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Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

e our room (Mueller Hall Room 154) is changed!

@ Please do use our discussion board (https:
//canvas.uw.edu/courses/895956/discussion_topics) for all

questions, comments, so that all will benefit from them being
answered.

o Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-I

@ L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

@ L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

@ L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation
L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

@ L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

@ L9: From Matroid Polytopes to
Polymatroids.

@ L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, polymatroids
and entropic Venn diagrams, exchange
capacity,

L16: proof that minimum norm point
yields min of submodular function, and
the lattice of minimizers of a submodular
function, Lovasz extension

L17: Lovasz extension, Choquet
Integration, more properties/examples of
Lovasz extension, convex minimization
and SFM.

L18: Lovasz extension examples and
structured convex norms, The Min-Norm
Point Algorithm detailed.

L19: symmetric submodular function
minimization, maximizing monotone
submodular function w. card constraints.
L20: maximizing monotone submodular
function w. other constraints,
non-monotone maximization.

Finals Week: June 9th-13th, 2014.

Prof. Jeff Bilmes
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Many (Equivalent) Definitions of Submodularity

f(A)+ f(B)> f(AUB) + f(ANB), YA,BCV (5.6)
fG1S) = fUlIT), vSCT CV, withj e V\T (5.7)
F(C|S) > fF(CIT),YSCTCV, withCCV\T (5.8)
FG1S) = FGISULRY), VS CV with j € V\ (SU{k}) 59
59
f(AuByAmB) < f(AJANB) + f(BJANB), YA,BCV (5.10)
f(r + > FGIS) = D fUISUT = {4}), VS, T CV
JET\S JjeS\T
5.11)
FI) < F(S)+ D f(IS), vSCTCV (5.12)
JET\S
FT)<FS) = Y fUISNGD + D fUISNT) VS, T C1
jES\T jeT\S
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Review

@ We saw: column space of a matrix, dimensionality of span of subset
of columns as rank function.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014 F6/39 (pg.6/144)



Review
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Review

@ We saw: column space of a matrix, dimensionality of span of subset
of columns as rank function.

@ Incidence matrix of (arbitrarily oriented version of) graph
G = (V, E), rank of matrix columns F' corresponded to spanning
tree of edge-induced graph G’ = (V’, F') where v’ are vertices
incident to edges in F.
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Review
AR

Review

@ We saw: column space of a matrix, dimensionality of span of subset
of columns as rank function.

@ Incidence matrix of (arbitrarily oriented version of) graph
G = (V, E), rank of matrix columns F' corresponded to spanning
tree of edge-induced graph G’ = (V', F') where v’ are vertices
incident to edges in F.

@ We saw several different “greedy” algorithms that proced optimal
spanning trees (Bordvka's, Jarnik/Prim/Dijkstra’s, and Kruskal's).
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Review
AR

Review

@ We saw: column space of a matrix, dimensionality of span of subset
of columns as rank function.

@ Incidence matrix of (arbitrarily oriented version of) graph
G = (V, E), rank of matrix columns F' corresponded to spanning
tree of edge-induced graph G’ = (V', F') where v’ are vertices
incident to edges in F.

@ We saw several different “greedy” algorithms that proced optimal
spanning trees (Bortivka's, Jarnik/Prim/Dijkstra’s, and Kruskal’s).

@ We wish to more formally connect the above, and generalize further.
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

@ Given a set B € 7 of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, Z is down-closed or
“subclusive”, under subsets. In other words,

ACBand BeZIT=A€cl (5.32)

e maxInd: Inclusionwise maximal independent subsets (or bases) of any
set BCV.

maxind(B) 2 {ACB:AcZandVv e B\ A, Au{v} ¢ I} (5.33)

e Given any set B C V of vectors, all maximal (by set inclusion) subsets
of linearly independent vectors are the same size. That is, for all
BCV,

VAl,AQ S maxlnd(B), |A1| = |A2| (534)
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Review
NN

From Matrix Rank — Matroid

@ Thus, for all I € Z, the matrix rank function has the property
r(I) = |I| (5.32)
and for any B ¢ 7,

r(B) =max{|A|:ACBand AeZ} < |B 5.33
(B) {l
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J € Z, then J is said to be an independent set.

Definition 5.2.4 (Matroid)

A set system (F,Z) is a Matroid if
(1) ez
(2)vieZ,JclI=JeZl

(13) VI,J € Z, with |I| = |J| + 1, then there exists € I \ J such that
JU{z} e

Why is (I1) is not redundant given (12)? Because without (I1) could have
a non-matroid where Z = {}.
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Matroids
[NRNRARNRN

On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.
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Matroids
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935),

but already then found instances of objects with those properties not
based on a matrix.

@ Takeo Nakasawa, 1935, also early work.
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Matroids
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.

@ Takeo Nakasawa, 1935, also early work.

@ Forgotten for 20 years until mid 1950s.
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Matroids
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.

@ Takeo Nakasawa, 1935, also early work.
e Forgotten for 20 years until mid 1950s.
@ Matroids are powerful and flexible combinatorial objects.
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful
submodular function (perhaps all we need for many problems).
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Matroids
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful
submodular function (perhaps all we need for many problems).

@ Understanding matroids crucial for understanding submodularity.
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Matroids
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On Matroids

Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful
submodular function (perhaps all we need for many problems).
Understanding matroids crucial for understanding submodularity.
Matroid independent sets (i.e., A s.t. 7(A) = |A|) are useful
constraint set, and fast algorithms for submodular optimization
subject to one (or more) matroid independence constraints exist.
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Matroids
[NRNRARNRN

On Matroids

Abstract properties of linear dependence (Hassler Whitney, 1935),
but already then found instances of objects with those properties not
based on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful
submodular function (perhaps all we need for many problems).
Understanding matroids crucial for understanding submodularity.
Matroid independent sets (i.e., A s.t. 7(A) = |A|) are useful
constraint set, and fast algorithms for submodular optimization
subject to one (or more) matroid independence constraints exist.
Crapo & Rota preferred the term “combinatorial geometry”, or more
specifically a “pregeometry” and said that pregeometries are “often
described by the ineffably cacaphonic [sic] term 'matroid’, which we
prefer to avoid in favor of the term 'pregeometry’.”
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Matroids
[LNANNARNR!

Matroid

Slight modification (non unit increment) that is equivalent.

Definition 5.3.1 (Matroid-I1)

A set system (F,Z) is a Matroid if
(11 0eZ
12"y VIeZ,JCI= JeZ (or “down-closed")

(13") VI,J € Z, with |I| > |J|, then there exists = € I \ J such that
Ju{z}eZ

Note (11)=(I1"), (12)=(12"), and we get (13)=(13") using induction.

Prof. Jeff Bilmes
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Matroids
INLRNNARNR!

Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € Z and otherwise A is called dependent.
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Matroids
INLRNNARNR!

Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € 7 and otherwise A is called dependent.

@ Abaseof U C E: For U C E, a subset B C U is called a base of U
if B is inclusionwise maximally independent subset of U. That is,
B €7 and thereisno Z € Z with BC Z CU.
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Matroids
INLRNNARNR!

Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € 7 and otherwise A is called dependent.

@ Abaseof U C E: For U C E, a subset B C U is called a base of U
if B is inclusionwise maximally independent subset of U. That is,
B eZ and thereisno Z € Z with BC Z CU.

@ A base of a matroid: If U = E, then a "base of E" is just called a
base of the matroid M (this corresponds to a basis in a linear space).
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Matroids
[NNLNNARNR!

Matroids - important property

Proposition 5.3.2

In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.
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Matroids
[NNLNNARNR!

Matroids - important property

Proposition 5.3.2

In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014 F13/39 (pg.26/144)



Matroids
[NNLNNARNR!

Matroids - important property

Proposition 5.3.2
In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.
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Matroids
[NNLNNARNR!

Matroids - important property

Proposition 5.3.2
In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V,Z) is a Matroid if
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Matroids
[NNLNNARNR!

Matroids - important property

Proposition 5.3.2
In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
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Matroids
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Matroids - important property

Proposition 5.3.2
In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
(12") YI € Z,J C I = J € T (down-closed or subclusive)

F13/39 (pg.30/144)

EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014

Prof. Jeff Bilmes



Matroids
[NNLNNARNR!

Matroids - important property

Proposition 5.3.2
In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 5.3.3 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
(12") VI € Z,J C I = J € T (down-closed or subclusive)

(13") VX CV, and I, I € maxInd(X), we have |I;| = |I2| (all maximally
independent subsets of X have the same size).
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Matroids
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.
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Matroids
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just r(U) when the matroid in equation is
unambiguous.
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Matroids
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just 7(U) when the matroid in equation is
unambiguous.

e 7(E) = r(gz) is the rank of the matroid, and is the common size of
all the bases of the matroid.
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Matroids
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just 7(U) when the matroid in equation is
unambiguous.

o 7(E) = r(g1) is the rank of the matroid, and is the common size of
all the bases of the matroid.

@ We can a bit more formally define the rank function this way.
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Matroids
[NNAR NRRNR

Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just 7(U) when the matroid in equation is
unambiguous.

o 7(E) = r(g1) is the rank of the matroid, and is the common size of
all the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 5.3.4 (matroid rank function)

The rank of a matroid is a function 7 : 28 — 7. defined by

T(A)ZHI&X{’X‘:XQA,XEI}:I)I(IE%%(‘AQX’ (5.1)
€
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Matroids
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just 7(U) when the matroid in equation is
unambiguous.

o 7(E) = r(g1) is the rank of the matroid, and is the common size of
all the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 5.3.4 (matroid rank function)

The rank of a matroid is a function 7 : 28 — 7. defined by

T(A)ZHI&X{’X‘:XQA,XEI}:I)I(IE%%(‘AQX’ (5.1)
€

@ From the above, we immediately see that 7(A4) < |A].
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Matroids
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just 7(U) when the matroid in equation is
unambiguous.

o 7(E) = r(g1) is the rank of the matroid, and is the common size of
all the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 5.3.4 (matroid rank function)

The rank of a matroid is a function 7 : 28 — 7. defined by

T(A)ZHI&X{’X‘:XQA,XEI}:I)I(IE%%(‘AQX’ (5.1)
€

@ From the above, we immediately see that r(A) < |A|.
@ Moreover, if r(A) = |A|, then A € Z, meaning A is independent (in
this case, A is a self base).
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Matroids
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 5.3.5 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid
M ifforallz € E\ A, r(AU{z}) =r(4) + 1.

A hyperplane is a flat of rank r(M) — 1.
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Matroids
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 5.3.5 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid
M ifforallz € E\ A, r(AU{z}) =r(4) + 1.

A hyperplane is a flat of rank r(M) — 1.

Definition 5.3.6 (closure)

Given A C FE, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(4)}.
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Matroids
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 5.3.5 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid
M ifforallz € E\ A, r(AU{z}) =r(4) + 1.

A hyperplane is a flat of rank r(M) — 1.

Definition 5.3.6 (closure)

Given A C FE, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(4)}.

Therefore, a closed set A has span(A) = A.
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Matroids
[NNANR RRNR|

Matroids, other definitions using matroid rank r : 2V — Z,

Definition 5.3.5 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid
M ifforallz € E\ A, r(AU{z}) =r(4) + 1.

A hyperplane is a flat of rank r(M) — 1.

Definition 5.3.6 (closure)

Given A C FE, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(4)}.

Therefore, a closed set A has span(A) = A.

Definition 5.3.7 (circuit)

A subset A C E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A] and for any a € A,

r(A\{a}) = |A] - 1).
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Matroids

Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 5.3.8 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then
the following are equivalent.

@ B is the collection of bases of a matroid;

@ ifB,B' € B, and x € B'\ B, then B' — x + y € B for some
y€ B\ B.

@ IfB,B' € B, and x € B'\ B, then B —y + x € B for some
y € B\ B.

Properties 2 and 3 are called “exchange properties.”
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Matroids

Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 5.3.8 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then
the following are equivalent.

@ B is the collection of bases of a matroid;

@ ifB,B' € B, and x € B'\ B, then B' — x + y € B for some
y€ B\ B.

@ IfB,B' € B, and x € B'\ B, then B —y + x € B for some
y € B\ B.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of
linear spaces and matrices, and (alternatively) spanning trees.
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is
not surprising that circuits can also characterize a matroid.
Theorem 5.3.9 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E/ that satisfy the
following three properties:

0 (Cl):0écC
Q (C2) if01,02 € C and Cy C Cy, then C1 = (.

Q (C3): if C1,Cy € C with Cy # Cy, and e € C; N Cy, then there
exists a Cs € C such that C5 C (C1 U Cy) \ {e}.
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 5.3.10 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such

that no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx € CNC', then (CUC")\ {z} contains a set inC;

Q@ ifC,C"eC,andz e CNC',andy € C\ ', then (CUC)\ {z}
contains a set in C containing y;
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Matroids

Matroids by circuits

Several circuit definitions for matroids.

Theorem 5.3.10 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such
that no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx € CNC', then (CUC")\ {z} contains a set inC;

Q@ ifC,C"eC,andz e CNC',andy € C\ ', then (CUC)\ {z}
contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and
matrices, and spanning trees.
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Matroids by submodular functions

Theorem 5.3.11 (Matroid by submodular functions)

Let f : 2F — 7 be a integer valued monotone non-decreasing
submodular function. Define a set of sets as follows:

C(f)= {C’ C E: C is non-empty,
is inclusionwise-minimal,

and has f(C) < |C]| } (5.2)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal in this case means that if C' € C(f), then there

exists no C/ C C with C" € C(f) (i.e., C' C C would either be empty or
have f(C") > |C']). Also, recall inclusionwise-minimal in Definition 5.3.7,

the definition of a circuit.
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Uniform Matroid

@ Given FE, consider Z to be all subsets of £/ that are at most size k.
ThatisZ={AC E:|A| < k}.
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Matroid Examples
[NRRRN!

Uniform Matroid

@ Given FE, consider Z to be all subsets of E that are at most size k.
ThatisZ={AC E:|A| <k}.
@ Then (E,Z) is a matroid called a k-uniform matroid.
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Matroid Examples
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Uniform Matroid
@ Given FE, consider Z to be all subsets of F that are at most size k.
ThatisZ={AC E:|A| <k}.
e Then (E,Z) is a matroid called a k-uniform matroid.
@ Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [I + j| < kandso I+ j€Z.
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Matroid Examples
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Uniform Matroid

@ Given FE, consider Z to be all subsets of F that are at most size k.
ThatisZ={AC E:|A| <k}.

e Then (E,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [T +j| < kandso I+ j€Z.

@ Rank function
Al if A <k
r(4) = 4] | 4] < (5.3)
k if |[A] >k
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Matroid Examples
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Uniform Matroid

@ Given FE, consider Z to be all subsets of F that are at most size k.
ThatisZ={AC E:|A| <k}.

e Then (E,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [T +j| < kandso I+ j€Z.

@ Rank function
Al if|A| <k
r(a) = AL 1AL (53)
k if |[A] >k
@ Note, this function is submodular. Not surprising since

r(A) = min(|Al, k) which is a non-decreasing concave function
applied to a modular function.
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Uniform Matroid

@ Given FE, consider Z to be all subsets of F that are at most size k.
ThatisZ={AC E:|A| <k}.

e Then (E,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [T +j| < kandso I+ j€Z.

@ Rank function
Al if|A| <k
r(4) = 4] | 4] < (5.3)
k if |[A] >k
@ Note, this function is submodular. Not surprising since
r(A) = min(]A|, k) which is a non-decreasing concave function
applied to a modular function.
@ Closure function
A if |A] <k,

span(A) —
span(4) {E if 4] > k,
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[NRRRN!

Uniform Matroid

@ Given FE, consider Z to be all subsets of F that are at most size k.
ThatisZ={AC E:|A| <k}.

e Then (E,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [T +j| < kandso I+ j€Z.

@ Rank function
Al if|A| <k
r(4) = 4] | 4] < (5.3)
k if |[A] >k
@ Note, this function is submodular. Not surprising since
r(A) = min(]A|, k) which is a non-decreasing concave function
applied to a modular function.
@ Closure function
A if|Al <k,

_ (5.4)
E if|Al >k,

span(A) = {

e A “free” matroid sets k = |E|, so everything is independent.
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Linear (or Matric) Matroid

@ Let X be an n x m matrix and E = {1,...,m}
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Matroid Examples
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Linear (or Matric) Matroid

o Let X be an n x m matrix and E = {1,...,m}

@ Let 7 consists of subsets of F such that if A € Z, and
A ={ai,aq,...,ax} then the vectors x4, , Zay, ..., T4
independent.

. are linearly
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Matroid Examples
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Linear (or Matric) Matroid

o Let X be an n x m matrix and E = {1,...,m}

@ Let 7 consists of subsets of E such that if A € Z, and
A ={ai,ag,...,a;} then the vectors x4, Zq,, . .., T4, are linearly
independent.

@ the rank function is just the rank of the space spanned by the
corresponding set of vectors.
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Matroid Examples
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Linear (or Matric) Matroid

o Let X be an n x m matrix and E = {1,...,m}

@ Let 7 consists of subsets of F such that if A € Z, and
A ={ai,ag,...,a;} then the vectors x4, Zq,, . .., T4, are linearly
independent.

@ the rank function is just the rank of the space spanned by the
corresponding set of vectors.
@ rank is submodular, it is intuitive that it satisfies the diminishing

returns property (a given vector can only become linearly dependent
in a greater context, thereby no longer contributing to rank).
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Matroid Examples
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Linear (or Matric) Matroid

o Let X be an n x m matrix and E = {1,...,m}

@ Let 7 consists of subsets of F such that if A € Z, and
A ={ai,ag,...,a;} then the vectors x4, Zq,, . .., T4, are linearly
independent.

@ the rank function is just the rank of the space spanned by the
corresponding set of vectors.

@ rank is submodular, it is intuitive that it satisfies the diminishing
returns property (a given vector can only become linearly dependent
in a greater context, thereby no longer contributing to rank).

@ Called both linear matroids and matric matroids.
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Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V,A) by A does not contain any cycle.
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Matroid Examples
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Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,Z) is a matroid.
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Matroid Examples
(NR AR

Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,7) is a matroid.

@ 7 contains all forests.

F22/39 (pg.63/144)
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Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,ZI) is a matroid.
@ 7 contains all forests.

@ Bases are spanning forests (spanning trees if G is connected).
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Matroid Examples
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Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,ZI) is a matroid.

@ 7 contains all forests.

@ Bases are spanning forests (spanning trees if G is connected).

@ Rank function 7(A) is the size of the largest spanning forest

contained in G(V, A).
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Matroid Examples
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Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

Then M = (E,Z) is a matroid.
7 contains all forests.

Bases are spanning forests (spanning trees if G is connected).

Rank function 7(A) is the size of the largest spanning forest
contained in G(V, A).

@ Closure function adds all edges between the vertices adjacent to any
edge in A. Closure of a spanning forest is (.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Partition Matroid

o Let V be our ground set.
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Partition Matroid

o Let V be our ground set.
o Let V=ViUVU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V" as

I={XCV:|XNV]|<kforalli=1,... 0} (5.5)

where ki, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.
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Partition Matroid

o Let V be our ground set.

o Let V=ViUVU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V" as

I={XCV:|XNV|<kforalli=1,... ¢} (5.5)

where ki, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with / =1, V; =V, and k1 = k.
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Partition Matroid

o Let V be our ground set.

o Let V=ViUVU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V" as

I={XCV:|XNV|<kforalli=1,... ¢} (5.5)

where ki, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with £ =1, V; =V, and k1 = k.

@ Parameters associated with a partition matroid: ¢ and kq, ks, ..., ks
although often the k;'s are all the same.
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Partition Matroid

o Let V be our ground set.
o Let V=ViUVU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V" as

I={XCV:|XNV|<kforalli=1,... ¢} (5.5)

where ki, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with £ =1, V; =V, and k1 = k.

@ Parameters associated with a partition matroid: ¢ and k1, ks, ..., ks
although often the k;'s are all the same.

e We'll show that property (13') in Def 5.3.3 holds. If X,Y € Z with
|Y'| > | X|, then there must be at least one i with
Y N V;| > |X NV;|. Therefore, adding one element
eeV;N(Y\ X) to X won't break independence.
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Partition Matroid

Ground set of objects, V' = {
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Partition Matroid
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Partition Matroid

Independent subset but not maximally independent.
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Partition Matroid

Maximally independent subset, what is called a base.
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Partition Matroid

Not independent since over limit in set six.
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Matroids - rank

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)
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Matroids - rank

Lemma 5.5.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B

[l
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Matroid Rank
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Matroids - rank

Lemma 5.5.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.
@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AUB. We
can find such aY D X because the following. Let Y' € T be any inclusionwise
maximal set with Y’ C AU B, which might not have X C Y'. Starting from

X C AU B, since |Y'| > | X|, there existsay € Y' \ X C AU B such that

X +vy €T butsincey e AUB, also X +y € AUB — we then add y to X.
We can keep doing this while |Y'| > | X| since this is a matroid. We end up with
an inclusionwise maximal set Y (so |Y|=|Y'|) withY € Z and X C Y.
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Matroids - rank

Lemma 5.5.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that 7(AN B) = r(X) = | X|, and
r(AUB)=r(Y)=|Y|. Also, forany U € Z, r(A) > |ANU|.

[l
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Matroids - rank

Lemma 5.5.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

@ Since M is a matroid, we know that (AN B) = r(X) = | X|, and
r(AUB) =r(Y)=1Y|. Also, forany U € Z, r(A) > |ANU|.

© Then we have

r(A) +r(B) (5.6)

[l
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Matroids - rank

Lemma 5.5.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

@ Since M is a matroid, we know that (AN B) = r(X) = | X|, and
r(AUB) =r(Y)=1Y|. Also, forany U € Z, r(A) > |ANU|.

© Then we have

r(A) +r(B) > [Y N A| + |Y N B (5.6)

[l
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Matroids - rank

Lemma 5.5.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

@ Since M is a matroid, we know that (AN B) = r(X) = | X|, and
r(AUB) =r(Y)=1Y|. Also, forany U € Z, r(A) > |ANU|.

© Then we have

r(A)+r(B) > |Y NA|l+|Y NB|
=YN(ANB)|+|Y N(AUB)|

[l
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Matroids - rank

Lemma 5.5.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

@ Since M is a matroid, we know that (AN B) = r(X) = | X|, and
r(AUB) =r(Y)=1Y|. Also, forany U € Z, r(A) > |ANU|.

© Then we have

r(A)+r(B) > Y NA|l+|Y N B| :
=Y N(ANB)|+ |Y N (AU B)| (5.7)
>|X|+Y|=r(ANB)+r(AUB) (5.8)
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Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 5.5.2 (Matroid from rank)

Let E be a set and let v : 2F — 7., be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all A,B C E:

(R1) YAC E 0<r(A) <|A| (non-negative cardinality bounded)
(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)
(R3) r(AUB)+r(ANB) <r(A)+r(B) for all A, B C E (submodular)

@ So submodularity and non-negative monotone non-decreasing, and
unit increase is necessary and sufficient to define the matroid.

e Given above, unit increment (if 7(A) = k, then either
r(Au{v}) =k orr(AU{v}) =k +1) holds.

@ A matroid is sometimes given as (E,r) where E is ground set and r
is rank function.
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Matroid Rank

Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 5.5.2 (Matroid from rank)

Let E be a set and let r : 2F — 7., be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all A, B C E:

(R1) VAC E 0<r(A) <|A| (non-negative cardinality bounded)
(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)
(R3) r(AUB)+r(ANB) <r(A)+r(B) for all A, B C E (submodular)

e From above, 7()) = 0. Let v ¢ A, then by monotonicity and
submodularity, r(A) < r(AU{v}) < r(A) +r({v}) which gives only
two possible values to (A U {v}).
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

@ Given a matroid M = (FE,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.

@ Also, if Y € Z and X C Y then by submodularity,
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.
@ Also, if Y € Z and X C Y then by submodularity,

r(X) 2 r(Y) = (Y \ X) (5.9)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014 F28/39 (pg.98/144)



Matroid Rank
(NRRNRRN

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.
@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y \ X)—r() (5.9)
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.
@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y \ X)—r() (5.9)
> Y] —[Y\ X| (5.10)
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.

@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y \ X)—r() (5.9)
> Y- [Y\X| (5.10)
= |X]| (5.11)
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 5.1 satisfies (R1), (R2), and, as we saw in Lemma 5.5.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.

@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y \ X)—r() (5.9)
> Y- [Y\X| (5.10)
= |X]| (5.11)

implying r(X) = | X/, and thus X € 7.
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

o Let A, B €Z, with |A] < |B|, sor(A) = |A| <r(B)=|B|. Let
B\ A={by,ba,...,br} (note k < |BJ).

Ol
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.
o Let A,B €T, with |A| < |B]J, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,ba,...,br} (note k < |BJ).
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means
for all such b, r(A+0b) = r(A) = |A|. Then

Ol
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

o Let A,B €T, with |A| < |B]J, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,ba,...,br} (note k < |BJ).
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means
for all such b, r(A+0b) =r(A) = |A|. Then
r(B) <r(AUB) (5.12)
L]
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

o Let A,B €T, with |A| < |B]J, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,ba,...,br} (note k < |BJ).
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means
for all such b, r(A +b) =r(A) = |A|. Then
r(B) <r(AUB) (5.12)
<r(AU(B\{b1})) +r(Au{b}) —r(A) (5.13)
L]
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,ba,...,br} (note k < |BJ).
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means
for all such b, r(A +b) =r(A) = |A|. Then
r(B) <r(AUB) (5.12)
<HAUB\ b)) + AU} —r(4)  (5.13)
=r(AU(B\{b}) (5.14)
L]
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.
o Let A,B €T, with |A| < |B]J, so r(A) = |A| < r(B) = |B|. Let
B\A = {bl,bz, .. ,bk} (note k< |B‘)

@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means
for all such b, r(A+0b) =r(A) = |A|. Then

r(B) <r(AUB) (
<r(AU(B\{b:1})) + r(AU{bi}) — r(A) (

r(AU(B\{b1}) (5.14

<r( (

AU (B\ {b1,b2})) + r(AU {bo}) — r(4)

Prof. Jeff Bilmes

EE596b/Spring 2014 /Submodularity - Lecture 5 - April 14th, 2014



Matroid Rank
(NRE RN

Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

o Let A,B €T, with |A| < |B]J, so r(A) = |A| < r(B) = |B|. Let
B\A = {bl,bz, .. ,bk} (note k< |B‘)
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means
for all such b, r(A +b) =r(A) = |A|. Then
r(B) <r(AUB) (5.12)
<r(AU(B\{b1})) +r(Au{b}) —r(A) (5.13)
=r(AU(B\{b}) (5.14)
S r(AU(B\ {b1,b2})) +r(AU {b2}) — 7(A) (5.15)
=7(AU (B\{b1,b2})) (5.16)
L]
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,ba,...,b;} (note k < |B|).

@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means
for all such b, r(A+0b) =r(A) = |A|. Then
r(B) <r(AUB) (5.12)
<r(AU(B\{01})) +7(AU{br}) —r(4) (5.13)
=r(AU(B\{b}) (5.14)
< r(AU(B\ {b1,b2})) + (AU {ba}) — r(A) (5.15)
=r(AU(B\{b1,b2})) (5.16)
.. <r(A) =|A] < |B| (5.17)

IA
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Matroids from rank

Proof of Theorem 5.5.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,ba,...,b;} (note k < |B|).

@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means
for all such b, r(A+0b) =r(A) = |A|. Then
r(B) <r(AUB) (5.12)
<r(AU(B\{01})) +7(AU{br}) —r(4) (5.13)
=r(AU(B\{b}) (5.14)
< r(AU(B\ {b1,b2})) + (AU {ba}) — r(A) (5.15)
=r(AU(B\{b1,b2})) (5.16)
.. <r(A) =|A] < |B| (5.17)

IA

giving a contradiction since B € 7.
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Matroids from rank Il

Another way of using function r to define a matroid.

Theorem 5.5.3 (Matroid from rank II)

Let E be a finite set and let r : 2F — 7., be a function. Then r(-)
defines a matroid with r being its rank function if and only if for all
ACUE, andz,y € E:

(R1") r(0) =0;

(R2) r(X) <r(XU{y}) <r(X)+1;

(R3") Ifr(X U{z}) =r(X U{y}) =r(X), then r(X U{x,y}) = r(X).
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).
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Matroid Rank
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)
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Matroid Rank
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)

@ Circuit axioms
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Matroid Rank
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)

o Circuit axioms

@ Closure axioms (we didn't see this, but it is possible)
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(NRRNR AN

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)

@ Circuit axioms

@ Closure axioms (we didn't see this, but it is possible)

@ Rank axioms (normalized, monotone, cardinality bounded,
submodular)
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Maximization problems for matroids

e Given a matroid M = (E,Z) and a modular cost function
c: FE — R, the task is to find an X € 7 such that
c(X) = > sex c(x) is maximum.
@ This seems remarkably similar to the max spanning tree problem.
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Minimization problems for matroids

e Given a matroid M = (E,Z) and a modular cost function
¢: E — R, the task is to find a basis B € B such that ¢(B) is
minimized.

@ This sounds like a set cover problem (find the minimum cost
covering set of sets).
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Partition Matroid

@ What is the partition matroid's rank function?
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Partition Matroid

@ What is the partition matroid’s rank function?
@ A partition matroids rank function:
¢
r(A) = min(|[AN V|, k) (5.18)

=1

which we also immediately see is submodular using properties we
spoke about last week. That is:
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

¢
r(A)=> min(|ANVi|, k) (5.18)
i=1
which we also immediately see is submodular using properties we
spoke about last week. That is:
Q@ |ANYV;| is submodular (in fact modular) in A
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Partition Matroid
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

l
r(A)=> min(|ANVi|, k) (5.18)
=1

which we also immediately see is submodular using properties we
spoke about last week. That is:
@ |ANYV;| is submodular (in fact modular) in A
@ min(submodular(A), k;) is submodular in A since |[ANV;] is
monotone.
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Partition Matroid
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

l
r(A)=> min(|ANVi|, k) (5.18)
=1

which we also immediately see is submodular using properties we
spoke about last week. That is:

@ |ANYV;| is submodular (in fact modular) in A

@ min(submodular(A), k;) is submodular in A since |[ANV;] is

monotone.
© sums of submodular functions are submodular.
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Partition Matroid
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

l
r(A)=> min(|ANVi|, k) (5.18)
=1

which we also immediately see is submodular using properties we
spoke about last week. That is:

@ |ANYV;| is submodular (in fact modular) in A

@ min(submodular(A), k;) is submodular in A since |[ANV;] is
monotone.

© sums of submodular functions are submodular.

@ r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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Matroid and Rank

@ Thus, we can define a matroid as M = (V,r) where r satisfies
matroid rank axioms.

@ Example: 2-partition matroid rank function: Given natural numbers
a,b € Zy4 with a > b, and any set R C V' with |R| = a, two-block
partition V = (R, R), where R = V' \ R, define:

r(A) = min(|]A N R|,b) + min(|A N R|, |R|) (5.19)
=min(|ANR|,b) + |AN R (5.20)

@ Partition matroid figure showing this:

|4

Bl b < |R|=a
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Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) =min(|JAN R|,b) +|ANR|, b < a, define:

fr(A) =min{r(A),a} (5.21)
= min {min(|[ANR| + [ANR[,|ANR|+b),a} (5.22)
=min {|A],b+ |[ANR|,a} (5.23)
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Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) =min(|AN R|,b) + |[ANR|, b < a, define:

fr(A) = min{r(A),a} (5.21)
= min {min(|[ANR|+ [ANR[,|ANR|+b),a} (5.22)
=min {|A],b+ |ANR|,a} (5.23)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
T={ICV:|I|]<aand |[NR|< b} (5.24)
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Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) =min(|AN R|,b) + |[ANR|, b < a, define:

fr(A) = min{r(A),a} (5.21)
= min {min(|[ANR|+ [ANR[,|ANR|+b),a} (5.22)
=min {|A],b+ |ANR|,a} (5.23)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
T={ICV:|I|<aand |INR|<b}, (5.24)

@ Useful for showing hardness of constrained submodular
minimization. Consider sets B C V with |B| = a.
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Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) =min(|AN R|,b) + |[ANR|, b < a, define:

fr(A) = min{r(A),a} (5.21)
= min {min(|[ANR|+ [ANR[,|ANR|+b),a} (5.22)
=min {|A],b+ |ANR|,a} (5.23)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
T={ICV:|I|<aand |INR|<b}, (5.24)

@ Useful for showing hardness of constrained submodular
minimization. Consider sets B C V with |B| = a.
@ For R, we have fr(R) =b < a.
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Partition Matroid
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Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) =min(|AN R|,b) + |[ANR|, b < a, define:

fr(A) = min{r(A),a} (5.21)
= min {min(|[ANR|+ [ANR[,|ANR|+b),a} (5.22)
=min {|A],b+ |ANR|,a} (5.23)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
T={ICV:|I|<aand |INR|<b}, (5.24)

@ Useful for showing hardness of constrained submodular
minimization. Consider sets B C V with |B| = a.

e For R, we have fr(R) =b < a.

e For any B with |[BN R| <, fr(B) = a.
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Partition Matroid
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Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) =min(|AN R|,b) + |[ANR|, b < a, define:

fr(A) = min{r(A),a} (5.21)
= min {min(|[ANR|+ [ANR[,|ANR|+b),a} (5.22)
=min {|A],b+ |ANR|,a} (5.23)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
T={ICV:|I|<aand |INR|<b}, (5.24)

@ Useful for showing hardness of constrained submodular
minimization. Consider sets B C V with |B| = a.

e For R, we have fr(R) =b < a.

e For any B with |[BNR| <, fr(B) = a.

@ For any B with |[ BN R|=/¢, withb</{<a, frR(B)=b+a—{.
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Partition Matroid
(RN

Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) =min(|AN R|,b) + |[ANR|, b < a, define:

fr(A) = min{r(A),a} (5.21)
= min {min(|[ANR|+ [ANR[,|ANR|+b),a} (5.22)
=min {|A],b+ |ANR|,a} (5.23)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
T={ICV:|I|<aand |INR|<b}, (5.24)

@ Useful for showing hardness of constrained submodular
minimization. Consider sets B C V with |B| = a.

For R, we have fr(R) =b < a.

For any B with [BN R| < b, fr(B) = a.

For any B with |[BNR| =/, with b <{ < a, fr(B) =b+a— L.
R, the set with minimum valuation amongst size-a sets, is hidden
within an exponentially larger set of size-a sets with larger valuation.

e 6 6 o
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Partition Matroid, rank as matching

@ A partition matroid can be viewed using a bipartite graph.

o Letting V denote the ground set, and Vi, Vo, ... the partition, the
graph is G = (V, I, E) where V is the ground set, I is a set of
“indices”, and E is the set of edges.

o I =(I1,I5,...,1;) is a set of k = Zle k; nodes, grouped into ¢
clusters, where there are k; nodes in the it" group I;.

e (v,i) € E(G) iff veVjandie Ij.
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Partition Matroid, rank as matching

@ Example where £ =5,

(k1, ko, ks, ka, ks) =
(2,2,1,1,3).
V |
v h
Vs I
V3 I3
Vs la
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Partition Matroid
i

Partition Matroid, rank as matching

@ Example where £ =5,
(K1, ko, ks, ka, ks) =

2,2,1,1,3). @ Recall, I': 2V — R as the neighbor
( 9y &y Ly Ly ) g
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
Vi I {veV(G)\ X : E(X,{v}) # 0}, and
recall that |I'(X)| is submodular.
Vs /2
V3 I
Vi l4
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Partition Matroid
i

Partition Matroid, rank as matching

@ Example where £ =5,
(K1, ko, ks, ka, ks) =

(2,2,1,1,3). @ Recall, I' : 2" — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
Vi Iy {veV(G)\ X : E(X,{v}) # 0}, and
recall that |I'(X)| is submodular.
Va l> e Here, for X CV, we have I'(X) =
{iel:(v,i) € E(G) and v € X}.
V3 I3
Vi Iy
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Partition Matroid
i

Partition Matroid, rank as matching

@ Example where £ =5,
(K1, ko, ks, ka, ks) =

(2,2,1,1,3). @ Recall, I': 2V — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
Vi I {fveV(G)\ X : B(X,{v}) # 0}, and
recall that |I'(X)| is submodular.
Vs I @ Here, for X CV, we have I'(X) =

{iel:(v,i) € E(G) and v € X}.
@ For such a constructed bipartite graph,
| the rank function of a partition matroid
Va 4 is r(X) = S0 min(|X N Vi], ki) =
the maximum matching involving X.

V3 I3

Vs ls
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Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
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Partition Matroid
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Laminar Family and Laminar Matroid

o We can define a matroid with structures richer than just partitions.

@ A set system (V| F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets ANB, A\ B, or B\ A is empty.

A B B A
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Partition Matroid
(AT

Laminar Family and Laminar Matroid

o We can define a matroid with structures richer than just partitions.

@ A set system (V,F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets ANB, A\ B, or B\ A is empty.

A B B A 3
\

~a

@ Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = ) or comparable (A C B or B C A).
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Partition Matroid
(AT

Laminar Family and Laminar Matroid

o We can define a matroid with structures richer than just partitions.

@ A set system (V| F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets ANB, A\ B, or B\ A is empty.

A B B

@ Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = () or comparable (A C B or B C A).

@ Suppose we have a laminar family F of subsets of V' and an integer k4
for every set A € F.
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Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.

@ A set system (V| F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets ANB, A\ B, or B\ A is empty.

A B B

@ Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = ) or comparable (A C B or B C A).

@ Suppose we have a laminar family F of subsets of V' and an integer k4
for every set A € F. Then (V,Z) defines a matroid where

I={ICE:|INA <kyforal AecF} (5.25)
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Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.

@ A set system (V| F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets ANB, A\ B, or B\ A is empty.

A B B

@ Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = ) or comparable (A C B or B C A).

@ Suppose we have a laminar family F of subsets of V' and an integer k4
for every set A € F. Then (V,Z) defines a matroid where

I={ICE:|INA|<kyforal AcF} (5.25)

@ Exercise: what is the rank function here?
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