ Suppose V has a system of representatives (v; : ¢ € I) such that
Eq. 6.5 is true.
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Transversals
(NRNR AR

More general conditions for existence of transversals

f

irst part proof of Theorem 6.4.3.
@ Suppose V has a system of representatives (v; : ¢ € I) such that
Eq. 6.5 is true.

@ Then since f is monotone, and since V' (J) D U;es{v;} when
(v; : i € I) is a system of representatives, then Eq. 6.6 immediately
follows.
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Transversals
(NERNR AN

More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) = |J|,VJ C I)is true for V = (V; : i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i =1). Then there
exists v € Vi such that the family of subsets (V4 \ {v}, V2, ..., Vjy) also
satisfies Eq 6.6.

@ When Eq. 6.6 holds, this means that for any subsets
Ji,JJo € I\ {1}, we have that, for J € {J1, Ja},

fV(JU{l})) = [JU{1}] (6.8)
and hence

fViuV(h)) = |h]+1 (6.9)

fViuV () = ] +1 (6.10)
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Transversals
(NERNR AN

More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) > |J|,VJ CI)is true for V = (V; : i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i =1). Then there
exists v € Vi such that the family of subsets (V1 \ {v}, Va,...,V|y)) also
satisfies Eq 6.6.

Proof.

@ Suppose, to the contrary, the consequent is false. Then we may take
any v1, U9 € V7 as two distinct elements in V7 ...
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Transversals
(NERNR AN

More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) > |J|,VJ CI)is true for V = (V; : i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i =1). Then there
exists U € V1 such that the family of subsets (V1 \ {v},Va,...,Vy) also
satisfies Eq 6.6.

Proof.

@ Suppose, to the contrary, the consequent is false. Then we may take
any v1, U9 € V7 as two distinct elements in V7 ...

@ ...and there must exist subsets .Jq, J2 of I\ {1} such that

£ (= ra\fmhova) <ial+1,  (611)
£ ()= S@NEovem) <1k (1)

(note that either one or both of Ji, J; could be empty).
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Transversals
(NERNR AN

More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) > |J|,VJ CI)is true for V = (V; : i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i =1). Then there
exists v € Vi such that the family of subsets (V1 \ {v}, Va,...,V|y)) also
satisfies Eq 6.6.

o Taking X = (Vi \{t1}) UV (J1) and Y = (V} \ {02}) UV (]2), we
have f(X) < |Ji|, f(Y) < |J2|, and that:

XUY =ViuUV(J1UJa),
(6.13)

XﬂYDV(JlﬂJQ)
(6.14)

thl:;/?,) ZHH () 7 4()(”1 g(xn‘r)_”
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Transversals
(NERNR AN

More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) > |J|,VJ CI)is true for V = (V; : i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i =1). Then there
exists v € Vi such that the family of subsets (V1 \ {v}, Va,...,V|y)) also
satisfies Eq 6.6.

Proof.

@ since f submodular monotone non-decreasing, & Eqgs 6.13-6.15,

|1l + | J2] =2 F(Vi UV(JLU ) + F(V(JL N o)) (6.16)
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Transversals
(NERNR AN

More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) > |J|,VJ CI)is true for V = (V; : i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i =1). Then there
exists v € Vi such that the family of subsets (V1 \ {v}, Va,...,V|y)) also
satisfies Eq 6.6.

Proof.

@ since f submodular monotone non-decreasing, & Eqs 6.13-6.15,

‘J1| -+ |J2’ > f(V1 U V(Jl U Jz)) + f(V(Jl N Jg)) (6.16)

@ Since V satisfies Eq. 6.6, 1 ¢ J; U Ja, & Eqgs 6.9-6.10, this gives

|J1‘+|J2| Z|J1UJ2|+1+|J10J2| (6.17)

which is a contradiction since cardinality is modular.
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Transversals
(NENNRA N

More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

IfV = (V; :i € 1) is a finite family of non-empty subsets of V', and
f:2Y = Z, is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

if and only if

FOV(D) > |J| forall JC I (6.6)

@ Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking
f(S)=1S| for SCV.

e We get Theorem 6.4.2 by taking f(S) = r(S) for S C V, the rank
function of the matroid.
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Transversals
[NRRNNA ]

More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

@ Conversely, suppose Eq. 6.6 is true.
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Transversals
[NRRNNA ]

More general conditions for existence of transversals

converse proof of Theorem 6.4.3.
@ Conversely, suppose Eq. 6.6 is true.

o If each Vj is a singleton set, then the result follows immediately.
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Transversals
[NRRNNAT ]

More general conditions for existence of transversals

converse proof of Theorem 6.4.3.
@ Conversely, suppose Eq. 6.6 is true.
o If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let |[V1| > 2, then by Lemma 6.4.5, the family of subsets
(Vi \ {v}, Va,...,Vjp)) also satisfies Eq 6.6 for the right .
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Transversals
[NRRNNA ]

More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

@ Conversely, suppose Eq. 6.6 is true.

o If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let |[Vi| > 2, then by Lemma 6.4.5, the family of subsets
(Vi \ {0}, Va,...,V|p)) also satisfies Eq 6.6 for the right .

@ We can continue to reduce the family, deleting elements from V; for
some i while |V;| > 2, until we arrive at a family of singleton sets.
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Transversals
[NRRNNA ]

More general conditions for existence of transversals

converse proof of Theorem 6.4.3.
@ Conversely, suppose Eq. 6.6 is true.
o If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let |[Vi| > 2, then by Lemma 6.4.5, the family of subsets
(Vi \ {0}, Va,...,V|p)) also satisfies Eq 6.6 for the right .

@ We can continue to reduce the family, deleting elements from V; for
some i while |V;| > 2, until we arrive at a family of singleton sets.

@ This family will be the required system of representatives.
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Transversals
[NRRNNA ]

More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

@ Conversely, suppose Eq. 6.6 is true.

o If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let |[Vi| > 2, then by Lemma 6.4.5, the family of subsets
(Vi \ {0}, Va,...,V|p)) also satisfies Eq 6.6 for the right .

@ We can continue to reduce the family, deleting elements from V; for
some i while |V;| > 2, until we arrive at a family of singleton sets.

@ This family will be the required system of representatives.

This theorem can be used to produce a variety of other results quite
easily, and shows how submodularity is the key ingredient in its truth.
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Transversal Matroid
[NERNARN

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 6.5.1

If V is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.
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Transversal Matroid
[NERNARN

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 6.5.1

If V is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.

@ This means that the transversals of V' are the bases of matroid M.
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Transversal Matroid
[NERNARN

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 6.5.1

If V is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.

@ This means that the transversals of V' are the bases of matroid M.

@ Therefore, all maximal partial transversals of V have the same
cardinality!
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Transversal Matroid
(RERNRRN

Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs (as
we've already strongly hinted at).
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Transversal Matroid
(RERNRRN

Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs (as
we've already strongly hinted at).

e Given a set system (V, V), with V = (V; : i € I), we can define a

bipartite graph G = (V, I, E) associated with ) that has edge set
{(v,i):veVielveV}.
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Transversal Matroid
(RERNRRN

Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs (as
we've already strongly hinted at).

e Given a set system (V, V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E) associated with ) that has edge set
{(v,i):veVielveV}.

@ A matching in this graph is a set of edges no two of which that have
a common endpoint.
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Transversal Matroid
(RERNRRN

Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs (as
we've already strongly hinted at).

e Given a set system (V, V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E) associated with ) that has edge set
{(v,i):veVielveV}.

@ A matching in this graph is a set of edges no two of which that have
a common endpoint.

@ In fact, we easily have

A subset T' C 'V is a partial transversal of V iff there is a matching in
(V,1,E) in which every edge has one endpoint in T.

We say that T is matched into I.
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Transversal Matroid
(NRRNRRN

Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?
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Transversal Matroid
(NRRNRRN

Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?

e Consider the following graph (left), and two max-matchings (two
right instances)

N ]
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Transversal Matroid
(NRRNRRN

Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?

e Consider the following graph (left), and two max-matchings (two
right instances)

Q‘G 0“3
e {AC} is a maximum matching, as is {AD, BC'}, but they are not
the same size.

Prof. Jeff Bilmes
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Transversal Matroid

Partition Matroid, rank as matching

@ Example where £ =5,
(k1, ko, ks, ka, k5) =
(2,2,1,1,3). @ Recall, I': 2V — R as the neighbor
VvV function in a bipartite graph, the
neighbors of X is defined as I'(X) =
{veV(G)\ X : E(X,{v}) # 0}, and
recall that |I'(X)| is submodular.

@ Here, for X CV, we have I'(X) =
{iel:(v,i) € E(G) and v € X}.

@ For such a constructed bipartite graph,
the rank function of a partition matroid
is r(X) = S0 min(|X N V;], ki) =
the maximum matching involving X.
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Transversal Matroid
(NNRY ARN

Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
[Vil > ki (also, recall, V(J) = Uje V).
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Transversal Matroid
(NRRY ARN

Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
|Vil > ki (also, recall, V(J) = UjesVj).
@ We start with partition matroid rank function in the subsequent
equations.
¢
r(A) = " min(|ANVi|, k) (6.18)
i=1
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Transversal Matroid
(NRRY ARN

Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
|Vil > ki (also, recall, V(J) = UjesVj).

@ We start with partition matroid rank function in the subsequent

equations.
¢
r(A) = " min(|ANVi|, k) (6.18)
=1
¢
=> min(|AnV(L)], L) (6.19)
=1
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Transversal Matroid
(NNRY ARN

Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
|Vil > ki (also, recall, V(J) = UjesVj).

@ We start with partition matroid rank function in the subsequent

equations.
0
r(A) = Zmin(|AmVi|,ki) (6.18)
=1
¢
= > min( ANV )LL) (6.19)
i=1
4
= i ANV(L)|  if J; #0 "
= st ({ 0 if J;i =0 } + i\ JA) (6.20)
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Transversal Matroid
(NNRY ARN

Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
|Vil > ki (also, recall, V(J) = UjesVj).

@ We start with partition matroid rank function in the subsequent

equations.
- imin(mm Vil, ki) (6.18)
i=1
- émin(\fm V()| 1) (6.19)
o i min ({ |Aﬂg)/(lz’)| :]f j ig }+ Ii\Ji\> (6.20)
E M( min (|[V(J;) NA| 4+ |L; \ Ji|) (621)

JCI
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Transversal Matroid
(NRRNR RN

... Morphing Partition Matroid Rank

e Continuing,

r(A) = Z min (|V(J;) NV (L) VAl = [0 Ji| + L)) (6.22)
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Transversal Matroid
(NRRNR RN

... Morphing Partition Matroid Rank

e Continuing,

y4
r(A) = Z min (|V(J;) NV (L) VAl = ;0 Ji| + L)) (6.22)

l
= min (Z V(N NVI)NA| - LN J|+ \LI) (6.23)

F28/60 (pg.79/230)
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Transversal Matroid
(NERNA RN

... Morphing Partition Matroid Rank

e Continuing,

r(A) = Z min (|V(J;) NV (L) VAl = ;0 Ji| + L)) (6.22)

l
=min [ Y [V(J)N V(L) NAl = |LNJ|+ \hl) (6.23)

JET 1=1
= min (|V(J) N V(D) N A = || +|T]) (6.24)
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Transversal Matroid
(NRRNR RN

... Morphing Partition Matroid Rank

e Continuing,

=1
= min ([V(J) N V()N Al = |J] + |1])
= min ([V(J) A = |7+ |11)
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Transversal Matroid
(NRRNR RN

... Morphing Partition Matroid Rank

e Continuing,

r(A) = Z min (|V(J;) VV(L) N A| = L0 Jif + L) (6.22)

l
=min [ Y [V(J)N V(L) NAl = |LNJ|+ \hl) (6.23)

JCI
- =1
= min (|V(J) N V(1) N A| = ||+ 1] (6.24)
= min ([V(J) Al = |75 |2)) (6.25)

@ In fact, this bottom (more general) expression is the expression for
the rank of a transversal matroid.
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Transversal Matroid

Partial Transversals Are Matroids

In fact, we have

Theorem 6.5.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,0}. Let T be the set of partial transversals of V. Then (V,T)

is a matroid.

Proof.

D |

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014 F29/60 (pg.83/230)



Transversal Matroid

Partial Transversals Are Matroids

In fact, we have

Theorem 6.5.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,0}. Let T be the set of partial transversals of V. Then (V,T)

is a matroid.

Proof.
@ We note that () € Z since the empty set is a transversal of the empty
subfamily of V, thus (I1') holds.
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Transversal Matroid

Partial Transversals Are Matroids

In fact, we have

Theorem 6.5.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,0}. Let T be the set of partial transversals of V. Then (V,T)

is a matroid.

Proof.
@ We note that () € Z since the empty set is a transversal of the empty
subfamily of V, thus (I1') holds.
o We already saw that if T is a partial transversal of V, and if T/ C T,
then 7" is also a partial transversal. So (12') holds.
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Transversal Matroid

Partial Transversals Are Matroids

In fact, we have

Theorem 6.5.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,0}. Let T be the set of partial transversals of V. Then (V,T)

is a matroid.

@ We note that () € Z since the empty set is a transversal of the empty
subfamily of V, thus (I1') holds.

o We already saw that if T is a partial transversal of V, and if T/ C T,
then 7" is also a partial transversal. So (12') holds.

@ Suppose that T and T are partial transversals of V such that
|T1| < |T3|. Exercise: show that (I13") holds.
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Transversal Matroid
[NNRNNAY |

Transversal Matroid Rank

@ Transversal matroid has rank

(4) = min (V) N A = 1] +12) (6.26)
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Transversal Matroid
[NNRNNAY |

Transversal Matroid Rank

@ Transversal matroid has rank

(4) = min (V) N A = 1] +12) (6.26)

@ Therefore, this function is submodular.
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Transversal Matroid
[NNRNNAY |

Transversal Matroid Rank

@ Transversal matroid has rank

(4) = min (V) N A = 1] +12) (6.26)

@ Therefore, this function is submodular.

@ Note that it is a minimum over a set of modular functions. Is this
true in general? Exercise:
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Matroid and representation
[ERN

Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
forany a € A, r(A\ {a}) = |A| —1).
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Matroid and representation
[ERN

Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
forany a € A, r(A\ {a}) =|4] - 1).

@ There is no reason in a matroid such an A could not consist of a
single element.
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Matroid and representation
[ERN

Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
forany a € A, r(A\ {a}) =|4] - 1).

@ There is no reason in a matroid such an A could not consist of a
single element.

@ Such an {a} is called a loop.
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Matroid and representation
[ERN

Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
forany a € A, r(A\ {a}) =|4] - 1).

@ There is no reason in a matroid such an A could not consist of a
single element.

@ Such an {a} is called a loop.

@ In a matric (i.e., linear) matroid, the only such loop is the value 0,
as all non-zero vectors have rank 1. The O can appear > 1 time

with different indices, as can a self loop in a graph appear on
different nodes. Z
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Matroid and representation
[ERN

Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
forany a € A, r(A\ {a}) =|4] - 1).

@ There is no reason in a matroid such an A could not consist of a
single element.

@ Such an {a} is called a loop.

@ In a matric (i.e., linear) matroid, the only such loop is the value 0,
as all non-zero vectors have rank 1. The O can appear > 1 time
with different indices, as can a self loop in a graph appear on
different nodes.

@ Note, we also say that two elements s, t are said to be parallel if
{s,t} is a circuit.
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Matroid and representation
1l

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M7 and My respectively on ground sets V4 and V5 are
isomorphic if there is a bijection 7 : V3 — V5 which preserves
independence (equivalently, rank, circuits, and so on).
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Matroid and representation
1l

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M7 and My respectively on ground sets V4 and V5 are
isomorphic if there is a bijection 7 : V3 — V5 which preserves
independence (equivalently, rank, circuits, and so on).

o Let F be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.
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Matroid and representation
1l

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M7 and My respectively on ground sets V4 and V5 are
isomorphic if there is a bijection 7 : V3 — V5 which preserves
independence (equivalently, rank, circuits, and so on).

o Let F be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.

@ We can more generally define matroids on a field.
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Matroid and representation
1l

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M7 and My respectively on ground sets V4 and V5 are
isomorphic if there is a bijection 7 : V; — V5 which preserves
independence (equivalently, rank, circuits, and so on).

o Let F be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.

@ We can more generally define matroids on a field.

Definition 6.6.2 (linear matroids on a field)

Let X be an n x m matrix and E = {1,...,m}, where X;; € IF for some
field, and let Z be the set of subsets of F such that the columns of X are
linearly independent over F.
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Matroid and representation
1l

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M7 and My respectively on ground sets V4 and V5 are
isomorphic if there is a bijection 7 : V3 — V5 which preserves
independence (equivalently, rank, circuits, and so on).

o Let F be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.

@ We can more generally define matroids on a field.

Definition 6.6.3 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called
representable over F
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Matroid and representation
(RN

Representability of Transversal Matroids

@ Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.
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Matroid and representation
(RN

Representability of Transversal Matroids

@ Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.

@ In particular:

Theorem 6.6.4

Transversal matroids are representable over all finite fields of sufficiently
large cardinality, and are representable over any infinite field.
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Matroid and representation
(N1 ]

Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 6.6.5

Let V ={1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where 7 is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.
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Matroid and representation
(N1 ]

Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 6.6.5

Let V ={1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where 7 is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.

@ It can be shown that this is a matroid and is representable.
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Matroid and representation
(N1 ]

Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 6.6.5

Let V ={1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where 7 is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.

@ It can be shown that this is a matroid and is representable.

@ However, this matroid is not isomorphic to any transversal matroid.
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Dual Matroid
[NRNNR

Matroids, other definitions using matroid rank r : 2V — Z_

Definition 6.7.1 (closed /flat/subspace)

A subset A C F is closed (equivalently, a flat or a subspace) of matroid
M ifforallz € E\ A, r(AU{z}) =r(4) + 1.

Definition 6.7.2 (closure)

Given A C FE, the closure (or span) of A, is defined by
span(A) ={be E :r(AU{b}) =r(4)}.

Therefore, a closed set A has span(A) = A.

Definition 6.7.3 (circuit)

A subset A C FE is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A| and for any a € A,

r(A\{a}) = [A] - 1).
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Dual Matroid
(LERNN]

Spanning Sets

@ We have the following definitions:
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Dual Matroid
(LERNN]

Spanning Sets

@ We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid M = (V,Z), and aset Y C V, then any set X C Y
such that 7(X) = r(Y) is called a spanning set of Y.
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Dual Matroid

Spanning Sets

@ We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid M = (V,Z), and aset Y C V, then any set X C Y
such that 7(X) = r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.
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Dual Matroid

Spanning Sets

@ We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid M = (V,Z), and aset Y C V, then any set X C Y
such that 7(X) = r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is
independent) but supersets of a base are also spanning.
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Dual Matroid

Spanning Sets

@ We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid M = (V,Z), and aset Y C V, then any set X C Y
such that 7(X) = r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is
independent) but supersets of a base are also spanning.

e V is always trivially spanning.
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Dual Matroid
(LERNN]

Spanning Sets

@ We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid M = (V,Z), and aset Y C V, then any set X C Y
such that 7(X) = r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is
independent) but supersets of a base are also spanning.

e V is always trivially spanning.
o Consider the terminology: “spanning tree in a graph”, comes from
spanning in a matroid sense.
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Dual Matroid
(NLRNN]

Dual of a Matroid

@ Given a matroid M = (V,Z), a dual matroid M* can be defined in a

L
way such that (M*)* = M.
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Dual Matroid
(NLRNN]

Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* can be defined in a
way such that (M*)* = M.
@ We define a set
IZ*={I CV :V\Iis a spanning set of M} (6.27)
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Dual Matroid
(NLRNN]

Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* can be defined in a
way such that (M*)* = M.
o We define a set
I*={I CV :V\Iis a spanning set of M} (6.27)

@ Hence, a set [ is independent in the dual M™ if its complement is
spanning in M (residual V' \ I must contain a base in M).
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Dual Matroid
(NLRNN]

Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* can be defined in a
way such that (M*)* = M.
@ We define a set
I*={I CV :V\Iis a spanning set of M} (6.27)

@ Hence, a set [ is independent in the dual M™ if its complement is
spanning in M (residual V' \ I must contain a base in M).

@ Recall, in cycle matroid of a graph, a spanning set of GG is any set of
edges that are incident to all nodes (i.e., any superset of a spanning
forest).
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Dual Matroid
(NLRNN]

Dual of a Matroid

Given a matroid M =
way such that (M*)* = M

o We define a set @,

" = {AQ V.V \Ais a spanning set of M} (6.27)

@ Hence, a set [ is independent in the dual M™ if its complement is
spanning in M (residual V' \ I must contain a base in M).

@ Recall, in cycle matroid of a graph, a spanning set of GG is any set of
edges that are incident to all nodes (i.e., any superset of a spanning
forest).

@ Since the smallest spanning sets are bases, the bases of M (when
V'\ I is as small as possible while still spanning) are complements of
the bases of M* (where I is as large as possible).
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Dual Matroid
(NN A

Dual of a Matroid

Theorem 6.7.3
Let M* be defined as on previous slide. Then M* is a matroid.

Proof.
o Clearly §) € I*, so (I1") holds.
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Dual Matroid
(NRE R

Dual of a Matroid

Theorem 6.7.3
Let M* be defined as on previous slide. Then M* is a matroid.

o Clearly §) € I*, so (I1") holds.

@ Also, if I CJ € Z*, then clearly also I € Z* since if V' \ J is
spanning in M, so must V' \ I. Therefore, (12") holds.
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Dual Matroid

Dual of a Matroid

Theorem 6.7.3
Let M* be defined as on previous slide. Then M* is a matroid.

Proof.

e Consider I,J € T* with |I]| < |J|. We need to show that there is
some member v € J \ I such that I + v is a base in M*, which
means that V' \ (I +v) = (V' \ I) \ v is still spanning in M. That is,
removing v from V' \ I doesn't make (V' \ I) \ v not spanning.
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Dual Matroid
(NRE R

Dual of a Matroid

Theorem 6.7.3
Let M* be defined as on previous slide. Then M* is a matroid.

e Consider I,J € T* with |I]| < |J|. We need to show that there is
some member v € J \ I such that I + v is a base in M*, which
means that V' \ (I +v) = (V' \ I) \ v is still spanning in M. That is,
removing v from V' \ I doesn't make (V' \ I) \ v not spanning.

@ Since V' \ J is spanning in M, V '\ J contain some base (say
B CV\J)of M. Also, V'\ I contains a base of M, say B C V'\ I.
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Dual Matroid
(NRE R

Dual of a Matroid

Theorem 6.7.3
Let M* be defined as on previous slide. Then M* is a matroid.

Proof.

e Consider I,J € T* with |I]| < |J|. We need to show that there is
some member v € J \ I such that I + v is a base in M*, which
means that V' \ (I +v) = (V' \ I) \ v is still spanning in M. That is,
removing v from V' \ I doesn't make (V' \ I) \ v not spanning.

@ Since V' \ J is spanning in M, V' \ J contain some base (say
B CV\J)of M. Also, V'\ I contains a base of M, say B C V'\ I.
@ Since B\ I C V' \ I, and B\ I is independent in M, we can choose
the base B’ of M st. B\I C B'CV\ I
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Dual Matroid
(NRE R

Dual of a Matroid

Theorem 6.7.3
Let M* be defined as on previous slide. Then M* is a matroid.

Proof.

e Consider I,J € T* with |I]| < |J|. We need to show that there is
some member v € J \ I such that I + v is a base in M*, which
means that V' \ (I +v) = (V' \ I) \ v is still spanning in M. That is,
removing v from V' \ I doesn't make (V' \ I) \ v not spanning.

@ Since V' \ J is spanning in M, V '\ J contain some base (say
B CV\J)of M. Also, V'\ I contains a base of M, say B C V'\ I.

@ Since B\ I C V' \ I, and B\ I is independent in M, we can choose
the base B’ of M st. B\I C B'CV\ I

@ Since B and J are disjoint, we have both: 1) B\ I and J \ I are
disjoint; and 2) BN I C I\ J. Also note, B’ and I are disjoint.
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Dual Matroid
(NRE R

Dual of a Matroid

Theorem 6.7.3
Let M* be defined as on previous slide. Then M* is a matroid.

e Now J \ I € B, since otherwise (i.e., assuming J \ I C B’):

IB|=|BNI|+|B\I (6.28)
<|I\J|+|B\1] (6.29)
<|J\I|+|B\I|<|B (6.30)

which is a contradiction. The last inequality on the right follows since
J\ I C B’ (by assumption) and B\ I C B’ implies that (J\I)U (B\I)C B’,
but since J and B are disjoint, we have that |J \ I| + |B\ I| < B'.
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Dual Matroid
(NRE R

Dual of a Matroid

Theorem 6.7.3
Let M* be defined as on previous slide. Then M* is a matroid.

e Now J \ I € B’, since otherwise (i.e., assuming J \ I C B’):

IB|=|BnI|+|B\I (6.28)
<|I\J|+|B\I| (6.29)
<|J\I|+|B\I| <|B| (6.30)

which is a contradiction.
@ Therefore, J\ I  B’, and thereisav e J\Ist v ¢ B
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Dual Matroid
(NRE R

Dual of a Matroid

Theorem 6.7.3
Let M* be defined as on previous slide. Then M* is a matroid.

e Now J \ I € B, since otherwise (i.e., assuming J \ I C B’):

IB|=|BNI|+|B\I (6.28)
<|I\J|+|B\1] (6.29)
<|J\I|+|B\I|<|B (6.30)

which is a contradiction.

@ Therefore, J\ I € B’, and thereisav e J\ st v¢ B’

e So B’ is disjoint with I U {v}, meaning B C V' \ (I U{v}), or
V\ (I U{v}) is spanning in M, and therefore I U {v} € Z*.
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Dual Matroid
(NRRN N

Dual Matroid Rank

Theorem 6.7.4

The rank function Ty~ of the dual matroid M* may be specified in terms
of the rank rp; in matroid M as follows. For X C V:

ra+(X) = |X|+ru(V\X) —ry(V) (6.31)

@ Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2. le.,
| X | is modular, complement f(V \ X) is submodular if f is submodular, vy (V)
is a constant, and summing submodular functions and a constant preserves
submodularity.
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Dual Matroid
(NRRN N

Dual Matroid Rank

Theorem 6.7.4

The rank function Ty~ of the dual matroid M* may be specified in terms
of the rank rp; in matroid M as follows. For X C V:

ra+(X) = |X|+ru(V\X) —ry(V) (6.31)

@ Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2.

@ Non-negativity integral follows since
I X|+rp(V\X)>ry(X)+rp(V\X) >ry(V). The right

inequality follows since rr is submodular.
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Dual Matroid
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Dual Matroid Rank

Theorem 6.7.4

The rank function Ty~ of the dual matroid M* may be specified in terms
of the rank rp; in matroid M as follows. For X C V:

ra+(X) = |X|+ru(V\X) —ry(V) (6.31)

@ Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2.

@ Non-negativity integral follows since
‘X| —i—?”M(V\X) > ry(X) —i—?"M(V\X) > ry (V).

@ Monotone non-decreasing follows since, as X increases by one, |X|
always increases by 1, while 7,(V \ X) decreases by one or zero.
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Dual Matroid
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Dual Matroid Rank

Theorem 6.7.4

The rank function Ty~ of the dual matroid M* may be specified in terms
of the rank rp; in matroid M as follows. For X C V:

ra+(X) = |X|+ru(V\X) —ry(V) (6.31)

@ Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2.

@ Non-negativity integral follows since
‘X| —i—?”M(V\X) > ry(X) —i—?"M(V\X) > ry (V).

@ Monotone non-decreasing follows since, as X increases by one, |X|
always increases by 1, while 7,(V \ X) decreases by one or zero.

@ Therefore, rps+ is the rank function of a matroid. That it is the dual
matroid rank function is shown in the next proof.
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Dual Matroid
(NRRN N

Dual Matroid Rank

Theorem 6.7.4

The rank function Ty~ of the dual matroid M* may be specified in terms
of the rank rp; in matroid M as follows. For X C V:

ra+(X) = |X|+ru(V\X) —ry(V) (6.31)

Proof.
A set X is independent in (V,rps+) if and only if

rv=(X) = | X[+ ru (VA X) —rp (V) = |X] (6.32)
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Dual Matroid
(NRRN N

Dual Matroid Rank

Theorem 6.7.4

The rank function Ty~ of the dual matroid M* may be specified in terms
of the rank rp; in matroid M as follows. For X C V:

ra+(X) = |X|+ru(V\X) —ry(V) (6.31)

Proof.
A set X is independent in (V,rps+) if and only if

rv=(X) = | X[+ ru (VA X) —rp (V) = |X] (6.32)

ru(V\X) =ru(V) (6.33)
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Dual Matroid
(NRRN N

Dual Matroid Rank

Theorem 6.7.4

The rank function Ty~ of the dual matroid M* may be specified in terms
of the rank rp; in matroid M as follows. For X C V:

ra+(X) = |X|+ru(V\X) —ry(V) (6.31)

Proof.
A set X is independent in (V,rps+) if and only if

rv=(X) = | X[+ ru (VA X) —rp (V) = |X] (6.32)

ru(V\X) =ru(V) (6.33)

But a subset X is independent in M* only if V' \ X is spanning in M
(by the definition of the dual matroid). O
39/60 23
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Dual Matroid
(NRRNR

Example duality: cocycle matroid

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I* ={I CV :V\Iis a spanning set of M}
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Dual Matroid

Example duality: cocycle matroid

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
IZ* ={I CV :V\Iis a spanning set of M}

@ It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that,
if removed, would render the graph non-spanning.
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Dual Matroid
[REARN

Example duality: cocycle matroid

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
IZ* ={I CV :V\Iis a spanning set of M}

@ It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that,
if removed, would render the graph non-spanning.

Minimally spanning Minimally spanning in M*
in M (and thus a base in M) (and thus a base in M¥)
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Dual Matroid
[REARN

Example duality: cocycle matroid

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
IZ* ={I CV :V\Iis a spanning set of M}

@ It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that,
if removed, would render the graph non-spanning.

Minimally spanning Minimally spanning in M*
in M (and thus a base in M) (and thus a base in M¥)
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Dual Matroid
[REARN

Example duality: cocycle matroid

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
IZ* ={I CV :V\Iis a spanning set of M}

@ It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that,
if removed, would render the graph non-spanning.

Independent but not Dependent in M* (contains
spanning in M a cocycle, is a nonminimal cut)
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Dual Matroid
[REARN

Example duality: cocycle matroid
@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I* ={I CV :V\Iis aspanning set of M}
@ It consists of all sets of edges the complement of which contains a

spanning tree — i.e., an independent set can't consist of edges that,
if removed, would render the graph non-spanning.

Spanning in M, but not a base Independent in M*
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Dual Matroid
[REARN

Example duality: cocycle matroid

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
IZ* ={I CV :V\Iis a spanning set of M}

@ It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that,
if removed, would render the graph non-spanning.

Dependent in M* (contains

Independent but not
a cocycle, is a nonminimal cut)

spanning in M

F40/60 (pg.139/230
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Dual Matroid

Example duality: cocycle matroid

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
IZ* ={I CV :V\Iis a spanning set of M}
@ It consists of all sets of edges the complement of which contains a

spanning tree — i.e., an independent set can't consist of edges that,
if removed, would render the graph non-spanning.

Independent but not A cycle in M* (a cocycle,
spanning in M or a minimal cut)

Prof. Jeff Bilmes
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Matroid and Greedy
[NRRNI

Matroid and the greedy algorithm

@ Let 7 be a set of subsets of F that is down-closed. Consider a
non-negative modular weight function w : £ — R, and we want to
find the A € 7 that maximizes w(A).

o Consider the greedy algorithm: Set A = (), and repeatedly choose
y € B\ Asuch that: 1) AU{y} € Z, and 2) w(y) is as large as
possible. We stop when no such y exists.

Theorem 6.8.1

Let T be a non-empty collection of subsets of a set E, down-closed (i.e.,
an independence system). Then the pair (E,Z) is a matroid if and only if
for each weight function w € R, the greedy algorithm leads to a set

I € T of maximum weight w(I).
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Matroid and Greedy

Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 6.8.1 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then
the following are equivalent.

@ B is the collection of bases of a matroid;

@ ifB,B' € B, and x € B'\ B, then B' — x + y € B for some
y€ B\ B.

© IfB,B' € B, and x € B'\ B, then B —y + x € B for some
y € B\ B.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of
linear spaces and matrices, and (alternatively) spanning trees.
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Matroid and Greedy
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Matroid and the greedy algorithm

proof of Theorem 6.8.1.

@ Assume (E,Z) is a matroid and w : E — R is given.
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Matroid and Greedy
[NR N

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

@ Assume (E,Z) is a matroid and w : E — R is given.

o Let A= (ay,as,...,a,) be the solution returned by greedy, where
r = r(M) the rank of the matroid, and we order the elements as
they were chosen (so w(a1) > w(az) > -+ > w(a,)).
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Matroid and Greedy
[NR N

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

@ Assume (E,Z) is a matroid and w : E — R is given.

o Let A= (ay,as,...,a,) be the solution returned by greedy, where
r = r(M) the rank of the matroid, and we order the elements as
they were chosen (so w(a1) > w(az) > -+ > w(a,)).

@ Ais a base of M, and let B = (by,...,b,) be any another base of
M with elements also ordered decreasing by weight.
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Matroid and Greedy
[NR N

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

@ Assume (E,Z) is a matroid and w : E — R is given.

o Let A= (ay,as,...,a,) be the solution returned by greedy, where
r = r(M) the rank of the matroid, and we order the elements as
they were chosen (so w(a1) > w(az) > -+ > w(a,)).

@ Ais a base of M, and let B = (by,...,b,) be any another base of
M with elements also ordered decreasing by weight.

@ We next show that not only is w(A) > w(B) but that
w(a;) > w(b;) for all 7.
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Matroid and Greedy
[NR N

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

@ Assume otherwise, and let k be the first (smallest) integer such that
w(ag) < w(bg). Hence w(a;) > w(b;) for j < k.
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Matroid and Greedy
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Matroid and the greedy algorithm

proof of Theorem 6.8.1.

@ Assume otherwise, and let k be the first (smallest) integer such that
w(ag) < w(bg). Hence w(a;) > w(b;) for j < k.

@ Define independent sets Ap_1 = {a1,...,ar_1} and
By = {b1,...,by}.
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Matroid and Greedy
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Matroid and the greedy algorithm

proof of Theorem 6.8.1.

@ Assume otherwise, and let k be the first (smallest) integer such that
w(ag) < w(bg). Hence w(a;) > w(b;) for j < k.

@ Define independent sets Ap_1 = {a1,...,ar_1} and
B = {b1,...,bi}.
@ Since |Ap_1| < |Bg|, Ag—1 U {b;} € Z for some 1 <i < k.
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Matroid and Greedy
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Matroid and the greedy algorithm

proof of Theorem 6.8.1.

@ Assume otherwise, and let k be the first (smallest) integer such that
w(ag) < w(bg). Hence w(a;) > w(b;) for j < k.

o Define independent sets Ay_; = {ai1,...,ax_1} and
By = {b1,...,bx}.

@ Since |Aj_1| < |Bk|, Ax—1U{b;} € Z for some 1 < i < k.

e But w(b;) > w(bg) > w(ag), and so the greedy algorithm would
have chosen b; rather than a, contradicting what greedy does.
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Matroid and Greedy
1

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

@ Given an independence system (E,Z), suppose the greedy algorithm
leads to an independent set of max weight for every such weight
function. We'll show (E,Z) is a matroid.
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Matroid and Greedy
1

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

@ Given an independence system (E,Z), suppose the greedy algorithm
leads to an independent set of max weight for every such weight
function. We'll show (E,Z) is a matroid.

@ Down monotonicity already holds (since we've started with an
independence system).
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Matroid and Greedy
1

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

@ Given an independence system (E,Z), suppose the greedy algorithm
leads to an independent set of max weight for every such weight
function. We'll show (E,Z) is a matroid.

@ Down monotonicity already holds (since we've started with an
independence system).

o Let I,J € Z with |I| < |J|. Suppose to the contrary, that
TU{z} ¢TI forall ze J\I
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Matroid and Greedy
1

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

@ Given an independence system (E,Z), suppose the greedy algorithm
leads to an independent set of max weight for every such weight
function. We'll show (E,Z) is a matroid.

@ Down monotonicity already holds (since we've started with an
independence system).

o Let I,J € Z with |I| < |J|. Suppose to the contrary, that
TU{z} ¢TI forall ze J\I

@ Define the following modular weight function w on V', and define

k=|I.
k+2 ifvel,
wv)=qk+1 ifveJ\I, (6.34)
0 ifoeS\(IUJ)
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Matroid and Greedy
1

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

@ Now greedy will clearly, after k iterations recover I, but can not
choose any element in J \ I by assumption. Thus, greedy chooses a
set of weight k(k + 2).
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Matroid and Greedy
1

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

@ Now greedy will clearly, after k iterations recover I, but can not
choose any element in J \ I by assumption. Thus, greedy chooses a
set of weight k(k + 2).

@ On the other hand, J has weight

w(lJ) > Tk +1) > (k+1)(k+1) > k(k +2) (6.35)

so J has strictly larger weight but is still independent, contradicting
greedy’s optimality.
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Matroid and Greedy
1

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

@ Now greedy will clearly, after k iterations recover I, but can not
choose any element in J \ I by assumption. Thus, greedy chooses a
set of weight k(k + 2).

@ On the other hand, J has weight

w(lJ) > Tk +1) > (k+1)(k+1) > k(k +2) (6.35)

so J has strictly larger weight but is still independent, contradicting
greedy’s optimality.
@ Therefore, (E,Z) must be a matroid.
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Matroid and greedy

@ As given, the theorem asked for a modular function w € Rf.
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Matroid and Greedy
(WA

Matroid and greedy

@ As given, the theorem asked for a modular function w € Rf.

@ This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.
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Matroid and Greedy
(WA

Matroid and greedy

@ As given, the theorem asked for a modular function w € Rf.

@ This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

e If we don't want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.
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Matroid and Greedy
(WA

Matroid and greedy

@ As given, the theorem asked for a modular function w € Rf.

@ This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

e If we don't want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

@ We don't need non-negativity, we can use any w € R” and keep
going until we have a base.
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Matroid and Greedy
(WA

Matroid and greedy

@ As given, the theorem asked for a modular function w € Rf.
@ This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

e If we don't want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

@ We don't need non-negativity, we can use any w € R” and keep
going until we have a base.

o If we stop at a negative value, we'll once again get a maximum
weight independent set.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014



Matroid and Greedy
(WA

Matroid and greedy

@ As given, the theorem asked for a modular function w € Rf.

@ This will not only return an independent set, but it will return a
base if we keep going even if the weights are 0.

e If we don't want elements with weight 0, we can stop once (and if)
the weight hits zero, thus giving us a maximum weight independent
set.

@ We don't need non-negativity, we can use any w € R” and keep
going until we have a base.

o If we stop at a negative value, we'll once again get a maximum
weight independent set.

@ We can instead do as small as possible thus giving us a minimum
weight independent set/base.
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Other Matroid Properties
RLrrrrrrrrerent

Matroid restriction/deletion

@ Let M = (V,Z) be a matroid and let Y C V, then
Iy ={Z:ZCY,Z €T} (6.36)

is such that My = (Y,Zy) is a matroid with rank r(My) = r(Y).
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Other Matroid Properties
[NENRNNRRRRRNAY]

Matroid restriction/deletion

o Let M = (V,Z) be a matroid and let Y C V, then
Ty ={Z:2CY,Z€T)} (6.36)

is such that My = (Y,Zy) is a matroid with rank r(My) = r(Y).
@ This is called the restriction of M to Y, and is often written M|Y .
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Other Matroid Properties
RLrrrrrrrrerent

Matroid restriction/deletion

o Let M = (V,Z) be a matroid and let Y C V, then
Ty ={Z:2CY,Z€T)} (6.36)

is such that My = (Y,Zy) is a matroid with rank r(My) = r(Y).
@ This is called the restriction of M to Y, and is often written M|Y .
o If Y =V \ X, then we have

Iy ={Z:ZnX=0,Z €T} (6.37)

is considered a deletion of X from M, and is often written M \ Z.
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Other Matroid Properties
[NENRNNRRRRRNAY]

Matroid restriction/deletion

o Let M = (V,Z) be a matroid and let Y C V, then
Ty ={Z:2CY,Z€T)} (6.36)

is such that My = (Y,Zy) is a matroid with rank r(My) = r(Y).
@ This is called the restriction of M to Y, and is often written M|Y .
o If Y =V \ X, then we have

Iy ={Z2:ZnX=0,Z €T} (6.37)

is considered a deletion of X from M, and is often written M \ Z.
@ Hence, M|Y =M\ (V\Y).
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Other Matroid Properties
[NENRNNRRRRRNAY]

Matroid restriction/deletion

o Let M = (V,Z) be a matroid and let Y C V, then
Ty ={Z:2CY,Z€T)} (6.36)

is such that My = (Y,Zy) is a matroid with rank r(My) = r(Y).
@ This is called the restriction of M to Y, and is often written M|Y .
o If Y =V \ X, then we have

Iy ={Z2:ZnX=0,Z €T} (6.37)

is considered a deletion of X from M, and is often written M \ Z.
@ Hence, M|Y =M\ (V\Y).

@ The rank function is of the same form. l.e., ry : 2¥ — Z, where
ry(Z)=r(Z)for ZCY.
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Other Matroid Properties
IRt

Matroid contraction

@ Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting
Z is written M /Z.
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Other Matroid Properties
IRt

Matroid contraction

@ Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting
Z is written M /Z.

@ Let Z C V and let X be a base of Z. Then a subset I of V'\ Z is
independent in M/Z iff I U X is independent in M.
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Other Matroid Properties
(RN RRRRANY

Matroid contraction

@ Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting
Z is written M /Z.

o Let Z C V and let X be a base of Z. Then a subset [ of V'\ Z is
independent in M/Z iff I U X is independent in M.

e In fact, it is the case M/Z = (M* \ Z)* (Exercise: show why).

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014 F47/60 (pg.171/230



Other Matroid Properties
(RN RRRRANY

Matroid contraction

@ Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting
Z is written M /Z.

o Let Z C V and let X be a base of Z. Then a subset [ of V'\ Z is
independent in M/Z iff I U X is independent in M.

o In fact, it is the case M/Z = (M* \ Z)* (Exercise: show why).

@ The rank function takes the form

rvyz(Y)=r(YUZ)—r(Z)=r(Y|Z) (6.38)
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Other Matroid Properties
(RN RRRRANY

Matroid contraction

@ Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting
Z is written M /Z.

o Let Z C V and let X be a base of Z. Then a subset [ of V'\ Z is
independent in M/Z iff I U X is independent in M.

o In fact, it is the case M/Z = (M* \ Z)* (Exercise: show why).
@ The rank function takes the form

rvz(Y)=r(YUZ)—r(Z)=r(Y|Z) (6.38)
@ Sogiven I C V' \ Z and X is a base of Z, ry;/(I) = |I| is identical

tor(JUZ)=I|+rZ)=|I|+|X|=r(IUX),so [UX
independent in M.
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Other Matroid Properties
(RN RRRRANY

Matroid contraction

@ Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting
Z is written M /Z.

o Let Z C V and let X be a base of Z. Then a subset [ of V'\ Z is
independent in M/Z iff I U X is independent in M.

o In fact, it is the case M/Z = (M* \ Z)* (Exercise: show why).
@ The rank function takes the form

rvz(Y)=r(YUZ)—r(Z)=r(Y|Z) (6.38)

@ Sogiven I CV'\ Z and X is a base of Z, rj;/(I) = |I| is identical
tor(IUZ)=|I|+r(Z)=|I|+|X|=r(IUX),so TUX
independent in M.

@ A minor of a matroid is any matroid obtained via a series of
deletions and contractions of some matroid.
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Matroid Intersection

e Let My = (V,Zy) and My = (V,Z5) be two matroids. Consider their
common independent sets 77 N Zs.
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Other Matroid Properties
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Matroid Intersection

e Let My = (V,Zy) and My = (V,Z5) be two matroids. Consider their
common independent sets 77 N Zs.

e While (V,Z; NZy) is typically not a matroid (Exercise: show
graphical example.), we might be interested in finding the maximum
size common independent set. That is, find max | X| such that both
X €71y and X € Is.
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Matroid Intersection

e Let My = (V,Zy) and My = (V,Z5) be two matroids. Consider their
common independent sets 77 N Zs.

e While (V,Z; NZy) is typically not a matroid (Exercise: show
graphical example.), we might be interested in finding the maximum
size common independent set. That is, find max | X| such that both
X €71y and X € Is.

Theorem 6.9.1

Let My and My be given as above, with rank functions 1 and ro. Then
the size of the maximum size set in Iy N Iy is given by

(ryx2)(V) £ min <r1 (X) +ra(V \ X)) (6.39)
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Matroid Intersection

e Let My = (V,Zy) and My = (V,Z5) be two matroids. Consider their
common independent sets 77 N Zs.

e While (V,Z; NZy) is typically not a matroid (Exercise: show
graphical example.), we might be interested in finding the maximum
size common independent set. That is, find max | X| such that both
X €71y and X € Is.

Theorem 6.9.1
Let My and My be given as above, with rank functions 1 and ro. Then
the size of the maximum size set in Iy N Iy is given by

(ryx2)(V) £ min <r1 (X) +ra(V \ X)) (6.39)

This is an instance of the convolution of two submodular functions,
f1 and f5 that, evaluated at Y C V/, is written as:

(s )) = min (A(X) + LY\ X)) (6.40)
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Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V', we
have |T'(X)| > | X|.
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Other Matroid Properties
(RN NRRRRRRRANY

Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V', we
have |I'(X)| > |X|.
o & [I'(X)|—I|X|>0,VX
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Other Matroid Properties
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Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V', we
have |I'(X)| > |X|.

o & |I'X)|—|X|>0,VX

e & miny|['(X)|—|X|>0
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Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V', we
have |I'(X)| > |X|.

o & |I'X)|—|X|>0,VX

e & miny|['(X)|—|X|>0

o & miny |['(X)|+|V|—|X|>|V|
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Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V', we
have |I'(X)| > |X|.

< I'(X)| - |X|>0,VX

miny [I'(X)| - |X| >0

min [D(X)] + [V] = [X] > V]

min [DCO|+ [V \ X| = V]

T ¢
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Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V', we
have |I'(X)| > |X|.

IT(X)|—|X|>0,VX

miny [T'(X)|— X[ >0

miny [[(X)| + [V] - |X]| > [V]

miny [[(X)[+ [V \ X| > [V]

L) |- [1(V) = [V]

3

S R
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Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V', we
have |I'(X)| > |X|.

° IT(X)|—|X|>0,VX

e & miny|['(X)|—|X|>0

o & miny [P(X)|+ V|- |X| > V]

o & miny [N(X)|+[V\ X| > V]

o

@ So

3

[CC) [ -[1(V) = V]

Hall's theorem can be expressed as convolution.
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Other Matroid Properties
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Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V', we
have |I'(X)| > |X|.

< I'(X)| - |X|>0,VX

miny [T'(X)|— X[ >0

miny [[(X)| + [V] - |X]| > [V]

miny [[(X)[+ [V \ X| > [V]

L) |- [1(V) = [V]

So Hall's theorem can be expressed as convolution.

SR R

Note, in general, convolution of two submodular functions does not
preserve submodularity (but in certain special cases it does).
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Matroid Union

Definition 6.9.2

Let M7 = (Vl,Il), My = (VQ,IQ), o, M = (Vk,Ik) be matroids. We
define the union of matroids as

M{N My V ---NV M, = (V1&JVQLﬂ---LﬂVk,Il\/IQ\/-”\/Ik), where

Il\/ZQ\/-"\/Ik:{IlU'JIQLﬂ'”LﬂIk‘Il el,... Iy, EIk} (6.41)

Note A W B designates the disjoint union of A and B.
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Matroid Union

Definition 6.9.2

Let M7 = (Vl,Il), My = (VQ,IQ), o, M = (Vk,Zk) be matroids. We
define the union of matroids as
M{N My V ---NV M, = (V1&JVQ&J---LﬂVk,Il\/IQ\/-”\/Ik), where

Il\/IQ\/-”\/Ik:{IlH'JIQHﬂ”-H'JIk‘Il 611,...,Ik€Ik} (6.41)

Note A W B designates the disjoint union of A and B.

Theorem 6.9.3
Let My = (V1,1h), My = (Va,Z3), ..., My = (Vi,Zy) be matroids, with
rank functions r1,...,r,. Then the union of these matroids is still a
matroid, having rank function

r(Y) (V\XI+r(X W)+ +n(X W) (6.42)

= min
XCY

foranyY CViU... V.
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Exercise: Matroid Union, and Matroid duality

Exercise: Describe M \V M™.
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Matroids of three or fewer elements are graphic

@ All matroids up to and including three elements are graphic.
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Matroids of three or fewer elements are graphic

@ All matroids up to and including three elements are graphic.

S
9J . O—

—— ——e e
*r——
—_ —e»
— N\
(a) The only (b) The two (c) The four (d) The eight
matroid with zero one-element two-element three-element
elements. matroids. matroids. matroids.
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Matroids of three or fewer elements are graphic

@ All matroids up to and including three elements are graphic.

—— ——e e
*r——
—_ —e»
— N\
(a) The only (b) The two (c) The four (d) The eight
matroid with zero one-element two-element three-element
elements. matroids. matroids. matroids.

@ Nice way to show low element size matroids. What about matroids
that are low rank but with many elements?

Prof. Jeff Bilmes
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Affine Matroids

@ Given an n x m matrix with entries over some field [F, we say that a
subset S C {1,...,m} of indices (with corresponding column
vectors {v; : 1 € S}, with |S| = k is affinely dependent if m > 1 and
there exists elements {ay,...,axr} € F, not all zero, such that
Zle a;v; = 0 and ZLI a; = 0, and otherwise affinely independent.
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Affine Matroids

@ Given an n x m matrix with entries over some field IF, we say that a
subset S C {1,...,m} of indices (with corresponding column
vectors {v; : 1 € S}, with |S| = k is affinely dependent if m > 1 and
there exists elements {ay,...,ax} € F, not all zero, such that
Ele a;v; =0 and Ele a; = 0, and otherwise affinely independent.

e Concisely: points {v1,vg,..., v} are affinely independent if
V9 — VU1, V3 — V1, ...,V — v are linearly independent.
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Affine Matroids

@ Given an n x m matrix with entries over some field IF, we say that a
subset S C {1,...,m} of indices (with corresponding column
vectors {v; : 1 € S}, with |S| = k is affinely dependent if m > 1 and
there exists elements {ay,...,ax} € F, not all zero, such that
Ele a;v; =0 and Ele a; = 0, and otherwise affinely independent.

e Concisely: points {v1,vg,..., v} are affinely independent if
vy — v1,V3 — V1,...,U, — v1 are linearly independent.

Proposition 6.9.4 (affine matroid)

Let ground set E = {1,...,m} index column vectors of a matrix, and let
T be the set of subsets X of E such that X indices affinely independent
vectors. Then (E,T) is a matroid.

Exercise: L]
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Euclidean Representation of Low-rank Matroids

@ Consider the affine matroid with n x m = 2 x 6 matrix on the field
F = R, and let the elements be

{(0,0),(1,0),(2,0),(0,1),(0,2), (1, 1)}.
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Other Matroid Properties
Lrrrrrrrmrrernd

Euclidean Representation of Low-rank Matroids

@ Consider the affine matroid with n x m = 2 x 6 matrix on the field
F = R, and let the elements be
{(0,0), (1,0),(2,0),(0,1),(0,2), (1,1)}.
y
(2,0)
@ Hence, we can plot the points
in R2 as follows:

@
(0,0 (0,1) (0,2)
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Other Matroid Properties
Lrrrrrrrmrrernd

Euclidean Representation of Low-rank Matroids

@ Consider the affine matroid with n x m = 2 x 6 matrix on the field
F = R, and let the elements be
{(0,0), (1,0),(2,0),(0,1),(0,2), (1,1)}.

y
(2,0)
@ Hence, we can plot the points
in R? as follows:
) 1,0) a2
@ Dependent sets consist of all
subsets with > 4 elements, or 3
collinear elements. °
0,0) ©,1) 02 X
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Other Matroid Properties
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Euclidean Representation of Low-rank Matroids

@ Consider the affine matroid with n x m = 2 x 6 matrix on the field
F = R, and let the elements be
{(0,0), (1,0),(2,0),(0,1),(0,2), (1,1)}.

y
(2,0)
@ Hence, we can plot the points
in R? as follows:
. (1,0 (1,1)
@ Dependent sets consist of all
subsets with > 4 elements, or 3
collinear elements. °
0,0) ©,1) 02 X

@ In general, for a matroid M of rank m + 1 with m < 3, then a
subset X in a geometric representation in R™ is dependent if: 1)
|X| > 2 and the points are identical; 2) |X| > 3 and the points are
collinear; 3) | X| > 4 and the points are coplanar; or 4) |X| > 5 and
the points are in space.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014 F54/60 (pg.199/230



Other Matroid Properties
trrrrrrrrerernd

Euclidean Representation of Low-rank Matroids

Theorem 6.9.5

Any matroid of rank m < 4 can be represented by an affine matroid in
Rm-L
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Euclidean Representation of Low-rank Matroids

Theorem 6.9.5

Any matroid of rank m < 4 can be represented by an affine matroid in
Rm-L

00,1) éo'”)
As another example
® on the right, a rank 4 01,0
e ”,
(1,0,0)
E F a0
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Euclidean Representation of Low-rank Matroids

Theorem 6.9.5

Any matroid of rank m < 4 can be represented by an affine matroid in
Rm-L

001) g2 éo'”)
As another example
@ on the right, a rank 4 0,1,0)
e ”,
(1,0,0)
E F 1,10

@ All sets of 5 points are dependent. The only other sets of dependent
points are coplanar ones of size 4. Namely:
{(0,0,0),(0,1,0),(1,1,0),(1,0,0)},
{(0,0,0),(0,0,1),(0,1,1),(0,1,0)}, and
{(0,0,1),(0,1,1),(1,1,0),(1,0,0)}.
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Euclidean Representation of Low-rank Matroids: A test

@ Loops represented by a separate box indicating how many loops
there are. Parallel elements indicated by a multiplicity next to a
point.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014 F56/60 (pg.203/230



Other Matroid Properties
trrrrrrrrrrernd

Euclidean Representation of Low-rank Matroids

@ Very useful for graphically depicting low-rank matrices but which
still have rich structure. Also useful for answering questions.
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Euclidean Representation of Low-rank Matroids

@ Very useful for graphically depicting low-rank matrices but which
still have rich structure. Also useful for answering questions.

@ Example: Is there a matroid that is not representable (i.e., not linear
for some field)?
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Other Matroid Properties
trrrrrrrrrrernd

Euclidean Representation of Low-rank Matroids

@ Very useful for graphically depicting low-rank matrices but which
still have rich structure. Also useful for answering questions.

e Example: Is there a matroid that is not representable (i.e., not linear
for some field)? Yes, consider the matroid
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Euclidean Representation of Low-rank Matroids

@ Very useful for graphically depicting low-rank matrices but which
still have rich structure. Also useful for answering questions.

e Example: Is there a matroid that is not representable (i.e., not linear
for some field)? Yes, consider the matroid

o Called the non-Pappus matroid. Has rank three, but any matric
matroid with the above dependencies would require that {7,8,9} is
dependent, hence requiring an additional line in the above.
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Euclidean Representation of Low-rank Matroids: A test

@ Is this a matroid?
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Euclidean Representation of Low-rank Matroids: A test

@ Is this a matroid?

@ Check rank’s submodularity: Let X ={1,2,3,6,7},
Y ={1,4,5,6,7}. So r(X) =
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Euclidean Representation of Low-rank Matroids: A test

@ Is this a matroid?

@ Check rank’s submodularity: Let X ={1,2,3,6,7},
Y ={1,4,5,6,7}. Sor(X)=3
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Other Matroid Properties

Euclidean Representation of Low-rank Matroids: A test

@ Is this a matroid?

@ Check rank’s submodularity: Let X ={1,2,3,6,7},
Y ={1,4,5,6,7}. Sor(X) =3, and r(Y) =
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Other Matroid Properties

Euclidean Representation of Low-rank Matroids: A test

@ Is this a matroid?

@ Check rank’s submodularity: Let X ={1,2,3,6,7},
Y ={1,4,5,6,7}. Sor(X)=3,and r(Y) =3
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Euclidean Representation of Low-rank Matroids: A test

@ Is this a matroid?

@ Check rank’s submodularity: Let X ={1,2,3,6,7},
Y ={1,4,5,6,7}. Sor(X)=3,and r(Y) =3, and r(X UY) =
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Euclidean Representation of Low-rank Matroids: A test

@ Is this a matroid?

@ Check rank’s submodularity: Let X ={1,2,3,6,7},
Y ={1,4,5,6,7}. Sor(X)=3,and r(Y) =3, and r(XUY) =4
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Euclidean Representation of Low-rank Matroids: A test

@ Is this a matroid?

@ Check rank’s submodularity: Let X ={1,2,3,6,7},
Y ={1,4,5,6,7}. Sor(X)=3,and r(Y) =3, and r(X UY) =4,
so we must have, by submodularity, that
r({1,6,7}) =r(XNY)<r(X)+rY)-r(XUY)=2.
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Euclidean Representation of Low-rank Matroids: A test

@ Is this a matroid?

@ Check rank’s submodularity: Let X ={1,2,3,6,7},
Y ={1,4,5,6,7}. Sor(X)=3,and r(Y) =3, and r(X UY) =4,
so we must have, by submodularity, that
r({1,6,7}) =r(XNY)<r(X)+rY)-r(XUY)=2.

@ However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that 7(X NY) =
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Euclidean Representation of Low-rank Matroids: A test

@ Is this a matroid?

@ Check rank’s submodularity: Let X ={1,2,3,6,7},
Y ={1,4,5,6,7}. Sor(X)=3,and r(Y) =3, and r(X UY) =4,
so we must have, by submodularity, that
r({1,6,7}) =r(XNY)<r(X)+rY)-r(XUY)=2.

@ However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that (X NY) =3
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Euclidean Representation of Low-rank Matroids: A test

@ Is this a matroid?

@ Check rank’s submodularity: Let X ={1,2,3,6,7},
Y ={1,4,5,6,7}. Sor(X)=3,and r(Y) =3, and r(X UY) =4,
so we must have, by submodularity, that
r({1,6,7}) =r(XNY)<r(X)+rY)-r(XUY)=2.

@ However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that (X NY) =3
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Euclidean Representation of Low-rank Matroids: A test

o If we extend the line from 6-7 to 1, then is it a matroid?

@ Hence, not all 2D or 3D graphs of points and lines are matroids.
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Euclidean Representation of Low-rank Matroids: Other

Examples

@ Other examples can be more complex, consider the following two
matroids (from Oxley, 2011):
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Euclidean Representation of Low-rank Matroids: Other

Examples

@ Other examples can be more complex, consider the following two
matroids (from Oxley, 2011):

@ Hence, lines (in 2D) may be curved and planes (in 3D) can be
twisted.
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Euclidean Rep of Low-rank Matroids: Conditions
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Euclidean Rep of Low-rank Matroids: Conditions

planes).
@ a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).
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Euclidean Rep. of Low-rank Matroids: Conditions
@ rank-

planes).

@ a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).

@ every line contains at least two points (not dependent unless > 2).

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014 F60/60 (pg.224/230



Other Matroid Properties
IRNRRRRRRNRRAY |

Euclidean Rep. of Low-rank Matroids: Conditions
@ rank-

planes).
@ a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).
@ every line contains at least two points (not dependent unless > 2).
@ any two distinct points lie on a line (often not drawn when only two)
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@ a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).
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@ a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).
@ every line contains at least two points (not dependent unless > 2).
@ any two distinct points lie on a line (often not drawn when only two)
@ every plane contains at least three non-collinear points (not
dependent unless > 3)
@ any three distinct non-collinear points lie on a plane
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Other Matroid Properties
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Euclidean Rep. of Low-rank Matroids: Conditions

planes).

@ a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).

@ every line contains at least two points (not dependent unless > 2).

@ any two distinct points lie on a line (often not drawn when only two)

@ every plane contains at least three non-collinear points (not
dependent unless > 3)

@ any three distinct non-collinear points lie on a plane

@ If diagram has at most one plane, then any two distinct lines meet
in at most one point.
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Other Matroid Properties
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Euclidean Rep of Low-rank Matroids: Conditions

planes).

@ a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).

@ every line contains at least two points (not dependent unless > 2).

@ any two distinct points lie on a line (often not drawn when only two)

@ every plane contains at least three non-collinear points (not
dependent unless > 3)

@ any three distinct non-collinear points lie on a plane

@ If diagram has at most one plane, then any two distinct lines meet
in at most one point.

e If diagram has more than one plane, then: 1) any two distinct
planes meeting in more than two points do so in a line; 2) any two
distinct lines meeting in a point do so in at most one point and lie in
on a common plane; 3) any line not lying on a plane intersects it in
at most one point.
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Euclidean Rep. of Low-rank Matroids: Conditions

planes).

@ a set of parallel points (could be size 1) does not touch another set
of parallel points (could be size 1).

@ every line contains at least two points (not dependent unless > 2).

@ any two distinct points lie on a line (often not drawn when only two)

@ every plane contains at least three non-collinear points (not
dependent unless > 3)

@ any three distinct non-collinear points lie on a plane

@ If diagram has at most one plane, then any two distinct lines meet
in at most one point.

e If diagram has more than one plane, then: 1) any two distinct
planes meeting in more than two points do so in a line; 2) any two
distinct lines meeting in a point do so in at most one point and lie in
on a common plane; 3) any line not lying on a plane intersects it in
at most one point.

@ Matroid of rank at most four (see Oxley 2011 for more details).
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