Submodular Functions, Optimization, and Applications to Machine Learning

- Spring Quarter, Lecture 6 http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

April 16th, 2014

$$
f(A)+f(B) \geq f(A \cup B)+f(A \cap B)
$$

$=r(A)+2(C)+r(B)=r(A)+,f(C)+r(B) \quad=r(A \cap B)$

Cumulative Outstanding Reading

- Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige's book.

Announcements, Assignments, and Reminders

- Homework 1 is out, due Wednesday April 23rd, 11:45pm, electronically via our assignment dropbox (https://canvas.uw.edu/courses/895956/assignments).
- All homeworks must be done electronically, only PDF file format accepted.
- Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, \& Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L11:
- L12:
- L13:
- L14:
- L15:
- L16:
- L17:
- L18:
- L19:
- L20:
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation, Dual Matroid
- L7:
- L8:
- L9:
- L10:

Finals Week: June 9th-13th, 2014.

Matroid

Slight modification (non unit increment) that is equivalent.

Definition 6.2.1 (Matroid-II)

A set system (E, \mathcal{I}) is a Matroid if
(II') $\emptyset \in \mathcal{I}$
(I2') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (or "down-closed")
(I3') $\forall I, J \in \mathcal{I}$, with $|I|>|J|$, then there exists $x \in I \backslash J$ such that $J \cup\{x\} \in \mathcal{I}$

Note $(I 1)=\left(I 1^{\prime}\right),(I 2)=\left(I 2^{\prime}\right)$, and we get $(I 3) \equiv\left(I 3^{\prime}\right)$ using induction.

Matroids - important property

Proposition 6.2.1

In a matroid $M=(E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 6.2.2 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if
(I1') $\emptyset \in \mathcal{I}$ (emptyset containing)
(I2') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (down-closed or subclusive)
(I3') $\forall X \subseteq V$, and $I_{1}, I_{2} \in \max \operatorname{Ind}(X)$, we have $\left|I_{1}\right|=\left|I_{2}\right|$ (all maximally independent subsets of X have the same size).

Matroids - rank

- Thus, in any matroid $M=(E, \mathcal{I}), \forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_{M}(U)$ or just $r(U)$ when the matroid in equation is unambiguous.
- $r(E)=r_{(E, \mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 6.2.1 (matroid rank function)

The rank of a matroid is a function $r: 2^{E} \rightarrow \mathbb{Z}_{+}$defined by

$$
\begin{equation*}
r(A)=\max \{|X|: X \subseteq A, X \in \mathcal{I}\}=\max _{X \in \mathcal{I}}|A \cap X| \tag{6.1}
\end{equation*}
$$

- From the above, we immediately see that $r(A) \leq|A|$.
- Moreover, if $r(A)=|A|$, then $A \in \mathcal{I}$, meaning A is independent (in this case, A is a self base).

Matroids - rank

Lemma 6.2.1

The rank function $r: 2^{E} \rightarrow \mathbb{Z}_{+}$of a matroid is submodular, that is $r(A)+r(B) \geq r(A \cup B)+r(A \cap B)$

Proof.
(1) Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
(2) Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
(3) Since M is a matroid, we know that $r(A \cap B)=r(X)=|X|$, and $r(A \cup B)=r(Y)=|Y|$. Also, for any $U \in \mathcal{I}, r(A) \geq|A \cap U|$.
(9) Then we have

$$
\begin{align*}
r(A)+r(B) & \geq|Y \cap A|+|Y \cap B| \tag{6.3}\\
& =|Y \cap(A \cap B)|+|Y \cap(A \cup B)| \tag{6.4}\\
& \geq|X|+|Y|=r(A \cap B)+r(A \cup B) \tag{6.5}
\end{align*}
$$

Partition Matroid

- Let V be our ground set.
- Let $V=V_{1} \cup V_{2} \cup \cdots \cup V_{\ell}$ be a partition of V into blocks or disjoint sets (disjoint union). Define a set of subsets of V as

$$
\begin{equation*}
\mathcal{I}=\left\{X \subseteq V:\left|X \cap V_{i}\right| \leq k_{i} \text { for all } i=1, \ldots, \ell\right\} \tag{6.3}
\end{equation*}
$$

where k_{1}, \ldots, k_{ℓ} are fixed parameters, $k_{i} \geq 0$. Then $M=(V, \mathcal{I})$ is a matroid.

- Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell=1, V_{1}=V$, and $k_{1}=k$.
- We'll show that property (I3') in Def ?? holds. If $X, Y \in \mathcal{I}$ with $|Y|>|X|$, then there must be at least one i with $\left|Y \cap V_{i}\right|>\left|X \cap V_{i}\right|$. Therefore, adding one element $e \in V_{i} \cap(Y \backslash X)$ to X won't break independence.

Partition Matroid

- What is the partition matroid's rank function?
- A partition matroids rank function:

$$
\begin{equation*}
r(A)=\sum_{i=1}^{\ell} \min \left(\left|A \cap V_{i}\right|, k_{i}\right) \tag{6.12}
\end{equation*}
$$

which we also immediately see is submodular using properties we spoke about last week. That is:
(1) $\left|A \cap V_{i}\right|$ is submodular (in fact modular) in A
(2) $\min \left(\operatorname{submodular}(A), k_{i}\right)$ is submodular in A since $\left|A \cap V_{i}\right|$ is monotone.
(3) sums of submodular functions are submodular.

- $r(A)$ is also non-negative integral monotone non-decreasing, so it defines a matroid (the partition matroid).

Partition Matroid, rank as matching

- Example where $\ell=5$, $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)=$ (2, 2, 1, 1, 3).
- Recall, $\Gamma: 2^{V} \rightarrow \mathbb{R}$ as the neighbor
 function in a bipartite graph, the neighbors of X is defined as $\Gamma(X)=$ $\{v \in V(G) \backslash X: E(X,\{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.
Here, for $X \subseteq V$, we have $\Gamma(X)=$ $\{i \in I:(v, i) \in E(G)$ and $v \in X\}$.
For such a constructed bipartite graph, the rank function of a partition matroid is $r(X)=\sum_{i=1}^{\ell} \min \left(\left|X \cap V_{i}\right|, k_{i}\right)=$ the maximum matching involving X.

System of Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{i}: i \in I\right)$ where $\emptyset \subset V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.

System of Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{i}: i \in I\right)$ where $\emptyset \subset V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- Here, the sets $V_{i} \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_{i}$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).

System of Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{i}: i \in I\right)$ where $\emptyset \subset V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- Here, the sets $V_{i} \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_{i}$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of representatives of \mathcal{V} if \exists a bijection $\pi: I \rightarrow I$ such that $v_{i} \in V_{\pi(i)}$.

System of Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{i}: i \in I\right)$ where $\emptyset \subset V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- Here, the sets $V_{i} \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_{i}$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of representatives of \mathcal{V} if \exists a bijection $\pi: I \rightarrow I$ such that $v_{i} \in V_{\pi(i)}$.
- v_{i} is the representative of set (or group) $V_{\pi(i)}$, meaning the $i^{\text {th }}$ representative is meant to represent set $V_{\pi(i)}$.

System of Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{i}: i \in I\right)$ where $\emptyset \subset V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- Here, the sets $V_{i} \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_{i}$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of representatives of \mathcal{V} if \exists a bijection $\pi: I \rightarrow I$ such that $v_{i} \in V_{\pi(i)}$.
- v_{i} is the representative of set (or group) $V_{\pi(i)}$, meaning the $i^{\text {th }}$ representative is meant to represent set $V_{\pi(i)}$.
- Example: Consider the house of representatives, $v_{i}=$ "Jim McDermott, while $i=$ "King County, WA-7".

System of Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{i}: i \in I\right)$ where $\emptyset \subset V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- Here, the sets $V_{i} \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_{i}$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of representatives of \mathcal{V} if \exists a bijection $\pi: I \rightarrow I$ such that $v_{i} \in V_{\pi(i)}$.
- v_{i} is the representative of set (or group) $V_{\pi(i)}$, meaning the $i^{\text {th }}$ representative is meant to represent set $V_{\pi(i)}$.
- Example: Consider the house of representatives, $v_{i}=$ "Jim McDermott, while $i=$ "King County, WA-7".
- In a system of representatives, there is no requirement for the representatives to be distinct. I.e., we could have some $v_{1} \in V_{1} \cap V_{2}$, where v_{1} represents both V_{1} and V_{2}.

System of Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{i}: i \in I\right)$ where $\emptyset \subset V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- Here, the sets $V_{i} \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_{i}$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of representatives of \mathcal{V} if \exists a bijection $\pi: I \rightarrow I$ such that $v_{i} \in V_{\pi(i)}$.
- v_{i} is the representative of set (or group) $V_{\pi(i)}$, meaning the $i^{\text {th }}$ representative is meant to represent set $V_{\pi(i)}$.
- Example: Consider the house of representatives, $v_{i}=$ "Jim McDermott, while $i=$ "King County, WA-7".
- In a system of representatives, there is no requirement for the representatives to be distinct. I.e., we could have some $v_{1} \in V_{1} \cap V_{2}$, where v_{1} represents both V_{1} and V_{2}.
- We can view this as a bipartite graph.

System of Representatives

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell=6$ groups, with $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{6}\right)$
$=(\{e, f, h\},\{d, e, g\},\{b, c, e, h\},\{a, b, h\},\{a\},\{a\})$.

System of Representatives

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell=6$ groups, with $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{6}\right)$
$=(\{e, f, h\},\{d, e, g\},\{b, c, e, h\},\{a, b, h\},\{a\},\{a\})$.

- A system of representatives would make sure that there is a representative for each color group. For example,

System of Representatives

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell=6$ groups, with $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{6}\right)$

$$
=(\{e, f, h\},\{d, e, g\},\{b, c, e, h\},\{a, b, h\},\{a\},\{a\}) .
$$

- A system of representatives would make sure that there is a representative for each color group. For example,
- The representatives ($\{a, c, d, f, h\}$) are shown as colors on the left.

System of Representatives

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell=6$ groups, with $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{6}\right)$

$$
=(\{e, f, h\},\{d, e, g\},\{b, c, e, h\},\{a, b, h\},\{a\},\{a\}) .
$$

- A system of representatives would make sure that there is a representative for each color group. For example,
- The representatives ($\{a, c, d, f, h\}$) are shown as colors on the left.
- Here, the set of representatives is not distinct. Why?

System of Representatives

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell=6$ groups, with $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{6}\right)$

$$
=(\{e, f, h\},\{d, e, g\},\{b, c, e, h\},\{a, b, h\},\{a\},\{a\}) .
$$

- A system of representatives would make sure that there is a representative for each color group. For example,
- The representatives ($\{a, c, d, f, h\}$) are shown as colors on the left.
- Here, the set of representatives is not distinct. Why? In fact, due to the red and pink group, a distinct group of representatives is impossible (since there is only one common choice to represent both color groups).

System of Distinct Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{k}: i \in I\right)$ where $V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.

System of Distinct Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{k}: i \in I\right)$ where $V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi: I \leftrightarrow I$ such that $v_{i} \in V_{\pi(i)}$ and $v_{i} \neq v_{j}$ for all $i \neq j$.

System of Distinct Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{k}: i \in I\right)$ where $V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi: I \leftrightarrow I$ such that $v_{i} \in V_{\pi(i)}$ and $v_{i} \neq v_{j}$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Lets re-state (and rename) this as a:

System of Distinct Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{k}: i \in I\right)$ where $V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of distinct epresentatives of \mathcal{V} if \exists a bijection $\pi: I \leftrightarrow I$ such that $v_{i} \in V_{\pi(i)}$ and $v_{i} \neq v_{j}$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Lets re-state (and rename) this as a:

Definition 6.3.1 (transversal)

Given a set system (V, \mathcal{V}) as defined above, a set $T \subseteq V$ is a transversal of \mathcal{V} if there is a bijection $\pi: T \leftrightarrow I$ such that

$$
\begin{equation*}
x \in V_{\pi(x)} \text { for all } x \in T \tag{6.1}
\end{equation*}
$$

System of Distinct Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{k}: i \in I\right)$ where $V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi: I \leftrightarrow I$ such that $v_{i} \in V_{\pi(i)}$ and $v_{i} \neq v_{j}$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Lets re-state (and rename) this as a:

Definition 6.3.1 (transversal)

Given a set system (V, \mathcal{V}) as definectabove, a set $T \subseteq V$ is a transversal of \mathcal{V} if there is a bijection $\pi: T \Psi I$ sudh that

$$
\begin{equation*}
x \in V_{\pi(x)} \text { for all } x \in T \tag{6.1}
\end{equation*}
$$

- Note that due to $\pi: T \leftrightarrow I$ being a bijection, all of I and T are "covered" (so this makes things distinct automatically).

Transversals are Subclusive

- A set $X \subseteq V$ is a partial transversal if X is a transversal of some subfamily $\mathcal{V}^{\prime}=\left(V_{i}: i \in I^{\prime}\right)$ where $I^{\prime} \subseteq I$.

Transversals are Subclusive

- A set $X \subseteq V$ is a partial transversal if X is a transversal of some subfamily $\mathcal{V}^{\prime}=\left(V_{i}: i \in I^{\prime}\right)$ where $I^{\prime} \subseteq I$.
- Therefore, for any transversal T, any subset $T^{\prime} \subseteq T$ is a partial transversal.

Transversals are Subclusive

- A set $X \subseteq V$ is a partial transversal if X is a transversal of some subfamily $\mathcal{V}^{\prime}=\left(V_{i}: i \in I^{\prime}\right)$ where $I^{\prime} \subseteq I$.
- Therefore, for any transversal T, any subset $T^{\prime} \subseteq T$ is a partial transversal.
- Thus, transversals are down closed (subclusive).

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{6.2}
\end{equation*}
$$

so $|V(J)|$ is the set cover function (which we know is submodular).

$$
|V(J)|: \partial^{I} \rightarrow \frac{Z}{7}+
$$

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{6.2}
\end{equation*}
$$

so $|V(J)|$ is the set cover function (which we know is submodular).

- We have

Theorem 6.4.1 (Hall's theorem)

Given a set system (V, \mathcal{V}), the family of subsets $\mathcal{V}=\left(V_{i}: i \in I\right)$ has a transversal $\left(v_{i}: i \in I\right)$ iff for all $J \subseteq I$

$$
\begin{equation*}
|V(J)| \geq|J| \tag{6.3}
\end{equation*}
$$

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{6.2}
\end{equation*}
$$

so $|V(J)|$ is the set cover function (which we know is submodular). - Hall's theorem $(\forall J,|V(J)| \geq|J|)$ as a bipartite graph.

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{6.2}
\end{equation*}
$$

so $|V(J)|$ is the set cover function (which we know is submodular).

- Hall's theorem $(\forall J,|V(J)| \geq|J|)$ as a bipartite graph.

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{6.2}
\end{equation*}
$$

so $|V(J)|$ is the set cover function (which we know is submodular).

- Moreover, we have

Theorem 6.4.2 (Rado's theorem)

If $M=(V, r)$ is a matroid on V with rank function r, then the family of subsets $\left(V_{i}: i \in I\right)$ of V has a transversal $\left(v_{i}: i \in I\right)$ that is independent in M iff for all $J \subseteq I$

$$
\begin{equation*}
r(V(J)) \geq|J| \tag{6.4}
\end{equation*}
$$

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{6.2}
\end{equation*}
$$

so $|V(J)|$ is the set cover function (which we know is submodular).

- Moreover, we have

Theorem 6.4.2 (Rado's theorem)

If $M=(V, r)$ is a matroid on V with rank function r, then the family of subsets $\left(V_{i}: i \in I\right)$ of V has a transversal $\left(v_{i}: i \in I\right)$ that is independent in M iff for all $J \subseteq I$

$$
\begin{equation*}
r(V(J)) \geq|J| \tag{6.4}
\end{equation*}
$$

- Note, a transversal T independent in M means that $r(T)=|T|$.

More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

If $\mathcal{V}=\left(V_{i}: i \in I\right)$ is a finite family of non-empty subsets of V, and $f: 2^{V} \rightarrow \mathbb{Z}_{+}$is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $\left(v_{i}: i \in I\right)$ such that

$$
\begin{equation*}
f\left(\cup_{i \in J}\left\{v_{i}\right\}\right) \geq|J| \text { for all } J \subseteq I \tag{6.5}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
f(V(J)) \geq|J| \text { for all } J \subseteq I \tag{6.6}
\end{equation*}
$$

More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

If $\mathcal{V}=\left(V_{i}: i \in I\right)$ is a finite family of non-empty subsets of V, and $f: 2^{V} \rightarrow \mathbb{Z}_{+}$is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $\left(v_{i}: i \in I\right)$ such that

$$
\begin{equation*}
f\left(\cup_{i \in J}\left\{v_{i}\right\}\right) \geq|J| \text { for all } J \subseteq I \tag{6.5}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
f(V(J)) \geq|J| \text { for all } J \subseteq I \tag{6.6}
\end{equation*}
$$

- Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking $f(S)=|S|$ for $S \subseteq V$. In which case, Eq. 6.5 requires the system of representatives to be distinct.

More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

If $\mathcal{V}=\left(V_{i}: i \in I\right)$ is a finite family of non-empty subsets of V, and $f: 2^{V} \rightarrow \mathbb{Z}_{+}$is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $\left(v_{i}: i \in I\right)$ such that
if and only if

$$
\begin{equation*}
f\left(\cup_{i \in J}\left\{v_{i}\right\}\right) \geq|J| \text { for all } J \subseteq I \tag{6.5}
\end{equation*}
$$

$$
\begin{equation*}
f(V(J)) \neq|J| \text { for all } J \subseteq I \tag{6.6}
\end{equation*}
$$

- Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking $f(S)=|S|$ for $S \subseteq V$.
- We get Theorem 6.4.2 by taking $f(S)=r(S)$ for $S \subseteq V$, the rank function of the matroid. where, Eq. 6.5 insists the system of representatives is independent in M.

Submodular Composition with Set-to-Set functions

- Note the condition in Theorem 6.4.3 is $f(V(J)) \geq|J|$ for all $J \subseteq I$, where $f: 2^{V} \rightarrow \mathbb{Z}_{+}$is non-negative, integral, monotone non-decreasing and submodular, and $V(J)=\cup_{j \in J} V_{j}$ with $V_{i} \subseteq V$.

Submodular Composition with Set-to-Set functions

- Note the condition in Theorem 6.4.3 is $f(V(J)) \geq|J|$ for all $J \subseteq I$, where $f: 2^{V} \rightarrow \mathbb{Z}_{+}$is non-negative, integral, monotone non-decreasing and submodular, and $V(J)=\cup_{j \in J} V_{j}$ with $V_{i} \subseteq V$.
- Define $g: 2^{I} \rightarrow \mathbb{Z}$ with $g(J)=f(V(J))-|J|$, then the condition for the existence of a system of representatives, with quality Equation 6.5, becomes:

$$
\begin{equation*}
\min _{J \subseteq I} g(J) \geq 0 \tag{6.7}
\end{equation*}
$$

Submodular Composition with Set-to-Set functions

- Note the condition in Theorem 6.4.3 is $f(V(J)) \geq|J|$ for all $J \subseteq I$, where $f: 2^{V} \rightarrow \mathbb{Z}_{+}$is non-negative, integral, monotone non-decreasing and submodular, and $V(J)=\cup_{j \in J} V_{j}$ with $V_{i} \subseteq V$.
- Define $g: 2^{I} \rightarrow \mathbb{Z}$ with $g(J)=f(V(J))-|J|$, then the condition for the existence of a system of representatives, with quality Equation 6.5, becomes:

$$
\begin{equation*}
\min _{J \subseteq I} g(J) \geq 0 \tag{6.7}
\end{equation*}
$$

- What kind of function is g ?

Submodular Composition with Set-to-Set functions

- Note the condition in Theorem 6.4.3 is $f(V(J)) \geq|J|$ for all $J \subseteq I$, where $f: 2^{V} \rightarrow \mathbb{Z}_{+}$is non-negative, integral, monotone non-decreasing and submodular, and $V(J)=\cup_{j \in J} V_{j}$ with $V_{i} \subseteq V$.
- Define $g: 2^{I} \rightarrow \mathbb{Z}$ with $g(J)=f(V(J))-|J|$, then the condition for the existence of a system of representatives, with quality Equation 6.5, becomes:

$$
\begin{equation*}
\min _{J \subseteq I} g(J) \geq 0 \tag{6.7}
\end{equation*}
$$

- What kind of function is g ?

Proposition 6.4.4

g as given above is submodular.

Submodular Composition with Set-to-Set functions

- Note the condition in Theorem 6.4.3 is $f(V(J)) \geq|J|$ for all $J \subseteq I$, where $f: 2^{V} \rightarrow \mathbb{Z}_{+}$is non-negative, integral, monotone non-decreasing and submodular, and $V(J)=\cup_{j \in J} V_{j}$ with $V_{i} \subseteq V$.
- Define $g: 2^{I} \rightarrow \mathbb{Z}$ with $g(J)=f(V(J))-|J|$, then the condition for the existence of a system of representatives, with quality Equation 6.5, becomes:

$$
\begin{equation*}
\min _{J \subseteq I} g(J) \geq 0 \tag{6.7}
\end{equation*}
$$

- What kind of function is g ?

Proposition 6.4.4

g as given above is submodular.

- Hence, the condition for existence can be solved by (a special case of) submodular function minimization, or vice verse!

More general conditions for existence of transversals

first part proof of Theorem 6.4.3.

- Suppose \mathcal{V} has a system of representatives $\left(v_{i}: i \in I\right)$ such that Eq. 6.5 is true.

More general conditions for existence of transversals

first part proof of Theorem 6.4.3.

- Suppose \mathcal{V} has a system of representatives $\left(v_{i}: i \in I\right)$ such that Eq. 6.5 is true.
- Then since f is monotone, and since $V(J) \supseteq \cup_{i \in J}\left\{v_{i}\right\}$ when $\left(v_{i}: i \in I\right)$ is a system of representatives, then Eq. 6.6 immediately follows.

More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. $6.6(f(V(J)) \geq|J|, \forall J \subseteq I)$ is true for $\mathcal{V}=\left(V_{i}: i \in I\right)$, and there exists an i such that $\left|V_{i}\right| \geq 2$ (w.lo.g., say $i=1$). Then there exists $\bar{v} \in V_{1}$ such that the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 6.6.

Proof.

- When Eq. 6.6 holds, this means that for any subsets $J_{1}, J_{2} \subseteq I \backslash\{1\}$, we have that, for $J \in\left\{J_{1}, J_{2}\right\}$,

$$
f(V(J \cup\{1\})) \geq|J \cup\{1\}|
$$

and hence

$$
\begin{align*}
& f\left(V_{1} \cup V\left(J_{1}\right)\right) \geq\left|J_{1}\right|+1 \tag{6.9}\\
& f\left(V_{1} \cup V\left(J_{2}\right)\right) \geq\left|J_{2}\right|+1 \tag{6.10}
\end{align*}
$$

More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. $6.6(f(V(J)) \geq|J|, \forall J \subseteq I)$ is true for $\mathcal{V}=\left(V_{i}: i \in I\right)$, and there exists an i such that $\left|V_{i}\right| \geq 2$ (w.l.o.g., say $i=1$). Then there exists $\bar{v} \in V_{1}$ such that the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 6.6.

Proof.

- Suppose, to the contrary, the consequent is false. Then we may take any $\bar{v}_{1}, \bar{v}_{2} \in V_{1}$ as two distinct elements in $V_{1} \ldots$

More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. $6.6(f(V(J)) \geq|J|, \forall J \subseteq I)$ is true for $\mathcal{V}=\left(V_{i}: i \in I\right)$, and there exists an i such that $\left|V_{i}\right| \geq 2$ (w.l.o.g., say $i=1$). Then there exists $\bar{v} \in V_{1}$ such that the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 6.6.

Proof.

- Suppose, to the contrary, the consequent is false. Then we may take any $\bar{v}_{1}, \bar{v}_{2} \in V_{1}$ as two distinct elements in $V_{1} \ldots$
- and there must exist subsets J_{1}, J_{2} of $I \backslash\{1\}$ such that
$f\left(x\left|=f\left(\left(V_{1} \backslash\left\{\bar{v}_{1}\right\}\right) \cup V\left(J_{1}\right)\right)<\left|J_{1}\right|+1\right.\right.$,
$f(\psi)=f\left(\left(V_{1} \backslash\left\{\bar{v}_{2}\right\}\right) \cup V\left(J_{2}\right)\right)<\left|J_{2}\right|+1$,
(note that either one or both of J_{1}, J_{2} could be empty).

More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. $6.6(f(V(J)) \geq|J|, \forall J \subseteq I)$ is true for $\mathcal{V}=\left(V_{i}: i \in I\right)$, and there exists an i such that $\left|V_{i}\right| \geq 2$ (w.lo.g., say $i=1$). Then there exists $\bar{v} \in V_{1}$ such that the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 6.6.

Proof.

- Taking $X=\left(V_{1} \backslash\left\{\bar{v}_{1}\right\}\right) \cup V\left(J_{1}\right)$ and $Y=\left(V_{1} \backslash\left\{\bar{v}_{2}\right\}\right) \cup V\left(J_{2}\right)$, we have $f(X) \leq\left|J_{1}\right|, f(Y) \leq\left|J_{2}\right|$, and that:

$$
\begin{array}{r}
X \cup Y=V_{1} \cup V\left(J_{1} \cup J_{2}\right), \\
(6.13) \\
X \cap Y \supseteq V\left(J_{1} \cap J_{2}\right), \\
\left.\left|J_{1}\right|+\mid 6.14\right) \\
\text { and } J_{r} \mid \geq f(x)+f(y) \geqslant f(x \cup Y)+f(X \cap Y) .
\end{array}
$$

More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. $6.6(f(V(J)) \geq|J|, \forall J \subseteq I)$ is true for $\mathcal{V}=\left(V_{i}: i \in I\right)$, and there exists an i such that $\left|V_{i}\right| \geq 2$ (w.l.o.g., say $i=1$). Then there exists $\bar{v} \in V_{1}$ such that the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 6.6.

Proof.

- since f submodular monotone non-decreasing, \& Eqs 6.13-6.15,

$$
\begin{equation*}
\left|J_{1}\right|+\left|J_{2}\right| \geq f\left(V_{1} \cup V\left(J_{1} \cup J_{2}\right)\right)+f\left(V\left(J_{1} \cap J_{2}\right)\right) \tag{6.16}
\end{equation*}
$$

More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. $6.6(f(V(J)) \geq|J|, \forall J \subseteq I)$ is true for $\mathcal{V}=\left(V_{i}: i \in I\right)$, and there exists an i such that $\left|V_{i}\right| \geq 2$ (w.lo.g., say $i=1$). Then there exists $\bar{v} \in V_{1}$ such that the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 6.6.

Proof.

- since f submodular monotone non-decreasing, \& Eqs 6.13-6.15,

$$
\begin{equation*}
\left|J_{1}\right|+\left|J_{2}\right| \geq f\left(V_{1} \cup V\left(J_{1} \cup J_{2}\right)\right)+f\left(V\left(J_{1} \cap J_{2}\right)\right) \tag{6.16}
\end{equation*}
$$

- Since \mathcal{V} satisfies Eq. 6.6, $1 \notin J_{1} \cup J_{2}$, \& Eqs 6.9-6.10, this gives

$$
\begin{equation*}
\left|J_{1}\right|+\left|J_{2}\right| \geq\left|J_{1} \cup J_{2}\right|+1+\left|J_{1} \cap J_{2}\right| \tag{6.17}
\end{equation*}
$$

which is a contradiction since cardinality is modular.

More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

If $\mathcal{V}=\left(V_{i}: i \in I\right)$ is a finite family of non-empty subsets of V, and $f: 2^{V} \rightarrow \mathbb{Z}_{+}$is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $\left(v_{i}: i \in I\right)$ such that

$$
\begin{equation*}
f\left(U_{i \in J}\left\{v_{i}\right\}\right) \geq|J| \text { for all } J \subseteq I \tag{6.5}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
f(V(J)) \geq|J| \text { for all } J \subseteq I \tag{6.6}
\end{equation*}
$$

- Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking $f(S)=|S|$ for $S \subseteq V$.
- We get Theorem 6.4.2 by taking $f(S)=r(S)$ for $S \subseteq V$, the rank function of the matroid.

More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

- Conversely, suppose Eq. 6.6 is true.

More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

- Conversely, suppose Eq. 6.6 is true.
- If each V_{i} is a singleton set, then the result follows immediately.

More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

- Conversely, suppose Eq. 6.6 is true.
- If each V_{i} is a singleton set, then the result follows immediately.
- W.I.o.g., let $\left|V_{1}\right| \geq 2$, then by Lemma 6.4.5, the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 6.6 for the right \bar{v}.

More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

- Conversely, suppose Eq. 6.6 is true.
- If each V_{i} is a singleton set, then the result follows immediately.
- W.I.o.g., let $\left|V_{1}\right| \geq 2$, then by Lemma 6.4.5, the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 6.6 for the right \bar{v}.
- We can continue to reduce the family, deleting elements from V_{i} for some i while $\left|V_{i}\right| \geq 2$, until we arrive at a family of singleton sets.

More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

- Conversely, suppose Eq. 6.6 is true.
- If each V_{i} is a singleton set, then the result follows immediately.
- W.I.o.g., let $\left|V_{1}\right| \geq 2$, then by Lemma 6.4.5, the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 6.6 for the right \bar{v}.
- We can continue to reduce the family, deleting elements from V_{i} for some i while $\left|V_{i}\right| \geq 2$, until we arrive at a family of singleton sets.
- This family will be the required system of representatives.

More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

- Conversely, suppose Eq. 6.6 is true.
- If each V_{i} is a singleton set, then the result follows immediately.
- W.I.o.g., let $\left|V_{1}\right| \geq 2$, then by Lemma 6.4.5, the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 6.6 for the right \bar{v}.
- We can continue to reduce the family, deleting elements from V_{i} for some i while $\left|V_{i}\right| \geq 2$, until we arrive at a family of singleton sets.
- This family will be the required system of representatives.

This theorem can be used to produce a variety of other results quite easily, and shows how submodularity is the key ingredient in its truth.

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 6.5.1

If \mathcal{V} is a family of finite subsets of a ground set V, then the collection of partial transversals of \mathcal{V} is the set of independent sets of a matroid $M=(V, \mathcal{V})$ on V.

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 6.5.1

If \mathcal{V} is a family of finite subsets of a ground set V, then the collection of partial transversals of \mathcal{V} is the set of independent sets of a matroid $M=(V, \mathcal{V})$ on V.

- This means that the transversals of \mathcal{V} are the bases of matroid M.

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 6.5.1

If \mathcal{V} is a family of finite subsets of a ground set V, then the collection of partial transversals of \mathcal{V} is the set of independent sets of a matroid $M=(V, \mathcal{V})$ on V.

- This means that the transversals of \mathcal{V} are the bases of matroid M.
- Therefore, all maximal partial transversals of \mathcal{V} have the same cardinality!

Transversals and Bipartite Matchings

- Transversals correspond exactly to matchings in bipartite graphs (as we've already strongly hinted at).

Transversals and Bipartite Matchings

- Transversals correspond exactly to matchings in bipartite graphs (as we've already strongly hinted at).
- Given a set system (V, \mathcal{V}), with $\mathcal{V}=\left(V_{i}: i \in I\right)$, we can define a bipartite graph $G=(V, I, E)$ associated with \mathcal{V} that has edge set $\left\{(v, i): v \in V, i \in I, v \in V_{i}\right\}$.

Transversals and Bipartite Matchings

- Transversals correspond exactly to matchings in bipartite graphs (as we've already strongly hinted at).
- Given a set system (V, \mathcal{V}), with $\mathcal{V}=\left(V_{i}: i \in I\right)$, we can define a bipartite graph $G=(V, I, E)$ associated with \mathcal{V} that has edge set $\left\{(v, i): v \in V, i \in I, v \in V_{i}\right\}$.
- A matching in this graph is a set of edges no two of which that have a common endpoint.

Transversals and Bipartite Matchings

- Transversals correspond exactly to matchings in bipartite graphs (as we've already strongly hinted at).
- Given a set system (V, \mathcal{V}), with $\mathcal{V}=\left(V_{i}: i \in I\right)$, we can define a bipartite graph $G=(V, I, E)$ associated with \mathcal{V} that has edge set $\left\{(v, i): v \in V, i \in I, v \in V_{i}\right\}$.
- A matching in this graph is a set of edges no two of which that have a common endpoint.
- In fact, we easily have

Lemma 6.5.2

A subset $T \subseteq V$ is a partial transversal of \mathcal{V} iff there is a matching in (V, I, E) in which every edge has one endpoint in T.

We say that T is matched into I.

Arbitrary Matchings and Matroids?

- Are arbitrary matchings matroids?

Arbitrary Matchings and Matroids?

- Are arbitrary matchings matroids?
- Consider the following graph (left), and two max-matchings (two right instances)

Arbitrary Matchings and Matroids?

- Are arbitrary matchings matroids?
- Consider the following graph (left), and two max-matchings (two right instances)

- $\{A C\}$ is a maximum matching, as is $\{A D, B C\}$, but they are not the same size.

Partition Matroid, rank as matching

- Example where $\ell=5$, $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)=$ (2, 2, 1, 1, 3).

- Recall, $\Gamma: 2^{V} \rightarrow \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X)=$ $\{v \in V(G) \backslash X: E(X,\{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.
- Here, for $X \subseteq V$, we have $\Gamma(X)=$ $\{i \in I:(v, i) \in E(G)$ and $v \in X\}$.
- For such a constructed bipartite graph, the rank function of a partition matroid is $r(X)=\sum_{i=1}^{\ell} \min \left(\left|X \cap V_{i}\right|, k_{i}\right)=$ the maximum matching involving X.

Morphing Partition Matroid Rank

- Recall the partition matroid rank function. Note, $k_{i}=\left|I_{i}\right|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $\left|V_{i}\right| \geq k_{i}$ (also, recall, $V(J)=\cup_{j \in J} V_{j}$).

Morphing Partition Matroid Rank

- Recall the partition matroid rank function. Note, $k_{i}=\left|I_{i}\right|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $\left|V_{i}\right| \geq k_{i}$ (also, recall, $V(J)=\cup_{j \in J} V_{j}$).
- We start with partition matroid rank function in the subsequent equations.

$$
\begin{equation*}
r(A)=\sum_{i=1}^{\ell} \min \left(\left|A \cap V_{i}\right|, k_{i}\right) \tag{6.18}
\end{equation*}
$$

Morphing Partition Matroid Rank

- Recall the partition matroid rank function. Note, $k_{i}=\left|I_{i}\right|$ in the bipartite graph representation, and since a matroid, w.l.o.g.,

$$
\left.\left|V_{i}\right| \geq k_{i} \text { (also, recall, } V(J)=\cup_{j \in J} V_{j}\right)
$$

- We start with partition matroid rank function in the subsequent equations.

$$
\begin{align*}
r(A) & =\sum_{i=1}^{\ell} \min \left(\left|A \cap V_{i}\right|, k_{i}\right) \tag{6.18}\\
& =\sum_{i=1}^{\ell} \min \left(\left|A \cap V\left(I_{i}\right)\right|,\left|I_{i}\right|\right) \tag{6.19}
\end{align*}
$$

Morphing Partition Matroid Rank

- Recall the partition matroid rank function. Note, $k_{i}=\left|I_{i}\right|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $\left|V_{i}\right| \geq k_{i}$ (also, recall, $V(J)=\cup_{j \in J} V_{j}$).
- We start with partition matroid rank function in the subsequent equations.

$$
\begin{align*}
r(A) & =\sum_{i=1}^{\ell} \min \left(\left|A \cap V_{i}\right|, k_{i}\right) \tag{6.18}\\
& =\sum_{i=1}^{\ell} \min \left(\left|A \cap V\left(I_{i}\right)\right|,\left|I_{i}\right|\right) \tag{6.19}\\
& =\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left\{\begin{array}{cc}
\left|A \cap V\left(I_{i}\right)\right| & \text { if } J_{i} \neq \emptyset \\
0 & \text { if } J_{i}=\emptyset
\end{array}\right\}+\left|I_{i} \backslash J_{i}\right|\right) \tag{6.20}
\end{align*}
$$

Morphing Partition Matroid Rank

- Recall the partition matroid rank function. Note, $k_{i}=\left|I_{i}\right|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $\left|V_{i}\right| \geq k_{i}$ (also, recall, $V(J)=\cup_{j \in J} V_{j}$).
- We start with partition matroid rank function in the subsequent equations.

$$
\begin{align*}
r(A) & =\sum_{i=1}^{\ell} \min \left(\left|A \cap V_{i}\right|, k_{i}\right) \tag{6.18}\\
& =\sum_{i=1}^{\ell} \min \left(\left|A \cap V\left(I_{i}\right)\right|,\left|I_{i}\right|\right) \tag{6.19}\\
& =\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left\{\begin{array}{cc}
\left|A \cap V\left(I_{i}\right)\right| & \text { if } J_{i} \neq \emptyset \\
0 & \text { if } J_{i}=\emptyset
\end{array}\right\}+\left|I_{i} \backslash J_{i}\right|\right) \tag{6.20}\\
\text { 人CISA: } & \tag{6.21}\\
& =\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left|V\left(J_{i}\right) \cap A\right|+\left|I_{i} \backslash J_{i}\right|\right)
\end{align*}
$$

... Morphing Partition Matroid Rank

- Continuing,

$$
\begin{equation*}
r(A)=\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left|V\left(J_{i}\right) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J_{i}\right|+\left|I_{i}\right|\right) \tag{6.22}
\end{equation*}
$$

... Morphing Partition Matroid Rank

- Continuing,

$$
\begin{align*}
r(A) & =\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left|V\left(J_{i}\right) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J_{i}\right|+\left|I_{i}\right|\right) \tag{6.22}\\
& =\min _{J \subseteq I}\left(\sum_{i=1}^{\ell}\left|V(J) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J\right|+\left|I_{i}\right|\right) \tag{6.23}
\end{align*}
$$

... Morphing Partition Matroid Rank

- Continuing,

$$
\begin{align*}
r(A) & =\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left|V\left(J_{i}\right) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J_{i}\right|+\left|I_{i}\right|\right) \tag{6.22}\\
& =\min _{J \subseteq I}\left(\sum_{i=1}^{\ell}\left|V(J) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J\right|+\left|I_{i}\right|\right) \tag{6.23}\\
& =\min _{J \subseteq I}(|V(J) \cap V(I) \cap A|-|J|+|I|) \tag{6.24}
\end{align*}
$$

... Morphing Partition Matroid Rank

- Continuing,

$$
\begin{align*}
r(A) & =\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left|V\left(J_{i}\right) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J_{i}\right|+\left|I_{i}\right|\right) \tag{6.22}\\
& =\min _{J \subseteq I}\left(\sum_{i=1}^{\ell}\left|V(J) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J\right|+\left|I_{i}\right|\right) \tag{6.23}\\
& =\min _{J \subseteq I}(|V(J) \cap V(I) \cap A|-|J|+|I|) \tag{6.24}\\
& =\min _{J \subseteq I}(|V(J) \cap A|-|J|+|I|) \tag{6.25}
\end{align*}
$$

... Morphing Partition Matroid Rank

- Continuing,

$$
\begin{align*}
r(A) & =\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left|V\left(J_{i}\right) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J_{i}\right|+\left|I_{i}\right|\right) \tag{6.22}\\
& =\min _{J \subseteq I}\left(\sum_{i=1}^{\ell}\left|V(J) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J\right|+\left|I_{i}\right|\right) \tag{6.23}\\
& =\min _{J \subseteq I}(|V(J) \cap V(I) \cap A|-|J|+|I|) \tag{6.24}\\
& =\min _{J \subseteq I}(|V(J) \cap A|-|J|+|I|) \tag{6.25}
\end{align*}
$$

- In fact, this bottom (more general) expression is the expression for the rank of a transversal matroid.

Partial Transversals Are Matroids

In fact, we have

> Theorem 6.5.3
> Let (V, \mathcal{V}) where $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{\ell}\right)$ be a subset system. Let $I=\{1, \ldots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V}. Then (V, \mathcal{I}) is a matroid.

Proof.

Partial Transversals Are Matroids

In fact, we have

Theorem 6.5.3

Let (V, \mathcal{V}) where $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{\ell}\right)$ be a subset system. Let
$I=\{1, \ldots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V}. Then (V, \mathcal{I}) is a matroid.

Proof.

- We note that $\emptyset \in \mathcal{I}$ since the empty set is a transversal of the empty subfamily of \mathcal{V}, thus (I1') holds.

Partial Transversals Are Matroids

In fact, we have

Theorem 6.5.3

Let (V, \mathcal{V}) where $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{\ell}\right)$ be a subset system. Let
$I=\{1, \ldots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V}. Then (V, \mathcal{I}) is a matroid.

Proof.

- We note that $\emptyset \in \mathcal{I}$ since the empty set is a transversal of the empty subfamily of \mathcal{V}, thus (11^{\prime}) holds.
- We already saw that if T is a partial transversal of \mathcal{V}, and if $T^{\prime} \subseteq T$, then T^{\prime} is also a partial transversal. So (I2') holds.

Partial Transversals Are Matroids

In fact, we have

Theorem 6.5.3

Let (V, \mathcal{V}) where $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{\ell}\right)$ be a subset system. Let
$I=\{1, \ldots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V}. Then (V, \mathcal{I}) is a matroid.

Proof.

- We note that $\emptyset \in \mathcal{I}$ since the empty set is a transversal of the empty subfamily of \mathcal{V}, thus (I1') holds.
- We already saw that if T is a partial transversal of \mathcal{V}, and if $T^{\prime} \subseteq T$, then T^{\prime} is also a partial transversal. So (I2') holds.
- Suppose that T_{1} and T_{2} are partial transversals of \mathcal{V} such that $\left|T_{1}\right|<\left|T_{2}\right|$. Exercise: show that (I3') holds.

Transversal Matroid Rank

- Transversal matroid has rank

$$
\begin{equation*}
r(A)=\min _{J \subseteq I}(|V(J) \cap A|-|J|+|I|) \tag{6.26}
\end{equation*}
$$

- Transversal matroid has rank

$$
\begin{equation*}
r(A)=\min _{J \subseteq I}(|V(J) \cap A|-|J|+|I|) \tag{6.26}
\end{equation*}
$$

- Therefore, this function is submodular.

Transversal Matroid Rank

- Transversal matroid has rank

$$
\begin{equation*}
r(A)=\min _{J \subseteq I}(|V(J) \cap A|-|J|+|I|) \tag{6.26}
\end{equation*}
$$

- Therefore, this function is submodular.
- Note that it is a minimum over a set of modular functions. Is this true in general? Exercise:

Matroid loops

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if $r(A)<|A|$ and for any $a \in A, r(A \backslash\{a\})=|A|-1)$.

Matroid loops

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if $r(A)<|A|$ and for any $a \in A, r(A \backslash\{a\})=|A|-1)$.
- There is no reason in a matroid such an A could not consist of a single element.

Matroid loops

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if $r(A)<|A|$ and for any $a \in A, r(A \backslash\{a\})=|A|-1)$.
- There is no reason in a matroid such an A could not consist of a single element.
- Such an $\{a\}$ is called a loop.

Matroid loops

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if $r(A)<|A|$ and for any $a \in A, r(A \backslash\{a\})=|A|-1)$.
- There is no reason in a matroid such an A could not consist of a single element.
- Such an $\{a\}$ is called a loop.
- In a matric (i.e., linear) matroid, the only such loop is the value $\mathbf{0}$, as all non-zero vectors have rank 1 . The $\mathbf{0}$ can appear >1 time with different indices, as can a self loop in a graph appear on different nodes.

Matroid loops

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if $r(A)<|A|$ and for any $a \in A, r(A \backslash\{a\})=|A|-1)$.
- There is no reason in a matroid such an A could not consist of a single element.
- Such an $\{a\}$ is called a loop.
- In a matric (i.e., linear) matroid, the only such loop is the value $\mathbf{0}$, as all non-zero vectors have rank 1 . The $\mathbf{0}$ can appear >1 time with different indices, as can a self loop in a graph appear on different nodes.
- Note, we also say that two elements s, t are said to be parallel if $\{s, t\}$ is a circuit.

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M_{1} and M_{2} respectively on ground sets V_{1} and V_{2} are isomorphic if there is a bijection $\pi: V_{1} \rightarrow V_{2}$ which preserves independence (equivalently, rank, circuits, and so on).

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M_{1} and M_{2} respectively on ground sets V_{1} and V_{2} are isomorphic if there is a bijection $\pi: V_{1} \rightarrow V_{2}$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R}, \mathbb{Q}, or some finite field \mathbb{F}, such as a Galois field $\mathrm{GF}(p)$ where p is prime (such as $\mathrm{GF}(2)$).
Succinctly: A field is a set with,$+ *$, closure, associativity, commutativity, and additive and multiplictaive identities and inverses.

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M_{1} and M_{2} respectively on ground sets V_{1} and V_{2} are isomorphic if there is a bijection $\pi: V_{1} \rightarrow V_{2}$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R}, \mathbb{Q}, or some finite field \mathbb{F}, such as a Galois field $\mathrm{GF}(p)$ where p is prime (such as $\mathrm{GF}(2)$).
Succinctly: A field is a set with,$+ *$, closure, associativity, commutativity, and additive and multiplictaive identities and inverses.
- We can more generally define matroids on a field.

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M_{1} and M_{2} respectively on ground sets V_{1} and V_{2} are isomorphic if there is a bijection $\pi: V_{1} \rightarrow V_{2}$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R}, \mathbb{Q}, or some finite field \mathbb{F}, such as a Galois field $\mathrm{GF}(p)$ where p is prime (such as $\mathrm{GF}(2)$).
Succinctly: A field is a set with,$+ *$, closure, associativity, commutativity, and additive and multiplictaive identities and inverses.
- We can more generally define matroids on a field.

Definition 6.6.2 (linear matroids on a field)

Let \mathbf{X} be an $n \times m$ matrix and $E=\{1, \ldots, m\}$, where $\mathbf{X}_{i j} \in \mathbb{F}$ for some field, and let \mathcal{I} be the set of subsets of E such that the columns of \mathbf{X} are linearly independent over \mathbb{F}.

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M_{1} and M_{2} respectively on ground sets V_{1} and V_{2} are isomorphic if there is a bijection $\pi: V_{1} \rightarrow V_{2}$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R}, \mathbb{Q}, or some finite field \mathbb{F}, such as a Galois field $\mathrm{GF}(p)$ where p is prime (such as $\mathrm{GF}(2)$).
Succinctly: A field is a set with,$+ *$, closure, associativity, commutativity, and additive and multiplictaive identities and inverses.
- We can more generally define matroids on a field.

Definition 6.6.3 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called representable over \mathbb{F}

Representability of Transversal Matroids

- Piff and Welsh in 1970, and Adkin in 1972 proved an important theorem about representability of transversal matroids.

Representability of Transversal Matroids

- Piff and Welsh in 1970, and Adkin in 1972 proved an important theorem about representability of transversal matroids.
- In particular:

Theorem 6.6.4

Transversal matroids are representable over all finite fields of sufficiently large cardinality, and are representable over any infinite field.

Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 6.6.5

Let $V=\{1,2,3,4,5,6\}$ be a ground set and let $M=(V, \mathcal{I})$ be a set system where \mathcal{I} is all subsets of V of cardinality ≤ 2 except for the pairs $\{1,2\},\{3,4\},\{5,6\}$.

Converse: Representability of Transversal Matroids

The converse is not true, however.
Example 6.6.5
Let $V=\{1,2,3,4,5,6\}$ be a ground set and let $M=(V, \mathcal{I})$ be a set system where \mathcal{I} is all subsets of V of cardinality ≤ 2 except for the pairs $\{1,2\},\{3,4\},\{5,6\}$.

- It can be shown that this is a matroid and is representable.

Converse: Representability of Transversal Matroids

The converse is not true, however.
Example 6.6.5
Let $V=\{1,2,3,4,5,6\}$ be a ground set and let $M=(V, \mathcal{I})$ be a set system where \mathcal{I} is all subsets of V of cardinality ≤ 2 except for the pairs $\{1,2\},\{3,4\},\{5,6\}$.

- It can be shown that this is a matroid and is representable.
- However, this matroid is not isomorphic to any transversal matroid.

Matroids, other definitions using matroid rank $r: 2^{V} \rightarrow \mathbb{Z}_{+}$

Definition 6.7.1 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \backslash A, r(A \cup\{x\})=r(A)+1$.

Definition 6.7.2 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A)=\{b \in E: r(A \cup\{b\})=r(A)\}$.

Therefore, a closed set A has $\operatorname{span}(A)=A$.

Definition 6.7.3 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if $r(A)<|A|$ and for any $a \in A$, $r(A \backslash\{a\})=|A|-1)$.

Spanning Sets

- We have the following definitions:

Spanning Sets

- We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that $r(X)=r(Y)$ is called a spanning set of Y.

Spanning Sets

- We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that $r(X)=r(Y)$ is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, any set $A \subseteq V$ such that $r(A)=r(V)$ is called a spanning set of the matroid.

Spanning Sets

- We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that $r(X)=r(Y)$ is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, any set $A \subseteq V$ such that $r(A)=r(V)$ is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.

Spanning Sets

- We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that $r(X)=r(Y)$ is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, any set $A \subseteq V$ such that $r(A)=r(V)$ is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
- V is always trivially spanning.

Spanning Sets

- We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that $r(X)=r(Y)$ is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, any set $A \subseteq V$ such that $r(A)=r(V)$ is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
- V is always trivially spanning.
- Consider the terminology: "spanning tree in a graph", comes from spanning in a matroid sense.

Dual of a Matroid

- Given a matroid $M=(V, \mathcal{I})$, a dual matroid M^{*} can be defined in a way such that $\left(M^{*}\right)^{*}=M$.

Dual of a Matroid

- Given a matroid $M=(V, \mathcal{I})$, a dual matroid M^{*} can be defined in a way such that $\left(M^{*}\right)^{*}=M$.
- We define a set

$$
\begin{equation*}
\mathcal{I}^{*}=\{I \subseteq V: V \backslash I \text { is a spanning set of } M\} \tag{6.27}
\end{equation*}
$$

Dual of a Matroid

- Given a matroid $M=(V, \mathcal{I})$, a dual matroid M^{*} can be defined in a way such that $\left(M^{*}\right)^{*}=M$.
- We define a set

$$
\begin{equation*}
\mathcal{I}^{*}=\{I \subseteq V: V \backslash I \text { is a spanning set of } M\} \tag{6.27}
\end{equation*}
$$

- Hence, a set I is independent in the dual M^{*} if its complement is spanning in M (residual $V \backslash I$ must contain a base in M).

Dual of a Matroid

- Given a matroid $M=(V, \mathcal{I})$, a dual matroid M^{*} can be defined in a way such that $\left(M^{*}\right)^{*}=M$.
- We define a set

$$
\begin{equation*}
\mathcal{I}^{*}=\{I \subseteq V: V \backslash I \text { is a spanning set of } M\} \tag{6.27}
\end{equation*}
$$

- Hence, a set I is independent in the dual M^{*} if its complement is spanning in M (residual $V \backslash I$ must contain a base in M).
- Recall, in cycle matroid of a graph, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest).

Dual of a Matroid

- Given a matroid $M=(V, \mathcal{I})$, a dual matroid M^{*} can de deffined in a way such that $\left(M^{*}\right)^{*}=M$.
- We define a set

$$
\mathcal{I}^{*}=\{\boldsymbol{A} \subseteq V: V \backslash \boldsymbol{A} \text { is a spanning set of } M\}
$$

- Hence, a set I is independent in the dual M^{*} if its complement is spanning in M (residual $V \backslash I$ must contain a base in M).
- Recall, in cycle matroid of a graph, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest).
- Since the smallest spanning sets are bases, the bases of M (when $V \backslash I$ is as small as possible while still spanning) are complements of the bases of M^{*} (where I is as large as possible).

Dual of a Matroid

Theorem 6.7.3

Let M^{*} be defined as on previous slide. Then M^{*} is a matroid.

Proof.

- Clearly $\emptyset \in I^{*}$, so (I1') holds.

Dual of a Matroid

Theorem 6.7.3

Let M^{*} be defined as on previous slide. Then M^{*} is a matroid.

Proof.

- Clearly $\emptyset \in I^{*}$, so (I1') holds.
- Also, if $I \subseteq J \in \mathcal{I}^{*}$, then clearly also $I \in \mathcal{I}^{*}$ since if $V \backslash J$ is spanning in M, so must $V \backslash I$. Therefore, (I2') holds.

Dual of a Matroid

Theorem 6.7.3

Let M^{*} be defined as on previous slide. Then M^{*} is a matroid.

Proof.

- Consider $I, J \in \mathcal{I}^{*}$ with $|I|<|J|$. We need to show that there is some member $v \in J \backslash I$ such that $I+v$ is a base in M^{*}, which means that $V \backslash(I+v)=(V \backslash I) \backslash v$ is still spanning in M. That is, removing v from $V \backslash I$ doesn't make $(V \backslash I) \backslash v$ not spanning.

Dual of a Matroid

Theorem 6.7.3

Let M^{*} be defined as on previous slide. Then M^{*} is a matroid.

Proof.

- Consider $I, J \in \mathcal{I}^{*}$ with $|I|<|J|$. We need to show that there is some member $v \in J \backslash I$ such that $I+v$ is a base in M^{*}, which means that $V \backslash(I+v)=(V \backslash I) \backslash v$ is still spanning in M. That is, removing v from $V \backslash I$ doesn't make $(V \backslash I) \backslash v$ not spanning.
- Since $V \backslash J$ is spanning in $M, V \backslash J$ contain some base (say $B \subseteq V \backslash J)$ of M. Also, $V \backslash I$ contains a base of M, say $B^{\prime} \subseteq V \backslash I$.

Dual of a Matroid

Theorem 6.7.3

Let M^{*} be defined as on previous slide. Then M^{*} is a matroid.

Proof.

- Consider $I, J \in \mathcal{I}^{*}$ with $|I|<|J|$. We need to show that there is some member $v \in J \backslash I$ such that $I+v$ is a base in M^{*}, which means that $V \backslash(I+v)=(V \backslash I) \backslash v$ is still spanning in M. That is, removing v from $V \backslash I$ doesn't make $(V \backslash I) \backslash v$ not spanning.
- Since $V \backslash J$ is spanning in $M, V \backslash J$ contain some base (say $B \subseteq V \backslash J)$ of M. Also, $V \backslash I$ contains a base of M, say $B^{\prime} \subseteq V \backslash I$.
- Since $B \backslash I \subseteq V \backslash I$, and $B \backslash I$ is independent in M, we can choose the base B^{\prime} of M s.t. $B \backslash I \subseteq B^{\prime} \subseteq V \backslash I$.

Dual of a Matroid

Theorem 6.7.3

Let M^{*} be defined as on previous slide. Then M^{*} is a matroid.

Proof.

- Consider $I, J \in \mathcal{I}^{*}$ with $|I|<|J|$. We need to show that there is some member $v \in J \backslash I$ such that $I+v$ is a base in M^{*}, which means that $V \backslash(I+v)=(V \backslash I) \backslash v$ is still spanning in M. That is, removing v from $V \backslash I$ doesn't make $(V \backslash I) \backslash v$ not spanning.
- Since $V \backslash J$ is spanning in $M, V \backslash J$ contain some base (say $B \subseteq V \backslash J)$ of M. Also, $V \backslash I$ contains a base of M, say $B^{\prime} \subseteq V \backslash I$.
- Since $B \backslash I \subseteq V \backslash I$, and $B \backslash I$ is independent in M, we can choose the base B^{\prime} of M s.t. $B \backslash I \subseteq B^{\prime} \subseteq V \backslash I$.
- Since B and J are disjoint, we have both: 1) $B \backslash I$ and $J \backslash I$ are disjoint; and 2) $B \cap I \subseteq I \backslash J$. Also note, B^{\prime} and I are disjoint.

Dual of a Matroid

Theorem 6.7.3

Let M^{*} be defined as on previous slide. Then M^{*} is a matroid.

Proof.

- Now $J \backslash I \nsubseteq B^{\prime}$, since otherwise (i.e., assuming $J \backslash I \subseteq B^{\prime}$):

$$
\begin{align*}
|B| & =|B \cap I|+|B \backslash I| \tag{6.28}\\
& \leq|I \backslash J|+|B \backslash I| \tag{6.29}\\
& <|J \backslash I|+|B \backslash I| \leq\left|B^{\prime}\right|
\end{align*}
$$

(6.30)
which is a contradiction. The last inequality on the right follows since $J \backslash I \subseteq B^{\prime}$ (by assumption) and $B \backslash I \subseteq B^{\prime}$ implies that $(J \backslash I) \cup(B \backslash I) \subseteq B^{\prime}$, but since J and B are disjoint, we have that $|J \backslash I|+|B \backslash I| \leq B^{\prime}$.

Dual of a Matroid

Theorem 6.7.3

Let M^{*} be defined as on previous slide. Then M^{*} is a matroid.

Proof.

- Now $J \backslash I \nsubseteq B^{\prime}$, since otherwise (i.e., assuming $J \backslash I \subseteq B^{\prime}$):

$$
\begin{align*}
|B| & =|B \cap I|+|B \backslash I| \tag{6.28}\\
& \leq|I \backslash J|+|B \backslash I| \tag{6.29}\\
& <|J \backslash I|+|B \backslash I| \leq\left|B^{\prime}\right| \tag{6.30}
\end{align*}
$$

which is a contradiction.

- Therefore, $J \backslash I \nsubseteq B^{\prime}$, and there is a $v \in J \backslash I$ s.t. $v \notin B^{\prime}$.

Dual of a Matroid

Theorem 6.7.3

Let M^{*} be defined as on previous slide. Then M^{*} is a matroid.

Proof.

- Now $J \backslash I \nsubseteq B^{\prime}$, since otherwise (i.e., assuming $J \backslash I \subseteq B^{\prime}$):

$$
\begin{align*}
|B| & =|B \cap I|+|B \backslash I| \tag{6.28}\\
& \leq|I \backslash J|+|B \backslash I| \tag{6.29}\\
& <|J \backslash I|+|B \backslash I| \leq\left|B^{\prime}\right|
\end{align*}
$$

(6.30)
which is a contradiction.

- Therefore, $J \backslash I \nsubseteq B^{\prime}$, and there is a $v \in J \backslash I$ s.t. $v \notin B^{\prime}$.
- So B^{\prime} is disjoint with $I \cup\{v\}$, meaning $B^{\prime} \subseteq V \backslash(I \cup\{v\})$, or $V \backslash(I \cup\{v\})$ is spanning in M, and therefore $I \cup\{v\} \in \mathcal{I}^{*}$.

Dual Matroid Rank

Theorem 6.7.4

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V) \tag{6.31}
\end{equation*}
$$

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2. I.e., $|X|$ is modular, complement $f(V \backslash X)$ is submodular if f is submodular, $r_{M}(V)$ is a constant, and summing submodular functions and a constant preserves submodularity.

Dual Matroid Rank

Theorem 6.7.4

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V) \tag{6.31}
\end{equation*}
$$

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2 .
- Non-negativity integral follows since
$|X|+r_{M}(V \backslash X) \geq r_{M}(X)+r_{M}(V \backslash X) \geq r_{M}(V)$. The right inequality follows since r_{M} is submodular.

Dual Matroid Rank

Theorem 6.7.4

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V) \tag{6.31}
\end{equation*}
$$

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since $|X|+r_{M}(V \backslash X) \geq r_{M}(X)+r_{M}(V \backslash X) \geq r_{M}(V)$.
- Monotone non-decreasing follows since, as X increases by one, $|X|$ always increases by 1 , while $r_{M}(V \backslash X)$ decreases by one or zero.

Dual Matroid Rank

Theorem 6.7.4

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V) \tag{6.31}
\end{equation*}
$$

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since $|X|+r_{M}(V \backslash X) \geq r_{M}(X)+r_{M}(V \backslash X) \geq r_{M}(V)$.
- Monotone non-decreasing follows since, as X increases by one, $|X|$ always increases by 1 , while $r_{M}(V \backslash X)$ decreases by one or zero.
- Therefore, $r_{M^{*}}$ is the rank function of a matroid. That it is the dual matroid rank function is shown in the next proof.

Dual Matroid Rank

Theorem 6.7.4

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V)
$$

Proof.

A set X is independent in ($V, r_{M^{*}}$) if and only if

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V)=|X| \tag{6.32}
\end{equation*}
$$

Dual Matroid Rank

Theorem 6.7.4

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V) \tag{6.31}
\end{equation*}
$$

Proof.

A set X is independent in ($V, r_{M^{*}}$) if and only if

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V)=|X| \tag{6.32}
\end{equation*}
$$

or

$$
\begin{equation*}
r_{M}(V \backslash X)=r_{M}(V) \tag{6.33}
\end{equation*}
$$

Dual Matroid Rank

Theorem 6.7.4

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V) \tag{6.31}
\end{equation*}
$$

Proof.

A set X is independent in ($V, r_{M^{*}}$) if and only if

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V)=|X| \tag{6.32}
\end{equation*}
$$

or

$$
\begin{equation*}
r_{M}(V \backslash X)=r_{M}(V) \tag{6.33}
\end{equation*}
$$

But a subset X is independent in M^{*} only if $V \backslash X$ is spanning in M (by the definition of the dual matroid).

Example duality: cocycle matroid

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{I \subseteq V: V \backslash I$ is a spanning set of $M\}$

Example duality: cocycle matroid

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{I \subseteq V: V \backslash I$ is a spanning set of $M\}$
- It consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

A graph G

Example duality: cocycle matroid

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{I \subseteq V: V \backslash I$ is a spanning set of $M\}$
- It consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Minimally spanning in M (and thus a base in M)

Minimally spanning in M^{*} (and thus a base in M^{*})

Example duality: cocycle matroid

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{I \subseteq V: V \backslash I$ is a spanning set of $M\}$
- It consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Minimally spanning in M (and thus a base in M)

Minimally spanning in M^{*} (and thus a base in M^{*})

Example duality: cocycle matroid

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{I \subseteq V: V \backslash I$ is a spanning set of $M\}$
- It consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Independent but not spanning in M

Dependent in M^{*} (contains a cocycle, is a nonminimal cut)

Example duality: cocycle matroid

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{I \subseteq V: V \backslash I$ is a spanning set of $M\}$
- It consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Spanning in M, but not a base
Independent in M^{*}

Example duality: cocycle matroid

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{I \subseteq V: V \backslash I$ is a spanning set of $M\}$
- It consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Independent but not spanning in M

Dependent in M^{*} (contains a cocycle, is a nonminimal cut)

Example duality: cocycle matroid

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{I \subseteq V: V \backslash I$ is a spanning set of $M\}$
- It consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Independent but not spanning in M

A cycle in M* (a cocycle, or a minimal cut)

Matroid and the greedy algorithm

- Let \mathcal{I} be a set of subsets of E that is down-closed. Consider a non-negative modular weight function $w: E \rightarrow \mathbb{R}_{+}$, and we want to find the $A \in \mathcal{I}$ that maximizes $w(A)$.
- Consider the greedy algorithm: Set $A=\emptyset$, and repeatedly choose $y \in E \backslash A$ such that: 1) $A \cup\{y\} \in \mathcal{I}$, and 2) $w(y)$ is as large as possible. We stop when no such y exists.

Theorem 6.8.1

Let \mathcal{I} be a non-empty collection of subsets of a set E, down-closed (i.e., an independence system). Then the pair (E, \mathcal{I}) is a matroid if and only if for each weight function $w \in \mathcal{R}_{+}^{E}$, the greedy algorithm leads to a set $I \in \mathcal{I}$ of maximum weight $w(I)$.

Matroids by bases

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 6.8.1 (Matroid (by bases))

Let E be a set and \mathcal{B} be a nonempty collection of subsets of E. Then the following are equivalent.
(1) \mathcal{B} is the collection of bases of a matroid;
(2) if $B, B^{\prime} \in \mathcal{B}$, and $x \in B^{\prime} \backslash B$, then $B^{\prime}-x+y \in \mathcal{B}$ for some $y \in B \backslash B^{\prime}$.
(3) If $B, B^{\prime} \in \mathcal{B}$, and $x \in B^{\prime} \backslash B$, then $B-y+x \in \mathcal{B}$ for some $y \in B \backslash B^{\prime}$.

Properties 2 and 3 are called "exchange properties."
Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

- Assume (E, \mathcal{I}) is a matroid and $w: E \rightarrow \mathcal{R}_{+}$is given.

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

- Assume (E, \mathcal{I}) is a matroid and $w: E \rightarrow \mathcal{R}_{+}$is given.
- Let $A=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ be the solution returned by greedy, where $r=r(M)$ the rank of the matroid, and we order the elements as they were chosen (so $w\left(a_{1}\right) \geq w\left(a_{2}\right) \geq \cdots \geq w\left(a_{r}\right)$).

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

- Assume (E, \mathcal{I}) is a matroid and $w: E \rightarrow \mathcal{R}_{+}$is given.
- Let $A=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ be the solution returned by greedy, where $r=r(M)$ the rank of the matroid, and we order the elements as they were chosen (so $w\left(a_{1}\right) \geq w\left(a_{2}\right) \geq \cdots \geq w\left(a_{r}\right)$).
- A is a base of M, and let $B=\left(b_{1}, \ldots, b_{r}\right)$ be any another base of M with elements also ordered decreasing by weight.

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

- Assume (E, \mathcal{I}) is a matroid and $w: E \rightarrow \mathcal{R}_{+}$is given.
- Let $A=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ be the solution returned by greedy, where $r=r(M)$ the rank of the matroid, and we order the elements as they were chosen (so $w\left(a_{1}\right) \geq w\left(a_{2}\right) \geq \cdots \geq w\left(a_{r}\right)$).
- A is a base of M, and let $B=\left(b_{1}, \ldots, b_{r}\right)$ be any another base of M with elements also ordered decreasing by weight.
- We next show that not only is $w(A) \geq w(B)$ but that $w\left(a_{i}\right) \geq w\left(b_{i}\right)$ for all i.

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w\left(a_{k}\right)<w\left(b_{k}\right)$. Hence $w\left(a_{j}\right) \geq w\left(b_{j}\right)$ for $j<k$.

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w\left(a_{k}\right)<w\left(b_{k}\right)$. Hence $w\left(a_{j}\right) \geq w\left(b_{j}\right)$ for $j<k$.
- Define independent sets $A_{k-1}=\left\{a_{1}, \ldots, a_{k-1}\right\}$ and $B_{k}=\left\{b_{1}, \ldots, b_{k}\right\}$.

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w\left(a_{k}\right)<w\left(b_{k}\right)$. Hence $w\left(a_{j}\right) \geq w\left(b_{j}\right)$ for $j<k$.
- Define independent sets $A_{k-1}=\left\{a_{1}, \ldots, a_{k-1}\right\}$ and $B_{k}=\left\{b_{1}, \ldots, b_{k}\right\}$.
- Since $\left|A_{k-1}\right|<\left|B_{k}\right|, A_{k-1} \cup\left\{b_{i}\right\} \in \mathcal{I}$ for some $1 \leq i \leq k$.

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w\left(a_{k}\right)<w\left(b_{k}\right)$. Hence $w\left(a_{j}\right) \geq w\left(b_{j}\right)$ for $j<k$.
- Define independent sets $A_{k-1}=\left\{a_{1}, \ldots, a_{k-1}\right\}$ and $B_{k}=\left\{b_{1}, \ldots, b_{k}\right\}$.
- Since $\left|A_{k-1}\right|<\left|B_{k}\right|, A_{k-1} \cup\left\{b_{i}\right\} \in \mathcal{I}$ for some $1 \leq i \leq k$.
- But $w\left(b_{i}\right) \geq w\left(b_{k}\right)>w\left(a_{k}\right)$, and so the greedy algorithm would have chosen b_{i} rather than a_{k}, contradicting what greedy does.

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

- Given an independence system (E, \mathcal{I}), suppose the greedy algorithm leads to an independent set of max weight for every such weight function. We'll show (E, \mathcal{I}) is a matroid.

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

- Given an independence system (E, \mathcal{I}), suppose the greedy algorithm leads to an independent set of max weight for every such weight function. We'll show (E, \mathcal{I}) is a matroid.
- Down monotonicity already holds (since we've started with an independence system).

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

- Given an independence system (E, \mathcal{I}), suppose the greedy algorithm leads to an independent set of max weight for every such weight function. We'll show (E, \mathcal{I}) is a matroid.
- Down monotonicity already holds (since we've started with an independence system).
- Let $I, J \in \mathcal{I}$ with $|I|<|J|$. Suppose to the contrary, that $I \cup\{z\} \notin \mathcal{I}$ for all $z \in J \backslash I$.

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

- Given an independence system (E, \mathcal{I}), suppose the greedy algorithm leads to an independent set of max weight for every such weight function. We'll show (E, \mathcal{I}) is a matroid.
- Down monotonicity already holds (since we've started with an independence system).
- Let $I, J \in \mathcal{I}$ with $|I|<|J|$. Suppose to the contrary, that $I \cup\{z\} \notin \mathcal{I}$ for all $z \in J \backslash I$.
- Define the following modular weight function w on V, and define $k=|I|$.

$$
w(v)= \begin{cases}k+2 & \text { if } v \in I, \tag{6.34}\\ k+1 & \text { if } v \in J \backslash I, \\ 0 & \text { if } v \in S \backslash(I \cup J)\end{cases}
$$

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

- Now greedy will clearly, after k iterations recover I, but can not choose any element in $J \backslash I$ by assumption. Thus, greedy chooses a set of weight $k(k+2)$.

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

- Now greedy will clearly, after k iterations recover I, but can not choose any element in $J \backslash I$ by assumption. Thus, greedy chooses a set of weight $k(k+2)$.
- On the other hand, J has weight

$$
\begin{equation*}
w(J) \geq|J|(k+1) \geq(k+1)(k+1)>k(k+2) \tag{6.35}
\end{equation*}
$$

so J has strictly larger weight but is still independent, contradicting greedy's optimality.

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

- Now greedy will clearly, after k iterations recover I, but can not choose any element in $J \backslash I$ by assumption. Thus, greedy chooses a set of weight $k(k+2)$.
- On the other hand, J has weight

$$
\begin{equation*}
w(J) \geq|J|(k+1) \geq(k+1)(k+1)>k(k+2) \tag{6.35}
\end{equation*}
$$

so J has strictly larger weight but is still independent, contradicting greedy's optimality.

- Therefore, (E, \mathcal{I}) must be a matroid.

Matroid and greedy

- As given, the theorem asked for a modular function $w \in \mathbb{R}_{+}^{E}$.

Matroid and greedy

- As given, the theorem asked for a modular function $w \in \mathbb{R}_{+}^{E}$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0 .

Matroid and greedy

- As given, the theorem asked for a modular function $w \in \mathbb{R}_{+}^{E}$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0 .
- If we don't want elements with weight 0 , we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.

Matroid and greedy

- As given, the theorem asked for a modular function $w \in \mathbb{R}_{+}^{E}$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0 .
- If we don't want elements with weight 0 , we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^{E}$ and keep going until we have a base.

Matroid and greedy

- As given, the theorem asked for a modular function $w \in \mathbb{R}_{+}^{E}$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0 .
- If we don't want elements with weight 0 , we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^{E}$ and keep going until we have a base.
- If we stop at a negative value, we'll once again get a maximum weight independent set.

Matroid and greedy

- As given, the theorem asked for a modular function $w \in \mathbb{R}_{+}^{E}$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0 .
- If we don't want elements with weight 0 , we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^{E}$ and keep going until we have a base.
- If we stop at a negative value, we'll once again get a maximum weight independent set.
- We can instead do as small as possible thus giving us a minimum weight independent set/base.

Matroid restriction/deletion

- Let $M=(V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \subseteq Y, Z \in \mathcal{I}\} \tag{6.36}
\end{equation*}
$$

is such that $M_{Y}=\left(Y, \mathcal{I}_{Y}\right)$ is a matroid with rank $r\left(M_{Y}\right)=r(Y)$.

Matroid restriction/deletion

- Let $M=(V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \subseteq Y, Z \in \mathcal{I}\} \tag{6.36}
\end{equation*}
$$

is such that $M_{Y}=\left(Y, \mathcal{I}_{Y}\right)$ is a matroid with rank $r\left(M_{Y}\right)=r(Y)$.

- This is called the restriction of M to Y, and is often written $M \mid Y$.

Matroid restriction/deletion

- Let $M=(V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \subseteq Y, Z \in \mathcal{I}\} \tag{6.36}
\end{equation*}
$$

is such that $M_{Y}=\left(Y, \mathcal{I}_{Y}\right)$ is a matroid with rank $r\left(M_{Y}\right)=r(Y)$.

- This is called the restriction of M to Y, and is often written $M \mid Y$.
- If $Y=V \backslash X$, then we have

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \cap X=\emptyset, Z \in \mathcal{I}\} \tag{6.37}
\end{equation*}
$$

is considered a deletion of X from M, and is often written $M \backslash Z$.

Matroid restriction/deletion

- Let $M=(V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \subseteq Y, Z \in \mathcal{I}\} \tag{6.36}
\end{equation*}
$$

is such that $M_{Y}=\left(Y, \mathcal{I}_{Y}\right)$ is a matroid with rank $r\left(M_{Y}\right)=r(Y)$.

- This is called the restriction of M to Y, and is often written $M \mid Y$.
- If $Y=V \backslash X$, then we have

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \cap X=\emptyset, Z \in \mathcal{I}\} \tag{6.37}
\end{equation*}
$$

is considered a deletion of X from M, and is often written $M \backslash Z$.

- Hence, $M \mid Y=M \backslash(V \backslash Y)$.

Matroid restriction/deletion

- Let $M=(V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \subseteq Y, Z \in \mathcal{I}\} \tag{6.36}
\end{equation*}
$$

is such that $M_{Y}=\left(Y, \mathcal{I}_{Y}\right)$ is a matroid with rank $r\left(M_{Y}\right)=r(Y)$.

- This is called the restriction of M to Y, and is often written $M \mid Y$.
- If $Y=V \backslash X$, then we have

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \cap X=\emptyset, Z \in \mathcal{I}\} \tag{6.37}
\end{equation*}
$$

is considered a deletion of X from M, and is often written $M \backslash Z$.

- Hence, $M \mid Y=M \backslash(V \backslash Y)$.
- The rank function is of the same form. I.e., $r_{Y}: 2^{Y} \rightarrow \mathbb{Z}_{+}$, where $r_{Y}(Z)=r(Z)$ for $Z \subseteq Y$.

Matroid contraction

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M / Z.

Matroid contraction

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M / Z.
- Let $Z \subseteq V$ and let X be a base of Z. Then a subset I of $V \backslash Z$ is independent in M / Z iff $I \cup X$ is independent in M.

Matroid contraction

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M / Z.
- Let $Z \subseteq V$ and let X be a base of Z. Then a subset I of $V \backslash Z$ is independent in M / Z iff $I \cup X$ is independent in M.
- In fact, it is the case $M / Z=\left(M^{*} \backslash Z\right)^{*}$ (Exercise: show why).

Matroid contraction

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M / Z.
- Let $Z \subseteq V$ and let X be a base of Z. Then a subset I of $V \backslash Z$ is independent in M / Z iff $I \cup X$ is independent in M.
- In fact, it is the case $M / Z=\left(M^{*} \backslash Z\right)^{*}$ (Exercise: show why).
- The rank function takes the form

$$
\begin{equation*}
r_{M / Z}(Y)=r(Y \cup Z)-r(Z)=r(Y \mid Z) \tag{6.38}
\end{equation*}
$$

Matroid contraction

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M / Z.
- Let $Z \subseteq V$ and let X be a base of Z. Then a subset I of $V \backslash Z$ is independent in M / Z iff $I \cup X$ is independent in M.
- In fact, it is the case $M / Z=\left(M^{*} \backslash Z\right)^{*}$ (Exercise: show why).
- The rank function takes the form

$$
\begin{equation*}
r_{M / Z}(Y)=r(Y \cup Z)-r(Z)=r(Y \mid Z) \tag{6.38}
\end{equation*}
$$

- So given $I \subseteq V \backslash Z$ and X is a base of $Z, r_{M / Z}(I)=|I|$ is identical to $r(I \cup Z)=|I|+r(Z)=|I|+|X|=r(I \cup X)$, so $I \cup X$ independent in M.

Matroid contraction

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M / Z.
- Let $Z \subseteq V$ and let X be a base of Z. Then a subset I of $V \backslash Z$ is independent in M / Z iff $I \cup X$ is independent in M.
- In fact, it is the case $M / Z=\left(M^{*} \backslash Z\right)^{*}$ (Exercise: show why).
- The rank function takes the form

$$
\begin{equation*}
r_{M / Z}(Y)=r(Y \cup Z)-r(Z)=r(Y \mid Z) \tag{6.38}
\end{equation*}
$$

- So given $I \subseteq V \backslash Z$ and X is a base of $Z, r_{M / Z}(I)=|I|$ is identical to $r(I \cup Z)=|I|+r(Z)=|I|+|X|=r(I \cup X)$, so $I \cup X$ independent in M.
- A minor of a matroid is any matroid obtained via a series of deletions and contractions of some matroid.

Matroid Intersection

- Let $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ be two matroids. Consider their common independent sets $\mathcal{I}_{1} \cap \mathcal{I}_{2}$.

Matroid Intersection

- Let $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ be two matroids. Consider their common independent sets $\mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- While $\left(V, \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_{1}$ and $X \in \mathcal{I}_{2}$.

Matroid Intersection

- Let $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ be two matroids. Consider their common independent sets $\mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- While $\left(V, \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_{1}$ and $X \in \mathcal{I}_{2}$.

Theorem 6.9.1

Let M_{1} and M_{2} be given as above, with rank functions r_{1} and r_{2}. Then the size of the maximum size set in $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ is given by

$$
\begin{equation*}
\left(r_{1} * r_{2}\right)(V) \triangleq \min _{X \subseteq V}\left(r_{1}(X)+r_{2}(V \backslash X)\right) \tag{6.39}
\end{equation*}
$$

Matroid Intersection

- Let $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ be two matroids. Consider their common independent sets $\mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- While $\left(V, \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_{1}$ and $X \in \mathcal{I}_{2}$.

Theorem 6.9.1

Let M_{1} and M_{2} be given as above, with rank functions r_{1} and r_{2}. Then the size of the maximum size set in $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ is given by

$$
\begin{equation*}
\left(r_{1} * r_{2}\right)(V) \triangleq \min _{X \subseteq V}\left(r_{1}(X)+r_{2}(V \backslash X)\right) \tag{6.39}
\end{equation*}
$$

This is an instance of the convolution of two submodular functions, f_{1} and f_{2} that, evaluated at $Y \subseteq V$, is written as:

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(Y)=\min _{X \subseteq Y}\left(f_{1}(X)+f_{2}(Y \backslash X)\right) \tag{6.40}
\end{equation*}
$$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.
- $\Leftrightarrow|\Gamma(X)|-|X| \geq 0, \forall X$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.
- $\Leftrightarrow|\Gamma(X)|-|X| \geq 0, \forall X$
- $\Leftrightarrow \min _{X}|\Gamma(X)|-|X| \geq 0$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.
- $\Leftrightarrow|\Gamma(X)|-|X| \geq 0, \forall X$
- $\Leftrightarrow \min _{X}|\Gamma(X)|-|X| \geq 0$
- $\Leftrightarrow \min _{X}|\Gamma(X)|+|V|-|X| \geq|V|$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.
- $\Leftrightarrow|\Gamma(X)|-|X| \geq 0, \forall X$
- $\Leftrightarrow \min _{X}|\Gamma(X)|-|X| \geq 0$
- $\Leftrightarrow \min _{X}|\Gamma(X)|+|V|-|X| \geq|V|$
- $\Leftrightarrow \min _{X}|\Gamma(X)|+|V \backslash X| \geq|V|$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.
- $\Leftrightarrow|\Gamma(X)|-|X| \geq 0, \forall X$
- $\Leftrightarrow \min _{X}|\Gamma(X)|-|X| \geq 0$
- $\Leftrightarrow \min _{X}|\Gamma(X)|+|V|-|X| \geq|V|$
- $\Leftrightarrow \min _{X}|\Gamma(X)|+|V \backslash X| \geq|V|$
- $\Leftrightarrow \quad[\Gamma(\cdot) *|\cdot|](V) \geq|V|$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.
- $\Leftrightarrow|\Gamma(X)|-|X| \geq 0, \forall X$
- $\Leftrightarrow \min _{X}|\Gamma(X)|-|X| \geq 0$
- $\Leftrightarrow \min _{X}|\Gamma(X)|+|V|-|X| \geq|V|$
- $\Leftrightarrow \min _{X}|\Gamma(X)|+|V \backslash X| \geq|V|$
- $\Leftrightarrow \quad[\Gamma(\cdot) *|\cdot|](V) \geq|V|$
- So Hall's theorem can be expressed as convolution.

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.
- $\Leftrightarrow|\Gamma(X)|-|X| \geq 0, \forall X$
- $\Leftrightarrow \min _{X}|\Gamma(X)|-|X| \geq 0$
- $\Leftrightarrow \min _{X}|\Gamma(X)|+|V|-|X| \geq|V|$
- $\Leftrightarrow \min _{X}|\Gamma(X)|+|V \backslash X| \geq|V|$
- $\Leftrightarrow \quad[\Gamma(\cdot) *|\cdot|](V) \geq|V|$
- So Hall's theorem can be expressed as convolution.
- Note, in general, convolution of two submodular functions does not preserve submodularity (but in certain special cases it does).

Matroid Union

Definition 6.9.2

Let $M_{1}=\left(V_{1}, \mathcal{I}_{1}\right), M_{2}=\left(V_{2}, \mathcal{I}_{2}\right), \ldots, M_{k}=\left(V_{k}, \mathcal{I}_{k}\right)$ be matroids. We define the union of matroids as $M_{1} \vee M_{2} \vee \cdots \vee M_{k}=\left(V_{1} \uplus V_{2} \uplus \cdots \uplus V_{k}, \mathcal{I}_{1} \vee \mathcal{I}_{2} \vee \cdots \vee \mathcal{I}_{k}\right)$, where

$$
\begin{equation*}
I_{1} \vee \mathcal{I}_{2} \vee \cdots \vee \mathcal{I}_{k}=\left\{I_{1} \uplus I_{2} \uplus \cdots \uplus I_{k} \mid I_{1} \in \mathcal{I}_{1}, \ldots, I_{k} \in \mathcal{I}_{k}\right\} \tag{6.41}
\end{equation*}
$$

Note $A \uplus B$ designates the disjoint union of A and B.

Matroid Union

Definition 6.9.2

Let $M_{1}=\left(V_{1}, \mathcal{I}_{1}\right), M_{2}=\left(V_{2}, \mathcal{I}_{2}\right), \ldots, M_{k}=\left(V_{k}, \mathcal{I}_{k}\right)$ be matroids. We define the union of matroids as
$M_{1} \vee M_{2} \vee \cdots \vee M_{k}=\left(V_{1} \uplus V_{2} \uplus \cdots \uplus V_{k}, \mathcal{I}_{1} \vee \mathcal{I}_{2} \vee \cdots \vee \mathcal{I}_{k}\right)$, where

$$
\begin{equation*}
I_{1} \vee \mathcal{I}_{2} \vee \cdots \vee \mathcal{I}_{k}=\left\{I_{1} \uplus I_{2} \uplus \cdots \uplus I_{k} \mid I_{1} \in \mathcal{I}_{1}, \ldots, I_{k} \in \mathcal{I}_{k}\right\} \tag{6.41}
\end{equation*}
$$

Note $A \uplus B$ designates the disjoint union of A and B.

Theorem 6.9.3

Let $M_{1}=\left(V_{1}, \mathcal{I}_{1}\right), M_{2}=\left(V_{2}, \mathcal{I}_{2}\right), \ldots, M_{k}=\left(V_{k}, \mathcal{I}_{k}\right)$ be matroids, with rank functions r_{1}, \ldots, r_{k}. Then the union of these matroids is still a matroid, having rank function

$$
\begin{equation*}
r(Y)=\min _{X \subseteq Y}\left(|Y \backslash X|+r_{1}\left(X \cap V_{1}\right)+\cdots+r_{k}\left(X \cap V_{k}\right)\right) \tag{6.42}
\end{equation*}
$$

for any $Y \subseteq V_{1} \cup \ldots V_{k}$.

Exercise: Matroid Union, and Matroid duality

Exercise: Describe $M \vee M^{*}$.

Matroids of three or fewer elements are graphic

- All matroids up to and including three elements are graphic.

Matroids of three or fewer elements are graphic

- All matroids up to and including three elements are graphic.

(a) The only
matroid with zero elements.

Matroids of three or fewer elements are graphic

- All matroids up to and including three elements are graphic.

(a) The only matroid with zero elements.
- Nice way to show low element size matroids. What about matroids that are low rank but with many elements?

Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F}, we say that a subset $S \subseteq\{1, \ldots, m\}$ of indices (with corresponding column vectors $\left\{v_{i}: i \in S\right\}$, with $|S|=k$ is affinely dependent if $m \geq 1$ and there exists elements $\left\{a_{1}, \ldots, a_{k}\right\} \in \mathbb{F}$, not all zero, such that $\sum_{i=1}^{k} a_{i} v_{i}=0$ and $\sum_{i=1}^{k} a_{i}=0$, and otherwise affinely independent.

Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F}, we say that a subset $S \subseteq\{1, \ldots, m\}$ of indices (with corresponding column vectors $\left\{v_{i}: i \in S\right\}$, with $|S|=k$ is affinely dependent if $m \geq 1$ and there exists elements $\left\{a_{1}, \ldots, a_{k}\right\} \in \mathbb{F}$, not all zero, such that $\sum_{i=1}^{k} a_{i} v_{i}=0$ and $\sum_{i=1}^{k} a_{i}=0$, and otherwise affinely independent.
- Concisely: points $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ are affinely independent if $v_{2}-v_{1}, v_{3}-v_{1}, \ldots, v_{k}-v_{1}$ are linearly independent.

Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F}, we say that a subset $S \subseteq\{1, \ldots, m\}$ of indices (with corresponding column vectors $\left\{v_{i}: i \in S\right\}$, with $|S|=k$ is affinely dependent if $m \geq 1$ and there exists elements $\left\{a_{1}, \ldots, a_{k}\right\} \in \mathbb{F}$, not all zero, such that $\sum_{i=1}^{k} a_{i} v_{i}=0$ and $\sum_{i=1}^{k} a_{i}=0$, and otherwise affinely independent.
- Concisely: points $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ are affinely independent if $v_{2}-v_{1}, v_{3}-v_{1}, \ldots, v_{k}-v_{1}$ are linearly independent.

Proposition 6.9.4 (affine matroid)

Let ground set $E=\{1, \ldots, m\}$ index column vectors of a matrix, and let \mathcal{I} be the set of subsets X of E such that X indices affinely independent vectors. Then (E, \mathcal{I}) is a matroid.

Proof.

Exercise:

Euclidean Representation of Low-rank Matroids

- Consider the affine matroid with $n \times m=2 \times 6$ matrix on the field $\mathbb{F}=\mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}$.

Euclidean Representation of Low-rank Matroids

- Consider the affine matroid with $n \times m=2 \times 6$ matrix on the field $\mathbb{F}=\mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}$.
- Hence, we can plot the points in \mathbb{R}^{2} as follows:

Euclidean Representation of Low-rank Matroids

- Consider the affine matroid with $n \times m=2 \times 6$ matrix on the field $\mathbb{F}=\mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}$.
- Hence, we can plot the points in \mathbb{R}^{2} as follows:
- Dependent sets consist of all subsets with ≥ 4 elements, or 3 collinear elements.

Euclidean Representation of Low-rank Matroids

- Consider the affine matroid with $n \times m=2 \times 6$ matrix on the field $\mathbb{F}=\mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}$.
- Hence, we can plot the points in \mathbb{R}^{2} as follows:
- Dependent sets consist of all subsets with ≥ 4 elements, or 3 collinear elements.

- In general, for a matroid \mathcal{M} of rank $m+1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^{m} is dependent if: 1) $|X| \geq 2$ and the points are identical; 2) $|X| \geq 3$ and the points are collinear; 3) $|X| \geq 4$ and the points are coplanar; or 4) $|X| \geq 5$ and the points are in space.

Euclidean Representation of Low-rank Matroids

Theorem 6.9.5

Any matroid of rank $m \leq 4$ can be represented by an affine matroid in \mathcal{R}^{m-1}.

Euclidean Representation of Low-rank Matroids

Theorem 6.9.5

Any matroid of rank $m \leq 4$ can be represented by an affine matroid in \mathcal{R}^{m-1}.

As another example

- on the right, a rank 4 matroid

Euclidean Representation of Low-rank Matroids

Theorem 6.9.5

Any matroid of rank $m \leq 4$ can be represented by an affine matroid in \mathcal{R}^{m-1}.

As another example

- on the right, a rank 4 matroid

- All sets of 5 points are dependent. The only other sets of dependent points are coplanar ones of size 4. Namely:
$\{(0,0,0),(0,1,0),(1,1,0),(1,0,0)\}$,
$\{(0,0,0),(0,0,1),(0,1,1),(0,1,0)\}$, and
$\{(0,0,1),(0,1,1),(1,1,0),(1,0,0)\}$.

Euclidean Representation of Low-rank Matroids: A test

- Loops represented by a separate box indicating how many loops there are. Parallel elements indicated by a multiplicity next to a point.

Euclidean Representation of Low-rank Matroids

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.

Euclidean Representation of Low-rank Matroids

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.
- Example: Is there a matroid that is not representable (i.e., not linear for some field)?

Euclidean Representation of Low-rank Matroids

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.
- Example: Is there a matroid that is not representable (i.e., not linear for some field)? Yes, consider the matroid

Euclidean Representation of Low-rank Matroids

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.
- Example: Is there a matroid that is not representable (i.e., not linear for some field)? Yes, consider the matroid

- Called the non-Pappus matroid. Has rank three, but any matric matroid with the above dependencies would require that $\{7,8,9\}$ is dependent, hence requiring an additional line in the above.

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So $r(X)=$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So $r(X)=3$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=3$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=3$, and $r(X \cup Y)=$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=3$, and $r(X \cup Y)=4$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=3$, and $r(X \cup Y)=4$, so we must have, by submodularity, that $r(\{1,6,7\})=r(X \cap Y) \leq r(X)+r(Y)-r(X \cup Y)=2$.

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=3$, and $r(X \cup Y)=4$, so we must have, by submodularity, that
$r(\{1,6,7\})=r(X \cap Y) \leq r(X)+r(Y)-r(X \cup Y)=2$.
- However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y)=$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=3$, and $r(X \cup Y)=4$, so we must have, by submodularity, that
$r(\{1,6,7\})=r(X \cap Y) \leq r(X)+r(Y)-r(X \cup Y)=2$.
- However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y)=3$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=3$, and $r(X \cup Y)=4$, so we must have, by submodularity, that
$r(\{1,6,7\})=r(X \cap Y) \leq r(X)+r(Y)-r(X \cup Y)=2$.
- However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y)=3$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- If we extend the line from 6-7 to 1 , then is it a matroid?
- Hence, not all 2D or 3D graphs of points and lines are matroids.

Euclidean Representation of Low-rank Matroids: Other Examples

- Other examples can be more complex, consider the following two matroids (from Oxley, 2011):

Euclidean Representation of Low-rank Matroids: Other Examples

- Other examples can be more complex, consider the following two matroids (from Oxley, 2011):

- Hence, lines (in 2D) may be curved and planes (in 3D) can be twisted.

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. Imes, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless >2).

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless >2).
- any two distinct points lie on a line (often not drawn when only two)

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. Ines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless >2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless >3)

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. ines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless >2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless >3)
- any three distinct non-collinear points lie on a plane

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. ines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless >2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless >3)
- any three distinct non-collinear points lie on a plane
- If diagram has at most one plane, then any two distinct lines meet in at most one point.

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. Iines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless >2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless >3)
- any three distinct non-collinear points lie on a plane
- If diagram has at most one plane, then any two distinct lines meet in at most one point.
- If diagram has more than one plane, then: 1) any two distinct planes meeting in more than two points do so in a line; 2) any two distinct lines meeting in a point do so in at most one point and lie in on a common plane; 3) any line not lying on a plane intersects it in at most one point.

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. ines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless >2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless >3)
- any three distinct non-collinear points lie on a plane
- If diagram has at most one plane, then any two distinct lines meet in at most one point.
- If diagram has more than one plane, then: 1) any two distinct planes meeting in more than two points do so in a line; 2) any two distinct lines meeting in a point do so in at most one point and lie in on a common plane; 3) any line not lying on a plane intersects it in at most one point.
- Matroid of rank at most four (see Oxley 2011 for more details).

