Submodular Functions, Optimization, and Applications to Machine Learning — Spring Quarter, Lecture 6 —

http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

April 16th, 2014

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

F1/60 (pg.1/230)

• Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige's book.

Logistics

Review

Announcements, Assignments, and Reminders

- Homework 1 is out, due Wednesday April 23rd, 11:45pm, electronically via our assignment dropbox (https://canvas.uw.edu/courses/895956/assignments).
- All homeworks must be done electronically, only PDF file format accepted.
- Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

Logistics

Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, & I 111. **Basic Definitions** I 12.
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation, Dual Matroid
- L7:
- L8:
- L9:
- L10:

- - I 15. L16:

I 13.

I 14.

- L17:
- L18:
- L19:
- L20:

Finals Week: June 9th-13th. 2014.

Prof. Jeff Bilmes

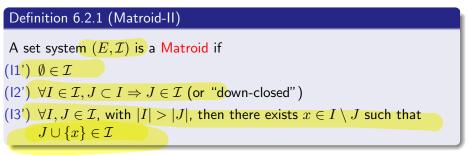
EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

Review

Matroid

Review

Slight modification (non unit increment) that is equivalent.



Note (I1)=(I1'), (I2)=(I2'), and we get $(I3)\equiv(I3')$ using induction.

Proposition 6.2.1

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (11),(12), this condition is equivalent to (13). Exercise: show the following is equivalent to the above.

Definition 6.2.2 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if

- (11') $\emptyset \in \mathcal{I}$ (emptyset containing)
- (12) $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (down-closed or subclusive)

(13') $\forall X \subseteq V$, and $I_1, I_2 \in \max \operatorname{Ind}(X)$, we have $|I_1| = |I_2|$ (all maximally independent subsets of X have the same size).

Matroids - rank

Logistics

- Thus, in any matroid $M = (E, \mathcal{I})$, $\forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just r(U) when the matroid in equation is unambiguous.
- $r(E) = r_{(E,\mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 6.2.1 (matroid rank function)

The rank of a matroid is a function $r:2^E \to \mathbb{Z}_+$ defined by

$$r(A) = \max\left\{|X| : X \subseteq A, X \in \mathcal{I}\right\} = \max_{X \in \mathcal{T}} |A \cap X|$$
(6.1)

- From the above, we immediately see that $r(A) \leq |A|$.
- Moreover, if r(A) = |A|, then $A \in \mathcal{I}$, meaning A is independent (in this case, A is a self base).

Prof. Jeff Bilmes

Review

Matroids - rank

Lemma 6.2.1

The rank function $r: 2^E \to \mathbb{Z}_+$ of a matroid is submodular, that is $r(A) + r(B) \ge r(A \cup B) + r(A \cap B)$

Proof.

- 2 Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
- Since M is a matroid, we know that $r(A \cap B) = r(X) = |X|$, and $r(A \cup B) = r(Y) = |Y|$. Also, for any $U \in \mathcal{I}$, $r(A) \ge |A \cap U|$.
- Then we have

$$r(A) + r(B) \ge |Y \cap A| + |Y \cap B|$$

$$= |Y \cap (A \cap B)| + |Y \cap (A \cup B)|$$

$$\ge |X| + |Y| = r(A \cap B) + r(A \cup B)$$
(6.3)
(6.4)
(6.5)

Partition Matroid

Logistics

- Let V be our ground set.
- Let V = V₁ ∪ V₂ ∪ · · · ∪ V_ℓ be a partition of V into blocks or disjoint sets (disjoint union). Define a set of subsets of V as

$$\mathcal{I} = \{ X \subseteq V : |X \cap V_i| \le k_i \text{ for all } i = 1, \dots, \ell \}.$$
(6.3)

where k_1, \ldots, k_ℓ are fixed parameters, $k_i \ge 0$. Then $M = (V, \mathcal{I})$ is a matroid.

- Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell = 1$, $V_1 = V$, and $k_1 = k$.
- We'll show that property (I3') in Def $\ref{lef{eq:second}}$ holds. If $X,Y\in\mathcal{I}$ with |Y|>|X|, then there must be at least one i with $|Y\cap V_i|>|X\cap V_i|$. Therefore, adding one element $e\in V_i\cap (Y\setminus X)$ to X won't break independence.

Review

Partition Matroid

Logistics

- What is the partition matroid's rank function?
- A partition matroids rank function:

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$
(6.12)

which we also immediately see is submodular using properties we spoke about last week. That is:

- $\bigcirc |A \cap V_i|$ is submodular (in fact modular) in A
 - 2 min(submodular(A), k_i) is submodular in A since |A ∩ V_i| is monotone.
- sums of submodular functions are submodular.
- r(A) is also non-negative integral monotone non-decreasing, so it defines a matroid (the partition matroid).

Partition Matroid, rank as matching

• Example where $\ell = 5$, $(k_1, k_2, k_3, k_4, k_5) =$ (2, 2, 1, 1, 3). 13 V_{5} 15

• Recall, $\Gamma : 2^V \to \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) =$ $\{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.

Here, for
$$X \subseteq V$$
, we have $\Gamma(X) = i \in I : (v, i) \in E(G)$ and $v \in X$.

• For such a constructed bipartite graph, the rank function of a partition matroid is $r(X) = \sum_{i=1}^{\ell} \min(|X \cap V_i|, k_i) =$ the maximum matching involving X.

Logistics

Review

• Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_i : i \in I)$ where $\emptyset \subset V_i \subseteq V$ for all *i*), and *I* is an index set. Hence, $|I| = |\mathcal{V}|$.

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

• Let (V, V) be a set system (i.e., $V = (V_i : i \in I)$ where $\emptyset \subset V_i \subseteq V$ for all *i*), and *I* is an index set. Hence, |I| = |V|.

Matroid and Greedy

Other Matroid Properties

 Here, the sets V_i ∈ V are like "groups" and any v ∈ V with v ∈ V_i is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).

System of Distinct Reps Transversals

• Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_i : i \in I)$ where $\emptyset \subset V_i \subseteq V$ for all *i*), and *I* is an index set. Hence, $|I| = |\mathcal{V}|$.

Matroid and Greedy

Other Matroid Properties

- Here, the sets V_i ∈ V are like "groups" and any v ∈ V with v ∈ V_i is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $(v_i : i \in I)$ with $v_i \in V$ is said to be a system of representatives of \mathcal{V} if \exists a bijection $\pi : I \to I$ such that $v_i \in V_{\pi(i)}$.

System of Distinct Reps Transversals

• Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_i : i \in I)$ where $\emptyset \subset V_i \subseteq V$ for all *i*), and *I* is an index set. Hence, $|I| = |\mathcal{V}|$.

Other Matroid Properties

- Here, the sets V_i ∈ V are like "groups" and any v ∈ V with v ∈ V_i is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $(v_i : i \in I)$ with $v_i \in V$ is said to be a system of representatives of \mathcal{V} if \exists a bijection $\pi : I \to I$ such that $v_i \in V_{\pi(i)}$.
- v_i is the representative of set (or group) $V_{\pi(i)}$, meaning the i^{th} representative is meant to represent set $V_{\pi(i)}$.

System of Distinct Reps Transversals

• Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_i : i \in I)$ where $\emptyset \subset V_i \subseteq V$ for all *i*), and *I* is an index set. Hence, $|I| = |\mathcal{V}|$.

Other Matroid Properties

- Here, the sets V_i ∈ V are like "groups" and any v ∈ V with v ∈ V_i is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $(v_i : i \in I)$ with $v_i \in V$ is said to be a system of representatives of \mathcal{V} if \exists a bijection $\pi : I \to I$ such that $v_i \in V_{\pi(i)}$.
- v_i is the representative of set (or group) V_{π(i)}, meaning the ith representative is meant to represent set V_{π(i)}.
- Example: Consider the house of representatives, $v_i =$ "Jim McDermott, while i = "King County, WA-7".

System of Distinct Reps Transversals

• Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_i : i \in I)$ where $\emptyset \subset V_i \subseteq V$ for all *i*), and *I* is an index set. Hence, $|I| = |\mathcal{V}|$.

Other Matroid Properties

- Here, the sets V_i ∈ V are like "groups" and any v ∈ V with v ∈ V_i is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family (v_i : i ∈ I) with v_i ∈ V is said to be a system of representatives of V if ∃ a bijection π : I → I such that v_i ∈ V_{π(i)}.
- v_i is the representative of set (or group) $V_{\pi(i)}$, meaning the i^{th} representative is meant to represent set $V_{\pi(i)}$.
- Example: Consider the house of representatives, $v_i =$ "Jim McDermott, while i = "King County, WA-7".
- In a system of representatives, there is no requirement for the representatives to be distinct. I.e., we could have some $v_1 \in V_1 \cap V_2$, where v_1 represents both V_1 and V_2 .

System of Distinct Reps Transversals

• Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_i : i \in I)$ where $\emptyset \subset V_i \subseteq V$ for all *i*), and *I* is an index set. Hence, $|I| = |\mathcal{V}|$.

Transversal Matroid Matroid and representation

- Here, the sets V_i ∈ V are like "groups" and any v ∈ V with v ∈ V_i is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $(v_i : i \in I)$ with $v_i \in V$ is said to be a system of representatives of \mathcal{V} if \exists a bijection $\pi : I \to I$ such that $v_i \in V_{\pi(i)}$.
- v_i is the representative of set (or group) V_{π(i)}, meaning the ith representative is meant to represent set V_{π(i)}.
- Example: Consider the house of representatives, $v_i =$ "Jim McDermott, while i = "King County, WA-7".
- In a system of representatives, there is no requirement for the representatives to be distinct. I.e., we could have some $v_1 \in V_1 \cap V_2$, where v_1 represents both V_1 and V_2 .
- We can view this as a bipartite graph.

Prof. Jeff Bilmes

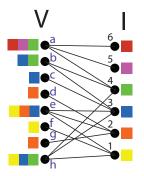
Other Matroid Properties

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

• We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.

Other Matroid Properties

• Here, $\ell = 6$ groups, with $\mathcal{V} = (V_1, V_2, \dots, V_6)$ = $(\{e, f, h\}, \{d, e, g\}, \{b, c, e, h\}, \{a, b, h\}, \{a\}, \{a\}).$



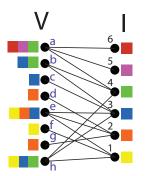
System of Distinct Reps Transversals

• We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.

Dual Matroid

• Here, $\ell = 6$ groups, with $\mathcal{V} = (V_1, V_2, \dots, V_6)$ = $(\{e, f, h\}, \{d, e, g\}, \{b, c, e, h\}, \{a, b, h\}, \{a\}, \{a\}).$

Transversal Matroid Matroid and representation



• A system of representatives would make sure that there is a representative for each color group. For example,

Matroid and Greedy

Other Matroid Properties

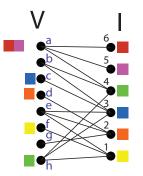
System of Distinct Reps Transversals

• We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.

Dual Matroid

• Here, $\ell = 6$ groups, with $\mathcal{V} = (V_1, V_2, \dots, V_6)$ = $(\{e, f, h\}, \{d, e, g\}, \{b, c, e, h\}, \{a, b, h\}, \{a\}, \{a\}).$

Transversal Matroid Matroid and representation



• A system of representatives would make sure that there is a representative for each color group. For example,

Matroid and Greedy

Other Matroid Properties

• The representatives $(\{a, c, d, f, h\})$ are shown as colors on the left.

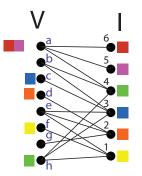
System of Distinct Reps Transversals

• We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.

Dual Matroid

• Here, $\ell = 6$ groups, with $\mathcal{V} = (V_1, V_2, \dots, V_6)$ = $(\{e, f, h\}, \{d, e, g\}, \{b, c, e, h\}, \{a, b, h\}, \{a\}, \{a\}).$

Transversal Matroid Matroid and representation



• A system of representatives would make sure that there is a representative for each color group. For example,

Matroid and Greedy

Other Matroid Properties

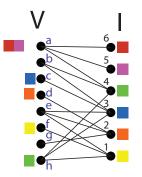
- The representatives $(\{a, c, d, f, h\})$ are shown as colors on the left.
- Here, the set of representatives is <u>not</u> <u>distinct</u>. Why?

F13/60 (pg.22/230)

System of Distinct Reps Transversals

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell = 6$ groups, with $\mathcal{V} = (V_1, V_2, \dots, V_6)$ = $(\{e, f, h\}, \{d, e, g\}, \{b, c, e, h\}, \{a, b, h\}, \{a\}, \{a\}).$

Transversal Matroid Matroid and representation



• A system of representatives would make sure that there is a representative for each color group. For example,

Matroid and Greedy

Other Matroid Properties

- The representatives ({*a*, *c*, *d*, *f*, *h*}) are shown as colors on the left.
- Here, the set of representatives is not distinct. Why? In fact, due to the red and pink group, a distinct group of representatives is impossible (since there is only one common choice to represent both color groups).

F13/60 (pg.23/230)

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

System of Distinct Representatives

• Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_k : i \in I)$ where $V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.

Transversal Matroid Matroid and representation

• Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_k : i \in I)$ where $V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.

Matroid and Greedy

Other Matroid Properties

• A family $(v_i : i \in I)$ with $v_i \in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi : I \leftrightarrow I$ such that $v_i \in V_{\pi(i)}$ and $v_i \neq v_j$ for all $i \neq j$.

System of Distinct Reps Transversals

• Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_k : i \in I)$ where $V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.

Matroid and Greedy

Other Matroid Properties

Transversal Matroid Matroid and representation

- A family $(v_i : i \in I)$ with $v_i \in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi : I \leftrightarrow I$ such that $v_i \in V_{\pi(i)}$ and $v_i \neq v_j$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Lets re-state (and rename) this as a:

System of Distinct Reps

• Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_k : i \in I)$ where $V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.

Transversal Matroid Matroid and representation

- A family $(v_i : i \in I)$ with $v_i \in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi : I \leftrightarrow I$ such that $v_i \in V_{\pi(i)}$ and $v_i \neq v_j$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Lets re-state (and rename) this as a:

Definition 6.3.1 (transversal)

System of Distinct Reps Transversals

Given a set system (V, \mathcal{V}) as defined above, a set $T \subseteq V$ is a transversal of \mathcal{V} if there is a bijection $\pi: T \leftrightarrow I$ such that

$$x \in V_{\pi(x)}$$
 for all $x \in T$ (6.1)

and Greedy

Transversal Matroid Matroid and representation

• Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_k : i \in I)$ where $V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.

Matroid and Greedy

Other Matroid Properties

- A family $(v_i : i \in I)$ with $v_i \in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi : I \leftrightarrow I$ such that $v_i \in V_{\pi(i)}$ and $v_i \neq v_j$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Lets re-state (and rename) this as a:

Definition 6.3.1 (transversal)

System of Distinct Reps Transversals

Given a set system (V, \mathcal{V}) as defined above, a set $T \subseteq V$ is a transversal of \mathcal{V} if there is a bijection $\pi: T \leftarrow I$ such that

$$x \in V_{\pi(x)}$$
 for all $x \in T$

• Note that due to $\pi: T \leftrightarrow I$ being a bijection, all of I and T are "covered" (so this makes things distinct automatically).

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

F14/60 (pg.28/230)

(6.1)

 A set X ⊆ V is a partial transversal if X is a transversal of some subfamily V' = (V_i : i ∈ I') where I' ⊆ I.

- A set X ⊆ V is a partial transversal if X is a transversal of some subfamily V' = (V_i : i ∈ I') where I' ⊆ I.
- Therefore, for any transversal T, any subset $T' \subseteq T$ is a partial transversal.

- A set X ⊆ V is a partial transversal if X is a transversal of some subfamily V' = (V_i : i ∈ I') where I' ⊆ I.
- Therefore, for any transversal T, any subset $T' \subseteq T$ is a partial transversal.
- Thus, transversals are down closed (subclusive).

• As we saw, a transversal might not always exist. How to tell?

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties When do transversals exist? • As we saw, a transversal might not always exist. How to tell? • Given a set system (V, V) with $V = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

so |V(J)| is the set cover function (which we know is submodular).

 $V(J) = \bigcup_{i \in J} V_i$

(6.2)

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all *i*. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{6.2}$$

Matroid and Greedy

Other Matroid Properties

so |V(J)| is the set cover function (which we know is submodular). ${\bullet}\,$ We have

Theorem 6.4.1 (Hall's theorem)

Given a set system (V, \mathcal{V}) , the family of subsets $\mathcal{V} = (V_i : i \in I)$ has a transversal $(v_i : i \in I)$ iff for all $J \subseteq I$

$$|V(J)| \ge |J| \tag{6.3}$$

System of Distinct Reps Transversals Transversal Matroid Matroid and representation

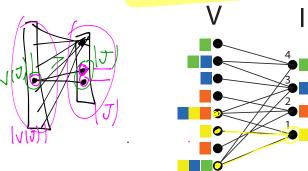
- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all *i*. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{6.2}$$

Matroid and Greedy

Other Matroid Properties

so |V(J)| is the set cover function (which we know is submodular). • Hall's theorem $(\forall J, |V(J)| \ge |J|)$ as a bipartite graph.



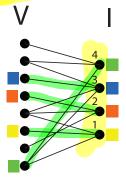
System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{6.2}$$

Matroid and Greedy

so |V(J)| is the set cover function (which we know is submodular). • Hall's theorem $(\forall J, |V(J)| \ge |J|)$ as a bipartite graph.



Prof. Jeff Bilmes

When do transversals exist?

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all *i*. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{6.2}$$

Matroid and Greedy

so |V(J)| is the set cover function (which we know is submodular). \bullet Moreover, we have

Theorem 6.4.2 (Rado's theorem)

If M = (V, r) is a matroid on V with rank function r, then the family of subsets $(V_i : i \in I)$ of V has a transversal $(v_i : i \in I)$ that is independent in M iff for all $J \subseteq I$

$$r(V(J)) \ge |J|$$

Other Matroid Properties

When do transversals exist?

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all *i*. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{6.2}$$

Matroid and Greedy

Other Matroid Properties

so |V(J)| is the set cover function (which we know is submodular). \bullet Moreover, we have

Theorem 6.4.2 (Rado's theorem)

If M = (V, r) is a matroid on V with rank function r, then the family of subsets $(V_i : i \in I)$ of V has a transversal $(v_i : i \in I)$ that is independent in M iff for all $J \subseteq I$

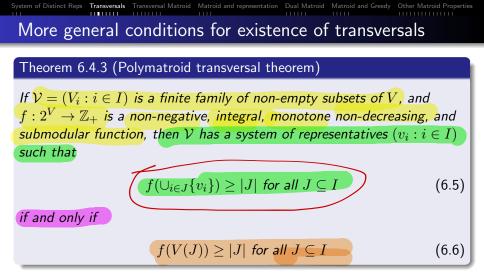
$$r(V(J)) \ge |J| \tag{6.4}$$

• Note, a transversal T independent in M means that r(T) = |T|.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

F16/60 (pg.38/230)



Theorem 6.4.3 (Polymatroid transversal theorem)

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

If $\mathcal{V} = (V_i : i \in I)$ is a finite family of non-empty subsets of V, and $f : 2^V \to \mathbb{Z}_+$ is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $(v_i : i \in I)$ such that

$$f(\cup_{i\in J}\{v_i\}) \ge |J| \text{ for all } J \subseteq I$$
(6.5)

Matroid and Greedy

if and only if

$$f(V(J)) \ge |J|$$
 for all $J \subseteq I$ (6.6)

• Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking f(S) = |S| for $S \subseteq V$. In which case, Eq. 6.5 requires the system of representatives to be distinct.

Transversal Matroid Matroid and representation

Theorem 6.4.3 (Polymatroid transversal theorem)

If $\mathcal{V} = (V_i : i \in I)$ is a finite family of non-empty subsets of V, and $f : 2^V \to \mathbb{Z}_+$ is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $(v_i : i \in I)$ such that

 $\geq |J|$ for all $J \subseteq I$

 $\ge |J|$ for all $J \subseteq I$

if and only if

System of Distinct Reps Transversals

• Given Theorem 6.4.1, we immediately get Theorem 6.4.1 by taking f(S) = |S| for $S \subseteq V$.

• We get Theorem 6.4.2 by taking f(S) = r(S) for $S \subseteq V$, the rank function of the matroid. where, Eq. 6.5 insists the system of representatives is independent in M

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

F17/60 (pg.41/230)

 $V(\mathcal{J}) \stackrel{\mathcal{I}}{=} \bigcup_{i \in \mathcal{J}} \{v_i\}$

(6.5)

(6.6)

• Note the condition in Theorem 6.4.3 is $f(V(J)) \ge |J|$ for all $J \subseteq I$, where $f: 2^V \to \mathbb{Z}_+$ is non-negative, integral, monotone non-decreasing and submodular, and $V(J) = \bigcup_{j \in J} V_j$ with $V_i \subseteq V$.

oid and representation

Matroid and Greedy

$$V(J): j^{T} \rightarrow j^{V}$$

Transversal Matroid

insversal Matroid Matroid and representation

- Note the condition in Theorem 6.4.3 is f(V(J)) ≥ |J| for all J ⊆ I, where f : 2^V → Z₊ is non-negative, integral, monotone non-decreasing and submodular, and V(J) = ∪_{j∈J}V_j with V_i ⊆ V.
- Define $g: 2^I \to \mathbb{Z}$ with g(J) = f(V(J)) |J|, then the condition for the existence of a system of representatives, with quality Equation 6.5, becomes:

$$\min_{J \subseteq I} g(J) \ge 0 \tag{6.7}$$

Matroid and representation

nsversal Matroid

- Note the condition in Theorem 6.4.3 is $f(V(J)) \ge |J|$ for all $J \subseteq I$, where $f : 2^V \to \mathbb{Z}_+$ is non-negative, integral, monotone non-decreasing and submodular, and $V(J) = \bigcup_{j \in J} V_j$ with $V_i \subseteq V$.
- Define $g: 2^I \to \mathbb{Z}$ with g(J) = f(V(J)) |J|, then the condition for the existence of a system of representatives, with quality Equation 6.5, becomes:

$$\min_{J\subseteq I} g(J) \ge 0 \tag{6.7}$$

• What kind of function is g?

Transversal Matroid Matroid and representation

- Note the condition in Theorem 6.4.3 is $f(V(J)) \ge |J|$ for all $J \subseteq I$, where $f : 2^V \to \mathbb{Z}_+$ is non-negative, integral, monotone non-decreasing and submodular, and $V(J) = \bigcup_{j \in J} V_j$ with $V_i \subseteq V$.
- Define $g: 2^I \to \mathbb{Z}$ with g(J) = f(V(J)) |J|, then the condition for the existence of a system of representatives, with quality Equation 6.5, becomes:

$$\min_{J\subseteq I} g(J) \ge 0 \tag{6.7}$$

Matroid and Greedy

• What kind of function is g?

Proposition 6.4.4

System of Distinct Reps Transversals

g as given above is submodular.

Transversal Matroid Matroid and representation Dual Matroid

Note the condition in Theorem 6.4.3 is f(V(J)) ≥ |J| for all J ⊆ I, where f : 2^V → Z₊ is non-negative, integral, monotone non-decreasing and submodular, and V(J) = ∪_{j∈J}V_j with V_i ⊆ V.

Matroid and Greedy

• Define $g: 2^I \to \mathbb{Z}$ with g(J) = f(V(J)) - |J|, then the condition for the existence of a system of representatives, with quality Equation 6.5, becomes:

$$\min_{J\subseteq I} g(J) \ge 0$$

• What kind of function is g?

Proposition 6.4.4

System of Distinct Reps Transversals

g as given above is submodular.

• Hence, the condition for existence can be solved by (a special case of) submodular function minimization, or vice verse!

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

F18/60 (pg.46/230)

(6.7)

first part proof of Theorem 6.4.3.

• Suppose \mathcal{V} has a system of representatives $(v_i : i \in I)$ such that Eq. 6.5 is true.

Matroid and Greedy

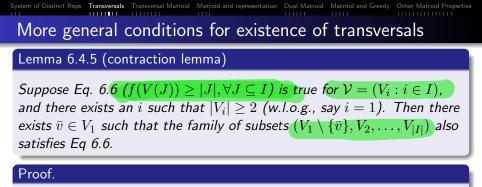
Other Matroid Properties

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

first part proof of Theorem 6.4.3.

- Suppose \mathcal{V} has a system of representatives $(v_i : i \in I)$ such that Eq. 6.5 is true.
- Then since f is monotone, and since $V(J) \supseteq \bigcup_{i \in J} \{v_i\}$ when $(v_i : i \in I)$ is a system of representatives, then Eq. 6.6 immediately follows.

•••



• When Eq. 6.6 holds, this means that for any subsets $J_1, J_2 \subseteq I \setminus \{1\}$, we have that, for $J \in \{J_1, J_2\}$, $f(V(J \cup \{1\})) \geq |J \cup \{1\}|$ (6.8) and hence

$$f(V_1 \cup V(J_1)) \ge |J_1| + 1$$

$$f(V_1 \cup V(J_2)) \ge |J_2| + 1$$
(6.9)
(6.10)

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

Transversal Matroid Matroid and representation Dual Matroid

Matroid and Greedy

Other Matroid

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 ($f(V(J)) \ge |J|, \forall J \subseteq I$) is true for $\mathcal{V} = (V_i : i \in I)$, and there exists an i such that $|V_i| \ge 2$ (w.l.o.g., say i = 1). Then there exists $\bar{v} \in V_1$ such that the family of subsets ($V_1 \setminus \{\bar{v}\}, V_2, \ldots, V_{|I|}$) also satisfies Eq 6.6.

Proof.

System of Distinct Reps Transversals

• Suppose, to the contrary, the consequent is false. Then we may take any $\bar{v}_1, \bar{v}_2 \in V_1$ as two distinct elements in $V_1 \ldots$

Transversal Matroid Matroid and representation Dual Matroid More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 $(f(V(J)) \ge |J|, \forall J \subseteq I)$ is true for $\mathcal{V} = (V_i : i \in I)$, and there exists an i such that $|V_i| \ge 2$ (w.l.o.g., say i = 1). Then there exists $\bar{v} \in V_1$ such that the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6.

Proof.

System of Distinct Reps Transversals

- Suppose, to the contrary, the consequent is false. Then we may take any $\bar{v}_1, \bar{v}_2 \in V_1$ as two distinct elements in $V_1 \ldots$
- ... and there must exist subsets J_1, J_2 of $I \setminus \{1\}$ such that

(note that either one or both of J_1, J_2 could be empty).

イロ

Matroid and Greedy

Transversal Matroid Matroid and representation

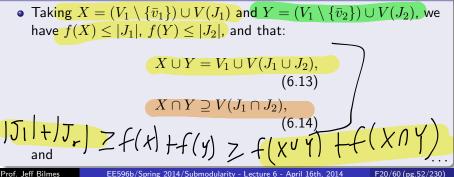
Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 $(f(V(J)) \ge |J|, \forall J \subseteq I)$ is true for $\mathcal{V} = (V_i : i \in I)$, and there exists an i such that $|V_i| \ge 2$ (w.l.o.g., say i = 1). Then there exists $\bar{v} \in V_1$ such that the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6.

Matroid and Greedy

Proof.

System of Distinct Reps Transversals



EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

Matroid and representation

Matroid and Greedy

Other Matroid Properties

Lemma 6.4.5 (contraction lemma)

Transversal Matroid

Suppose Eq. 6.6 ($f(V(J)) \ge |J|, \forall J \subseteq I$) is true for $\mathcal{V} = (V_i : i \in I)$, and there exists an i such that $|V_i| \ge 2$ (w.l.o.g., say i = 1). Then there exists $\bar{v} \in V_1$ such that the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \ldots, V_{|I|})$ also satisfies Eq 6.6.

Proof.

System of Distinct Reps Transversals

• since f submodular monotone non-decreasing, & Eqs 6.13-6.15,

 $|J_1| + |J_2| \ge f(V_1 \cup V(J_1 \cup J_2)) + f(V(J_1 \cap J_2))$ (6.16)

Transversal Matroid Matroid and representation

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 $(f(V(J)) \ge |J|, \forall J \subseteq I)$ is true for $\mathcal{V} = (V_i : i \in I)$, and there exists an i such that $|V_i| \ge 2$ (w.l.o.g., say i = 1). Then there exists $\bar{v} \in V_1$ such that the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \ldots, V_{|I|})$ also satisfies Eq 6.6.

Proof.

System of Distinct Reps Transversals

• since f submodular monotone non-decreasing, & Eqs 6.13-6.15,

$$|J_1| + |J_2| \ge f(V_1 \cup V(J_1 \cup J_2)) + f(V(J_1 \cap J_2))$$
(6.16)

Dual Matroid

Matroid and Greedy

Other Matroid

• Since \mathcal{V} satisfies Eq. 6.6, $1 \notin J_1 \cup J_2$, & Eqs 6.9-6.10, this gives

$$|J_1| + |J_2| \ge |J_1 \cup J_2| + 1 + |J_1 \cap J_2|$$

which is a contradiction since cardinality is modular.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

(6.17)

Theorem 6.4.3 (Polymatroid transversal theorem)

System of Distinct Reps Transversals Transversal Matroid Matroid and representation

If $\mathcal{V} = (V_i : i \in I)$ is a finite family of non-empty subsets of V, and $f : 2^V \to \mathbb{Z}_+$ is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $(v_i : i \in I)$ such that

$$f(\bigcup_{i \in J} \{v_i\}) \ge |J| \text{ for all } J \subseteq I$$

if and only if

$$f(V(J)) \geq |J|$$
 for all $J \subseteq I$

Dual Matroid

Matroid and Greedy

Other Matroid

(6.6)

(6.5)

- Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking f(S) = |S| for $S \subseteq V$.
- We get Theorem 6.4.2 by taking f(S) = r(S) for $S \subseteq V$, the rank function of the matroid.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

F21/60 (pg.55/230)

converse proof of Theorem 6.4.3.

• Conversely, suppose Eq. 6.6 is true.

converse proof of Theorem 6.4.3.

- Conversely, suppose Eq. 6.6 is true.
- If each V_i is a singleton set, then the result follows immediately.

F22/60 (pg.57/230)

converse proof of Theorem 6.4.3.

- Conversely, suppose Eq. 6.6 is true.
- If each V_i is a singleton set, then the result follows immediately.
- W.I.o.g., let $|V_1| \ge 2$, then by Lemma 6.4.5, the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6 for the right \bar{v} .

Dual Matroid

Matroid and Greedy

Other Matroid

Transversal Matroid Matroid and representation

converse proof of Theorem 6.4.3.

Transversals

- Conversely, suppose Eq. 6.6 is true.
- If each V_i is a singleton set, then the result follows immediately.
- W.I.o.g., let $|V_1| \ge 2$, then by Lemma 6.4.5, the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6 for the right \bar{v} .
- We can continue to reduce the family, deleting elements from V_i for some *i* while $|V_i| \ge 2$, until we arrive at a family of singleton sets.

System of Distinct Reps

Dual Matroid

Matroid and Greedy

Other Matroid

Transversal Matroid Matroid and representation

converse proof of Theorem 6.4.3.

System of Distinct Reps Transversals

- Conversely, suppose Eq. 6.6 is true.
- If each V_i is a singleton set, then the result follows immediately.
- W.I.o.g., let $|V_1| \ge 2$, then by Lemma 6.4.5, the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6 for the right \bar{v} .
- We can continue to reduce the family, deleting elements from V_i for some i while $|V_i| \ge 2$, until we arrive at a family of singleton sets.
- This family will be the required system of representatives.

Matroid and Greedy

Other Matroid

Transversal Matroid Matroid and representation

converse proof of Theorem 6.4.3.

System of Distinct Reps Transversals

- Conversely, suppose Eq. 6.6 is true.
- If each V_i is a singleton set, then the result follows immediately.
- W.I.o.g., let $|V_1| \ge 2$, then by Lemma 6.4.5, the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6 for the right \bar{v} .
- We can continue to reduce the family, deleting elements from V_i for some *i* while $|V_i| \ge 2$, until we arrive at a family of singleton sets.
- This family will be the required system of representatives.

This theorem can be used to produce a variety of other results quite easily, and shows how submodularity is the key ingredient in its truth.

Transversals, themselves, define a matroid.

Theorem 6.5.1

If \mathcal{V} is a family of finite subsets of a ground set V, then the collection of partial transversals of \mathcal{V} is the set of independent sets of a matroid $M = (V, \mathcal{V})$ on V.

Transversals, themselves, define a matroid.

Theorem 6.5.1

If \mathcal{V} is a family of finite subsets of a ground set V, then the collection of partial transversals of \mathcal{V} is the set of independent sets of a matroid $M = (V, \mathcal{V})$ on V.

• This means that the transversals of $\mathcal V$ are the bases of matroid M.

Transversals, themselves, define a matroid.

Theorem 6.5.1

If \mathcal{V} is a family of finite subsets of a ground set V, then the collection of partial transversals of \mathcal{V} is the set of independent sets of a matroid $M = (V, \mathcal{V})$ on V.

- This means that the transversals of $\mathcal V$ are the bases of matroid M.
- Therefore, all maximal partial transversals of $\ensuremath{\mathcal{V}}$ have the same cardinality!

• Transversals correspond exactly to matchings in bipartite graphs (as we've already strongly hinted at).

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Transversals and Bipartite Matchings

• Transversals correspond exactly to matchings in bipartite graphs (as we've already strongly hinted at).

Matroid and Greedy

Other Matroid Properties

• Given a set system (V, V), with $V = (V_i : i \in I)$, we can define a bipartite graph G = (V, I, E) associated with V that has edge set $\{(v, i) : v \in V, i \in I, v \in V_i\}$.

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Transversals and Bipartite Matchings

• Transversals correspond exactly to matchings in bipartite graphs (as we've already strongly hinted at).

Matroid and Greedy

Other Matroid Properties

- Given a set system (V, \mathcal{V}) , with $\mathcal{V} = (V_i : i \in I)$, we can define a bipartite graph G = (V, I, E) associated with \mathcal{V} that has edge set $\{(v, i) : v \in V, i \in I, v \in V_i\}$.
- A matching in this graph is a set of edges no two of which that have a common endpoint.

Transversals and Bipartite Matchings

System of Distinct Reps Transversals Transversal Matroid Matroid and representation

• Transversals correspond exactly to matchings in bipartite graphs (as we've already strongly hinted at).

Dual Matroid

Matroid and Greedy

Other Matroid Properties

- Given a set system (V, \mathcal{V}) , with $\mathcal{V} = (V_i : i \in I)$, we can define a bipartite graph G = (V, I, E) associated with \mathcal{V} that has edge set $\{(v, i) : v \in V, i \in I, v \in V_i\}$.
- A matching in this graph is a set of edges no two of which that have a common endpoint.
- In fact, we easily have

Lemma 6.5.2

A subset $T \subseteq V$ is a partial transversal of \mathcal{V} iff there is a matching in (V, I, E) in which every edge has one endpoint in T.

We say that T is matched into I.

Prof. Jeff Bilmes

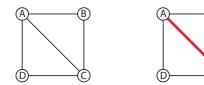
• Are arbitrary matchings matroids?

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

- Are arbitrary matchings matroids?
- Consider the following graph (left), and two max-matchings (two right instances)

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

- Are arbitrary matchings matroids?
- Consider the following graph (left), and two max-matchings (two right instances)



• $\{AC\}$ is a maximum matching, as is $\{AD, BC\}$, but they are not the same size.

Partition Matroid, rank as matching

Transversal Matroid Matroid and representation

- Example where $\ell = 5$, $(k_1, k_2, k_3, k_4, k_5) =$ (2, 2, 1, 1, 3). V_1 V_2 Va V4 V_{5} 1_{5}
 - Recall, $\Gamma: 2^V \to \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) =$ $\{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.

Here, for
$$X \subseteq V$$
, we have $\Gamma(X) = \{i \in I : (v, i) \in E(G) \text{ and } v \in X\}.$

• For such a constructed bipartite graph, the rank function of a partition matroid is $r(X) = \sum_{i=1}^{\ell} \min(|X \cap V_i|, k_i) =$ the maximum matching involving X.

System of Distinct Reps

F26/60 (pg.72/230)

Other Matroid Properties

System of Distinct Reps Transversals Transversal Matroid Matroid and representation

Recall the partition matroid rank function. Note, k_i = |I_i| in the bipartite graph representation, and since a matroid, w.l.o.g.,
 |V_i| ≥ k_i (also, recall, V(J) = ∪_{i∈J}V_i).

Dual Matroid

Matroid and Greedy

Other Matroid Properties

Transversals Transversal Matroid Matroid and representation

- Recall the partition matroid rank function. Note, k_i = |I_i| in the bipartite graph representation, and since a matroid, w.l.o.g., |V_i| ≥ k_i (also, recall, V(J) = ∪_{j∈J}V_j).
- We start with partition matroid rank function in the subsequent equations.

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$
(6.18)

Matroid and Greedy

Other Matroid Properties

System of Distinct Reps

Transversals Transversal Matroid Matroid and representation

- Recall the partition matroid rank function. Note, k_i = |I_i| in the bipartite graph representation, and since a matroid, w.l.o.g., |V_i| ≥ k_i (also, recall, V(J) = ∪_{j∈J}V_j).
- We start with partition matroid rank function in the subsequent equations.

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$

$$= \sum_{i=1}^{\ell} \min(|A \cap V(I_i)|, |I_i|)$$
(6.19)

Matroid and Greedy

Other Matroid Properties

System of Distinct Reps

Transversals Transversal Matroid Matroid and representation

Recall the partition matroid rank function. Note, k_i = |I_i| in the bipartite graph representation, and since a matroid, w.l.o.g., |V_i| ≥ k_i (also, recall, V(J) = ∪_{j∈J}V_j).

Matroid and Greedy

Other Matroid Properties

• We start with partition matroid rank function in the subsequent equations.

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$

$$= \sum_{i=1}^{\ell} \min(|A \cap V(I_i)|, |I_i|)$$

$$= \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} \left(\begin{cases} |A \cap V(I_i)| & \text{if } J_i \neq \emptyset \\ 0 & \text{if } J_i = \emptyset \end{cases} + |I_i \setminus J_i| \right)$$
(6.20)

System of Distinct Reps

Transversals Transversal Matroid Matroid and representation

- Recall the partition matroid rank function. Note, k_i = |I_i| in the bipartite graph representation, and since a matroid, w.l.o.g., |V_i| ≥ k_i (also, recall, V(J) = ∪_{j∈J}V_j).
- We start with partition matroid rank function in the subsequent equations.

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$
(6.18)
= $\sum_{i=1}^{\ell} \min(|A \cap V(I_i)|, |I_i|)$ (6.19)
= $\sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} \left(\begin{cases} |A \cap V(I_i)| & \text{if } J_i \neq \emptyset \\ 0 & \text{if } J_i = \emptyset \end{cases} + |I_i \setminus J_i| \right)$ (6.20)
= $\sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} (|V(J_i) \cap A| + |I_i \setminus J_i|)$ (6.21)

Prof. Jeff Bilmes

System of Distinct Reps

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

F27/60 (pg.77/230)

Matroid and Greedy

Other Matroid Properties

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

• Continuing,

$$r(A) = \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} \left(|V(J_i) \cap V(I_i) \cap A| - |I_i \cap J_i| + |I_i| \right) \quad (6.22)$$

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

Continuing,

$$r(A) = \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} (|V(J_i) \cap V(I_i) \cap A| - |I_i \cap J_i| + |I_i|)$$
(6.22)
$$= \min_{J \subseteq I} \left(\sum_{i=1}^{\ell} |V(J) \cap V(I_i) \cap A| - |I_i \cap J| + |I_i| \right)$$
(6.23)

Matroid and Greedy

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014 F28/60 (pg.79/230)

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

• Continuing,

$$r(A) = \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} (|V(J_i) \cap V(I_i) \cap A| - |I_i \cap J_i| + |I_i|)$$
(6.22)
$$= \min_{J \subseteq I} \left(\sum_{i=1}^{\ell} |V(J) \cap V(I_i) \cap A| - |I_i \cap J| + |I_i| \right)$$
(6.23)
$$= \min_{J \subseteq I} (|V(J) \cap V(I) \cap A| - |J| + |I|)$$
(6.24)

Matroid and Greedy

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

• Continuing,

$$r(A) = \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} \left(|V(J_i) \cap V(I_i) \cap A| - |I_i \cap J_i| + |I_i| \right) \quad (6.22)$$

$$= \min_{J \subseteq I} \left(\sum_{i=1}^{\ell} |V(J) \cap V(I_i) \cap A| - |I_i \cap J| + |I_i| \right) \quad (6.23)$$

$$= \min_{J \subseteq I} \left(|V(J) \cap V(I) \cap A| - |J| + |I| \right) \quad (6.24)$$

$$= \min_{J \subseteq I} \left(|V(J) \cap A| - |J| + |I| \right) \quad (6.25)$$

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

Continuing,

$$r(A) = \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} (|V(J_i) \cap V(I_i) \cap A| - |I_i \cap J_i| + |I_i|) \quad (6.22)$$

$$= \min_{J \subseteq I} \left(\sum_{i=1}^{\ell} |V(J) \cap V(I_i) \cap A| - |I_i \cap J| + |I_i| \right) \quad (6.23)$$

$$= \min_{J \subseteq I} (|V(J) \cap V(I) \cap A| - |J| + |I|) \quad (6.24)$$

$$= \min_{J \subseteq I} (|V(J) \cap A| - |J| + |I|) \quad (6.25)$$

Matroid and Greedy

Other Matroid Properties

• In fact, this bottom (more general) expression is the expression for the rank of a transversal matroid.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014 F28/60 (pg.82/230)

Partial Transversals Are Matroids

In fact, we have

Theorem 6.5.3

Let (V, \mathcal{V}) where $\mathcal{V} = (V_1, V_2, \dots, V_\ell)$ be a subset system. Let $I = \{1, \dots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V} . Then (V, \mathcal{I}) is a matroid.

Proof.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

F29/60 (pg.83/230)

Partial Transversals Are Matroids

In fact, we have

Theorem 6.5.3

Let (V, \mathcal{V}) where $\mathcal{V} = (V_1, V_2, \dots, V_\ell)$ be a subset system. Let $I = \{1, \dots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V} . Then (V, \mathcal{I}) is a matroid.

Proof.

We note that Ø ∈ I since the empty set is a transversal of the empty subfamily of V, thus (I1') holds.

Partial Transversals Are Matroids

In fact, we have

Theorem 6.5.3

Let (V, \mathcal{V}) where $\mathcal{V} = (V_1, V_2, \dots, V_\ell)$ be a subset system. Let $I = \{1, \dots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V} . Then (V, \mathcal{I}) is a matroid.

Proof.

- We note that Ø ∈ I since the empty set is a transversal of the empty subfamily of V, thus (I1') holds.
- We already saw that if T is a partial transversal of \mathcal{V} , and if $T' \subseteq T$, then T' is also a partial transversal. So (I2') holds.

Partial Transversals Are Matroids

In fact, we have

Theorem 6.5.3

Let (V, \mathcal{V}) where $\mathcal{V} = (V_1, V_2, \dots, V_\ell)$ be a subset system. Let $I = \{1, \dots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V} . Then (V, \mathcal{I}) is a matroid.

Proof.

- We note that Ø ∈ I since the empty set is a transversal of the empty subfamily of V, thus (I1') holds.
- We already saw that if T is a partial transversal of \mathcal{V} , and if $T' \subseteq T$, then T' is also a partial transversal. So (I2') holds.
- Suppose that T_1 and T_2 are partial transversals of \mathcal{V} such that $|T_1| < |T_2|$. Exercise: show that (I3') holds.

• Transversal matroid has rank

$$r(A) = \min_{J \subseteq I} \left(|V(J) \cap A| - |J| + |I| \right)$$
(6.26)

F30/60 (pg.87/230)

• Transversal matroid has rank

$$r(A) = \min_{J \subseteq I} \left(|V(J) \cap A| - |J| + |I| \right)$$
(6.26)

• Therefore, this function is submodular.

• Transversal matroid has rank

$$r(A) = \min_{J \subseteq I} \left(|V(J) \cap A| - |J| + |I| \right)$$
(6.26)

- Therefore, this function is submodular.
- Note that it is a minimum over a set of modular functions. Is this true in general? Exercise:

• A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| 1$).
- There is no reason in a matroid such an A could not consist of a single element.

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| 1$).
- There is no reason in a matroid such an A could not consist of a single element.
- Such an $\{a\}$ is called a loop.

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| 1$).
- There is no reason in a matroid such an A could not consist of a single element.
- Such an $\{a\}$ is called a loop.
- In a matric (i.e., linear) matroid, the only such loop is the value 0, as all non-zero vectors have rank 1. The 0 can appear > 1 time with different indices, as can a self loop in a graph appear on different nodes.

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| 1$).
- There is no reason in a matroid such an A could not consist of a single element.
- Such an $\{a\}$ is called a loop.
- In a matric (i.e., linear) matroid, the only such loop is the value 0, as all non-zero vectors have rank 1. The 0 can appear > 1 time with different indices, as can a self loop in a graph appear on different nodes.
- Note, we also say that two elements s, t are said to be parallel if $\{s, t\}$ is a circuit.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

System of Distinct Reps		Transversal Matroid	Matroid and representation	Dual Matroid	Matroid and Greedy	Other Matroid Properties
	1111111					
Represen	tabla					

Two matroids M_1 and M_2 respectively on ground sets V_1 and V_2 are isomorphic if there is a bijection $\pi: V_1 \to V_2$ which preserves independence (equivalently, rank, circuits, and so on).

System of Distinct Reps		Transversal Matroid	Matroid and representation	Dual Matroid	Matroid and Greedy	Other Matroid Properties
111	11111111	1111111	1111			
Represen	table					

Two matroids M_1 and M_2 respectively on ground sets V_1 and V_2 are isomorphic if there is a bijection $\pi : V_1 \to V_2$ which preserves independence (equivalently, rank, circuits, and so on).

Let 𝔅 be any field (such as 𝔅, 𝔅, or some finite field 𝔅, such as a Galois field GF(p) where p is prime (such as GF(2)).
 Succinctly: A field is a set with +, *, closure, associativity, commutativity, and additive and multiplictaive identities and inverses.

System of Distinct Reps		Transversal Matroid	Matroid and representation	Dual Matroid	Matroid and Greedy	Other Matroid Properties
111	11111111	1111111	1111			
Represen	table					

Two matroids M_1 and M_2 respectively on ground sets V_1 and V_2 are isomorphic if there is a bijection $\pi : V_1 \to V_2$ which preserves independence (equivalently, rank, circuits, and so on).

- Let 𝔅 be any field (such as 𝔅, 𝔅, or some finite field 𝔅, such as a Galois field GF(p) where p is prime (such as GF(2)).
 Succinctly: A field is a set with +, *, closure, associativity, commutativity, and additive and multiplictaive identities and inverses.
- We can more generally define matroids on a field.

System of Distinct Reps		Transversal Matroid	Matroid and representation	Dual Matroid	Matroid and Greedy	Other Matroid Properties
111	11111111	11111111	1011			
Represen	table					

Two matroids M_1 and M_2 respectively on ground sets V_1 and V_2 are isomorphic if there is a bijection $\pi : V_1 \to V_2$ which preserves independence (equivalently, rank, circuits, and so on).

- Let 𝔅 be any field (such as 𝔅, 𝔅, or some finite field 𝔅, such as a Galois field GF(p) where p is prime (such as GF(2)).
 Succinctly: A field is a set with +, *, closure, associativity, commutativity, and additive and multiplictaive identities and inverses.
- We can more generally define matroids on a field.

Definition 6.6.2 (linear matroids on a field)

Let X be an $n \times m$ matrix and $E = \{1, \ldots, m\}$, where $X_{ij} \in \mathbb{F}$ for some field, and let \mathcal{I} be the set of subsets of E such that the columns of X are linearly independent over \mathbb{F} .

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

F32/60 (pg.98/230)

System of Distinct Reps		Transversal Matroid	Matroid and representation	Dual Matroid	Matroid and Greedy	Other Matroid Properties
111	11111111	1111111	1111			
Represen	table					

Two matroids M_1 and M_2 respectively on ground sets V_1 and V_2 are isomorphic if there is a bijection $\pi : V_1 \to V_2$ which preserves independence (equivalently, rank, circuits, and so on).

- Let F be any field (such as R, Q, or some finite field F, such as a Galois field GF(p) where p is prime (such as GF(2)).
 Succinctly: A field is a set with +, *, closure, associativity, commutativity, and additive and multiplictaive identities and inverses.
- We can more generally define matroids on a field.

Definition 6.6.3 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called representable over ${\mathbb F}$

Prof. Jeff Bilmes

• Piff and Welsh in 1970, and Adkin in 1972 proved an important theorem about representability of transversal matroids.

- Piff and Welsh in 1970, and Adkin in 1972 proved an important theorem about representability of transversal matroids.
- In particular:

Theorem 6.6.4

Transversal matroids are representable over all finite fields of sufficiently large cardinality, and are representable over any infinite field.

The converse is not true, however.

Example 6.6.5

Let $V = \{1, 2, 3, 4, 5, 6\}$ be a ground set and let $M = (V, \mathcal{I})$ be a set system where \mathcal{I} is all subsets of V of cardinality ≤ 2 except for the pairs $\{1, 2\}, \{3, 4\}, \{5, 6\}.$

The converse is not true, however.

Example 6.6.5

Let $V = \{1, 2, 3, 4, 5, 6\}$ be a ground set and let $M = (V, \mathcal{I})$ be a set system where \mathcal{I} is all subsets of V of cardinality ≤ 2 except for the pairs $\{1, 2\}, \{3, 4\}, \{5, 6\}.$

• It can be shown that this is a matroid and is representable.

The converse is not true, however.

Example 6.6.5

Let $V = \{1, 2, 3, 4, 5, 6\}$ be a ground set and let $M = (V, \mathcal{I})$ be a set system where \mathcal{I} is all subsets of V of cardinality ≤ 2 except for the pairs $\{1, 2\}, \{3, 4\}, \{5, 6\}.$

- It can be shown that this is a matroid and is representable.
- However, this matroid is not isomorphic to any transversal matroid.

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition 6.7.2 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$

Therefore, a closed set A has span(A) = A.

Definition 6.7.3 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).

• We have the following definitions:

• We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that r(X) = r(Y) is called a spanning set of Y.

• We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that r(X) = r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, any set $A \subseteq V$ such that r(A) = r(V) is called a spanning set of the matroid.

• We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that r(X) = r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, any set $A \subseteq V$ such that r(A) = r(V) is called a spanning set of the matroid.

• A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.

• We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that r(X) = r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, any set $A \subseteq V$ such that r(A) = r(V) is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
- V is always trivially spanning.

• We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that r(X) = r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, any set $A \subseteq V$ such that r(A) = r(V) is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
- V is always trivially spanning.
- Consider the terminology: "spanning tree in a graph", comes from spanning in a matroid sense.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

• Given a matroid $M = (V, \mathcal{I})$, a dual matroid M^* can be defined in a way such that $(M^*)^* = M$.

- Given a matroid $M = (V, \mathcal{I})$, a dual matroid M^* can be defined in a way such that $(M^*)^* = M$.
- We define a set

$$\mathcal{I}^* = \{ I \subseteq V : V \setminus I \text{ is a spanning set of } M \}$$
(6.27)

- Given a matroid $M = (V, \mathcal{I})$, a dual matroid M^* can be defined in a way such that $(M^*)^* = M$.
- We define a set

$$\mathcal{I}^* = \{ I \subseteq V : V \setminus I \text{ is a spanning set of } M \}$$
(6.27)

• Hence, a set I is independent in the dual M^* if its complement is spanning in M (residual $V \setminus I$ must contain a base in M).

- Given a matroid $M = (V, \mathcal{I})$, a dual matroid M^* can be defined in a way such that $(M^*)^* = M$.
- We define a set

$$\mathcal{I}^* = \{ I \subseteq V : V \setminus I \text{ is a spanning set of } M \}$$
(6.27)

- Hence, a set I is independent in the dual M^* if its complement is spanning in M (residual $V \setminus I$ must contain a base in M).
- Recall, in cycle matroid of a graph, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest).

Dual of a Matroid

System of Distinct Reps Transversals Transversal Matroid Matroid and representation

• Given a matroid $M = (V, \mathcal{I})$, a dual matroid M^* can be defined in a way such that $(M^*)^* = M$.

Dual Matroid

Matroid and Greedy

Other Matroid Properties

(6.27)

• We define a set

 $\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$

- Hence, a set I is independent in the dual M^* if its complement is spanning in M (residual $V \setminus I$ must contain a base in M).
- Recall, in cycle matroid of a graph, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest).
- Since the smallest spanning sets are bases, the bases of M (when $V \setminus I$ is as small as possible while still spanning) are complements of the bases of M^* (where I is as large as possible).

Let M^* be defined as on previous slide. Then M^* is a matroid.

Proof.

• Clearly $\emptyset \in I^*$, so (I1') holds.

Let M^* be defined as on previous slide. Then M^* is a matroid.

Proof.

- Clearly $\emptyset \in I^*$, so (I1') holds.
- Also, if I ⊆ J ∈ I*, then clearly also I ∈ I* since if V \ J is spanning in M, so must V \ I. Therefore, (I2') holds.

. .

Let M^* be defined as on previous slide. Then M^* is a matroid.

Proof.

• Consider $I, J \in \mathcal{I}^*$ with |I| < |J|. We need to show that there is some member $v \in J \setminus I$ such that I + v is a base in M^* , which means that $V \setminus (I + v) = (V \setminus I) \setminus v$ is still spanning in M. That is, removing v from $V \setminus I$ doesn't make $(V \setminus I) \setminus v$ not spanning.

. .

Theorem 6.7.3

Let M^* be defined as on previous slide. Then M^* is a matroid.

Proof.

- Consider $I, J \in \mathcal{I}^*$ with |I| < |J|. We need to show that there is some member $v \in J \setminus I$ such that I + v is a base in M^* , which means that $V \setminus (I + v) = (V \setminus I) \setminus v$ is still spanning in M. That is, removing v from $V \setminus I$ doesn't make $(V \setminus I) \setminus v$ not spanning.
- Since $V \setminus J$ is spanning in M, $V \setminus J$ contain some base (say $B \subseteq V \setminus J$) of M. Also, $V \setminus I$ contains a base of M, say $B' \subseteq V \setminus I$.

. . .

Dual of a Matroid

Theorem 6.7.3

Let M^* be defined as on previous slide. Then M^* is a matroid.

Proof.

- Consider $I, J \in \mathcal{I}^*$ with |I| < |J|. We need to show that there is some member $v \in J \setminus I$ such that I + v is a base in M^* , which means that $V \setminus (I + v) = (V \setminus I) \setminus v$ is still spanning in M. That is, removing v from $V \setminus I$ doesn't make $(V \setminus I) \setminus v$ not spanning.
- Since $V \setminus J$ is spanning in M, $V \setminus J$ contain some base (say $B \subseteq V \setminus J$) of M. Also, $V \setminus I$ contains a base of M, say $B' \subseteq V \setminus I$.
- Since $B \setminus I \subseteq V \setminus I$, and $B \setminus I$ is independent in M, we can choose the base B' of M s.t. $B \setminus I \subseteq B' \subseteq V \setminus I$.

. . .

Dual of a Matroid

Theorem 6.7.3

Let M^* be defined as on previous slide. Then M^* is a matroid.

Proof.

- Consider $I, J \in \mathcal{I}^*$ with |I| < |J|. We need to show that there is some member $v \in J \setminus I$ such that I + v is a base in M^* , which means that $V \setminus (I + v) = (V \setminus I) \setminus v$ is still spanning in M. That is, removing v from $V \setminus I$ doesn't make $(V \setminus I) \setminus v$ not spanning.
- Since $V \setminus J$ is spanning in M, $V \setminus J$ contain some base (say $B \subseteq V \setminus J$) of M. Also, $V \setminus I$ contains a base of M, say $B' \subseteq V \setminus I$.
- Since $B \setminus I \subseteq V \setminus I$, and $B \setminus I$ is independent in M, we can choose the base B' of M s.t. $B \setminus I \subseteq B' \subseteq V \setminus I$.
- Since B and J are disjoint, we have both: 1) $B \setminus I$ and $J \setminus I$ are disjoint; and 2) $B \cap I \subseteq I \setminus J$. Also note, B' and I are disjoint.

Let M^* be defined as on previous slide. Then M^* is a matroid.

Proof.

• Now $J \setminus I \not\subseteq B'$, since otherwise (i.e., assuming $J \setminus I \subseteq B'$):

$$|B| = |B \cap I| + |B \setminus I| \tag{6.28}$$

$$\leq |I \setminus J| + |B \setminus I| \tag{6.29}$$

$$<|J\setminus I|+|B\setminus I|\le |B'| \tag{6.30}$$

which is a contradiction. The last inequality on the right follows since $J \setminus I \subseteq B'$ (by assumption) and $B \setminus I \subseteq B'$ implies that $(J \setminus I) \cup (B \setminus I) \subseteq B'$, but since J and B are disjoint, we have that $|J \setminus I| + |B \setminus I| \leq B'$.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

F38/60 (pg.123/230)

Let M^* be defined as on previous slide. Then M^* is a matroid.

Proof.

• Now $J \setminus I \not\subseteq B'$, since otherwise (i.e., assuming $J \setminus I \subseteq B'$):

$$|B| = |B \cap I| + |B \setminus I| \tag{6.28}$$

$$\leq |I \setminus J| + |B \setminus I| \tag{6.29}$$

$$<|J\setminus I|+|B\setminus I|\le |B'| \tag{6.30}$$

which is a contradiction.

• Therefore, $J \setminus I \not\subseteq B'$, and there is a $v \in J \setminus I$ s.t. $v \notin B'$.

. .

Let M^* be defined as on previous slide. Then M^* is a matroid.

Proof.

• Now $J \setminus I \not\subseteq B'$, since otherwise (i.e., assuming $J \setminus I \subseteq B'$):

$$|B| = |B \cap I| + |B \setminus I| \tag{6.28}$$

$$\leq |I \setminus J| + |B \setminus I| \tag{6.29}$$

$$<|J\setminus I|+|B\setminus I|\le |B'| \tag{6.30}$$

which is a contradiction.

- Therefore, $J \setminus I \not\subseteq B'$, and there is a $v \in J \setminus I$ s.t. $v \notin B'$.
- So B' is disjoint with $I \cup \{v\}$, meaning $B' \subseteq V \setminus (I \cup \{v\})$, or $V \setminus (I \cup \{v\})$ is spanning in M, and therefore $I \cup \{v\} \in \mathcal{I}^*$.

Theorem 6.7.4

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
(6.31)

• Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2. *I.e.*, |X| is modular, complement $f(V \setminus X)$ is submodular if f is submodular, $r_M(V)$ is a constant, and summing submodular functions and a constant preserves submodularity.

Theorem 6.7.4

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
 (6.31)

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since $|X| + r_M(V \setminus X) \ge r_M(X) + r_M(V \setminus X) \ge r_M(V)$. The right inequality follows since r_M is submodular.

Theorem 6.7.4

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
 (6.31)

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since $|X| + r_M(V \setminus X) \ge r_M(X) + r_M(V \setminus X) \ge r_M(V).$
- Monotone non-decreasing follows since, as X increases by one, |X| always increases by 1, while $r_M(V \setminus X)$ decreases by one or zero.

Theorem 6.7.4

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
(6.31)

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since $|X| + r_M(V \setminus X) \ge r_M(X) + r_M(V \setminus X) \ge r_M(V).$
- Monotone non-decreasing follows since, as X increases by one, |X| always increases by 1, while $r_M(V \setminus X)$ decreases by one or zero.
- Therefore, r_{M^*} is the rank function of a matroid. That it is the dual matroid rank function is shown in the next proof.

Dual Matroid Rank

Theorem 6.7.4

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
(6.31)

Proof.

A set X is independent in (V, r_{M^*}) if and only if

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) = |X|$$
 (6.32)

. . .

Dual Matroid Rank

Theorem 6.7.4

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
 (6.31)

Proof.

A set X is independent in (V, r_{M^*}) if and only if

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) = |X|$$
 (6.32)

or

$$r_M(V \setminus X) = r_M(V) \tag{6.33}$$

F39/60 (pg.131/230)

. . .

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

Dual Matroid Rank

Theorem 6.7.4

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
 (6.31)

Proof.

A set X is independent in (V, r_{M^*}) if and only if

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) = |X|$$
 (6.32)

or

$$r_M(V \setminus X) = r_M(V) \tag{6.33}$$

But a subset X is independent in M^* only if $V \setminus X$ is spanning in M (by the definition of the dual matroid).

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

F39/60 (pg.132/230)

Example duality: cocycle matroid

• The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{I \subseteq V : V \setminus I \text{ is a spanning set of } M\}$

• The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{I \subseteq V : V \setminus I \text{ is a spanning set of } M\}$

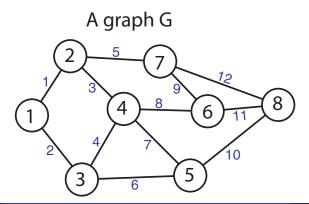
Dual Matroid

Matroid and Greedy

Other Matroid Properties

Transversal Matroid Matroid and representation

• It consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

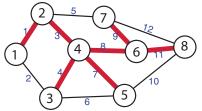


• The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{I \subseteq V : V \setminus I \text{ is a spanning set of } M\}$

Transversal Matroid Matroid and representation

• It consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

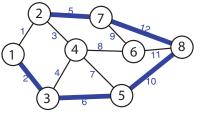
Minimally spanning in M (and thus a base in M)



Minimally spanning in M* (and thus a base in M*)

atroid and Greedy

Matroid



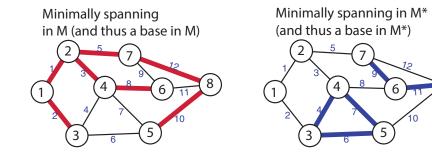
• The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{I \subseteq V : V \setminus I \text{ is a spanning set of } M\}$

Matroid

atroid and Greedy

Transversal Matroid Matroid and representation

• It consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.



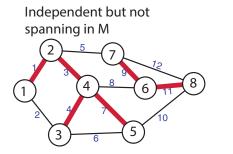
System of Distinct Reps

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

• The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{I \subseteq V : V \setminus I \text{ is a spanning set of } M\}$

Transversal Matroid Matroid and representation

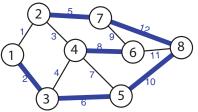
• It consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.



Dependent in M* (contains a cocycle, is a nonminimal cut)

atroid and Greedy

Matroid

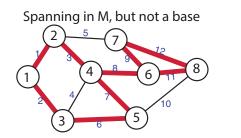


• The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{I \subseteq V : V \setminus I \text{ is a spanning set of } M\}$

Dual Matroid

Transversal Matroid Matroid and representation

• It consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.



Independent in M* $\begin{array}{c}
2 & 5 \\
7 \\
1 \\
3 \\
4 \\
7 \\
3 \\
6 \\
5 \\
10
\end{array}$

atroid and Greedy

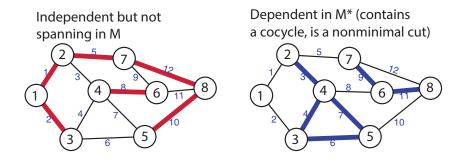
• The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{I \subseteq V : V \setminus I \text{ is a spanning set of } M\}$

Matroid

atroid and Greedy

Transversal Matroid Matroid and representation

• It consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.



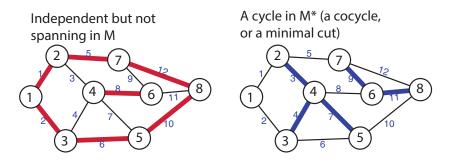
• The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{I \subseteq V : V \setminus I \text{ is a spanning set of } M\}$

Matroid

atroid and Greedy

Transversal Matroid Matroid and representation

• It consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.



Matroid and the greedy algorithm

System of Distinct Reps Transversals Transversal Matroid Matroid and representation

• Let \mathcal{I} be a set of subsets of E that is down-closed. Consider a non-negative modular weight function $w : E \to \mathbb{R}_+$, and we want to find the $A \in \mathcal{I}$ that maximizes w(A).

Matroid and Greedy

Other Matroid Properties

Consider the greedy algorithm: Set A = Ø, and repeatedly choose y ∈ E \ A such that: 1) A ∪ {y} ∈ I, and 2) w(y) is as large as possible. We stop when no such y exists.

Theorem 6.8.1

Let \mathcal{I} be a non-empty collection of subsets of a set E, down-closed (i.e., an independence system). Then the pair (E, \mathcal{I}) is a matroid if and only if for each weight function $w \in \mathcal{R}^E_+$, the greedy algorithm leads to a set $I \in \mathcal{I}$ of maximum weight w(I).

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 6.8.1 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the following are equivalent.

- \mathcal{B} is the collection of bases of a matroid;
- (2) if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B' x + y \in \mathcal{B}$ for some $y \in B \setminus B'$.
- If $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B y + x \in \mathcal{B}$ for some $y \in B \setminus B'$.

Properties 2 and 3 are called "exchange properties." Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.

Prof. Jeff Bilmes

proof of Theorem 6.8.1.

• Assume (E, \mathcal{I}) is a matroid and $w : E \to \mathcal{R}_+$ is given.

. . .

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

- Assume (E, \mathcal{I}) is a matroid and $w : E \to \mathcal{R}_+$ is given.
- Let $A = (a_1, a_2, ..., a_r)$ be the solution returned by greedy, where r = r(M) the rank of the matroid, and we order the elements as they were chosen (so $w(a_1) \ge w(a_2) \ge \cdots \ge w(a_r)$).

. .

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

- Assume (E, \mathcal{I}) is a matroid and $w : E \to \mathcal{R}_+$ is given.
- Let $A = (a_1, a_2, ..., a_r)$ be the solution returned by greedy, where r = r(M) the rank of the matroid, and we order the elements as they were chosen (so $w(a_1) \ge w(a_2) \ge \cdots \ge w(a_r)$).
- A is a base of M, and let $B = (b_1, \ldots, b_r)$ be any another base of M with elements also ordered decreasing by weight.

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

- Assume (E, \mathcal{I}) is a matroid and $w : E \to \mathcal{R}_+$ is given.
- Let $A = (a_1, a_2, ..., a_r)$ be the solution returned by greedy, where r = r(M) the rank of the matroid, and we order the elements as they were chosen (so $w(a_1) \ge w(a_2) \ge \cdots \ge w(a_r)$).
- A is a base of M, and let $B = (b_1, \ldots, b_r)$ be any another base of M with elements also ordered decreasing by weight.
- We next show that not only is $w(A) \ge w(B)$ but that $w(a_i) \ge w(b_i)$ for all i.

. . .

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

• Assume otherwise, and let k be the first (smallest) integer such that $w(a_k) < w(b_k)$. Hence $w(a_j) \ge w(b_j)$ for j < k.

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w(a_k) < w(b_k)$. Hence $w(a_j) \ge w(b_j)$ for j < k.
- Define independent sets $A_{k-1} = \{a_1, \ldots, a_{k-1}\}$ and $B_k = \{b_1, \ldots, b_k\}.$

Matroid and the greedy algorithm

proof of Theorem 6.8.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w(a_k) < w(b_k)$. Hence $w(a_j) \ge w(b_j)$ for j < k.
- Define independent sets $A_{k-1} = \{a_1, \ldots, a_{k-1}\}$ and $B_k = \{b_1, \ldots, b_k\}.$
- Since $|A_{k-1}| < |B_k|$, $A_{k-1} \cup \{b_i\} \in \mathcal{I}$ for some $1 \le i \le k$.

proof of Theorem 6.8.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w(a_k) < w(b_k)$. Hence $w(a_j) \ge w(b_j)$ for j < k.
- Define independent sets $A_{k-1} = \{a_1, \ldots, a_{k-1}\}$ and $B_k = \{b_1, \ldots, b_k\}.$
- Since $|A_{k-1}| < |B_k|$, $A_{k-1} \cup \{b_i\} \in \mathcal{I}$ for some $1 \le i \le k$.
- But $w(b_i) \ge w(b_k) > w(a_k)$, and so the greedy algorithm would have chosen b_i rather than a_k , contradicting what greedy does.

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

• Given an independence system (E, \mathcal{I}) , suppose the greedy algorithm leads to an independent set of max weight for every such weight function. We'll show (E, \mathcal{I}) is a matroid.

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

- Given an independence system (E, \mathcal{I}) , suppose the greedy algorithm leads to an independent set of max weight for every such weight function. We'll show (E, \mathcal{I}) is a matroid.
- Down monotonicity already holds (since we've started with an independence system).

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

- Given an independence system (E, \mathcal{I}) , suppose the greedy algorithm leads to an independent set of max weight for every such weight function. We'll show (E, \mathcal{I}) is a matroid.
- Down monotonicity already holds (since we've started with an independence system).
- Let $I, J \in \mathcal{I}$ with |I| < |J|. Suppose to the contrary, that $I \cup \{z\} \notin \mathcal{I}$ for all $z \in J \setminus I$.

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

- Given an independence system (E, \mathcal{I}) , suppose the greedy algorithm leads to an independent set of max weight for every such weight function. We'll show (E, \mathcal{I}) is a matroid.
- Down monotonicity already holds (since we've started with an independence system).
- Let $I, J \in \mathcal{I}$ with |I| < |J|. Suppose to the contrary, that $I \cup \{z\} \notin \mathcal{I}$ for all $z \in J \setminus I$.
- Define the following modular weight function w on V, and define k = |I|.

$$w(v) = \begin{cases} k+2 & \text{if } v \in I, \\ k+1 & \text{if } v \in J \setminus I, \\ 0 & \text{if } v \in S \setminus (I \cup J) \end{cases}$$
(6.34)

Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

• Now greedy will clearly, after k iterations recover I, but can not choose any element in $J \setminus I$ by assumption. Thus, greedy chooses a set of weight k(k+2).

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

- Now greedy will clearly, after k iterations recover I, but can not choose any element in $J \setminus I$ by assumption. Thus, greedy chooses a set of weight k(k+2).
- On the other hand, J has weight

$$w(J) \ge |J|(k+1) \ge (k+1)(k+1) > k(k+2)$$
(6.35)

so ${\cal J}$ has strictly larger weight but is still independent, contradicting greedy's optimality.

Other Matroid Properties

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Matroid and the greedy algorithm

converse proof of Theorem 6.8.1.

- Now greedy will clearly, after k iterations recover I, but can not choose any element in $J \setminus I$ by assumption. Thus, greedy chooses a set of weight k(k+2).
- On the other hand, J has weight

$$w(J) \ge |J|(k+1) \ge (k+1)(k+1) > k(k+2)$$
(6.35)

so ${\cal J}$ has strictly larger weight but is still independent, contradicting greedy's optimality.

• Therefore, (E,\mathcal{I}) must be a matroid.

Other Matroid Properties

• As given, the theorem asked for a modular function $w \in \mathbb{R}^E_+$.

- As given, the theorem asked for a modular function $w \in \mathbb{R}^E_+$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.

- As given, the theorem asked for a modular function $w \in \mathbb{R}^E_+$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.
- If we don't want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.

- As given, the theorem asked for a modular function $w \in \mathbb{R}^E_+$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.
- If we don't want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^E$ and keep going until we have a base.

- As given, the theorem asked for a modular function $w \in \mathbb{R}^E_+$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.
- If we don't want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^E$ and keep going until we have a base.
- If we stop at a negative value, we'll once again get a maximum weight independent set.

- As given, the theorem asked for a modular function $w \in \mathbb{R}^E_+$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.
- If we don't want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^E$ and keep going until we have a base.
- If we stop at a negative value, we'll once again get a maximum weight independent set.
- We can instead do as small as possible thus giving us a minimum weight independent set/base.

Matroid restriction/deletion

• Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{ Z : Z \subseteq Y, Z \in \mathcal{I} \}$$
(6.36)

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

 $\bullet \ \mbox{Let} \ M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V,$ then

$$\mathcal{I}_Y = \{ Z : Z \subseteq Y, Z \in \mathcal{I} \}$$
(6.36)

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

• This is called the restriction of M to Y, and is often written M|Y.

Matroid restriction/deletion

System of Distinct Reps Transversals

• Let $M=(V,\mathcal{I})$ be a matroid and let $Y\subseteq V,$ then

Transversal Matroid Matroid and representation

$$\mathcal{I}_Y = \{ Z : Z \subseteq Y, Z \in \mathcal{I} \}$$
(6.36)

atroid and Greedv

Other Matroid Properties

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

This is called the restriction of M to Y, and is often written M|Y.
If Y = V \ X, then we have

$$\mathcal{I}_Y = \{ Z : Z \cap X = \emptyset, Z \in \mathcal{I} \}$$
(6.37)

is considered a deletion of X from M, and is often written $M \setminus Z$.

Matroid restriction/deletion

System of Distinct Reps Transversals

• Let $M=(V,\mathcal{I})$ be a matroid and let $Y\subseteq V,$ then

Transversal Matroid Matroid and representation

$$\mathcal{I}_Y = \{ Z : Z \subseteq Y, Z \in \mathcal{I} \}$$
(6.36)

atroid and Greedv

Other Matroid Properties

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

This is called the restriction of M to Y, and is often written M|Y.
If Y = V \ X, then we have

$$\mathcal{I}_Y = \{ Z : Z \cap X = \emptyset, Z \in \mathcal{I} \}$$
(6.37)

is considered a deletion of X from M, and is often written $M \setminus Z$. • Hence, $M|Y = M \setminus (V \setminus Y)$.

Matroid restriction/deletion

System of Distinct Reps Transversals

• Let $M=(V,\mathcal{I})$ be a matroid and let $Y\subseteq V,$ then

Transversal Matroid Matroid and representation

$$\mathcal{I}_Y = \{ Z : Z \subseteq Y, Z \in \mathcal{I} \}$$
(6.36)

atroid and Greedy

Other Matroid Properties

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

This is called the restriction of M to Y, and is often written M|Y.
If Y = V \ X, then we have

$$\mathcal{I}_Y = \{ Z : Z \cap X = \emptyset, Z \in \mathcal{I} \}$$
(6.37)

is considered a deletion of X from M, and is often written $M \setminus Z$. • Hence, $M|Y = M \setminus (V \setminus Y)$.

• The rank function is of the same form. I.e., $r_Y : 2^Y \to \mathbb{Z}_+$, where $r_Y(Z) = r(Z)$ for $Z \subseteq Y$.

• Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M/Z.

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M/Z.
- Let $Z \subseteq V$ and let X be a base of Z. Then a subset I of $V \setminus Z$ is independent in M/Z iff $I \cup X$ is independent in M.

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M/Z.
- Let $Z \subseteq V$ and let X be a base of Z. Then a subset I of $V \setminus Z$ is independent in M/Z iff $I \cup X$ is independent in M.
- In fact, it is the case $M/Z = (M^* \setminus Z)^*$ (Exercise: show why).

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M/Z.
- Let $Z \subseteq V$ and let X be a base of Z. Then a subset I of $V \setminus Z$ is independent in M/Z iff $I \cup X$ is independent in M.
- In fact, it is the case $M/Z = (M^* \setminus Z)^*$ (Exercise: show why).
- The rank function takes the form

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y|Z)$$
 (6.38)

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M/Z.
- Let $Z \subseteq V$ and let X be a base of Z. Then a subset I of $V \setminus Z$ is independent in M/Z iff $I \cup X$ is independent in M.
- In fact, it is the case $M/Z = (M^* \setminus Z)^*$ (Exercise: show why).
- The rank function takes the form

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y|Z)$$
 (6.38)

• So given $I \subseteq V \setminus Z$ and X is a base of Z, $r_{M/Z}(I) = |I|$ is identical to $r(I \cup Z) = |I| + r(Z) = |I| + |X| = r(I \cup X)$, so $I \cup X$ independent in M.

- Contraction is dual to deletion, and is like a forced inclusion of contained base, but with a similar ground set removal. Contracting Z is written M/Z.
- Let $Z \subseteq V$ and let X be a base of Z. Then a subset I of $V \setminus Z$ is independent in M/Z iff $I \cup X$ is independent in M.
- In fact, it is the case $M/Z = (M^* \setminus Z)^*$ (Exercise: show why).
- The rank function takes the form

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y|Z)$$
 (6.38)

- So given $I \subseteq V \setminus Z$ and X is a base of Z, $r_{M/Z}(I) = |I|$ is identical to $r(I \cup Z) = |I| + r(Z) = |I| + |X| = r(I \cup X)$, so $I \cup X$ independent in M.
- A minor of a matroid is any matroid obtained via a series of deletions and contractions of some matroid.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

F47/60 (pg.174/230)

• Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.

System of Distinct Reps

• Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.

Matroid and Greedy

Other Matroid Properties

Transversals Transversal Matroid Matroid and representation Dual Matroid

While (V, I₁ ∩ I₂) is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find max |X| such that both X ∈ I₁ and X ∈ I₂.

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

- Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.
- While (V, I₁ ∩ I₂) is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find max |X| such that both X ∈ I₁ and X ∈ I₂.

Theorem 6.9.1

Let M_1 and M_2 be given as above, with rank functions r_1 and r_2 . Then the size of the maximum size set in $\mathcal{I}_1 \cap \mathcal{I}_2$ is given by

$$(r_1 * r_2)(V) \triangleq \min_{X \subseteq V} \left(r_1(X) + r_2(V \setminus X) \right)$$
(6.39)

Matroid and Greedy

Other Matroid Properties

System of Distinct Reps Transversals Transversal Matroid Matroid and representation

- Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.
- While (V, I₁ ∩ I₂) is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find max |X| such that both X ∈ I₁ and X ∈ I₂.

Theorem 6.9.1

Let M_1 and M_2 be given as above, with rank functions r_1 and r_2 . Then the size of the maximum size set in $\mathcal{I}_1 \cap \mathcal{I}_2$ is given by

$$(r_1 * r_2)(V) \triangleq \min_{X \subseteq V} \left(r_1(X) + r_2(V \setminus X) \right)$$
(6.39)

Dual Matroid

Matroid and Greedy

This is an instance of the convolution of two submodular functions, f_1 and f_2 that, evaluated at $Y \subseteq V$, is written as:

$$(f_1 * f_2)(Y) = \min_{X \subseteq Y} \left(f_1(X) + f_2(Y \setminus X) \right)$$
 (6.40)

Other Matroid Properties

• Recall Hall's theorem, that a transversal exists iff for all $X\subseteq V,$ we have $|\Gamma(X)|\geq |X|.$

- Recall Hall's theorem, that a transversal exists iff for all $X\subseteq V,$ we have $|\Gamma(X)|\geq |X|.$
- $\bullet \Leftrightarrow |\Gamma(X)| |X| \ge 0, \forall X$

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X\subseteq V,$ we have $|\Gamma(X)|\geq |X|.$
- $\bullet \ \Leftrightarrow \ \ |\Gamma(X)| |X| \ge 0, \forall X$
- $\Leftrightarrow \quad \min_X |\Gamma(X)| |X| \ge 0$

• Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \ge |X|$.

Dual Matroid

Matroid and Greedy

- \Leftrightarrow $|\Gamma(X)| |X| \ge 0, \forall X$
- $\Leftrightarrow \quad \min_X |\Gamma(X)| |X| \ge 0$
- $\Leftrightarrow \quad \min_X |\Gamma(X)| + |V| |X| \ge |V|$

• Recall Hall's theorem, that a transversal exists iff for all $X\subseteq V,$ we have $|\Gamma(X)|\geq |X|.$

Dual Matroid

Matroid and Greedy

- \Leftrightarrow $|\Gamma(X)| |X| \ge 0, \forall X$
- $\Leftrightarrow \quad \min_X |\Gamma(X)| |X| \ge 0$
- $\Leftrightarrow \quad \min_X |\Gamma(X)| + |V| |X| \ge |V|$
- $\Leftrightarrow \quad \min_X |\Gamma(X)| + |V \setminus X| \ge |V|$

• Recall Hall's theorem, that a transversal exists iff for all $X\subseteq V,$ we have $|\Gamma(X)|\geq |X|.$

Dual Matroid

Matroid and Greedy

Other Matroid Properties

 $\bullet \Leftrightarrow \quad |\Gamma(X)| - |X| \ge 0, \forall X$

•
$$\Leftrightarrow \quad \min_X |\Gamma(X)| - |X| \ge 0$$

- $\Leftrightarrow \quad \min_X |\Gamma(X)| + |V| |X| \ge |V|$
- $\Leftrightarrow \quad \min_X |\Gamma(X)| + |V \setminus X| \ge |V|$
- $\bullet \Leftrightarrow \quad [\Gamma(\cdot) * | \cdot |](V) \ge |V|$

• Recall Hall's theorem, that a transversal exists iff for all $X\subseteq V,$ we have $|\Gamma(X)|\geq |X|.$

Dual Matroid

Matroid and Greedy

Other Matroid Properties

• \Leftrightarrow $|\Gamma(X)| - |X| \ge 0, \forall X$

•
$$\Leftrightarrow \quad \min_X |\Gamma(X)| - |X| \ge 0$$

- $\Leftrightarrow \quad \min_X |\Gamma(X)| + |V| |X| \ge |V|$
- $\Leftrightarrow \quad \min_X |\Gamma(X)| + |V \setminus X| \ge |V|$
- \Leftrightarrow $[\Gamma(\cdot) * | \cdot |](V) \ge |V|$
- So Hall's theorem can be expressed as convolution.

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \ge |X|$.
- $\bullet \ \Leftrightarrow \ \ |\Gamma(X)| |X| \ge 0, \forall X$

•
$$\Leftrightarrow \quad \min_X |\Gamma(X)| - |X| \ge 0$$

- $\Leftrightarrow \quad \min_X |\Gamma(X)| + |V| |X| \ge |V|$
- $\Leftrightarrow \quad \min_X |\Gamma(X)| + |V \setminus X| \ge |V|$
- \Leftrightarrow $[\Gamma(\cdot) * | \cdot |](V) \ge |V|$
- So Hall's theorem can be expressed as convolution.
- Note, in general, convolution of two submodular functions does not preserve submodularity (but in certain special cases it does).

and Greedy

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties Matroid Union Definition 6.9.2 Let $M_1 = (V_1, \mathcal{I}_1), M_2 = (V_2, \mathcal{I}_2), \ldots, M_k = (V_k, \mathcal{I}_k)$ be matroids. We define the union of matroids as $M_1 \lor M_2 \lor \cdots \lor M_k = (V_1 \uplus V_2 \uplus \cdots \uplus V_k, \mathcal{I}_1 \lor \mathcal{I}_2 \lor \cdots \lor \mathcal{I}_k)$, where $I_1 \lor \mathcal{I}_2 \lor \cdots \lor \mathcal{I}_k = \{I_1 \uplus I_2 \uplus \cdots \uplus I_k | I_1 \in \mathcal{I}_1, \ldots, I_k \in \mathcal{I}_k\}$ (6.41)

Note $A \uplus B$ designates the disjoint union of A and B.

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties Matroid Union Definition 6.9.2 Let $M_1 = (V_1, \mathcal{I}_1), M_2 = (V_2, \mathcal{I}_2), \ldots, M_k = (V_k, \mathcal{I}_k)$ be matroids. We define the union of matroids as

 $M_1 \lor M_2 \lor \cdots \lor M_k = (V_1 \uplus V_2 \uplus \cdots \uplus V_k, \mathcal{I}_1 \lor \mathcal{I}_2 \lor \cdots \lor \mathcal{I}_k)$, where

 $I_1 \vee \mathcal{I}_2 \vee \cdots \vee \mathcal{I}_k = \{I_1 \uplus I_2 \uplus \cdots \uplus I_k | I_1 \in \mathcal{I}_1, \dots, I_k \in \mathcal{I}_k\} \quad (6.41)$

Note $A \uplus B$ designates the disjoint union of A and B.

Theorem 6.9.3

Let $M_1 = (V_1, \mathcal{I}_1)$, $M_2 = (V_2, \mathcal{I}_2)$, ..., $M_k = (V_k, \mathcal{I}_k)$ be matroids, with rank functions r_1, \ldots, r_k . Then the union of these matroids is still a matroid, having rank function

$$r(Y) = \min_{X \subseteq Y} \left(|Y \setminus X| + r_1(X \cap V_1) + \dots + r_k(X \cap V_k) \right)$$
(6.42)

for any $Y \subseteq V_1 \cup \ldots V_k$.

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

Exercise: Describe $M \vee M^*$.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

F51/60 (pg.189/230)

• All matroids up to and including three elements are graphic.

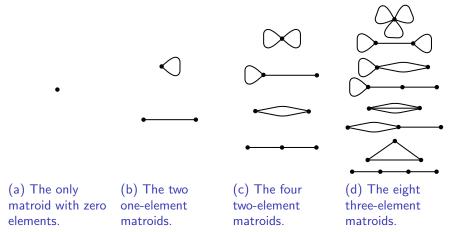
Matroids of three or fewer elements are graphic

System of Distinct Reps Transversals Transversal Matroid Matroid and representation

• All matroids up to and including three elements are graphic.

Dual Matroid

Matroid and Greedy



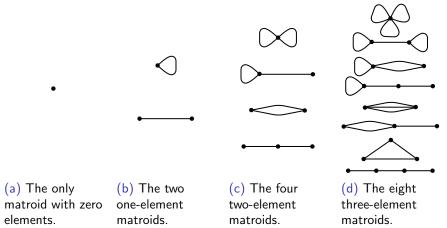
Matroids of three or fewer elements are graphic

Transversal Matroid

• All matroids up to and including three elements are graphic.

Matroid and representation

Matroid and Greedy



• Nice way to show low element size matroids. What about matroids that are low rank but with many elements?

Prof. Jeff Bilmes

System of Distinct Reps

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

F52/60 (pg.192/230)

• Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1, \ldots, m\}$ of indices (with corresponding column vectors $\{v_i : i \in S\}$, with |S| = k is affinely dependent if $m \ge 1$ and there exists elements $\{a_1, \ldots, a_k\} \in \mathbb{F}$, not all zero, such that $\sum_{i=1}^k a_i v_i = 0$ and $\sum_{i=1}^k a_i = 0$, and otherwise affinely independent.

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1, \ldots, m\}$ of indices (with corresponding column vectors $\{v_i : i \in S\}$, with |S| = k is affinely dependent if $m \ge 1$ and there exists elements $\{a_1, \ldots, a_k\} \in \mathbb{F}$, not all zero, such that $\sum_{i=1}^k a_i v_i = 0$ and $\sum_{i=1}^k a_i = 0$, and otherwise affinely independent.
- Concisely: points $\{v_1, v_2, \ldots, v_k\}$ are affinely independent if $v_2 v_1, v_3 v_1, \ldots, v_k v_1$ are linearly independent.

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1, \ldots, m\}$ of indices (with corresponding column vectors $\{v_i : i \in S\}$, with |S| = k is affinely dependent if $m \ge 1$ and there exists elements $\{a_1, \ldots, a_k\} \in \mathbb{F}$, not all zero, such that $\sum_{i=1}^k a_i v_i = 0$ and $\sum_{i=1}^k a_i = 0$, and otherwise affinely independent.
- Concisely: points $\{v_1, v_2, \ldots, v_k\}$ are affinely independent if $v_2 v_1, v_3 v_1, \ldots, v_k v_1$ are linearly independent.

Proposition 6.9.4 (affine matroid)

Let ground set $E = \{1, ..., m\}$ index column vectors of a matrix, and let \mathcal{I} be the set of subsets X of E such that X indices affinely independent vectors. Then (E, \mathcal{I}) is a matroid.

Proof.	
Exercise:	

• Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0), (1,0), (2,0), (0,1), (0,2), (1,1)\}.$

Dual Matroid

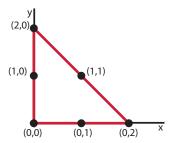
Matroid and Greedy

System of Distinct Reps

Transversals

- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0), (1,0), (2,0), (0,1), (0,2), (1,1)\}.$
- Hence, we can plot the points in \mathbb{R}^2 as follows:

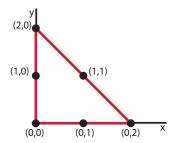
Transversals



Matroid and Greedy

System of Distinct Reps

- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0), (1,0), (2,0), (0,1), (0,2), (1,1)\}.$
- Hence, we can plot the points in \mathbb{R}^2 as follows:
- Dependent sets consist of all subsets with > 4 elements, or 3 collinear elements.

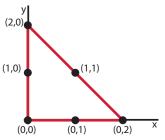


Dual Matroid

Matroid and Greedy

System of Distinct Reps

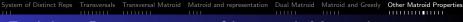
- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0), (1,0), (2,0), (0,1), (0,2), (1,1)\}.$
- Hence, we can plot the points in \mathbb{R}^2 as follows:
- Dependent sets consist of all subsets with > 4 elements, or 3 collinear elements.



Matroid and Greedy

• In general, for a matroid \mathcal{M} of rank m+1 with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^m is dependent if: 1) $|X| \ge 2$ and the points are identical; 2) $|X| \ge 3$ and the points are collinear; 3) $|X| \ge 4$ and the points are coplanar; or 4) $|X| \ge 5$ and the points are in space.

System of Distinct Reps



Euclidean Representation of Low-rank Matroids

Theorem 6.9.5

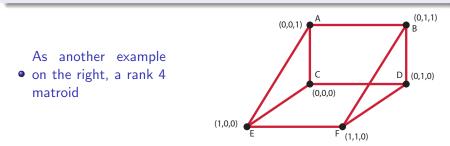
Any matroid of rank $m \leq 4$ can be represented by an affine matroid in \mathcal{R}^{m-1} .

Euclidean Representation of Low-rank Matroids

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

Theorem 6.9.5

Any matroid of rank $m \leq 4$ can be represented by an affine matroid in \mathcal{R}^{m-1} .



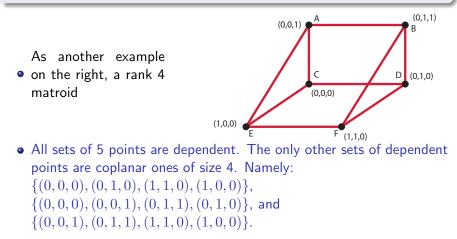
Other Matroid Properties

Matroid and Greedy

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties

Theorem 6.9.5

Any matroid of rank $m \leq 4$ can be represented by an affine matroid in \mathcal{R}^{m-1} .



Matroid and Greedy

Transversal Matroid Matroid and representation Dual Matroid

• Loops represented by a separate box indicating how many loops there are. Parallel elements indicated by a multiplicity next to a point.

System of Distinct Reps

Transversals

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid and Greedy Other Matroid Properties

Euclidean Representation of Low-rank Matroids

• Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.

Euclidean Representation of Low-rank Matroids

Transversal Matroid Matroid and representation Dual Matroid

Matroid and Greedy

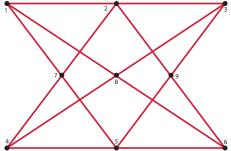
- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.
- Example: Is there a matroid that is not representable (i.e., not linear for some field)?

System of Distinct Reps

Transversals

Euclidean Representation of Low-rank Matroid Matroid

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.
- Example: Is there a matroid that is not representable (i.e., not linear for some field)? Yes, consider the matroid



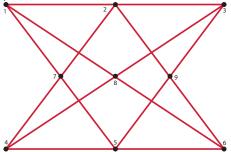
Other Matroid

Properties

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.
- Example: Is there a matroid that is not representable (i.e., not linear for some field)? Yes, consider the matroid

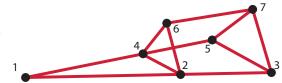
Dual Matroid

Matroid and Greedy

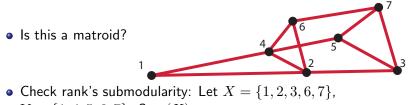


• Called the non-Pappus matroid. Has rank three, but any matric matroid with the above dependencies would require that $\{7, 8, 9\}$ is dependent, hence requiring an additional line in the above.

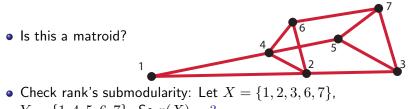
System of Distinct Reps



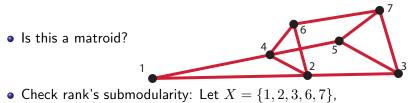
• Is this a matroid?



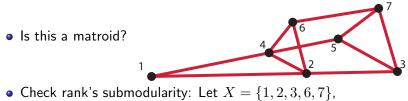
 $Y = \{1, 4, 5, 6, 7\}$. So r(X) =



 $Y = \{1, 4, 5, 6, 7\}$. So r(X) = 3



 $Y = \{1, 4, 5, 6, 7\}.$ So r(X) = 3, and r(Y) =



 $Y = \{1, 4, 5, 6, 7\}$. So r(X) = 3, and r(Y) = 3

• Check rank's submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So r(X) = 3, and r(Y) = 3, and $r(X \cup Y) =$

• Check rank's submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So r(X) = 3, and r(Y) = 3, and $r(X \cup Y) = 4$

Euclidean Representation of Low-rank Matroids: A test

Dual Matroid

Matroid and Greedy

Transversal Matroid Matroid and representation

• Check rank's submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So r(X) = 3, and r(Y) = 3, and $r(X \cup Y) = 4$, so we must have, by submodularity, that $r(\{1, 6, 7\}) = r(X \cap Y) \le r(X) + r(Y) - r(X \cup Y) = 2$.

System of Distinct Reps

Transversals

Euclidean Representation of Low-rank Matroids: A test

Dual Matroid

Matroid and Greedy

Transversals Transversal Matroid Matroid and representation

- Check rank's submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So r(X) = 3, and r(Y) = 3, and $r(X \cup Y) = 4$, so we must have, by submodularity, that $r(\{1, 6, 7\}) = r(X \cap Y) \le r(X) + r(Y) - r(X \cup Y) = 2$.
- However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y) =$

System of Distinct Reps

Euclidean Representation of Low-rank Matroids: A test

Dual Matroid

Matroid and Greedy

System of Distinct Reps Transversals Transversal Matroid Matroid and representation

- Check rank's submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So r(X) = 3, and r(Y) = 3, and $r(X \cup Y) = 4$, so we must have, by submodularity, that $r(\{1, 6, 7\}) = r(X \cap Y) \le r(X) + r(Y) - r(X \cup Y) = 2$.
- However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y) = 3$

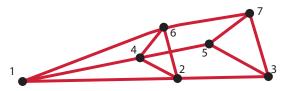
Euclidean Representation of Low-rank Matroids: A test

Dual Matroid

Matroid and Greedy

System of Distinct Reps Transversals Transversal Matroid Matroid and representation

- Check rank's submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So r(X) = 3, and r(Y) = 3, and $r(X \cup Y) = 4$, so we must have, by submodularity, that $r(\{1, 6, 7\}) = r(X \cap Y) \le r(X) + r(Y) - r(X \cup Y) = 2$.
- However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y) = 3$



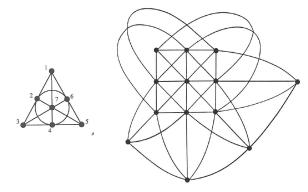
Is this a matroid?

- If we extend the line from 6-7 to 1, then is it a matroid?
- Hence, not all 2D or 3D graphs of points and lines are matroids.

Euclidean Representation of Low-rank Matroids: Other Examples

Matroid and representation Dual Matroid

• Other examples can be more complex, consider the following two matroids (from Oxley, 2011):



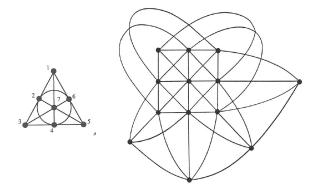
System of Distinct Reps

Transversals

Transversal Matroid

System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid Matroid and Greedy Other Matroid Properties
Euclidean Representation of Low-rank Matroids: Other
Examples

• Other examples can be more complex, consider the following two matroids (from Oxley, 2011):



• Hence, lines (in 2D) may be curved and planes (in 3D) can be twisted.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 6 - April 16th, 2014

Transversal Matroid Matroid and representation Dual Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).

System of Distinct Reps

Euclidean Rep. of Low-rank Matroids: Conditions

Transversal Matroid Matroid and representation Dual

• rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).

Matroid and Greedy

Other Matroid

- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).

Euclidean Rep. of Low-rank Matroids: Conditions

Transversal Matroid Matroid and representation Dual Matroid

• rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).

Matroid and Greedy

Other Matroid

- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)

Transversal Matroid Matroid and representation Euclidean Rep. of Low-rank Matroids: Conditions

 rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).

Matroid and Greedy

Other Matroid

- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless > 3)

Transversal Matroid

 rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).

Matroid and representation

Matroid and Greedy

Other Matroid

- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless > 3)
- any three distinct non-collinear points lie on a plane

 rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).

Matroid and Greedy

Other Matroid

- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless > 3)
- any three distinct non-collinear points lie on a plane
- If diagram has at most one plane, then any two distinct lines meet in at most one point.

 rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).

Matroid and Greedy

Other Matroid

- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless > 3)
- any three distinct non-collinear points lie on a plane
- If diagram has at most one plane, then any two distinct lines meet in at most one point.
- If diagram has more than one plane, then: 1) any two distinct planes meeting in more than two points do so in a line; 2) any two distinct lines meeting in a point do so in at most one point and lie in on a common plane; 3) any line not lying on a plane intersects it in at most one point.

System of Distinct Reps Transversals

 rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).

Matroid and Greedy

- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless > 3)
- any three distinct non-collinear points lie on a plane
- If diagram has at most one plane, then any two distinct lines meet in at most one point.
- If diagram has more than one plane, then: 1) any two distinct planes meeting in more than two points do so in a line; 2) any two distinct lines meeting in a point do so in at most one point and lie in on a common plane; 3) any line not lying on a plane intersects it in at most one point.
- Matroid of rank at most four (see Oxley 2011 for more details).

System of Distinct Reps Transversals