Submodular Functions, Optimization, and Applications to Machine Learning

— Spring Quarter, Lecture 5 —

http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

April 14th, 2014

 $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$ - $f(A) + 2f(C) + f(B) - f(A) + f(C) + f(B) - f(A \cap B)$

Cumulative Outstanding Reading

• Read chapter 1 from Fujishige's book.

Announcements, Assignments, and Reminders

- our room (Mueller Hall Room 154) is changed!
- Please do use our discussion board (https: //canvas.uw.edu/courses/895956/discussion_topics) for all questions, comments, so that all will benefit from them being answered.
- Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

- L1 (3/31): Motivation, Applications, & Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes.
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity

- L11: More properties of polymatroids, SFM special cases
- L12: polymatroid properties, extreme points polymatroids,
- L13: sat, dep, supp, exchange capacity, examples
- L14: Lattice theory: partially ordered sets; lattices; distributive, modular, submodular, and boolean lattices; ideals and join irreducibles.
- L15: Supp, Base polytope, polymatroids and entropic Venn diagrams, exchange capacity,
- L16: proof that minimum norm point yields min of submodular function, and the lattice of minimizers of a submodular function. Lovasz extension
- L17: Lovasz extension, Choquet Integration, more properties/examples of Lovasz extension, convex minimization and SEM.
- L18: Lovasz extension examples and structured convex norms, The Min-Norm Point Algorithm detailed.
- L19: symmetric submodular function minimization, maximizing monotone submodular function w. card constraints.
- L20: maximizing monotone submodular function w. other constraints, non-monotone maximization

Finals Week: June 9th-13th, 2014.

ogistics Review

Many (Equivalent) Definitions of Submodularity

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B), \ \forall A, B \subseteq V$$
 (5.6)

$$f(j|S) \ge f(j|T), \ \forall S \subseteq T \subseteq V, \ \text{with } j \in V \setminus T$$
 (5.7)

$$f(C|S) \ge f(C|T), \forall S \subseteq T \subseteq V, \text{ with } C \subseteq V \setminus T$$
 (5.8)

$$f(j|S) \ge f(j|S \cup \{k\}), \ \forall S \subseteq V \text{ with } j \in V \setminus (S \cup \{k\})$$
 (5.9)

$$f(A \cup B|A \cap B) \le f(A|A \cap B) + f(B|A \cap B), \ \forall A, B \subseteq V$$
 (5.10)

$$f(T) \le f(S) + \sum_{j \in T \setminus S} f(j|S) - \sum_{j \in S \setminus T} f(j|S \cup T - \{j\}), \ \forall S, T \subseteq V$$

(5.11)

$$f(T) \le f(S) + \sum f(j|S), \ \forall S \subseteq T \subseteq V$$
 (5.12)

$$f(T) \le f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}) + \sum_{j \in T \setminus S} f(j|S \cap T) \ \forall S, T \subseteq V$$

• We saw: column space of a matrix, dimensionality of span of subset of columns as rank function.

- We saw: column space of a matrix, dimensionality of span of subset of columns as rank function.
- Incidence matrix of (arbitrarily oriented version of) graph G=(V,E), rank of matrix columns F corresponded to spanning tree of edge-induced graph G'=(V',F) where v' are vertices incident to edges in F.

- We saw: column space of a matrix, dimensionality of span of subset of columns as rank function.
- Incidence matrix of (arbitrarily oriented version of) graph G=(V,E), rank of matrix columns F corresponded to spanning tree of edge-induced graph G'=(V',F) where v' are vertices incident to edges in F.
- We saw several different "greedy" algorithms that proced optimal spanning trees (Borůvka's, Jarník/Prim/Dijkstra's, and Kruskal's).

- We saw: column space of a matrix, dimensionality of span of subset of columns as rank function.
- Incidence matrix of (arbitrarily oriented version of) graph G=(V,E), rank of matrix columns F corresponded to spanning tree of edge-induced graph G'=(V',F) where v' are vertices incident to edges in F.
- We saw several different "greedy" algorithms that proced optimal spanning trees (Borůvka's, Jarník/Prim/Dijkstra's, and Kruskal's).
- We wish to more formally connect the above, and generalize further.

From Matrix Rank → Matroid

- So V is set of column vector indices of a matrix.
- Let \mathcal{I} be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.
- Given a set $B \in \mathcal{I}$ of linearly independent vectors, then any subset $A \subseteq B$ is also linearly independent. Hence, \mathcal{I} is down-closed or "subclusive", under subsets. In other words,

$$A \subseteq B \text{ and } B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$$
 (5.32)

• maxInd: Inclusionwise maximal independent subsets (or bases) of any set $B \subseteq V$.

$$\mathsf{maxInd}(B) \triangleq \{A \subseteq B : A \in \mathcal{I} \text{ and } \forall v \in B \setminus A, A \cup \{v\} \notin \mathcal{I}\} \ \ \textbf{(5.33)}$$

• Given any set $B \subset V$ of vectors, all maximal (by set inclusion) subsets of linearly independent vectors are the same size. That is, for all $B \subseteq V$,

$$\forall A_1, A_2 \in \mathsf{maxInd}(B), \quad |A_1| = |A_2| \tag{5.34}$$

From Matrix Rank → Matroid

ullet Thus, for all $I \in \mathcal{I}$, the matrix rank function has the property

$$r(I) = |I| \tag{5.32}$$

and for any $B \notin \mathcal{I}$,

$$r(B) = \max\{|A| : A \subseteq B \text{ and } A \in \mathcal{I}\} \le |B| \tag{5.33}$$

Independent set definition of a matroid is perhaps most natural. Note, if $J \in \mathcal{I}$, then J is said to be an independent set.

Definition 5.2.4 (Matroid)

A set system (E,\mathcal{I}) is a Matroid if

- (I1) $\emptyset \in \mathcal{I}$
- (12) $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$
- (I3) $\forall I,J\in\mathcal{I}$, with |I|=|J|+1, then there exists $x\in I\setminus J$ such that $J\cup\{x\}\in\mathcal{I}$.

Why is (I1) is not redundant given (I2)? Because without (I1) could have a non-matroid where $\mathcal{I} = \{\}$.

On Matroids

 Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.

On Matroids

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.

On Matroids

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.
- The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.
- The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).
- Understanding matroids crucial for understanding submodularity.

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.
- The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).
- Understanding matroids crucial for understanding submodularity.
- Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful constraint set, and fast algorithms for submodular optimization subject to one (or more) matroid independence constraints exist.

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.
- The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).
- Understanding matroids crucial for understanding submodularity.
- Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful constraint set, and fast algorithms for submodular optimization subject to one (or more) matroid independence constraints exist.
- Crapo & Rota preferred the term "combinatorial geometry", or more specifically a "pregeometry" and said that pregeometries are "often described by the ineffably cacaphonic [sic] term 'matroid', which we prefer to avoid in favor of the term 'pregeometry'."

Slight modification (non unit increment) that is equivalent.

Definition 5.3.1 (Matroid-II)

A set system (E, \mathcal{I}) is a Matroid if

- (I1') $\emptyset \in \mathcal{I}$
- (12') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (or "down-closed")
- (13') $\forall I,J\in\mathcal{I}$, with |I|>|J|, then there exists $x\in I\setminus J$ such that $J\cup\{x\}\in\mathcal{I}$

Note (I1)=(I1'), (I2)=(I2'), and we get (I3)=(I3') using induction.

Matroids, independent sets, and bases

• Independent sets: Given a matroid $M=(E,\mathcal{I})$, a subset $A\subseteq E$ is called independent if $A\in\mathcal{I}$ and otherwise A is called dependent.

Matroids, independent sets, and bases

- Independent sets: Given a matroid $M = (E, \mathcal{I})$, a subset $A \subseteq E$ is called independent if $A \in \mathcal{I}$ and otherwise A is called dependent.
- A base of $U \subseteq E$: For $U \subseteq E$, a subset $B \subseteq U$ is called a base of Uif B is inclusionwise maximally independent subset of U. That is, $B \in \mathcal{I}$ and there is no $Z \in \mathcal{I}$ with $B \subset Z \subseteq U$.

Matroids, independent sets, and bases

- Independent sets: Given a matroid $M = (E, \mathcal{I})$, a subset $A \subseteq E$ is called independent if $A \in \mathcal{I}$ and otherwise A is called dependent.
- A base of $U \subseteq E$: For $U \subseteq E$, a subset $B \subseteq U$ is called a base of U if B is inclusionwise maximally independent subset of U. That is, $B \in \mathcal{I}$ and there is no $Z \in \mathcal{I}$ with $B \subset Z \subseteq U$.
- A base of a matroid: If U = E, then a "base of E" is just called a base of the matroid M (this corresponds to a basis in a linear space).

Matroids - important property

Proposition 5.3.2

In a matroid $M=(E,\mathcal{I})$, for any $U\subseteq E(M)$, any two bases of U have the same size.

Proposition 5.3.2

In a matroid $M=(E,\mathcal{I})$, for any $U\subseteq E(M)$, any two bases of U have the same size.

ullet In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.

Proposition 5.3.2

In a matroid $M=(E,\mathcal{I})$, for any $U\subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Matroids - important property

Proposition 5.3.2

Matroids

In a matroid $M=(E,\mathcal{I})$, for any $U\subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if

Proposition 5.3.2

In a matroid $M=(E,\mathcal{I})$, for any $U\subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if

(I1') $\emptyset \in \mathcal{I}$ (emptyset containing)

Matroids - important property

Proposition 5.3.2

In a matroid $M=(E,\mathcal{I})$, for any $U\subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
 In fact under (I1) (I2) this condition is equivalent to (I3). Exercise
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if

- (I1') $\emptyset \in \mathcal{I}$ (emptyset containing)
- (I2') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (down-closed or subclusive)

Matroids - important property

Proposition 5.3.2

In a matroid $M=(E,\mathcal{I})$, for any $U\subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
 In fact, under (I1) (I2), this condition is equivalent to (I3). Exercise
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if

- (I1') $\emptyset \in \mathcal{I}$ (emptyset containing)
- (I2') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (down-closed or subclusive)
- (I3') $\forall X \subseteq V$, and $I_1, I_2 \in \mathsf{maxInd}(X)$, we have $|I_1| = |I_2|$ (all maximally independent subsets of X have the same size).

Matroids - rank

• Thus, in any matroid $M=(E,\mathcal{I}), \ \forall U\subseteq E(M)$, any two bases of U have the same size.

Matroids - rank

- Thus, in any matroid $M=(E,\mathcal{I})$, $\forall U\subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just r(U) when the matroid in equation is unambiguous.

Matroids - rank

- Thus, in any matroid $M=(E,\mathcal{I})$, $\forall U\subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just r(U) when the matroid in equation is unambiguous.
- $r(E) = r_{(E,\mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.

- Thus, in any matroid $M=(E,\mathcal{I}), \ \forall U\subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just r(U) when the matroid in equation is unambiguous.
- $r(E) = r_{(E,\mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

- Thus, in any matroid $M = (E, \mathcal{I}), \forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just r(U) when the matroid in equation is unambiguous.
- ullet $r(E) = r_{(E,\mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 5.3.4 (matroid rank function)

The rank of a matroid is a function $r: 2^E \to \mathbb{Z}_+$ defined by

$$r(A) = \max\{|X| : X \subseteq A, X \in \mathcal{I}\} = \max_{X \in \mathcal{I}} |A \cap X|$$
 (5.1)

- Thus, in any matroid $M = (E, \mathcal{I}), \forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just r(U) when the matroid in equation is unambiguous.
- $r(E) = r_{(E,\mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 5.3.4 (matroid rank function)

The rank of a matroid is a function $r: 2^E \to \mathbb{Z}_+$ defined by

$$r(A) = \max\{|X| : X \subseteq A, X \in \mathcal{I}\} = \max_{X \in \mathcal{I}} |A \cap X|$$
 (5.1)

• From the above, we immediately see that $r(A) \leq |A|$.

ttroids Matroid Examples Matroid Rank Partition Matroid

Matroids - rank

- Thus, in any matroid $M=(E,\mathcal{I})$, $\forall U\subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just r(U) when the matroid in equation is unambiguous.
- $r(E) = r_{(E,\mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 5.3.4 (matroid rank function)

The rank of a matroid is a function $r: 2^E \to \mathbb{Z}_+$ defined by

$$r(A) = \max\{|X| : X \subseteq A, X \in \mathcal{I}\} = \max_{X \in \mathcal{I}} |A \cap X|$$
 (5.1)

- From the above, we immediately see that $r(A) \leq |A|$.
- Moreover, if r(A) = |A|, then $A \in \mathcal{I}$, meaning A is independent (in this case, A is a self base).

Matroids, other definitions using matroid rank $r: 2^V \to \mathbb{Z}_+$

Definition 5.3.5 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

A hyperplane is a flat of rank r(M) - 1.

Matroids

Matroids, other definitions using matroid rank $r: 2^V o \mathbb{Z}_+$

Definition 5.3.5 (closed/flat/subspace)

A subset $A\subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x\in E\setminus A$, $r(A\cup\{x\})=r(A)+1$.

A hyperplane is a flat of rank r(M) - 1.

Definition 5.3.6 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$

Matroids, other definitions using matroid rank $r: 2^V \to \mathbb{Z}_+$

Definition 5.3.5 (closed/flat/subspace)

A subset $A\subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x\in E\setminus A$, $r(A\cup\{x\})=r(A)+1$.

A hyperplane is a flat of rank r(M) - 1.

Definition 5.3.6 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$

Therefore, a closed set A has span(A) = A.

Matroids, other definitions using matroid rank $r: 2^V \to \mathbb{Z}_+$

Definition 5.3.5 (closed/flat/subspace)

A subset $A\subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x\in E\setminus A$, $r(A\cup\{x\})=r(A)+1$.

A hyperplane is a flat of rank r(M) - 1.

Definition 5.3.6 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$

Therefore, a closed set A has span(A) = A.

Definition 5.3.7 (circuit)

A subset $A\subseteq E$ is circuit or a cycle if it is an $\underline{\text{inclusionwise-minimal}}$ $\underline{\text{dependent set}}$ (i.e., if r(A)<|A| and for any $a\in A$, $\overline{r(A\setminus\{a\})}=|A|-1$).

Matroids by bases

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 5.3.8 (Matroid (by bases))

Let E be a set and $\mathcal B$ be a nonempty collection of subsets of E. Then the following are equivalent.

- \bullet \mathcal{B} is the collection of bases of a matroid;
- ② if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B' x + y \in \mathcal{B}$ for some $y \in B \setminus B'$.
- **③** If $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B y + x \in \mathcal{B}$ for some $y \in B \setminus B'$.

Properties 2 and 3 are called "exchange properties."

Matroids by bases

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 5.3.8 (Matroid (by bases))

Let E be a set and $\mathcal B$ be a nonempty collection of subsets of E. Then the following are equivalent.

- \bullet \mathcal{B} is the collection of bases of a matroid;
- ② if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B' x + y \in \mathcal{B}$ for some $y \in B \setminus B'$.
- **1** If $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B y + x \in \mathcal{B}$ for some $y \in B \setminus B'$.

Properties 2 and 3 are called "exchange properties."

Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.

Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not surprising that circuits can also characterize a matroid.

Theorem 5.3.9 (Matroid by circuits)

Let E be a set and $\mathcal C$ be a collection of subsets of E that satisfy the following three properties:

- **1** (C1): ∅ ∉ C
- (C2): if $C_1,C_2\in \mathcal{C}$ and $C_1\subseteq C_2$, then $C_1=C_2$.
- **3** (C3): if $C_1, C_2 \in \mathcal{C}$ with $C_1 \neq C_2$, and $e \in C_1 \cap C_2$, then there exists a $C_3 \in \mathcal{C}$ such that $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\}$.

Matroids by circuits

Several circuit definitions for matroids.

Theorem 5.3.10 (Matroid by circuits)

Let E be a set and $\mathcal C$ be a collection of nonempty subsets of E, such that no two sets in $\mathcal C$ are contained in each other. Then the following are equivalent.

- ullet is the collection of circuits of a matroid;
- ② if $C, C' \in \mathcal{C}$, and $x \in C \cap C'$, then $(C \cup C') \setminus \{x\}$ contains a set in \mathcal{C} ;
- **3** if $C, C' \in \mathcal{C}$, and $x \in C \cap C'$, and $y \in C \setminus C'$, then $(C \cup C') \setminus \{x\}$ contains a set in \mathcal{C} containing y;

Matroids by circuits

Several circuit definitions for matroids.

Theorem 5.3.10 (Matroid by circuits)

Let E be a set and $\mathcal C$ be a collection of nonempty subsets of E, such that no two sets in $\mathcal C$ are contained in each other. Then the following are equivalent.

- ullet is the collection of circuits of a matroid;
- ② if $C, C' \in \mathcal{C}$, and $x \in C \cap C'$, then $(C \cup C') \setminus \{x\}$ contains a set in \mathcal{C} ;
- $\textbf{ 3} \ \ \textit{if} \ C,C'\in\mathcal{C} \textit{, and} \ x\in C\cap C' \textit{, and} \ y\in C\setminus C' \textit{, then} \ (C\cup C')\setminus \{x\} \\ \textit{ contains a set in } \mathcal{C} \ \textit{ containing} \ y;$

Again, think about this for a moment in terms of linear spaces and matrices, and spanning trees.

Matroids by submodular functions

Theorem 5.3.11 (Matroid by submodular functions)

Let $f: 2^E \to \mathbb{Z}$ be a integer valued monotone non-decreasing submodular function. Define a set of sets as follows:

$$\mathcal{C}(f) = \Big\{ C \subseteq E : C \text{ is non-empty,}$$
 is inclusionwise-minimal,} and has $f(C) < |C| \Big\}$ (5.2)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal in this case means that if $C \in \mathcal{C}(f)$, then there exists no $C' \subset C$ with $C' \in \mathcal{C}(f)$ (i.e., $C' \subset C$ would either be empty or have $f(C') \ge |C'|$). Also, recall inclusionwise-minimal in Definition 5.3.7, the definition of a circuit.

Uniform Matroid

• Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{A \subseteq E : |A| \le k\}$.

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{A \subseteq E : |A| \le k\}$.
- Then (E,\mathcal{I}) is a matroid called a k-uniform matroid.

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{A \subseteq E : |A| \leq k\}$.
- Then (E,\mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I, J \in \mathcal{I}$, and $|I| < |J| \le k$, and $j \in J$ such that $j \notin I$, then j is such that $|I+j| \le k$ and so $I+j \in \mathcal{I}$.

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{A \subseteq E : |A| \le k\}$.
- Then (E,\mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I, J \in \mathcal{I}$, and $|I| < |J| \le k$, and $j \in J$ such that $j \notin I$, then j is such that |I+j| < k and so $I+j \in \mathcal{I}$.
- Rank function

$$r(A) = \begin{cases} |A| & \text{if } |A| \le k \\ k & \text{if } |A| > k \end{cases}$$
 (5.3)

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{A \subseteq E : |A| \le k\}$.
- Then (E,\mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I,J\in\mathcal{I}$, and $|I|<|J|\leq k$, and $j\in J$ such that $j\not\in I$, then j is such that $|I+j|\leq k$ and so $I+j\in\mathcal{I}$.
- Rank function

$$r(A) = \begin{cases} |A| & \text{if } |A| \le k \\ k & \text{if } |A| > k \end{cases}$$
 (5.3)

ullet Note, this function is submodular. Not surprising since $r(A) = \min(|A|, k)$ which is a non-decreasing concave function applied to a modular function.

Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{A \subseteq E : |A| \le k\}$.
- Then (E,\mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I,J\in\mathcal{I}$, and $|I|<|J|\leq k$, and $j\in J$ such that $j\not\in I$, then j is such that $|I+j|\leq k$ and so $I+j\in\mathcal{I}$.
- Rank function

$$r(A) = \begin{cases} |A| & \text{if } |A| \le k \\ k & \text{if } |A| > k \end{cases}$$
 (5.3)

- Note, this function is submodular. Not surprising since $r(A) = \min(|A|, k)$ which is a non-decreasing concave function applied to a modular function.
- Closure function

$$\operatorname{span}(A) = \begin{cases} A & \text{if } |A| < k, \\ E & \text{if } |A| \ge k, \end{cases}$$
(5.4)

Uniform Matroid

• Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{A \subseteq E : |A| \le k\}$.

- Then (E,\mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I,J\in\mathcal{I}$, and $|I|<|J|\leq k$, and $j\in J$ such that $j\not\in I$, then j is such that $|I+j|\leq k$ and so $I+j\in\mathcal{I}$.
- Rank function

$$r(A) = \begin{cases} |A| & \text{if } |A| \le k \\ k & \text{if } |A| > k \end{cases}$$
 (5.3)

- Note, this function is submodular. Not surprising since $r(A) = \min(|A|, k)$ which is a non-decreasing concave function applied to a modular function.
- Closure function

$$\operatorname{span}(A) = \begin{cases} A & \text{if } |A| < k, \\ E & \text{if } |A| > k, \end{cases}$$
(5.4)

• A "free" matroid sets k = |E|, so everything is independent.

Linear (or Matric) Matroid

ullet Let ${\bf X}$ be an $n \times m$ matrix and $E = \{1, \dots, m\}$

- Let X be an $n \times m$ matrix and $E = \{1, \dots, m\}$
- Let \mathcal{I} consists of subsets of E such that if $A \in \mathcal{I}$, and $A = \{a_1, a_2, \dots, a_k\}$ then the vectors $x_{a_1}, x_{a_2}, \dots, x_{a_k}$ are linearly independent.

- Let X be an $n \times m$ matrix and $E = \{1, \dots, m\}$
- Let \mathcal{I} consists of subsets of E such that if $A \in \mathcal{I}$, and $A = \{a_1, a_2, \dots, a_k\}$ then the vectors $x_{a_1}, x_{a_2}, \dots, x_{a_k}$ are linearly independent.
- the rank function is just the rank of the space spanned by the corresponding set of vectors.

- Let X be an $n \times m$ matrix and $E = \{1, \dots, m\}$
- Let \mathcal{I} consists of subsets of E such that if $A \in \mathcal{I}$, and $A = \{a_1, a_2, \dots, a_k\}$ then the vectors $x_{a_1}, x_{a_2}, \dots, x_{a_k}$ are linearly independent.
- the rank function is just the rank of the space spanned by the corresponding set of vectors.
- rank is submodular, it is intuitive that it satisfies the diminishing returns property (a given vector can only become linearly dependent in a greater context, thereby no longer contributing to rank).

- Let X be an $n \times m$ matrix and $E = \{1, \dots, m\}$
- Let \mathcal{I} consists of subsets of E such that if $A \in \mathcal{I}$, and $A = \{a_1, a_2, \dots, a_k\}$ then the vectors $x_{a_1}, x_{a_2}, \dots, x_{a_k}$ are linearly independent.
- the rank function is just the rank of the space spanned by the corresponding set of vectors.
- rank is submodular, it is intuitive that it satisfies the diminishing returns property (a given vector can only become linearly dependent in a greater context, thereby no longer contributing to rank).
- Called both linear matroids and matric matroids.

• Let G = (V, E) be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph G(V,A) by A does not contain any cycle.

- Let G = (V, E) be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph G(V,A) by A does not contain any cycle.
- Then $M = (E, \mathcal{I})$ is a matroid.

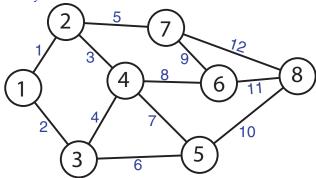
- Let G = (V, E) be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph G(V,A) by A does not contain any cycle.
- Then $M = (E, \mathcal{I})$ is a matroid.
- I contains all forests.

- Let G = (V, E) be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph G(V,A) by A does not contain any cycle.
- Then $M = (E, \mathcal{I})$ is a matroid.
- I contains all forests.
- Bases are spanning forests (spanning trees if G is connected).

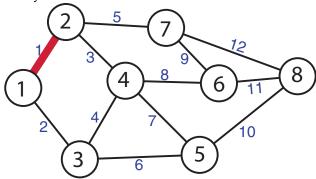
- Let G = (V, E) be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph G(V,A) by A does not contain any cycle.
- Then $M = (E, \mathcal{I})$ is a matroid.
- I contains all forests.
- Bases are spanning forests (spanning trees if G is connected).
- Rank function r(A) is the size of the largest spanning forest contained in G(V, A).

- Let G = (V, E) be a graph. Consider (E, \mathcal{I}) where the edges of the graph E are the ground set and $A \in \mathcal{I}$ if the edge-induced graph G(V,A) by A does not contain any cycle.
- Then $M = (E, \mathcal{I})$ is a matroid.
- I contains all forests.
- Bases are spanning forests (spanning trees if G is connected).
- Rank function r(A) is the size of the largest spanning forest contained in G(V, A).
- Closure function adds all edges between the vertices adjacent to any edge in A. Closure of a spanning forest is G.

• A graph defines a matroid on edge sets, independent sets are those without a cycle.

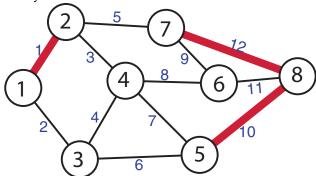


• A graph defines a matroid on edge sets, independent sets are those without a cycle.

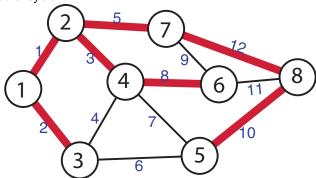


Example: graphic matroid

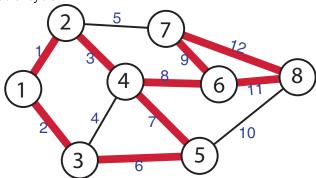
 A graph defines a matroid on edge sets, independent sets are those without a cycle.



• A graph defines a matroid on edge sets, independent sets are those without a cycle.

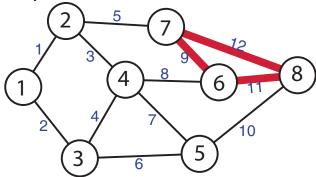


• A graph defines a matroid on edge sets, independent sets are those without a cycle.



Example: graphic matroid

 A graph defines a matroid on edge sets, independent sets are those without a cycle.



ullet Let V be our ground set.

- Let V be our ground set.
- Let $V = V_1 \cup V_2 \cup \cdots \cup V_\ell$ be a partition of V into ℓ blocks (i.e., disjoint sets). Define a set of subsets of V as

$$\mathcal{I} = \{ X \subseteq V : |X \cap V_i| \le k_i \text{ for all } i = 1, \dots, \ell \}.$$
 (5.5)

where k_1, \ldots, k_ℓ are fixed parameters, $k_i \geq 0$. Then $M = (V, \mathcal{I})$ is a matroid.

- Let *V* be our ground set.
- Let $V = V_1 \cup V_2 \cup \cdots \cup V_\ell$ be a partition of V into ℓ blocks (i.e., disjoint sets). Define a set of subsets of V as

$$\mathcal{I} = \{ X \subseteq V : |X \cap V_i| \le k_i \text{ for all } i = 1, \dots, \ell \}.$$
 (5.5)

where k_1, \ldots, k_ℓ are fixed parameters, $k_i \geq 0$. Then $M = (V, \mathcal{I})$ is a matroid.

• Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell=1,\ V_1=V$, and $k_1=k$.

- Let V be our ground set.
- Let $V=V_1\cup V_2\cup \cdots \cup V_\ell$ be a partition of V into ℓ blocks (i.e., disjoint sets). Define a set of subsets of V as

$$\mathcal{I} = \{ X \subseteq V : |X \cap V_i| \le k_i \text{ for all } i = 1, \dots, \ell \}.$$
 (5.5)

where k_1, \ldots, k_ℓ are fixed parameters, $k_i \geq 0$. Then $M = (V, \mathcal{I})$ is a matroid.

- Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell=1,\ V_1=V$, and $k_1=k$.
- Parameters associated with a partition matroid: ℓ and k_1, k_2, \ldots, k_ℓ although often the k_i 's are all the same.

- ullet Let V be our ground set.
- Let $V = V_1 \cup V_2 \cup \cdots \cup V_\ell$ be a partition of V into ℓ blocks (i.e., disjoint sets). Define a set of subsets of V as

$$\mathcal{I} = \{ X \subseteq V : |X \cap V_i| \le k_i \text{ for all } i = 1, \dots, \ell \}.$$
 (5.5)

where k_1, \ldots, k_ℓ are fixed parameters, $k_i \geq 0$. Then $M = (V, \mathcal{I})$ is a matroid.

- Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell=1,\ V_1=V$, and $k_1=k$.
- Parameters associated with a partition matroid: ℓ and k_1, k_2, \ldots, k_ℓ although often the k_i 's are all the same.
- We'll show that property (I3') in Def 5.3.3 holds. If $X,Y \in \mathcal{I}$ with |Y| > |X|, then there must be at least one i with $|Y \cap V_i| > |X \cap V_i|$. Therefore, adding one element $e \in V_i \cap (Y \setminus X)$ to X won't break independence.

Ground set of objects, ${\cal V}=$

Partition of V into six blocks, V_1, V_2, \ldots, V_6

Limit associated with each block, $\{k_1, k_2, \dots, k_6\}$

Independent subset but not maximally independent.

Maximally independent subset, what is called a base.

Not independent since over limit in set six.

Matroids - rank

Lemma 5.5.1

The rank function $r: 2^E \to \mathbb{Z}_+$ of a matroid is submodular, that is $r(A) + r(B) \ge r(A \cup B) + r(A \cap B)$

Lemma 5.5.1

The rank function $r: 2^E \to \mathbb{Z}_+$ of a matroid is submodular, that is $r(A) + r(B) \ge r(A \cup B) + r(A \cap B)$

Proof.

1 Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$

Matroids - rank

Lemma 5.5.1

The rank function $r: 2^E \to \mathbb{Z}_+$ of a matroid is submodular, that is $r(A) + r(B) \ge r(A \cup B) + r(A \cap B)$

- **1** Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
- ullet Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$. can find such a $Y \supseteq X$ because the following. Let $Y' \in \mathcal{I}$ be any inclusionwise maximal set with $Y' \subseteq A \cup B$, which might not have $X \subseteq Y'$. Starting from $X \subseteq A \cup B$, since $|Y'| \ge |X|$, there exists a $y \in Y' \setminus X \subseteq A \cup B$ such that $X + y \in \mathcal{I}$ but since $y \in A \cup B$, also $X + y \in A \cup B$ — we then add y to X. We can keep doing this while |Y'| > |X| since this is a matroid. We end up with an inclusionwise maximal set Y (so |Y| = |Y'|) with $Y \in \mathcal{I}$ and $X \subseteq Y$.

Matroids - rank

Lemma 5.5.1

The rank function $r: 2^E \to \mathbb{Z}_+$ of a matroid is submodular, that is $r(A) + r(B) \ge r(A \cup B) + r(A \cap B)$

- **1** Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
- ② Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
- **③** Since M is a matroid, we know that $r(A \cap B) = r(X) = |X|$, and $r(A \cup B) = r(Y) = |Y|$. Also, for any $U \in \mathcal{I}$, $r(A) \ge |A \cap U|$.

Lemma 5.5.1

The rank function $r: 2^E \to \mathbb{Z}_+$ of a matroid is submodular, that is $r(A) + r(B) \ge r(A \cup B) + r(A \cap B)$

- **1** Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
- **2** Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
- Since M is a matroid, we know that $r(A \cap B) = r(X) = |X|$, and $r(A \cup B) = r(Y) = |Y|$. Also, for any $U \in \mathcal{I}$, $r(A) \ge |A \cap U|$.
- Then we have

$$r(A) + r(B) \tag{5.6}$$

Matroids - rank

Lemma 5.5.1

The rank function $r: 2^E \to \mathbb{Z}_+$ of a matroid is submodular, that is $r(A) + r(B) \ge r(A \cup B) + r(A \cap B)$

- **1** Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
- **2** Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
- Since M is a matroid, we know that $r(A \cap B) = r(X) = |X|$, and $r(A \cup B) = r(Y) = |Y|$. Also, for any $U \in \mathcal{I}$, $r(A) \ge |A \cap U|$.
- Then we have

$$r(A) + r(B) \ge |Y \cap A| + |Y \cap B| \tag{5.6}$$

Matroids - rank

Lemma 5.5.1

The rank function $r: 2^E \to \mathbb{Z}_+$ of a matroid is submodular, that is $r(A) + r(B) \ge r(A \cup B) + r(A \cap B)$

- **1** Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
- 2 Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
- $\textbf{ Since } M \text{ is a matroid, we know that } r(A \cap B) = r(X) = |X|, \text{ and } r(A \cup B) = r(Y) = |Y|. \text{ Also, for any } U \in \mathcal{I}, \ r(A) \geq |A \cap U|.$
- Then we have

$$r(A) + r(B) \ge |Y \cap A| + |Y \cap B| \tag{5.6}$$

$$= |Y \cap (A \cap B)| + |Y \cap (A \cup B)| \tag{5.7}$$

Lemma 5.5.1

The rank function $r: 2^E \to \mathbb{Z}_+$ of a matroid is submodular, that is $r(A) + r(B) \ge r(A \cup B) + r(A \cap B)$

- **1** Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
- **2** Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
- Since M is a matroid, we know that $r(A \cap B) = r(X) = |X|$, and $r(A \cup B) = r(Y) = |Y|$. Also, for any $U \in \mathcal{I}$, $r(A) \ge |A \cap U|$.
- Then we have

$$r(A) + r(B) \ge |Y \cap A| + |Y \cap B| \tag{5.6}$$

$$= |Y \cap (A \cap B)| + |Y \cap (A \cup B)| \tag{5.7}$$

$$\geq |X| + |Y| = r(A \cap B) + r(A \cup B)$$
 (5.8)

In fact, we can use the rank of a matroid for its definition.

Theorem 5.5.2 (Matroid from rank)

Let E be a set and let $r: 2^E \to \mathbb{Z}_+$ be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $A, B \subseteq E$:

- (R1) $\forall A \subseteq E \ 0 \le r(A) \le |A|$ (non-negative cardinality bounded)
- (R2) $r(A) \le r(B)$ whenever $A \subseteq B \subseteq E$ (monotone non-decreasing)
- (R3) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ for all $A, B \subseteq E$ (submodular)
 - So submodularity and non-negative monotone non-decreasing, and unit increase is necessary and sufficient to define the matroid.
 - Given above, unit increment (if r(A) = k, then either $r(A \cup \{v\}) = k \text{ or } r(A \cup \{v\}) = k + 1) \text{ holds.}$
 - ullet A matroid is sometimes given as (E,r) where E is ground set and ris rank function.

In fact, we can use the rank of a matroid for its definition.

Theorem 5.5.2 (Matroid from rank)

Let E be a set and let $r: 2^E \to \mathbb{Z}_+$ be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $A, B \subseteq E$:

- (R1) $\forall A \subseteq E \ 0 \le r(A) \le |A|$ (non-negative cardinality bounded)
- (R2) $r(A) \le r(B)$ whenever $A \subseteq B \subseteq E$ (monotone non-decreasing)
- (R3) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ for all $A, B \subseteq E$ (submodular)
 - From above, $r(\emptyset) = 0$. Let $v \notin A$, then by monotonicity and submodularity, $r(A) \le r(A \cup \{v\}) \le r(A) + r(\{v\})$ which gives only two possible values to $r(A \cup \{v\})$.

atroids Matroid Examples Matroid Rank Partition Matroi

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

• Given a matroid $M=(E,\mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.

- Given a matroid $M=(E,\mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I} = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, \mathcal{I}) is a matroid.

- Given a matroid $M=(E,\mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I} = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First. $\emptyset \in \mathcal{I}$.

- Given a matroid $M=(E,\mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I} = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First, $\emptyset \in \mathcal{I}$.
- ullet Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

- Given a matroid $M=(E,\mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I} = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First, $\emptyset \in \mathcal{I}$.
- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

$$r(X) \ge r(Y) - r(Y \setminus X) \tag{5.9}$$

- Given a matroid $M=(E,\mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I} = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First, $\emptyset \in \mathcal{I}$.
- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

$$r(X) \ge r(Y) - r(Y \setminus X) - r(\emptyset) \tag{5.9}$$

- Given a matroid $M=(E,\mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I} = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First, $\emptyset \in \mathcal{I}$.
- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

$$r(X) \ge r(Y) - r(Y \setminus X) - r(\emptyset) \tag{5.9}$$

$$\geq |Y| - |Y \setminus X| \tag{5.10}$$

- Given a matroid $M=(E,\mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I} = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First, $\emptyset \in \mathcal{I}$.
- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

$$r(X) \ge r(Y) - r(Y \setminus X) - r(\emptyset) \tag{5.9}$$

$$\geq |Y| - |Y \setminus X| \tag{5.10}$$

$$= |X| \tag{5.11}$$

Proof of Theorem 5.5.2 (matroid from rank).

- Given a matroid $M=(E,\mathcal{I})$, we see its rank function as defined in Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I} = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First, $\emptyset \in \mathcal{I}$.
- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

$$r(X) \ge r(Y) - r(Y \setminus X) - r(\emptyset) \tag{5.9}$$

$$\geq |Y| - |Y \setminus X| \tag{5.10}$$

$$=|X| \tag{5.11}$$

implying r(X) = |X|, and thus $X \in \mathcal{I}$.

Matroids

Proof of Theorem 5.5.2 (matroid from rank) cont.

• Let $A, B \in \mathcal{I}$, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let $B \setminus A = \{b_1, b_2, \dots, b_k\}$ (note $k \le |B|$).

Matroids

- Let $A, B \in \mathcal{I}$, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let $B \setminus A = \{b_1, b_2, \dots, b_k\}$ (note k < |B|).
- Suppose, to the contrary, that $\forall b \in B \setminus A, A + b \notin \mathcal{I}$, which means for all such b, r(A+b) = r(A) = |A|. Then

Matroids

- Let $A, B \in \mathcal{I}$, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let $B \setminus A = \{b_1, b_2, \dots, b_k\}$ (note k < |B|).
- Suppose, to the contrary, that $\forall b \in B \setminus A, A + b \notin \mathcal{I}$, which means for all such b, r(A+b)=r(A)=|A|. Then

$$r(B) \le r(A \cup B) \tag{5.12}$$

- Let $A, B \in \mathcal{I}$, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let $B \setminus A = \{b_1, b_2, \dots, b_k\}$ (note k < |B|).
- Suppose, to the contrary, that $\forall b \in B \setminus A$, $A + b \notin \mathcal{I}$, which means for all such b, r(A+b)=r(A)=|A|. Then

$$r(B) \le r(A \cup B) \tag{5.12}$$

$$\leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A)$$
 (5.13)

- Let $A, B \in \mathcal{I}$, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let $B \setminus A = \{b_1, b_2, \dots, b_k\}$ (note k < |B|).
- Suppose, to the contrary, that $\forall b \in B \setminus A$, $A + b \notin \mathcal{I}$, which means for all such b, r(A+b)=r(A)=|A|. Then

$$r(B) \le r(A \cup B) \tag{5.12}$$

$$\leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A) \tag{5.13}$$

$$= r(A \cup (B \setminus \{b_1\}) \tag{5.14}$$

- Let $A, B \in \mathcal{I}$, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let $B \setminus A = \{b_1, b_2, \dots, b_k\}$ (note k < |B|).
- Suppose, to the contrary, that $\forall b \in B \setminus A$, $A + b \notin \mathcal{I}$, which means for all such b, r(A+b)=r(A)=|A|. Then

$$r(B) \le r(A \cup B) \tag{5.12}$$

$$\leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A)$$
 (5.13)

$$= r(A \cup (B \setminus \{b_1\}) \tag{5.14}$$

$$\leq r(A \cup (B \setminus \{b_1, b_2\})) + r(A \cup \{b_2\}) - r(A)$$
 (5.15)

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let $B \setminus A = \{b_1, b_2, \dots, b_k\}$ (note k < |B|).
- Suppose, to the contrary, that $\forall b \in B \setminus A$, $A + b \notin \mathcal{I}$, which means for all such b, r(A+b)=r(A)=|A|. Then

$$r(B) \le r(A \cup B) \tag{5.12}$$

$$\leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A)$$
 (5.13)

$$= r(A \cup (B \setminus \{b_1\}) \tag{5.14}$$

$$\leq r(A \cup (B \setminus \{b_1, b_2\})) + r(A \cup \{b_2\}) - r(A)$$
 (5.15)

$$= r(A \cup (B \setminus \{b_1, b_2\})) \tag{5.16}$$

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let $B \setminus A = \{b_1, b_2, \dots, b_k\}$ (note k < |B|).
- Suppose, to the contrary, that $\forall b \in B \setminus A$, $A + b \notin \mathcal{I}$, which means for all such b, r(A+b) = r(A) = |A|. Then

$$r(B) \le r(A \cup B) \tag{5.12}$$

$$\leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A)$$
 (5.13)

$$= r(A \cup (B \setminus \{b_1\}) \tag{5.14}$$

$$\leq r(A \cup (B \setminus \{b_1, b_2\})) + r(A \cup \{b_2\}) - r(A)$$
 (5.15)

$$= r(A \cup (B \setminus \{b_1, b_2\})) \tag{5.16}$$

$$\leq \ldots \leq r(A) = |A| < |B| \tag{5.17}$$

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let $B \setminus A = \{b_1, b_2, \dots, b_k\}$ (note $k \le |B|$).
- Suppose, to the contrary, that $\forall b \in B \setminus A$, $A+b \notin \mathcal{I}$, which means for all such b, r(A+b)=r(A)=|A|. Then

$$r(B) \le r(A \cup B) \tag{5.12}$$

$$\leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A)$$
 (5.13)

$$= r(A \cup (B \setminus \{b_1\}) \tag{5.14}$$

$$\leq r(A \cup (B \setminus \{b_1, b_2\})) + r(A \cup \{b_2\}) - r(A)$$
 (5.15)

$$= r(A \cup (B \setminus \{b_1, b_2\})) \tag{5.16}$$

$$\leq \ldots \leq r(A) = |A| < |B| \tag{5.17}$$

giving a contradiction since $B \in \mathcal{I}$.

Prof. Jeff Bilmes

Another way of using function r to define a matroid.

Theorem 5.5.3 (Matroid from rank II)

Let E be a finite set and let $r: 2^E \to \mathbb{Z}_+$ be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $A \subseteq E$, and $x, y \in E$:

(R1')
$$r(\emptyset) = 0;$$

(R2')
$$r(X) < r(X \cup \{y\}) < r(X) + 1$$
;

(R3') If
$$r(X \cup \{x\}) = r(X \cup \{y\}) = r(X)$$
, then $r(X \cup \{x,y\}) = r(X)$.

Partition Matroid

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely define a matroid based on any of:

Independence (define the independent sets).

- Independence (define the independent sets).
- Base axioms (exchangeability)

- Independence (define the independent sets).
- Base axioms (exchangeability)
- Circuit axioms

Summarizing: Many ways to define a Matroid

- Independence (define the independent sets).
- Base axioms (exchangeability)
- Circuit axioms
- Closure axioms (we didn't see this, but it is possible)

- Independence (define the independent sets).
- Base axioms (exchangeability)
- Circuit axioms
- Closure axioms (we didn't see this, but it is possible)
- Rank axioms (normalized, monotone, cardinality bounded, submodular)

Maximization problems for matroids

- Given a matroid $M = (E, \mathcal{I})$ and a modular cost function $c: E \to \mathbb{R}$, the task is to find an $X \in \mathcal{I}$ such that $c(X) = \sum_{x \in X} c(x)$ is maximum.
- This seems remarkably similar to the max spanning tree problem.

Minimization problems for matroids

- Given a matroid $M = (E, \mathcal{I})$ and a modular cost function $c: E \to \mathbb{R}$, the task is to find a basis $B \in \mathcal{B}$ such that c(B) is minimized.
- This sounds like a set cover problem (find the minimum cost covering set of sets).

Partition Matroid

• What is the partition matroid's rank function?

- What is the partition matroid's rank function?
- A partition matroids rank function:

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$
 (5.18)

which we also immediately see is submodular using properties we spoke about last week. That is:

Partition Matroid

- What is the partition matroid's rank function?
- A partition matroids rank function:

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$
 (5.18)

which we also immediately see is submodular using properties we spoke about last week. That is:

1 $|A \cap V_i|$ is submodular (in fact modular) in A

- What is the partition matroid's rank function?
- A partition matroids rank function:

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$
 (5.18)

which we also immediately see is submodular using properties we spoke about last week. That is:

- $lacktriangledown |A \cap V_i|$ is submodular (in fact modular) in A
- $\min(\operatorname{submodular}(A), k_i)$ is submodular in A since $|A \cap V_i|$ is monotone.

- What is the partition matroid's rank function?
- A partition matroids rank function:

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$
 (5.18)

which we also immediately see is submodular using properties we spoke about last week. That is:

- $lacktriangledown |A \cap V_i|$ is submodular (in fact modular) in A
- $\min(\text{submodular}(A), k_i)$ is submodular in A since $|A \cap V_i|$ is monotone.
- sums of submodular functions are submodular.

Partition Matroid

- What is the partition matroid's rank function?
- A partition matroids rank function:

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$
 (5.18)

which we also immediately see is submodular using properties we spoke about last week. That is:

- lacktriangledown $|A \cap V_i|$ is submodular (in fact modular) in A
- \bigcirc min(submodular(A), k_i) is submodular in A since $|A \cap V_i|$ is monotone.
- 3 sums of submodular functions are submodular.
- r(A) is also non-negative integral monotone non-decreasing, so it defines a matroid (the partition matroid).

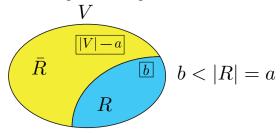
Matroid and Rank

- Thus, we can define a matroid as M=(V,r) where r satisfies matroid rank axioms.
- Example: 2-partition matroid rank function: Given natural numbers $a,b\in\mathbb{Z}_+$ with a>b, and any set $R\subseteq V$ with |R|=a, two-block partition $V=(R,\bar{R})$, where $\bar{R}=V\setminus R$, define:

$$r(A) = \min(|A \cap R|, b) + \min(|A \cap \bar{R}|, |\bar{R}|)$$
(5.19)

$$= \min(|A \cap R|, b) + |A \cap R| \tag{5.20}$$

• Partition matroid figure showing this:



 Can use this to define a truncated matroid rank function. With $r(A) = \min(|A \cap R|, b) + |A \cap \bar{R}|, b < a,$ define:

$$f_R(A) = \min\{r(A), a\}$$
 (5.21)

$$= \min\left\{\min(|A \cap \bar{R}| + |A \cap R|, |A \cap \bar{R}| + b), a\right\}$$
 (5.22)

$$= \min\left\{|A|, b + |A \cap \bar{R}|, a\right\} \tag{5.23}$$

• Can use this to define a truncated matroid rank function. With $r(A) = \min(|A \cap R|, b) + |A \cap \bar{R}|, b < a$, define:

$$f_R(A) = \min\{r(A), a\}$$

$$= \min\{\min(|A \cap \bar{R}| + |A \cap R|, |A \cap \bar{R}| + b), a\}$$
(5.21)

$$= \min \left\{ |A| \ h + |A \cap \overline{R}| \ a \right\} \tag{5.23}$$

$$= \min\left\{|A|, b + |A \cap \bar{R}|, a\right\} \tag{5.23}$$

• Defines a matroid $M=(V,f_R)=(V,\mathcal{I})$ (Goemans et. al.) with

$$\mathcal{I} = \{ I \subseteq V : |I| \le a \text{ and } |I \cap R| \le b \}, \tag{5.24}$$

Truncated Matroid Rank Function

 Can use this to define a truncated matroid rank function. With $r(A) = \min(|A \cap R|, b) + |A \cap \bar{R}|, b < a,$ define:

$$f_R(A) = \min\{r(A), a\}$$

$$= \min\{\min(|A \cap \bar{R}| + |A \cap R|, |A \cap \bar{R}| + b), a\}$$
(5.21)

$$= \min\left\{|A|, b + |A \cap \bar{R}|, a\right\} \tag{5.23}$$

• Defines a matroid $M=(V,f_R)=(V,\mathcal{I})$ (Goemans et. al.) with

$$\mathcal{I} = \{ I \subseteq V : |I| \le a \text{ and } |I \cap R| \le b \}, \tag{5.24}$$

 Useful for showing hardness of constrained submodular minimization. Consider sets $B \subseteq V$ with |B| = a.

• Can use this to define a truncated matroid rank function. With $r(A) = \min(|A \cap R|, b) + |A \cap \bar{R}|, b < a$, define:

$$f_R(A) = \min\{r(A), a\}$$
 (5.21)

$$= \min \left\{ \min(|A \cap \bar{R}| + |A \cap R|, |A \cap \bar{R}| + b), a \right\}$$
 (5.22)

$$= \min\left\{|A|, b + |A \cap \bar{R}|, a\right\} \tag{5.23}$$

ullet Defines a matroid $M=(V,f_R)=(V,\mathcal{I})$ (Goemans et. al.) with

$$\mathcal{I} = \{ I \subseteq V : |I| \le a \text{ and } |I \cap R| \le b \}, \tag{5.24}$$

- Useful for showing hardness of constrained submodular minimization. Consider sets $B \subseteq V$ with |B| = a.
- For R, we have $f_R(R) = b < a$.

Truncated Matroid Rank Function

• Can use this to define a truncated matroid rank function. With $r(A) = \min(|A \cap R|, b) + |A \cap \bar{R}|, \ b < a$, define:

$$f_R(A) = \min\{r(A), a\}$$

$$= \min\{\min(|A \cap \bar{R}| + |A \cap R|, |A \cap \bar{R}| + b), a\}$$
(5.21)

$$= \min \left\{ |A| \ b + |A \cap \bar{D}| \ a \right\} \tag{5.23}$$

$$= \min\left\{|A|, b + |A \cap \bar{R}|, a\right\} \tag{5.23}$$

• Defines a matroid $M=(V,f_R)=(V,\mathcal{I})$ (Goemans et. al.) with

$$\mathcal{I} = \{ I \subseteq V : |I| \le a \text{ and } |I \cap R| \le b \}, \tag{5.24}$$

- Useful for showing hardness of constrained submodular minimization. Consider sets $B \subseteq V$ with |B| = a.
- For R, we have $f_R(R) = b < a$.
- For any B with $|B \cap R| \leq b$, $f_R(B) = a$.

 Can use this to define a truncated matroid rank function. With $r(A) = \min(|A \cap R|, b) + |A \cap \bar{R}|, b < a,$ define:

$$f_R(A) = \min \{ r(A), a \}$$

$$= \min \{ \min(|A \cap \bar{R}| + |A \cap R|, |A \cap \bar{R}| + b), a \}$$
(5.21)
(5.22)

$$= \min\{|A|, b + |A \cap \bar{R}|, a\}$$
 (5.23)

$$= \min\{|A|, b + |A \cap R|, a\}$$
 (5.23)

• Defines a matroid $M = (V, f_R) = (V, \mathcal{I})$ (Goemans et. al.) with

$$\mathcal{I} = \{ I \subseteq V : |I| \le a \text{ and } |I \cap R| \le b \}, \tag{5.24}$$

- Useful for showing hardness of constrained submodular minimization. Consider sets $B \subseteq V$ with |B| = a.
- For R, we have $f_R(R) = b < a$.
- For any B with $|B \cap R| \leq b$, $f_R(B) = a$.
- For any B with $|B \cap R| = \ell$, with $b < \ell < a$, $f_B(B) = b + a \ell$.

• Can use this to define a truncated matroid rank function. With $r(A) = \min(|A \cap R|, b) + |A \cap \bar{R}|, b < a$, define:

$$f_R(A) = \min\{r(A), a\}$$
 (5.21)

$$= \min \left\{ \min(|A \cap \bar{R}| + |A \cap R|, |A \cap \bar{R}| + b), a \right\}$$
 (5.22)

$$= \min\left\{|A|, b + |A \cap \bar{R}|, a\right\} \tag{5.23}$$

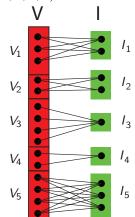
ullet Defines a matroid $M=(V,f_R)=(V,\mathcal{I})$ (Goemans et. al.) with

$$\mathcal{I} = \{ I \subseteq V : |I| \le a \text{ and } |I \cap R| \le b \}, \tag{5.24}$$

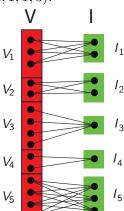
- Useful for showing hardness of constrained submodular minimization. Consider sets $B \subseteq V$ with |B| = a.
- For R, we have $f_R(R) = b < a$.
- For any B with $|B \cap R| \leq b$, $f_R(B) = a$.
- For any B with $|B \cap R| = \ell$, with $b < \ell < a$, $f_R(B) = b + a \ell$.
- R, the set with minimum valuation amongst size-a sets, is hidden within an exponentially larger set of size-a sets with larger valuation.

- A partition matroid can be viewed using a bipartite graph.
- Letting V denote the ground set, and V_1, V_2, \ldots the partition, the graph is G = (V, I, E) where V is the ground set, I is a set of "indices", and E is the set of edges.
- $I=(I_1,I_2,\ldots,I_\ell)$ is a set of $k=\sum_{i=1}^\ell k_i$ nodes, grouped into ℓ clusters, where there are k_i nodes in the i^{th} group I_i .
- $(v,i) \in E(G)$ iff $v \in V_j$ and $i \in I_j$.

• Example where $\ell = 5$, $(k_1, k_2, k_3, k_4, k_5) =$ (2, 2, 1, 1, 3).

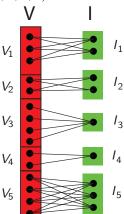


• Example where $\ell = 5$, $(k_1, k_2, k_3, k_4, k_5) =$ (2, 2, 1, 1, 3).



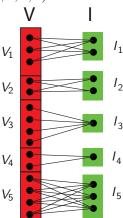
 \bullet Recall, $\Gamma: 2^V \to \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) =$ $\{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.

• Example where $\ell = 5$, $(k_1, k_2, k_3, k_4, k_5) = (2, 2, 1, 1, 3)$.



- Recall, $\Gamma: 2^V \to \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) = \{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.
- Here, for $X \subseteq V$, we have $\Gamma(X) = \{i \in I : (v, i) \in E(G) \text{ and } v \in X\}.$

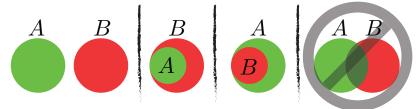
• Example where $\ell = 5$, $(k_1, k_2, k_3, k_4, k_5) = (2, 2, 1, 1, 3)$.



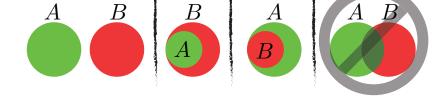
- Recall, $\Gamma: 2^V \to \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) = \{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.
- Here, for $X \subseteq V$, we have $\Gamma(X) = \{i \in I : (v, i) \in E(G) \text{ and } v \in X\}.$
- For such a constructed bipartite graph, the rank function of a partition matroid is $r(X) = \sum_{i=1}^{\ell} \min(|X \cap V_i|, k_i) =$ the maximum matching involving X.

• We can define a matroid with structures richer than just partitions.

- We can define a matroid with structures richer than just partitions.
- A set system (V, \mathcal{F}) is called a laminar family if for any two sets $A, B \in \mathcal{F}$, at least one of the three sets $A \cap B$, $A \setminus B$, or $B \setminus A$ is empty.

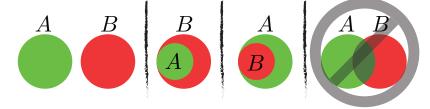


- We can define a matroid with structures richer than just partitions.
- A set system (V, \mathcal{F}) is called a laminar family if for any two sets $A, B \in \mathcal{F}$, at least one of the three sets $A \cap B$, $A \setminus B$, or $B \setminus A$ is empty.



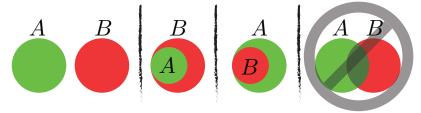
• Family is laminar \exists no two properly intersecting members: $\forall A, B \in \mathcal{F}$, either A, B disjoint $(A \cap B = \emptyset)$ or comparable $(A \subseteq B \text{ or } B \subseteq A)$.

- We can define a matroid with structures richer than just partitions.
- A set system (V, \mathcal{F}) is called a laminar family if for any two sets $A, B \in \mathcal{F}$, at least one of the three sets $A \cap B$, $A \setminus B$, or $B \setminus A$ is empty.



- Family is laminar \exists no two properly intersecting members: $\forall A, B \in \mathcal{F}$, either A, B disjoint $(A \cap B = \emptyset)$ or comparable $(A \subseteq B \text{ or } B \subseteq A)$.
- Suppose we have a laminar family \mathcal{F} of subsets of V and an integer k_A for every set $A \in \mathcal{F}$.

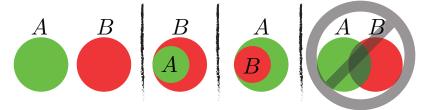
- We can define a matroid with structures richer than just partitions.
- A set system (V, \mathcal{F}) is called a laminar family if for any two sets $A, B \in \mathcal{F}$, at least one of the three sets $A \cap B$, $A \setminus B$, or $B \setminus A$ is empty.



- Family is laminar \exists no two properly intersecting members: $\forall A, B \in \mathcal{F}$, either A, B disjoint $(A \cap B = \emptyset)$ or comparable $(A \subseteq B \text{ or } B \subseteq A)$.
- Suppose we have a laminar family $\mathcal F$ of subsets of V and an integer k_A for every set $A\in \mathcal F$. Then $(V,\mathcal I)$ defines a matroid where

$$\mathcal{I} = \{ I \subseteq E : |I \cap A| \le k_A \text{ for all } A \in \mathcal{F} \}$$
 (5.25)

- We can define a matroid with structures richer than just partitions.
- A set system (V, \mathcal{F}) is called a laminar family if for any two sets $A, B \in \mathcal{F}$, at least one of the three sets $A \cap B$, $A \setminus B$, or $B \setminus A$ is empty.



- Family is laminar \exists no two properly intersecting members: $\forall A, B \in \mathcal{F}$, either A, B disjoint $(A \cap B = \emptyset)$ or comparable $(A \subseteq B \text{ or } B \subseteq A)$.
- Suppose we have a laminar family $\mathcal F$ of subsets of V and an integer k_A for every set $A\in \mathcal F$. Then $(V,\mathcal I)$ defines a matroid where

$$\mathcal{I} = \{ I \subseteq E : |I \cap A| \le k_A \text{ for all } A \in \mathcal{F} \}$$
 (5.25)

• Exercise: what is the rank function here?