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Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

e our room (Mueller Hall Room 154) is changed!

@ Please do use our discussion board (https:
//canvas.uw.edu/courses/895956/discussion_topics) for all

questions, comments, so that all will benefit from them being
answered.

o Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014 F3/58 (pg.3/223)



Logistics
(W1

Class Road Map - IT-

@ L1 (3/31): Motivation, Applications, & @ L11:
Basic Definitions @ L12:

@ L2: (4/2): Applications, Basic @ L13:
Definitions, Properties o L14:

@ L3: More examples and properties (e.g., o Li5:
closur_e properties), and examples, o Li6:
spanning trees

@ L4: proofs of equivalent definitions, o Li7:
independence, start matroids o Li&:

@ L5: matroids @ L1o:

o L6: @ L20:

o L7:

@ L8:

o Lo

@ L10:

Finals Week: June 9th-13th, 2014.
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Many (Equivalent) Definitions of Submodularity

f(A)+ f(B)> f(AUB)+ f(ANB), YA, BCV (5.6)
fG1S) > fUIT), vSCT CV, withj e V\T (5.7)
f(C|S) > f(C|IT),VSCT CV, withCCV\T (5.8)
FG1S) = (IS ULRY), VS CV with j € V\ (SU{k}) 59
59
f(AuByAmB) < f(AJANB)+ f(B|ANB), VA,BCV (5.10)
f(T + > fGIS) = D fUISUT - {4}, VS, TCV
JET\S JjeES\T
5.11)
FI) < FS)+ D fIS), vSCTCV (5.12)
JET\S
FT)<FS) = Y fUIS\NGD + D fUISNT) VS, T C1
JES\T JET\S
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Review

@ We saw: column space of a matrix, dimensionality of span of subset
of columns as rank function.
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Review

@ We saw: column space of a matrix, dimensionality of span of subset
of columns as rank function.

@ Incidence matrix of (arbitrarily oriented version of) graph
G = (V, E), rank of matrix columns F' corresponded to spanning
tree of edge-induced graph G’ = (V’, F') where v’ are vertices
incident to edges in F.
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Review
AR

Review

@ We saw: column space of a matrix, dimensionality of span of subset
of columns as rank function.

@ Incidence matrix of (arbitrarily oriented version of) graph
G = (V, E), rank of matrix columns F' corresponded to spanning
tree of edge-induced graph G’ = (V', F') where v’ are vertices
incident to edges in F.

@ We saw several different “greedy” algorithms that proced optimal
spanning trees (Bordvka's, Jarnik/Prim/Dijkstra’s, and Kruskal's).
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Review
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Review

@ We saw: column space of a matrix, dimensionality of span of subset
of columns as rank function.

@ Incidence matrix of (arbitrarily oriented version of) graph
G = (V, E), rank of matrix columns F' corresponded to spanning
tree of edge-induced graph G’ = (V', F') where v’ are vertices
incident to edges in F.

@ We saw several different “greedy” algorithms that proced optimal
spanning trees (Bortivka's, Jarnik/Prim/Dijkstra’s, and Kruskal’s).

@ We wish to more formally connect the above, and generalize further.
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

o Given a set B € 7 of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, Z is down-closed or
“subclusive”, under subsets. In other words,

ACBand BeZT=A€cZl (5.32)

e maxInd: Inclusionwise maximal independent subsets (or bases) of any
set BCV.

maxind(B) 2 {ACB:AcZandVv e B\ A, Au{v} ¢ I} (5.33)

e Given any set B C V of vectors, all maximal (by set inclusion) subsets
of linearly independent vectors are the same size. That is, for all
BCV,

VAl,AQ € maxlnd(B), |A1| = |A2| (534)
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From Matrix Rank — Matroid

@ Thus, for all I € Z, the matrix rank function has the property
r(I) = |I| (5.32)
and for any B ¢ Z,

r(B) =max{|A|: AC B and A €7} <|B] (5.33)
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J € Z, then J is said to be an independent set.

Definition 5.2.4 (Matroid)

A set system (E,Z) is a Matroid if
(1) 0eZ
(2)VIeZ,JcI=JeZ
(13) VI,J € Z, with |I| = |J| + 1, then there exists € I \ J such that
JU{z} €. . )
|
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Matroids
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.
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Matroids
[NRNRARNRN

On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935),

but already then found instances of objects with those properties not
based on a matrix.

@ Takeo Nakasawa, 1935, also early work.
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Matroids
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.

@ Takeo Nakasawa, 1935, also early work.

@ Forgotten for 20 years until mid 1950s.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014 F10/58 (pg.15/223)



Matroids
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.

@ Takeo Nakasawa, 1935, also early work.
e Forgotten for 20 years until mid 1950s.
@ Matroids are powerful and flexible combinatorial objects.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014 F10/58 (pg.16/223)
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[NRNRARNRN

On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful
submodular function (perhaps all we need for many problems).
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Matroids
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful
submodular function (perhaps all we need for many problems).

@ Understanding matroids crucial for understanding submodularity.
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On Matroids

Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful
submodular function (perhaps all we need for many problems).
Understanding matroids crucial for understanding submodularity.
Matroid independent sets (i.e., A s.t. 7(A) = |A|) are useful
constraint set, and fast algorithms for submodular optimization
subject to one (or more) matroid independence constraints exist.
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On Matroids

Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful
submodular function (perhaps all we need for many problems).
Understanding matroids crucial for understanding submodularity.
Matroid independent sets (i.e., A s.t. 7(A) = |A|) are useful
constraint set, and fast algorithms for submodular optimization
subject to one (or more) matroid independence constraints exist.
Crapo & Rota preferred the term “combinatorial geometry”, or more
specifically a “pregeometry” and said that pregeometries are “often
described by the ineffably cacaphonic [sic] term 'matroid’, which we
prefer to avoid in favor of the term 'pregeometry’.”
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Matroids
[LNANRARNR!

Matroid

Slight modification (non unit increment) that is equivalent.

Definition 5.3.1 (Matroid-I1)

A set system (F,Z) is a Matroid if
(1) ez
(12yVIeZ,JCI= JeZ (or "down-closed”)

(13") VI,J € Z, with |I| > |J|, then there exists z € I \ J such that
Ju{z}eZ

Note (11)=(I1"), (12)=(12"), and we get (13)=(I13") using induction.
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Matroids
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Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E is
called independent if A € Z and otherwise A is called dependent.
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Matroids
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Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € 7 and otherwise A is called dependent.

@ Abaseof U C E: For U C E, a subset B C U is called a base of U
if B is inclusionwise maximally independent subset of U. That is,
B €7 and thereisno Z € Z with BC Z CU.
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Matroids
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Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € 7 and otherwise A is called dependent.

@ Abaseof U C E: For U C E, a subset B C U is called a base of U
if B is inclusionwise maximally independent subset of U. That is,
B eZ and thereisno Z € Z with BC Z CU.

@ A base of a matroid: If U = E, then a "base of E" is just called a
base of the matroid M (this corresponds to a basis in a linear space).
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Matroids
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Matroids - important property

Proposition 5.3.2

In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.
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Matroids
[NNLANARNR]

Matroids - important property

Proposition 5.3.2

In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.
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Matroids
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Matroids - important property

Proposition 5.3.2
In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014 F13/58 (pg.27/223)



Matroids
[NNLANARNR]

Matroids - important property

Proposition 5.3.2
In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V,Z) is a Matroid if
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Matroids
[NNLANARNR]

Matroids - important property

Proposition 5.3.2
In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
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Matroids
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Matroids - important property

Proposition 5.3.2
In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
(12") YI € Z,J C I = J € T (down-closed or subclusive)
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Matroids
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Matroids - important property

Proposition 5.3.2
In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
(12") VI € Z,J C I = J € T (down-closed or subclusive)

(13") VX CV, and I, I; € maxInd(X), we have |I;| = |I2| (all maximally
independent subsets of X have the same size).
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Matroids
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Matroids - rank

e Recall, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.
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Matroids
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Matroids - rank

@ Recall, in any matroid M = (E,Z), YU C E(M), any two bases of

U have the same size.
@ The common size of all the bases of U is called the rank of U,

denoted r/(U) or just r(U) when the matroid in equation is
unambiguous.
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Matroids
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Matroids - rank

@ Recall, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just #(U) when the matroid in equation is
unambiguous.

o 7(E) = r(gz) is the rank of the matroid, and is the common size of
all the bases of the matroid.
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Matroids
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Matroids - rank

@ Recall, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just #(U) when the matroid in equation is
unambiguous.

o 7(E) = r(gz) is the rank of the matroid, and is the common size of
all the bases of the matroid.

@ We can a bit more formally define the rank function this way.
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Matroids
[NNAR NRRNR!

Matroids - rank

@ Recall, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just #(U) when the matroid in equation is
unambiguous.

o 7(E) = r(gz) is the rank of the matroid, and is the common size of
all the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 5.3.4 (matroid rank function)

The rank of a matroid is a function 7 : 28 — 7. defined by

T(A):max{]X|:XQA,XEI}:r;(la%dAﬁX] (5.1)
€
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Matroids
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Matroids - rank
n any matroid M = (E,Z), YU C E(M), any two bases of

U ave the same size.
@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just #(U) when the matroid in equation is

unambiguous.
o 7(E) = r(gz) is the rank of the matroid, and is the common size of

all the bases of the matroid.
@ We can a bit more formally define the rank function this way.

Definition 5.3.4 (matroid rank function)

The rank of a matroid is a function 7 : 28 — 7. defined by

T(A)ZHI&X{’X‘:XQA,XEI}:I)I(IE%%(‘AQX’ (5.1)
€

@ From the above, we immediately see that 7(A4) < |A].
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Matroids
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Matroids - rank

@ Recall, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just #(U) when the matroid in equation is
unambiguous.

o 7(E) = r(gz) is the rank of the matroid, and is the common size of
all the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 5.3.4 (matroid rank function)

The rank of a matroid is a function 7 : 28 — 7. defined by

T(A)ZHI&X{’X‘:XQA,XEI}:I)I(IE%%(‘AQX’ (5.1)
€

@ From the above, we immediately see that r(A) < |A|.
@ Moreover, if r(A) = |A|, then A € Z, meaning A is independent (in

this case, A is a self base).
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Matroids
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 5.3.5 (closed/flat/subspace)

A subset A C F is closed (equivalently, a flat or a subspace) of matroid
M ifforallz € E\ A, r(AU{z}) =r(4) + 1.
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Matroids
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 5.3.5 (closed/flat/subspace)

A subset A C F is closed (equivalently, a flat or a subspace) of matroid
M ifforallz € E\ A, r(AU{z}) =r(4) + 1.

Definition 5.3.6 (closure)

Given A C FE, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(4)}.
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Matroids
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 5.3.5 (closed/flat/subspace)

A subset A C F is closed (equivalently, a flat or a subspace) of matroid
M ifforallz € E\ A, r(AU{z}) =r(4) + 1.

Definition 5.3.6 (closure)

Given A C FE, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(4)}.

Therefore, a closed set A has span(A) = A.

A0 2504 18) £5pm(d
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Matroids
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 5.3.5 (closed/flat/subspace)

A subset A C F is closed (equivalently, a flat or a subspace) of matroid
M ifforallz € E\ A, r(AU{z}) =r(4) + 1.

Definition 5.3.6 (closure)

Given A C FE, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(4)}.

Therefore, a closed set A has span(A) = A.

Definition 5.3.7 (circuit)

A subset A C FE is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A| and for any a € A,

r(A\{a}) = [A] - 1).
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Matroids

Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 5.3.8 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then
the following are equivalent.

@ B is the collection of bases of a matroid;

Q ifB,B' € B, and x € B'\ B, then B' — x + y € B for some
y€ B\ B.

© IfB,B' € B, and x € B'\ B, then B —y + x € B for some
y € B\ B.

Properties 2 and 3 are called “exchange properties.”

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014 F16/58 (pg.43/223)



Matroids

Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 5.3.8 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then
the following are equivalent.

@ B is the collection of bases of a matroid;

@ ifB,B' € B, and x € B'\ B, then B' — x + y € B for some
y€ B\ B.

© IfB,B' € B, and x € B'\ B, then B —y + x € B for some
y € B\ B.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of
linear spaces and matrices, and (alternatively) spanning trees.
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Matroids
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is
not surprising that circuits can also characterize a matroid.
Theorem 5.3.9 (Matroid by circuits)

Let E be a set and C be a collection of subsets of I/ that satisfy the
following three properties:

Q (C1):0¢cC
Q (C2): ifC1,Cy € C and Cy C Cy,[then C1 = Cs.

Q (C3): if C1,C4y € C with Cy # Cso, and @ge C N Cy, then there
exists a C5 € C such that C5 C (C1UC5) \ {e}.

L)
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Matroids
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 5.3.10 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such

that no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection LeCU | foid;

’

Q ifC,C"eC, afdx € CNC’, then (CUC")\{z} contains a set in C;

Q@ ifC,C"eC,andz€CNC, andy € C\ ', then (CUC)\{z}]
contains a set in C containing y;
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Matroids
[NNANRARR N

Matroids by circuits

)k
Several circuit definitions for matr0|d2 ECG’) E( M) 'ICM )
Let E be a set and C be a collection of nonempty subsets of E, such

that no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx € CNC', then (CUC")\ {z} contains a set inC;

Q@ ifC,C"eC,andz e CNC',andy € C\ ', then (CUC)\ {z}
contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and
matrices, and spanning trees.
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Matroids by submodular functions

Theorem 5.3.11 (Matroid by submodular functions)

Let f : 2F — 7 be a integer valued monotone non-decreasing

submodular function. Define a set of sets_as fallows:

is inclusionwise-minimal,

and ha @, (5.2)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal in this case means that if C' € C(f), then there
exists no C/ C C with C" € C(f) (i.e., C' C C would either be empty or
have f(C") > |C]). Also, recall inclusionwise-minimal in Definition 5.3.7,
the definition of a circuit.

F190/58 (pg.48/223)
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Matroid Examples
[NERNN]

Uniform Matroid

@ Given FE, consider Z to be all subsets of £/ that are at most size k.
ThatisZ={AC E:|A| < k}.
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Matroid Examples
[NERNN]

Uniform Matroid

@ Given FE, consider Z to be all subsets of E that are at most size k.
ThatisZ={AC E:|A| <k}
@ Then (E,Z) is a matroid called a k-uniform matroid.
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Matroid Examples
[NERNN]

Uniform Matroid
e Given FE, consider Z to be all subsets of F that are at most size k.
ThatisZ={AC E:|A| <k}
@ Then (FE,Z) is a matroid called a k-uniform matroid.
e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [I + j| < kandso I+ j€Z.
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Matroid Examples
[NERNN]

Uniform Matroid

e Given FE, consider Z to be all subsets of F that are at most size k.
ThatisZ={AC E:|A| <k}

@ Then (FE,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [T + j| < kandso I+ j€Z.

@ Rank function
Al if A <k
r(4) = 4] | 4] < (5.3)
k if |[A] >k
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Matroid Examples
[NERNN]

Uniform Matroid

e Given FE, consider Z to be all subsets of F that are at most size k.
ThatisZ={AC E:|A| <k}

@ Then (FE,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [T + j| < kandso I+ j€Z.

@ Rank function
Al if|A| <k
r(a) = AL TIALS (53)
k if |[A] >k
@ Note, this function is submodular. Not surprising since

r(A) = min(|Al, k) which is a non-decreasing concave function
applied to a modular function.
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Matroid Examples
[NERNN]

Uniform Matroid

e Given FE, consider Z to be all subsets of F that are at most size k.
ThatisZ={AC E:|A| <k}

@ Then (FE,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [T + j| < kandso I+ j€Z.

@ Rank function
Al if|A] <k
r(4) = 4] | 4] < (5.3)
k if |[A] >k

@ Note, this function is submodular. Not surprising since
r(A) = min(]A|, k) which is a non-decreasing concave function
applied to a modular function.

@ Closure function

A if|A] <k,

_ (5.4)
E if|A] >k,

span(A) = {
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Matroid Examples
[NERNN]

Uniform Matroid

e Given FE, consider Z to be all subsets of F that are at most size k.
ThatisZ={AC E:|A| <k}

@ Then (FE,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [T + j| < kandso I+ j€Z.

@ Rank function
Al if|A <k
r(a) = AL TIALS (53)
k if |[A] >k
@ Note, this function is submodular. Not surprising since
r(A) = min(]A|, k) which is a non-decreasing concave function

applied to a modular function.
@ Closure function

A if|A| <k,

_ (5.4)
E if|Al >k,

span(A) = {

e A “free” matroid sets k = |E|, so everything is independent.
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Linear (or Matric) Matroid

@ Let X be an n x m matrix and E = {1,...,m}
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Matroid Examples
(LERNN]

Linear (or Matric) Matroid

o Let X be an n x m matrix and E = {1,...,m}

@ Let 7 consists of subsets of F such that if A € Z, and
A ={ai,aq,...,ax} then the vectors x4, Zay,, ..., T4
independent.

. are linearly
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Matroid Examples
(LERNN]

Linear (or Matric) Matroid

o Let X be an n x m matrix and E = {1,...,m}

@ Let 7 consists of subsets of E such that if A € Z, and
A ={a1,ag,...,a;} then the vectors 4, Zq,, . .., T4, are linearly
independent.

@ the rank function is just the rank of the space spanned by the
corresponding set of vectors.
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Matroid Examples
(LERNN]

Linear (or Matric) Matroid

o Let X be an n x m matrix and E = {1,...,m}

@ Let 7 consists of subsets of F such that if A € Z, and
A ={a1,ag,...,a;} then the vectors 4, Zq,, . .., T4, are linearly
independent.

@ the rank function is just the rank of the space spanned by the
corresponding set of vectors.

@ rank is submodular, it is intuitive that it satisfies the diminishing
returns property (a given vector can only become linearly dependent
in a greater context, thereby no longer contributing to rank).
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Matroid Examples
(LERNN]

Linear (or Matric) Matroid

o Let X be an n x m matrix and E = {1,...,m}

@ Let 7 consists of subsets of F such that if A € Z, and
A ={a1,ag,...,a;} then the vectors 4, Zq,, . .., T4, are linearly
independent.

@ the rank function is just the rank of the space spanned by the
corresponding set of vectors.

@ rank is submodular, it is intuitive that it satisfies the diminishing
returns property (a given vector can only become linearly dependent
in a greater context, thereby no longer contributing to rank).

@ Called both linear matroids and matric matroids.
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Cycle Matroid of a graph: Graphic Matroids

@ Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.
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Matroid Examples
(NL RN

Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,Z) is a matroid.
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Matroid Examples
(NL RN

Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,7) is a matroid.

@ 7 contains all forests.
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Matroid Examples
(NL RN

Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,I) is a matroid.
@ 7 contains all forests.

@ Bases are spanning forests (spanning trees if G is connected).
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Matroid Examples
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Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,I) is a matroid.

@ 7 contains all forests.

@ Bases are spanning forests (spanning trees if G is connected).

@ Rank function 7(A) is the size of the largest spanning forest

contained in G(V, A).
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Matroid Examples
(NL RN

Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

Then M = (E,Z) is a matroid.
7 contains all forests.

Bases are spanning forests (spanning trees if G is connected).

Rank function 7(A) is the size of the largest spanning forest
contained in G(V, A).

@ Closure function adds all edges between the vertices adjacent to any
edge in A. Closure of a spanning forest is (.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples

Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those

without a cycle. (@/A('A/) — /

=2 5,03, ay AZLY
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Matroid Examples
(AR NN

Example: graphic matroid

@ A graph defines a matroid on edge sets, independent setj are those

without a cycle. CM 4% ;__l
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Matroid Examples
(AR NN

Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those

without a cycle. (-W (A,} 9\
Spomsip) = E
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Matroid Examples
(AR NN

Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those

without a cycle, ( p ( A’J — 7\
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Matroid Examples
(AR NN

Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those

without a cycle. (M M}: ;
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Partition Matroid

o Let V be our ground set.
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(NRRR NI

Partition Matroid

@ Let V be our ground set.
o Let V=ViUVoU---UV, be a partition of V' into blocks or disjoint
sets (disjoint union). Define a set of subsets of V" as

I={XCV: | XnVj|<kjforali=1,... ¢} (5.5)

where ki, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.
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Matroid Examples
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Partition Matroid

@ Let V be our ground set.

o Let V=ViUVoU---UV, be a partition of V' into blocks or disjoint
sets (disjoint union). Define a set of subsets of V" as

T={XCV:|XNV|<kiforalli=1,... 0} (5.5)

where ki, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with £ =1, V4, =V, and k1 = k.
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Matroid Examples
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Partition Matroid

@ Let V be our ground set.

o Let V=ViUVoU---UV, be a partition of V' into blocks or disjoint
sets (disjoint union). Define a set of subsets of V" as

T={XCV:|XNV|<kiforalli=1,... 0} (5.5)

where ki, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with £ =1, V; =V, and k1 = k.

e We'll show that property (I13") in Def 5.3.3 holds. If X,Y € Z with
|Y| > | X|, then there must be at least one i with
Y NnV;| > |X NV;|. Therefore, adding one element
ecViNn(Y \ X) to X won't break independence.
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Matroid Examples

Partition Matroid

Ground set of objects, V' = {
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Partition Matroid
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Partition Matroid
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Matroid Examples
[ANANL

Partition Matroid

Independent subset but not maximally independent.
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Matroid Examples
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Partition Matroid

Maximally independent subset, what is called a base.
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Matroid Examples
[ANANL

Partition Matroid

Not independent since over limit in set six.
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Matroid Rank
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Matroids - rank

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)
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Matroid Rank
[NERRNNANN]

Matroids - rank

Lemma 5.5.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B

[l
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Matroid Rank
[NERRNNANN]

Matroids - rank

Lemma 5.5.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B. (We
can find such a Y O X because, starting from X C AU B, and since |Y| > |X]|,
we can choose ay € Y C AU B such that X +vy € Z but sincey € AU B, also
X +y € AU B. We can keep doing this while |Y'| > | X| since this is a matroid.)
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Matroid Rank
[NERRNNANN]

Matroids - rank

Lemma 5.5.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that 7(AN B) = r(X) = | X|, and
r(AUB) =r(Y) =|Y|. Also, forany U € Z, r(A) > |ANU|.

[l
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Matroid Rank
[NERRNNANN]

Matroids - rank

Lemma 5.5.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

@ Since M is a matroid, we know that 7(AN B) = r(X) = | X|, and
r(AUB) =r(Y)=1Y|. Also, forany U € Z, r(A) > |ANU|.

© Then we have

r(A) +r(B) (5.6)

[l
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Matroid Rank
[NERRNNANN]

Matroids - rank

Lemma 5.5.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

@ Since M is a matroid, we know that 7(AN B) = r(X) = | X|, and
r(AUB) =r(Y)=1Y]. Also, forany U € Z, r(A) > |ANU]|.

© Then we have

r(A) +r(B) > [Y N A| + |Y N B (5.6)

[l

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014 F26/58 (pg.88/223)
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Matroids - rank

Lemma 5.5.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

@ Since M is a matroid, we know that 7(AN B) = r(X) = | X|, and
r(AUB) =r(Y) =1Y|. Also, forany U € Z, r(A) > |ANU|.

© Then we have

r(A)+r(B) > |Y NA|l+|Y NB|
=YN(ANnB)|+|YN(AUB)|
o

-

[l
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Matroids - rank

Lemma 5.5.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set withX € AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

@ Since M is a matroid, we know that 7(AN B) = r( ) = |X]|, and
r(AUB) =r(Y) =1Y|. Also, forany U € Z, r(A >|AﬂU\

@ Then we have
) +r(B i ﬂA[—HYﬂB

|+|Y| ~r(AﬂB +r(AUB)
£+ 10 = (#08) (0

ol
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Matroids
In fact, we can use the rank of a matroid for its definition.

Theorem 5.5.2 (Matroid from rank)

Let E be a set and let r: 2 — 7, be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all A,B C E:

(R1) VAC E 0<r(A) < |A| (non-negative cardinality bounded)

(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)

(R3) r(AUB) +r(ANB) <r(A)+r(B) for all A, B C E (submodular)
-

@ So submodularity and non-negative monotone non-decreasing, and
unit increase is necessary and sufficient to define the matroid.

e Given above, unit increment (if 7(A) = &, then either
r(AUu{v}) =k orr(AU{v}) =k +1) holds.

@ A matroid is sometimes given as (E,r) where E is ground set and r
is rank function.
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Matroid Rank

Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 5.5.2 (Matroid from rank)

Let E be a set and let r : 2F — 7., be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all A, B C E:

(R1) VAC E 0<r(A) <|A| (non-negative cardinality bounded)
(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)
(R3) r(AUuB) +7r(ANB) <r(A)+r(B) forall A,B C E (submodular)

e From above, 7()) = 0. Let v ¢ A, then by monotonicity and
submodularity, r(A) < r(AU{v}) < r(A) +r({v}) which gives only
two possible values tO((A U {v}).

—,Lr(p) =0
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

@ Given a matroid M = (FE,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={X CE:r(X)=|X|}. We will show that (E,Z) is a matroid.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.

@ Also, if Y € Z and X C Y then by submodularity,
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

Eq. 5.1 satisfies (R1), (R2), and, as we saw i’Lemma 5.5.1, (R3)

e Given a matroid M = (E,Z), we see its rank}f;nction as defined in
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.
@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y \ X)—r() (5.9)
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.
@ Also, if Y € Z and X C Y then by submodularity,

() 2 100) - AN - et (59
> Y| - ¥\ X]| (5.10)
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.

@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y \ X)—r() (5.9)
> Y- [Y\X| (5.10)
= |X]| (5.11)

c(x) K, Wz =
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.

@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y \ X)—r() (5.9)
> Y- [Y\X| (5.10)
= |X]| (5.11)

implying #(X) = |X|, and thus X € T.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014



Matroid Rank
[NRE ARRNNR

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.
o Let A, B €Z, with |A| < |B|, sor(A) = |A| <r(B) = |B|. Let
B\ A={by,ba,...,br} (note k < |BJ). &

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014



Matroid Rank
[NRR ARRNRR!

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

o Let A,B € Z, with |A| < |BJ, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,ba,...,br} (note k < |BJ).

@ Suppose, to the contrary, that Vb € B \ A, A + b] ¢ T, which
means for all such b, (A +b) = r(A) =]A4|. Then
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

o Let A,B €T, with |A| < |BJ, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,ba,...,br} (note k < |BJ).
@ Suppose, to the contrary, that Vb € B\ A, r(A + b) ¢ Z, which
means for all such b, 7(A +b) = r(A) = |A|. Then
r(B) <r(AUB) (5.12)
[]

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014 F29/58 (pg.104/223



Matroid Rank
[NRR ARRNRR!

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.
o Let A,B € Z, with |A| < |BJ, so r(A) = |A| < r(B) = |B|. Let
B\A = {bl,bz, .. ,bk} (note k< |B‘)
@ Suppose, to the contrary, that Vb € B\ A, r(A + b) ¢ Z, which
means for all such b, r(A +b) = r(A) = |A|. Then

r(B) <r(AUB) (5.12)
< r(AU(B\{b1})) + r(AU{b1}) —r(4) (5.13)

— 0
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

o Let A,B € Z, with |A| < |BJ, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,ba,...,br} (note k < |BJ).
@ Suppose, to the contrary, that Vb € B\ A, r(A + b) ¢ Z, which
means for all such b, 7(A +b) = r(A) = |A|. Then
r(B) <r(AUB) (5.12)
< 1(AU B\ {bi}) + (AU {br}) - r(4) (5.13)
=r(AU(B\{b}) (5.14)
L]
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

o Let A,B € Z, with |A| < |BJ, so r(A) = |A| < r(B) = |B|. Let
B\A = {bl,bz, .. ,bk} (note k< |B‘)

@ Suppose, to the contrary, that Vb € B\ A, r(A + b) ¢ Z, which
means for all such b, 7(A +b) = r(A) = |A|. Then

r(B) < (AU B) (5.12)

<r(AU(B\{b1})) +r(Au{bi}) —r(A) (5.13)

=r(AU(B\{b1}) (5.14)

< (AU (B\{b1,b2})) +r(AU =r(4)  (5.15)
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B\ A={b1,ba,...,b;} (note k < |B|).

@ Suppose, to the contrary, that Vb € B\ A, r(A + b) ¢ Z, which
means for all such b, 7(A +b) = r(A) = |A|. Then

r(B) <r(AUB) (5.12)

<r(AU(B\{t1})) +7(AU{b1}) —r(4) (5.13)

=r(AU(B\{b1}) (5.14)

<r(AU(B\ {b1,02})) + r(AU{ba}) —7(4)  (5.15)

=7r(AU(B\{b1,b2})) (5.16)
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

o Let A,B €Z, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B\ A =Abi,ba,...,bi} (note k < |B|).

@ Suppose, to the contrary, that Vb € B\ A, r(A +b) ¢ Z, which
means for all such b, 7(A+b) = r(A) = |A|]. Then

r(B) <r(AUB) (5.12)

<r(AU(B\{t1})) +7(AU{b1}) —r(4) (5.13)

=r(AU(B\{b1}) (5.14)

<r(AU(B\ {b1,b02})) + r(AU{bo}) —7(4)  (5.15)

=7r(AU(B\{b1,b2})) (5.16)

- <r(4) = [A] < [B] (5.17)

IA
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B\ A={b1,ba,...,b;} (note k < |B|).

@ Suppose, to the contrary, that Vb € B\ A, r(A + b) ¢ Z, which
means for all such b, 7(A +b) = r(A) = |A|. Then

r(B) <r(AUB) (5.12)

<r(AU(B\{t1})) +7(AU{b1}) —r(4) (5.13)

=r(AU(B\{b1}) (5.14)

<r(AU(B\ {b1,02})) + r(AU{ba}) —7(4)  (5.15)

=7r(AU(B\{b1,b2})) (5.16)

- <r(4) = [A[ < [B] (5.17)

IA

giving a contradiction since B € 7.
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Matroids from rank Il

Another way of using function r to define a matroid.

Theorem 5.5.3 (Matroid from rank II)

Let E be a finite set and let r : 2F — 7., be a function. Then r(-)
defines a matroid with r being its rank function if and only if for all

ACUE, andz,y € E:
(R1') (D) =0;
(R2) r(X) <r(XU{y}) <r(X)+1;
(R3") Ifr(X U{z}) =r(X U{y}) =r(X), thenr(X U{z,y}) = r(X).

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014



Matroid Rank
[NRRNR RNRR

Matroid and Rank

@ Thus, we can define a matroid as M = (V,r) where r satisfies
matroid rank axioms.

@ Example: 2-partition matroid rank function: Given natural numbers
a,b € Zy4 with'a > b, and any set R C V with |R| = a, two-block
partition V = (R, R), where R = V \ R, define:

r(A) = min(]A N R|,b) + min(|A N R|, |R|) (5.18)
=min(|ANR|,b) + |ANR)| (5.19)

@ Partition matroid figure showing this:
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Truncated Matroid Rank Function

@ Can use this to deﬁ@a&eq matroid rank function. With
r(A) =min(|JANR[,b) +|ANR|, b < a, define:

fr(A) = min {r(A),
= min {Hin(

=min {|4],b+ |ANR|,a
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Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) =min(|AN R|,b) + |[ANR|, b < a, define:

fr(A) =min{r(A),a} (5.20)
= min {min(|[ANR| + [ANR[,|ANR|+b),a} (5.21)
=min {|A],b+ |[ANR|,a} (5.22)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
T={ICV:|I|<aand|INR|<b} (5.23)
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Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) =min(|AN R|,b) + |[ANR|, b < a, define:

fr(A) =min{r(A),a} (5.20)
= min {min(|[ANR| + [ANR[,|ANR|+b),a} (5.21)
=min {|A],b+ |[ANR|,a} (5.22)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
T={ICV:|I|<aand |INR|<b} (5.23)

@ Useful for showing hardness of constrained submodular
minimization. Consider sets B C V with |B| = a.
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Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) =min(|AN R|,b) + |[ANR|, b < a, define:

fr(A) = min{r(A),a} (5.20)
= min {min(|[ANR| + [ANR[,|ANR|+b),a} (5.21)
=min {|A],b+ |[ANR|,a} (5.22)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
T={ICV:|I|<aand |INR|<b} (5.23)

@ Useful for showing hardness of constrained submodular
minimization. Consider sets B C V with |B| = a.
e For R, we have fr(R) =b < a.
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Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) =min(|AN R|,b) + |[ANR|, b < a, define:

fr(A) = min{r(A),a} (5.20)
= min {min(|[ANR| + [ANR[,|ANR|+b),a} (5.21)
=min {|A],b+ |ANR|,a} (5.22)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
T={ICV:|I|<aand |INR|<b} (5.23)

@ Useful for showing hardness of constrained submodular
minimization. Consider sets B C V with |B| = a.

e For R, we have fr(R) =b < a.

e For any B with |[BN R| <b, fr(B) = a.
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Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) =min(|AN R|,b) + |[ANR|, b < a, define:

fr(A) = min{r(A),a} (5.20)
= min {min(|[ANR| + [ANR[,|ANR|+b),a} (5.21)
=min {|A],b+ |[ANR|,a} (5.22)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
T={ICV:|I|<aand |INR|<b} (5.23)

@ Useful for showing hardness of constrained submodular
minimization. Consider sets B C V with |B| = a.

e For R, we have fr(R) =b < a.

e For any B with |[BNR| <, fr(B) = a.

@ For any B with |[BNR|=/¢, withb</{<a, frR(B)=b+a—{.
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Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) =min(|AN R|,b) + |[ANR|, b < a, define:

fr(A) = min{r(A),a} (5.20)
= min {min(|]4 ANR|+b),a} (5.21)
=min {|4],b+ [ANR),a} _L (5.22)
@ Defines a matroid M = (V, = (V,Z) (Goemans et. al.) with
T={ICV:|I|<aand |INR|<b} (5.23)

@ Useful for showing hardness of constrained submodular
minimization. Consider sets B C V with |B| = a.

o For R, we have fr(R) =b < a. -

e For any K with |BﬂR| <b, fR( ) = a.

e For any B wi <l<a, frRIB)=b+a—"¢.
o R, the set with minimum valuatlon amongst size-a sets, is hidden

within an exponentially larger set of size-a sets with larger valuation.
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)

@ Circuit axioms
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)

o Circuit axioms

@ Closure axioms (we didn't see this, but it is possible)
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)

@ Circuit axioms

@ Closure axioms (we didn't see this, but it is possible)

@ Rank axioms (normalized, monotone, cardinality bounded,
submodular)
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Maximization problems for matroids

e Given a matroid M = (E,Z) and a modular cost function
c: FE — R, the task is to find an X € 7 such that
c(X) = > sex c(x) is maximum.
@ This seems remarkably similar to the max spanning tree problem.
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Minimization problems for matroids

e Given a matroid M = (E,Z) and a modular cost function
¢: E — R, the task is to find a basis B € B such that ¢(B) is
minimized.

@ This sounds like a set cover problem (find the minimum cost
covering set of sets).
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Partition Matroid

@ What is the partition matroid's rank function?
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

J4
r(A) = min(|[AN V|, k) (5.24)

=1

which we also immediately see is submodular using properties we
spoke about last week. That is:

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014



Partition Matroid
(NN

Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

l
r(A)=> min(|ANVi|, k) (5.24)
i=1

which we also immediately see is submodular using properties we
spoke about last week. That is:

Q@ |ANYV;| is submodular (in fact modular) in A
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

l
r(A)=> min(|ANVi|, k) (5.24)
i=1

which we also immediately see is submodular using properties we
spoke about last week. That is:
Q@ |ANYV;| is submodular (in fact modular) in A

@ min(submodular(A), k;) is submodular in A since |[ANV;] is
monotone.
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

l
r(A)=> min(|ANVi|, k) (5.24)
i=1

which we also immediately see is submodular using properties we
spoke about last week. That is:

Q@ |ANYV;| is submodular (in fact modular) in A

@ min(submodular(A), k;) is submodular in A since |[ANV;] is

monotone.
© sums of submodular functions are submodular.
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

l
r(A)=> min(|ANVi|, k) (5.24)
i=1

which we also immediately see is submodular using properties we
spoke about last week. That is:

Q@ |ANYV;| is submodular (in fact modular) in A

@ min(submodular(A), k;) is submodular in A since |[ANV;] is
monotone.

© sums of submodular functions are submodular.

@ r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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Partition Matroid
(LRN]

Partition Matroid, rank as matching

@ A partition matroid can be viewed using a bipartite graph.

o Letting V denote the ground set, and V1, Vo, ... the partition, the
graph is G = (V, I, E) where V is the ground set, I is a set of
“indices”, and E is the set of edges.

o I =(I1,I5,...,1;) is a set of k = Zle k; nodes, grouped into ¢
clusters, where there are k; nodes in the it group I;.

e (v,i) € E(G) iff v e Vj and i € I;.

I:],/ -:%0' IL/:/\

N
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Partition Matroid
(RE N

Partition Matroid, rank as matching

o Exgmple where { =5,

(kl, ko, ks, ka, ks) =
(2,2,1,1,3).
V I
Vi I
Vs I
%] I5
Vs la
Vs s

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014 F38/58 (pg.134/223



Partition Matroid
(RE N

Partition Matroid, rank as matching

@ Example where £ =5,

(K1, ko, ks, ka, ks) =
(2,2,1,1,3). @ Recall, I' : 2 — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
Vi I {veV(G)\ X : E(X,{v}) # 0}, and
recall that |I'(X)| is submodular.
Vs 2
V3 I3
Vi Iy
Vs Is
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Partition Matroid
(RE N

Partition Matroid, rank as matching

@ Example where £ =5,
(K1, ko, ks, ka, ks) =

(2,2,1,1,3). @ Recall, I' : 2 — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
Vi Iy {ve V(G)\ X : E(X,{v}) # 0}, and
recall that |I'(X)| is submodular.
Vs I @ Here, for X CV, we have I'(X) =
{iel:(v,i) € E(G) and v € X}.
V3 I3
Va lq
Vs Is
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Partition Matroid
(RE N

Partition Matroid, rank as matching

@ Example where £ =5,
(k1, ko, ks, ka, k5) =
(2,2,1,1,3). @ Recall, I': 2V — R as the neighbor
function in a bipartite graph, the
neighbors of X is defined as I'(X) =
Iy {fveV(G)\ X : B(X,{v}) # 0}, and
recall that |I'(X)| is submodular.
I @ Here, for X CV, we have I'(X) =
{iel:(v,i) € E(G) and v € X}.
I3 @ For such a constructed bipartite graph,
| the rank function of a partition matroid
4 is r(X) = S2¢_, min(|X N Vi|, ki) =
the maximum matching involving X.
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Partition Matroid
1

Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
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Partition Matroid
(NNA ]

Laminar Matroid

@ We can define a matroid with structures richer than just partitions.

@ A set system (V| F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B,or B\ A'is
empty.

A B B A
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Partition Matroid
(NN ]

Laminar Matroid

@ We can define a matroid with structures richer than just partitions.

@ A set system (V, F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B,or B\ Ais
empty.

@ Family is laminar if it has no two “properly intersecting” members:

i.e., intersecting AN B # () and not comparable (one is not
contained in the other).
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Partition Matroid
(NN ]

Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
@ A set system (V,_F) is called a laminar family if for any two sets

N B # () and not comparable (one is not
contained in the other).

@ Suppose we have a laminar family F of subsets of V' and an integer
k(A) for every set A € F.
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Partition Matroid

Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
o A set system (V,F) is called a laminar family if for any two sets

contalned in the other).

@ Suppose we have a laminar.family F of subsets of V' and an integer
k(A) for every set A€ F.

@ Then (V,Z) defings a matroid where
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System of Distinct Reps
1

System of Representatives

@ Let (V,V) be a set system (i.e., V= (V;:ie€l)where ) CV; CV
for all i), and I is an index set. Hence, |I| = |V].
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System of Distinct Reps
1

System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:ie€l)where ) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

@ Here, the sets V; € V are like “groups” and any v € V with v € V; is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).
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System of Distinct Reps
1

System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:ie€l)where ) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

o Here, the sets V; € V are like “groups” and any v € V with v € V} is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

@ A family (v; : i € I) with v; € V' is said to be a system of
representatives of )V if 3 a bijection 7 : [ — I such that v; € V().
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System of Distinct Reps
1

System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:ie€l)where ) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

o Here, the sets V; € V are like “groups” and any v € V with v € V} is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

e A family (v; : i € I) with v; € V is said to be a system of
representatives of 1V if 3 a bijection 7 : I — I such that v; € V).

@ v; is the representative of set (or group) Vi (i, meaning the ith
representative is meant to represent set V ;).
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System of Distinct Reps
1

System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:ie€l)where ) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

o Here, the sets V; € V are like “groups” and any v € V with v € V} is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

e A family (v; : i € I) with v; € V is said to be a system of
representatives of 1V if 3 a bijection 7 : I — I such that v; € V).

@ v; is the representative of set (or group) Vi (i, meaning the ith
representative is meant to represent set V. ;).

@ Example: Consider the house of representatives, v; = “Jim
McDermott, while ¢ = “King County, WA-7".
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System of Distinct Reps
1

System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:ie€l)where ) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

o Here, the sets V; € V are like “groups” and any v € V with v € V} is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

e A family (v; : i € I) with v; € V is said to be a system of
representatives of 1V if 3 a bijection 7 : I — I such that v; € V).

@ v; is the representative of set (or group) Vi (i, meaning the ith
representative is meant to represent set V. ;).

@ Example: Consider the house of representatives, v; = “Jim
McDermott, while ¢ = “King County, WA-7".

@ In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have some
v1 € Vi N Vs, where vy represents both V7 and V5.
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System of Distinct Reps
1

System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:ie€l)where ) CV; CV
for all i), and I is an index set. Hence, |I| = |V].

o Here, the sets V; € V are like “groups” and any v € V with v € V} is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

e A family (v; : i € I) with v; € V is said to be a system of
representatives of 1V if 3 a bijection 7 : I — I such that v; € V).

@ v; is the representative of set (or group) Vi (i, meaning the ith
representative is meant to represent set V. ;).

@ Example: Consider the house of representatives, v; = “Jim
McDermott, while ¢ = “King County, WA-7".

@ In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have some
v1 € V1 N Vs, where vy represents both V; and V5.

@ We can view this as a bipartite graph.
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System of Distinct Reps

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, ¢ = 6 groups, with V = (V1, V4, ..., Vg)
= ({e, f,h}.{d, e, g}, {b,c,e, h}, {a,b, h},{a},{a}).

V I
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System of Distinct Reps
n

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, ¢ = 6 groups, with V = (V1, V4, ..., Vg)
= ({e, f,h}.{d, e, g}, {b,c,e, h}, {a,b, h},{a},{a}).
@ A system of representatives would

make sure that there is a representative
for each color group. For example,
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System of Distinct Reps
n

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, ¢ = 6 groups, with V = (V1, V4, ..., Vg)
= ({e, f,h}.{d, e, g}, {b,c,e, h}, {a,b, h},{a},{a}).

@ A system of representatives would
make sure that there is a representative
for each color group. For example,

@ The representatives are shown as
colors on the left.
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System of Distinct Reps
n

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
@ Here, ¢ = 6 groups, with V = (V1, V4, ..., Vg)
= ({e, f,h}.{d, e, g}, {b,c,e, h}, {a,b, h},{a},{a}).

@ A system of representatives would
make sure that there is a representative
for each color group. For example,

@ The representatives are shown as
colors on the left.

@ Here, the set of representatives is not
distinct. In fact, due to the red and
pink group, a distinct group of
representatives is impossible (since
there is only one common choice to
represent both color groups).
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System of Distinct Reps
L

System of Distinct Representatives

@ Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; C V for
all i), and I is an index set. Hence, |I| = |V].
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System of Distinct Reps
L

System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all i), and I is an index set. Hence, |I]| = |V].

e A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I > I such that v; € Vi,
and v; # v; for all ¢ # j.
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System of Distinct Reps
L

System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all i), and I is an index set. Hence, |I]| = |V].

o A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I > I such that v; € V)
and v; # v; for all ¢ # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:
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System of Distinct Reps
L

System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all i), and I is an index set. Hence, |I]| = |V].

o A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I > I such that v; € V)
and v; # v; for all ¢ # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 5.7.1 (transversal)

Given a set system (V. V) as defined above, a set T'C V is a transversal
of V if there is a bijection 7 : T <+ I such that

T € Vi forallzeT (5.26)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014 F42/58 (pg.157/223



System of Distinct Reps
L

System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all i), and I is an index set. Hence, |I]| = |V].

o A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I > I such that v; € V)
and v; # v; for all ¢ # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 5.7.1 (transversal)

Given a set system (V. V) as defined above, a set T'C V is a transversal
of V if there is a bijection 7 : T <+ I such that

T € Vi forallzeT (5.26)

@ Note that due to it being a bijection, all of I and T are “covered”
(so this makes things distinct).
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Transversals
[NRRNR

Transversals are Subclusive

@ A set X C V is a partial transversal if X is a transversal of some
subfamily V' = (V; :i € I') where I' C I.
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Transversals
[NRRNR

Transversals are Subclusive

@ A set X CV is a partial transversal if X is a transversal of some
subfamily V' = (V; :i € I') where I' C I,

@ Therefore, for any transversal T, any subset 7/ C T is a partial
transversal.
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Transversals
[NRRNR

Transversals are Subclusive

@ A set X CV is a partial transversal if X is a transversal of some
subfamily V' = (V; :i € I') where I' C I,

@ Therefore, for any transversal T, any subset 7/ C T is a partial
transversal.

@ Thus, transversals are down closed (subclusive).
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Transversals
(N RRN]

When do transversals exist?
@ As we saw, a transversal might not always exist. How to tell?
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Transversals
(N RRN]

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I),and V; CV for all
i. Then, for any J C I, let

V(J) =UjesVj (5.27)

so |V(J)| is the set cover function (which we know is submodular).
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Transversals
(N RRN]

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I),and V; CV for all
i. Then, for any J C I, let
V(J) =UjesVj (5.27)

so [V (J)| is the set cover function (which we know is submodular).
o We have

Theorem 5.8.1 (Hall's theorem)

Given a set system (V,V), the family of subsets V = (V; : i € I) has a
transversal (v; : i € I) iff for all J C I

V(D] = |J]| (5.28)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014 F44/58 (pg.164/223



Transversals
(N RRN]

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I),and V; CV for all
i. Then, for any J C I, let

V(J) = UjesV; (5.27)

so |V(J)| is the set cover function (which we know is submodular).
e Hall's theorem (V.J, |V (J)| > |.J|) as a bipartite graph.

V I
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Transversals
(N RRN]

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I),and V; CV for all
i. Then, for any J C I, let
V(J) =UjesVj (5.27)

so |V(J)| is the set cover function (which we know is submodular).
e Hall's theorem (V.J, |V (J)| > |.J|) as a bipartite graph.

V I
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Transversals
(N RRN]

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I),and V; CV for all
i. Then, for any J C I, let
V(J) =UjesVj (5.27)

so |V(J)| is the set cover function (which we know is submodular).
@ Moreover, we have

Theorem 5.8.2 (Rado’s theorem)
If M = (V,r) is a matroid on V' with rank function r, then the family of

subsets (V; :i € I) of V has a transversal (v; : i € I) that is independent
in M iff forall J C I

r(V(J)) > |J| (5.29)
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Transversals
(N RRN]

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I),and V; CV for all
i. Then, for any J C I, let
V(J) =UjesVj (5.27)

so |V(J)| is the set cover function (which we know is submodular).
@ Moreover, we have

Theorem 5.8.2 (Rado’s theorem)
If M = (V,r) is a matroid on V' with rank function r, then the family of

subsets (V; :i € I) of V has a transversal (v; : i € I) that is independent
in M iff forall J C I

r(V(J)) > |J| (5.29)

e Note, a transversal T independent in M means that »(T") = |T].
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Transversals
(NLRRN]

More general conditions for existence of transversals

Theorem 5.8.3

IfV = (V; : I € 1) is a finite family of non-empty subsets of V', and
f:2Y — Z, is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

f(Uies{vi}) > |J| forall J C I (5.30)
if and only if

FV (D) > |J| forall J C T (5.31)
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Transversals
(NLRRN]

More general conditions for existence of transversals

Theorem 5.8.3

IfV = (V;: I €1) is a finite family of non-empty subsets of V', and
f:2Y = Z_ is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

fUies{vi}) > |J| forall J C I (5.30)

if and only if

fV () > |J| forall J C I (5.31)

@ Given Theorem 5.8.3, we immediately get Theorem 5.8.1 by taking
f(S) = |S| for S C V. In which case, Eq. 5.30 requires the system of
representatives to be distinct.
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Transversals
(NLRRN]

More general conditions for existence of transversals

Theorem 5.8.3

IfV = (V;: I €1) is a finite family of non-empty subsets of V', and
f:2Y = Z_ is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

fUies{vi}) > |J| forall J C I (5.30)

if and only if

fV () > |J| forall J C I (5.31)

@ Given Theorem 5.8.3, we immediately get Theorem 5.8.1 by taking
f(S)=1S| for SCV.
o We get Theorem 5.8.2 by taking f(S) = r(S) for S C V, the rank
function of the matroid. where, Eq. 5.30 insists the system of
representatives is independent in M.
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Transversals
(NNL RN

More general conditions for existence of transversals

first part proof of Theorem 5.8.3.

@ Suppose Eq. 5.30 is true. Then since f is monotone, and since
V(J) 2 Ujej{vi} when (v; : i € I) is a system of representatives,
then Eq. 5.31 immediately follows.
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Transversals
(NERT Y]

More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. 5.31 (f(V(J)) > |J|,VJ C I) is true for V, and there exists
an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists v € V;
such that the family of subsets (V1 \ {0}, Va, ..., V|y)) also satisfies

Eq 5.31.

@ When Eq. 5.31 and the above holds, this means that for any subsets
Ji,Jo C I\ {1}, we have that

fViuV(n) =Ll +1 (5.32)
fViuV(Jp)) = [Jo| +1 (5.33)
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Transversals
(NERT Y]

More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. 5.31 (f(V(J)) > |J|,VJ C I) is true for V, and there exists
an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists v € V;
such that the family of subsets (V1 \ {0}, Va, ..., V|y)) also satisfies

Eq 5.31.

Proof.

@ Suppose, to the contrary, the consequent is false. Then we may take
v1,02 € V7 as two distinct elements in V7 ...
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Transversals
(NERT Y]

More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. 5.31 (f(V(J)) > |J|,VJ C I) is true for V, and there exists
an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists v € V;
such that the family of subsets (V1 \ {0}, Va, ..., V|y)) also satisfies

Eq 5.31.

@ Suppose, to the contrary, the consequent is false. Then we may take
v1,02 € V7 as two distinct elements in V7 ...

@ and there must exist subsets .J, Jo of I\ {1} such that

f(ViN{o ) UV(h)) <|h|+1, (5.34)
F(Vi\{v2}) UV () < [Jo] + 1, (5.35)

(note that either one or both of .J;, J> could be empty).
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Transversals
(NERT Y]

More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. 5.31 (f(V(J)) > |J|,VJ C I) is true for V, and there exists
an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists v € V;
such that the family of subsets (V1 \ {0}, Va, ..., V|y)) also satisfies

Eq 5.31.

e Taking X = (Vi \{v:1}))UV(Jy) and Y = (V1 \ {v2}) UV (J3), we
have f(X) < |Ji|, f(Y) <|J2|, and that:

XUY =VLUV(JLU ), (5.36)
XNY 2V(NL), (5.37)

and

1| + [ Jo| > f(X) + f(Y) > f(XUY) + f(X V).  (5.38)
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Transversals
(NERT Y]

More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. 5.31 (f(V(J)) > |J|,VJ C I) is true for V, and there exists
an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists v € V;
such that the family of subsets (V1 \ {0}, Va, ..., V|y)) also satisfies

Eq 5.31.

Proof.
@ since f submodular monotone non-decreasing, & Eqgs 5.32-5.35,

|Ji| + [Jo| > fF(VLUV(J1U Jo)) + f(V(J1 N J2)) (5.39)
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Transversals
(NERT Y]

More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. 5.31 (f(V(J)) > |J|,VJ C I) is true for V, and there exists
an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists v € V;
such that the family of subsets (V1 \ {0}, Va, ..., V|y)) also satisfies

Eq 5.31.

@ since f submodular monotone non-decreasing, & Eqgs 5.32-5.35,

|Ji| + 2] = f(Vi UV (S U J2)) + f(V(J1NJ2)) (5.39)
@ Since V satisfies Eq. 5.31, 1 ¢ J; U Ja, & Eqgs 5.32-5.33, this gives
|J1| + [J2| > |J1 U Jo| + 1+ |J1 N Jy (5.40)

which is a contradiction since cardinality is modular.
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Transversals
(NNRNR}

More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

@ Conversely, suppose Eq. 5.31 is true.
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Transversals
(NNRNR}

More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

@ Conversely, suppose Eq. 5.31 is true.

o If each Vj is a singleton set, then the result follows immediately.
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Transversals
(NNRNR}

More general conditions for existence of transversals

converse proof of Theorem 5.8.3.
@ Conversely, suppose Eq. 5.31 is true.
o If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let |[Vi| > 2, then by Lemma 5.8.4, the family of subsets
(Vi\ {0}, Va,...,Vjp)) also satisfies Eq 5.31 for the right v.
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Transversals
(NNRNR}

More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

@ Conversely, suppose Eq. 5.31 is true.

o If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let |[Vi| > 2, then by Lemma 5.8.4, the family of subsets
(Vi\ {0}, Va,...,Vjp)) also satisfies Eq 5.31 for the right v.

@ We can continue to reduce the family, deleting elements from V; for
some i while |V;| > 2, until we arrive at a family of singleton sets.
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Transversals
(NNRNR}

More general conditions for existence of transversals

converse proof of Theorem 5.8.3.
@ Conversely, suppose Eq. 5.31 is true.
o If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let |[Vi| > 2, then by Lemma 5.8.4, the family of subsets
(Vi\ {0}, Va,...,Vjp)) also satisfies Eq 5.31 for the right v.

@ We can continue to reduce the family, deleting elements from V; for
some i while |V;| > 2, until we arrive at a family of singleton sets.

@ This family will be the required system of representatives.
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Transversals
(NNRNR}

More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

@ Conversely, suppose Eq. 5.31 is true.

o If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let |[Vi| > 2, then by Lemma 5.8.4, the family of subsets
(Vi\ {0}, Va,...,Vjp)) also satisfies Eq 5.31 for the right v.

@ We can continue to reduce the family, deleting elements from V; for
some i while |V;| > 2, until we arrive at a family of singleton sets.

@ This family will be the required system of representatives.

This theorem can be used to produce a variety of other results quite
easily, and shows how submodularity is the key ingredient in its truth.
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Transversal Matroid
[NRNNR

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 5.9.1

If V is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.
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Transversal Matroid
[NRNNR

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 5.9.1

If V is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.

@ This means that the transversals of V' are the bases of matroid M.
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Transversal Matroid
[NRNNR

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 5.9.1

If V is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.

@ This means that the transversals of V' are the bases of matroid M.

@ Therefore, all maximal partial transversals of V have the same
cardinality!
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Transversal Matroid
(LIRNN]

Transversals and Matchings

@ Transversals correspond exactly to matchings in bipartite graphs (as
we've already strongly hinted at).
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Transversal Matroid
(LIRNN]

Transversals and Matchings

@ Transversals correspond exactly to matchings in bipartite graphs (as
we've already strongly hinted at).

e Given a set system (V, V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E) associated with ) that has edge set
{(v,i):veVielveV}.
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Transversal Matroid
(LIRNN]

Transversals and Matchings

@ Transversals correspond exactly to matchings in bipartite graphs (as
we've already strongly hinted at).

e Given a set system (V, V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E) associated with ) that has edge set
{(v,i):veVielveV}.

@ A matching in this graph is a set of edges no two of which that have
a common endpoint.
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Transversal Matroid
(LIRNN]

Transversals and Matchings

@ Transversals correspond exactly to matchings in bipartite graphs (as
we've already strongly hinted at).

e Given a set system (V, V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E) associated with ) that has edge set
{(v,i):veVielveV}.

@ A matching in this graph is a set of edges no two of which that have
a common endpoint.

@ In fact, we easily have

A subset T' C 'V is a partial transversal of V iff there is a matching in
(V,1,E) in which every edge has one endpoint in T.

We say that T is matched into I.
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Transversal Matroid
(NL RN

Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
|Vil > ki (also, recall, V(J) = UjesVj).
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Transversal Matroid
(NL RN

Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
|Vil > ki (also, recall, V(J) = UjesVj).
@ We start with partition matroid rank function in the subsequent
equations.
¢
r(A) = " min(|ANVi|, k) (5.41)
i=1
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Transversal Matroid
(NL RN

Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
|Vil > ki (also, recall, V(J) = UjesVj).

@ We start with partition matroid rank function in the subsequent

equations.
¢
r(A) = " min(|ANVi|, k) (5.41)
=1
¢
=> min(|AnV(L)], L) (5.42)
=1
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Transversal Matroid
(NL RN

Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
|Vil > ki (also, recall, V(J) = UjesVj).

@ We start with partition matroid rank function in the subsequent

equations.
‘
r(A) = Zmin(|AmVi|,ki) (5.41)
i=1
‘
= > min( ANV )LL) (5.42)
i=1
‘
= i ANV(L)| if J; #0 o
- i=1 s, ({ 0 if J; =10 } + [\ Jz‘) (5.43)
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Transversal Matroid
(NL RN

Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
|Vil > ki (also, recall, V(J) = UjesVj).

@ We start with partition matroid rank function in the subsequent

equations.

0

r(4) =)  min(|ANVil. k) (5.41)
=1
¢

= min([ ANV (L), 1) (5.42)
=1
4

_ . ANV if Ji #0 L

- P inglr[ll ({ 0 if Jz — (Z) } + ‘Iz \ Jz‘) (5'43)
14

=2 min ([V(J:) N A+ i\ Jil) (5.44)

i=1
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Transversal Matroid
(AR A

... Morphing Partition Matroid Rank

e Continuing,

r(A) = Z min (|V(J;) NV (L) VAl = [0 Ji| + L)) (5.45)
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Transversal Matroid
(AR A

... Morphing Partition Matroid Rank

e Continuing,

y4
r(A) = Z min (|V(J;) NV (L) VAl = [0 Ji| + L)) (5.45)
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Transversal Matroid
(AR A

... Morphing Partition Matroid Rank

e Continuing,

r(A) = Z min (|V(J;) NV (L) VAl = [0 Ji| + L)) (5.45)

l
=min [ Y [V(J)N V(L) NAl = |LNJ|+ \hl) (5.46)

JET 1=1
= min (|V(J) N V(D) N A = || +|T]) (5.47)
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Transversal Matroid
(AR A

... Morphing Partition Matroid Rank

e Continuing,

=1
= min ([V(J) N V()1 A| = |J] + 1))
= min ([V(J) N Al = |7+ 1))
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Transversal Matroid
(AR A

... Morphing Partition Matroid Rank

e Continuing,

r(A) = Z min (|V(J;) NV (L) VAl = [0 Ji| + L)) (5.45)

l
=min [ Y [V(J)N V(L) NAl = |LNJ|+ \hl) (5.46)

JCI
- =1
= min (|V(J) N V(1) N A| = ||+ 1] (5.47)
— min (|V/(7) 1 A| = |J]+ 1) (5.48)

@ In fact, this bottom (more general) expression is the expression for
the rank of a transversal matroid.
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Transversal Matroid

Partial Transversals Are Matroids

In fact, we have

Theorem 5.9.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,0}. Let T be the set of partial transversals of V. Then (V,T)

is a matroid.

Proof.

D |
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Transversal Matroid

Partial Transversals Are Matroids

In fact, we have

Theorem 5.9.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,0}. Let T be the set of partial transversals of V. Then (V,T)

is a matroid.

Proof.
@ We note that () € Z since the empty set is a transversal of the empty
subfamily of V, thus (I1') holds.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014



Transversal Matroid
L

Partial Transversals Are Matroids

In fact, we have

Theorem 5.9.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,0}. Let T be the set of partial transversals of V. Then (V,T)

is a matroid.

Proof.
@ We note that () € Z since the empty set is a transversal of the empty
subfamily of V, thus (I1') holds.
o We already saw that if T is a partial transversal of V, and if T/ C T,
then 7" is also a partial transversal. So (12') holds.
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Transversal Matroid
L

Partial Transversals Are Matroids

In fact, we have

Theorem 5.9.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,0}. Let T be the set of partial transversals of V. Then (V,T)

is a matroid.

@ We note that () € Z since the empty set is a transversal of the empty
subfamily of V, thus (I1') holds.

o We already saw that if T is a partial transversal of V, and if T/ C T,
then 7" is also a partial transversal. So (12') holds.

@ Suppose that T and T are partial transversals of V such that
|T1| < |T3|. Exercise: show that (I13") holds.
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Transversal Matroid
(NRRNR

Transversal Matroid Rank

@ Transversal matroid has rank

(4) = min (V) N A = 1] +12) (5.49)
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Transversal Matroid
(NRRNR

Transversal Matroid Rank

@ Transversal matroid has rank

(4) = min (V) N A = 1] +12) (5.49)

@ Therefore, this function is submodular.
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Transversal Matroid
(NRRNR

Transversal Matroid Rank

@ Transversal matroid has rank
r(4) = min ([V(J) N A] = |J| + |1]) (5.49)
@ Therefore, this function is submodular.

@ Note that it is a minimum over a set of modular functions. Is this
true in general? Exercise:
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Matroid and representation
[ERN

Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
forany a € A, r(A\ {a}) = |A| —1).
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Matroid and representation
[ERN

Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
forany a € A, r(A\ {a}) =|4] - 1).

@ There is no reason in a matroid such an A could not consist of a
single element.
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Matroid and representation
[ERN

Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
forany a € A, r(A\ {a}) =|4] - 1).

@ There is no reason in a matroid such an A could not consist of a
single element.

@ Such an {a} is called a loop.
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Matroid and representation
[ERN

Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
forany a € A, r(A\ {a}) =|4] - 1).

@ There is no reason in a matroid such an A could not consist of a
single element.

@ Such an {a} is called a loop.

@ In a matric (i.e., linear) matroid, the only such loop is the value 0,
as all non-zero vectors have rank 1. The O can appear > 1 time
with different indices, as can a self loop in a graph appear on
different nodes.
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Matroid and representation
[ERN

Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it
is an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and
forany a € A, r(A\ {a}) =|4] - 1).

@ There is no reason in a matroid such an A could not consist of a
single element.

@ Such an {a} is called a loop.

@ In a matric (i.e., linear) matroid, the only such loop is the value 0,
as all non-zero vectors have rank 1. The O can appear > 1 time
with different indices, as can a self loop in a graph appear on
different nodes.

@ Note, we also say that two elements s, t are said to be parallel if
{s,t} is a circuit.
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Matroid and representation
1

Representable

Definition 5.10.1 (Matroid isomorphism)

Two matroids M; and Ms respectively on ground sets V4 and V5 are
isomorphic if there is a bijection 7 : V4 — V5 which preserves
independence (equivalently, rank, circuits, and so on).
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Matroid and representation
1

Representable

Definition 5.10.1 (Matroid isomorphism)

Two matroids M; and Ms respectively on ground sets V4 and V5 are
isomorphic if there is a bijection 7 : V4 — V5 which preserves
independence (equivalently, rank, circuits, and so on).

o Let I be any field (such as R, Q, or some finite field F, such as
GF(p) where p is prime (such as GF(2)).
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Matroid and representation
1

Representable

Definition 5.10.1 (Matroid isomorphism)

Two matroids M; and Ms respectively on ground sets V4 and V5 are
isomorphic if there is a bijection 7 : V4 — V5 which preserves
independence (equivalently, rank, circuits, and so on).

o Let I be any field (such as R, Q, or some finite field F, such as
GF(p) where p is prime (such as GF(2)).

@ We can more generally define matroids on a field.
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Matroid and representation
1

Representable

Definition 5.10.1 (Matroid isomorphism)

Two matroids M; and Ms respectively on ground sets V4 and V5 are
isomorphic if there is a bijection 7 : V4 — V5 which preserves
independence (equivalently, rank, circuits, and so on).

o Let I be any field (such as R, Q, or some finite field F, such as
GF(p) where p is prime (such as GF(2)).

@ We can more generally define matroids on a field.

Definition 5.10.2 (linear matroids on a field)

Let X be an n x m matrix and E = {1,...,m}, where X;; € IF for some
field, and let Z be the set of subsets of E such that the columns of X are
linearly independent over F.
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Matroid and representation
1

Representable

Definition 5.10.1 (Matroid isomorphism)

Two matroids M; and Ms respectively on ground sets V4 and V5 are
isomorphic if there is a bijection 7 : V4 — V5 which preserves
independence (equivalently, rank, circuits, and so on).

o Let I be any field (such as R, Q, or some finite field F, such as
GF(p) where p is prime (such as GF(2)).

@ We can more generally define matroids on a field.

Definition 5.10.3 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called
representable over [
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Matroid and representation
[y

Representability of Transversal Matroids

@ Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.
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Matroid and representation
[y

Representability of Transversal Matroids

@ Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.

@ In particular:

Theorem 5.10.4

Transversal matroids are representable over all finite fields of sufficiently
large cardinality, and are representable over any infinite field.
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Matroid and representation
(NNY ]

Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 5.10.5

Let V ={1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where 7 is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.
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Matroid and representation
(NNY ]

Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 5.10.5

Let V ={1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where 7 is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.

@ It can be shown that this is a matroid and is representable.
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Matroid and representation
(NNY ]

Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 5.10.5

Let V ={1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where 7 is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.

@ It can be shown that this is a matroid and is representable.

@ However, this matroid is not isomorphic to any transversal matroid.
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