Submodular Functions, Optimization, and Applications to Machine Learning

— Spring Quarter, Lecture 6 —

http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

April 16th, 2014

 $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$ = $f(A) + 2f(C) + f(B_1) = -f(A_1) + f(C) + f(B_2) = -f(A \cap B)$

Cumulative Outstanding Reading

• Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige's book.

Announcements, Assignments, and Reminders

- Homework 1 is out, due Wednesday April 23rd, 11:45pm, electronically via our assignment dropbox (https://canvas.uw.edu/courses/895956/assignments).
- All homeworks must be done electronically, only PDF file format accepted.
- Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

L1 (3/31): Motivation, Applications, &

- Basic Definitions

 L2: (4/2): Applications, Basic Definitions. Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes.
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity

- L11: More properties of polymatroids, SFM special cases
- L12: polymatroid properties, extreme points polymatroids,
- L13: sat, dep, supp, exchange capacity, examples
- L14: Lattice theory: partially ordered sets; lattices; distributive, modular, submodular, and boolean lattices; ideals and join irreducibles.
- L15: Supp, Base polytope, polymatroids and entropic Venn diagrams, exchange capacity,
- L16: proof that minimum norm point yields min of submodular function, and the lattice of minimizers of a submodular function. Lovasz extension
- L17: Lovasz extension, Choquet Integration, more properties/examples of Lovasz extension, convex minimization and SEM.
- L18: Lovasz extension examples and structured convex norms, The Min-Norm Point Algorithm detailed.
- L19: symmetric submodular function minimization, maximizing monotone submodular function w. card constraints.
- L20: maximizing monotone submodular function w. other constraints, non-monotone maximization

Finals Week: June 9th-13th, 2014.

Slight modification (non unit increment) that is equivalent.

Definition 6.2.1 (Matroid-II)

A set system (E, \mathcal{I}) is a Matroid if

- (I1') $\emptyset \in \mathcal{I}$
- (12') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (or "down-closed")
- (13') $\forall I,J\in\mathcal{I}$, with |I|>|J|, then there exists $x\in I\setminus J$ such that $J\cup\{x\}\in\mathcal{I}$

Note (I1)=(I1'), (I2)=(I2'), and we get (I3)=(I3') using induction.

Matroids - important property

Proposition 6.2.1

In a matroid $M=(E,\mathcal{I})$, for any $U\subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 6.2.2 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if

- (I1') $\emptyset \in \mathcal{I}$ (emptyset containing)
- (I2') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (down-closed or subclusive)
- (I3') $\forall X \subseteq V$, and $I_1, I_2 \in \mathsf{maxInd}(X)$, we have $|I_1| = |I_2|$ (all maximally independent subsets of X have the same size).

Matroids - rank

- Thus, in any matroid $M=(E,\mathcal{I})$, $\forall U\subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just r(U) when the matroid in equation is unambiguous.
- $r(E) = r_{(E,\mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 6.2.1 (matroid rank function)

The rank of a matroid is a function $r: 2^E \to \mathbb{Z}_+$ defined by

$$r(A) = \max\{|X| : X \subseteq A, X \in \mathcal{I}\} = \max_{X \in \mathcal{I}} |A \cap X|$$
 (6.1)

- From the above, we immediately see that $r(A) \leq |A|$.
- Moreover, if r(A) = |A|, then $A \in \mathcal{I}$, meaning A is independent (in this case, A is a self base).

Lemma 6.2.1

The rank function $r: 2^E \to \mathbb{Z}_+$ of a matroid is submodular, that is $r(A) + r(B) \ge r(A \cup B) + r(A \cap B)$

Proof.

- **1** Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
- ② Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
- $\textbf{ Since } M \text{ is a matroid, we know that } r(A \cap B) = r(X) = |X|, \text{ and } r(A \cup B) = r(Y) = |Y|. \text{ Also, for any } U \in \mathcal{I}, \ r(A) \geq |A \cap U|.$
- Then we have

$$r(A) + r(B) \ge |Y \cap A| + |Y \cap B| \tag{6.3}$$

$$= |Y \cap (A \cap B)| + |Y \cap (A \cup B)| \tag{6.4}$$

$$\geq |X| + |Y| = r(A \cap B) + r(A \cup B)$$
 (6.5)

Partition Matroid

- Let V be our ground set.
- Let $V = V_1 \cup V_2 \cup \cdots \cup V_\ell$ be a partition of V into ℓ blocks (i.e., disjoint sets). Define a set of subsets of V as

$$\mathcal{I} = \{ X \subseteq V : |X \cap V_i| \le k_i \text{ for all } i = 1, \dots, \ell \}.$$
 (6.3)

where k_1, \ldots, k_ℓ are fixed parameters, $k_i \geq 0$. Then $M = (V, \mathcal{I})$ is a matroid.

- Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell=1,\ V_1=V$, and $k_1=k$.
- Parameters associated with a partition matroid: ℓ and k_1, k_2, \ldots, k_ℓ although often the k_i 's are all the same.
- We'll show that property (I3') in Def $\ref{eq:condition}$ holds. If $X,Y\in\mathcal{I}$ with |Y|>|X|, then there must be at least one i with $|Y\cap V_i|>|X\cap V_i|$. Therefore, adding one element $e\in V_i\cap (Y\setminus X)$ to X won't break independence.

Partition Matroid

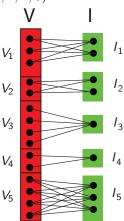
- What is the partition matroid's rank function?
- A partition matroids rank function:

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$
 (6.12)

which we also immediately see is submodular using properties we spoke about last week. That is:

- lacktriangledown $|A \cap V_i|$ is submodular (in fact modular) in A
- \bigcirc min(submodular(A), k_i) is submodular in A since $|A \cap V_i|$ is monotone.
- 3 sums of submodular functions are submodular.
- r(A) is also non-negative integral monotone non-decreasing, so it defines a matroid (the partition matroid).

• Example where $\ell = 5$, $(k_1, k_2, k_3, k_4, k_5) = (2, 2, 1, 1, 3)$.



- Recall, $\Gamma: 2^V \to \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) = \{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.
- Here, for $X \subseteq V$, we have $\Gamma(X) = \{i \in I : (v, i) \in E(G) \text{ and } v \in X\}.$
- For such a constructed bipartite graph, the rank function of a partition matroid is $r(X) = \sum_{i=1}^\ell \min(|X \cap V_i|, k_i) =$ the maximum matching involving X.

• Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_i : i \in I)$ where $\emptyset \subset V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_i : i \in I)$ where $\emptyset \subset V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.
- Here, the sets $V_i \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_i$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).

• Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_i : i \in I)$ where $\emptyset \subset V_i \subseteq V$

- for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$. • Here, the sets $V_i \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_i$ is a member of group i. Groups need not be disjoint (e.g., interest
- groups of individuals). • A family $(v_i : i \in I)$ with $v_i \in V$ is said to be a system of
- representatives of \mathcal{V} if \exists a bijection $\pi: I \to I$ such that $v_i \in V_{\pi(i)}$.

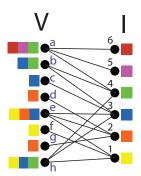
- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_i : i \in I)$ where $\emptyset \subset V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.
- Here, the sets $V_i \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_i$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $(v_i : i \in I)$ with $v_i \in V$ is said to be a system of representatives of \mathcal{V} if \exists a bijection $\pi: I \to I$ such that $v_i \in V_{\pi(i)}$.
- v_i is the representative of set (or group) $V_{\pi(i)}$, meaning the i^{th} representative is meant to represent set $V_{\pi(i)}$.

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_i : i \in I)$ where $\emptyset \subset V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.
- Here, the sets $V_i \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_i$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $(v_i:i\in I)$ with $v_i\in V$ is said to be a system of representatives of $\mathcal V$ if \exists a bijection $\pi:I\to I$ such that $v_i\in V_{\pi(i)}.$
- v_i is the representative of set (or group) $V_{\pi(i)}$, meaning the i^{th} representative is meant to represent set $V_{\pi(i)}$.
- Example: Consider the house of representatives, $v_i =$ "Jim McDermott, while i = "King County, WA-7".

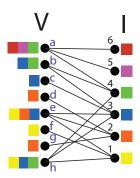
- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_i : i \in I)$ where $\emptyset \subset V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.
- Here, the sets $V_i \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_i$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $(v_i:i\in I)$ with $v_i\in V$ is said to be a system of representatives of $\mathcal V$ if \exists a bijection $\pi:I\to I$ such that $v_i\in V_{\pi(i)}.$
- v_i is the representative of set (or group) $V_{\pi(i)}$, meaning the i^{th} representative is meant to represent set $V_{\pi(i)}$.
- Example: Consider the house of representatives, $v_i =$ "Jim McDermott, while i = "King County, WA-7".
- In a system of representatives, there is no requirement for the representatives to be distinct. I.e., we could have some $v_1 \in V_1 \cap V_2$, where v_1 represents both V_1 and V_2 .

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_i : i \in I)$ where $\emptyset \subset V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.
- Here, the sets $V_i \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_i$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $(v_i:i\in I)$ with $v_i\in V$ is said to be a system of representatives of $\mathcal V$ if \exists a bijection $\pi:I\to I$ such that $v_i\in V_{\pi(i)}.$
- v_i is the representative of set (or group) $V_{\pi(i)}$, meaning the i^{th} representative is meant to represent set $V_{\pi(i)}$.
- Example: Consider the house of representatives, $v_i =$ "Jim McDermott, while i = "King County, WA-7".
- In a system of representatives, there is no requirement for the representatives to be distinct. I.e., we could have some $v_1 \in V_1 \cap V_2$, where v_1 represents both V_1 and V_2 .
- We can view this as a bipartite graph.

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell=6$ groups, with $\mathcal{V}=(V_1,V_2,\ldots,V_6)$ $= (\{e, f, h\}, \{d, e, g\}, \{b, c, e, h\}, \{a, b, h\}, \{a\}, \{a\}).$

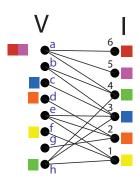


- ullet We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell = 6$ groups, with $\mathcal{V} = (V_1, V_2, \dots, V_6)$ = $(\{e, f, h\}, \{d, e, g\}, \{b, c, e, h\}, \{a, b, h\}, \{a\}, \{a\}).$



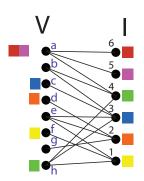
 A system of representatives would make sure that there is a representative for each color group. For example,

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell=6$ groups, with $\mathcal{V}=(V_1,V_2,\ldots,V_6)$ $= (\{e, f, h\}, \{d, e, g\}, \{b, c, e, h\}, \{a, b, h\}, \{a\}, \{a\}).$



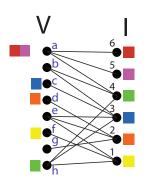
- A system of representatives would make sure that there is a representative for each color group. For example,
- The representatives $(\{a, c, d, f, h\})$ are shown as colors on the left.

- ullet We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell=6$ groups, with $\mathcal{V}=(V_1,V_2,\ldots,V_6)$ = $(\{e,f,h\},\{d,e,g\},\{b,c,e,h\},\{a,b,h\},\{a\},\{a\}).$



- A system of representatives would make sure that there is a representative for each color group. For example,
- The representatives $(\{a, c, d, f, h\})$ are shown as colors on the left.
- Here, the set of representatives is <u>not</u> distinct. Why?

- ullet We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell=6$ groups, with $\mathcal{V}=(V_1,V_2,\ldots,V_6)$ = $(\{e,f,h\},\{d,e,g\},\{b,c,e,h\},\{a,b,h\},\{a\},\{a\}).$



- A system of representatives would make sure that there is a representative for each color group. For example,
- The representatives $(\{a, c, d, f, h\})$ are shown as colors on the left.
- Here, the set of representatives is <u>not</u> <u>distinct</u>. Why? In fact, due to the red and pink group, a distinct group of representatives is impossible (since there is only one common choice to represent both color groups).

• Let (V, V) be a set system (i.e., $V = (V_k : i \in I)$ where $V_i \subseteq V$ for all i), and I is an index set. Hence, |I| = |V|.

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_k : i \in I)$ where $V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.
- A family $(v_i:i\in I)$ with $v_i\in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi: I \leftrightarrow I$ such that $v_i \in V_{\pi(i)}$ and $v_i \neq v_j$ for all $i \neq j$.

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_k : i \in I)$ where $V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.
- A family $(v_i:i\in I)$ with $v_i\in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi: I \leftrightarrow I$ such that $v_i \in V_{\pi(i)}$ and $v_i \neq v_j$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Lets re-state (and rename) this as a:

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_k : i \in I)$ where $V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.
- A family $(v_i:i\in I)$ with $v_i\in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi: I \leftrightarrow I$ such that $v_i \in V_{\pi(i)}$ and $v_i \neq v_j$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Lets re-state (and rename) this as a:

Definition 6.3.1 (transversal)

Given a set system (V, \mathcal{V}) as defined above, a set $T \subseteq V$ is a transversal of \mathcal{V} if there is a bijection $\pi: T \leftrightarrow I$ such that

$$x \in V_{\pi(x)}$$
 for all $x \in T$ (6.1)

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_k : i \in I)$ where $V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.
- A family $(v_i:i\in I)$ with $v_i\in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi: I \leftrightarrow I$ such that $v_i \in V_{\pi(i)}$ and $v_i \neq v_j$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Lets re-state (and rename) this as a:

Definition 6.3.1 (transversal)

Given a set system (V, \mathcal{V}) as defined above, a set $T \subseteq V$ is a transversal of \mathcal{V} if there is a bijection $\pi: T \leftrightarrow I$ such that

$$x \in V_{\pi(x)}$$
 for all $x \in T$ (6.1)

• Note that due to $\pi: T \leftrightarrow I$ being a bijection, all of I and T are "covered" (so this makes things distinct automatically).

Transversals are Subclusive

• A set $X \subseteq V$ is a partial transversal if X is a transversal of some subfamily $\mathcal{V}' = (V_i : i \in I')$ where $I' \subseteq I$.

- A set $X \subseteq V$ is a partial transversal if X is a transversal of some subfamily $\mathcal{V}' = (V_i : i \in I')$ where $I' \subseteq I$.
- Therefore, for any transversal T, any subset $T' \subseteq T$ is a partial transversal.

- A set $X \subseteq V$ is a partial transversal if X is a transversal of some subfamily $\mathcal{V}' = (V_i : i \in I')$ where $I' \subseteq I$.
- Therefore, for any transversal T, any subset $T' \subseteq T$ is a partial transversal.
- Thus, transversals are down closed (subclusive).

• As we saw, a transversal might not always exist. How to tell?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{6.2}$$

so $|V(J)|: 2^I \to \mathbb{Z}_+$ is the set cover func. (we know is submodular).

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{6.2}$$

so $|V(J)|: 2^I \to \mathbb{Z}_+$ is the set cover func. (we know is submodular). We have

Theorem 6.4.1 (Hall's theorem)

Given a set system (V, \mathcal{V}) , the family of subsets $\mathcal{V} = (V_i : i \in I)$ has a transversal $(v_i : i \in I)$ iff for all $J \subset I$

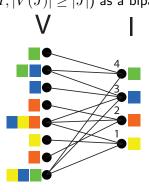
$$|V(J)| \ge |J| \tag{6.3}$$

• As we saw, a transversal might not always exist. How to tell?

• Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{6.2}$$

so $|V(J)|: 2^I \to \mathbb{Z}_+$ is the set cover func. (we know is submodular). • Hall's theorem $(\forall J \subseteq I, |V(J)| \ge |J|)$ as a bipartite graph.



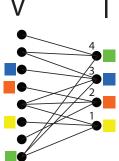
• As we saw, a transversal might not always exist. How to tell?

• Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{6.2}$$

so $|V(J)|:2^I o \mathbb{Z}_+$ is the set cover func. (we know is submodular).

• Hall's theorem $(\forall J\subseteq I, |V(J)|\geq |J|)$ as a bipartite graph. \bigvee



When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{6.2}$$

so $|V(J)|: 2^I \to \mathbb{Z}_+$ is the set cover func. (we know is submodular).

Moreover, we have

Theorem 6.4.2 (Rado's theorem (1942))

If M=(V,r) is a matroid on V with rank function r, then the family of subsets $(V_i:i\in I)$ of V has a transversal $(v_i:i\in I)$ that is $\underline{independent}$ in M iff for all $J\subseteq I$

$$r(V(J)) \ge |J| \tag{6.4}$$

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{6.2}$$

so $|V(J)|:2^I \to \mathbb{Z}_+$ is the set cover func. (we know is submodular).

Moreover, we have

Theorem 6.4.2 (Rado's theorem (1942))

If M=(V,r) is a matroid on V with rank function r, then the family of subsets $(V_i:i\in I)$ of V has a transversal $(v_i:i\in I)$ that is $\underline{independent}$ in M iff for all $J\subseteq I$

$$r(V(J)) \ge |J| \tag{6.4}$$

• Note, a transversal T independent in M means that r(T) = |T|.

Theorem 6.4.3 (Polymatroid transversal theorem)

If $V = (V_i : i \in I)$ is a finite family of non-empty subsets of V, and $f: 2^V \to \mathbb{Z}_+$ is a non-negative, integral, monotone non-decreasing, and submodular function, then V has a system of representatives $(v_i : i \in I)$ such that

$$f(\cup_{i\in J}\{v_i\}) \ge |J| \text{ for all } J \subseteq I$$
 (6.5)

if and only if

$$f(V(J)) \ge |J| \text{ for all } J \subseteq I$$
 (6.6)

Theorem 6.4.3 (Polymatroid transversal theorem)

If $\mathcal{V}=(V_i:i\in I)$ is a finite family of non-empty subsets of V, and $f:2^V\to\mathbb{Z}_+$ is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $(v_i:i\in I)$ such that

$$f(\cup_{i\in J}\{v_i\}) \ge |J| \text{ for all } J \subseteq I$$
 (6.5)

if and only if

System of Distinct Reps

$$f(V(J)) \ge |J|$$
 for all $J \subseteq I$ (6.6)

• Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking f(S) = |S| for $S \subseteq V$. In which case, Eq. 6.5 requires the system of representatives to be distinct.

Theorem 6.4.3 (Polymatroid transversal theorem)

If $\mathcal{V}=(V_i:i\in I)$ is a finite family of non-empty subsets of V, and $f:2^V\to\mathbb{Z}_+$ is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $(v_i:i\in I)$ such that

$$f(\cup_{i\in J}\{v_i\}) \ge |J| \text{ for all } J \subseteq I$$
 (6.5)

if and only if

$$f(V(J)) \ge |J| \text{ for all } J \subseteq I$$
 (6.6)

- Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking f(S) = |S| for $S \subseteq V$.
- We get Theorem 6.4.2 by taking f(S) = r(S) for $S \subseteq V$, the rank function of the matroid. where, Eq. 6.5 insists the system of representatives

• Note the condition in Theorem 6.4.3 is $f(V(J)) \geq |J|$ for all $J \subseteq I$, where $f: 2^V \to \mathbb{Z}_+$ is non-negative, integral, monotone non-decreasing and submodular, and $V(J) = \bigcup_{i \in J} V_i$ with $V_i \subseteq V$.

- Note the condition in Theorem 6.4.3 is $f(V(J)) \geq |J|$ for all $J \subseteq I$, where $f: 2^V \to \mathbb{Z}_+$ is non-negative, integral, monotone non-decreasing and submodular, and $V(J) = \bigcup_{i \in J} V_i$ with $V_i \subseteq V$.
- Note $V(\cdot): 2^I \to 2^V$ is a set-to-set function, composable with a submodular function.

- Note the condition in Theorem 6.4.3 is $f(V(J)) \geq |J|$ for all $J \subseteq I$, where $f: 2^V \to \mathbb{Z}_+$ is non-negative, integral, monotone non-decreasing and submodular, and $V(J) = \bigcup_{i \in J} V_i$ with $V_i \subseteq V$.
- Note $V(\cdot): 2^I \to 2^V$ is a set-to-set function, composable with a submodular function.
- Define $g: 2^I \to \mathbb{Z}$ with g(J) = f(V(J)) |J|, then the condition for the existence of a system of representatives, with quality Equation 6.5, becomes:

$$\min_{J \subseteq I} g(J) \ge 0 \tag{6.7}$$

- Note the condition in Theorem 6.4.3 is $f(V(J)) \geq |J|$ for all $J \subseteq I$, where $f: 2^V \to \mathbb{Z}_+$ is non-negative, integral, monotone non-decreasing and submodular, and $V(J) = \bigcup_{i \in J} V_i$ with $V_i \subseteq V$.
- Note $V(\cdot): 2^I \to 2^V$ is a set-to-set function, composable with a submodular function.
- Define $q:2^I \to \mathbb{Z}$ with g(J)=f(V(J))-|J|, then the condition for the existence of a system of representatives, with quality Equation 6.5, becomes:

$$\min_{J \subseteq I} g(J) \ge 0 \tag{6.7}$$

• What kind of function is *q*?

- Note the condition in Theorem 6.4.3 is $f(V(J)) \geq |J|$ for all $J \subseteq I$, where $f: 2^V \to \mathbb{Z}_+$ is non-negative, integral, monotone non-decreasing and submodular, and $V(J) = \cup_{j \in J} V_j$ with $V_i \subseteq V$.
- Note $V(\cdot): 2^I \to 2^V$ is a set-to-set function, composable with a submodular function.
- Define $g: 2^I \to \mathbb{Z}$ with g(J) = f(V(J)) |J|, then the condition for the existence of a system of representatives, with quality Equation 6.5, becomes:

$$\min_{J \subseteq I} g(J) \ge 0 \tag{6.7}$$

• What kind of function is q?

Proposition 6.4.4

g as given above is submodular.

- Note the condition in Theorem 6.4.3 is $f(V(J)) \geq |J|$ for all $J \subseteq I$, where $f: 2^V \to \mathbb{Z}_+$ is non-negative, integral, monotone non-decreasing and submodular, and $V(J) = \cup_{j \in J} V_j$ with $V_i \subseteq V$.
- Note $V(\cdot): 2^I \to 2^V$ is a set-to-set function, composable with a submodular function.
- Define $g: 2^I \to \mathbb{Z}$ with g(J) = f(V(J)) |J|, then the condition for the existence of a system of representatives, with quality Equation 6.5, becomes:

$$\min_{J \subseteq I} g(J) \ge 0 \tag{6.7}$$

• What kind of function is g?

Proposition 6.4.4

q as given above is submodular.

 Hence, the condition for existence can be solved by (a special case of) submodular function minimization, or vice verse!

first part proof of Theorem 6.4.3.

ullet Suppose ${\mathcal V}$ has a system of representatives $(v_i:i\in I)$ such that Eq. 6.5 is true.

first part proof of Theorem 6.4.3.

- Suppose $\mathcal V$ has a system of representatives $(v_i:i\in I)$ such that Eq. 6.5 is true.
- Then since f is monotone, and since $V(J) \supseteq \bigcup_{i \in J} \{v_i\}$ when $(v_i : i \in I)$ is a system of representatives, then Eq. 6.6 immediately follows.

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 $(f(V(J)) \ge |J|, \forall J \subseteq I)$ is true for $\mathcal{V} = (V_i : i \in I)$, and there exists an i such that $|V_i| \geq 2$ (w.l.o.g., say i = 1). Then there exists $\bar{v} \in V_1$ such that the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6.

Proof.

• When Eq. 6.6 holds, this means that for any subsets $J_1, J_2 \subseteq I \setminus \{1\}$, we have that, for $J \in \{J_1, J_2\}$,

$$f(V(J \cup \{1\})) \ge |J \cup \{1\}| \tag{6.8}$$

and hence

$$f(V_1 \cup V(J_1)) \ge |J_1| + 1$$
 (6.9)
 $f(V_1 \cup V(J_2)) \ge |J_2| + 1$ (6.10)

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 $(f(V(J)) \ge |J|, \forall J \subseteq I)$ is true for $\mathcal{V} = (V_i : i \in I)$, and there exists an i such that $|V_i| \ge 2$ (w.l.o.g., say i = 1). Then there exists $\bar{v} \in V_1$ such that the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6.

Proof.

• Suppose, to the contrary, the consequent is false. Then we may take any $\bar{v}_1, \bar{v}_2 \in V_1$ as two distinct elements in $V_1 \dots$

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 $(f(V(J)) \ge |J|, \forall J \subseteq I)$ is true for $\mathcal{V} = (V_i : i \in I)$, and there exists an i such that $|V_i| \ge 2$ (w.l.o.g., say i = 1). Then there exists $\bar{v} \in V_1$ such that the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6.

Proof.

System of Distinct Reps

- Suppose, to the contrary, the consequent is false. Then we may take any $\bar{v}_1, \bar{v}_2 \in V_1$ as two distinct elements in V_1 . . .
- ullet ... and there must exist subsets J_1,J_2 of $I\setminus\{1\}$ such that

$$f((V_1 \setminus \{\bar{v}_1\}) \cup V(J_1)) < |J_1| + 1,$$
 (6.11)

$$f((V_1 \setminus \{\bar{v}_2\}) \cup V(J_2)) < |J_2| + 1,$$
 (6.12)

(note that either one or both of J_1, J_2 could be empty).

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 $(f(V(J)) \ge |J|, \forall J \subseteq I)$ is true for $\mathcal{V} = (V_i : i \in I)$, and there exists an i such that $|V_i| \ge 2$ (w.l.o.g., say i = 1). Then there exists $\bar{v} \in V_1$ such that the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6.

Proof.

System of Distinct Reps

• Taking $X=(V_1\setminus\{\bar{v}_1\})\cup V(J_1)$ and $Y=(V_1\setminus\{\bar{v}_2\})\cup V(J_2)$, we have $f(X)\leq |J_1|,\ f(Y)\leq |J_2|,$ and that:

$$X \cup Y = V_1 \cup V(J_1 \cup J_2),$$

$$(6.13)$$

$$X \cap Y \supseteq V(J_1 \cap J_2),$$

(6.14)

and

Dual Matroid

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 $(f(V(J)) \ge |J|, \forall J \subseteq I)$ is true for $\mathcal{V} = (V_i : i \in I)$, and there exists an i such that $|V_i| \geq 2$ (w.l.o.g., say i = 1). Then there exists $\bar{v} \in V_1$ such that the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6.

Proof.

• since f submodular monotone non-decreasing, & Eqs 6.13-6.15,

$$|J_1| + |J_2| \ge f(V_1 \cup V(J_1 \cup J_2)) + f(V(J_1 \cap J_2)) \tag{6.16}$$

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 $(f(V(J)) \ge |J|, \forall J \subseteq I)$ is true for $\mathcal{V} = (V_i : i \in I)$, and there exists an i such that $|V_i| \ge 2$ (w.l.o.g., say i = 1). Then there exists $\bar{v} \in V_1$ such that the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6.

Proof.

System of Distinct Reps

ullet since f submodular monotone non-decreasing, & Eqs 6.13-6.15,

$$|J_1| + |J_2| \ge f(V_1 \cup V(J_1 \cup J_2)) + f(V(J_1 \cap J_2))$$
(6.16)

• Since V satisfies Eq. 6.6, $1 \notin J_1 \cup J_2$, & Eqs 6.9-6.10, this gives

$$|J_1| + |J_2| \ge |J_1 \cup J_2| + 1 + |J_1 \cap J_2| \tag{6.17}$$

which is a contradiction since cardinality is modular.

Theorem 6.4.3 (Polymatroid transversal theorem)

If $V = (V_i : i \in I)$ is a finite family of non-empty subsets of V, and $f: 2^V \to \mathbb{Z}_+$ is a non-negative, integral, monotone non-decreasing, and submodular function, then V has a system of representatives $(v_i : i \in I)$ such that

$$f(\cup_{i\in J}\{v_i\}) \ge |J| \text{ for all } J \subseteq I$$
 (6.5)

if and only if

$$f(V(J)) \ge |J| \text{ for all } J \subseteq I$$
 (6.6)

- Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking f(S) = |S| for $S \subseteq V$.
- We get Theorem 6.4.2 by taking f(S) = r(S) for $S \subseteq V$, the rank function of the matroid.

• Conversely, suppose Eq. 6.6 is true.

- Conversely, suppose Eq. 6.6 is true.
- If each V_i is a singleton set, then the result follows immediately.

- Conversely, suppose Eq. 6.6 is true.
- If each V_i is a singleton set, then the result follows immediately.
- W.I.o.g., let $|V_1| \ge 2$, then by Lemma 6.4.5, the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6 for the right \bar{v} .

- Conversely, suppose Eq. 6.6 is true.
- ullet If each V_i is a singleton set, then the result follows immediately.
- W.I.o.g., let $|V_1| \geq 2$, then by Lemma 6.4.5, the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6 for the right \bar{v} .
- We can continue to reduce the family, deleting elements from V_i for some i while $|V_i| \ge 2$, until we arrive at a family of singleton sets.

converse proof of Theorem 6.4.3.

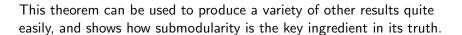
- Conversely, suppose Eq. 6.6 is true.
- If each V_i is a singleton set, then the result follows immediately.
- W.I.o.g., let $|V_1| \ge 2$, then by Lemma 6.4.5, the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6 for the right \bar{v} .
- We can continue to reduce the family, deleting elements from V_i for some i while $|V_i| \ge 2$, until we arrive at a family of singleton sets.
- This family will be the required system of representatives.

System of Distinct Reps

More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

- Conversely, suppose Eq. 6.6 is true.
- If each V_i is a singleton set, then the result follows immediately.
- W.I.o.g., let $|V_1| \ge 2$, then by Lemma 6.4.5, the family of subsets $(V_1 \setminus \{\bar{v}\}, V_2, \dots, V_{|I|})$ also satisfies Eq 6.6 for the right \bar{v} .
- We can continue to reduce the family, deleting elements from V_i for some i while $|V_i| \ge 2$, until we arrive at a family of singleton sets.
- This family will be the required system of representatives.



Transversals, themselves, define a matroid.

Theorem 6.5.1

System of Distinct Reps

If $\mathcal V$ is a family of finite subsets of a ground set V, then the collection of partial transversals of $\mathcal V$ is the set of independent sets of a matroid $M=(V,\mathcal V)$ on V.

Transversals, themselves, define a matroid.

Theorem 6.5.1

If $\mathcal V$ is a family of finite subsets of a ground set V, then the collection of partial transversals of $\mathcal V$ is the set of independent sets of a matroid $M=(V,\mathcal V)$ on V.

• This means that the transversals of \mathcal{V} are the bases of matroid M.

Transversals, themselves, define a matroid.

Theorem 6.5.1

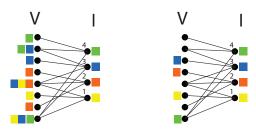
If $\mathcal V$ is a family of finite subsets of a ground set V, then the collection of partial transversals of $\mathcal V$ is the set of independent sets of a matroid $M=(V,\mathcal V)$ on V.

- ullet This means that the transversals of ${\mathcal V}$ are the bases of matroid M.
- ullet Therefore, all maximal partial transversals of ${\cal V}$ have the same cardinality!

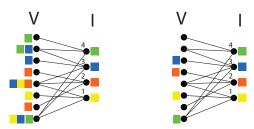
• Transversals correspond exactly to matchings in bipartite graphs.

- Transversals correspond exactly to matchings in bipartite graphs.
- Given a set system (V, \mathcal{V}) , with $\mathcal{V} = (V_i : i \in I)$, we can define a bipartite graph G = (V, I, E) associated with \mathcal{V} that has edge set $\{(v, i) : v \in V, i \in I, v \in V_i\}$.

- Transversals correspond exactly to matchings in bipartite graphs.
- Given a set system (V, \mathcal{V}) , with $\mathcal{V} = (V_i : i \in I)$, we can define a bipartite graph G = (V, I, E) associated with \mathcal{V} that has edge set $\{(v, i) : v \in V, i \in I, v \in V_i\}$.
- A matching in this graph is a set of edges no two of which that have a common endpoint.



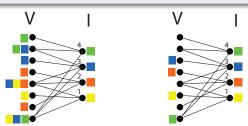
- Transversals correspond exactly to matchings in bipartite graphs.
- Given a set system (V, \mathcal{V}) , with $\mathcal{V} = (V_i : i \in I)$, we can define a bipartite graph G = (V, I, E) associated with \mathcal{V} that has edge set $\{(v, i) : v \in V, i \in I, v \in V_i\}$.
- A matching in this graph is a set of edges no two of which that have a common endpoint. In fact, we easily have:



- Transversals correspond exactly to matchings in bipartite graphs.
- Given a set system (V, \mathcal{V}) , with $\mathcal{V} = (V_i : i \in I)$, we can define a bipartite graph G = (V, I, E) associated with \mathcal{V} that has edge set $\{(v, i) : v \in V, i \in I, v \in V_i\}$.
- A matching in this graph is a set of edges no two of which that have a common endpoint. In fact, we easily have:

Lemma 6.5.2

A subset $T \subseteq V$ is a partial transversal of $\mathcal V$ iff there is a matching in (V,I,E) in which every edge has one endpoint in T (T matched into I).



Arbitrary Matchings and Matroids?

• Are arbitrary matchings matroids?

Arbitrary Matchings and Matroids?

- Are arbitrary matchings matroids?
- Consider the following graph (left), and two max-matchings (two right instances)

Matroid and representation

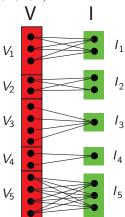
Arbitrary Matchings and Matroids?

- Are arbitrary matchings matroids?
- Consider the following graph (left), and two max-matchings (two right instances)

• $\{AC\}$ is a maximum matching, as is $\{AD, BC\}$, but they are not the same size.

Partition Matroid, rank as matching

• Example where $\ell = 5$, $(k_1, k_2, k_3, k_4, k_5) =$ (2, 2, 1, 1, 3).



- Recall, $\Gamma: 2^V \to \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) =$ $\{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.
- Here, for $X \subseteq V$, we have $\Gamma(X) =$ $\{i \in I : (v, i) \in E(G) \text{ and } v \in X\}.$
- For such a constructed bipartite graph, the rank function of a partition matroid is $r(X) = \sum_{i=1}^{\ell} \min(|X \cap V_i|, k_i) =$ the maximum matching involving X.

• Recall the partition matroid rank function. Note, $k_i = |I_i|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $|V_i| \geq k_i$ (also, recall, $V(J) = \cup_{j \in J} V_j$).

- Recall the partition matroid rank function. Note, $k_i = |I_i|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $|V_i| \geq k_i$ (also, recall, $V(J) = \cup_{j \in J} V_j$).
- We start with partition matroid rank function in the subsequent equations.

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$
(6.18)

- Recall the partition matroid rank function. Note, $k_i = |I_i|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $|V_i| \ge k_i$ (also, recall, $V(J) = \bigcup_{i \in J} V_i$).
- We start with partition matroid rank function in the subsequent equations.

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$
(6.18)

$$= \sum_{i=1}^{\ell} \min(|A \cap V(I_i)|, |I_i|)$$
(6.19)

- Recall the partition matroid rank function. Note, $k_i = |I_i|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $|V_i| \geq k_i$ (also, recall, $V(J) = \bigcup_{i \in J} V_i$).
- We start with partition matroid rank function in the subsequent equations.

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$
(6.18)

$$= \sum_{i=1}^{\ell} \min(|A \cap V(I_i)|, |I_i|)$$
(6.19)

$$= \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} \left(\left\{ \begin{array}{cc} |A \cap V(I_i)| & \text{if } J_i \neq \emptyset \\ 0 & \text{if } J_i = \emptyset \end{array} \right\} + |I_i \setminus J_i| \right)$$
 (6.20)

- Recall the partition matroid rank function. Note, $k_i = |I_i|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $|V_i| \geq k_i$ (also, recall, $V(J) = \cup_{j \in J} V_j$).
- We start with partition matroid rank function in the subsequent equations.

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$
(6.18)

$$= \sum_{i=1}^{\ell} \min(|A \cap V(I_i)|, |I_i|)$$
(6.19)

$$= \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} \left\{ \left\{ \begin{array}{cc} |A \cap V(I_i)| & \text{if } J_i \neq \emptyset \\ 0 & \text{if } J_i = \emptyset \end{array} \right\} + |I_i \setminus J_i| \right\}$$
 (6.20)

$$=\sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} (|V(J_i) \cap A| + |I_i \setminus J_i|)$$

$$(6.21)$$

Continuing,

$$r(A) = \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} (|V(J_i) \cap V(I_i) \cap A| - |I_i \cap J_i| + |I_i|)$$
 (6.22)

Continuing,

$$r(A) = \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} (|V(J_i) \cap V(I_i) \cap A| - |I_i \cap J_i| + |I_i|)$$
 (6.22)

$$= \min_{J \subseteq I} \left(\sum_{i=1}^{\ell} |V(J) \cap V(I_i) \cap A| - |I_i \cap J| + |I_i| \right)$$
 (6.23)

Continuing,

$$r(A) = \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} (|V(J_i) \cap V(I_i) \cap A| - |I_i \cap J_i| + |I_i|)$$
 (6.22)

$$= \min_{J \subseteq I} \left(\sum_{i=1}^{\ell} |V(J) \cap V(I_i) \cap A| - |I_i \cap J| + |I_i| \right)$$
 (6.23)

$$= \min_{J \subseteq I} (|V(J) \cap V(I) \cap A| - |J| + |I|)$$
 (6.24)

Continuing,

$$r(A) = \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} (|V(J_i) \cap V(I_i) \cap A| - |I_i \cap J_i| + |I_i|)$$
 (6.22)

$$= \min_{J \subseteq I} \left(\sum_{i=1}^{\ell} |V(J) \cap V(I_i) \cap A| - |I_i \cap J| + |I_i| \right)$$
 (6.23)

$$= \min_{J \subseteq I} (|V(J) \cap V(I) \cap A| - |J| + |I|)$$
 (6.24)

$$= \min_{J \subseteq I} (|V(J) \cap A| - |J| + |I|) \tag{6.25}$$

Continuing,

$$r(A) = \sum_{i=1}^{\ell} \min_{J_i \subseteq I_i} (|V(J_i) \cap V(I_i) \cap A| - |I_i \cap J_i| + |I_i|)$$
 (6.22)

$$= \min_{J \subseteq I} \left(\sum_{i=1}^{\ell} |V(J) \cap V(I_i) \cap A| - |I_i \cap J| + |I_i| \right)$$
 (6.23)

$$= \min_{J \subset I} (|V(J) \cap V(I) \cap A| - |J| + |I|)$$
 (6.24)

$$= \min_{J \subset I} (|V(J) \cap A| - |J| + |I|) \tag{6.25}$$

 In fact, this bottom (more general) expression is the expression for the rank of a transversal matroid.

In fact, we have

Theorem 6.5.3

Let (V, V) where $V = (V_1, V_2, \dots, V_\ell)$ be a subset system. Let $I = \{1, \dots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V} . Then (V, \mathcal{I}) is a matroid.

Proof.

In fact, we have

Theorem 6.5.3

Let (V, \mathcal{V}) where $\mathcal{V} = (V_1, V_2, \dots, V_\ell)$ be a subset system. Let $I = \{1, \dots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V} . Then (V, \mathcal{I}) is a matroid.

Proof.

• We note that $\emptyset \in \mathcal{I}$ since the empty set is a transversal of the empty subfamily of \mathcal{V} , thus (I1') holds.

In fact, we have

Theorem 6.5.3

Let (V, \mathcal{V}) where $\mathcal{V} = (V_1, V_2, \dots, V_\ell)$ be a subset system. Let $I = \{1, \dots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V} . Then (V, \mathcal{I}) is a matroid.

Proof.

- We note that $\emptyset \in \mathcal{I}$ since the empty set is a transversal of the empty subfamily of \mathcal{V} , thus (I1') holds.
- We already saw that if T is a partial transversal of \mathcal{V} , and if $T' \subseteq T$, then T' is also a partial transversal. So (I2') holds.

In fact, we have

Theorem 6.5.3

Let (V, V) where $V = (V_1, V_2, \dots, V_\ell)$ be a subset system. Let $I = \{1, \dots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V} . Then (V, \mathcal{I}) is a matroid.

Proof.

- We note that $\emptyset \in \mathcal{I}$ since the empty set is a transversal of the empty subfamily of \mathcal{V} , thus (I1') holds.
- We already saw that if T is a partial transversal of \mathcal{V} , and if $T' \subseteq T$, then T' is also a partial transversal. So (12') holds.
- Suppose that T_1 and T_2 are partial transversals of $\mathcal V$ such that $|T_1| < |T_2|$. Exercise: show that (13') holds.

Transversal Matroid Rank

• Transversal matroid has rank

$$r(A) = \min_{J \subset I} (|V(J) \cap A| - |J| + |I|)$$
 (6.26)

Transversal Matroid Rank

Transversal matroid has rank

$$r(A) = \min_{J \subset I} (|V(J) \cap A| - |J| + |I|)$$
 (6.26)

• Therefore, this function is submodular.

Transversal Matroid Rank

Transversal matroid has rank

$$r(A) = \min_{J \subseteq I} (|V(J) \cap A| - |J| + |I|)$$
 (6.26)

- Therefore, this function is submodular.
- Note that it is a minimum over a set of modular functions. Is this true in general? Exercise:

Matroid loops

System of Distinct Reps

• A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| 1$).
- There is no reason in a matroid such an A could not consist of a single element.

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| 1$).
- There is no reason in a matroid such an A could not consist of a single element.
- Such an $\{a\}$ is called a loop.

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| 1$).
- There is no reason in a matroid such an A could not consist of a single element.
- Such an $\{a\}$ is called a loop.
- In a matric (i.e., linear) matroid, the only such loop is the value 0, as all non-zero vectors have rank 1. The 0 can appear > 1 time with different indices, as can a self loop in a graph appear on different nodes.

Matroid 100ps

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| 1$).
- There is no reason in a matroid such an A could not consist of a single element.
- Such an $\{a\}$ is called a loop.
- In a matric (i.e., linear) matroid, the only such loop is the value 0, as all non-zero vectors have rank 1. The 0 can appear > 1 time with different indices, as can a self loop in a graph appear on different nodes.
- Note, we also say that two elements s,t are said to be parallel if $\{s,t\}$ is a circuit.

Definition 6.6.1 (Matroid isomorphism)

Two matroids M_1 and M_2 respectively on ground sets V_1 and V_2 are isomorphic if there is a bijection $\pi:V_1\to V_2$ which preserves independence (equivalently, rank, circuits, and so on).

Definition 6.6.1 (Matroid isomorphism)

Two matroids M_1 and M_2 respectively on ground sets V_1 and V_2 are isomorphic if there is a bijection $\pi:V_1\to V_2$ which preserves independence (equivalently, rank, circuits, and so on).

• Let \mathbb{F} be any field (such as \mathbb{R} , \mathbb{Q} , or some finite field \mathbb{F} , such as a Galois field $\mathsf{GF}(p)$ where p is prime (such as $\mathsf{GF}(2)$). Succinctly: A field is a set with +, *, closure, associativity, commutativity, and additive and multiplictaive identities and inverses.

Definition 6.6.1 (Matroid isomorphism)

Two matroids M_1 and M_2 respectively on ground sets V_1 and V_2 are isomorphic if there is a bijection $\pi:V_1\to V_2$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R} , \mathbb{Q} , or some finite field \mathbb{F} , such as a Galois field GF(p) where p is prime (such as GF(2)). Succinctly: A field is a set with +, *, closure, associativity, commutativity, and additive and multiplictaive identities and inverses.
- We can more generally define matroids on a field.

Definition 6.6.1 (Matroid isomorphism)

Two matroids M_1 and M_2 respectively on ground sets V_1 and V_2 are isomorphic if there is a bijection $\pi: V_1 \to V_2$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R} , \mathbb{Q} , or some finite field \mathbb{F} , such as a Galois field GF(p) where p is prime (such as GF(2)). Succinctly: A field is a set with +, *, closure, associativity, commutativity, and additive and multiplictaive identities and inverses.
- We can more generally define matroids on a field.

Definition 6.6.2 (linear matroids on a field)

Let **X** be an $n \times m$ matrix and $E = \{1, \dots, m\}$, where $\mathbf{X}_{ij} \in \mathbb{F}$ for some field, and let \mathcal{I} be the set of subsets of E such that the columns of X are linearly independent over \mathbb{F} .

Definition 6.6.1 (Matroid isomorphism)

Two matroids M_1 and M_2 respectively on ground sets V_1 and V_2 are isomorphic if there is a bijection $\pi: V_1 \to V_2$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R} , \mathbb{Q} , or some finite field \mathbb{F} , such as a Galois field GF(p) where p is prime (such as GF(2)). Succinctly: A field is a set with +, *, closure, associativity, commutativity, and additive and multiplictaive identities and inverses.
- We can more generally define matroids on a field.

Definition 6.6.3 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called representable over \mathbb{F}

Representability of Transversal Matroids

 Piff and Welsh in 1970, and Adkin in 1972 proved an important theorem about representability of transversal matroids.

Representability of Transversal Matroids

- Piff and Welsh in 1970, and Adkin in 1972 proved an important theorem about representability of transversal matroids.
- In particular:

Theorem 6.6.4

System of Distinct Reps

Transversal matroids are representable over all finite fields of sufficiently large cardinality, and are representable over any infinite field.

Dual Matroid

Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 6.6.5

System of Distinct Reps

Let $V = \{1, 2, 3, 4, 5, 6\}$ be a ground set and let $M = (V, \mathcal{I})$ be a set system where \mathcal{I} is all subsets of V of cardinality ≤ 2 except for the pairs $\{1, 2\}, \{3, 4\}, \{5, 6\}.$

Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 6.6.5

System of Distinct Reps

Let $V = \{1, 2, 3, 4, 5, 6\}$ be a ground set and let $M = (V, \mathcal{I})$ be a set system where \mathcal{I} is all subsets of V of cardinality ≤ 2 except for the pairs $\{1,2\}, \{3,4\}, \{5,6\}.$

It can be shown that this is a matroid and is representable.

Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 6.6.5

Let $V = \{1, 2, 3, 4, 5, 6\}$ be a ground set and let $M = (V, \mathcal{I})$ be a set system where \mathcal{I} is all subsets of V of cardinality ≤ 2 except for the pairs $\{1,2\}, \{3,4\}, \{5,6\}.$

- It can be shown that this is a matroid and is representable.
- However, this matroid is not isomorphic to any transversal matroid.

Matroids, other definitions using matroid rank $r: 2^V \to \mathbb{Z}_+$

Definition 6.7.1 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

A hyperplane is a flat of rank r(M) - 1.

Definition 6.7.2 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $span(A) = \{ b \in E : r(A \cup \{b\}) = r(A) \}.$

Therefore, a closed set A has $\operatorname{span}(A) = A$.

Definition 6.7.3 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$.

Spanning Sets

• We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that r(X) = r(Y) is called a spanning set of Y.

Spanning Sets

• We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that r(X) = r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, any set $A\subseteq V$ such that r(A)=r(V) is called a spanning set of the matroid.

Spanning Sets

• We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, and a set $Y\subseteq V$, then any set $X\subseteq Y$ such that r(X)=r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, any set $A\subseteq V$ such that r(A)=r(V) is called a spanning set of the matroid.

 A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.

Matroid and representation

Spanning Sets

• We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, and a set $Y\subseteq V$, then any set $X\subseteq Y$ such that r(X)=r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, any set $A\subseteq V$ such that r(A)=r(V) is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
- \bullet V is always trivially spanning.

Matroid and representation

• We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, and a set $Y\subseteq V$, then any set $X\subseteq Y$ such that r(X)=r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, any set $A\subseteq V$ such that r(A)=r(V) is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
- ullet V is always trivially spanning.
- Consider the terminology: "spanning tree in a graph", comes from spanning in a matroid sense.

Dual of a Matroid

• Given a matroid $M=(V,\mathcal{I})$, a dual matroid $M^*=(V,\mathcal{I}^*)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^* .

- Given a matroid $M=(V,\mathcal{I})$, a dual matroid $M^*=(V,\mathcal{I}^*)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^* .
- We define the set of sets \mathcal{I}^* for M^* as follows:

$$\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$$
 (6.27)

- Given a matroid $M=(V,\mathcal{I})$, a dual matroid $M^*=(V,\mathcal{I}^*)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^* .
- We define the set of sets \mathcal{I}^* for M^* as follows:

$$\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$$
 (6.27)

• That is, a set A is independent in the dual matroid M^* if removal of A from V does not decrease the rank in M:

$$\mathcal{I}^* = \{ A \subseteq V : \mathsf{rank}_M(V \setminus A) = \mathsf{rank}_M(V) \} \tag{6.28}$$

- Given a matroid $M=(V,\mathcal{I})$, a dual matroid $M^*=(V,\mathcal{I}^*)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^* .
- We define the set of sets \mathcal{I}^* for M^* as follows:

$$\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$$
 (6.27)

• That is, a set A is independent in the dual matroid M^* if removal of A from V does not decrease the rank in M:

$$\mathcal{I}^* = \{ A \subseteq V : \mathsf{rank}_M(V \setminus A) = \mathsf{rank}_M(V) \} \tag{6.28}$$

• In other words, a set $A \subseteq V$ is independent in the dual M^* (i.e., $A \in \mathcal{I}^*$) if its complement is spanning in M (residual $V \setminus A$ must contain a base in M).

Dual of a Matroid

System of Distinct Reps

- Given a matroid $M=(V,\mathcal{I})$, a dual matroid $M^*=(V,\mathcal{I}^*)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^* .
- We define the set of sets \mathcal{I}^* for M^* as follows:

$$\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$$
 (6.27)

• That is, a set A is independent in the dual matroid M^* if removal of A from V does not decrease the rank in M:

$$\mathcal{I}^* = \{ A \subseteq V : \mathsf{rank}_M(V \setminus A) = \mathsf{rank}_M(V) \} \tag{6.28}$$

- In other words, a set $A \subseteq V$ is independent in the dual M^* (i.e., $A \in \mathcal{I}^*$) if its complement is spanning in M (residual $V \setminus A$ must contain a base in M).
- Dual of the dual: Note, we have that $(M^*)^* = M$.