Submodular Functions, Optimization, and Applications to Machine Learning

- Spring Quarter, Lecture 5 http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

April 14th, 2014

$$
f(A)+f(B) \geq f(A \cup B)+f(A \cap B)
$$

$=r(A)+2(C)+r(B)=r(A)+(C(C)+r(B) \quad=r(A \cap B)$
00

Cumulative Outstanding Reading

- Read chapter 1 from Fujishige's book.

Announcements, Assignments, and Reminders

- our room (Mueller Hall Room 154) is changed!
- Please do use our discussion board (https:
//canvas.uw.edu/courses/895956/discussion_topics) for all questions, comments, so that all will benefit from them being answered.
- Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, \& Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids
- L6:
- L7:
- L8:
- L9:
- L10:
- L11:
- L12:
- L13:
- L14:
- L15:
- L16:
- L17:
- L18:
- L19:
- L20:

Finals Week: June 9th-13th, 2014.

Many (Equivalent) Definitions of Submodularity

$$
\begin{align*}
f(A)+f(B) & \geq f(A \cup B)+f(A \cap B), \forall A, B \subseteq V \tag{5.6}\\
f(j \mid S) & \geq f(j \mid T), \forall S \subseteq T \subseteq V, \text { with } j \in V \backslash T \tag{5.7}\\
f(C \mid S) & \geq f(C \mid T), \forall S \subseteq T \subseteq V, \text { with } C \subseteq V \backslash T \tag{5.8}\\
f(j \mid S) & \geq f(j \mid S \cup\{k\}), \forall S \subseteq V \text { with } j \in V \backslash(S \cup\{k\}) \tag{5.9}
\end{align*}
$$

$$
\begin{equation*}
f(A \cup B \mid A \cap B) \leq f(A \mid A \cap B)+f(B \mid A \cap B), \quad \forall A, B \subseteq V \tag{5.10}
\end{equation*}
$$

$$
\begin{equation*}
f(T) \leq f(S)+\sum_{j \in T \backslash S} f(j \mid S)-\sum_{j \in S \backslash T} f(j \mid S \cup T-\{j\}), \forall S, T \subseteq V \tag{5.11}
\end{equation*}
$$

$$
\begin{equation*}
f(T) \leq f(S)+\sum_{j \in T \backslash S} f(j \mid S), \forall S \subseteq T \subseteq V \tag{5.12}
\end{equation*}
$$

$$
f(T) \leq f(S)-\sum_{j \in S \backslash T} f(j \mid S \backslash\{j\})+\sum_{j \in T \backslash S} f(j \mid S \cap T) \forall S, T \subseteq
$$

Review

- We saw: column space of a matrix, dimensionality of span of subset of columns as rank function.

Review

- We saw: column space of a matrix, dimensionality of span of subset of columns as rank function.
- Incidence matrix of (arbitrarily oriented version of) graph $G=(V, E)$, rank of matrix columns F corresponded to spanning tree of edge-induced graph $G^{\prime}=\left(V^{\prime}, F\right)$ where v^{\prime} are vertices incident to edges in F.

Review

- We saw: column space of a matrix, dimensionality of span of subset of columns as rank function.
- Incidence matrix of (arbitrarily oriented version of) graph $G=(V, E)$, rank of matrix columns F corresponded to spanning tree of edge-induced graph $G^{\prime}=\left(V^{\prime}, F\right)$ where v^{\prime} are vertices incident to edges in F.
- We saw several different "greedy" algorithms that proced optimal spanning trees (Borůvka's, Jarník/Prim/Dijkstra's, and Kruskal's).

Review

- We saw: column space of a matrix, dimensionality of span of subset of columns as rank function.
- Incidence matrix of (arbitrarily oriented version of) graph $G=(V, E)$, rank of matrix columns F corresponded to spanning tree of edge-induced graph $G^{\prime}=\left(V^{\prime}, F\right)$ where v^{\prime} are vertices incident to edges in F.
- We saw several different "greedy" algorithms that proced optimal spanning trees (Borůvka's, Jarník/Prim/Dijkstra's, and Kruskal's).
- We wish to more formally connect the above, and generalize further.

From Matrix Rank \rightarrow Matroid

- So V is set of column vector indices of a matrix.
- Let \mathcal{I} be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.
- Given a set $B \in \mathcal{I}$ of linearly independent vectors, then any subset $A \subseteq B$ is also linearly independent. Hence, \mathcal{I} is down-closed or "subclusive", under subsets. In other words,

$$
\begin{equation*}
A \subseteq B \text { and } B \in \mathcal{I} \Rightarrow A \in \mathcal{I} \tag{5.32}
\end{equation*}
$$

- maxInd: Inclusionwise maximal independent subsets (or bases) of any set $B \subseteq V$.

$$
\begin{equation*}
\max \operatorname{Ind}(B) \triangleq\{A \subseteq B: A \in \mathcal{I} \text { and } \forall v \in B \backslash A, A \cup\{v\} \notin \mathcal{I}\} \tag{5.33}
\end{equation*}
$$

- Given any set $B \subset V$ of vectors, all maximal (by set inclusion) subsets of linearly independent vectors are the same size. That is, for all $B \subseteq V$,

$$
\begin{equation*}
\forall A_{1}, A_{2} \in \operatorname{max\operatorname {lnd}(B),\quad |A_{1}|=|A_{2}|...} \tag{5.34}
\end{equation*}
$$

From Matrix Rank \rightarrow Matroid

- Thus, for all $I \in \mathcal{I}$, the matrix rank function has the property

$$
\begin{equation*}
r(I)=|I| \tag{5.32}
\end{equation*}
$$

and for any $B \notin \mathcal{I}$,

$$
\begin{equation*}
r(B)=\max \{|A|: A \subseteq B \text { and } A \in \mathcal{I}\} \leq|B| \tag{5.33}
\end{equation*}
$$

Matroid

Independent set definition of a matroid is perhaps most natural. Note, if $J \in \mathcal{I}$, then J is said to be an independent set.

Definition 5.2 .4 (Matroid)

A set system (E, \mathcal{I}) is a Matroid if
(I1) $\emptyset \in \mathcal{I}$
(I2) $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$
(I3) $\forall I, J \in \mathcal{I}$, with $|I|=|J|+1$, then there exists $x \in I \backslash J$ such that $J \cup\{x\} \in \mathcal{I}$.

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.

On Matroids

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.

On Matroids

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.

On Matroids

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.

On Matroids

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.
- The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).

On Matroids

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.
- The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).
- Understanding matroids crucial for understanding submodularity.

On Matroids

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.
- The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).
- Understanding matroids crucial for understanding submodularity.
- Matroid independent sets (i.e., A s.t. $r(A)=|A|$) are useful constraint set, and fast algorithms for submodular optimization subject to one (or more) matroid independence constraints exist.
- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.
- The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).
- Understanding matroids crucial for understanding submodularity.
- Matroid independent sets (i.e., A s.t. $r(A)=|A|$) are useful constraint set, and fast algorithms for submodular optimization subject to one (or more) matroid independence constraints exist.
- Crapo \& Rota preferred the term "combinatorial geometry", or more specifically a "pregeometry" and said that pregeometries are "often described by the ineffably cacaphonic [sic] term 'matroid', which we prefer to avoid in favor of the term 'pregeometry'."

Matroid

Slight modification (non unit increment) that is equivalent.

Definition 5.3.1 (Matroid-II)

A set system (E, \mathcal{I}) is a Matroid if
(I1') $\emptyset \in \mathcal{I}$
(I2') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (or "down-closed")
(I3') $\forall I, J \in \mathcal{I}$, with $|I|>|J|$, then there exists $x \in I \backslash J$ such that $J \cup\{x\} \in \mathcal{I}$

Note $(I 1)=\left(I 1^{\prime}\right),(I 2)=\left(I 2^{\prime}\right)$, and we get $(I 3) \equiv\left(I 3^{\prime}\right)$ using induction.

Matroids, independent sets, and bases

- Independent sets: Given a matroid $M=(E, \mathcal{I})$, a subset $A \subseteq E$ is called independent if $A \in \mathcal{I}$ and otherwise A is called dependent.

Matroids, independent sets, and bases

- Independent sets: Given a matroid $M=(E, \mathcal{I})$, a subset $A \subseteq E$ is called independent if $A \in \mathcal{I}$ and otherwise A is called dependent.
- A base of $U \subseteq E$: For $U \subseteq E$, a subset $B \subseteq U$ is called a base of U if B is inclusionwise maximally independent subset of U. That is, $B \in \mathcal{I}$ and there is no $Z \in \mathcal{I}$ with $B \subset Z \subseteq U$.

Matroids, independent sets, and bases

- Independent sets: Given a matroid $M=(E, \mathcal{I})$, a subset $A \subseteq E$ is called independent if $A \in \mathcal{I}$ and otherwise A is called dependent.
- A base of $U \subseteq E$: For $U \subseteq E$, a subset $B \subseteq U$ is called a base of U if B is inclusionwise maximally independent subset of U. That is, $B \in \mathcal{I}$ and there is no $Z \in \mathcal{I}$ with $B \subset Z \subseteq U$.
- A base of a matroid: If $U=E$, then a "base of E " is just called a base of the matroid M (this corresponds to a basis in a linear space).

Matroids - important property

Proposition 5.3.2

In a matroid $M=(E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

Matroids - important property

Proposition 5.3.2

In a matroid $M=(E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.

Matroids - important property

Proposition 5.3.2

In a matroid $M=(E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1), (I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Matroids - important property

Proposition 5.3.2

In a matroid $M=(E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if

Matroids - important property

Proposition 5.3.2

In a matroid $M=(E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if
(I1') $\emptyset \in \mathcal{I}$ (emptyset containing)

Matroids - important property

Proposition 5.3.2

In a matroid $M=(E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if
(I1') $\emptyset \in \mathcal{I}$ (emptyset containing)
(I2') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (down-closed or subclusive)

Matroids - important property

Proposition 5.3.2

In a matroid $M=(E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if
(11^{\prime}) $\emptyset \in \mathcal{I}$ (emptyset containing)
(I2') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (down-closed or subclusive)
(I3') $\forall X \subseteq V$, and $I_{1}, I_{2} \in \max \operatorname{lnd}(X)$, we have $\left|I_{1}\right|=\left|I_{2}\right|$ (all maximally independent subsets of X have the same size).

Matroids - rank

- Recall, in any matroid $M=(E, \mathcal{I}), \forall U \subseteq E(M)$, any two bases of U have the same size.

Matroids - rank

- Recall, in any matroid $M=(E, \mathcal{I}), \forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_{M}(U)$ or just $r(U)$ when the matroid in equation is unambiguous.

Matroids - rank

- Recall, in any matroid $M=(E, \mathcal{I}), \forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_{M}(U)$ or just $r(U)$ when the matroid in equation is unambiguous.
- $r(E)=r_{(E, \mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.

Matroids - rank

- Recall, in any matroid $M=(E, \mathcal{I}), \forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_{M}(U)$ or just $r(U)$ when the matroid in equation is unambiguous.
- $r(E)=r_{(E, \mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Matroids - rank

- Recall, in any matroid $M=(E, \mathcal{I}), \forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_{M}(U)$ or just $r(U)$ when the matroid in equation is unambiguous.
- $r(E)=r_{(E, \mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 5.3.4 (matroid rank function)

The rank of a matroid is a function $r: 2^{E} \rightarrow \mathbb{Z}_{+}$defined by

$$
\begin{equation*}
r(A)=\max \{|X|: X \subseteq A, X \in \mathcal{I}\}=\max _{X \in \mathcal{I}}|A \cap X| \tag{5.1}
\end{equation*}
$$

Matroids - rank

Recall, n any matroid $M=(E, \mathcal{I}), \forall U \subseteq E(M)$, any two bases of U have the same size.

- The common size of all the bases of U is called the rank of U, denoted $r_{M}(U)$ or just $r(U)$ when the matroid in equation is unambiguous.
- $r(E)=r_{(E, \mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 5.3.4 (matroid rank function)

The rank of a matroid is a function $r: 2^{E} \rightarrow \mathbb{Z}_{+}$defined by

$$
\begin{equation*}
r(A)=\max \{|X|: X \subseteq A, X \in \mathcal{I}\}=\max _{X \in \mathcal{I}}|A \cap X| \tag{5.1}
\end{equation*}
$$

- From the above, we immediately see that $r(A) \leq|A|$.

Matroids - rank

- Recall, in any matroid $M=(E, \mathcal{I}), \forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_{M}(U)$ or just $r(U)$ when the matroid in equation is unambiguous.
- $r(E)=r_{(E, \mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 5.3.4 (matroid rank function)

The rank of a matroid is a function $r: 2^{E} \rightarrow \mathbb{Z}_{+}$defined by

$$
\begin{equation*}
r(A)=\max \{|X|: X \subseteq A, X \in \mathcal{I}\}=\max _{X \in \mathcal{I}}|A \cap X| \tag{5.1}
\end{equation*}
$$

- From the above, we immediately see that $r(A) \leq|A|$.
- Moreover, if $r(A)=|A|$, then $A \in \mathcal{I}$, meaning A is independent (in this case, A is a self base).

Matroids, other definitions using matroid rank $r: 2^{V} \rightarrow \mathbb{Z}_{+}$

Definition 5.3 .5 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \backslash A, r(A \cup\{x\})=r(A)+1$.

Matroids, other definitions using matroid rank $r: 2^{V} \rightarrow \mathbb{Z}_{+}$

Definition 5.3.5 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \backslash A, r(A \cup\{x\})=r(A)+1$.

Definition 5.3.6 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A)=\{b \in E: r(A \cup\{b\})=r(A)\}$.

Matroids, other definitions using matroid rank $r: 2^{V} \rightarrow \mathbb{Z}_{+}$

Definition 5.3 .5 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \backslash A, r(A \cup\{x\})=r(A)+1$.

Definition 5.3.6 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A)=\{b \in E: r(A \cup\{b\})=r(A)\}$.

Therefore, a closed set A has $\operatorname{span}(A)=A$.

$$
A \subseteq B \Rightarrow \operatorname{spn}(A) \subseteq \operatorname{spm}(B)
$$

Matroids, other definitions using matroid rank $r: 2^{V} \rightarrow \mathbb{Z}_{+}$

Definition 5.3 .5 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \backslash A, r(A \cup\{x\})=r(A)+1$.

Definition 5.3.6 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A)=\{b \in E: r(A \cup\{b\})=r(A)\}$.

Therefore, a closed set A has $\operatorname{span}(A)=A$.

Definition 5.3.7 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if $r(A)<|A|$ and for any $a \in A$, $r(A \backslash\{a\})=|A|-1)$.

Matroids by bases

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 5.3.8 (Matroid (by bases))

Let E be a set and \mathcal{B} be a nonempty collection of subsets of E. Then the following are equivalent.
(1) \mathcal{B} is the collection of bases of a matroid;
(2) if $B, B^{\prime} \in \mathcal{B}$, and $x \in B^{\prime} \backslash B$, then $B^{\prime}-x+y \in \mathcal{B}$ for some $y \in B \backslash B^{\prime}$.
(3) If $B, B^{\prime} \in \mathcal{B}$, and $x \in B^{\prime} \backslash B$, then $B-y+x \in \mathcal{B}$ for some $y \in B \backslash B^{\prime}$.

Properties 2 and 3 are called "exchange properties."

Matroids by bases

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 5.3.8 (Matroid (by bases))

Let E be a set and \mathcal{B} be a nonempty collection of subsets of E. Then the following are equivalent.
(1) \mathcal{B} is the collection of bases of a matroid;
(2) if $B, B^{\prime} \in \mathcal{B}$, and $x \in B^{\prime} \backslash B$, then $B^{\prime}-x+y \in \mathcal{B}$ for some $y \in B \backslash B^{\prime}$.
(3) If $B, B^{\prime} \in \mathcal{B}$, and $x \in B^{\prime} \backslash B$, then $B-y+x \in \mathcal{B}$ for some $y \in B \backslash B^{\prime}$.

Properties 2 and 3 are called "exchange properties."
Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.

Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not surprising that circuits can also characterize a matroid.

Theorem 5.3.9 (Matroid by circuits)

Let E be a set and \mathcal{C} be a collection of subsets of E that satisfy the following three properties:
(1) (C1): $\emptyset \notin \mathcal{C}$
(2) (C2): if $C_{1}, C_{2} \in \mathcal{C}$ and $C_{1} \subseteq C_{2}$, then $C_{1}=C_{2}$.
(3) (C3): if $C_{1}, C_{2} \in \mathcal{C}$ with $C_{1} \neq C_{2}$, and $\in C_{1} \cap C_{2}$, then there exists a $C_{3} \in \mathcal{C}$ such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\}$.

Matroids by circuits

Several circuit definitions for matroids.

Theorem 5.3.10 (Matroid by circuits)

Let E be a set and \mathcal{C} be a collection of nonempty subsets of E, such that no two sets in \mathcal{C} are contained in each other. Then the following are equivalent.
(1) \mathcal{C} is the collection of circuits of matroid;
(2) if $C, C^{\prime} \in \mathcal{C}$, ad $x \in C \cap C^{\prime}$, then $\left(C \cup C^{\prime}\right) \backslash\{x\}$ contains a set in \mathcal{C};

- if $C, C^{\prime} \in \mathcal{C}$, and $x \in C \cap C^{\prime \prime}$, and $y \in C \backslash C^{\prime}$, then $\left(C \cup C^{\prime \prime}\right) \backslash\{x\}$ contains a set in \mathcal{C} containing y;

Matroids by circuits

Theorem 5.3.10 (Matroid by circuits)

Let E be a set and \mathcal{C} be a collection of nonempty subsets of E, such that no two sets in \mathcal{C} are contained in each other. Then the following are equivalent.
(1) \mathcal{C} is the collection of circuits of a matroid;
(2) if $C, C^{\prime} \in \mathcal{C}$, and $x \in C \cap C^{\prime}$, then $\left(C \cup C^{\prime}\right) \backslash\{x\}$ contains a set in \mathcal{C};

- if $C, C^{\prime} \in \mathcal{C}$, and $x \in C \cap C^{\prime}$, and $y \in C \backslash C^{\prime}$, then $\left(C \cup C^{\prime}\right) \backslash\{x\}$ contains a set in \mathcal{C} containing y;

Again, think about this for a moment in terms of linear spaces and matrices, and spanning trees.

Matroids by submodular functions

Theorem 5.3.11 (Matroid by submodular functions)

Let $f: 2^{E} \rightarrow \mathbb{Z}$ be a integer valued monotone non-decreasing submodular function. Define a set of sets as follows:

$$
\mathcal{C}(f)=\{C \subseteq E: \underbrace{C \text { is non-empty. }}_{\text {is inclusionwise-minimal, }}
$$

Then $\mathcal{C}(f)$ is the collection of circuits of a matroid on E.
Inclusionwise-minimal in this case means that if $C \in \mathcal{C}(f)$, then there exists no $C^{\prime} \subset C$ with $C^{\prime} \in \mathcal{C}(f)$ (i.e., $C^{\prime} \subset C$ would either be empty or have $\left.f\left(C^{\prime}\right) \geq\left|C^{\prime}\right|\right)$. Also, recall inclusionwise-minimal in Definition 5.3.7, the definition of a circuit.

Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I}=\{A \subseteq E:|A| \leq k\}$.

Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I}=\{A \subseteq E:|A| \leq k\}$.
- Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.

Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I}=\{A \subseteq E:|A| \leq k\}$.
- Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I, J \in \mathcal{I}$, and $|I|<|J| \leq k$, and $j \in J$ such that $j \notin I$, then j is such that $|I+j| \leq k$ and so $I+j \in \mathcal{I}$.

Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I}=\{A \subseteq E:|A| \leq k\}$.
- Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I, J \in \mathcal{I}$, and $|I|<|J| \leq k$, and $j \in J$ such that $j \notin I$, then j is such that $|I+j| \leq k$ and so $I+j \in \mathcal{I}$.
- Rank function

$$
r(A)= \begin{cases}|A| & \text { if }|A| \leq k \tag{5.3}\\ k & \text { if }|A|>k\end{cases}
$$

Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I}=\{A \subseteq E:|A| \leq k\}$.
- Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I, J \in \mathcal{I}$, and $|I|<|J| \leq k$, and $j \in J$ such that $j \notin I$, then j is such that $|I+j| \leq k$ and so $I+j \in \mathcal{I}$.
- Rank function

$$
r(A)= \begin{cases}|A| & \text { if }|A| \leq k \tag{5.3}\\ k & \text { if }|A|>k\end{cases}
$$

- Note, this function is submodular. Not surprising since $r(A)=\min (|A|, k)$ which is a non-decreasing concave function applied to a modular function.
- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I}=\{A \subseteq E:|A| \leq k\}$.
- Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I, J \in \mathcal{I}$, and $|I|<|J| \leq k$, and $j \in J$ such that $j \notin I$, then j is such that $|I+j| \leq k$ and so $I+j \in \mathcal{I}$.
- Rank function

$$
r(A)= \begin{cases}|A| & \text { if }|A| \leq k \tag{5.3}\\ k & \text { if }|A|>k\end{cases}
$$

- Note, this function is submodular. Not surprising since $r(A)=\min (|A|, k)$ which is a non-decreasing concave function applied to a modular function.
- Closure function

$$
\operatorname{span}(A)= \begin{cases}A & \text { if }|A|<k \tag{5.4}\\ E & \text { if }|A| \geq k\end{cases}
$$

Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I}=\{A \subseteq E:|A| \leq k\}$.
- Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I, J \in \mathcal{I}$, and $|I|<|J| \leq k$, and $j \in J$ such that $j \notin I$, then j is such that $|I+j| \leq k$ and so $I+j \in \mathcal{I}$.
- Rank function

$$
r(A)= \begin{cases}|A| & \text { if }|A| \leq k \tag{5.3}\\ k & \text { if }|A|>k\end{cases}
$$

- Note, this function is submodular. Not surprising since $r(A)=\min (|A|, k)$ which is a non-decreasing concave function applied to a modular function.
- Closure function

$$
\operatorname{span}(A)= \begin{cases}A & \text { if }|A|<k \tag{5.4}\\ E & \text { if }|A| \geq k\end{cases}
$$

- A "free" matroid sets $k=|E|$, so everything is independent.

Linear (or Matric) Matroid

- Let \mathbf{X} be an $n \times m$ matrix and $E=\{1, \ldots, m\}$

Linear (or Matric) Matroid

- Let \mathbf{X} be an $n \times m$ matrix and $E=\{1, \ldots, m\}$
- Let \mathcal{I} consists of subsets of E such that if $A \in \mathcal{I}$, and $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ then the vectors $x_{a_{1}}, x_{a_{2}}, \ldots, x_{a_{k}}$ are linearly independent.

Linear (or Matric) Matroid

- Let \mathbf{X} be an $n \times m$ matrix and $E=\{1, \ldots, m\}$
- Let \mathcal{I} consists of subsets of E such that if $A \in \mathcal{I}$, and $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ then the vectors $x_{a_{1}}, x_{a_{2}}, \ldots, x_{a_{k}}$ are linearly independent.
- the rank function is just the rank of the space spanned by the corresponding set of vectors.

Linear (or Matric) Matroid

- Let \mathbf{X} be an $n \times m$ matrix and $E=\{1, \ldots, m\}$
- Let \mathcal{I} consists of subsets of E such that if $A \in \mathcal{I}$, and $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ then the vectors $x_{a_{1}}, x_{a_{2}}, \ldots, x_{a_{k}}$ are linearly independent.
- the rank function is just the rank of the space spanned by the corresponding set of vectors.
- rank is submodular, it is intuitive that it satisfies the diminishing returns property (a given vector can only become linearly dependent in a greater context, thereby no longer contributing to rank).

Linear (or Matric) Matroid

- Let \mathbf{X} be an $n \times m$ matrix and $E=\{1, \ldots, m\}$
- Let \mathcal{I} consists of subsets of E such that if $A \in \mathcal{I}$, and $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ then the vectors $x_{a_{1}}, x_{a_{2}}, \ldots, x_{a_{k}}$ are linearly independent.
- the rank function is just the rank of the space spanned by the corresponding set of vectors.
- rank is submodular, it is intuitive that it satisfies the diminishing returns property (a given vector can only become linearly dependent in a greater context, thereby no longer contributing to rank).
- Called both linear matroids and matric matroids.

Cycle Matroid of a graph: Graphic Matroids

- Let $G=(V, E)$ be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.

Cycle Matroid of a graph: Graphic Matroids

- Let $G=(V, E)$ be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.
- Then $M=(E, \mathcal{I})$ is a matroid.

Cycle Matroid of a graph: Graphic Matroids

- Let $G=(V, E)$ be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.
- Then $M=(E, \mathcal{I})$ is a matroid.
- I contains all forests.

Cycle Matroid of a graph: Graphic Matroids

- Let $G=(V, E)$ be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.
- Then $M=(E, \mathcal{I})$ is a matroid.
- \mathcal{I} contains all forests.
- Bases are spanning forests (spanning trees if G is connected).

Cycle Matroid of a graph: Graphic Matroids

- Let $G=(V, E)$ be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.
- Then $M=(E, \mathcal{I})$ is a matroid.
- \mathcal{I} contains all forests.
- Bases are spanning forests (spanning trees if G is connected).
- Rank function $r(A)$ is the size of the largest spanning forest contained in $G(V, A)$.

Cycle Matroid of a graph: Graphic Matroids

- Let $G=(V, E)$ be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph $G(V, A)$ by A does not contain any cycle.
- Then $M=(E, \mathcal{I})$ is a matroid.
- \mathcal{I} contains all forests.
- Bases are spanning forests (spanning trees if G is connected).
- Rank function $r(A)$ is the size of the largest spanning forest contained in $G(V, A)$.
- Closure function adds all edges between the vertices adjacent to any edge in A. Closure of a spanning forest is G.

Example: graphic matroid

- A graph defines a matroid on edge sets, independent sets are those without a cycle.

Example: graphic matroid

Example: graphic matroid

- A graph defines a matroid on edge sets, independent sets are those without a cycle.

Example: graphic matroid

- A graph defines a matroid on edge sets, independent sets are those without a cycle.

$$
\operatorname{ranh}(A)=7
$$

Example: graphic matroid

- A graph defines a matroid on edge sets, independent sets are those without a cycle.

Example: graphic matroid

- A graph defines a matroid on edge sets, independent sets are those without a cycle.

Partition Matroid

- Let V be our ground set.

Partition Matroid

- Let V be our ground set.
- Let $V=V_{1} \cup V_{2} \cup \cdots \cup V_{\ell}$ be a partition of V into blocks or disjoint sets (disjoint union). Define a set of subsets of V as

$$
\begin{equation*}
\mathcal{I}=\left\{X \subseteq V:\left|X \cap V_{i}\right| \leq k_{i} \text { for all } i=1, \ldots, \ell\right\} \tag{5.5}
\end{equation*}
$$

where k_{1}, \ldots, k_{ℓ} are fixed parameters, $k_{i} \geq 0$. Then $M=(V, \mathcal{I})$ is a matroid.

Partition Matroid

- Let V be our ground set.
- Let $V=V_{1} \cup V_{2} \cup \cdots \cup V_{\ell}$ be a partition of V into blocks or disjoint sets (disjoint union). Define a set of subsets of V as

$$
\begin{equation*}
\mathcal{I}=\left\{X \subseteq V:\left|X \cap V_{i}\right| \leq k_{i} \text { for all } i=1, \ldots, \ell\right\} \tag{5.5}
\end{equation*}
$$

where k_{1}, \ldots, k_{ℓ} are fixed parameters, $k_{i} \geq 0$. Then $M=(V, \mathcal{I})$ is a matroid.

- Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell=1, V_{1}=V$, and $k_{1}=k$.

Partition Matroid

- Let V be our ground set.
- Let $V=V_{1} \cup V_{2} \cup \cdots \cup V_{\ell}$ be a partition of V into blocks or disjoint sets (disjoint union). Define a set of subsets of V as

$$
\begin{equation*}
\mathcal{I}=\left\{X \subseteq V:\left|X \cap V_{i}\right| \leq k_{i} \text { for all } i=1, \ldots, \ell\right\} \tag{5.5}
\end{equation*}
$$

where k_{1}, \ldots, k_{ℓ} are fixed parameters, $k_{i} \geq 0$. Then $M=(V, \mathcal{I})$ is a matroid.

- Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell=1, V_{1}=V$, and $k_{1}=k$.
- We'll show that property (I3') in Def 5.3.3 holds. If $X, Y \in \mathcal{I}$ with $|Y|>|X|$, then there must be at least one i with $\left|Y \cap V_{i}\right|>\left|X \cap V_{i}\right|$. Therefore, adding one element $e \in V_{i} \cap(Y \backslash X)$ to X won't break independence.

Partition Matroid

Ground set of objects, $V=\{$

Partition Matroid

Partition of V into six blocks, $V_{1}, V_{2}, \ldots, V_{6}$

Partition Matroid

Limit associated with each block, $\left\{k_{1}, k_{2}, \ldots, k_{6}\right\}$

Partition Matroid

Independent subset but not maximally independent.

Partition Matroid

Maximally independent subset, what is called a base.

Partition Matroid

Not independent since over limit in set six.

Matroids - rank

Lemma 5.5.1

The rank function $r: 2^{E} \rightarrow \mathbb{Z}_{+}$of a matroid is submodular, that is $r(A)+r(B) \geq r(A \cup B)+r(A \cap B)$

Matroids - rank

Lemma 5.5.1

The rank function $r: 2^{E} \rightarrow \mathbb{Z}_{+}$of a matroid is submodular, that is $r(A)+r(B) \geq r(A \cup B)+r(A \cap B)$

Proof.
(1) Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$

Matroids - rank

Lemma 5.5.1

The rank function $r: 2^{E} \rightarrow \mathbb{Z}_{+}$of a matroid is submodular, that is $r(A)+r(B) \geq r(A \cup B)+r(A \cap B)$

Proof.
(1) Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
(2) Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$. (We can find such a $Y \supseteq X$ because, starting from $X \subseteq A \cup B$, and since $|Y| \geq|X|$, we can choose a $y \in Y \subseteq A \cup B$ such that $X+y \in \mathcal{I}$ but since $y \in A \cup B$, also $X+y \in A \cup B$. We can keep doing this while $|Y|>|X|$ since this is a matroid.)

Matroids - rank

Lemma 5.5.1

The rank function $r: 2^{E} \rightarrow \mathbb{Z}_{+}$of a matroid is submodular, that is $r(A)+r(B) \geq r(A \cup B)+r(A \cap B)$

Proof.
(1) Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
(2) Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
(3) Since M is a matroid, we know that $r(A \cap B)=r(X)=|X|$, and $r(A \cup B)=r(Y)=|Y|$. Also, for any $U \in \mathcal{I}, r(A) \geq|A \cap U|$.

Matroids - rank

Lemma 5.5.1

The rank function $r: 2^{E} \rightarrow \mathbb{Z}_{+}$of a matroid is submodular, that is $r(A)+r(B) \geq r(A \cup B)+r(A \cap B)$

Proof.

(1) Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
(2) Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
(3) Since M is a matroid, we know that $r(A \cap B)=r(X)=|X|$, and $r(A \cup B)=r(Y)=|Y|$. Also, for any $U \in \mathcal{I}, r(A) \geq|A \cap U|$.
(9) Then we have

$$
\begin{equation*}
r(A)+r(B) \tag{5.6}
\end{equation*}
$$

Matroids - rank

Lemma 5.5.1

The rank function $r: 2^{E} \rightarrow \mathbb{Z}_{+}$of a matroid is submodular, that is $r(A)+r(B) \geq r(A \cup B)+r(A \cap B)$

Proof.

(1) Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
(2) Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
(3) Since M is a matroid, we know that $r(A \cap B)=r(X)=|X|$, and $r(A \cup B)=r(Y)=|Y|$. Also, for any $U \in \mathcal{I}, r(A) \geq|A \cap U|$.
(9) Then we have

$$
\begin{equation*}
r(A)+r(B) \geq|Y \cap A|+|Y \cap B| \tag{5.6}
\end{equation*}
$$

Matroids - rank

Lemma 5.5.1

The rank function $r: 2^{E} \rightarrow \mathbb{Z}_{+}$of a matroid is submodular, that is $r(A)+r(B) \geq r(A \cup B)+r(A \cap B)$

Proof.

(1) Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
(2) Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
(3) Since M is a matroid, we know that $r(A \cap B)=r(X)=|X|$, and $r(A \cup B)=r(Y)=|Y|$. Also, for any $U \in \mathcal{I}, r(A) \geq|A \cap U|$.
(1) Then we have

$$
\begin{align*}
r(A)+r(B) & \geq|Y \cap A|+|Y \cap B| \tag{5.6}\\
& =|Y \cap(A \cap B)|+|Y \cap(A \cup B)| \tag{5.7}
\end{align*}
$$

Matroids - rank

Lemma 5.5.1

The rank function $r: 2^{E} \rightarrow \mathbb{Z}_{+}$of a matroid is submodular, that is $r(A)+r(B) \geq r(A \cup B)+r(A \cap B)$

Proof.

(1) Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
(2) Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
(3) Since M is a mattoid, we know that $r(A \cap B)=r(X)=|X|$, and $r(A \cup B)=r(Y)=|Y|$. Also, for any $U \in \mathcal{I}, r(A) \geq|A \cap U|$.
(9) Then we have

$$
\begin{aligned}
& \text { we have } \\
& f(S)=|Y \cap A|+|Y \cap B||Y \cap S| \quad f(A \mid+f(B)=f(A \cap B)+f(A \cup B) \\
&=|Y|+|Y|=r(A \cap B)+r(A \cup B)
\end{aligned}
$$

Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 5.5.2 (Matroid from rank)

Let E be a set and let $r: 2^{E} \rightarrow \mathbb{Z}_{+}$be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $A, B \subseteq E$:
(R1) $\forall A \subseteq E \quad 0 \leq r(A) \leq|A|$ (non-negative cardinality bounded)
(R2) $r(A) \leq r(B)$ whenever $A \subseteq B \subseteq E$ (monotone non-decreasing)
(R3) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$ for all $A, B \subseteq E$ (submodular)

- So submodularity and non-negative monotone non-decreasing, and unit increase is necessary and sufficient to define the matroid.
- Given above, unit increment (if $r(A)=k$, then either $r(A \cup\{v\})=k$ or $r(A \cup\{v\})=k+1)$ holds.
- A matroid is sometimes given as (E, r) where E is ground set and r is rank function.

Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 5.5.2 (Matroid from rank)

Let E be a set and let $r: 2^{E} \rightarrow \mathbb{Z}_{+}$be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $A, B \subseteq E$:
(RI) $\forall A \subseteq E \quad 0 \leq r(A) \leq|A|$ (non-negative cardinality bounded)
(R2) $r(A) \leq r(B)$ whenever $A \subseteq B \subseteq E$ (monotone non-decreasing)
(R3) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$ for all $A, B \subseteq E$ (submodular)

- From above, $r(\emptyset)=0$. Let $v \notin A$, then by monotonicity and submodularity, $r(A) \leq r(A \cup\{v\}) \leq r(A)+r(\{v\})$ which gives only two possible values to $r(A \cup\{v\})$.

$$
+r(\phi)=0
$$

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

- Given a matroid $M=(E, \mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

- Given a matroid $M=(E, \mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I}=\{X \subseteq E: r(X)=|X|\}$. We will show that (E, \mathcal{I}) is a matroid.

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

- Given a matroid $M=(E, \mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I}=\{X \subseteq E: r(X)=|X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First, $\emptyset \in \mathcal{I}$.

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

- Given a matroid $M=(E, \mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I}=\{X \subseteq E: r(X)=|X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First, $\emptyset \in \mathcal{I}$.
- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

- Given a matroid $M=(E, \mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I}=\{X \subseteq E: r(X)=|X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First, $\emptyset \in \mathcal{I}$.
- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then byjsubmodularity, $r(Y \backslash X)$

$$
r(X) \geq r(Y)
$$

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

- Given a matroid $M=(E, \mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I}=\{X \subseteq E: r(X)=|X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First, $\emptyset \in \mathcal{I}$.
- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

$$
\begin{equation*}
r(X) \geq r(Y)-r(Y \backslash X)-r(\emptyset) \tag{5.9}
\end{equation*}
$$

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

- Given a matroid $M=(E, \mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I}=\{X \subseteq E: r(X)=|X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First, $\emptyset \in \mathcal{I}$.
- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

$$
\begin{equation*}
r(X) \geq r(Y)-r(Y \backslash X)-r \text { 他 } \tag{5.9}
\end{equation*}
$$

$$
\begin{equation*}
\geq|Y|-|Y \backslash X| \tag{5.10}
\end{equation*}
$$

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

- Given a matroid $M=(E, \mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I}=\{X \subseteq E: r(X)=|X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First, $\emptyset \in \mathcal{I}$.
- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

$$
\begin{align*}
r(X) & \geq r(Y)-r(Y \backslash X)-r(\emptyset) \tag{5.9}\\
& \geq|Y|-|Y \backslash X| \\
& =|X| \\
r(x) & \geq|X| \rightarrow 7
\end{align*}
$$

(5.10)
(5.11)

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

- Given a matroid $M=(E, \mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I}=\{X \subseteq E: r(X)=|X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First, $\emptyset \in \mathcal{I}$.
- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

$$
\begin{align*}
r(X) & \geq r(Y)-r(Y \backslash X)-r(\emptyset) \tag{5.9}\\
& \geq|Y|-|Y \backslash X| \tag{5.10}\\
& =|X| \tag{5.11}
\end{align*}
$$

implying $r(X)=|X|$, and thus $X \in \mathcal{I}$.

Matroids from rank
Proof of Theorem 5.5.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A|<|B|$, so $r(A)=|A|<r(B)=|B|$. Let $B \backslash A=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}($ note $k \leq|B|)$.

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A|<|B|$, so $r(A)=|A|<r(B)=|B|$. Let $B \backslash A=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ (note $k \leq|B|$).
- Suppose, to the contrary, that $\forall b \in B \backslash A, A+b \notin \mathcal{I}$, which means for all such $b, r(A+b)=r(A)=|A|$. Then

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A|<|B|$, so $r(A)=|A|<r(B)=|B|$. Let $B \backslash A=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ (note $k \leq|B|$).
- Suppose, to the contrary, that $\forall b \in B \backslash A, r(A+b) \notin \mathcal{I}$, which means for all such $b, r(A+b)=r(A)=|A|$. Then

$$
\begin{equation*}
r(B) \leq r(A \cup B) \tag{5.12}
\end{equation*}
$$

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A|<|B|$, so $r(A)=|A|<r(B)=|B|$. Let $B \backslash A=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ (note $k \leq|B|$).
- Suppose, to the contrary, that $\forall b \in B \backslash A, r(A+b) \notin \mathcal{I}$, which means for all such $b, r(A+b)=r(A)=|A|$. Then

$$
\begin{align*}
r(B) & \leq r(A \cup B) \tag{5.12}\\
& \leq r\left(A \cup\left(B \backslash\left\{b_{1}\right\}\right)\right)+r\left(A \cup\left\{b_{1}\right\}\right)-r(A) \tag{5.13}
\end{align*}
$$

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A|<|B|$, so $r(A)=|A|<r(B)=|B|$. Let $B \backslash A=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ (note $k \leq|B|$).
- Suppose, to the contrary, that $\forall b \in B \backslash A, r(A+b) \notin \mathcal{I}$, which means for all such $b, r(A+b)=r(A)=|A|$. Then

$$
\begin{align*}
r(B) & \leq r(A \cup B) \tag{5.12}\\
& \leq r\left(A \cup\left(B \backslash\left\{b_{1}\right\}\right)\right)+r\left(A \cup\left\{b_{1}\right\}\right)-r(A) \tag{5.13}\\
& =r\left(A \cup\left(B \backslash\left\{b_{1}\right\}\right)\right.
\end{align*}
$$

(5.14)

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A|<|B|$, so $r(A)=|A|<r(B)=|B|$. Let $B \backslash A=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ (note $k \leq|B|$).
- Suppose, to the contrary, that $\forall b \in B \backslash A, r(A+b) \notin \mathcal{I}$, which means for all such $b, r(A+b)=r(A)=|A|$. Then

$$
\begin{align*}
r(B) & \leq r(A \cup B) \tag{5.12}\\
& \leq r\left(A \cup\left(B \backslash\left\{b_{1}\right\}\right)\right)+r\left(A \cup\left\{b_{1}\right\}\right)-r(A) \tag{5.13}\\
& =r\left(A \cup\left(B \backslash\left\{b_{1}\right\}\right)\right. \\
& \leq r\left(A \cup\left(B \backslash\left\{b_{1}, b_{2}\right\}\right)\right)+r(A \cup\{b\})
\end{align*}
$$

(5.14)
(5.15)

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A|<|B|$, so $r(A)=|A|<r(B)=|B|$. Let $B \backslash A=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ (note $k \leq|B|$).
- Suppose, to the contrary, that $\forall b \in B \backslash A, r(A+b) \notin \mathcal{I}$, which means for all such $b, r(A+b)=r(A)=|A|$. Then

$$
\begin{align*}
r(B) & \leq r(A \cup B) \tag{5.12}\\
& \leq r\left(A \cup\left(B \backslash\left\{b_{1}\right\}\right)\right)+r\left(A \cup\left\{b_{1}\right\}\right)-r(A) \tag{5.13}\\
& =r\left(A \cup\left(B \backslash\left\{b_{1}\right\}\right)\right. \\
& \leq r\left(A \cup\left(B \backslash\left\{b_{1}, b_{2}\right\}\right)\right)+r\left(A \cup\left\{b_{2}\right\}\right)-r(A) \\
& =r\left(A \cup\left(B \backslash\left\{b_{1}, b_{2}\right\}\right)\right)
\end{align*}
$$

(5.14)
(5.15)
(5.16)

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A|<|B|$, so $r(A)=|A|<r(B)=|B|$. Let $B \backslash A=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ (note $k \leq|B|$).
- Suppose, to the contrary, that $\forall b \in B \backslash A, r(A+b) \notin \mathcal{I}$, which means for all such $b, r(A+b)=r(A)=|A|$. Then

$$
\begin{align*}
r(B) & \leq r(A \cup B) \tag{5.12}\\
& \leq r\left(A \cup\left(B \backslash\left\{b_{1}\right\}\right)\right)+r\left(A \cup\left\{b_{1}\right\}\right)-r(A) \tag{5.13}\\
& =r\left(A \cup\left(B \backslash\left\{b_{1}\right\}\right)\right. \\
& \leq r\left(A \cup\left(B \backslash\left\{b_{1}, b_{2}\right\}\right)\right)+r\left(A \cup\left\{b_{2}\right\}\right)-r(A) \\
& =r\left(A \cup\left(B \backslash\left\{b_{1}, b_{2}\right\}\right)\right) \\
& \leq \ldots \leq r(A)=|A|<|B|
\end{align*}
$$

(5.14)
(5.15)
(5.16)
(5.17)

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with $|A|<|B|$, so $r(A)=|A|<r(B)=|B|$. Let $B \backslash A=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ (note $k \leq|B|$).
- Suppose, to the contrary, that $\forall b \in B \backslash A, r(A+b) \notin \mathcal{I}$, which means for all such $b, r(A+b)=r(A)=|A|$. Then

$$
\begin{align*}
r(B) & \leq r(A \cup B) \tag{5.12}\\
& \leq r\left(A \cup\left(B \backslash\left\{b_{1}\right\}\right)\right)+r\left(A \cup\left\{b_{1}\right\}\right)-r(A) \tag{5.13}\\
& =r\left(A \cup\left(B \backslash\left\{b_{1}\right\}\right)\right. \tag{5.14}\\
& \leq r\left(A \cup\left(B \backslash\left\{b_{1}, b_{2}\right\}\right)\right)+r\left(A \cup\left\{b_{2}\right\}\right)-r(A) \tag{5.15}\\
& =r\left(A \cup\left(B \backslash\left\{b_{1}, b_{2}\right\}\right)\right) \\
& \leq \ldots \leq r(A)=|A|<|B| \tag{5.17}
\end{align*}
$$

(5.16)
giving a contradiction since $B \in \mathcal{I}$.

Matroids from rank II

Another way of using function r to define a matroid.

Theorem 5.5.3 (Matroid from rank II)

Let E be a finite set and let $r: 2^{E} \rightarrow \mathbb{Z}_{+}$be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $A \subseteq E$, and $x, y \in E$:
$\left(\mathrm{R} 1^{\prime}\right) r(\emptyset)=0$;
$\left(\mathrm{R} 2^{\prime}\right) r(X) \leq r(X \cup\{y\}) \leq r(X)+1$;
(R3') If $r(X \cup\{x\})=r(X \cup\{y\})=r(X)$, then $r(X \cup\{x, y\})=r(X)$.

Matroid and Rank

- Thus, we can define a matroid as $M=(V, r)$ where r satisfies matroid rank axioms.
- Example: 2-partition matroid rank function: Given natural numbers $a, b \in \mathbb{Z}_{+}$with $a>b$, and any set $R \subseteq V$ with $|R|=a$, two-block partition $V=(R, \bar{R})$, where $\bar{R}=V \backslash R$, define:

$$
\begin{align*}
r(A) & =\min (|A \cap R|, b)+\min (|A \cap \bar{R}|,|\bar{R}|) \tag{5.18}\\
& =\min (|A \cap R|, b)+|A \cap \bar{R}| \tag{5.19}
\end{align*}
$$

- Partition matroid figure showing this:

Truncated Matroid Rank Function

- Can use this to defictrated matroid rank function. With $r(A)=\min (|A \cap R|, b)+|A \cap \bar{R}|, b<a$, define.

Truncated Matroid Rank Function

- Can use this to define a truncated matroid rank function. With $r(A)=\min (|A \cap R|, b)+|A \cap \bar{R}|, b<a$, define:

$$
\begin{align*}
f_{R}(A) & =\min \{r(A), a\} \\
& =\min \{\min (|A \cap \bar{R}|+|A \cap R|,|A \cap \bar{R}|+b), a\} \\
& =\min \{|A|, b+|A \cap \bar{R}|, a\} \tag{5.22}
\end{align*}
$$

$$
(5.20)
$$

$$
(5.21)
$$

- Defines a matroid $M=\left(V, f_{R}\right)=(V, \mathcal{I})$ (Goemans et. al.) with

$$
\begin{equation*}
\mathcal{I}=\{I \subseteq V:|I| \leq a \text { and }|I \cap R| \leq b\} \tag{5.23}
\end{equation*}
$$

Truncated Matroid Rank Function

- Can use this to define a truncated matroid rank function. With $r(A)=\min (|A \cap R|, b)+|A \cap \bar{R}|, b<a$, define:

$$
\begin{align*}
f_{R}(A) & =\min \{r(A), a\} \tag{5.20}\\
& =\min \{\min (|A \cap \bar{R}|+|A \cap R|,|A \cap \bar{R}|+b), a\} \tag{5.21}\\
& =\min \{|A|, b+|A \cap \bar{R}|, a\} \tag{5.22}
\end{align*}
$$

- Defines a matroid $M=\left(V, f_{R}\right)=(V, \mathcal{I})$ (Goemans et. al.) with

$$
\begin{equation*}
\mathcal{I}=\{I \subseteq V:|I| \leq a \text { and }|I \cap R| \leq b\}, \tag{5.23}
\end{equation*}
$$

- Useful for showing hardness of constrained submodular minimization. Consider sets $B \subseteq V$ with $|B|=a$.
- Can use this to define a truncated matroid rank function. With $r(A)=\min (|A \cap R|, b)+|A \cap \bar{R}|, b<a$, define:

$$
\begin{align*}
f_{R}(A) & =\min \{r(A), a\} \tag{5.20}\\
& =\min \{\min (|A \cap \bar{R}|+|A \cap R|,|A \cap \bar{R}|+b), a\} \tag{5.21}\\
& =\min \{|A|, b+|A \cap \bar{R}|, a\} \tag{5.22}
\end{align*}
$$

- Defines a matroid $M=\left(V, f_{R}\right)=(V, \mathcal{I})$ (Goemans et. al.) with

$$
\begin{equation*}
\mathcal{I}=\{I \subseteq V:|I| \leq a \text { and }|I \cap R| \leq b\} \tag{5.23}
\end{equation*}
$$

- Useful for showing hardness of constrained submodular minimization. Consider sets $B \subseteq V$ with $|B|=a$.
- For R, we have $f_{R}(R)=b<a$.

Truncated Matroid Rank Function

- Can use this to define a truncated matroid rank function. With $r(A)=\min (|A \cap R|, b)+|A \cap \bar{R}|, b<a$, define:

$$
\begin{align*}
f_{R}(A) & =\min \{r(A), a\} \tag{5.20}\\
& =\min \{\min (|A \cap \bar{R}|+|A \cap R|,|A \cap \bar{R}|+b), a\} \tag{5.21}\\
& =\min \{|A|, b+|A \cap \bar{R}|, a\} \tag{5.22}
\end{align*}
$$

- Defines a matroid $M=\left(V, f_{R}\right)=(V, \mathcal{I})$ (Goemans et. al.) with

$$
\begin{equation*}
\mathcal{I}=\{I \subseteq V:|I| \leq a \text { and }|I \cap R| \leq b\} \tag{5.23}
\end{equation*}
$$

- Useful for showing hardness of constrained submodular minimization. Consider sets $B \subseteq V$ with $|B|=a$.
- For R, we have $f_{R}(R)=b<a$.
- For any B with $|B \cap R| \leq b, f_{R}(B)=a$.

Truncated Matroid Rank Function

- Can use this to define a truncated matroid rank function. With $r(A)=\min (|A \cap R|, b)+|A \cap \bar{R}|, b<a$, define:

$$
\begin{align*}
f_{R}(A) & =\min \{r(A), a\} \tag{5.20}\\
& =\min \{\min (|A \cap \bar{R}|+|A \cap R|,|A \cap \bar{R}|+b), a\} \tag{5.21}\\
& =\min \{|A|, b+|A \cap \bar{R}|, a\} \tag{5.22}
\end{align*}
$$

- Defines a matroid $M=\left(V, f_{R}\right)=(V, \mathcal{I})$ (Goemans et. al.) with

$$
\begin{equation*}
\mathcal{I}=\{I \subseteq V:|I| \leq a \text { and }|I \cap R| \leq b\} \tag{5.23}
\end{equation*}
$$

- Useful for showing hardness of constrained submodular minimization. Consider sets $B \subseteq V$ with $|B|=a$.
- For R, we have $f_{R}(R)=b<a$.
- For any B with $|B \cap R| \leq b, f_{R}(B)=a$.
- For any B with $|B \cap R|=\ell$, with $b<\ell<a, f_{R}(B)=b+a-\ell$.

Truncated Matroid Rank Function

- Can use this to define a truncated matroid rank function. With $r(A)=\min (|A \cap R|, b)+|A \cap \bar{R}|, b<a$, define:

$$
\begin{align*}
f_{R}(A) & =\min \{r(A), a\} \tag{5.20}\\
& =\min \{\min (\mid A \cap(\bar{R}|+|A \cap R|,|A \cap \bar{R}|+b), a\} \tag{5.21}\\
& =\min \{|A|, b+(A \cap \bar{R}), a\} \tag{5.22}
\end{align*}
$$

- Defines a matroid $M=\left(V, f_{R}\right)=(V, \mathcal{I})$ (Goemans et. al.) with

$$
\begin{equation*}
\mathcal{I}=\{I \subseteq V:|I| \leq a \text { and }|I \cap R| \leq b\} \tag{5.23}
\end{equation*}
$$

- Useful for showing hardness of constrained submodular minimization. Consider sets $B \subseteq V$ with $|B|=a$.
- For R, we have $f_{R}(R)=b<a$.
- For any lo with $|B \cap R| \leq b, f_{R}(B)=a$.
- For any B with $|B \cap R|=\ell$, with $b<\ell<a, f_{R}(B)=b+a-\ell$.
- R, the set with minimum valuation amongst size- a sets, is hidden within an exponentially larger set of size- a sets with larger valuation.

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
- Base axioms (exchangeability)

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
- Base axioms (exchangeability)
- Circuit axioms

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
- Base axioms (exchangeability)
- Circuit axioms
- Closure axioms (we didn't see this, but it is possible)

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
- Base axioms (exchangeability)
- Circuit axioms
- Closure axioms (we didn't see this, but it is possible)
- Rank axioms (normalized, monotone, cardinality bounded, submodular)

Maximization problems for matroids

- Given a matroid $M=(E, \mathcal{I})$ and a modular cost function $c: E \rightarrow \mathbb{R}$, the task is to find an $X \in \mathcal{I}$ such that $c(X)=\sum_{x \in X} c(x)$ is maximum.
- This seems remarkably similar to the max spanning tree problem.

Minimization problems for matroids

- Given a matroid $M=(E, \mathcal{I})$ and a modular cost function $c: E \rightarrow \mathbb{R}$, the task is to find a basis $B \in \mathcal{B}$ such that $c(B)$ is minimized.
- This sounds like a set cover problem (find the minimum cost covering set of sets).

Partition Matroid

- What is the partition matroid's rank function?

Partition Matroid

- What is the partition matroid's rank function?
- A partition matroids rank function:

$$
\begin{equation*}
r(A)=\sum_{i=1}^{\ell} \min \left(\left|A \cap V_{i}\right|, k_{i}\right) \tag{5.24}
\end{equation*}
$$

which we also immediately see is submodular using properties we spoke about last week. That is:

Partition Matroid

- What is the partition matroid's rank function?
- A partition matroids rank function:

$$
\begin{equation*}
r(A)=\sum_{i=1}^{\ell} \min \left(\left|A \cap V_{i}\right|, k_{i}\right) \tag{5.24}
\end{equation*}
$$

which we also immediately see is submodular using properties we spoke about last week. That is:
(1) $\left|A \cap V_{i}\right|$ is submodular (in fact modular) in A

Partition Matroid

- What is the partition matroid's rank function?
- A partition matroids rank function:

$$
\begin{equation*}
r(A)=\sum_{i=1}^{\ell} \min \left(\left|A \cap V_{i}\right|, k_{i}\right) \tag{5.24}
\end{equation*}
$$

which we also immediately see is submodular using properties we spoke about last week. That is:
(1) $\left|A \cap V_{i}\right|$ is submodular (in fact modular) in A
(2) $\min \left(\right.$ submodular $\left.(A), k_{i}\right)$ is submodular in A since $\left|A \cap V_{i}\right|$ is monotone.

Partition Matroid

- What is the partition matroid's rank function?
- A partition matroids rank function:

$$
\begin{equation*}
r(A)=\sum_{i=1}^{\ell} \min \left(\left|A \cap V_{i}\right|, k_{i}\right) \tag{5.24}
\end{equation*}
$$

which we also immediately see is submodular using properties we spoke about last week. That is:
(1) $\left|A \cap V_{i}\right|$ is submodular (in fact modular) in A
(2) $\min \left(\right.$ submodular $\left.(A), k_{i}\right)$ is submodular in A since $\left|A \cap V_{i}\right|$ is monotone.
(3) sums of submodular functions are submodular.

Partition Matroid

- What is the partition matroid's rank function?
- A partition matroids rank function:

$$
\begin{equation*}
r(A)=\sum_{i=1}^{\ell} \min \left(\left|A \cap V_{i}\right|, k_{i}\right) \tag{5.24}
\end{equation*}
$$

which we also immediately see is submodular using properties we spoke about last week. That is:
(1) $\left|A \cap V_{i}\right|$ is submodular (in fact modular) in A
(2) $\min \left(\operatorname{submodular}(A), k_{i}\right)$ is submodular in A since $\left|A \cap V_{i}\right|$ is monotone.
(3) sums of submodular functions are submodular.

- $r(A)$ is also non-negative integral monotone non-decreasing, so it defines a matroid (the partition matroid).

Partition Matroid, rank as matching

- A partition matroid can be viewed using a bipartite graph.
- Letting V denote the ground set, and V_{1}, V_{2}, \ldots the partition, the graph is $G=(V, I, E)$ where V is the ground set, I is a set of "indices", and E is the set of edges.
- $I=\left(I_{1}, I_{2}, \ldots, I_{\ell}\right)$ is a set of $k=\sum_{i=1}^{\ell} k_{i}$ nodes, grouped into ℓ clusters, where there are k_{i} nodes in the $i^{\text {th }}$ group I_{i}.
- $(v, i) \in E(G)$ iff $v \in V_{j}$ and $i \in I_{j}$.

$$
\left|I_{n}\right|=h_{n} \quad 1=h
$$

Partition Matroid, rank as matching

- Example where $\ell=5$,
$\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)=$
(2, 2, 1, 1, 3).

Partition Matroid, rank as matching

- Example where $\ell=5$, $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)=$ (2, 2, 1, 1, 3).

- Recall, $\Gamma: 2^{V} \rightarrow \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X)=$ $\{v \in V(G) \backslash X: E(X,\{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.

Partition Matroid, rank as matching

- Example where $\ell=5$, $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)=$ (2, 2, 1, 1, 3).

- Recall, $\Gamma: 2^{V} \rightarrow \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X)=$ $\{v \in V(G) \backslash X: E(X,\{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.
- Here, for $X \subseteq V$, we have $\Gamma(X)=$ $\{i \in I:(v, i) \in E(G)$ and $v \in X\}$.

Partition Matroid, rank as matching

- Example where $\ell=5$, $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)=$ (2, 2, 1, 1, 3).

- Recall, $\Gamma: 2^{V} \rightarrow \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X)=$ $\{v \in V(G) \backslash X: E(X,\{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.
- Here, for $X \subseteq V$, we have $\Gamma(X)=$ $\{i \in I:(v, i) \in E(G)$ and $v \in X\}$.
- For such a constructed bipartite graph, the rank function of a partition matroid is $r(X)=\sum_{i=1}^{\ell} \min \left(\left|X \cap V_{i}\right|, k_{i}\right)=$ the maximum matching involving X.

Laminar Matroid

- We can define a matroid with structures richer than just partitions.

Laminar Matroid

- We can define a matroid with structures richer than just partitions.
- A set system (V, \mathcal{F}) is called a laminar family if for any two sets $A, B \in \mathcal{F}$, at least one of the three sets $A \cap B, A \backslash B$, or $B \backslash A$ is empty.

Laminar Matroid

- We can define a matroid with structures richer than just partitions.
- A set system (V, \mathcal{F}) is called a laminar family if for any two sets $A, B \in \mathcal{F}$, at least one of the three sets $A \cap B, A \backslash B$, or $B \backslash A$ is empty.

- Family is laminar if it has no two "properly intersecting" members: i.e., intersecting $A \cap B \neq \emptyset$ and not comparable (one is not contained in the other).

Laminar Matroid

- We can define a matroid with structures richer than just partitions.
- A set system (V, \mathcal{F}) is called a laminar family if for any two sets $A, B \in \mathcal{F}$, at least one of the three sets $A \cap B, A \backslash B$, or $B \backslash A$ is empty A

- Family is laminar if it has no two "properly intersecting" members: i.e., intersecting $A \cap B \neq \emptyset$ and not comparable (one is not contained in the other).
- Suppose we have a laminar family \mathcal{F} of subsets of V and an integer $k(A)$ for every set $A \in \mathcal{F}$.

Laminar Matroid

- We can define a matroid with structures richer than just partitions.
- A set system (V, \mathcal{F}) is called a laminar family if for any two sets $A, B \in \mathcal{F}$, at least one of the three sets $A \cap B, A \bigvee B$, or $B \backslash A$ is empty.

- Family is laminar if it has no two "properly intersecting" nembers: i.e., intersecting $A \cap B \neq \emptyset$ and not comparable (one is not contained in the other).
- Suppose we have a laminar family \mathcal{F} of subsets of V and an integer $k(A)$ for every set $A \in \mathcal{F}$.
- Then (V, \mathcal{I}) defines a matroid where

$$
\begin{equation*}
\mathcal{I}=\{I \subseteq E:|\mathbf{I} \cap A| \leq k(A) \text { for all } A(\in \mathcal{F}\} \tag{5.25}
\end{equation*}
$$

System of Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{i}: i \in I\right)$ where $\emptyset \subset V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.

System of Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{i}: i \in I\right)$ where $\emptyset \subset V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- Here, the sets $V_{i} \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_{i}$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).

System of Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{i}: i \in I\right)$ where $\emptyset \subset V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- Here, the sets $V_{i} \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_{i}$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of representatives of \mathcal{V} if \exists a bijection $\pi: I \rightarrow I$ such that $v_{i} \in V_{\pi(i)}$.

System of Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{i}: i \in I\right)$ where $\emptyset \subset V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- Here, the sets $V_{i} \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_{i}$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of representatives of \mathcal{V} if \exists a bijection $\pi: I \rightarrow I$ such that $v_{i} \in V_{\pi(i)}$.
- v_{i} is the representative of set (or group) $V_{\pi(i)}$, meaning the $i^{\text {th }}$ representative is meant to represent set $V_{\pi(i)}$.

System of Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{i}: i \in I\right)$ where $\emptyset \subset V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- Here, the sets $V_{i} \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_{i}$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of representatives of \mathcal{V} if \exists a bijection $\pi: I \rightarrow I$ such that $v_{i} \in V_{\pi(i)}$.
- v_{i} is the representative of set (or group) $V_{\pi(i)}$, meaning the $i^{\text {th }}$ representative is meant to represent set $V_{\pi(i)}$.
- Example: Consider the house of representatives, $v_{i}=$ "Jim McDermott, while $i=$ "King County, WA-7".

System of Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{i}: i \in I\right)$ where $\emptyset \subset V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- Here, the sets $V_{i} \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_{i}$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of representatives of \mathcal{V} if \exists a bijection $\pi: I \rightarrow I$ such that $v_{i} \in V_{\pi(i)}$.
- v_{i} is the representative of set (or group) $V_{\pi(i)}$, meaning the $i^{\text {th }}$ representative is meant to represent set $V_{\pi(i)}$.
- Example: Consider the house of representatives, $v_{i}=$ "Jim McDermott, while $i=$ "King County, WA-7".
- In a system of representatives, there is no requirement for the representatives to be distinct. I.e., we could have some $v_{1} \in V_{1} \cap V_{2}$, where v_{1} represents both V_{1} and V_{2}.

System of Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{i}: i \in I\right)$ where $\emptyset \subset V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- Here, the sets $V_{i} \in \mathcal{V}$ are like "groups" and any $v \in V$ with $v \in V_{i}$ is a member of group i. Groups need not be disjoint (e.g., interest groups of individuals).
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of representatives of \mathcal{V} if \exists a bijection $\pi: I \rightarrow I$ such that $v_{i} \in V_{\pi(i)}$.
- v_{i} is the representative of set (or group) $V_{\pi(i)}$, meaning the $i^{\text {th }}$ representative is meant to represent set $V_{\pi(i)}$.
- Example: Consider the house of representatives, $v_{i}=$ "Jim McDermott, while $i=$ "King County, WA-7".
- In a system of representatives, there is no requirement for the representatives to be distinct. I.e., we could have some $v_{1} \in V_{1} \cap V_{2}$, where v_{1} represents both V_{1} and V_{2}.
- We can view this as a bipartite graph.

System of Representatives

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell=6$ groups, with $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{6}\right)$
$=(\{e, f, h\},\{d, e, g\},\{b, c, e, h\},\{a, b, h\},\{a\},\{a\})$.

System of Representatives

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell=6$ groups, with $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{6}\right)$
$=(\{e, f, h\},\{d, e, g\},\{b, c, e, h\},\{a, b, h\},\{a\},\{a\})$.

- A system of representatives would make sure that there is a representative for each color group. For example,

System of Representatives

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell=6$ groups, with $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{6}\right)$

$$
=(\{e, f, h\},\{d, e, g\},\{b, c, e, h\},\{a, b, h\},\{a\},\{a\}) .
$$

- A system of representatives would make sure that there is a representative for each color group. For example,
- The representatives are shown as colors on the left.

System of Representatives

- We can view this as a bipartite graph. The groups of V are marked by color tags on the left, and also via right neighbors in the graph.
- Here, $\ell=6$ groups, with $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{6}\right)$

$$
=(\{e, f, h\},\{d, e, g\},\{b, c, e, h\},\{a, b, h\},\{a\},\{a\}) .
$$

- A system of representatives would make sure that there is a representative for each color group. For example,
- The representatives are shown as colors on the left.
- Here, the set of representatives is not distinct. In fact, due to the red and pink group, a distinct group of representatives is impossible (since there is only one common choice to represent both color groups).

System of Distinct Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{k}: i \in I\right)$ where $V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.

System of Distinct Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{k}: i \in I\right)$ where $V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi: I \leftrightarrow I$ such that $v_{i} \in V_{\pi(i)}$ and $v_{i} \neq v_{j}$ for all $i \neq j$.

System of Distinct Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{k}: i \in I\right)$ where $V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi: I \leftrightarrow I$ such that $v_{i} \in V_{\pi(i)}$ and $v_{i} \neq v_{j}$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Lets re-state (and rename) this as a:

System of Distinct Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{k}: i \in I\right)$ where $V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi: I \leftrightarrow I$ such that $v_{i} \in V_{\pi(i)}$ and $v_{i} \neq v_{j}$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Lets re-state (and rename) this as a:

Definition 5.7.1 (transversal)

Given a set system (V, \mathcal{V}) as defined above, a set $T \subseteq V$ is a transversal of \mathcal{V} if there is a bijection $\pi: T \leftrightarrow I$ such that

$$
\begin{equation*}
x \in V_{\pi(x)} \text { for all } x \in T \tag{5.26}
\end{equation*}
$$

System of Distinct Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{k}: i \in I\right)$ where $V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi: I \leftrightarrow I$ such that $v_{i} \in V_{\pi(i)}$ and $v_{i} \neq v_{j}$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. Lets re-state (and rename) this as a:

Definition 5.7.1 (transversal)

Given a set system (V, \mathcal{V}) as defined above, a set $T \subseteq V$ is a transversal of \mathcal{V} if there is a bijection $\pi: T \leftrightarrow I$ such that

$$
\begin{equation*}
x \in V_{\pi(x)} \text { for all } x \in T \tag{5.26}
\end{equation*}
$$

- Note that due to it being a bijection, all of I and T are "covered" (so this makes things distinct).

Transversals are Subclusive

- A set $X \subseteq V$ is a partial transversal if X is a transversal of some subfamily $\mathcal{V}^{\prime}=\left(V_{i}: i \in I^{\prime}\right)$ where $I^{\prime} \subseteq I$.

Transversals are Subclusive

- A set $X \subseteq V$ is a partial transversal if X is a transversal of some subfamily $\mathcal{V}^{\prime}=\left(V_{i}: i \in I^{\prime}\right)$ where $I^{\prime} \subseteq I$.
- Therefore, for any transversal T, any subset $T^{\prime} \subseteq T$ is a partial transversal.

Transversals are Subclusive

- A set $X \subseteq V$ is a partial transversal if X is a transversal of some subfamily $\mathcal{V}^{\prime}=\left(V_{i}: i \in I^{\prime}\right)$ where $I^{\prime} \subseteq I$.
- Therefore, for any transversal T, any subset $T^{\prime} \subseteq T$ is a partial transversal.
- Thus, transversals are down closed (subclusive).

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{5.27}
\end{equation*}
$$

so $|V(J)|$ is the set cover function (which we know is submodular).

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{5.27}
\end{equation*}
$$

so $|V(J)|$ is the set cover function (which we know is submodular).

- We have

Theorem 5.8.1 (Hall's theorem)

Given a set system (V, \mathcal{V}), the family of subsets $\mathcal{V}=\left(V_{i}: i \in I\right)$ has a transversal $\left(v_{i}: i \in I\right)$ iff for all $J \subseteq I$

$$
\begin{equation*}
|V(J)| \geq|J| \tag{5.28}
\end{equation*}
$$

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{5.27}
\end{equation*}
$$

so $|V(J)|$ is the set cover function (which we know is submodular).

- Hall's theorem $(\forall J,|V(J)| \geq|J|)$ as a bipartite graph.

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{5.27}
\end{equation*}
$$

so $|V(J)|$ is the set cover function (which we know is submodular).

- Hall's theorem $(\forall J,|V(J)| \geq|J|)$ as a bipartite graph.

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{5.27}
\end{equation*}
$$

so $|V(J)|$ is the set cover function (which we know is submodular).

- Moreover, we have

Theorem 5.8.2 (Rado's theorem)

If $M=(V, r)$ is a matroid on V with rank function r, then the family of subsets $\left(V_{i}: i \in I\right)$ of V has a transversal $\left(v_{i}: i \in I\right)$ that is independent in M iff for all $J \subseteq I$

$$
\begin{equation*}
r(V(J)) \geq|J| \tag{5.29}
\end{equation*}
$$

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{5.27}
\end{equation*}
$$

so $|V(J)|$ is the set cover function (which we know is submodular).

- Moreover, we have

Theorem 5.8.2 (Rado's theorem)

If $M=(V, r)$ is a matroid on V with rank function r, then the family of subsets $\left(V_{i}: i \in I\right)$ of V has a transversal $\left(v_{i}: i \in I\right)$ that is independent in M iff for all $J \subseteq I$

$$
\begin{equation*}
r(V(J)) \geq|J| \tag{5.29}
\end{equation*}
$$

- Note, a transversal T independent in M means that $r(T)=|T|$.

More general conditions for existence of transversals

Theorem 5.8.3

If $\mathcal{V}=\left(V_{i}: I \in I\right)$ is a finite family of non-empty subsets of V, and $f: 2^{V} \rightarrow \mathbb{Z}_{+}$is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $\left(v_{i}: i \in I\right)$ such that

$$
\begin{equation*}
f\left(\cup_{i \in J}\left\{v_{i}\right\}\right) \geq|J| \text { for all } J \subseteq I \tag{5.30}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
f(V(J)) \geq|J| \text { for all } J \subseteq I \tag{5.31}
\end{equation*}
$$

More general conditions for existence of transversals

Theorem 5.8.3

If $\mathcal{V}=\left(V_{i}: I \in I\right)$ is a finite family of non-empty subsets of V, and $f: 2^{V} \rightarrow \mathbb{Z}_{+}$is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $\left(v_{i}: i \in I\right)$ such that

$$
\begin{equation*}
f\left(\cup_{i \in J}\left\{v_{i}\right\}\right) \geq|J| \text { for all } J \subseteq I \tag{5.30}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
f(V(J)) \geq|J| \text { for all } J \subseteq I \tag{5.31}
\end{equation*}
$$

- Given Theorem 5.8.3, we immediately get Theorem 5.8.1 by taking $f(S)=|S|$ for $S \subseteq V$. In which case, Eq. 5.30 requires the system of representatives to be distinct.

More general conditions for existence of transversals

Theorem 5.8.3

If $\mathcal{V}=\left(V_{i}: I \in I\right)$ is a finite family of non-empty subsets of V, and $f: 2^{V} \rightarrow \mathbb{Z}_{+}$is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $\left(v_{i}: i \in I\right)$ such that

$$
\begin{equation*}
f\left(\cup_{i \in J}\left\{v_{i}\right\}\right) \geq|J| \text { for all } J \subseteq I \tag{5.30}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
f(V(J)) \geq|J| \text { for all } J \subseteq I \tag{5.31}
\end{equation*}
$$

- Given Theorem 5.8.3, we immediately get Theorem 5.8.1 by taking $f(S)=|S|$ for $S \subseteq V$.
- We get Theorem 5.8 .2 by taking $f(S)=r(S)$ for $S \subseteq V$, the rank function of the matroid. where, Eq. 5.30 insists the system of representatives is independent in M.

More general conditions for existence of transversals

first part proof of Theorem 5.8.3.

- Suppose Eq. 5.30 is true. Then since f is monotone, and since $V(J) \supseteq \cup_{i \in J}\left\{v_{i}\right\}$ when $\left(v_{i}: i \in I\right)$ is a system of representatives, then Eq. 5.31 immediately follows.

More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. $5.31(f(V(J)) \geq|J|, \forall J \subseteq I)$ is true for \mathcal{V}, and there exists an i such that $\left|V_{i}\right| \geq 2$ (w.l.o.g., say $i=1$). Then there exists $\bar{v} \in V_{1}$ such that the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 5.31.

Proof.

- When Eq. 5.31 and the above holds, this means that for any subsets $J_{1}, J_{2} \subseteq I \backslash\{1\}$, we have that

$$
\begin{align*}
& f\left(V_{1} \cup V\left(J_{1}\right)\right) \geq\left|J_{1}\right|+1 \tag{5.32}\\
& f\left(V_{1} \cup V\left(J_{2}\right)\right) \geq\left|J_{2}\right|+1 \tag{5.33}
\end{align*}
$$

More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. $5.31(f(V(J)) \geq|J|, \forall J \subseteq I)$ is true for \mathcal{V}, and there exists an i such that $\left|V_{i}\right| \geq 2$ (w.l.o.g., say $i=1$). Then there exists $\bar{v} \in V_{1}$ such that the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 5.31.

Proof.

- Suppose, to the contrary, the consequent is false. Then we may take $\bar{v}_{1}, \bar{v}_{2} \in V_{1}$ as two distinct elements in $V_{1} \ldots$

More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. $5.31(f(V(J)) \geq|J|, \forall J \subseteq I)$ is true for \mathcal{V}, and there exists an i such that $\left|V_{i}\right| \geq 2$ (w.l.o.g., say $i=1$). Then there exists $\bar{v} \in V_{1}$ such that the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 5.31.

Proof.

- Suppose, to the contrary, the consequent is false. Then we may take $\bar{v}_{1}, \bar{v}_{2} \in V_{1}$ as two distinct elements in $V_{1} \ldots$
- and there must exist subsets J_{1}, J_{2} of $I \backslash\{1\}$ such that

$$
\begin{align*}
& f\left(\left(V_{1} \backslash\left\{\bar{v}_{1}\right\}\right) \cup V\left(J_{1}\right)\right)<\left|J_{1}\right|+1, \tag{5.34}\\
& f\left(\left(V_{1} \backslash\left\{\bar{v}_{2}\right\}\right) \cup V\left(J_{2}\right)\right)<\left|J_{2}\right|+1, \tag{5.35}
\end{align*}
$$

(note that either one or both of J_{1}, J_{2} could be empty).

More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. $5.31(f(V(J)) \geq|J|, \forall J \subseteq I)$ is true for \mathcal{V}, and there exists an i such that $\left|V_{i}\right| \geq 2$ (w.l.o.g., say $i=1$). Then there exists $\bar{v} \in V_{1}$ such that the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 5.31.

Proof.

- Taking $X=\left(V_{1} \backslash\left\{\bar{v}_{1}\right\}\right) \cup V\left(J_{1}\right)$ and $Y=\left(V_{1} \backslash\left\{\bar{v}_{2}\right\}\right) \cup V\left(J_{2}\right)$, we have $f(X) \leq\left|J_{1}\right|, f(Y) \leq\left|J_{2}\right|$, and that:

$$
\begin{align*}
& X \cup Y=V_{1} \cup V\left(J_{1} \cup J_{2}\right), \tag{5.36}\\
& X \cap Y \supseteq V\left(J_{1} \cap J_{2}\right), \tag{5.37}
\end{align*}
$$

and

$$
\left|J_{1}\right|+\left|J_{2}\right| \geq f(X)+f(Y) \geq f(X \cup Y)+f(X \cap Y) \text {. }
$$

More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. $5.31(f(V(J)) \geq|J|, \forall J \subseteq I)$ is true for \mathcal{V}, and there exists an i such that $\left|V_{i}\right| \geq 2$ (w.l.o.g., say $i=1$). Then there exists $\bar{v} \in V_{1}$ such that the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 5.31.

Proof.

- since f submodular monotone non-decreasing, \& Eqs 5.32-5.35,

$$
\begin{equation*}
\left|J_{1}\right|+\left|J_{2}\right| \geq f\left(V_{1} \cup V\left(J_{1} \cup J_{2}\right)\right)+f\left(V\left(J_{1} \cap J_{2}\right)\right) \tag{5.39}
\end{equation*}
$$

More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. $5.31(f(V(J)) \geq|J|, \forall J \subseteq I)$ is true for \mathcal{V}, and there exists an i such that $\left|V_{i}\right| \geq 2$ (w.l.o.g., say $i=1$). Then there exists $\bar{v} \in V_{1}$ such that the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 5.31.

Proof.

- since f submodular monotone non-decreasing, \& Eqs 5.32-5.35,

$$
\begin{equation*}
\left|J_{1}\right|+\left|J_{2}\right| \geq f\left(V_{1} \cup V\left(J_{1} \cup J_{2}\right)\right)+f\left(V\left(J_{1} \cap J_{2}\right)\right) \tag{5.39}
\end{equation*}
$$

- Since \mathcal{V} satisfies Eq. 5.31, $1 \notin J_{1} \cup J_{2}$, \& Eqs 5.32-5.33, this gives

$$
\begin{equation*}
\left|J_{1}\right|+\left|J_{2}\right| \geq\left|J_{1} \cup J_{2}\right|+1+\left|J_{1} \cap J_{2}\right| \tag{5.40}
\end{equation*}
$$

which is a contradiction since cardinality is modular.

More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

- Conversely, suppose Eq. 5.31 is true.

More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

- Conversely, suppose Eq. 5.31 is true.
- If each V_{i} is a singleton set, then the result follows immediately.

More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

- Conversely, suppose Eq. 5.31 is true.
- If each V_{i} is a singleton set, then the result follows immediately.
- W.I.o.g., let $\left|V_{1}\right| \geq 2$, then by Lemma 5.8.4, the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 5.31 for the right \bar{v}.

More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

- Conversely, suppose Eq. 5.31 is true.
- If each V_{i} is a singleton set, then the result follows immediately.
- W.I.o.g., let $\left|V_{1}\right| \geq 2$, then by Lemma 5.8.4, the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 5.31 for the right \bar{v}.
- We can continue to reduce the family, deleting elements from V_{i} for some i while $\left|V_{i}\right| \geq 2$, until we arrive at a family of singleton sets.

More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

- Conversely, suppose Eq. 5.31 is true.
- If each V_{i} is a singleton set, then the result follows immediately.
- W.I.o.g., let $\left|V_{1}\right| \geq 2$, then by Lemma 5.8.4, the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 5.31 for the right \bar{v}.
- We can continue to reduce the family, deleting elements from V_{i} for some i while $\left|V_{i}\right| \geq 2$, until we arrive at a family of singleton sets.
- This family will be the required system of representatives.

More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

- Conversely, suppose Eq. 5.31 is true.
- If each V_{i} is a singleton set, then the result follows immediately.
- W.I.o.g., let $\left|V_{1}\right| \geq 2$, then by Lemma 5.8.4, the family of subsets $\left(V_{1} \backslash\{\bar{v}\}, V_{2}, \ldots, V_{|I|}\right)$ also satisfies Eq 5.31 for the right \bar{v}.
- We can continue to reduce the family, deleting elements from V_{i} for some i while $\left|V_{i}\right| \geq 2$, until we arrive at a family of singleton sets.
- This family will be the required system of representatives.

This theorem can be used to produce a variety of other results quite easily, and shows how submodularity is the key ingredient in its truth.

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 5.9.1

If \mathcal{V} is a family of finite subsets of a ground set V, then the collection of partial transversals of \mathcal{V} is the set of independent sets of a matroid $M=(V, \mathcal{V})$ on V.

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 5.9.1

If \mathcal{V} is a family of finite subsets of a ground set V, then the collection of partial transversals of \mathcal{V} is the set of independent sets of a matroid $M=(V, \mathcal{V})$ on V.

- This means that the transversals of \mathcal{V} are the bases of matroid M.

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 5.9.1

If \mathcal{V} is a family of finite subsets of a ground set V, then the collection of partial transversals of \mathcal{V} is the set of independent sets of a matroid $M=(V, \mathcal{V})$ on V.

- This means that the transversals of \mathcal{V} are the bases of matroid M.
- Therefore, all maximal partial transversals of \mathcal{V} have the same cardinality!

Transversals and Matchings

- Transversals correspond exactly to matchings in bipartite graphs (as we've already strongly hinted at).

Transversals and Matchings

- Transversals correspond exactly to matchings in bipartite graphs (as we've already strongly hinted at).
- Given a set system (V, \mathcal{V}), with $\mathcal{V}=\left(V_{i}: i \in I\right)$, we can define a bipartite graph $G=(V, I, E)$ associated with \mathcal{V} that has edge set $\left\{(v, i): v \in V, i \in I, v \in V_{i}\right\}$.

Transversals and Matchings

- Transversals correspond exactly to matchings in bipartite graphs (as we've already strongly hinted at).
- Given a set system (V, \mathcal{V}), with $\mathcal{V}=\left(V_{i}: i \in I\right)$, we can define a bipartite graph $G=(V, I, E)$ associated with \mathcal{V} that has edge set $\left\{(v, i): v \in V, i \in I, v \in V_{i}\right\}$.
- A matching in this graph is a set of edges no two of which that have a common endpoint.

Transversals and Matchings

- Transversals correspond exactly to matchings in bipartite graphs (as we've already strongly hinted at).
- Given a set system (V, \mathcal{V}), with $\mathcal{V}=\left(V_{i}: i \in I\right)$, we can define a bipartite graph $G=(V, I, E)$ associated with \mathcal{V} that has edge set $\left\{(v, i): v \in V, i \in I, v \in V_{i}\right\}$.
- A matching in this graph is a set of edges no two of which that have a common endpoint.
- In fact, we easily have

Lemma 5.9.2

A subset $T \subseteq V$ is a partial transversal of \mathcal{V} iff there is a matching in (V, I, E) in which every edge has one endpoint in T.

We say that T is matched into I.

Morphing Partition Matroid Rank

- Recall the partition matroid rank function. Note, $k_{i}=\left|I_{i}\right|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $\left|V_{i}\right| \geq k_{i}$ (also, recall, $V(J)=\cup_{j \in J} V_{j}$).

Morphing Partition Matroid Rank

- Recall the partition matroid rank function. Note, $k_{i}=\left|I_{i}\right|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $\left|V_{i}\right| \geq k_{i}$ (also, recall, $V(J)=\cup_{j \in J} V_{j}$).
- We start with partition matroid rank function in the subsequent equations.

$$
\begin{equation*}
r(A)=\sum_{i=1}^{\ell} \min \left(\left|A \cap V_{i}\right|, k_{i}\right) \tag{5.41}
\end{equation*}
$$

Morphing Partition Matroid Rank

- Recall the partition matroid rank function. Note, $k_{i}=\left|I_{i}\right|$ in the bipartite graph representation, and since a matroid, w.l.o.g.,

$$
\left.\left|V_{i}\right| \geq k_{i} \text { (also, recall, } V(J)=\cup_{j \in J} V_{j}\right)
$$

- We start with partition matroid rank function in the subsequent equations.

$$
\begin{align*}
r(A) & =\sum_{i=1}^{\ell} \min \left(\left|A \cap V_{i}\right|, k_{i}\right) \tag{5.41}\\
& =\sum_{i=1}^{\ell} \min \left(\left|A \cap V\left(I_{i}\right)\right|,\left|I_{i}\right|\right) \tag{5.42}
\end{align*}
$$

Morphing Partition Matroid Rank

- Recall the partition matroid rank function. Note, $k_{i}=\left|I_{i}\right|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $\left|V_{i}\right| \geq k_{i}$ (also, recall, $V(J)=\cup_{j \in J} V_{j}$).
- We start with partition matroid rank function in the subsequent equations.

$$
\begin{align*}
r(A) & =\sum_{i=1}^{\ell} \min \left(\left|A \cap V_{i}\right|, k_{i}\right) \tag{5.41}\\
& =\sum_{i=1}^{\ell} \min \left(\left|A \cap V\left(I_{i}\right)\right|,\left|I_{i}\right|\right) \tag{5.42}\\
& =\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left\{\begin{array}{cc}
\left|A \cap V\left(I_{i}\right)\right| & \text { if } J_{i} \neq \emptyset \\
0 & \text { if } J_{i}=\emptyset
\end{array}\right\}+\left|I_{i} \backslash J_{i}\right|\right) \tag{5.43}
\end{align*}
$$

Morphing Partition Matroid Rank

- Recall the partition matroid rank function. Note, $k_{i}=\left|I_{i}\right|$ in the bipartite graph representation, and since a matroid, w.l.o.g., $\left|V_{i}\right| \geq k_{i}$ (also, recall, $V(J)=\cup_{j \in J} V_{j}$).
- We start with partition matroid rank function in the subsequent equations.

$$
\begin{align*}
r(A) & =\sum_{i=1}^{\ell} \min \left(\left|A \cap V_{i}\right|, k_{i}\right) \tag{5.41}\\
& =\sum_{i=1}^{\ell} \min \left(\left|A \cap V\left(I_{i}\right)\right|,\left|I_{i}\right|\right) \tag{5.42}\\
& =\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left\{\begin{array}{cc}
\left|A \cap V\left(I_{i}\right)\right| & \text { if } J_{i} \neq \emptyset \\
0 & \text { if } J_{i}=\emptyset
\end{array}\right\}+\left|I_{i} \backslash J_{i}\right|\right) \tag{5.43}\\
& =\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left|V\left(J_{i}\right) \cap A\right|+\left|I_{i} \backslash J_{i}\right|\right) \tag{5.44}
\end{align*}
$$

Morphing Partition Matroid Rank

- Continuing,

$$
\begin{equation*}
r(A)=\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left|V\left(J_{i}\right) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J_{i}\right|+\left|I_{i}\right|\right) \tag{5.45}
\end{equation*}
$$

Morphing Partition Matroid Rank

- Continuing,

$$
\begin{align*}
r(A) & =\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left|V\left(J_{i}\right) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J_{i}\right|+\left|I_{i}\right|\right) \tag{5.45}\\
& =\min _{J \subseteq I}\left(\sum_{i=1}^{\ell}\left|V(J) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J\right|+\left|I_{i}\right|\right)
\end{align*}
$$

(5.46)

Morphing Partition Matroid Rank

- Continuing,

$$
\begin{align*}
r(A) & =\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left|V\left(J_{i}\right) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J_{i}\right|+\left|I_{i}\right|\right) \tag{5.45}\\
& =\min _{J \subseteq I}\left(\sum_{i=1}^{\ell}\left|V(J) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J\right|+\left|I_{i}\right|\right) \tag{5.46}\\
& =\min _{J \subseteq I}(|V(J) \cap V(I) \cap A|-|J|+|I|) \tag{5.47}
\end{align*}
$$

Morphing Partition Matroid Rank

- Continuing,

$$
\begin{align*}
r(A) & =\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left|V\left(J_{i}\right) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J_{i}\right|+\left|I_{i}\right|\right) \tag{5.45}\\
& =\min _{J \subseteq I}\left(\sum_{i=1}^{\ell}\left|V(J) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J\right|+\left|I_{i}\right|\right) \tag{5.46}\\
& =\min _{J \subseteq I}(|V(J) \cap V(I) \cap A|-|J|+|I|) \tag{5.47}\\
& =\min _{J \subseteq I}(|V(J) \cap A|-|J|+|I|) \tag{5.48}
\end{align*}
$$

... Morphing Partition Matroid Rank

- Continuing,

$$
\begin{align*}
r(A) & =\sum_{i=1}^{\ell} \min _{J_{i} \subseteq I_{i}}\left(\left|V\left(J_{i}\right) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J_{i}\right|+\left|I_{i}\right|\right) \tag{5.45}\\
& =\min _{J \subseteq I}\left(\sum_{i=1}^{\ell}\left|V(J) \cap V\left(I_{i}\right) \cap A\right|-\left|I_{i} \cap J\right|+\left|I_{i}\right|\right) \tag{5.46}\\
& =\min _{J \subseteq I}(|V(J) \cap V(I) \cap A|-|J|+|I|) \tag{5.47}\\
& =\min _{J \subseteq I}(|V(J) \cap A|-|J|+|I|) \tag{5.48}
\end{align*}
$$

- In fact, this bottom (more general) expression is the expression for the rank of a transversal matroid.

Partial Transversals Are Matroids

In fact, we have

Theorem 5.9.3

Let (V, \mathcal{V}) where $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{\ell}\right)$ be a subset system. Let $I=\{1, \ldots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V}. Then (V, \mathcal{I}) is a matroid.

Proof.

Partial Transversals Are Matroids

In fact, we have

Theorem 5.9.3

Let (V, \mathcal{V}) where $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{\ell}\right)$ be a subset system. Let
$I=\{1, \ldots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V}. Then (V, \mathcal{I}) is a matroid.

Proof.

- We note that $\emptyset \in \mathcal{I}$ since the empty set is a transversal of the empty subfamily of \mathcal{V}, thus (I1') holds.

Partial Transversals Are Matroids

In fact, we have

Theorem 5.9.3

Let (V, \mathcal{V}) where $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{\ell}\right)$ be a subset system. Let
$I=\{1, \ldots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V}. Then (V, \mathcal{I}) is a matroid.

Proof.

- We note that $\emptyset \in \mathcal{I}$ since the empty set is a transversal of the empty subfamily of \mathcal{V}, thus (I1') holds.
- We already saw that if T is a partial transversal of \mathcal{V}, and if $T^{\prime} \subseteq T$, then T^{\prime} is also a partial transversal. So (I2') holds.

Partial Transversals Are Matroids

In fact, we have

Theorem 5.9.3

Let (V, \mathcal{V}) where $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{\ell}\right)$ be a subset system. Let
$I=\{1, \ldots, \ell\}$. Let \mathcal{I} be the set of partial transversals of \mathcal{V}. Then (V, \mathcal{I}) is a matroid.

Proof.

- We note that $\emptyset \in \mathcal{I}$ since the empty set is a transversal of the empty subfamily of \mathcal{V}, thus (I1') holds.
- We already saw that if T is a partial transversal of \mathcal{V}, and if $T^{\prime} \subseteq T$, then T^{\prime} is also a partial transversal. So (I2') holds.
- Suppose that T_{1} and T_{2} are partial transversals of \mathcal{V} such that $\left|T_{1}\right|<\left|T_{2}\right|$. Exercise: show that (I3') holds.
- Transversal matroid has rank

$$
\begin{equation*}
r(A)=\min _{J \subseteq I}(|V(J) \cap A|-|J|+|I|) \tag{5.49}
\end{equation*}
$$

Transversal Matroid Rank

- Transversal matroid has rank

$$
\begin{equation*}
r(A)=\min _{J \subseteq I}(|V(J) \cap A|-|J|+|I|) \tag{5.49}
\end{equation*}
$$

- Therefore, this function is submodular.
- Transversal matroid has rank

$$
\begin{equation*}
r(A)=\min _{J \subseteq I}(|V(J) \cap A|-|J|+|I|) \tag{5.49}
\end{equation*}
$$

- Therefore, this function is submodular.
- Note that it is a minimum over a set of modular functions. Is this true in general? Exercise:

Matroid loops

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if $r(A)<|A|$ and for any $a \in A, r(A \backslash\{a\})=|A|-1)$.

Matroid loops

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if $r(A)<|A|$ and for any $a \in A, r(A \backslash\{a\})=|A|-1)$.
- There is no reason in a matroid such an A could not consist of a single element.

Matroid loops

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if $r(A)<|A|$ and for any $a \in A, r(A \backslash\{a\})=|A|-1)$.
- There is no reason in a matroid such an A could not consist of a single element.
- Such an $\{a\}$ is called a loop.

Matroid loops

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if $r(A)<|A|$ and for any $a \in A, r(A \backslash\{a\})=|A|-1)$.
- There is no reason in a matroid such an A could not consist of a single element.
- Such an $\{a\}$ is called a loop.
- In a matric (i.e., linear) matroid, the only such loop is the value $\mathbf{0}$, as all non-zero vectors have rank 1 . The $\mathbf{0}$ can appear >1 time with different indices, as can a self loop in a graph appear on different nodes.

Matroid loops

- A circuit in a matroids is well defined, a subset $A \subseteq E$ is circuit if it is an inclusionwise minimally dependent set (i.e., if $r(A)<|A|$ and for any $a \in A, r(A \backslash\{a\})=|A|-1)$.
- There is no reason in a matroid such an A could not consist of a single element.
- Such an $\{a\}$ is called a loop.
- In a matric (i.e., linear) matroid, the only such loop is the value $\mathbf{0}$, as all non-zero vectors have rank 1 . The $\mathbf{0}$ can appear >1 time with different indices, as can a self loop in a graph appear on different nodes.
- Note, we also say that two elements s, t are said to be parallel if $\{s, t\}$ is a circuit.

Representable

Definition 5.10.1 (Matroid isomorphism)

Two matroids M_{1} and M_{2} respectively on ground sets V_{1} and V_{2} are isomorphic if there is a bijection $\pi: V_{1} \rightarrow V_{2}$ which preserves independence (equivalently, rank, circuits, and so on).

Representable

Definition 5.10.1 (Matroid isomorphism)

Two matroids M_{1} and M_{2} respectively on ground sets V_{1} and V_{2} are isomorphic if there is a bijection $\pi: V_{1} \rightarrow V_{2}$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R}, \mathbb{Q}, or some finite field \mathbb{F}, such as $\mathrm{GF}(p)$ where p is prime (such as GF(2)).

Representable

Definition 5.10.1 (Matroid isomorphism)

Two matroids M_{1} and M_{2} respectively on ground sets V_{1} and V_{2} are isomorphic if there is a bijection $\pi: V_{1} \rightarrow V_{2}$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R}, \mathbb{Q}, or some finite field \mathbb{F}, such as $\mathrm{GF}(p)$ where p is prime (such as GF(2)).
- We can more generally define matroids on a field.

Representable

Definition 5.10.1 (Matroid isomorphism)

Two matroids M_{1} and M_{2} respectively on ground sets V_{1} and V_{2} are isomorphic if there is a bijection $\pi: V_{1} \rightarrow V_{2}$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R}, \mathbb{Q}, or some finite field \mathbb{F}, such as $\mathrm{GF}(p)$ where p is prime (such as GF(2)).
- We can more generally define matroids on a field.

Definition 5.10.2 (linear matroids on a field)

Let \mathbf{X} be an $n \times m$ matrix and $E=\{1, \ldots, m\}$, where $\mathbf{X}_{i j} \in \mathbb{F}$ for some field, and let \mathcal{I} be the set of subsets of E such that the columns of \mathbf{X} are linearly independent over \mathbb{F}.

Representable

Definition 5.10.1 (Matroid isomorphism)

Two matroids M_{1} and M_{2} respectively on ground sets V_{1} and V_{2} are isomorphic if there is a bijection $\pi: V_{1} \rightarrow V_{2}$ which preserves independence (equivalently, rank, circuits, and so on).

- Let \mathbb{F} be any field (such as \mathbb{R}, \mathbb{Q}, or some finite field \mathbb{F}, such as $\mathrm{GF}(p)$ where p is prime (such as GF(2)).
- We can more generally define matroids on a field.

Definition 5.10 .3 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called representable over \mathbb{F}

Representability of Transversal Matroids

- Piff and Welsh in 1970, and Adkin in 1972 proved an important theorem about representability of transversal matroids.

Representability of Transversal Matroids

- Piff and Welsh in 1970, and Adkin in 1972 proved an important theorem about representability of transversal matroids.
- In particular:

Theorem 5.10.4

Transversal matroids are representable over all finite fields of sufficiently large cardinality, and are representable over any infinite field.

Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 5.10.5

Let $V=\{1,2,3,4,5,6\}$ be a ground set and let $M=(V, \mathcal{I})$ be a set system where \mathcal{I} is all subsets of V of cardinality ≤ 2 except for the pairs $\{1,2\},\{3,4\},\{5,6\}$.

Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 5.10.5

Let $V=\{1,2,3,4,5,6\}$ be a ground set and let $M=(V, \mathcal{I})$ be a set system where \mathcal{I} is all subsets of V of cardinality ≤ 2 except for the pairs $\{1,2\},\{3,4\},\{5,6\}$.

- It can be shown that this is a matroid and is representable.

Converse: Representability of Transversal Matroids

The converse is not true, however.
Example 5.10.5
Let $V=\{1,2,3,4,5,6\}$ be a ground set and let $M=(V, \mathcal{I})$ be a set system where \mathcal{I} is all subsets of V of cardinality ≤ 2 except for the pairs $\{1,2\},\{3,4\},\{5,6\}$.

- It can be shown that this is a matroid and is representable.
- However, this matroid is not isomorphic to any transversal matroid.

