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Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

@ our room (Mueller Hall Room 154) is changed!

@ Please do use our discussion board (https:
//canvas.uw.edu/courses/895956/discussion_topics) for all
questions, comments, so that all will benefit from them being
answered.

o Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-I

@ L1 (3/31): Motivation, Applications, & @ L11I:
Basic Definitions @ L12:

@ L2: (4/2): Applications, Basic o L13:
Definitions, Properties @ L14:

@ L3: More examples and properties (e.g., L15:
cIosur_e properties), and examples, o L16:
spanning trees

@ L4: proofs of equivalent definitions, o Lir:
independence, start matroids ® Lis:

@ L5: matroids, basic definitions and ® L19:
examples ® L20:

@ L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

@ L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

@ L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

@ LI:

@ L10:

Finals Week: June 9th-13th, 2014.
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Many (Equivalent) Definitions of Submodularity

f(A) + f(B)> f(AUB) + f(ANB), YA, BCV (5.6)
fG1S) > fUIT), ¥VSCT CV, with j e V\T (5.7)
F(C|S) > f(CIT),VSCT CV, withCCV\T (5.8)
f(1S) = f(GISU{k}), VS CV with j € V'\ (SU{k}) -
5.9
f(AU B[A N B) < f(A|[ANnB)+ f(BJAnB), VA,BCV (5.10)
FT)<FS)+ D FGIS) - D FGISUT —{5}), VS, T CV
JET\S JES\T
(5.11)
F@) < S+ D £(IS), vSCTCV (5.12)
JET\S
F@ <) - > FUIS\UGH+ D fGISNT) VS, TCV
JES\T JET\S
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F(T) < f(S)= D FGIS\{i}), VT € SCV (5.14)
JES\T

Review

@ We saw: column space of a matrix, dimensionality of span of subset
of columns as rank function.

@ Incidence matrix of (arbitrarily oriented version of) graph
G = (V, E), rank of matrix columns F' corresponded to spanning
tree of edge-induced graph G’ = (V’, F) where v’ are vertices
incident to edges in F'.

@ We saw several different “greedy” algorithms that proced optimal
spanning trees (Bortivka's, Jarnik/Prim/Dijkstra’s, and Kruskal's).

@ We wish to more formally connect the above, and generalize further.
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

@ Given a set B € 7 of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, Z is down-closed or
“subclusive”, under subsets. In other words,

ACBand BeI=AecZl (5.32)

e maxInd: Inclusionwise maximal independent subsets (or bases) of any
set BCV.

maxInd(B) £ {ACB:AcZandVvc B\ A, AU{v} ¢ T} (5.33)

@ Given any set B C V of vectors, all maximal (by set inclusion) subsets
of linearly independent vectors are the same size. That is, for all
BCV,

/A A oo o o o [) Vi A 4
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From Matrix Rank — Matroid

@ Thus, for all I € Z, the matrix rank function has the property
r(I) = |1 (5.32)
and for any B ¢ Z,

r(B) =max{|A|: AC B and A€ T} < |B| (5.33)
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J € I, then J is said to be an independent set.

Definition 5.2.4 (Matroid)

A set system (F,7) is a Matroid if
(11) ez
(I2)yvVieZ,JCcl=JeZl

(13) VI,J € Z, with |I| = |J| + 1, then there exists € I\ J such that
JUu{z} e

Why is (1) is not redundant given (12)? Because could have an (albeit
trivial) matroid where Z = {0}
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful

submodular function (perhaps all we need for many problems).

Understanding matroids crucial for understanding submodularity.

e Matroid independent sets (i.e., A s.t. 7(A) = | A|) are useful
constraint set, and fast algorithms for submodular optimization
subject to one (or more) matroid independence constraints exist.

@ Crapo & Rota preferred the term “combinatorial geometry”, or more
specifically a “pregeometry” and said that pregeometries are “often
described by the ineffably cacaphonic [sic] term "'matroid’, which we

prefer to avoid in favor of the term 'pregeometry’.
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Matroid

Slight modification (non unit increment) that is equivalent.

Definition 5.3.1 (Matroid-I1)

A set system (FE,7) is a Matroid if

(11 peZ

(I2YVIeZ,JcCI=JeZ (or “down-closed")

(13') VI,J € T, with |I| > |J
Ju{z} el

, then there exists © € I\ J such that

Note (11)=(I1"), (12)=(I2"), and we get (I3)=(13") using induction.
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Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € Z and otherwise A is called dependent.

@ A baseof U C E: For U C E, a subset B C U is called a base of U
if B is inclusionwise maximally independent subset of U. That is,
B €7 and thereisno Z € Z with BC Z CU.

@ A base of a matroid: If U = E, then a "base of E" is just called a
base of the matroid M (this corresponds to a basis in a linear space).
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Matroids - important property

Proposition 5.3.2
In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (11),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V,Z) is a Matroid if
(11") O € Z (emptyset containing)
(I2") YI € Z,J C I = J € Z (down-closed or subclusive)

(13") ¥X CV, and I, I € maxInd(X), we have |I;| = |I2]| (all maximally
independent subsets of X have the same size).
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Matroids - rank

@ Thus, in any matroid M = (E,Z), VU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r3;(U) or just r(U) when the matroid in equation is
unambiguous.

o r(E) = r(g ) is the rank of the matroid, and is the common size of
all the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 5.3.4 (matroid rank function)

The rank of a matroid is a function r : 2F — 7. defined by

T(A):max{\X|:XQA,XEI}:I)I(la%c\AﬂX| (5.1)
€

@ From the above, we immediately see that r(A) < |A].
@ Moreover, if r(A) = |A|, then A € Z, meaning A is independent (in

this case, A is a self base).
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Matroids, other definitions using matroid rank 7 : 2" — Z

Definition 5.3.5 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid
M ifforallz e E\ A r(AU{z}) =r(A) + 1.

A hyperplane is a flat of rank (M) — 1.
Definition 5.3.6 (closure)

Given A C F, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(4)}.

Therefore, a closed set A has span(A4) = A.

Definition 5.3.7 (circuit)

A subset A C FE is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A| and for any a € A,

r(A\{a}) = [A] - 1).
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 5.3.8 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then
the following are equivalent.

@ B is the collection of bases of a matroid;

@ ifB,B' € B, andx € B'\ B, then B'— x + y € B for some
y€ B\ B.

© IfB,B' € B, and x € B'\ B, then B —y + x € B for some
y€ B\ B.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of
linear spaces and matrices, and (alternatively) spanning trees.
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is
not surprising that circuits can also characterize a matroid.
Theorem 5.3.9 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the
following three properties:

@ (Cl): B ¢cC
Q (CQ) if C1,Cy € C and C7 C (Y, then C7 = ().

@ (C3): if C1,Cy € C with C; # Cs, and e € Cy N Cy, then there
exists a C3 € C such that C3 C (C7 U Cy) \ {e}.
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 5.3.10 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such
that no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx € CNC’, then (CUC")\ {x} contains a set in C;

@ ifC,C"eC,andz e CNC’, andy € C\ ', then (CUC")\ {z}
contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and
matrices, and spanning trees.
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Matroids by submodular functions

Theorem 5.3.11 (Matroid by submodular functions)

Let f:2F — 7 be a integer valued monotone non-decreasing
submodular function. Define a set of sets as follows:

C(f)= {C C E : C is non-empty,
is inclusionwise-minimal,

and has £(C) < |C| } (5.2)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal in this case means that if C' € C(f), then there
exists no C' C C with C" € C(f) (i.e., C' C C would either be empty or
have f(C") > |C’|). Also, recall inclusionwise-minimal in Definition 5.3.7,
the definition of a circuit.
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Uniform Matroid
@ Given E, consider Z to be all subsets of E that are at most size k.
ThatisZ={AC E: |A| <k}.
@ Then (E,Z) is a matroid called a k-uniform matroid.
@ Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [+ j| < kandso I +j €Z.

@ Rank function
Al if|A| <k
r(4) = 4 | 4] < (5.3)
k if |[A| >k
@ Note, this function is submodular. Not surprising since
r(A) = min(|A|, k) which is a non-decreasing concave function

applied to a modular function.
@ Closure function

A if |Al <k,

_ (5.4)
E if |A| >k,

span(A) = {

e A “free” matroid sets k = |E|, so everything is independent.
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Linear (or Matric) Matroid

o Let X be an n x m matrix and £ = {1,...,m}

@ Let 7 consists of subsets of E such that if A € Z, and
A ={a1,a,...,ar} then the vectors x4, Zq,, - . ., Zq, are linearly
independent.

@ the rank function is just the rank of the space spanned by the
corresponding set of vectors.

@ rank is submodular, it is intuitive that it satisfies the diminishing
returns property (a given vector can only become linearly dependent
in a greater context, thereby no longer contributing to rank).

@ Called both linear matroids and matric matroids.
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Cycle Matroid of a graph: Graphic Matroids

@ Let G = (V, FE) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V,A) by A does not contain any cycle.

@ Then M = (FE,Z) is a matroid.
@ 7 contains all forests.
@ Bases are spanning forests (spanning trees if G is connected).

@ Rank function r(A) is the size of the largest spanning forest
contained in G(V, A).

@ Closure function adds all edges between the vertices adjacent to any
edge in A. Closure of a spanning forest is G.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Partition Matroid

@ Let V' be our ground set.

o Let V=ViuloU---UV, be a partition of V into blocks or disjoint
sets (disjoint union). Define a set of subsets of V' as

I={XCV: | XnVj|<kjforalli=1,... ¢} (5.5)

where k1, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with ¢ =1, V; =V, and k1 = k.

@ We'll show that property (13') in Def 5.3.3 holds. If X,Y € 7 with
Y| > | X, then there must be at least one 7 with
Y NnVi| > |X NV;|. Therefore, adding one element
ec VN (Y \ X) to X won't break independence.
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Partition Matroid

Ground set of objects, V' = {
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Partition Matroid

Partition of V' into six blocks, Vi, Vs, ..., Vj
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Partition Matroid

Limit associated with each block, {k1, k2, ..., ke}
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Partition Matroid

Independent subset but not maximally independent.
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Partition Matroid

Maximally independent subset, what is called a base.
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Partition Matroid

Not independent since over limit in set six.
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Matroids - rank
Lemma 5.5.1

The rank function r : 2¥ — Z of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)
Proof.
@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7T be inclusionwise maximal set with X CY C AU B.

|

© Since M is a matroid, we know that (AN B) = r(X) = | X|, and
r(AUB) =r(Y)=1Y]. Also, forany U € Z, r(A) > |[ANU|.
@ Then we have
r(A)+r(B) > |[YNA|+|Y NB| :
=YN(ANB)|+|Y Nn(AUB)| (5.7)
> |X|+|Y|=r(ANnB)+r(AUB) (5.8)
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Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 5.5.2 (Matroid from rank)

Let E be a set and let v : 2F — 7 be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all A, B C E':

(R1) VACFE 0<r(A) <|A| (non-negative cardinality bounded)
(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)
(R3) r(AUB)+7r(ANB) <r(A)+r(B) forall A,B C E (submodular)

@ So submodularity and non-negative monotone non-decreasing, and
unit increase is necessary and sufficient to define the matroid.

@ Given above, unit increment (if 7(A) = k, then either
r(AU{v}) =k or r(AU{v}) =k + 1) holds.

@ A matroid is sometimes given as (E,r) where E is ground set and r
is rank function.
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Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 5.5.2 (Matroid from rank)

Let E be a set and let v : 2F — 7, be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all A, B C E:
(R1) VACFE 0<r(A) <|A| (non-negative cardinality bounded)
(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)
(R3) r(AUB)+r(ANB) <r(A)+r(B) forall A,BC E (submodular))

e From above, r()) = 0. Let v ¢ A, then by monotonicity and
submodularity, r(A) < r(AU{v}) <r(A)+r({v}) which gives only
two possible values to 7(A U {v}).
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

@ Given a matroid M = (E,Z), we see its rank function as defined in

Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
T={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

o First, ) € Z.

@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y\ X)—r(D) (5.9)
> y| - ¥\ X (510)
— |X| (5.11)

implying 7(X) = | X]|, and thus X € 7.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, so r(A) =|A| < r(B) = |B|. Let
B \ A= {bl,bg, .. ,bk} (note k< |BD

@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means
for all such b, r(A +b) =1r(A) = |A|. Then

r(B) <r(AuUB) (5.12)
<r(AU(B\{t1})) +r(AU{b}) —r(A) (5.13)
=r(AU(B\{h}) (5.14)
<7(AU(B\{b1,b2})) + r(AU{b2}) — r(A) (5.15)
=r(AU (B \ {b1,b2})) (5.16)
<...<r(A4)=|A4| < |B| (5.17)

giving a contradiction since B € 7. .
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Matroids from rank Il

Another way of using function r to define a matroid.

Theorem 5.5.3 (Matroid from rank Il)

Let E be a finite set and let r : 2¥ — 7. be a function. Then r(-)
defines a matroid with r being its rank function if and only if for all
ACE,andz,y€e E:

(R1") r(0) =0;

(R2) r(X) < r(X U{y}) < r(X) +1;

(R3) Ifr(XU{zx}) =r(XU{y}) =r(X), then r(X U{z,y}) = r(X).

v

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014 F30/39 (pg.41/50)

Matroid Rank
Lrrrrnnd

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)

@ Circuit axioms

@ Closure axioms (we didn't see this, but it is possible)

@ Rank axioms (normalized, monotone, cardinality bounded,
submodular)
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Maximization problems for matroids

@ Given a matroid M = (E,Z) and a modular cost function
c: E — R, the task is to find an X € 7 such that
c(X) => ,cx c(z) is maximum.
@ This seems remarkably similar to the max spanning tree problem.
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Minimization problems for matroids

@ Given a matroid M = (E,Z) and a modular cost function
c¢: E — R, the task is to find a basis B € B such that ¢(B) is

minimized.
@ This sounds like a set cover problem (find the minimum cost
covering set of sets).
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

12
r(A) = Z min(|AN V4|, k;) (5.18)

1=1

which we also immediately see is submodular using properties we
spoke about last week. That is:

Q |ANV;]| is submodular (in fact modular) in A

© min(submodular(A), k;) is submodular in A since |[AN V| is
monotone.

© sums of submodular functions are submodular.

e r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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Matroid and Rank

@ Thus, we can define a matroid as M = (V,r) where r satisfies
matroid rank axioms.

@ Example: 2-partition matroid rank function: Given natural numbers
a,b € Z, with a > b, and any set R C V with |R| = a, two-block
partition V = (R, R), where R = V \ R, define:

r(A) = min(|A N R|,b) + min(|A N R|, |R|) (5.19)
= min(|AN R|,b) + |AN R (5.20)
e Partition matroid figure showing this:
V

bl b < |R|=a
R
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Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With

r(A) = min(|[ANR|,b) + |[ANR|, b < a, define:
fr(A) = min{r(A),a} (5.21)
= min {min(|ANR| + [ANR|,|JANR|+b),a} (5.22)
= min {|A],b+|ANR|,a} (5.23)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
T={ICV:|I|<aand |[[NR|<b}, (5.24)

@ Useful for showing hardness of constrained submodular
minimization. Consider sets B C V with |B| = a.

For R, we have fr(R) =b < a.

For any B with |[BN R| <b, fr(B) = a.

For any B with |[BN R| =/, with b < ¢ < a, fr(B)=b+a— .
R, the set with minimum valuation amongst size-a sets, is hidden
within an exponentially larger set of size-a sets with larger valuation.
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Partition Matroid, rank as matching

A partition matroid can be viewed using a bipartite graph.

Letting V denote the ground set, and Vi, V5, ... the partition, the
graph is G = (V, I, E) where V is the ground set, I is a set of
“indices”, and F is the set of edges.

I=(I,I...,1) is a set of k = Zle k; nodes, grouped into £
clusters, where there are k; nodes in the it group I;.

(v,4) € E(G) iff v e Vjand i € I;.
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Partition Matroid, rank as matching

o Example where ¢ =5,
(K1, ko, k3, ka, k) =

(2,2,1,1,3). o Recall, T': 2 — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
Vi I {veV(G)\ X : E(X,{v}) # 0}, and
recall that |I'(X)| is submodular.
Vs I @ Here, for X C V, we have I'(X) =

{iel:(v,i) € E(G)and v € X}.
E @ For such a constructed bipartite graph,
: the rank function of a partition matroid
4 is 7(X) = 0 min(|X N V|, k;) =
the maximum matching involving X.
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Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
@ A set system (V,F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

@ Family is laminar if it has no two “properly intersecting” members:
i.e., intersecting AN B # () and not comparable (one is not contained
in the other).

@ Suppose we have a laminar family F of subsets of V' and an integer k4

for every set A € F.
@ Then (V,Z) defines a matroid where

I={ICE:|INA|l<kyforall Aec F} (5.25)

@ Exercise: what is the rank function here?
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