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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

our room (Mueller Hall Room 154) is changed!

Please do use our discussion board (https:
//canvas.uw.edu/courses/895956/discussion_topics) for all
questions, comments, so that all will benefit from them being
answered.

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014 F3/58 (pg.3/223)



Logistics Review

Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids

L6:

L7:

L8:

L9:

L10:

L11:

L12:

L13:

L14:

L15:

L16:

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014 F4/58 (pg.4/223)



Logistics Review

Many (Equivalent) Definitions of Submodularity

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), ∀A,B ⊆ V (5.6)

f(j|S) ≥ f(j|T ), ∀S ⊆ T ⊆ V, with j ∈ V \ T (5.7)

f(C|S) ≥ f(C|T ), ∀S ⊆ T ⊆ V, with C ⊆ V \ T (5.8)

f(j|S) ≥ f(j|S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k})
(5.9)

f(A ∪B|A ∩B) ≤ f(A|A ∩B) + f(B|A ∩B), ∀A,B ⊆ V (5.10)

f(T ) ≤ f(S) +
∑

j∈T\S

f(j|S)−
∑

j∈S\T

f(j|S ∪ T − {j}), ∀S, T ⊆ V

(5.11)

f(T ) ≤ f(S) +
∑

j∈T\S

f(j|S), ∀S ⊆ T ⊆ V (5.12)

f(T ) ≤ f(S)−
∑

j∈S\T

f(j|S \ {j}) +
∑

j∈T\S

f(j|S ∩ T ) ∀S, T ⊆ V

(5.13)

f(T ) ≤ f(S)−
∑

j∈S\T

f(j|S \ {j}), ∀T ⊆ S ⊆ V (5.14)
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Logistics Review

Review

We saw: column space of a matrix, dimensionality of span of subset
of columns as rank function.

Incidence matrix of (arbitrarily oriented version of) graph
G = (V,E), rank of matrix columns F corresponded to spanning
tree of edge-induced graph G′ = (V ′, F ) where v′ are vertices
incident to edges in F .

We saw several different “greedy” algorithms that proced optimal
spanning trees (Bor̊uvka’s, Jarńık/Prim/Dijkstra’s, and Kruskal’s).

We wish to more formally connect the above, and generalize further.
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Logistics Review

From Matrix Rank → Matroid

So V is set of column vector indices of a matrix.
Let I be a set of all subsets of V such that for any I ∈ I, the vectors
indexed by I are linearly independent.
Given a set B ∈ I of linearly independent vectors, then any subset
A ⊆ B is also linearly independent. Hence, I is down-closed or
“subclusive”, under subsets. In other words,

A ⊆ B and B ∈ I ⇒ A ∈ I (5.32)

maxInd: Inclusionwise maximal independent subsets (or bases) of any
set B ⊆ V .

maxInd(B) ! {A ⊆ B : A ∈ I and ∀v ∈ B \A,A ∪ {v} /∈ I} (5.33)

Given any set B ⊂ V of vectors, all maximal (by set inclusion) subsets
of linearly independent vectors are the same size. That is, for all
B ⊆ V ,

∀A1, A2 ∈ maxInd(B), |A1| = |A2| (5.34)
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Logistics Review

From Matrix Rank → Matroid

Thus, for all I ∈ I, the matrix rank function has the property

r(I) = |I| (5.32)

and for any B /∈ I,

r(B) = max {|A| : A ⊆ B and A ∈ I} ≤ |B| (5.33)
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Logistics Review

Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J ∈ I, then J is said to be an independent set.

Definition 5.2.4 (Matroid)

A set system (E, I) is a Matroid if

(I1) ∅ ∈ I
(I2) ∀I ∈ I, J ⊂ I ⇒ J ∈ I
(I3) ∀I, J ∈ I, with |I| = |J |+ 1, then there exists x ∈ I \ J such that

J ∪ {x} ∈ I.
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Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps Transversals Transversal Matroid Matroid and representation

On Matroids

Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.

Takeo Nakasawa, 1935, also early work.
Forgotten for 20 years until mid 1950s.
Matroids are powerful and flexible combinatorial objects.
The rank function of a matroid is already a very powerful
submodular function (perhaps all we need for many problems).
Understanding matroids crucial for understanding submodularity.
Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful
constraint set, and fast algorithms for submodular optimization
subject to one (or more) matroid independence constraints exist.
Crapo & Rota preferred the term “combinatorial geometry”, or more
specifically a “pregeometry” and said that pregeometries are “often
described by the ineffably cacaphonic [sic] term ’matroid’, which we
prefer to avoid in favor of the term ’pregeometry’.”
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Matroid

Slight modification (non unit increment) that is equivalent.

Definition 5.3.1 (Matroid-II)

A set system (E, I) is a Matroid if

(I1’) ∅ ∈ I
(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (or “down-closed”)

(I3’) ∀I, J ∈ I, with |I| > |J |, then there exists x ∈ I \ J such that
J ∪ {x} ∈ I

Note (I1)=(I1’), (I2)=(I2’), and we get (I3)≡(I3’) using induction.
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Matroids, independent sets, and bases

Independent sets: Given a matroid M = (E, I), a subset A ⊆ E is
called independent if A ∈ I and otherwise A is called dependent.

A base of U ⊆ E: For U ⊆ E, a subset B ⊆ U is called a base of U
if B is inclusionwise maximally independent subset of U . That is,
B ∈ I and there is no Z ∈ I with B ⊂ Z ⊆ U .

A base of a matroid: If U = E, then a “base of E” is just called a
base of the matroid M (this corresponds to a basis in a linear space).
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Matroids - important property

Proposition 5.3.2

In a matroid M = (E, I), for any U ⊆ E(M), any two bases of U have
the same size.

In matrix terms, given a set of vectors U , all sets of independent
vectors that span the space spanned by U have the same size.
In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V, I) is a Matroid if

(I1’) ∅ ∈ I (emptyset containing)

(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3’) ∀X ⊆ V , and I1, I2 ∈ maxInd(X), we have |I1| = |I2| (all maximally
independent subsets of X have the same size).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014 F13/58 (pg.25/223)



Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps Transversals Transversal Matroid Matroid and representation

Matroids - important property

Proposition 5.3.2

In a matroid M = (E, I), for any U ⊆ E(M), any two bases of U have
the same size.

In matrix terms, given a set of vectors U , all sets of independent
vectors that span the space spanned by U have the same size.

In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V, I) is a Matroid if

(I1’) ∅ ∈ I (emptyset containing)

(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3’) ∀X ⊆ V , and I1, I2 ∈ maxInd(X), we have |I1| = |I2| (all maximally
independent subsets of X have the same size).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014 F13/58 (pg.26/223)



Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps Transversals Transversal Matroid Matroid and representation

Matroids - important property

Proposition 5.3.2

In a matroid M = (E, I), for any U ⊆ E(M), any two bases of U have
the same size.

In matrix terms, given a set of vectors U , all sets of independent
vectors that span the space spanned by U have the same size.
In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V, I) is a Matroid if

(I1’) ∅ ∈ I (emptyset containing)

(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3’) ∀X ⊆ V , and I1, I2 ∈ maxInd(X), we have |I1| = |I2| (all maximally
independent subsets of X have the same size).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014 F13/58 (pg.27/223)



Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps Transversals Transversal Matroid Matroid and representation

Matroids - important property

Proposition 5.3.2

In a matroid M = (E, I), for any U ⊆ E(M), any two bases of U have
the same size.

In matrix terms, given a set of vectors U , all sets of independent
vectors that span the space spanned by U have the same size.
In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V, I) is a Matroid if

(I1’) ∅ ∈ I (emptyset containing)

(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3’) ∀X ⊆ V , and I1, I2 ∈ maxInd(X), we have |I1| = |I2| (all maximally
independent subsets of X have the same size).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014 F13/58 (pg.28/223)



Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps Transversals Transversal Matroid Matroid and representation

Matroids - important property

Proposition 5.3.2

In a matroid M = (E, I), for any U ⊆ E(M), any two bases of U have
the same size.

In matrix terms, given a set of vectors U , all sets of independent
vectors that span the space spanned by U have the same size.
In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V, I) is a Matroid if

(I1’) ∅ ∈ I (emptyset containing)

(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3’) ∀X ⊆ V , and I1, I2 ∈ maxInd(X), we have |I1| = |I2| (all maximally
independent subsets of X have the same size).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014 F13/58 (pg.29/223)



Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps Transversals Transversal Matroid Matroid and representation

Matroids - important property

Proposition 5.3.2

In a matroid M = (E, I), for any U ⊆ E(M), any two bases of U have
the same size.

In matrix terms, given a set of vectors U , all sets of independent
vectors that span the space spanned by U have the same size.
In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V, I) is a Matroid if

(I1’) ∅ ∈ I (emptyset containing)

(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3’) ∀X ⊆ V , and I1, I2 ∈ maxInd(X), we have |I1| = |I2| (all maximally
independent subsets of X have the same size).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014 F13/58 (pg.30/223)



Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps Transversals Transversal Matroid Matroid and representation

Matroids - important property

Proposition 5.3.2

In a matroid M = (E, I), for any U ⊆ E(M), any two bases of U have
the same size.

In matrix terms, given a set of vectors U , all sets of independent
vectors that span the space spanned by U have the same size.
In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V, I) is a Matroid if

(I1’) ∅ ∈ I (emptyset containing)

(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3’) ∀X ⊆ V , and I1, I2 ∈ maxInd(X), we have |I1| = |I2| (all maximally
independent subsets of X have the same size).
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Matroids - rank

Recall, in any matroid M = (E, I), ∀U ⊆ E(M), any two bases of
U have the same size.

The common size of all the bases of U is called the rank of U ,
denoted rM (U) or just r(U) when the matroid in equation is
unambiguous.
r(E) = r(E,I) is the rank of the matroid, and is the common size of
all the bases of the matroid.
We can a bit more formally define the rank function this way.

Definition 5.3.4 (matroid rank function)

The rank of a matroid is a function r : 2E → Z+ defined by

r(A) = max {|X| : X ⊆ A,X ∈ I} = max
X∈I

|A ∩X| (5.1)

From the above, we immediately see that r(A) ≤ |A|.
Moreover, if r(A) = |A|, then A ∈ I, meaning A is independent (in
this case, A is a self base).
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Matroids, other definitions using matroid rank r : 2V → Z+

Definition 5.3.5 (closed/flat/subspace)

A subset A ⊆ E is closed (equivalently, a flat or a subspace) of matroid
M if for all x ∈ E \A, r(A ∪ {x}) = r(A) + 1.

Definition 5.3.6 (closure)

Given A ⊆ E, the closure (or span) of A, is defined by
span(A) = {b ∈ E : r(A ∪ {b}) = r(A)}.

Therefore, a closed set A has span(A) = A.

Definition 5.3.7 (circuit)

A subset A ⊆ E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a ∈ A,
r(A \ {a}) = |A|− 1).
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 5.3.8 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then
the following are equivalent.

1 B is the collection of bases of a matroid;

2 if B,B′ ∈ B, and x ∈ B′ \B, then B′ − x+ y ∈ B for some
y ∈ B \B′.

3 If B,B′ ∈ B, and x ∈ B′ \B, then B − y + x ∈ B for some
y ∈ B \B′.

Properties 2 and 3 are called “exchange properties.”

Proof here is omitted but think about this for a moment in terms of
linear spaces and matrices, and (alternatively) spanning trees.
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is
not surprising that circuits can also characterize a matroid.

Theorem 5.3.9 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the
following three properties:

1 (C1): ∅ /∈ C
2 (C2): if C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.

3 (C3): if C1, C2 ∈ C with C1 .= C2, and C ∈ C1 ∩ C2, then there
exists a C3 ∈ C such that C3 ⊆ (C1 ∪ C2) \ {e}.
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 5.3.10 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such
that no two sets in C are contained in each other. Then the following are
equivalent.

1 C is the collection of circuits of a matroid;

2 if C,C ′ ∈ C, and x ∈ C ∩C ′, then (C ∪C ′)\{x} contains a set in C;
3 if C,C ′ ∈ C, and x ∈ C ∩ C ′, and y ∈ C \ C ′, then (C ∪ C ′) \ {x}

contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and
matrices, and spanning trees.
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Matroids by submodular functions

Theorem 5.3.11 (Matroid by submodular functions)

Let f : 2E → Z be a integer valued monotone non-decreasing
submodular function. Define a set of sets as follows:

C(f) =
{
C ⊆ E : C is non-empty,

is inclusionwise-minimal,

and has f(C) < |C|
}

(5.2)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal in this case means that if C ∈ C(f), then there
exists no C ′ ⊂ C with C ′ ∈ C(f) (i.e., C ′ ⊂ C would either be empty or
have f(C ′) ≥ |C ′|). Also, recall inclusionwise-minimal in Definition 5.3.7,
the definition of a circuit.
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Uniform Matroid
Given E, consider I to be all subsets of E that are at most size k.
That is I = {A ⊆ E : |A| ≤ k}.

Then (E, I) is a matroid called a k-uniform matroid.
Note, if I, J ∈ I, and |I| < |J | ≤ k, and j ∈ J such that j .∈ I,
then j is such that |I + j| ≤ k and so I + j ∈ I.
Rank function

r(A) =

{
|A| if |A| ≤ k

k if |A| > k
(5.3)

Note, this function is submodular. Not surprising since
r(A) = min(|A|, k) which is a non-decreasing concave function
applied to a modular function.
Closure function

span(A) =

{
A if |A| < k,

E if |A| ≥ k,
(5.4)

A “free” matroid sets k = |E|, so everything is independent.
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Linear (or Matric) Matroid

Let X be an n×m matrix and E = {1, . . . ,m}

Let I consists of subsets of E such that if A ∈ I, and
A = {a1, a2, . . . , ak} then the vectors xa1 , xa2 , . . . , xak are linearly
independent.

the rank function is just the rank of the space spanned by the
corresponding set of vectors.

rank is submodular, it is intuitive that it satisfies the diminishing
returns property (a given vector can only become linearly dependent
in a greater context, thereby no longer contributing to rank).

Called both linear matroids and matric matroids.
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Cycle Matroid of a graph: Graphic Matroids

Let G = (V,E) be a graph. Consider (E, I) where the edges of the
graph E are the ground set and A ∈ I if the edge-induced graph
G(V,A) by A does not contain any cycle.

Then M = (E, I) is a matroid.

I contains all forests.

Bases are spanning forests (spanning trees if G is connected).

Rank function r(A) is the size of the largest spanning forest
contained in G(V,A).

Closure function adds all edges between the vertices adjacent to any
edge in A. Closure of a spanning forest is G.
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Example: graphic matroid

A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Partition Matroid

Let V be our ground set.

Let V = V1 ∪ V2 ∪ · · ·∪ V! be a partition of V into blocks or disjoint
sets (disjoint union). Define a set of subsets of V as

I = {X ⊆ V : |X ∩ Vi| ≤ ki for all i = 1, . . . , !}. (5.5)

where k1, . . . , k! are fixed parameters, ki ≥ 0. Then M = (V, I) is a
matroid.

Note that a k-uniform matroid is a trivial example of a partition
matroid with ! = 1, V1 = V , and k1 = k.

We’ll show that property (I3’) in Def 5.3.3 holds. If X,Y ∈ I with
|Y | > |X|, then there must be at least one i with
|Y ∩ Vi| > |X ∩ Vi|. Therefore, adding one element
e ∈ Vi ∩ (Y \X) to X won’t break independence.
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Partition Matroid

Ground set of objects, V =

{

}

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014 F25/58 (pg.77/223)



Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps Transversals Transversal Matroid Matroid and representation

Partition Matroid

Partition of V into six blocks, V1, V2, . . . , V6

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014 F25/58 (pg.78/223)



Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps Transversals Transversal Matroid Matroid and representation

Partition Matroid

Limit associated with each block, {k1, k2, . . . , k6}
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Partition Matroid

Independent subset but not maximally independent.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014 F25/58 (pg.80/223)



Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps Transversals Transversal Matroid Matroid and representation

Partition Matroid

Maximally independent subset, what is called a base.
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Partition Matroid

Not independent since over limit in set six.
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Matroids - rank
Lemma 5.5.1

The rank function r : 2E → Z+ of a matroid is submodular, that is
r(A) + r(B) ≥ r(A ∪B) + r(A ∩B)

Proof.

1 Let X ∈ I be an inclusionwise maximal set with X ⊆ A ∩B

2 Let Y ∈ I be inclusionwise maximal set with X ⊆ Y ⊆ A ∪B.

3 Since M is a matroid, we know that r(A ∩B) = r(X) = |X|, and
r(A ∪B) = r(Y ) = |Y |. Also, for any U ∈ I, r(A) ≥ |A ∩ U |.

4 Then we have

r(A) + r(B)

≥ |Y ∩A|+ |Y ∩B|

(5.6)

= |Y ∩ (A ∩B)|+ |Y ∩ (A ∪B)| (5.7)

≥ |X|+ |Y | = r(A ∩B) + r(A ∪B) (5.8)
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3 Since M is a matroid, we know that r(A ∩B) = r(X) = |X|, and
r(A ∪B) = r(Y ) = |Y |. Also, for any U ∈ I, r(A) ≥ |A ∩ U |.

4 Then we have

r(A) + r(B) ≥ |Y ∩A|+ |Y ∩B| (5.6)

= |Y ∩ (A ∩B)|+ |Y ∩ (A ∪B)| (5.7)

≥ |X|+ |Y | = r(A ∩B) + r(A ∪B) (5.8)
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Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 5.5.2 (Matroid from rank)

Let E be a set and let r : 2E → Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all A,B ⊆ E:

(R1) ∀A ⊆ E 0 ≤ r(A) ≤ |A| (non-negative cardinality bounded)

(R2) r(A) ≤ r(B) whenever A ⊆ B ⊆ E (monotone non-decreasing)

(R3) r(A ∪B) + r(A ∩B) ≤ r(A) + r(B) for all A,B ⊆ E (submodular)

So submodularity and non-negative monotone non-decreasing, and
unit increase is necessary and sufficient to define the matroid.

Given above, unit increment (if r(A) = k, then either
r(A ∪ {v}) = k or r(A ∪ {v}) = k + 1) holds.

A matroid is sometimes given as (E, r) where E is ground set and r
is rank function.
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Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 5.5.2 (Matroid from rank)

Let E be a set and let r : 2E → Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all A,B ⊆ E:

(R1) ∀A ⊆ E 0 ≤ r(A) ≤ |A| (non-negative cardinality bounded)

(R2) r(A) ≤ r(B) whenever A ⊆ B ⊆ E (monotone non-decreasing)

(R3) r(A ∪B) + r(A ∩B) ≤ r(A) + r(B) for all A,B ⊆ E (submodular)

From above, r(∅) = 0. Let v /∈ A, then by monotonicity and
submodularity, r(A) ≤ r(A∪ {v}) ≤ r(A) + r({v}) which gives only
two possible values to r(A ∪ {v}).
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

Next, assume we have (R1), (R2), and (R3). Define
I = {X ⊆ E : r(X) = |X|}. We will show that (E, I) is a matroid.

First, ∅ ∈ I.
Also, if Y ∈ I and X ⊆ Y then by submodularity,

r(X) ≥ r(Y )− r(Y \X)

− r(∅)

(5.9)

≥ |Y |− |Y \X| (5.10)

= |X| (5.11)

implying r(X) = |X|, and thus X ∈ I.

. . .
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

Next, assume we have (R1), (R2), and (R3). Define
I = {X ⊆ E : r(X) = |X|}. We will show that (E, I) is a matroid.

First, ∅ ∈ I.
Also, if Y ∈ I and X ⊆ Y then by submodularity,

r(X) ≥ r(Y )− r(Y \X)

− r(∅)

(5.9)

≥ |Y |− |Y \X| (5.10)

= |X| (5.11)

implying r(X) = |X|, and thus X ∈ I.

. . .
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

Next, assume we have (R1), (R2), and (R3). Define
I = {X ⊆ E : r(X) = |X|}. We will show that (E, I) is a matroid.

First, ∅ ∈ I.

Also, if Y ∈ I and X ⊆ Y then by submodularity,

r(X) ≥ r(Y )− r(Y \X)

− r(∅)

(5.9)

≥ |Y |− |Y \X| (5.10)

= |X| (5.11)

implying r(X) = |X|, and thus X ∈ I.

. . .
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

Next, assume we have (R1), (R2), and (R3). Define
I = {X ⊆ E : r(X) = |X|}. We will show that (E, I) is a matroid.

First, ∅ ∈ I.
Also, if Y ∈ I and X ⊆ Y then by submodularity,

r(X) ≥ r(Y )− r(Y \X)

− r(∅)

(5.9)

≥ |Y |− |Y \X| (5.10)

= |X| (5.11)

implying r(X) = |X|, and thus X ∈ I.

. . .
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

Next, assume we have (R1), (R2), and (R3). Define
I = {X ⊆ E : r(X) = |X|}. We will show that (E, I) is a matroid.

First, ∅ ∈ I.
Also, if Y ∈ I and X ⊆ Y then by submodularity,

r(X) ≥ r(Y )− r(Y \X)

− r(∅)

(5.9)

≥ |Y |− |Y \X| (5.10)

= |X| (5.11)

implying r(X) = |X|, and thus X ∈ I.

. . .
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

Next, assume we have (R1), (R2), and (R3). Define
I = {X ⊆ E : r(X) = |X|}. We will show that (E, I) is a matroid.

First, ∅ ∈ I.
Also, if Y ∈ I and X ⊆ Y then by submodularity,

r(X) ≥ r(Y )− r(Y \X)− r(∅) (5.9)

≥ |Y |− |Y \X| (5.10)

= |X| (5.11)

implying r(X) = |X|, and thus X ∈ I.

. . .
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

Next, assume we have (R1), (R2), and (R3). Define
I = {X ⊆ E : r(X) = |X|}. We will show that (E, I) is a matroid.

First, ∅ ∈ I.
Also, if Y ∈ I and X ⊆ Y then by submodularity,

r(X) ≥ r(Y )− r(Y \X)− r(∅) (5.9)

≥ |Y |− |Y \X| (5.10)

= |X| (5.11)

implying r(X) = |X|, and thus X ∈ I.

. . .
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

Next, assume we have (R1), (R2), and (R3). Define
I = {X ⊆ E : r(X) = |X|}. We will show that (E, I) is a matroid.

First, ∅ ∈ I.
Also, if Y ∈ I and X ⊆ Y then by submodularity,

r(X) ≥ r(Y )− r(Y \X)− r(∅) (5.9)

≥ |Y |− |Y \X| (5.10)

= |X| (5.11)

implying r(X) = |X|, and thus X ∈ I.

. . .
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

Given a matroid M = (E, I), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

Next, assume we have (R1), (R2), and (R3). Define
I = {X ⊆ E : r(X) = |X|}. We will show that (E, I) is a matroid.

First, ∅ ∈ I.
Also, if Y ∈ I and X ⊆ Y then by submodularity,

r(X) ≥ r(Y )− r(Y \X)− r(∅) (5.9)

≥ |Y |− |Y \X| (5.10)

= |X| (5.11)

implying r(X) = |X|, and thus X ∈ I.
. . .
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

Let A,B ∈ I, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B \A = {b1, b2, . . . , bk} (note k ≤ |B|).

Suppose, to the contrary, that ∀b ∈ B \A, r(A+ b) /∈ I, which
means for all such b, r(A+ b) = r(A) = |A|. Then

r(B) ≤ r(A ∪B) (5.12)

≤ r(A ∪ (B \ {b1})) + r(A ∪ {b1})− r(A) (5.13)

= r(A ∪ (B \ {b1}) (5.14)

≤ r(A ∪ (B \ {b1, b2})) + r(A ∪ {b2})− r(A) (5.15)

= r(A ∪ (B \ {b1, b2})) (5.16)

≤ . . . ≤ r(A) = |A| < |B| (5.17)

giving a contradiction since B ∈ I.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

Let A,B ∈ I, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B \A = {b1, b2, . . . , bk} (note k ≤ |B|).
Suppose, to the contrary, that ∀b ∈ B \A, r(A+ b) /∈ I, which
means for all such b, r(A+ b) = r(A) = |A|. Then

r(B) ≤ r(A ∪B) (5.12)

≤ r(A ∪ (B \ {b1})) + r(A ∪ {b1})− r(A) (5.13)

= r(A ∪ (B \ {b1}) (5.14)

≤ r(A ∪ (B \ {b1, b2})) + r(A ∪ {b2})− r(A) (5.15)

= r(A ∪ (B \ {b1, b2})) (5.16)

≤ . . . ≤ r(A) = |A| < |B| (5.17)

giving a contradiction since B ∈ I.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

Let A,B ∈ I, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B \A = {b1, b2, . . . , bk} (note k ≤ |B|).
Suppose, to the contrary, that ∀b ∈ B \A, r(A+ b) /∈ I, which
means for all such b, r(A+ b) = r(A) = |A|. Then

r(B) ≤ r(A ∪B) (5.12)

≤ r(A ∪ (B \ {b1})) + r(A ∪ {b1})− r(A) (5.13)

= r(A ∪ (B \ {b1}) (5.14)

≤ r(A ∪ (B \ {b1, b2})) + r(A ∪ {b2})− r(A) (5.15)

= r(A ∪ (B \ {b1, b2})) (5.16)

≤ . . . ≤ r(A) = |A| < |B| (5.17)

giving a contradiction since B ∈ I.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

Let A,B ∈ I, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B \A = {b1, b2, . . . , bk} (note k ≤ |B|).
Suppose, to the contrary, that ∀b ∈ B \A, r(A+ b) /∈ I, which
means for all such b, r(A+ b) = r(A) = |A|. Then

r(B) ≤ r(A ∪B) (5.12)

≤ r(A ∪ (B \ {b1})) + r(A ∪ {b1})− r(A) (5.13)

= r(A ∪ (B \ {b1}) (5.14)

≤ r(A ∪ (B \ {b1, b2})) + r(A ∪ {b2})− r(A) (5.15)

= r(A ∪ (B \ {b1, b2})) (5.16)

≤ . . . ≤ r(A) = |A| < |B| (5.17)

giving a contradiction since B ∈ I.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

Let A,B ∈ I, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B \A = {b1, b2, . . . , bk} (note k ≤ |B|).
Suppose, to the contrary, that ∀b ∈ B \A, r(A+ b) /∈ I, which
means for all such b, r(A+ b) = r(A) = |A|. Then

r(B) ≤ r(A ∪B) (5.12)

≤ r(A ∪ (B \ {b1})) + r(A ∪ {b1})− r(A) (5.13)

= r(A ∪ (B \ {b1}) (5.14)

≤ r(A ∪ (B \ {b1, b2})) + r(A ∪ {b2})− r(A) (5.15)

= r(A ∪ (B \ {b1, b2})) (5.16)

≤ . . . ≤ r(A) = |A| < |B| (5.17)

giving a contradiction since B ∈ I.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

Let A,B ∈ I, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B \A = {b1, b2, . . . , bk} (note k ≤ |B|).
Suppose, to the contrary, that ∀b ∈ B \A, r(A+ b) /∈ I, which
means for all such b, r(A+ b) = r(A) = |A|. Then

r(B) ≤ r(A ∪B) (5.12)

≤ r(A ∪ (B \ {b1})) + r(A ∪ {b1})− r(A) (5.13)

= r(A ∪ (B \ {b1}) (5.14)

≤ r(A ∪ (B \ {b1, b2})) + r(A ∪ {b2})− r(A) (5.15)

= r(A ∪ (B \ {b1, b2})) (5.16)

≤ . . . ≤ r(A) = |A| < |B| (5.17)

giving a contradiction since B ∈ I.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

Let A,B ∈ I, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B \A = {b1, b2, . . . , bk} (note k ≤ |B|).
Suppose, to the contrary, that ∀b ∈ B \A, r(A+ b) /∈ I, which
means for all such b, r(A+ b) = r(A) = |A|. Then

r(B) ≤ r(A ∪B) (5.12)

≤ r(A ∪ (B \ {b1})) + r(A ∪ {b1})− r(A) (5.13)

= r(A ∪ (B \ {b1}) (5.14)

≤ r(A ∪ (B \ {b1, b2})) + r(A ∪ {b2})− r(A) (5.15)

= r(A ∪ (B \ {b1, b2})) (5.16)

≤ . . . ≤ r(A) = |A| < |B| (5.17)

giving a contradiction since B ∈ I.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

Let A,B ∈ I, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B \A = {b1, b2, . . . , bk} (note k ≤ |B|).
Suppose, to the contrary, that ∀b ∈ B \A, r(A+ b) /∈ I, which
means for all such b, r(A+ b) = r(A) = |A|. Then

r(B) ≤ r(A ∪B) (5.12)

≤ r(A ∪ (B \ {b1})) + r(A ∪ {b1})− r(A) (5.13)

= r(A ∪ (B \ {b1}) (5.14)

≤ r(A ∪ (B \ {b1, b2})) + r(A ∪ {b2})− r(A) (5.15)

= r(A ∪ (B \ {b1, b2})) (5.16)

≤ . . . ≤ r(A) = |A| < |B| (5.17)

giving a contradiction since B ∈ I.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

Let A,B ∈ I, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B \A = {b1, b2, . . . , bk} (note k ≤ |B|).
Suppose, to the contrary, that ∀b ∈ B \A, r(A+ b) /∈ I, which
means for all such b, r(A+ b) = r(A) = |A|. Then

r(B) ≤ r(A ∪B) (5.12)

≤ r(A ∪ (B \ {b1})) + r(A ∪ {b1})− r(A) (5.13)

= r(A ∪ (B \ {b1}) (5.14)

≤ r(A ∪ (B \ {b1, b2})) + r(A ∪ {b2})− r(A) (5.15)

= r(A ∪ (B \ {b1, b2})) (5.16)

≤ . . . ≤ r(A) = |A| < |B| (5.17)

giving a contradiction since B ∈ I.
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Matroids from rank II

Another way of using function r to define a matroid.

Theorem 5.5.3 (Matroid from rank II)

Let E be a finite set and let r : 2E → Z+ be a function. Then r(·)
defines a matroid with r being its rank function if and only if for all
A ⊆ E, and x, y ∈ E:

(R1’) r(∅) = 0;

(R2’) r(X) ≤ r(X ∪ {y}) ≤ r(X) + 1;

(R3’) If r(X ∪ {x}) = r(X ∪ {y}) = r(X), then r(X ∪ {x, y}) = r(X).
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Matroid and Rank

Thus, we can define a matroid as M = (V, r) where r satisfies
matroid rank axioms.
Example: 2-partition matroid rank function: Given natural numbers
a, b ∈ Z+ with a > b, and any set R ⊆ V with |R| = a, two-block
partition V = (R, R̄), where R̄ = V \R, define:

r(A) = min(|A ∩R|, b) + min(|A ∩ R̄|, |R̄|) (5.18)

= min(|A ∩R|, b) + |A ∩ R̄| (5.19)

Partition matroid figure showing this:

V

R̄

R

b < |R| = ab

|V | a−
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Truncated Matroid Rank Function

Can use this to define a truncated matroid rank function. With
r(A) = min(|A ∩R|, b) + |A ∩ R̄|, b < a, define:

fR(A) = min {r(A), a} (5.20)

= min
{
min(|A ∩ R̄|+ |A ∩R|, |A ∩ R̄|+ b), a

}
(5.21)

= min
{
|A|, b+ |A ∩ R̄|, a

}
(5.22)

Defines a matroid M = (V, fR) = (V, I) (Goemans et. al.) with

I = {I ⊆ V : |I| ≤ a and |I ∩R| ≤ b}, (5.23)

Useful for showing hardness of constrained submodular
minimization. Consider sets B ⊆ V with |B| = a.
For R, we have fR(R) = b < a.
For any B with |B ∩R| ≤ b, fR(B) = a.
For any B with |B ∩R| = !, with b < ! < a, fR(B) = b+ a− !.
R, the set with minimum valuation amongst size-a sets, is hidden
within an exponentially larger set of size-a sets with larger valuation.
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Summarizing: Many ways to define a Matroid

Summarizing what we’ve so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

Independence (define the independent sets).

Base axioms (exchangeability)

Circuit axioms

Closure axioms (we didn’t see this, but it is possible)

Rank axioms (normalized, monotone, cardinality bounded,
submodular)
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Maximization problems for matroids

Given a matroid M = (E, I) and a modular cost function
c : E → R, the task is to find an X ∈ I such that
c(X) =

∑
x∈X c(x) is maximum.

This seems remarkably similar to the max spanning tree problem.
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Minimization problems for matroids

Given a matroid M = (E, I) and a modular cost function
c : E → R, the task is to find a basis B ∈ B such that c(B) is
minimized.

This sounds like a set cover problem (find the minimum cost
covering set of sets).
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Partition Matroid

What is the partition matroid’s rank function?

A partition matroids rank function:

r(A) =
!∑

i=1

min(|A ∩ Vi|, ki) (5.24)

which we also immediately see is submodular using properties we
spoke about last week. That is:

1 |A ∩ Vi| is submodular (in fact modular) in A
2 min(submodular(A), ki) is submodular in A since |A ∩ Vi| is

monotone.
3 sums of submodular functions are submodular.

r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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1 |A ∩ Vi| is submodular (in fact modular) in A
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r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014 F36/58 (pg.132/223)



Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps Transversals Transversal Matroid Matroid and representation

Partition Matroid, rank as matching

A partition matroid can be viewed using a bipartite graph.

Letting V denote the ground set, and V1, V2, . . . the partition, the
graph is G = (V, I, E) where V is the ground set, I is a set of
“indices”, and E is the set of edges.

I = (I1, I2, . . . , I!) is a set of k =
∑!

i=1 ki nodes, grouped into !
clusters, where there are ki nodes in the ith group Ii.

(v, i) ∈ E(G) iff v ∈ Vj and i ∈ Ij .
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Partition Matroid, rank as matching

Example where ! = 5,
(k1, k2, k3, k4, k5) =
(2, 2, 1, 1, 3).

I1

I2

I3

I4

I5

V1

V2

V3

V4

V5

V I

Recall, Γ : 2V → R as the neighbor
function in a bipartite graph, the
neighbors of X is defined as Γ(X) =
{v ∈ V (G) \X : E(X, {v}) .= ∅}, and
recall that |Γ(X)| is submodular.

Here, for X ⊆ V , we have Γ(X) =
{i ∈ I : (v, i) ∈ E(G) and v ∈ X}.
For such a constructed bipartite graph,
the rank function of a partition matroid
is r(X) =

∑!
i=1min(|X ∩ Vi|, ki) =

the maximum matching involving X.
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For such a constructed bipartite graph,
the rank function of a partition matroid
is r(X) =

∑!
i=1min(|X ∩ Vi|, ki) =

the maximum matching involving X.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014 F38/58 (pg.135/223)



Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps Transversals Transversal Matroid Matroid and representation
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Recall, Γ : 2V → R as the neighbor
function in a bipartite graph, the
neighbors of X is defined as Γ(X) =
{v ∈ V (G) \X : E(X, {v}) .= ∅}, and
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recall that |Γ(X)| is submodular.
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For such a constructed bipartite graph,
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Laminar Matroid

We can define a matroid with structures richer than just partitions.

A set system (V,F) is called a laminar family if for any two sets
A,B ∈ F , at least one of the three sets A ∩B, A \B, or B \A is
empty.

Family is laminar if it has no two “properly intersecting” members:
i.e., intersecting A ∩B .= ∅ and not comparable (one is not
contained in the other).
Suppose we have a laminar family F of subsets of V and an integer
k(A) for every set A ∈ F .
Then (V, I) defines a matroid where

I = {I ⊆ E : |X ∩A| ≤ k(A) for all A ∈ F} (5.25)
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A B

A

B A

B

Family is laminar if it has no two “properly intersecting” members:
i.e., intersecting A ∩B .= ∅ and not comparable (one is not
contained in the other).
Suppose we have a laminar family F of subsets of V and an integer
k(A) for every set A ∈ F .

Then (V, I) defines a matroid where

I = {I ⊆ E : |X ∩A| ≤ k(A) for all A ∈ F} (5.25)
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System of Representatives

Let (V,V) be a set system (i.e., V = (Vi : i ∈ I) where ∅ ⊂ Vi ⊆ V
for all i), and I is an index set. Hence, |I| = |V|.

Here, the sets Vi ∈ V are like “groups” and any v ∈ V with v ∈ Vi is
a member of group i. Groups need not be disjoint (e.g., interest
groups of individuals).

A family (vi : i ∈ I) with vi ∈ V is said to be a system of
representatives of V if ∃ a bijection π : I → I such that vi ∈ Vπ(i).

vi is the representative of set (or group) Vπ(i), meaning the ith

representative is meant to represent set Vπ(i).

Example: Consider the house of representatives, vi = “Jim
McDermott, while i = “King County, WA-7”.

In a system of representatives, there is no requirement for the
representatives to be distinct. I.e., we could have some
v1 ∈ V1 ∩ V2, where v1 represents both V1 and V2.

We can view this as a bipartite graph.
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a member of group i. Groups need not be disjoint (e.g., interest
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vi is the representative of set (or group) Vπ(i), meaning the ith

representative is meant to represent set Vπ(i).

Example: Consider the house of representatives, vi = “Jim
McDermott, while i = “King County, WA-7”.

In a system of representatives, there is no requirement for the
representatives to be distinct. I.e., we could have some
v1 ∈ V1 ∩ V2, where v1 represents both V1 and V2.
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System of Representatives

We can view this as a bipartite graph. The groups of V are marked
by color tags on the left, and also via right neighbors in the graph.

Here, ! = 6 groups, with V = (V1, V2, . . . , V6)
= ({e, f, h}, {d, e, g}, {b, c, e, h}, {a, b, h}, {a}, {a}).

V I

1

2

3

4

5

6a
b
c
d
e
f
g

h

A system of representatives would
make sure that there is a representative
for each color group. For example,

The representatives are shown as
colors on the left.

Here, the set of representatives is not
distinct. In fact, due to the red and
pink group, a distinct group of
representatives is impossible (since
there is only one common choice to
represent both color groups).
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System of Distinct Representatives

Let (V,V) be a set system (i.e., V = (Vk : i ∈ I) where Vi ⊆ V for
all i), and I is an index set. Hence, |I| = |V|.

A family (vi : i ∈ I) with vi ∈ V is said to be a system of distinct
representatives of V if ∃ a bijection π : I ↔ I such that vi ∈ Vπ(i)

and vi .= vj for all i .= j.

In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 5.7.1 (transversal)

Given a set system (V,V) as defined above, a set T ⊆ V is a transversal
of V if there is a bijection π : T ↔ I such that

x ∈ Vπ(x) for all x ∈ T (5.26)

Note that due to it being a bijection, all of I and T are “covered”
(so this makes things distinct).
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Transversals are Subclusive

A set X ⊆ V is a partial transversal if X is a transversal of some
subfamily V ′ = (Vi : i ∈ I ′) where I ′ ⊆ I.

Therefore, for any transversal T , any subset T ′ ⊆ T is a partial
transversal.

Thus, transversals are down closed (subclusive).
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?

Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all
i. Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (5.27)

so |V (J)| is the set cover function (which we know is submodular).
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Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all
i. Then, for any J ⊆ I, let
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?

Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all
i. Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (5.27)

so |V (J)| is the set cover function (which we know is submodular).
We have

Theorem 5.8.1 (Hall’s theorem)

Given a set system (V,V), the family of subsets V = (Vi : i ∈ I) has a
transversal (vi : i ∈ I) iff for all J ⊆ I

|V (J)| ≥ |J | (5.28)
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?

Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all
i. Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (5.27)

so |V (J)| is the set cover function (which we know is submodular).
Hall’s theorem (∀J, |V (J)| ≥ |J |) as a bipartite graph.
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Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all
i. Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (5.27)
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?

Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all
i. Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (5.27)

so |V (J)| is the set cover function (which we know is submodular).
Moreover, we have

Theorem 5.8.2 (Rado’s theorem)

If M = (V, r) is a matroid on V with rank function r, then the family of
subsets (Vi : i ∈ I) of V has a transversal (vi : i ∈ I) that is independent
in M iff for all J ⊆ I

r(V (J)) ≥ |J | (5.29)

Note, a transversal T independent in M means that r(T ) = |T |.
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V (J) = ∪j∈JVj (5.27)

so |V (J)| is the set cover function (which we know is submodular).
Moreover, we have

Theorem 5.8.2 (Rado’s theorem)

If M = (V, r) is a matroid on V with rank function r, then the family of
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Note, a transversal T independent in M means that r(T ) = |T |.
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More general conditions for existence of transversals

Theorem 5.8.3

If V = (Vi : I ∈ I) is a finite family of non-empty subsets of V , and
f : 2V → Z+ is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (vi : i ∈ I)
such that

f(∪i∈J{vi}) ≥ |J | for all J ⊆ I (5.30)

if and only if

f(V (J)) ≥ |J | for all J ⊆ I (5.31)

Given Theorem 5.8.3, we immediately get Theorem 5.8.1 by taking
f(S) = |S| for S ⊆ V .
We get Theorem 5.8.2 by taking f(S) = r(S) for S ⊆ V , the rank
function of the matroid.
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More general conditions for existence of transversals

Theorem 5.8.3

If V = (Vi : I ∈ I) is a finite family of non-empty subsets of V , and
f : 2V → Z+ is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (vi : i ∈ I)
such that

f(∪i∈J{vi}) ≥ |J | for all J ⊆ I (5.30)

if and only if

f(V (J)) ≥ |J | for all J ⊆ I (5.31)

Given Theorem 5.8.3, we immediately get Theorem 5.8.1 by taking
f(S) = |S| for S ⊆ V . In which case, Eq. 5.30 requires the system of
representatives to be distinct.

We get Theorem 5.8.2 by taking f(S) = r(S) for S ⊆ V , the rank
function of the matroid.
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More general conditions for existence of transversals

Theorem 5.8.3

If V = (Vi : I ∈ I) is a finite family of non-empty subsets of V , and
f : 2V → Z+ is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (vi : i ∈ I)
such that

f(∪i∈J{vi}) ≥ |J | for all J ⊆ I (5.30)

if and only if

f(V (J)) ≥ |J | for all J ⊆ I (5.31)

Given Theorem 5.8.3, we immediately get Theorem 5.8.1 by taking
f(S) = |S| for S ⊆ V .
We get Theorem 5.8.2 by taking f(S) = r(S) for S ⊆ V , the rank
function of the matroid. where, Eq. 5.30 insists the system of
representatives is independent in M .
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More general conditions for existence of transversals

first part proof of Theorem 5.8.3.

Suppose Eq. 5.30 is true. Then since f is monotone, and since
V (J) ⊇ ∪i∈J{vi} when (vi : i ∈ I) is a system of representatives,
then Eq. 5.31 immediately follows.

. . .
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More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. 5.31 (f(V (J)) ≥ |J |, ∀J ⊆ I) is true for V, and there exists
an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there exists v̄ ∈ V1

such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also satisfies
Eq 5.31.

Proof.

When Eq. 5.31 and the above holds, this means that for any subsets
J1, J2 ⊆ I \ {1}, we have that

f(V1 ∪ V (J1)) ≥ |J1|+ 1 (5.32)

f(V1 ∪ V (J2)) ≥ |J2|+ 1 (5.33)

. . .
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More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. 5.31 (f(V (J)) ≥ |J |, ∀J ⊆ I) is true for V, and there exists
an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there exists v̄ ∈ V1

such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also satisfies
Eq 5.31.

Proof.

Suppose, to the contrary, the consequent is false. Then we may take
v̄1, v̄2 ∈ V1 as two distinct elements in V1 . . .

and there must exist subsets J1, J2 of I \ {1} such that

f((V1 \ {v̄1}) ∪ V (J1)) < |J1|+ 1, (5.34)

f((V1 \ {v̄2}) ∪ V (J2)) < |J2|+ 1, (5.35)

(note that either one or both of J1, J2 could be empty).

. . .
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More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. 5.31 (f(V (J)) ≥ |J |, ∀J ⊆ I) is true for V, and there exists
an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there exists v̄ ∈ V1

such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also satisfies
Eq 5.31.

Proof.

Suppose, to the contrary, the consequent is false. Then we may take
v̄1, v̄2 ∈ V1 as two distinct elements in V1 . . .

and there must exist subsets J1, J2 of I \ {1} such that

f((V1 \ {v̄1}) ∪ V (J1)) < |J1|+ 1, (5.34)

f((V1 \ {v̄2}) ∪ V (J2)) < |J2|+ 1, (5.35)

(note that either one or both of J1, J2 could be empty).

. . .
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More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. 5.31 (f(V (J)) ≥ |J |, ∀J ⊆ I) is true for V, and there exists
an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there exists v̄ ∈ V1

such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also satisfies
Eq 5.31.

Proof.

Taking X = (V1 \ {v̄1}) ∪ V (J1) and Y = (V1 \ {v̄2}) ∪ V (J2), we
have f(X) ≤ |J1|, f(Y ) ≤ |J2|, and that:

X ∪ Y = V1 ∪ V (J1 ∪ J2), (5.36)

X ∩ Y ⊇ V (J1 ∩ J2), (5.37)

and

|J1|+ |J2| ≥ f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ). (5.38)

. . .
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More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. 5.31 (f(V (J)) ≥ |J |, ∀J ⊆ I) is true for V, and there exists
an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there exists v̄ ∈ V1

such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also satisfies
Eq 5.31.

Proof.

since f submodular monotone non-decreasing, & Eqs 5.32-5.35,

|J1|+ |J2| ≥ f(V1 ∪ V (J1 ∪ J2)) + f(V (J1 ∩ J2)) (5.39)

Since V satisfies Eq. 5.31, 1 /∈ J1 ∪ J2, & Eqs 5.32-5.33, this gives

|J1|+ |J2| ≥ |J1 ∪ J2|+ 1 + |J1 ∩ J2| (5.40)

which is a contradiction since cardinality is modular.

. . .
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More general conditions for existence of transversals

Lemma 5.8.4

Suppose Eq. 5.31 (f(V (J)) ≥ |J |, ∀J ⊆ I) is true for V, and there exists
an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there exists v̄ ∈ V1

such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also satisfies
Eq 5.31.

Proof.

since f submodular monotone non-decreasing, & Eqs 5.32-5.35,

|J1|+ |J2| ≥ f(V1 ∪ V (J1 ∪ J2)) + f(V (J1 ∩ J2)) (5.39)

Since V satisfies Eq. 5.31, 1 /∈ J1 ∪ J2, & Eqs 5.32-5.33, this gives

|J1|+ |J2| ≥ |J1 ∪ J2|+ 1 + |J1 ∩ J2| (5.40)

which is a contradiction since cardinality is modular.
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More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

Conversely, suppose Eq. 5.31 is true.

If each Vi is a singleton set, then the result follows immediately.

W.l.o.g., let |V1| ≥ 2, then by Lemma 5.8.4, the family of subsets
(V1 \ {v̄}, V2, . . . , V|I|) also satisfies Eq 5.31 for the right v̄.

We can continue to reduce the family, deleting elements from Vi for
some i while |Vi| ≥ 2, until we arrive at a family of singleton sets.

This family will be the required system of representatives.

This theorem can be used to produce a variety of other results quite
easily, and shows how submodularity is the key ingredient in its truth.
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More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

Conversely, suppose Eq. 5.31 is true.

If each Vi is a singleton set, then the result follows immediately.

W.l.o.g., let |V1| ≥ 2, then by Lemma 5.8.4, the family of subsets
(V1 \ {v̄}, V2, . . . , V|I|) also satisfies Eq 5.31 for the right v̄.

We can continue to reduce the family, deleting elements from Vi for
some i while |Vi| ≥ 2, until we arrive at a family of singleton sets.

This family will be the required system of representatives.

This theorem can be used to produce a variety of other results quite
easily, and shows how submodularity is the key ingredient in its truth.
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More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

Conversely, suppose Eq. 5.31 is true.

If each Vi is a singleton set, then the result follows immediately.

W.l.o.g., let |V1| ≥ 2, then by Lemma 5.8.4, the family of subsets
(V1 \ {v̄}, V2, . . . , V|I|) also satisfies Eq 5.31 for the right v̄.

We can continue to reduce the family, deleting elements from Vi for
some i while |Vi| ≥ 2, until we arrive at a family of singleton sets.

This family will be the required system of representatives.

This theorem can be used to produce a variety of other results quite
easily, and shows how submodularity is the key ingredient in its truth.
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More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

Conversely, suppose Eq. 5.31 is true.

If each Vi is a singleton set, then the result follows immediately.

W.l.o.g., let |V1| ≥ 2, then by Lemma 5.8.4, the family of subsets
(V1 \ {v̄}, V2, . . . , V|I|) also satisfies Eq 5.31 for the right v̄.

We can continue to reduce the family, deleting elements from Vi for
some i while |Vi| ≥ 2, until we arrive at a family of singleton sets.

This family will be the required system of representatives.

This theorem can be used to produce a variety of other results quite
easily, and shows how submodularity is the key ingredient in its truth.
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More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

Conversely, suppose Eq. 5.31 is true.

If each Vi is a singleton set, then the result follows immediately.

W.l.o.g., let |V1| ≥ 2, then by Lemma 5.8.4, the family of subsets
(V1 \ {v̄}, V2, . . . , V|I|) also satisfies Eq 5.31 for the right v̄.

We can continue to reduce the family, deleting elements from Vi for
some i while |Vi| ≥ 2, until we arrive at a family of singleton sets.

This family will be the required system of representatives.

This theorem can be used to produce a variety of other results quite
easily, and shows how submodularity is the key ingredient in its truth.
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More general conditions for existence of transversals

converse proof of Theorem 5.8.3.

Conversely, suppose Eq. 5.31 is true.

If each Vi is a singleton set, then the result follows immediately.

W.l.o.g., let |V1| ≥ 2, then by Lemma 5.8.4, the family of subsets
(V1 \ {v̄}, V2, . . . , V|I|) also satisfies Eq 5.31 for the right v̄.

We can continue to reduce the family, deleting elements from Vi for
some i while |Vi| ≥ 2, until we arrive at a family of singleton sets.

This family will be the required system of representatives.

This theorem can be used to produce a variety of other results quite
easily, and shows how submodularity is the key ingredient in its truth.
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Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 5.9.1

If V is a family of finite subsets of a ground set V , then the collection of
partial transversals of V is the set of independent sets of a matroid
M = (V,V) on V .

This means that the transversals of V are the bases of matroid M .

Therefore, all maximal partial transversals of V have the same
cardinality!
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Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 5.9.1

If V is a family of finite subsets of a ground set V , then the collection of
partial transversals of V is the set of independent sets of a matroid
M = (V,V) on V .

This means that the transversals of V are the bases of matroid M .

Therefore, all maximal partial transversals of V have the same
cardinality!
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Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 5.9.1

If V is a family of finite subsets of a ground set V , then the collection of
partial transversals of V is the set of independent sets of a matroid
M = (V,V) on V .

This means that the transversals of V are the bases of matroid M .

Therefore, all maximal partial transversals of V have the same
cardinality!
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Transversals and Matchings

Transversals correspond exactly to matchings in bipartite graphs (as
we’ve already strongly hinted at).

Given a set system (V,V), with V = (Vi : i ∈ I), we can define a
bipartite graph G = (V, I, E) associated with V that has edge set
{(v, i) : v ∈ V, i ∈ I, v ∈ Vi}.
A matching in this graph is a set of edges no two of which that have
a common endpoint.

In fact, we easily have

Lemma 5.9.2

A subset T ⊆ V is a partial transversal of V iff there is a matching in
(V, I, E) in which every edge has one endpoint in T .

We say that T is matched into I.
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Transversals and Matchings

Transversals correspond exactly to matchings in bipartite graphs (as
we’ve already strongly hinted at).

Given a set system (V,V), with V = (Vi : i ∈ I), we can define a
bipartite graph G = (V, I, E) associated with V that has edge set
{(v, i) : v ∈ V, i ∈ I, v ∈ Vi}.

A matching in this graph is a set of edges no two of which that have
a common endpoint.

In fact, we easily have

Lemma 5.9.2

A subset T ⊆ V is a partial transversal of V iff there is a matching in
(V, I, E) in which every edge has one endpoint in T .

We say that T is matched into I.
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Transversals and Matchings

Transversals correspond exactly to matchings in bipartite graphs (as
we’ve already strongly hinted at).

Given a set system (V,V), with V = (Vi : i ∈ I), we can define a
bipartite graph G = (V, I, E) associated with V that has edge set
{(v, i) : v ∈ V, i ∈ I, v ∈ Vi}.
A matching in this graph is a set of edges no two of which that have
a common endpoint.

In fact, we easily have

Lemma 5.9.2

A subset T ⊆ V is a partial transversal of V iff there is a matching in
(V, I, E) in which every edge has one endpoint in T .

We say that T is matched into I.
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Transversals and Matchings

Transversals correspond exactly to matchings in bipartite graphs (as
we’ve already strongly hinted at).

Given a set system (V,V), with V = (Vi : i ∈ I), we can define a
bipartite graph G = (V, I, E) associated with V that has edge set
{(v, i) : v ∈ V, i ∈ I, v ∈ Vi}.
A matching in this graph is a set of edges no two of which that have
a common endpoint.

In fact, we easily have

Lemma 5.9.2

A subset T ⊆ V is a partial transversal of V iff there is a matching in
(V, I, E) in which every edge has one endpoint in T .

We say that T is matched into I.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014 F50/58 (pg.191/223)



Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps Transversals Transversal Matroid Matroid and representation

Morphing Partition Matroid Rank

Recall the partition matroid rank function. Note, ki = |Ii| in the
bipartite graph representation, and since a matroid, w.l.o.g.,
|Vi| ≥ ki (also, recall, V (J) = ∪j∈JVj).

We start with partition matroid rank function in the subsequent
equations.

r(A) =

!∑

i=1

min(|A ∩ Vi|, ki) (5.41)

=

!∑

i=1

min(|A ∩ V (Ii)|, |Ii|) (5.42)

=
!∑

i=1

min
Ji⊆Ii

({
|A ∩ V (Ii)| if Ji .= ∅

0 if Ji = ∅

}
+ |Ii \ Ji|

)
(5.43)

=

!∑

i=1

min
Ji⊆Ii

(|V (Ji) ∩A|+ |Ii \ Ji|) (5.44)
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bipartite graph representation, and since a matroid, w.l.o.g.,
|Vi| ≥ ki (also, recall, V (J) = ∪j∈JVj).
We start with partition matroid rank function in the subsequent
equations.

r(A) =

!∑

i=1

min(|A ∩ Vi|, ki) (5.41)

=

!∑

i=1

min(|A ∩ V (Ii)|, |Ii|) (5.42)

=

!∑

i=1

min
Ji⊆Ii

({
|A ∩ V (Ii)| if Ji .= ∅

0 if Ji = ∅

}
+ |Ii \ Ji|

)
(5.43)

=

!∑

i=1

min
Ji⊆Ii

(|V (Ji) ∩A|+ |Ii \ Ji|) (5.44)
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... Morphing Partition Matroid Rank

Continuing,

r(A) =

!∑

i=1

min
Ji⊆Ii

(|V (Ji) ∩ V (Ii) ∩A|− |Ii ∩ Ji|+ |Ii|) (5.45)

= min
J⊆I

(
!∑

i=1

|V (J) ∩ V (Ii) ∩A|− |Ii ∩ J |+ |Ii|
)

(5.46)

= min
J⊆I

(|V (J) ∩ V (I) ∩A|− |J |+ |I|) (5.47)

= min
J⊆I

(|V (J) ∩A|− |J |+ |I|) (5.48)

In fact, this bottom (more general) expression is the expression for
the rank of a transversal matroid.
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Partial Transversals Are Matroids

In fact, we have

Theorem 5.9.3

Let (V,V) where V = (V1, V2, . . . , V!) be a subset system. Let
I = {1, . . . , !}. Let I be the set of partial transversals of V. Then (V, I)
is a matroid.

Proof.

We note that ∅ ∈ I since the empty set is a transversal of the empty
subfamily of V, thus (I1’) holds.
We already saw that if T is a partial transversal of V, and if T ′ ⊆ T ,
then T ′ is also a partial transversal. So (I2’) holds.

Suppose that T1 and T2 are partial transversals of V such that
|T1| < |T2|. Exercise: show that (I3’) holds.
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Transversal Matroid Rank

Transversal matroid has rank

r(A) = min
J⊆I

(|V (J) ∩A|− |J |+ |I|) (5.49)

Therefore, this function is submodular.

Note that it is a minimum over a set of modular functions. Is this
true in general?

Exercise:
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Transversal Matroid Rank

Transversal matroid has rank
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Matroid loops

A circuit in a matroids is well defined, a subset A ⊆ E is circuit if it
is an inclusionwise minimally dependent set (i.e., if r(A) < |A| and
for any a ∈ A, r(A \ {a}) = |A|− 1).

There is no reason in a matroid such an A could not consist of a
single element.

Such an {a} is called a loop.

In a matric (i.e., linear) matroid, the only such loop is the value 0,
as all non-zero vectors have rank 1. The 0 can appear > 1 time
with different indices, as can a self loop in a graph appear on
different nodes.

Note, we also say that two elements s, t are said to be parallel if
{s, t} is a circuit.
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Matroid loops
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Representable

Definition 5.10.1 (Matroid isomorphism)

Two matroids M1 and M2 respectively on ground sets V1 and V2 are
isomorphic if there is a bijection π : V1 → V2 which preserves
independence (equivalently, rank, circuits, and so on).

Let F be any field (such as R, Q, or some finite field F, such as
GF(p) where p is prime (such as GF(2)).

We can more generally define matroids on a field.
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Representable

Definition 5.10.1 (Matroid isomorphism)

Two matroids M1 and M2 respectively on ground sets V1 and V2 are
isomorphic if there is a bijection π : V1 → V2 which preserves
independence (equivalently, rank, circuits, and so on).

Let F be any field (such as R, Q, or some finite field F, such as
GF(p) where p is prime (such as GF(2)).

We can more generally define matroids on a field.

Definition 5.10.2 (linear matroids on a field)

Let X be an n×m matrix and E = {1, . . . ,m}, where Xij ∈ F for some
field, and let I be the set of subsets of E such that the columns of X are
linearly independent over F.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 5 - April 14th, 2014 F56/58 (pg.217/223)



Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps Transversals Transversal Matroid Matroid and representation

Representable

Definition 5.10.1 (Matroid isomorphism)

Two matroids M1 and M2 respectively on ground sets V1 and V2 are
isomorphic if there is a bijection π : V1 → V2 which preserves
independence (equivalently, rank, circuits, and so on).

Let F be any field (such as R, Q, or some finite field F, such as
GF(p) where p is prime (such as GF(2)).

We can more generally define matroids on a field.

Definition 5.10.3 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called
representable over F
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Representability of Transversal Matroids

Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.

In particular:

Theorem 5.10.4

Transversal matroids are representable over all finite fields of sufficiently
large cardinality, and are representable over any infinite field.
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Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 5.10.5

Let V = {1, 2, 3, 4, 5, 6} be a ground set and let M = (V, I) be a set
system where I is all subsets of V of cardinality ≤ 2 except for the pairs
{1, 2}, {3, 4}, {5, 6}.

It can be shown that this is a matroid and is representable.

However, this matroid is not isomorphic to any transversal matroid.
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