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Cumulative Outstanding Reading

@ Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige's book.
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Announcements, Assignments, and Reminders

@ Homework 1 is out, due Wednesday April 23rd, 11:45pm,
electronically via our assignment dropbox
(https://canvas.uw.edu/courses/895956/assignments).

@ All homeworks must be done electronically, only PDF file format
accepted.

o Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-I

@ L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

@ L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

@ L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation
L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

@ L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

@ L9: From Matroid Polytopes to
Polymatroids.

@ L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, polymatroids
and entropic Venn diagrams, exchange
capacity,

L16: proof that minimum norm point
yields min of submodular function, and
the lattice of minimizers of a submodular
function, Lovasz extension

L17: Lovasz extension, Choquet
Integration, more properties/examples of
Lovasz extension, convex minimization
and SFM.

L18: Lovasz extension examples and
structured convex norms, The Min-Norm
Point Algorithm detailed.

L19: symmetric submodular function
minimization, maximizing monotone
submodular function w. card constraints.
L20: maximizing monotone submodular
function w. other constraints,
non-monotone maximization.

Finals Week: June 9th-13th, 2014.
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Matroid

Slight modification (non unit increment) that is equivalent.

Definition 6.2.1 (Matroid-I1)

A set system (F,Z) is a Matroid if
(11 0eZ
12"y VIeZ,JCI= JeZ (or “down-closed")

(13") VI,J € Z, with |I| > |J|, then there exists = € I \ J such that
Ju{z}eZ

Note (11)=(I1"), (12)=(12"), and we get (13)=(13") using induction.
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Matroids - important property

Proposition 6.2.1
In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 6.2.2 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
(12") VI € Z,J C I = J € T (down-closed or subclusive)

(13") VX CV, and I, I € maxInd(X), we have |I;| = |I2| (all maximally
independent subsets of X have the same size).
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just 7(U) when the matroid in equation is
unambiguous.

o 7(E) = r(g1) is the rank of the matroid, and is the common size of
all the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 6.2.1 (matroid rank function)

The rank of a matroid is a function 7 : 28 — 7. defined by

T(A)ZHI&X{’X‘:XQA,XEI}:I)I(IE%%(‘AQX’ (6.1)
€

@ From the above, we immediately see that r(A) < |A|.
@ Moreover, if r(A) = |A|, then A € Z, meaning A is independent (in
this case, A is a self base).
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Matroids - rank

Lemma 6.2.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

@ Since M is a matroid, we know that (AN B) = r(X) = | X|, and
r(AUB) =r(Y)=1Y|. Also, forany U € Z, r(A) > |ANU|.

@ Then we have

r(A)+r(B) > Y NA|l+|Y N B| :
=|YN(ANB)|+|YN(AUB)| (6.4)

> | X[+ Y|=r(ANnB)+r(AUB) (6.5)
O
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Partition Matroid

o Let V be our ground set.
o Let V=ViUVU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V" as

I={XCV:|XNV|<kforalli=1,... ¢} (6.3)

where ki, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with £ =1, V; =V, and k1 = k.

@ Parameters associated with a partition matroid: ¢ and k1, ks, ..., ks
although often the k;'s are all the same.

e We'll show that property (13') in Def ?? holds. If X,Y € Z with
|Y| > | X]|, then there must be at least one i with
Y NV;| > |X NV;|. Therefore, adding one element
eeV;N(Y\ X) to X won't break independence.
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

l
r(A)=> min(|ANVi|, k) (6.12)

=1

which we also immediately see is submodular using properties we
spoke about last week. That is:

@ |ANYV;| is submodular (in fact modular) in A

@ min(submodular(A), k;) is submodular in A since |[ANV;] is

monotone.
© sums of submodular functions are submodular.

e r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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Partition Matroid, rank as matching

@ Example where £ =5,
(K1, ko, ks, ka, ks) =

(2,2,1,1,3). @ Recall, I': 2V — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
Vi I {fveV(G)\ X : B(X,{v}) # 0}, and
recall that |I'(X)| is submodular.
Vs I @ Here, for X CV, we have I'(X) =

{iel:(v,i) € E(G) and v € X}.
@ For such a constructed bipartite graph,
| the rank function of a partition matroid
Va 4 is r(X) = S0 min(|X N Vi], ki) =
the maximum matching involving X.

V3 I3

Vs ls
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System of Representatives

@ Let (V,V) be a set system (i.e., V= (V;:i€l)where) CV; CV
for all i), and I is an index set. Hence, |I| = |V].
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System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:i€l)where) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

@ Here, the sets V; € V are like “groups” and any v € V with v € V; is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).
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System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:i€l)where) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

@ Here, the sets V; € V are like “groups” and any v € V with v € V; is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

e A family (v; : i € I) with v; € V' is said to be a system of
representatives of V if 3 a bijection 7 : I — I such that v; € V(.
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System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:i€l)where) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

@ Here, the sets V; € V are like “groups” and any v € V with v € V; is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

e A family (v; : i € I) with v; € V' is said to be a system of
representatives of V if 3 a bijection 7 : I — I such that v; € V(.

@ v; is the representative of set (or group) Vi (i, meaning the ith
representative is meant to represent set V. ;).
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System of Representatives

Let (V,V) be a set system (i.e., V= (V;:i€ 1) where) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

Here, the sets V; € V are like “groups” and any v € V with v € V; is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

A family (v; : ¢ € I) with v; € V is said to be a system of
representatives of V if 3 a bijection 7 : I — I such that v; € V(.
v; is the representative of set (or group) Vy(;, meaning the ith
representative is meant to represent set V. ;).

Example: Consider the house of representatives, v; = “Jim
McDermott, while ¢ = “King County, WA-7".
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System of Distinct Reps

System of Representatives

Let (V,V) be a set system (i.e., V= (V;:i€ 1) where) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

Here, the sets V; € V are like “groups” and any v € V with v € V; is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

A family (v; : ¢ € I) with v; € V is said to be a system of
representatives of V if 3 a bijection 7 : I — I such that v; € V(.
v; is the representative of set (or group) Vy(;, meaning the ith
representative is meant to represent set V. ;).

Example: Consider the house of representatives, v; = "“Jim
McDermott, while i = “King County, WA-7".

In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have some

v1 € V1 N Vs, where vy represents both V4 and V5.
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System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:i€l)where) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

@ Here, the sets V; € V are like “groups” and any v € V with v € V; is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

e A family (v; : i € I) with v; € V' is said to be a system of
representatives of V if 3 a bijection 7 : I — I such that v; € V(.

® v; is the representative of set (or group) V;(;), meaning the ith
representative is meant to represent set V. ;).

@ Example: Consider the house of representatives, v; = “Jim
McDermott, while i = “King County, WA-7".

@ In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have some
v1 € V1 N Vs, where vy represents both V; and V5.

@ We can view this as a bipartite graph.
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System of Distinct Reps

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, £ = 6 groups, with V = (V1, V4, ..., Vg)
= ({e, f,h}.{d, e, g}, {b,c,e, h},{a,b, h},{a},{a}).

V I
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, £ = 6 groups, with V = (V1, V4, ..., Vg)
= ({e, f,h}.{d, e, g}, {b,c,e, h},{a,b, h},{a},{a}).
@ A system of representatives would

make sure that there is a representative
for each color group. For example,
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, £ = 6 groups, with V = (V1, V4, ..., Vg)
= ({e, f,h}.{d, e, g}, {b,c,e, h},{a,b, h},{a},{a}).
@ A system of representatives would

make sure that there is a representative
for each color group. For example,

@ The representatives ({a,c,d, f,h}) are
shown as colors on the left.
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, £ = 6 groups, with V = (V1, V4, ..., Vg)
= ({e, f,h}.{d, e, g}, {b,c,e, h},{a,b, h},{a},{a}).

@ A system of representatives would
make sure that there is a representative
for each color group. For example,

@ The representatives ({a,c,d, f,h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why?
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System of Distinct Reps

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, £ = 6 groups, with V = (V1, V4, ..., Vg)
= ({e, f,h}.{d, e, g}, {b,c,e, h},{a,b, h},{a},{a}).

@ A system of representatives would
make sure that there is a representative
for each color group. For example,

@ The representatives ({a,c,d, f,h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since
there is only one common choice to
represent both color groups).
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System of Distinct Representatives

@ Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; C V for
all i), and I is an index set. Hence, |I| = |V].
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all i), and I is an index set. Hence, |I]| = |V].

e A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I > I such that v; € Vi,
and v; # v; for all ¢ # j.
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all i), and I is an index set. Hence, |I]| = |V].

o A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I > I such that v; € V)
and v; # v; for all ¢ # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all i), and I is an index set. Hence, |I]| = |V].

o A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I > I such that v; € V)
and v; # v; for all ¢ # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 6.3.1 (transversal)

Given a set system (V. V) as defined above, a set T'C V is a transversal
of V if there is a bijection 7 : T <+ I such that

T € Vo forallzeT (6.1)
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all i), and I is an index set. Hence, |I]| = |V].

o A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I > I such that v; € V)
and v; # v; for all ¢ # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 6.3.1 (transversal)

Given a set system (V. V) as defined above, a set T'C V is a transversal
of V if there is a bijection 7 : T <+ I such that

T € Vo forallzeT (6.1)

@ Note that due to 7 : T <+ I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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Transversals are Subclusive

@ A set X C V is a partial transversal if X is a transversal of some
subfamily V' = (V; :i € I') where I' C I.
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Transversals
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Transversals are Subclusive

@ A set X CV is a partial transversal if X is a transversal of some
subfamily V' = (V;:i € I') where I' C I,

@ Therefore, for any transversal T, any subset 7/ C T is a partial
transversal.
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Transversals
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Transversals are Subclusive

@ A set X CV is a partial transversal if X is a transversal of some
subfamily V' = (V;:i € I') where I' C I,

@ Therefore, for any transversal T, any subset 7/ C T is a partial
transversal.

@ Thus, transversals are down closed (subclusive).
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Transversals
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When do transversals exist?
@ As we saw, a transversal might not always exist. How to tell?
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Transversals
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I),and V; CV for all 4.
Then, for any J C I, let

V(J) = UjesV; (6.2)

so |V(J)| : 2! — Z, is the set cover func. (we know is submodular).

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014 F16/37 (pg.33/118)



Transversals
(LENRRERN

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I),and V; CV for all 4.

Then, for any J C I, let
V(J) = UjesV; (6.2)

so |V (J)| : 2! — Z, is the set cover func. (we know is submodular).
o We have

Theorem 6.4.1 (Hall's theorem)

Given a set system (V,V), the family of subsets V = (V; :i € I) has a
transversal (v; : i € I) iff for all J C I

V(D) = |J] (6.3)
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Transversals
(LENRRERN

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?

@ Given a set system (V,V) with V = (V;:i € I),and V; CV for all 4.
Then, for any J C I, let

V(J) = UjesV; (6.2)

so |V (J)| : 2! — Z, is the set cover func. (we know is submodular).
e Hall's theorem (VJ C I, |V (J)| > |J]) as a bipartite graph.

V I
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Transversals
(LENRRERN

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?

@ Given a set system (V,V) with V = (V;:i € I),and V; CV for all 4.
Then, for any J C I, let

V(J) = UjesV; (6.2)

so |V (J)| : 2! — Z, is the set cover func. (we know is submodular).
e Hall's theorem (VJ C I, |V (J)| > |J]) as a bipartite graph.

V I
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Transversals
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I),and V; CV for all 4.
Then, for any J C I, let

V(J) = UjesV; (6.2)

so |V (J)| : 2! — Z, is the set cover func. (we know is submodular).
@ Moreover, we have

Theorem 6.4.2 (Rado’s theorem (1942))

If M = (V,r) is a matroid on V' with rank function r, then the family of
subsets (V; :i € I) of V has a transversal (v; : i € I) that is independent
in M iff forall J C I

r(V(J) = |J| (6.4)
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I),and V; CV for all 4.
Then, for any J C I, let

V(J) = UjesV; (6.2)

so |V (J)| : 2! — Z, is the set cover func. (we know is submodular).
@ Moreover, we have

Theorem 6.4.2 (Rado’s theorem (1942))

If M = (V,r) is a matroid on V' with rank function r, then the family of
subsets (V; :i € I) of V has a transversal (v; : i € I) that is independent
in M iff forall J C I

r(V(J) = |J| (6.4)

o Note, a transversal T" independent in M means that »(T') = |T.
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More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

IfV = (V; :i €I) is a finite family of non-empty subsets of V', and
f:2Y = Z, is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

f(UieJ{Ui}) > ‘J’ forall J C I (65)
if and only if

FV(D) > |J| forall J C T (6.6)
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More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

IfV = (V; :i €I) is a finite family of non-empty subsets of V', and
f:2Y = Z, is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

f(UieJ{Ui}) > ‘J’ forall J C I (65)
if and only if

FV(D) > |J| forall J C T (6.6)

@ Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking
f(S) =S| for S C V. In which case, Eq. 6.5 requires the system of
representatives to be distinct.
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More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

IfV = (V; :i €I) is a finite family of non-empty subsets of V', and
f:2Y = Z, is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

f(UieJ{vi}) > ‘J’ forall J C I (65)
if and only if

FV(D) > |J| forall J C T (6.6)

@ Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking
f(S)=1S| for SCV.

o We get Theorem 6.4.2 by taking f(5) = r(S5) for S C V, the rank
functlon of the matr0|d where, Eq. 6.5 insists the system of representatives

(ndependen
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Submodular Composition with Set-to-Set functions

@ Note the condition in Theorem 6.4.3 is f(V(J)) > |J| for all J C I,
where f: 2V — 7. is non-negative, integral, monotone
non-decreasing and submodular, and V' (J) = Ujc;V; with V; C V.
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Submodular Composition with Set-to-Set functions

e Note the condition in Theorem 6.4.3 is f(V(J)) > |J| for all J C I,
where f: 2V — 7. is non-negative, integral, monotone
non-decreasing and submodular, and V' (J) = Uje;V; with V; C V.

e Note V(-) : 2/ — 2V is a set-to-set function, composable with a
submodular function.
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Submodular Composition with Set-to-Set functions

e Note the condition in Theorem 6.4.3 is f(V(J)) > |J| for all J C I,
where f: 2V — 7. is non-negative, integral, monotone
non-decreasing and submodular, and V' (J) = Uje;V; with V; C V.

o Note V(-) : 2/ — 2V is a set-to-set function, composable with a
submodular function.

e Define g : 2/ — Z with g(J) = f(V(J)) — |J], then the condition
for the existence of a system of representatives, with quality
Equation 6.5, becomes:

o) > |
glglrjlg(])_o (6.7)
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Submodular Composition with Set-to-Set functions

e Note the condition in Theorem 6.4.3 is f(V(J)) > |J| for all J C I,
where f: 2V — 7. is non-negative, integral, monotone
non-decreasing and submodular, and V' (J) = Uje;V; with V; C V.

o Note V(-) : 2/ — 2V is a set-to-set function, composable with a
submodular function.

o Define g : 2/ — Z with g(J) = f(V(J)) — | J|, then the condition
for the existence of a system of representatives, with quality
Equation 6.5, becomes:

ming(J) >0 (6.7)

@ What kind of function is g7
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Submodular Composition with Set-to-Set functions

e Note the condition in Theorem 6.4.3 is f(V(J)) > |J| for all J C I,
where f: 2V — 7. is non-negative, integral, monotone
non-decreasing and submodular, and V' (J) = Uje;V; with V; C V.

o Note V(-) : 2/ — 2V is a set-to-set function, composable with a
submodular function.

o Define g : 2/ — Z with g(J) = f(V(J)) — | J|, then the condition
for the existence of a system of representatives, with quality
Equation 6.5, becomes:

ming(J) >0 (6.7)

@ What kind of function is g7

Proposition 6.4.4

g as given above is submodular.
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Submodular Composition with Set-to-Set functions

e Note the condition in Theorem 6.4.3 is f(V(J)) > |J| for all J C I,
where f: 2V — 7. is non-negative, integral, monotone
non-decreasing and submodular, and V' (J) = Uje;V; with V; C V.

o Note V(-) : 2/ — 2V is a set-to-set function, composable with a
submodular function.

o Define g : 2/ — Z with g(J) = f(V(J)) — | J|, then the condition
for the existence of a system of representatives, with quality
Equation 6.5, becomes:

ming(J) >0 (6.7)

@ What kind of function is g7

Proposition 6.4.4

g as given above is submodular.

@ Hence, the condition for existence can be solved by (a special case

of) submodular function minimization, or vice verse!
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More general conditions for existence of transversals

f

irst part proof of Theorem 6.4.3.

@ Suppose V has a system of representatives (v; : ¢ € I) such that
Eq. 6.5 is true.
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More general conditions for existence of transversals

f

irst part proof of Theorem 6.4.3.
@ Suppose V has a system of representatives (v; : ¢ € I) such that
Eq. 6.5 is true.

@ Then since f is monotone, and since V' (J) D U;cs{v;} when
(v : i € I) is a system of representatives, then Eq. 6.6 immediately
follows.
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) > |J|,VJ CI)is true for V = (V; : i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there
exists v € Vi such that the family of subsets (V1 \ {v}, Va,...,V|y)) also
satisfies Eq 6.6.

Proof

@ When Eq. 6.6 holds, this means that for any subsets
J1,Jo C I\ {1}, we have that, for J € {J, Jo},

fV(JU{l})) = [JU{1}] (6.8)
and hence

fViuV(h)) = [h]+1 (6.9)

fViuV () = ] +1 (6.10)
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) > |J|,VJ CI)is true for V = (V; : i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there
exists v € Vi such that the family of subsets (V1 \ {v}, Va,...,V|y)) also
satisfies Eq 6.6.

Proof.

@ Suppose, to the contrary, the consequent is false. Then we may take
any v1, U9 € V7 as two distinct elements in V7 ...
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) > |J|,VJ CI)is true for V = (V; : i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there
exists v € Vi such that the family of subsets (V1 \ {v}, Va,...,V|y)) also
satisfies Eq 6.6.

Proof

@ Suppose, to the contrary, the consequent is false. Then we may take
any v1, U9 € V7 as two distinct elements in V7 ...

@ ...and there must exist subsets .Ji, J2 of I\ {1} such that

F(ViN{o ) UV (h)) <|hl+1, (6.11)
F((ViN{v2}) UV () <|Ja| +1, (6.12)

(note that either one or both of Ji, J; could be empty).
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) > |J|,VJ CI)is true for V = (V; : i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there
exists v € Vi such that the family of subsets (V1 \ {v}, Va,...,V|y)) also
satisfies Eq 6.6.

Proof.

o Taking X = (Vi \{t1}) UV (J1) and Y = (V1 \ {v2}) UV (J2), we
have f(X) < |Ji|, f(Y) < |J2|, and that:

XUY =ViuV(J1UJa),
(6.13)

XNY DV(JNJy),
(6.14)
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) > |J|,VJ CI)is true for V = (V; : i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there
exists v € Vi such that the family of subsets (V1 \ {v}, Va,...,V|y)) also
satisfies Eq 6.6.

Proof.

@ since f submodular monotone non-decreasing, & Eqgs 6.13-6.15,

[J1l + 12| =2 F(Vi UV (LU J2)) + f(V(J1 0 Jo)) (6.16)
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More general conditions for existence of transversals

Lemma 6.4.5 (contraction lemma)

Suppose Eq. 6.6 (f(V(J)) > |J|,VJ CI)is true for V = (V; : i € I),
and there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there
exists v € Vi such that the family of subsets (V1 \ {v}, Va,...,V|y)) also
satisfies Eq 6.6.

Proof.

@ since f submodular monotone non-decreasing, & Eqgs 6.13-6.15,

|1l + | J2| =2 fF(Vi UV(JLU ) + F(V(J1 N ) (6.16)
@ Since V satisfies Eq. 6.6, 1 ¢ J; U Ja, & Eqgs 6.9-6.10, this gives
|J1‘+|J2| Z|J1UJ2|+1+|J1QJ2| (6.17)

which is a contradiction since cardinality is modular.
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More general conditions for existence of transversals

Theorem 6.4.3 (Polymatroid transversal theorem)

IfV = (V; :i €I) is a finite family of non-empty subsets of V', and
f:2Y = Z, is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

f(UieJ{vi}) > ‘J’ forall J C I (65)
if and only if

FV(D) > |J| forall J C T (6.6)

@ Given Theorem 6.4.3, we immediately get Theorem 6.4.1 by taking
f(S)=1S| for SCV.

e We get Theorem 6.4.2 by taking f(S) = r(S) for S C V, the rank
function of the matroid.
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More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

@ Conversely, suppose Eq. 6.6 is true.
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More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

@ Conversely, suppose Eq. 6.6 is true.

@ If each Vj is a singleton set, then the result follows immediately.
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More general conditions for existence of transversals

converse proof of Theorem 6.4.3.
@ Conversely, suppose Eq. 6.6 is true.
@ If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let |[Vi| > 2, then by Lemma 6.4.5, the family of subsets
(Vi\ {0}, Va,...,V|p)) also satisfies Eq 6.6 for the right .
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More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

@ Conversely, suppose Eq. 6.6 is true.

@ If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let |[Vi| > 2, then by Lemma 6.4.5, the family of subsets
(Vi\ {0}, Va,...,V|p)) also satisfies Eq 6.6 for the right .

@ We can continue to reduce the family, deleting elements from V; for
some i while |V;| > 2, until we arrive at a family of singleton sets.
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More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

@ Conversely, suppose Eq. 6.6 is true.

@ If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let |[Vi| > 2, then by Lemma 6.4.5, the family of subsets
(Vi\ {0}, Va,...,V|p)) also satisfies Eq 6.6 for the right .

@ We can continue to reduce the family, deleting elements from V; for
some i while |V;| > 2, until we arrive at a family of singleton sets.

@ This family will be the required system of representatives.
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More general conditions for existence of transversals

converse proof of Theorem 6.4.3.

@ Conversely, suppose Eq. 6.6 is true.

@ If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let |[Vi| > 2, then by Lemma 6.4.5, the family of subsets
(Vi\ {0}, Va,...,V|p)) also satisfies Eq 6.6 for the right .

@ We can continue to reduce the family, deleting elements from V; for
some i while |V;| > 2, until we arrive at a family of singleton sets.

@ This family will be the required system of representatives.

This theorem can be used to produce a variety of other results quite
easily, and shows how submodularity is the key ingredient in its truth.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014 F22/37 (pg.62/118)



Transversal Matroid
[NERRERN

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 6.5.1

If V is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.
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Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 6.5.1

If V is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.

@ This means that the transversals of V' are the bases of matroid M.
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Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 6.5.1

If V is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.

@ This means that the transversals of V' are the bases of matroid M.

@ Therefore, all maximal partial transversals of V have the same
cardinality!
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

@ Given a set system (V, V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E') associated with V' that has edge set
{(v,i):veVyiel,veV}.
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

e Given a set system (V, V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E) associated with ) that has edge set
{(v,i):veVyiel,veV}.

@ A matching in this graph is a set of edges no two of which that have
a common endpoint.
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

e Given a set system (V, V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E) associated with ) that has edge set
{(v,i):veVyiel,veV}.

@ A matching in this graph is a set of edges no two of which that have
a common endpoint. In fact, we easily have:
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

e Given a set system (V, V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E) associated with ) that has edge set
{(v,i):veVyiel,veV}.

@ A matching in this graph is a set of edges no two of which that have
a common endpoint. In fact, we easily have:

A subset T' C V is a partial transversal of V iff there is a matching in
(V, I, E) in which every edge has one endpoint in T (T matched into I ).
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Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?
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Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?

e Consider the following graph (left), and two max-matchings (two
right instances)

N ]

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014 F25/37 (pg.72/118)



Transversal Matroid
(R RRERN

Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?

e Consider the following graph (left), and two max-matchings (two
right instances)

Q‘G 0“3
e {AC} is a maximum matching, as is {AD, BC'}, but they are not
the same size.
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Partition Matroid, rank as matching

@ Example where £ =5,
(K1, k2, k3, ka, ks) =
(2,2,1,1,3). @ Recall, T': 2V — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
{veV(G)\ X : E(X, {v}) # 0}, and
recall that |I'(X)| is submodular.
Vs I @ Here, for X CV, we have I'(X) =
{iel:(v,i) € E(G) and v € X}.
@ For such a constructed bipartite graph,
the rank function of a partition matroid
Va la is (X) = 30, min(|X N V], k;) =
the maximum matching involving X.

-~
-

Vi

V3 I3

Vs ls
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Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
[Vil > ki (also, recall, V(J) = UjesVj).
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Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
[Vil > ki (also, recall, V(J) = UjesVj).
@ We start with partition matroid rank function in the subsequent
equations.
¢
r(A) =" min(|ANVi|, k) (6.18)
i=1
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Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
[Vil > ki (also, recall, V(J) = UjesVj).

@ We start with partition matroid rank function in the subsequent

equations.
¢
r(A) =" min(|ANVi|, k) (6.18)
=1
¢
=> min(|AnV(L)], L) (6.19)
=1
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Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
[Vil > ki (also, recall, V(J) = UjesVj).

@ We start with partition matroid rank function in the subsequent

equations.
0
r(A) = Zmin(|AmVi|,ki) (6.18)
=1
¢
= > min( ANV )LL) (6.19)
i=1
4
= i ANV(L)| if J; #0 o
= st ({ 0 if J;i =0 } + i\ JA) (6.20)
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Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
[Vil > ki (also, recall, V(J) = UjesVj).

@ We start with partition matroid rank function in the subsequent

equations.
0
r(4) = min(|ANVil, k) (6.18)
=1
¢
= min([AN V(L)1) (6.19)
=1
4
_ : ANV (L) if J; #0 N
a P inglr[ll ({ 0 if Jz — (Z) } + ‘Iz \ Jz‘) (6'20)
14
=2 min (V(Ji) N A+ |1\ Ji]) (6.21)

i=1
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Transversal Matroid
(NERRE AN

... Morphing Partition Matroid Rank

e Continuing,

r(A) = Z min (|V (i) NV (L) VAl = [0 Ji| + L)) (6.22)
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Transversal Matroid
(NERRE AN

... Morphing Partition Matroid Rank

e Continuing,

y4
r(A) = Z min (|V (i) NV (L) VAl = [0 Ji| + L)) (6.22)

l
= min (Z V() NV(I)NA| - LN J|+ \hl) (6.23)

F28/37 (pg.81/118)
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Transversal Matroid
(NERRE AN

... Morphing Partition Matroid Rank

e Continuing,

r(A) = Z min (|V (i) NV (L) VAl = [0 Ji| + L)) (6.22)

l
=min [ Y [V(J)N V(L) NAl = |LNJ|+ \hl) (6.23)

JET 1=1
= min (|V(J) N V(D) N A = || +|T)) (6.24)
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Transversal Matroid
(NERRE AN

... Morphing Partition Matroid Rank

e Continuing,

=1
= min ([V(J) N V() N1 Al = |J] + |1])
= min ([V(J) N Al = |7+ 1))
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Transversal Matroid
(NERRE AN

... Morphing Partition Matroid Rank

e Continuing,

r(A) = Z min (|V (i) NV (L) VAl = [0 Ji| + L)) (6.22)

l
=min [ Y [V(J)N V(L) NAl = |LNJ|+ \hl) (6.23)

JCI
- =1
= min (|V(J) N V(1) N A| = ||+ 1] (6.24)
= min ([V(J) N Al = |7+ 1)) (6.25)

@ In fact, this bottom (more general) expression is the expression for
the rank of a transversal matroid.
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Transversal Matroid

Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 6.5.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,¢}. Let T be the set of partial transversals of V. Then (V,T)

is a matroid.

Proof.

D |

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014 F29/37 (pg.85/118)



Transversal Matroid

Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 6.5.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,¢}. Let T be the set of partial transversals of V. Then (V,T)

is a matroid.

Proof.
@ We note that () € Z since the empty set is a transversal of the empty
subfamily of V, thus (I1') holds.
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Transversal Matroid

Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 6.5.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,¢}. Let T be the set of partial transversals of V. Then (V,T)

is a matroid.

Proof.
@ We note that () € Z since the empty set is a transversal of the empty
subfamily of V, thus (I1') holds.
o We already saw that if T is a partial transversal of V, and if T/ C T,
then 7" is also a partial transversal. So (12') holds.
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Transversal Matroid

Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 6.5.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,¢}. Let T be the set of partial transversals of V. Then (V,T)

is a matroid.

@ We note that () € Z since the empty set is a transversal of the empty
subfamily of V, thus (I1') holds.

o We already saw that if T is a partial transversal of V, and if T/ C T,
then 7" is also a partial transversal. So (12') holds.

@ Suppose that T} and T are partial transversals of V such that
|T1| < |T3|. Exercise: show that (13") holds.
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Transversal Matroid
(NERRNAY |

Transversal Matroid Rank

@ Transversal matroid has rank

r(4) = min (V) 0 A = 1] +12) (6.26)
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Transversal Matroid
(NERRNAY |

Transversal Matroid Rank

@ Transversal matroid has rank

r(4) = min (V) 0 A = 1] +12) (6.26)

@ Therefore, this function is submodular.
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Transversal Matroid
(NERRNAY |

Transversal Matroid Rank

@ Transversal matroid has rank

r(4) = min (V) 0 A = 1] +12) (6.26)

@ Therefore, this function is submodular.

@ Note that it is a minimum over a set of modular functions. Is this
true in general? Exercise:
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Matroid and representation
[ERN

Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
forany a € A, r(A\ {a}) = |A| —1).
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Matroid and representation
[ERN

Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
forany a € A, r(A\ {a}) =|4] - 1).

@ There is no reason in a matroid such an A could not consist of a
single element.
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Matroid and representation
[ERN

Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
forany a € A, r(A\ {a}) =|4] - 1).

@ There is no reason in a matroid such an A could not consist of a
single element.

@ Such an {a} is called a loop.
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Matroid and representation
[ERN

Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
forany a € A, r(A\ {a}) =|4] - 1).

@ There is no reason in a matroid such an A could not consist of a
single element.

@ Such an {a} is called a loop.

@ In a matric (i.e., linear) matroid, the only such loop is the value 0,
as all non-zero vectors have rank 1. The O can appear > 1 time
with different indices, as can a self loop in a graph appear on
different nodes.
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Matroid and representation
[ERN

Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
forany a € A, r(A\ {a}) =|4] - 1).

@ There is no reason in a matroid such an A could not consist of a
single element.

@ Such an {a} is called a loop.

@ In a matric (i.e., linear) matroid, the only such loop is the value 0,
as all non-zero vectors have rank 1. The O can appear > 1 time
with different indices, as can a self loop in a graph appear on
different nodes.

@ Note, we also say that two elements s, t are said to be parallel if
{s,t} is a circuit.
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Matroid and representation
1l

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M7 and My respectively on ground sets V7 and V5 are
isomorphic if there is a bijection 7 : V; — V5 which preserves
independence (equivalently, rank, circuits, and so on).
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Matroid and representation
1l

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M7 and My respectively on ground sets V7 and V5 are
isomorphic if there is a bijection 7 : V; — V5 which preserves
independence (equivalently, rank, circuits, and so on).

o Let I be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014 F32/37 (pg.98/118)



Matroid and representation
1l

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M7 and My respectively on ground sets V7 and V5 are
isomorphic if there is a bijection 7 : V; — V5 which preserves
independence (equivalently, rank, circuits, and so on).

o Let I be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.

@ We can more generally define matroids on a field.
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Matroid and representation
1l

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M7 and My respectively on ground sets V7 and V5 are
isomorphic if there is a bijection 7 : V; — V5 which preserves
independence (equivalently, rank, circuits, and so on).

o Let I be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.

@ We can more generally define matroids on a field.

Definition 6.6.2 (linear matroids on a field)

Let X be an n x m matrix and E = {1,...,m}, where X;; € IF for some
field, and let Z be the set of subsets of F such that the columns of X are
linearly independent over F.
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Matroid and representation
1l

Representable

Definition 6.6.1 (Matroid isomorphism)

Two matroids M7 and My respectively on ground sets V7 and V5 are
isomorphic if there is a bijection 7 : V; — V5 which preserves
independence (equivalently, rank, circuits, and so on).

o Let I be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplictaive identities and
inverses.

@ We can more generally define matroids on a field.

Definition 6.6.3 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called
representable over F

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014



Matroid and representation
[y

Representability of Transversal Matroids

e Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.
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Matroid and representation
[y

Representability of Transversal Matroids

e Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.

@ In particular:

Theorem 6.6.4

Transversal matroids are representable over all finite fields of sufficiently
large cardinality, and are representable over any infinite field.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014



Matroid and representation
(N1 ]

Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 6.6.5

Let V ={1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where 7 is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.
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Matroid and representation
(N1 ]

Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 6.6.5

Let V ={1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where 7 is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.

@ It can be shown that this is a matroid and is representable.
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Matroid and representation
(N1 ]

Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 6.6.5

Let V ={1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where 7 is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.

@ It can be shown that this is a matroid and is representable.

@ However, this matroid is not isomorphic to any transversal matroid.
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Dual Matroid
LA

Matroids, other definitions using matroid rank r : 2V — Z,

Definition 6.7.1 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid
M ifforallz € E\ A, r(AU{z}) =r(4) + 1.

A hyperplane is a flat of rank r(M) — 1.

Definition 6.7.2 (closure)

Given A C FE, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(4)}.

Therefore, a closed set A has span(A) = A.

Definition 6.7.3 (circuit)

A subset A C E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A] and for any a € A,

r(A\{a}) = |A] - 1).
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Dual Matroid
i

Spanning Sets

@ We have the following definitions:
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Dual Matroid
i

Spanning Sets

@ We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid M = (V,Z), and aset Y C V, then any set X C YV
such that 7(X) = r(Y) is called a spanning set of Y.
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Dual Matroid

Spanning Sets

@ We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid M = (V,Z), and aset Y C V, then any set X C YV
such that 7(X) = r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.
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Dual Matroid

Spanning Sets

@ We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid M = (V,Z), and aset Y C V, then any set X C YV
such that 7(X) = r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is
independent) but supersets of a base are also spanning.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 6 - April 16th, 2014



Dual Matroid

Spanning Sets

@ We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid M = (V,Z), and aset Y C V, then any set X C YV
such that 7(X) = r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is
independent) but supersets of a base are also spanning.

e V is always trivially spanning.
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Dual Matroid
i

Spanning Sets

@ We have the following definitions:

Definition 6.7.1 (spanning set of a set)

Given a matroid M = (V,Z), and aset Y C V, then any set X C YV
such that 7(X) = r(Y) is called a spanning set of Y.

Definition 6.7.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is
independent) but supersets of a base are also spanning.

e V is always trivially spanning.
o Consider the terminology: “spanning tree in a graph”, comes from
spanning in a matroid sense.
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Dual Matroid
[

Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* = (V,Z*) can be
defined on the same ground set V, but using a very different set of
independent sets 7*.
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Dual Matroid
[

Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* = (V,Z*) can be
defined on the same ground set V, but using a very different set of
independent sets Z*.

@ We define the set of sets Z* for M* as follows:

I*={ACV:V\ Ais a spanning set of M} (6.27)
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Dual Matroid
[

Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* = (V,Z*) can be
defined on the same ground set V, but using a very different set of
independent sets Z*.

@ We define the set of sets Z* for M* as follows:
I*={ACV:V\ Ais a spanning set of M} (6.27)

@ That is, a set A is independent in the dual matroid M* if removal of
A from V does not decrease the rank in M:

A {A - V. rankM(V\A) = rankM(V)} (628)
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Dual Matroid
[

Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* = (V,Z*) can be
defined on the same ground set V, but using a very different set of
independent sets Z*.

@ We define the set of sets Z* for M* as follows:
I*={ACV:V\ Ais a spanning set of M} (6.27)

@ That is, a set A is independent in the dual matroid M™ if removal of
A from V does not decrease the rank in M:

¥ ={ACV :ranky(V\ A) =ranky (V)} (6.28)

@ In other words, a set A C V' is independent in the dual M* (i.e.,
A € T*) if its complement is spanning in M (residual V' \ A must
contain a base in M).
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Dual Matroid
[

Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* = (V,Z*) can be
defined on the same ground set V, but using a very different set of
independent sets Z*.

@ We define the set of sets Z* for M* as follows:

I*={ACV:V\ Ais a spanning set of M} (6.27)

@ That is, a set A is independent in the dual matroid M™ if removal of
A from V does not decrease the rank in M:

IZ* ={A CV :ranky (V \ A) = rankp(V)} (6.28)

@ In other words, a set A C V' is independent in the dual M* (i.e.,
A € T*) if its complement is spanning in M (residual V' \ A must
contain a base in M).

@ Dual of the dual: Note, we have that (M*)* = M.
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