

Logistics		Review	
Class Road Map - IT-I			
 L1 (3/31): Motivation, Applications, & Basic Definitions L2: (4/2): Applications, Basic Definitions, Properties L3: More examples and properties (e.g., closure properties), and examples, spanning trees L4: proofs of equivalent definitions, independence, start matroids L5: matroids, basic definitions and examples L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation L7: Dual Matroids, other matroid properties, Combinatorial Geometries L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes, L9: L10: 	 L11: L12: L13: L14: L15: L16: L17: L18: L19: L20: 		
Finals Week: June 9th-13th, 2014.			
Prof. Jeff Bilmes EE596b/Spring 2014/S	ubmodularity - Lecture 5 - April 14th, 2014	F4/39 (pg.4/50)	

Review

Many (Equivalent) Definitions of Submodularity

$$\begin{split} f(A) + f(B) &\geq f(A \cup B) + f(A \cap B), \ \forall A, B \subseteq V \qquad (5.6) \\ f(j|S) &\geq f(j|T), \ \forall S \subseteq T \subseteq V, \ \text{with} \ j \in V \setminus T \qquad (5.7) \\ f(C|S) &\geq f(C|T), \ \forall S \subseteq T \subseteq V, \ \text{with} \ C \subseteq V \setminus T \qquad (5.8) \\ f(j|S) &\geq f(j|S \cup \{k\}), \ \forall S \subseteq V \ \text{with} \ j \in V \setminus (S \cup \{k\}) \\ & (5.9) \\ f(A \cup B|A \cap B) &\leq f(A|A \cap B) + f(B|A \cap B), \ \forall A, B \subseteq V \qquad (5.10) \\ f(T) &\leq f(S) + \sum_{j \in T \setminus S} f(j|S) - \sum_{j \in S \setminus T} f(j|S \cup T - \{j\}), \ \forall S, T \subseteq V \\ & (5.11) \\ f(T) &\leq f(S) + \sum_{j \in T \setminus S} f(j|S), \ \forall S \subseteq T \subseteq V \qquad (5.12) \\ f(T) &\leq f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}) + \sum_{j \in T \setminus S} f(j|S \cap T) \ \forall S, T \subseteq V \\ f(T) &\leq f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}) + \sum_{j \in T \setminus S} f(j|S \cap T) \ \forall S, T \subseteq V \\ f(T) &\leq f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}), \ \forall T \subseteq S \subseteq V \qquad (5.14) \\ \end{split}$$

Review

- We saw: column space of a matrix, dimensionality of span of subset of columns as rank function.
- Incidence matrix of (arbitrarily oriented version of) graph G = (V, E), rank of matrix columns F corresponded to spanning tree of edge-induced graph G' = (V', F) where v' are vertices incident to edges in F.
- We saw several different "greedy" algorithms that proced optimal spanning trees (Borůvka's, Jarník/Prim/Dijkstra's, and Kruskal's).
- We wish to more formally connect the above, and generalize further.

Logistics

From Matrix Rank \rightarrow Matroid

- So V is set of column vector indices of a matrix.
- Let \mathcal{I} be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.
- Given a set B ∈ I of linearly independent vectors, then any subset A ⊆ B is also linearly independent. Hence, I is down-closed or "subclusive", under subsets. In other words,

$$A \subseteq B \text{ and } B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$$
(5.32)

Review

 maxInd: Inclusionwise maximal independent subsets (or bases) of any set B ⊆ V.

 $\mathsf{maxInd}(B) \triangleq \{A \subseteq B : A \in \mathcal{I} \text{ and } \forall v \in B \setminus A, A \cup \{v\} \notin \mathcal{I}\}$ (5.33)

 Given any set B ⊂ V of vectors, all maximal (by set inclusion) subsets of linearly independent vectors are the same size. That is, for all B ⊆ V,

```
Prof. Jeff Bilmes
```

EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014

From Matrix Rank \rightarrow Matroid

• Thus, for all $I \in \mathcal{I}$, the matrix rank function has the property

$$r(I) = |I| \tag{5.32}$$

and for any $B \notin \mathcal{I}$,

$$r(B) = \max\left\{|A| : A \subseteq B \text{ and } A \in \mathcal{I}\right\} \le |B|$$
(5.33)

Review

Matroid

Independent set definition of a matroid is perhaps most natural. Note, if $J \in \mathcal{I}$, then J is said to be an independent set.

Definition 5.2.4 (Matroid)

A set system (E, \mathcal{I}) is a Matroid if

- (I1) $\emptyset \in \mathcal{I}$
- $(\mathsf{I2}) \ \forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$
- (13) $\forall I, J \in \mathcal{I}$, with |I| = |J| + 1, then there exists $x \in I \setminus J$ such that $J \cup \{x\} \in \mathcal{I}$.

Why is (I1) is not redundant given (I2)? Because could have an (albeit trivial) matroid where $\mathcal{I} = \{\emptyset\}$.

Prof. Jeff Bilmes

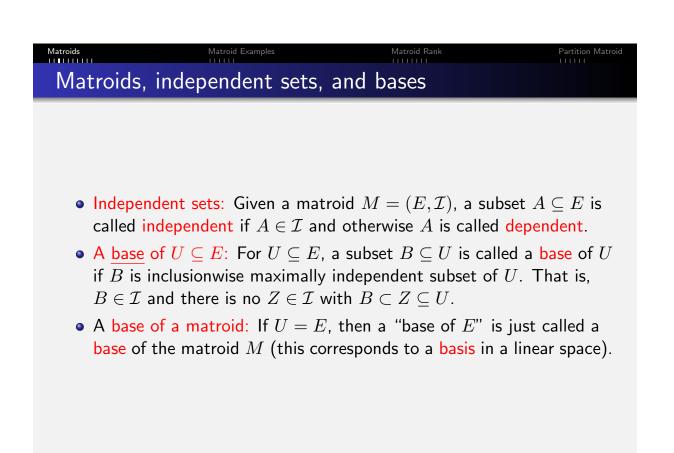
EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014

F9/39 (pg.9/50)

Matroids	Matroid Examples	Matroid Rank	Partition Matroid
On Matroi	ds		
but alrea based on Takeo N Forgotte Matroids The rank submodu Understa Matroid constrain subject t Crapo & specifica described	dy then found instance a matrix. akasawa, 1935, also ea n for 20 years until mi are powerful and flex function of a matroid lar function (perhaps nding matroids crucia independent sets (i.e. it set, and fast algorit o one (or more) matro Rota preferred the te ly a "pregeometry" a	d 1950s. ible combinatorial object d is already a very power all we need for many per- l for understanding sub- d, A s.t. $r(A) = A $ are hower for submodular op- bid independence consist rm "combinatorial geo- and said that pregeomet- phonic [sic] term 'mate-	ects. verful problems). bmodularity. re useful ptimization traints exist. metry", or more tries are "often

EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014

F11/39 (pg.11/50)



F13/39 (pg.13/50)

Partition Matroio

Matroids - important property

Proposition 5.3.2

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

Prof. Jeff Bilmes

A set system (V, \mathcal{I}) is a Matroid if

- (11') $\emptyset \in \mathcal{I}$ (emptyset containing)
- (12') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (down-closed or subclusive)
- (13) $\forall X \subseteq V$, and $I_1, I_2 \in \mathsf{maxInd}(X)$, we have $|I_1| = |I_2|$ (all maximally independent subsets of X have the same size).

EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014

```
Matroids - rank
  • Thus, in any matroid M = (E, \mathcal{I}), \forall U \subseteq E(M), any two bases of
     U have the same size.
  • The common size of all the bases of U is called the rank of U,
     denoted r_M(U) or just r(U) when the matroid in equation is
     unambiguous.
  • r(E) = r_{(E,\mathcal{I})} is the rank of the matroid, and is the common size of
     all the bases of the matroid.
```

• We can a bit more formally define the rank function this way.

Definition 5.3.4 (matroid rank function)

The rank of a matroid is a function $r:2^E \to \mathbb{Z}_+$ defined by

$$r(A) = \max\left\{|X| : X \subseteq A, X \in \mathcal{I}\right\} = \max_{X \in \mathcal{I}} |A \cap X|$$
(5.1)

- From the above, we immediately see that $r(A) \leq |A|$.
- Moreover, if r(A) = |A|, then $A \in \mathcal{I}$, meaning A is independent (in this case, A is a self base).

Matroids, other definitions using matroid rank $r: 2^V \to \mathbb{Z}_+$

Definition 5.3.5 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

A hyperplane is a flat of rank r(M) - 1.

Definition 5.3.6 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$

Therefore, a closed set A has span(A) = A.

Definition 5.3.7 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).

Prof. Jeff Bilme

EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th

15/39 (pg.15/50

Matroids	Matroid Examples	Matroid Rank	Partition Matroid
Matroids by	y bases		

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

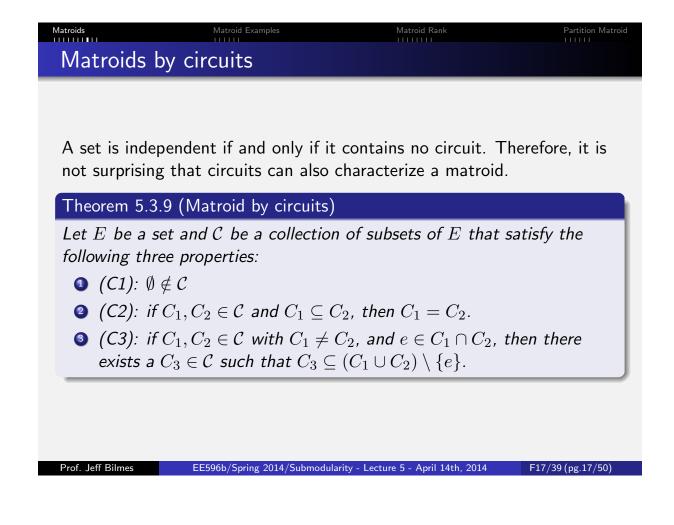
Theorem 5.3.8 (Matroid (by bases))

Let E be a set and \mathcal{B} be a nonempty collection of subsets of E. Then the following are equivalent.

- B is the collection of bases of a matroid;
- 2 if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B' x + y \in \mathcal{B}$ for some $y \in B \setminus B'$.
- So If $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B y + x \in \mathcal{B}$ for some $y \in B \setminus B'$.

Properties 2 and 3 are called "exchange properties."

Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.



Several circuit definitions for matroids.

Theorem 5.3.10 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that no two sets in C are contained in each other. Then the following are equivalent.

- C is the collection of circuits of a matroid;
- 2) if $C, C' \in C$, and $x \in C \cap C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C;
- S if $C, C' \in C$, and $x \in C \cap C'$, and $y \in C \setminus C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and matrices, and spanning trees.

Matroids

Matroid Examp

Matroid Rank

Partition Matroid

Matroids by submodular functions

Theorem 5.3.11 (Matroid by submodular functions)

Let $f: 2^E \to \mathbb{Z}$ be a integer valued monotone non-decreasing submodular function. Define a set of sets as follows:

$$\mathcal{C}(f) = \Big\{ C \subseteq E : C \text{ is non-empty,} \Big\}$$

is inclusionwise-minimal,

and has f(C) < |C| } (5.2)

Then C(f) is the collection of circuits of a matroid on E.

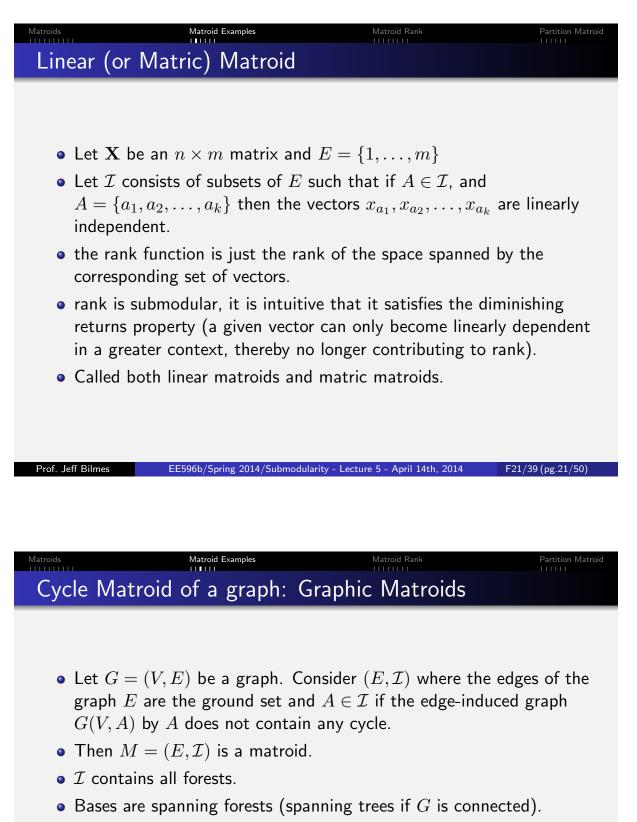
Inclusionwise-minimal in this case means that if $C \in C(f)$, then there exists no $C' \subset C$ with $C' \in C(f)$ (i.e., $C' \subset C$ would either be empty or have $f(C') \geq |C'|$). Also, recall inclusionwise-minimal in Definition 5.3.7, the definition of a circuit.

Prof. Jeff Bilmes

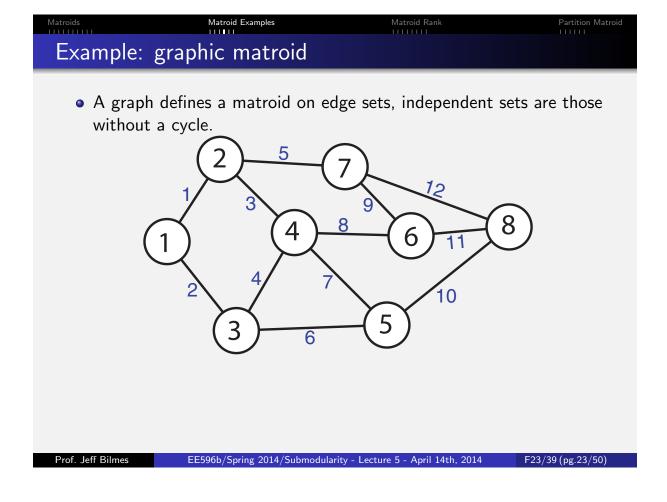
EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th,

F19/39 (pg.19/50)

Matroids	Matroid Examples		Matroid Rank	Partition Matroid
Uniform	Matroid			
That • Then • Note then	For E , consider \mathcal{I} to be all so is $\mathcal{I} = \{A \subseteq E : A \le k\}$ (E, \mathcal{I}) is a matroid called if $I, J \in \mathcal{I}$, and $ I < J $ j is such that $ I + j \le k$ function	k. a k -ı $\leq k$,	uniform matroid. and $j \in J$ such	
	,	$ A \ k$	$\begin{array}{l} \text{if } A \leq k \\ \text{if } A > k \end{array}$	(5.3)
r(A) applie	, this function is submodul = $\min(A , k)$ which is a red to a modular function. are function			
	$\operatorname{span}(A) =$	$\begin{cases} A \\ E \end{cases}$	$\begin{array}{l} \text{if } A < k, \\ \text{if } A \geq k, \end{array}$	(5.4)
	ee" matroid sets $k = E $,			
Prof. Jeff Bilmes	EE596b/Spring 2014/Submodula	arity - Lec	ture 5 - April 14th, 2014	F20/39 (pg.20/50)

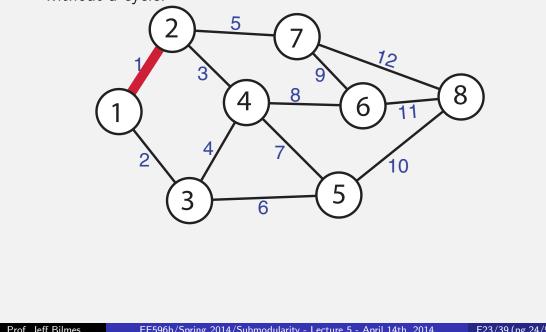


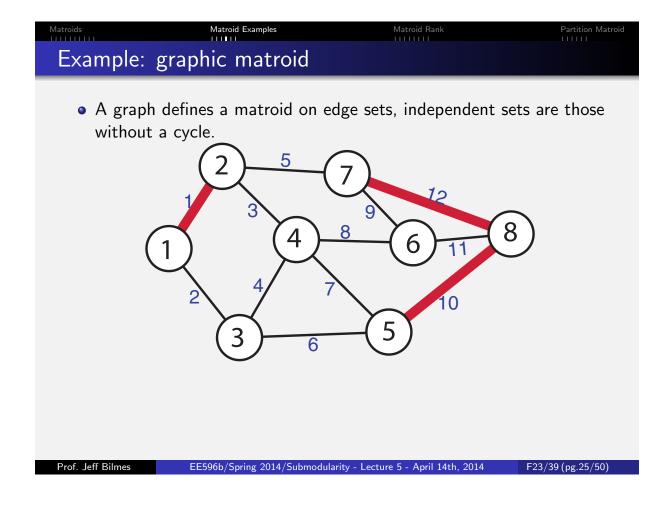
- Rank function r(A) is the size of the largest spanning forest contained in G(V, A).
- Closure function adds all edges between the vertices adjacent to any edge in A. Closure of a spanning forest is G.



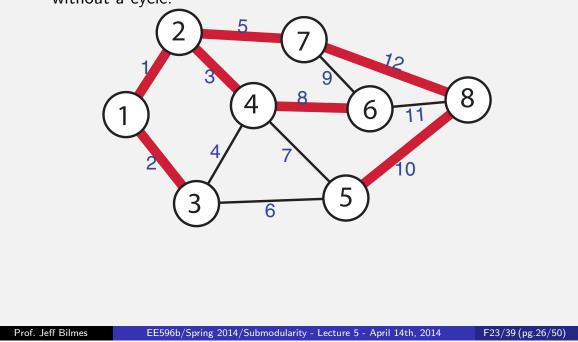
Partition Matroid Matroid Examples Matroid Rank Example: graphic matroid

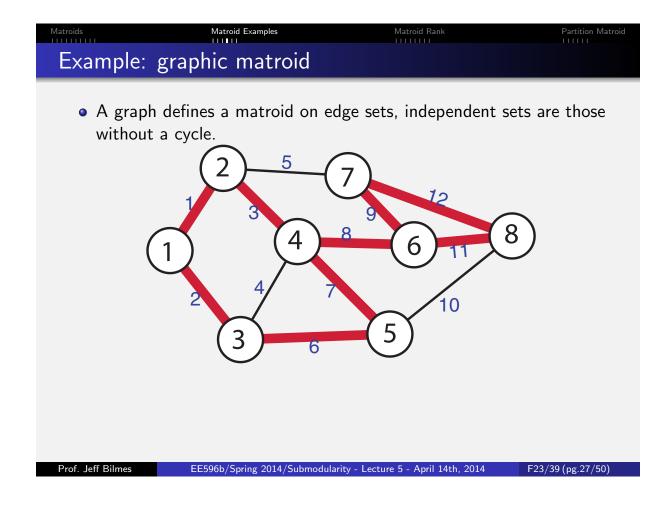
• A graph defines a matroid on edge sets, independent sets are those without a cycle.





• A graph defines a matroid on edge sets, independent sets are those without a cycle.

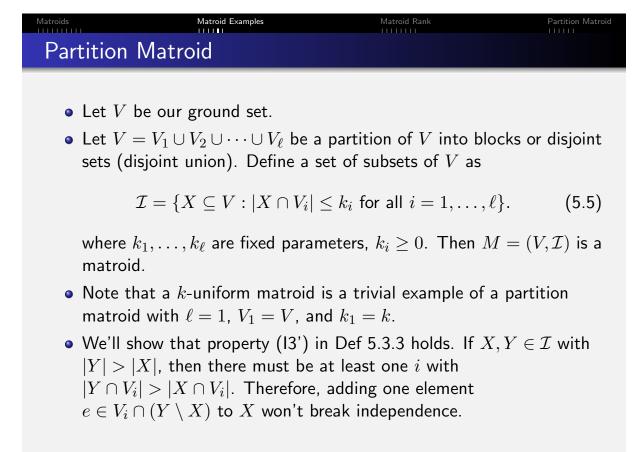




Matroid Examples Matroid Rank Partition Matroid Example: graphic matroid Partition Matroid

• A graph defines a matroid on edge sets, independent sets are those without a cycle.

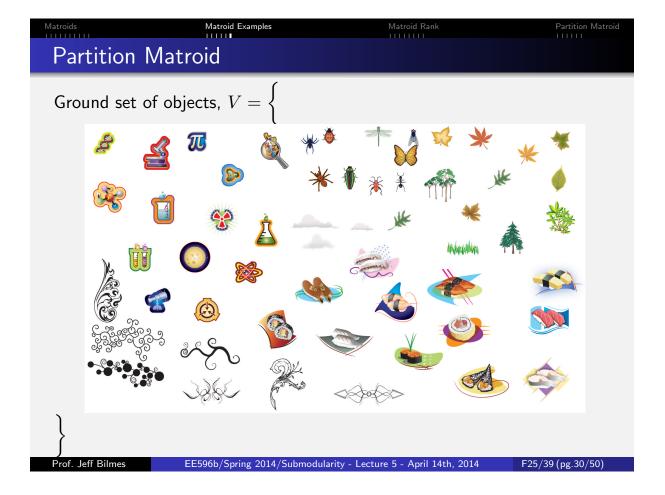


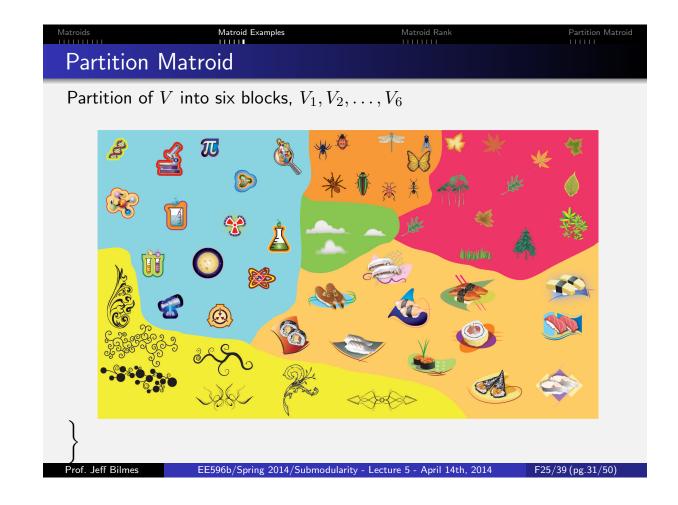


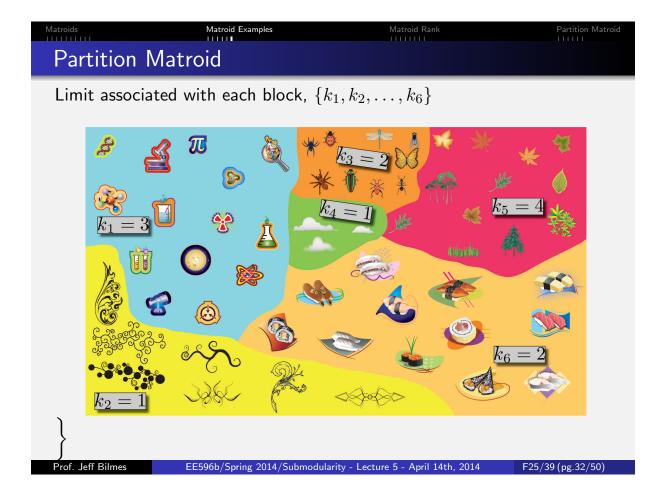
```
Prof. Jeff Bilme
```

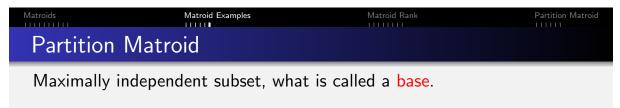
EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014

F24/39 (pg.29/50)

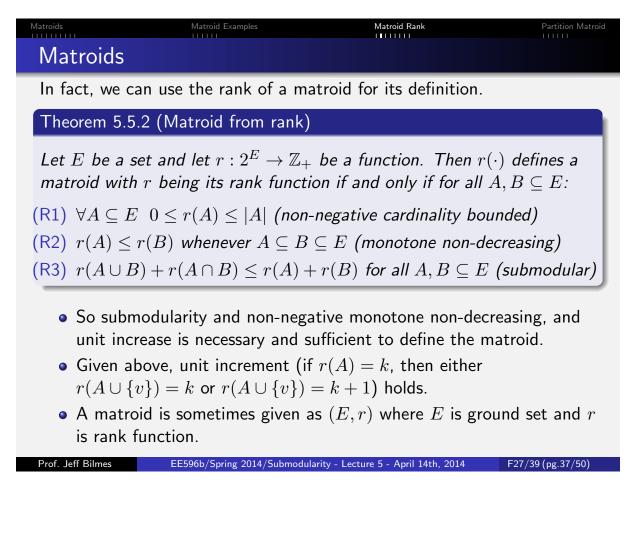








Matroids -	Matroid Examples	Matroid Rank ∎ । । । । । ।	Partition Matroid	
Lemma 5.5.1				
	ction $r: 2^E \to \mathbb{Z}_+$ of $\geq r(A \cup B) + r(A \cap B)$	a matroid is submodula B)	ar, that is	
Proof.				
• Let $X \in$	${\mathcal I}$ be an inclusionwise	maximal set with $X \subseteq$	$A \cap B$	
2 Let $Y \in$	2 Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.			
Since M is a matroid, we know that $r(A \cap B) = r(X) = X $, and $r(A \cup B) = r(Y) = Y $. Also, for any $U \in \mathcal{I}$, $r(A) \ge A \cap U $.				
Then we	have			
r($A) + r(B) \ge Y \cap A $	$+ Y \cap B $	(5.6)	
	$= Y\cap (A$	$ (A \cup B) + Y \cap (A \cup B) $	(5.7)	
	$\geq X + Y $	$ X = r(A \cap B) + r(A \cup$	$\cup B) \qquad (5.8)$	
Prof. Jeff Bilmes	EE596b/Spring 2014/Submodu	ularity - Lecture 5 - April 14th, 2014	F26/39 (pg.36/50)	



Matroids	Matroid Examples	Matroid Rank	Partition Matroid
Matroids			

In fact, we can use the rank of a matroid for its definition.

Theorem 5.5.2 (Matroid from rank)

Let E be a set and let $r: 2^E \to \mathbb{Z}_+$ be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $A, B \subseteq E$:

(R1) $\forall A \subseteq E \ 0 \leq r(A) \leq |A|$ (non-negative cardinality bounded)

- (R2) $r(A) \leq r(B)$ whenever $A \subseteq B \subseteq E$ (monotone non-decreasing)
- (R3) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ for all $A, B \subseteq E$ (submodular)
 - From above, $r(\emptyset) = 0$. Let $v \notin A$, then by monotonicity and submodularity, $r(A) \leq r(A \cup \{v\}) \leq r(A) + r(\{v\})$ which gives only two possible values to $r(A \cup \{v\})$.

Matroids

Natroid Examples

Matroid Ran

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

- Given a matroid $M = (E, \mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I} = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First, $\emptyset \in \mathcal{I}$.
- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

$$r(X) \ge r(Y) - r(Y \setminus X) - r(\emptyset)$$
(5.9)

- $\geq |Y| |Y \setminus X| \tag{5.10}$
- $=|X| \tag{5.11}$

implying r(X) = |X|, and thus $X \in \mathcal{I}$.

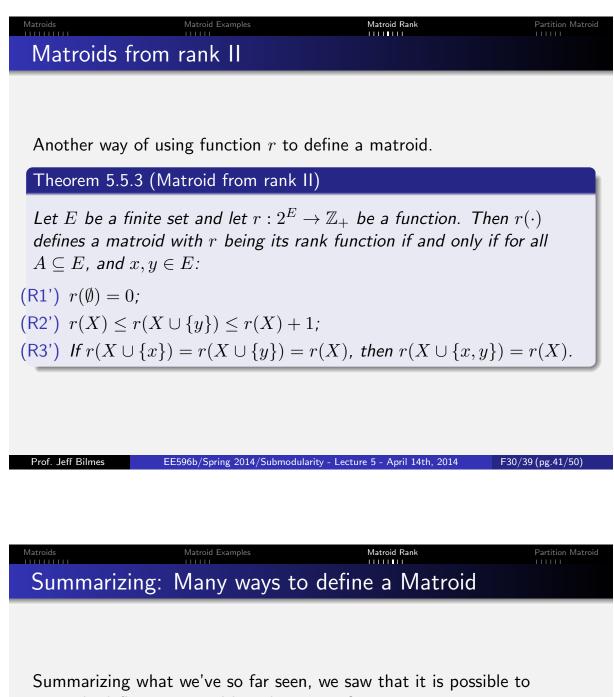
Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014

F28/39 (pg.39/50)

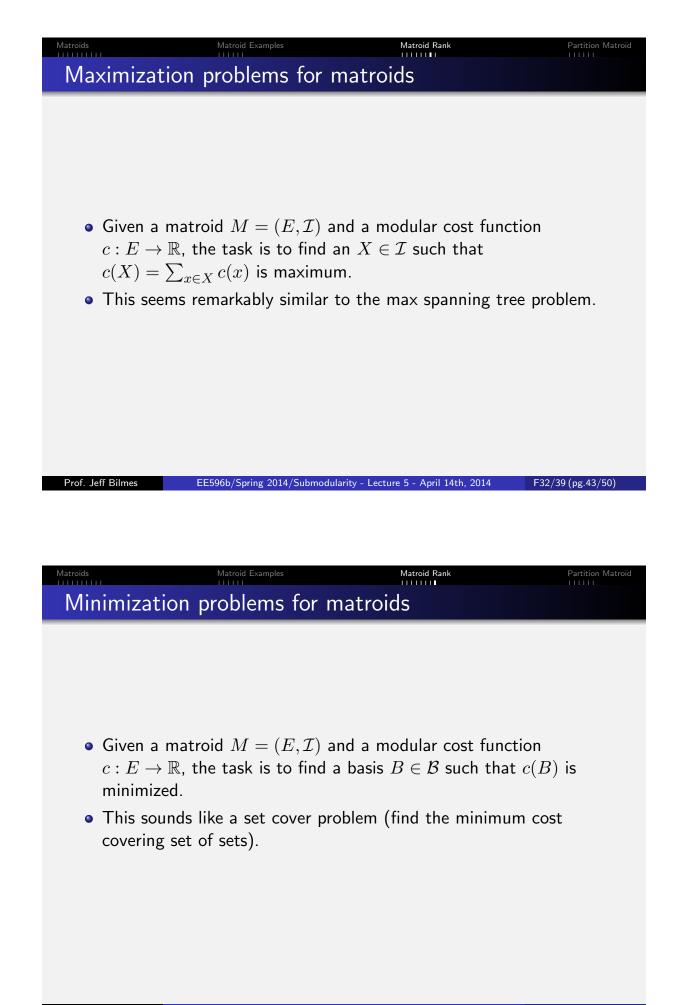
. . .

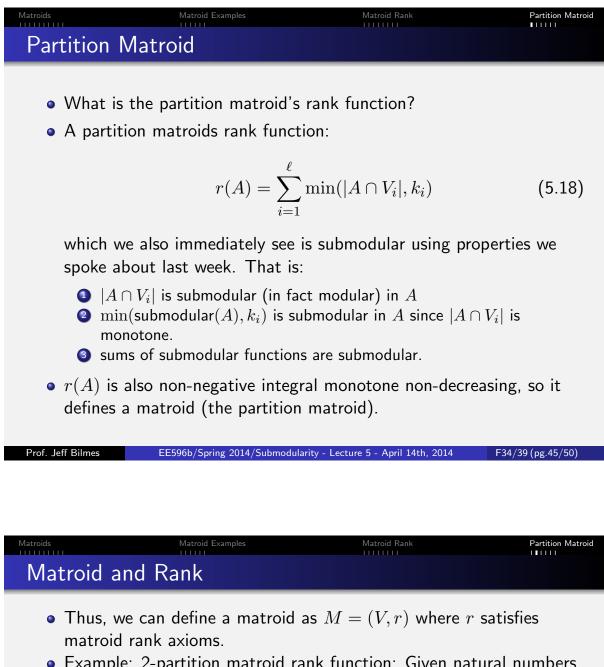
Matroids	Matroid Examples	Matroid Rank	Partition Matroid
Matroid	s from rank		
Proof of ⁻	Theorem 5.5.2 (matroid fr	om rank) cont.	
	$A,B\in\mathcal{I}, ext{ with } A < B , A=\{b_1,b_2,\ldots,b_k\}$ (note		= B . Let
	ose, to the contrary, that I such b , $r(A + b) = r(A)$	· · · · ·	, which means
	$r(B) \le r(A \cup B)$		(5.12)
	$\leq r(A \cup (B \setminus \{b_1\}))$	$+r(A \cup \{b_1\}) - r(A)$	(5.13)
	$= r(A \cup (B \setminus \{b_1\}))$		(5.14)
	$\leq r(A \cup (B \setminus \{b_1, b_2\}))$	$(a_2\})) + r(A \cup \{b_2\}) - r(a_2)$	(A) (5.15)
	$= r(A \cup (B \setminus \{b_1, b_2\}))$	$_{2}\}))$	(5.16)
	$\leq \ldots \leq r(A) = A $	< B	(5.17)
givin	g a contradiction since B	$\in \mathcal{I}.$	



uniquely define a matroid based on any of:

- Independence (define the independent sets).
- Base axioms (exchangeability)
- Circuit axioms
- Closure axioms (we didn't see this, but it is possible)
- Rank axioms (normalized, monotone, cardinality bounded, submodular)



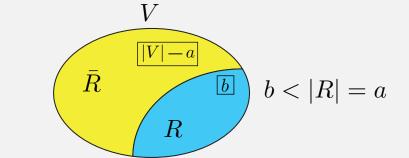


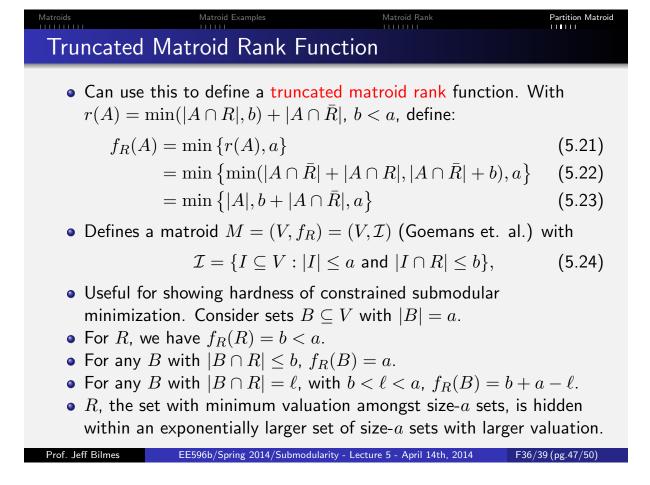
• Example: 2-partition matroid rank function: Given natural numbers $a, b \in \mathbb{Z}_+$ with a > b, and any set $R \subseteq V$ with |R| = a, two-block partition $V = (R, \overline{R})$, where $\overline{R} = V \setminus R$, define:

$$r(A) = \min(|A \cap R|, b) + \min(|A \cap \bar{R}|, |\bar{R}|)$$
(5.19)

$$= \min(|A \cap R|, b) + |A \cap \overline{R}|$$
(5.20)

• Partition matroid figure showing this:



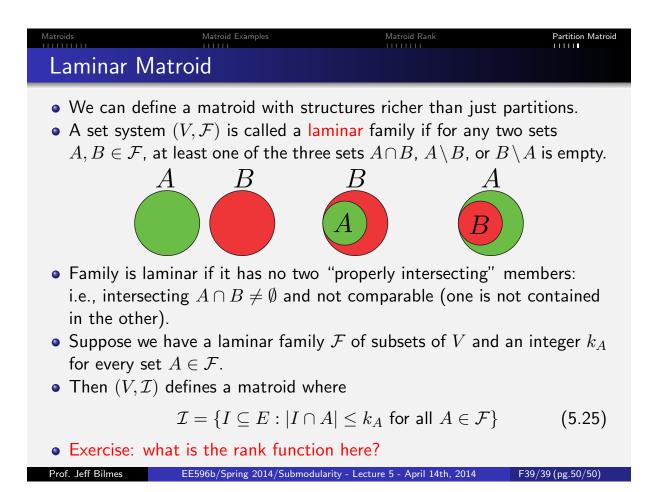


- A partition matroid can be viewed using a bipartite graph.
- Letting V denote the ground set, and V_1, V_2, \ldots the partition, the graph is G = (V, I, E) where V is the ground set, I is a set of "indices", and E is the set of edges.
- $I = (I_1, I_2, \dots, I_\ell)$ is a set of $k = \sum_{i=1}^{\ell} k_i$ nodes, grouped into ℓ clusters, where there are k_i nodes in the *i*th group I_i .
- $(v,i) \in E(G)$ iff $v \in V_j$ and $i \in I_j$.

Matroids

Partition Matroid, rank as matching

• Example where $\ell = 5$, $(k_1, k_2, k_3, k_4, k_5) =$ • Recall, $\Gamma: 2^V \to \mathbb{R}$ as the neighbor (2, 2, 1, 1, 3).function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) =$ $\{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and I_1 V_1 recall that $|\Gamma(X)|$ is submodular. I_2 V_2 • Here, for $X \subseteq V$, we have $\Gamma(X) =$ $\{i \in I : (v, i) \in E(G) \text{ and } v \in X\}.$ V_3 13 • For such a constructed bipartite graph, the rank function of a partition matroid I_4 V_4 is $r(X) = \sum_{i=1}^{\ell} \min(|X \cap V_i|, k_i) =$ the maximum matching involving X. I_5 V_5 Spring 2014/Submodularity -F38/39(pg.49/50



Partition Matroic