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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

our room (Mueller Hall Room 154) is changed!

Please do use our discussion board (https:
//canvas.uw.edu/courses/895956/discussion_topics) for all
questions, comments, so that all will benefit from them being
answered.

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5:

L6:

L7:

L8:

L9:

L10:

L11:

L12:

L13:

L14:

L15:

L16:

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Logistics Review

Summary so far

Summing: if αi ≥ 0 and fi : 2V → R is submodular, then so is∑
i αifi.

Restrictions: f ′(A) = f(A ∩ S)

max: f(A) = maxj∈A cj and facility location.

Log determinant f(A) = log det(ΣA)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 4 - April 9th, 2014 F5/79 (pg.5/101)

Logistics Review

Concave over non-negative modular

Let m ∈ RE+ be a modular function, and g a concave function over R.
Define f : 2E → R as

f(A) = g(m(A)) (4.35)

then f is submodular.

Proof.

Given A ⊆ B ⊆ E \ v, we have 0 ≤ a = m(A) ≤ b = m(B), and
0 ≤ c = m(v). For g concave, we have g(a+ c)− g(a) ≥ g(b+ c)− g(b),
and thus

g(m(A) +m(v))− g(m(A)) ≥ g(m(B) +m(v))− g(m(B)) (4.36)

A form of converse is true as well.
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Logistics Review

Concave composed with non-negative modular

Theorem 4.2.1

Given a ground set V . The following two are equivalent:

1 For all modular functions m : 2V → R+, then f : 2V → R defined as
f(A) = g(m(A)) is submodular

2 g : R+ → R is concave.

If g is non-decreasing concave, then f is polymatroidal.

Sums of concave over modular functions are submodular

f(A) =
K∑
i=1

gi(mi(A)) (4.35)

Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).

However, Vondrak showed that a graphic matroid rank function over
K4 (we’ll define this after we define matroids) are not members.
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Composition of non-decreasting submodular and
non-decreasing concave

Theorem 4.2.1

Given two functions, one defined on sets

f : 2V → R (4.35)

and another continuous valued one:

g : R→ R (4.36)

the composition formed as h = g ◦ f : 2V → R (defined as
h(S) = g(f(S))) is nondecreasing submodular, if g is non-decreasing
concave and f is nondecreasing submodular.
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Monotone difference of two functions

Let f and g both be submodular functions on subsets of V and let
(f − g)(·) be either monotone increasing or monotone decreasing. Then
h : 2V → R defined by

h(A) = min(f(A), g(A)) (4.35)

is submodular.

Proof.

If h(A) agrees with either f or g on both X and Y , and since

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (4.36)

g(X) + g(Y ) ≥ g(X ∪ Y ) + g(X ∩ Y ), (4.37)

the result (Equation 4.35) follows since

f(X) + f(Y )

g(X) + g(Y )
≥ min(f(X ∪ Y ), g(X ∪ Y )) + min(f(X ∩ Y ), g(X ∩ Y ))

(4.38)

. . .
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Saturation via the min(·) function

Let f : 2V → R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function h : 2V → R defined
by

h(A) = min(k, f(A)) (4.37)

is submodular.

Proof.

For constant k, we have that (f − k) is increasing (or decreasing) so this
follows from the previous result.

Note also, g(a) = min(k, a) for constant k is a non-decreasing concave
function, so when f is monotone nondecreasing submodular, we can use
the earlier result about composing a monotone concave function with a
monotone submodular function to get a version of this.
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Gain Notation

It will also be useful to extend this to sets.
Let A,B be any two sets. Then

f(A|B) , f(A ∪B)− f(B) (4.41)

So when j is any singleton

f(j|B) = f({j}|B) = f({j} ∪B)− f(B) (4.42)

Note that this is inspired from information theory and the notation used
for conditional entropy H(XA|XB) = H(XA, XB)−H(XB).
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Other properties

Any submodular function h : 2V → R can be represented as the
difference between two submodular functions, i.e.,
h(A) = f(A)− g(A) where both f and g are submodular.

Any submodular function f can be represented as a sum of a
normalized monotone non-decreasing submodular function and a
modular function, f = f̄ +m

Any function h can be represented as the difference between two
monotone non-decreasing submodular functions.
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Definitions of Submodularity Independence Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps

Submodular Definitions

Definition 4.3.2 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (4.2)

An alternate and (as we will soon see) equivalent definition is:

Definition 4.3.3 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (4.3)

This means that the incremental “value”, “gain”, or “cost” of v
decreases (diminishes) as the context in which v is considered grows from
A to B.
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Submodular Definition: Group Diminishing Returns

An alternate and equivalent definition is:

Definition 4.3.1 (group diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
C ⊆ V \B, we have that:

f(A ∪ C)− f(A) ≥ f(B ∪ C)− f(B) (4.1)

This means that the incremental “value” or “gain” of set C decreases as
the context in which C is considered grows from A to B (diminishing
returns)
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Submodular Definition Basic Equivalencies

We want to show that Submodular Concave (Definition 4.3.2),
Diminishing Returns (Definition 4.3.3), and Group Diminishing Returns
(Definition 4.3.1) are identical. We will show that:

Submodular Concave ⇒ Diminishing Returns

Diminishing Returns ⇒ Group Diminishing Returns

Group Diminishing Returns ⇒ Submodular Concave
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Submodular Concave ⇒ Diminishing Returns

f(S)+f(T ) ≥ f(S∪T )+f(S∩T )⇒ f(v|A) ≥ f(v|B), A ⊆ B ⊆ V \v.

Assume Submodular concave, so ∀S, T we have
f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

Given A,B and v ∈ V such that: A ⊆ B ⊆ V \ {v}, we have from
submodular concave that:

f(A+ v) + f(B) ≥ f(B + v) + f(A) (4.2)

Rearranging, we have

f(A+ v)− f(A) ≥ f(B + v)− f(B) (4.3)
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Diminishing Returns ⇒ Group Diminishing Returns

f(v|S) ≥ f(v|T ), S ⊆ T ⊆ V \ v ⇒ f(C|A) ≥ f(C|B), A ⊆ B ⊆ V \ C.

Let C = {c1, c2, . . . , ck}. Then diminishing returns implies

f(A ∪ C)− f(A) (4.4)

= f(A ∪ C)−
k−1∑
i=1

(
f(A ∪ {c1, . . . , ci})− f(A ∪ {c1, . . . , ci})

)
− f(A) (4.5)

=

k∑
i=1

(
f(A ∪ {c1 . . . ci})− f(A ∪ {c1 . . . ci−1})

)
(4.6)

≥
k∑
i=1

(
f(B ∪ {c1 . . . ci})− f(B ∪ {c1 . . . ci−1})

)
(4.7)

= f(B ∪ C)−
k−1∑
i=1

(
f(B ∪ {c1, . . . , ci})− f(B ∪ {c1, . . . , ci})

)
− f(B) (4.8)

= f(B ∪ C)− f(B) (4.9)
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Group Diminishing Returns ⇒ Submodular Concave

f(U |S) ≥ f(U |T ), S ⊆ T ⊆ V \U ⇒ f(A)+f(B) ≥ f(A∪B)+f(A∩B).

Assume group diminishing returns. Assume A 6= B otherwise trivial.
Define A′ = A ∩B, C = A \B, and B′ = B. Then since A′ ⊆ B′,

f(A′ + C)− f(A′) ≥ f(B′ + C)− f(B′) (4.10)

giving

f(A′ + C) + f(B′) ≥ f(B′ + C) + f(A′) (4.11)

or

f(A ∩B +A \B) + f(B) ≥ f(B +A \B) + f(A ∩B) (4.12)

which is the same as the submodular concave condition

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (4.13)
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Submodular Definition: Four Points

Definition 4.3.2 (“singleton”, or “four points”)

A function f : 2V → R is submodular iff for any A ⊂ V , and any
a, b ∈ V \A, we have that:

f(A ∪ {a}) + f(A ∪ {b}) ≥ f(A ∪ {a, b}) + f(A) (4.14)

This follows immediately from diminishing returns. To achieve
diminishing returns, assume A ⊂ B with B \A = {b1, b2, . . . , bk}. Then

f(A+ a)− f(A) ≥ f(A+ b1 + a)− f(A+ b1) (4.15)

≥ f(A+ b1 + b2 + a)− f(A+ b1 + b2) (4.16)

≥ . . . (4.17)

≥ f(A+ b1 + · · ·+ bk + a)− f(A+ b1 + · · ·+ bk)
(4.18)

= f(B + a)− f(B) (4.19)
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Submodular Definitions
Theorem 4.3.3

Given function f : 2V → R, then

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) for all A,B ⊆ V (SC)

if and only if

f(v|X) ≥ f(v|Y ) for all X ⊆ Y ⊆ V and v /∈ B (DR)

Proof.

(SC)⇒(DR): Set A← X ∪ {v}, B ← Y . Then A ∪B = B ∪ {v} and
A ∩B = X and f(A)− f(A ∩B) ≥ f(A ∪B)− f(B) implies (DR).

(DR)⇒(SC): Order A \B = {v1, v2, . . . , vr} arbitrarily. Then

f(vi|A ∩B ∪ {v1, v2, . . . , vi−1}) ≥ f(vi|B ∪ {v1, v2, . . . , vi−1}), i ∈ [r − 1]

Applying telescoping summation to both sides, we get:
r∑
i=0

f(vi|A ∩B ∪ {v1, v2, . . . , vi−1}) ≥
r∑
i=0

f(vi|B ∪ {v1, v2, . . . , vi−1})

or

f(A)− f(A ∩B) ≥ f(A ∪B)− f(B)
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Use of gain: submodular bounds of a difference

Given submodular f , and given you have C,D ⊆ E with either
D ⊇ C or D ⊆ C, and have an expression of the form:

f(C)− f(D) (4.20)

If D ⊇ C, then for any X with D = C ∪X then

f(C)− f(D) = f(C)− f(C ∪X) ≥ f(C ∩X)− f(X) (4.21)

or

f(C ∪X|C) ≤ f(X|C ∩X) (4.22)

Alternatively, if D ⊆ C, given any Y such that D = C ∩ Y then

f(C)− f(D) = f(C)− f(C ∩ Y ) ≥ f(C ∪ Y )− f(Y ) (4.23)

or

f(C|C ∩ Y ) ≥ f(C ∪ Y |Y ) (4.24)

Equations (4.22) and (4.24) have same form.
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Many (Equivalent) Definitions of Submodularity

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), ∀A,B ⊆ V (4.25)

f(j|S) ≥ f(j|T ), ∀S ⊆ T ⊆ V, with j ∈ V \ T (4.26)

f(C|S) ≥ f(C|T ),∀S ⊆ T ⊆ V, with C ⊆ V \ T (4.27)

f(j|S) ≥ f(j|S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k}) (4.28)

f(A ∪B|A ∩B) ≤ f(A|A ∩B) + f(B|A ∩B), ∀A,B ⊆ V (4.29)

f(T ) ≤ f(S) +
∑
j∈T\S

f(j|S)−
∑
j∈S\T

f(j|S ∪ T − {j}), ∀S, T ⊆ V

(4.30)

f(T ) ≤ f(S) +
∑
j∈T\S

f(j|S), ∀S ⊆ T ⊆ V (4.31)

f(T ) ≤ f(S)−
∑
j∈S\T

f(j|S \ {j}) +
∑
j∈T\S

f(j|S ∩ T ) ∀S, T ⊆ V

(4.32)

f(T ) ≤ f(S)−
∑
j∈S\T

f(j|S \ {j}), ∀T ⊆ S ⊆ V (4.33)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 4 - April 9th, 2014 F22/79 (pg.22/101)



Definitions of Submodularity Independence Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps

Equivalent Definitions of Submodularity

We’ve already seen that Eq. 4.25 ≡ Eq. 4.26 ≡ Eq. 4.27 ≡ Eq. 4.28 ≡
Eq. 4.29.
We next show that Eq. 4.28 ⇒ Eq. 4.30 ⇒ Eq. 4.31 ⇒ Eq. 4.28.
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Approach

To show these next results, we essentially first use:

f(S ∪ T ) = f(S) + f(T |S) ≤ f(S) + upper-bound (4.34)

and

f(T ) + lower-bound ≤ f(T ) + f(S|T ) = f(S ∪ T ) (4.35)

leading to

f(T ) + lower-bound ≤ f(S) + upper-bound (4.36)

or

f(T ) ≤ f(S) + upper-bound− lower-bound (4.37)
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Eq. 4.28 ⇒ Eq. 4.30

Let T \ S = {j1, . . . , jr} and S \ T = {k1, . . . , kq}.
First, we upper bound the gain of T in the context of S:

f(S ∪ T )− f(S) =

r∑
t=1

(
f(S ∪ {j1, . . . , jt})− f(S ∪ {j1, . . . , jt−1})

)
(4.38)

=
r∑
t=1

f(jt|S ∪ {j1, . . . , jt−1}) ≤
r∑
t=1

f(jt|S) (4.39)

=
∑
j∈T\S

f(j|S) (4.40)

or

f(T |S) ≤
∑
j∈T\S

f(j|S) (4.41)
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Eq. 4.28 ⇒ Eq. 4.30

Let T \ S = {j1, . . . , jr} and S \ T = {k1, . . . , kq}.
Next, lower bound S in the context of T :

f(S ∪ T )− f(T ) =

q∑
t=1

[f(T ∪ {k1, . . . , kt})− f(T ∪ {k1, . . . , kt−1})]

(4.42)

=

q∑
t=1

f(kt|T ∪ {k1, . . . , kt} \ {kt}) ≥
q∑
t=1

f(kt|T ∪ S \ {kt})

(4.43)

=
∑
j∈S\T

f(j|S ∪ T \ {j}) (4.44)
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Eq. 4.28 ⇒ Eq. 4.30

Let T \ S = {j1, . . . , jr} and S \ T = {k1, . . . , kq}.
So we have the upper bound

f(T |S) = f(S ∪ T )− f(S) ≤
∑
j∈T\S

f(j|S) (4.45)

and the lower bound

f(S|T ) = f(S ∪ T )− f(T ) ≥
∑
j∈S\T

f(j|S ∪ T \ {j}) (4.46)

This gives upper and lower bounds of the form

f(T ) + lower bound ≤ f(S ∪ T ) ≤ f(S) + upper bound, (4.47)

and combining directly the left and right hand side gives the desired
inequality.
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Eq. 4.30 ⇒ Eq. 4.31

This follows immediately since if S ⊆ T , then S \ T = ∅, and the last
term of Eq. 4.30 vanishes.
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Eq. 4.31 ⇒ Eq. 4.28

Here, we set T = S ∪ {j, k}, j /∈ S ∪ {k} into Eq. 4.31 to obtain

f(S ∪ {j, k}) ≤ f(S) + f(j|S) + f(k|S) (4.48)

= f(S) + f(S + {j})− f(S) + f(S + {k})− f(S)
(4.49)

= f(S + {j}) + f(S + {k})− f(S) (4.50)

= f(j|S) + f(S + {k}) (4.51)

giving

f(j|S ∪ {k}) = f(S ∪ {j, k})− f(S ∪ {k}) (4.52)

≤ f(j|S) (4.53)
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Submodular Concave

Why do we call the f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) definition
of submodularity, submodular concave?

A continuous twice differentiable function f : Rn → R is concave iff
∇2f � 0 (the Hessian matrix is nonpositive definite).

Define a “discrete derivative” or difference operator defined on
discrete functions f : 2V → R as follows:

(∇Bf)(A) , f(A ∪B)− f(A \B) = f
(
B|(A \B)

)
(4.54)

read as: the derivative of f at A in the direction B.

Hence, if A ∩B = ∅, then (∇Bf)(A) = f(B|A).

Consider a form of second derivative or 2nd difference:

(∇C∇Bf)(A) = ∇C [f(A ∪B)− f(A \B)]

= f(A ∪B ∪ C)− f((A ∪ C) \B)

− f((A \ C) ∪B) + f((A \ C) \B) (4.55)
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Submodular Concave

If the second difference operator everywhere nonpositive:

f(A ∪B ∪ C)− f((A ∪ C) \B)

− f((A \ C) ∪B) + f(A \ C \B) ≤ 0 (4.56)

then we have the equation:

f((A ∪ C) \B) + f((A \ C) ∪B) ≥ f(A ∪B ∪ C) + f(A \ C \B)
(4.57)

Define A′ = (A ∪ C) \B and B′ = (A \ C) ∪B. Then the above
implies:

f(A′) + f(B′) ≥ f(A′ ∪B′) + f(A′ ∩B′) (4.58)

and note that A′ and B′ so defined can be arbitrary.

One sense in which submodular functions are like concave functions.
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Submodular Concave

A

C

B
(a) A′ = (A ∪ C) \B

A

C

B
(b) B′ = (A \ C) ∪B

Figure : A figure showing A′ ∪B′ = A ∪B ∪ C and A′ ∩B′ = A \ C \B.
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Submodular Concave

A

C

B
(a) A′ = (A ∪ C) \B

A

C

B
(b) B′ = (A \ C) ∪B

Figure : A figure showing A′ ∪B′ = A ∪B ∪ C and A′ ∩B′ = A \ C \B.
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Submodularity and Concave

This submodular/concave relationship is more simply done with
singletons.

Recall four points definition: A function is submodular if for all
X ⊆ V and j, k ∈ V

f(X + j) + f(X + k) ≥ f(X + j + k) + f(X) (4.59)

This gives us a simpler notion corresponding to concavity.

Define gain as ∇j(X) = f(X + j)− f(X), a form of discrete
gradient.

Trivially becomes a second-order condition, akin to concave
functions: A function is submodular if for all X ⊆ V and j, k ∈ V ,
we have:

∇j∇kf(X) ≤ 0 (4.60)
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Example: Rank function of a matrix

Consider the following 4× 8 matrix, so V = {1, 2, 3, 4, 5, 6, 7, 8}.





1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5




=





1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |





Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪Ar) = 3, r(B ∪Br) = 3, r(A ∪Br) = 4, r(B ∪Ar) = 4.

r(A ∪B) = 4, r(A ∩B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪B) + r(A ∩B) = 5
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On Rank

Let rank : 2V → Z+ be the rank function.

In general, rank(A) ≤ |A|, and vectors in A are linearly independent
if and only if rank(A) = |A|.
If A,B are such that rank(A) = |A| and rank(B) = |B|, with
|A| < |B|, then the space spanned by B is greater, and we can find
a vector in B that is linearly independent of the space spanned by
vectors in A.

To stress this point, note that the above condition is |A| < |B|, not
A ⊆ B which is sufficient (to be able to find an independent vector)
but not necessary.

In other words, given A,B with rank(A) = |A| & rank(B) = B,
then |A| < |B| ⇔ ∃ an b ∈ B such that rank(A ∪ {b}) = |A|+ 1.
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Spanning trees/forests

We are given a graph G = (V,E), and consider the edges
E = E(G) as an index set.
Consider the |V | × |E| incidence matrix of undirected graph G,
which is the matrix XG = (xv,e)v∈V (G),e∈E(G) where

xv,e =

{
1 if v ∈ e
0 if v /∈ e

(4.61)

2

1

3

4

7

6

5

8
1

2

3

4

6

7

8

5

9
12

10

11



1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 1 0 0 0 0 0 0 0
3 0 1 0 1 0 1 0 0 0 0 0 0
4 0 0 1 1 0 0 1 1 0 0 0 0
5 0 0 0 0 0 1 1 0 0 1 0 0
6 0 0 0 0 0 0 0 1 1 0 1 0
7 0 0 0 0 1 0 0 0 1 0 0 1
8 0 0 0 0 0 0 0 0 0 1 1 1


(4.62)
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Spanning trees/forests & incidence matrices

We are given a graph G = (V,E), we can arbitrarily orient the
graph (make it directed) consider again the edges E = E(G) as an
index set.

Consider instead the |V | × |E| incidence matrix of undirected graph
G, which is the matrix XG = (xv,e)v∈V (G),e∈E(G) where

xv,e =


1 if v ∈ e+
−1 if v ∈ e−
0 if v /∈ e

(4.63)

and where e+ is the tail and e− is the head of (now) directed edge e.
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Spanning trees/forests & incidence matrices

A directed version of the graph
(right) and its adjacency matrix
(below).

Orientation can be arbitrary.

Note, rank of this matrix is 7.

2

1

3

4

7

6

5

8
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2

3

4

6

7

8

5

9
12

10

11



1 2 3 4 5 6 7 8 9 10 11 12

1 −1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 −1 0 1 0 0 0 0 0 0 0
3 0 −1 0 1 0 −1 0 0 0 0 0 0
4 0 0 1 −1 0 0 1 −1 0 0 0 0
5 0 0 0 0 0 1 −1 0 0 1 0 0
6 0 0 0 0 0 0 0 1 −1 0 −1 0
7 0 0 0 0 −1 0 0 0 1 0 0 1
8 0 0 0 0 0 0 0 0 0 −1 1 −1
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Spanning trees

We can consider edge-induced subgraphs and the corresponding
matrix columns.

2

1

3

4

7
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8
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2

3
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6

7

8
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9
12

10

11



1

1 −1
2 1
3 0
4 0
5 0
6 0
7 0
8 0


(4.64)

Here, rank({x1}) = 1.
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Spanning trees

We can consider edge-induced subgraphs and the corresponding
matrix columns.

2
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11



1 2

1 −1 1
2 1 0
3 0 −1
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0


(4.64)

Here, rank({x1, x2}) = 2.
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Spanning trees

We can consider edge-induced subgraphs and the corresponding
matrix columns.

2

1

3
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7
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1 2 3

1 −1 1 0
2 1 0 −1
3 0 −1 0
4 0 0 1
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0


(4.64)

Here, rank({x1, x2, x3}) = 3.
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Spanning trees

We can consider edge-induced subgraphs and the corresponding
matrix columns.
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1 2 3 5

1 −1 1 0 0
2 1 0 −1 1
3 0 −1 0 0
4 0 0 1 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 −1
8 0 0 0 0


(4.64)

Here, rank({x1, x2, x3, x5}) = 4.
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Spanning trees

We can consider edge-induced subgraphs and the corresponding
matrix columns.

2

1

3

4

7

6
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1

2

3
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1 2 3 4 5

1 −1 1 0 0 0
2 1 0 −1 0 1
3 0 −1 0 1 0
4 0 0 1 −1 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 −1
8 0 0 0 0 0


(4.64)

Here, rank({x1, x2, x3, x4, x5}) = 4.
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Spanning trees

We can consider edge-induced subgraphs and the corresponding
matrix columns.
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1 2 3 4

1 −1 1 0 0
2 1 0 −1 0
3 0 −1 0 1
4 0 0 1 −1
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0


(4.64)

Here, rank({x1, x2, x3, x4}) = 3 since x4 = −x1 − x2 − x3.
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Spanning trees

In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

This means that all forests in the graph correspond to a set of
linearly independent column vectors in the matrix.

Consider a “rank” function defined as follows: given a set of edges
A ⊆ E(G), the rank(A) is the size of the largest forest in the
A-edge induced subgraph of G.

The rank of the entire graph then is then a spanning forest of the
graph (spanning tree if the graph is connected).

The rank of the graph is rank(G) = |V | − k where k is the number
of connected components of G (recall, we saw that kG(A) is a
supermodular function in previous lectures).
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Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E → R+ is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

Given a tree T , the cost of the tree is cost(T ) =
∑

e∈T w(e), the
sum of the weights of the edges.

There are several algorithms for MST:

Algorithm 1: Bor̊uvka’s Algorithm

1 F ← ∅ /* We build up the edges of a forest in F */
2 while G(V, F ) is disconnected do
3 forall the components Ci of F do
4 F ← F ∪ {ei} for ei = the min-weight edge out of Ci;
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Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E → R+ is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

Given a tree T , the cost of the tree is cost(T ) =
∑

e∈T w(e), the
sum of the weights of the edges.

There are several algorithms for MST:

Algorithm 2: Jarńık/Prim/Dijkstra Algorithm

1 T ← ∅ ;
2 while T is not a spanning tree do
3 T ← T ∪ {e} for e = the minimum weight edge extending the

tree T to a new vertex ;
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Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E → R+ is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

Given a tree T , the cost of the tree is cost(T ) =
∑

e∈T w(e), the
sum of the weights of the edges.

There are several algorithms for MST:

Algorithm 3: Kruskal’s Algorithm

1 Sort the edges so that w(e1) ≤ w(e2) ≤ · · · ≤ w(em) ;
2 T ← (V (G), ∅) = (V,E) ;
3 for i = 1 to m do
4 if E(T ) ∪ {ei} does not create a cycle in T then
5 E(T )← E(T ) ∪ {e} ;
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Spanning Tree Algorithms

We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E → R+ is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.
Given a tree T , the cost of the tree is cost(T ) =

∑
e∈T w(e), the

sum of the weights of the edges.
There are several algorithms for MST:
These three algorithms are all guaranteed to find the optimal
minimum spanning tree in (low order) polynomial time.
These algorithms are all related to the “greedy” algorithm. I.e.,
“add next whatever looks best”.
These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.
The above are all examples of a matroid, which is the fundamental
reason why the greedy algorithms work.
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From Matrix Rank → Matroid

So V is set of column vector indices of a matrix.
Let I be a set of all subsets of V such that for any I ∈ I, the vectors
indexed by I are linearly independent.
Given a set B ∈ I of linearly independent vectors, then any subset
A ⊆ B is also linearly independent. Hence, I is down-closed or
“subclusive”, under subsets. In other words,

A ⊆ B and B ∈ I ⇒ A ∈ I (4.65)

maxInd: Inclusionwise maximal independent subsets (or bases) of B.

maxInd(B) , {A ⊆ B : A ∈ I and ∀v ∈ B \A,A ∪ {v} /∈ I} (4.66)

Given any set B ⊂ V of vectors, all maximal (by set inclusion) subsets
of linearly independent vectors are the same size. That is, for all
B ⊆ V ,

∀A1, A2 ∈ maxInd(B), |A1| = |A2| (4.67)
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From Matrix Rank → Matroid

Thus, for all I ∈ I, the matrix rank function has the property

r(I) = |I| (4.68)

and for any B /∈ I,

r(B) = max {|A| : A ⊆ B and A ∈ I} ≤ |B| (4.69)
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Matroid

Matroids abstract the notion of linear independence of a set of
vectors to general algebraic properties.

In a matroid, there is an underlying ground set, say E (or V ), and a
collection of subsets of E that correspond to independent elements.

There are many definitions of matroids that are mathematically
equivalent, we’ll see some of them here.
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Independence System

Definition 4.5.1 (set system)

A (finite) ground set E and a set of subsets of E, ∅ 6= I ⊆ 2E is called a
set system, notated (E, I).

Set systems can be arbitrarily complex since, as stated, there is no
method to determine if a given set S ⊆ E has S ∈ I.

One useful property is “heredity.” Namely, a set system is a
hereditary set system if for any A ⊂ B ∈ I, we have that A ∈ I.
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Independence System

Definition 4.5.2 (independence (or hereditary) system)

A set system (V, I) is an independence system if

∅ ∈ I (emptyset containing) (I1)

and

∀I ∈ I, J ⊂ I ⇒ J ∈ I (subclusive) (I2)

Property I2 is called “down monotone,” “down closed,” or
“subclusive”

Example: E = {1, 2, 3, 4}. With I = {∅, {1}, {1, 2}, {1, 2, 4}}.
Then (E, I) is a set system, but not an independence system since
it is not down closed (i.e., we have {1, 2} ∈ I but not {2} ∈ I).

With I = {∅, {1}, {2}, {1, 2}}, then (E, I) is now an independence
(hereditary) system.
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Independence System


1 2 3 4 5 6 7 8

1 0 0 1 1 2 1 3 1

2 0 1 1 0 2 0 2 4

3 1 1 1 0 0 3 1 5

 =


1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |


(4.70)

Given any set of linearly independent vectors A, any subset B ⊂ A
will also be linearly independent.

Given any forest Gf that is an edge-induced sub-graph of a graph
G, any sub-graph of Gf is also a forest.

So these both constitute independence systems.
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J ∈ I, then J is said to be an independent set.

Definition 4.5.3 (Matroid)

A set system (E, I) is a Matroid if

(I1) ∅ ∈ I
(I2) ∀I ∈ I, J ⊂ I ⇒ J ∈ I
(I3) ∀I, J ∈ I, with |I| = |J |+ 1, then there exists x ∈ I \ J such that

J ∪ {x} ∈ I.
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Matroid

Slight modification (non unit increment) that is equivalent.

Definition 4.5.4 (Matroid-II)

A set system (E, I) is a Matroid if

(I1’) ∅ ∈ I
(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (or “down-closed”)

(I3’) ∀I, J ∈ I, with |I| > |J |, then there exists x ∈ I \ J such that
J ∪ {x} ∈ I

Note (I1)=(I1’), (I2)=(I2’), and we get (I3)≡(I3’) using induction.
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Matroids, independent sets, and bases

Independent sets: Given a matroid M = (E, I), a subset A ⊆ E is
called independent if A ∈ I and otherwise A is called dependent.

A base of U ⊆ E: For U ⊆ E, a subset B ⊆ U is called a base of U
if B is inclusionwise maximally independent subset of U . That is,
B ∈ I and there is no Z ∈ I with B ⊂ Z ⊆ U .

A base of a matroid: If U = E, then a “base of E” is just called a
base of the matroid M (this corresponds to a basis in a linear space).
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Matroids - important property

Proposition 4.5.5

In a matroid M = (E, I), for any U ⊆ E(M), any two bases of U have
the same size.

In matrix terms, given a set of vectors U , all sets of independent
vectors that span the space spanned by U have the same size.
In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 4.5.6 (Matroid)

A set system (V, I) is a Matroid if

(I1’) ∅ ∈ I (emptyset containing)

(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3’) ∀X ⊆ V , and I1, I2 ∈ maxInd(X), we have |I1| = |I2| (all maximally
independent subsets of X have the same size).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 4 - April 9th, 2014 F51/79 (pg.60/101)



Definitions of Submodularity Independence Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps

Matroids - rank

Recall, in any matroid M = (E, I), ∀U ⊆ E(M), any two bases of
U have the same size.
The common size of all the bases of U is called the rank of U ,
denoted rM (U) or just r(U) when the matroid in equation is
unambiguous.
r(E) = r(E,I) is the rank of the matroid, and is the common size of
all the bases of the matroid.
We can a bit more formally define the rank function this way.

Definition 4.5.7 (matroid rank function)

The rank of a matroid is a function r : 2E → Z+ defined by

r(A) = max {|X| : X ⊆ A,X ∈ I} = max
X∈I
|A ∩X| (4.71)

From the above, we immediately see that r(A) ≤ |A|.
Moreover, if r(A) = |A|, then A ∈ I, meaning A is independent (in
this case, A is a self base).
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Matroids, other definitions using matroid rank r : 2V → Z+

Definition 4.5.8 (closed/flat/subspace)

A subset A ⊆ E is closed (equivalently, a flat or a subspace) of matroid
M if for all x ∈ E \A, r(A ∪ {x}) = r(A) + 1.

Definition 4.5.9 (closure)

Given A ⊆ E, the closure (or span) of A, is defined by
span(A) = {b ∈ E : r(A ∪ {b}) = r(A)}.

Therefore, a closed set A has span(A) = A.

Definition 4.5.10 (circuit)

A subset A ⊆ E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a ∈ A,
r(A \ {a}) = |A| − 1).
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 4.5.11 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then
the following are equivalent.

1 B is the collection of bases of a matroid;

2 if B,B′ ∈ B, and x ∈ B′ \B, then B′ − x+ y ∈ B for some
y ∈ B \B′.

3 If B,B′ ∈ B, and x ∈ B′ \B, then B − y + x ∈ B for some
y ∈ B \B′.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of
linear spaces and matrices, and (alternatively) spanning trees.
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is
not surprising that circuits can also characterize a matroid.

Theorem 4.5.12 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the
following three properties:

1 (C1): ∅ /∈ C
2 (C2): if C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.

3 (C3): if C1, C2 ∈ C with C1 6= C2, and C ∈ C1 ∩ C2, then there
exists a C3 ∈ C such that C3 ⊆ (C1 ∪ C2) \ {e}.
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 4.5.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such
that no two sets in C are contained in each other. Then the following are
equivalent.

1 C is the collection of circuits of a matroid;

2 if C,C ′ ∈ C, and x ∈ C ∩C ′, then (C ∪C ′)\{x} contains a set in C;

3 if C,C ′ ∈ C, and x ∈ C ∩ C ′, and y ∈ C \ C ′, then (C ∪ C ′) \ {x}
contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and
matrices, and spanning trees.
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Matroids by submodular functions

Theorem 4.5.14 (Matroid by submodular functions)

Let f : 2E → Z be a integer valued monotone non-decreasing
submodular function. Define a set of sets as follows:

C(f) =
{
C ⊆ E : C is non-empty,

is inclusionwise-minimal,

and has f(C) < |C|
}

(4.72)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal means that if C ∈ C(f), then there exists no
C ′ ⊂ C with C ′ ∈ C(f) (i.e., C ′ ⊂ C would either be empty or have
|C ′| ≤ f(C ′)).
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Uniform Matroid
Given E, consider I to be all subsets of E that are at most size k.
That is I = {A ⊆ E : |A| ≤ k}.
Then (E, I) is a matroid called a k-uniform matroid.
Note, if I, J ∈ I, and |I| < |J | ≤ k, and j ∈ J such that j 6∈ I,
then j is such that |I + j| ≤ k and so I + j ∈ I.
Rank function

r(A) =

{
|A| if |A| ≤ k
k if |A| > k

(4.73)

Note, this function is submodular. Not surprising since
r(A) = min(|A|, k) which is a non-decreasing concave function
applied to a modular function.
Closure function

span(A) =

{
A if |A| < k,

E if |A| ≥ k,
(4.74)

A “free” matroid sets k = |E|, so everything is independent.
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Linear (or Matric) Matroid

Let X be an n×m matrix and E = {1, . . . ,m}
Let I consists of subsets of E such that if A ∈ I, and
A = {a1, a2, . . . , ak} then the vectors xa1 , xa2 , . . . , xak are linearly
independent.

the rank function is just the rank of the space spanned by the
corresponding set of vectors.

rank is submodular, it is intuitive that it satisfies the diminishing
returns property (a given vector can only become linearly dependent
in a greater context, thereby no longer contributing to rank).

Called both linear matroids and matric matroids.
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Cycle Matroid of a graph: Graphic Matroids

Let G = (V,E) be a graph. Consider (E, I) where the edges of the
graph E are the ground set and A ∈ I if the edge-induced graph
G(V,A) by A does not contain any cycle.

Then M = (E, I) is a matroid.

I contains all forests.

Bases are spanning forests (spanning trees if G is connected).

Rank function r(A) is the size of the largest spanning forest
contained in G(V,A).

Closure function adds all edges between the vertices adjacent to any
edge in A. Closure of a spanning forest is G.
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Example: graphic matroid

A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Partition Matroid

Let V be our ground set.

Let V = V1 ∪ V2 ∪ · · · ∪ V` be a partition of V into blocks or disjoint
sets (disjoint union). Define a set of subsets of V as

I = {X ⊆ V : |X ∩ Vi| ≤ ki for all i = 1, . . . , `}. (4.75)

where k1, . . . , k` are fixed parameters, ki ≥ 0. Then M = (V, I) is a
matroid.

Note that a k-uniform matroid is a trivial example of a partition
matroid with ` = 1, V1 = V , and k1 = k.

We’ll show that property (I3’) in Def 4.5.6 holds. If X,Y ∈ I with
|Y | > |X|, then there must be at least one i with
|Y ∩ Vi| > |X ∩ Vi|. Therefore, adding one element
e ∈ Vi ∩ (Y \X) to X won’t break independence.
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Partition Matroid

Ground set of objects, V =

{

}
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Partition Matroid

Partition of V into six blocks, V1, V2, . . . , V6

}
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Partition Matroid

Limit associated with each block, {k1, k2, . . . , k6}

}
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Partition Matroid

Independent subset but not maximally independent.

}
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Partition Matroid

Maximally independent subset, what is called a base.

}
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Partition Matroid

Not independent since over limit in set six.

}
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Matroids - rank
Lemma 4.7.1

The rank function r : 2E → Z+ of a matroid is submodular, that is
r(A) + r(B) ≥ r(A ∪B) + r(A ∩B)

Proof.

1 Let X ∈ I be an inclusionwise maximal set with X ⊆ A ∩B
2 Let Y ∈ I be inclusionwise maximal set with X ⊆ Y ⊆ A ∪B.

3 Since M is a matroid, we know that r(A ∩B) = r(X) = |X|, and
r(A ∪B) = r(Y ) = |Y |. Also, for any U ∈ I, r(A) ≥ |A ∩ U |.

4 Then we have

r(A) + r(B) ≥ |Y ∩A|+ |Y ∩B| (4.76)

= |Y ∩ (A ∩B)|+ |Y ∩ (A ∪B)| (4.77)

≥ |X|+ |Y | = r(A ∩B) + r(A ∪B) (4.78)
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Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 4.7.2 (Matroid from rank)

Let E be a set and let r : 2E → Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all A,B ⊆ E:

(R1) ∀A ⊆ E 0 ≤ r(A) ≤ |A| (non-negative cardinality bounded)

(R2) r(A) ≤ r(B) whenever A ⊆ B ⊆ E (monotone non-decreasing)

(R3) r(A ∪B) + r(A ∩B) ≤ r(A) + r(B) for all A,B ⊆ E (submodular)

So submodularity and non-negative monotone non-decreasing, and
unit increase is necessary and sufficient to define the matroid.

Given above, unit increment (if r(A) = k, then either
r(A ∪ {v}) = k or r(A ∪ {v}) = k + 1) holds.

A matroid is sometimes given as (E, r) where E is ground set and r
is rank function.
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Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 4.7.2 (Matroid from rank)

Let E be a set and let r : 2E → Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all A,B ⊆ E:

(R1) ∀A ⊆ E 0 ≤ r(A) ≤ |A| (non-negative cardinality bounded)

(R2) r(A) ≤ r(B) whenever A ⊆ B ⊆ E (monotone non-decreasing)

(R3) r(A ∪B) + r(A ∩B) ≤ r(A) + r(B) for all A,B ⊆ E (submodular)

From above, r(∅) = 0. Let v /∈ A, then by monotonicity and
submodularity, r(A) ≤ r(A∪ {v}) ≤ r(A) + r({v}) which gives only
two possible values to r(A ∪ {v}).
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank).

Given a matroid M = (E, I), we see its rank function as defined in
Eq. 4.71 satisfies (R1), (R2), and, as we saw in Lemma 4.7.1, (R3)
too.

Next, assume we have (R1), (R2), and (R3). Define
I = {X ⊆ E : r(X) = |X|}. We will show that (E, I) is a matroid.

First, ∅ ∈ I.

Also, if Y ∈ I and X ⊆ Y then by submodularity,

r(X) ≥ r(Y )− r(Y \X)− r(∅) (4.79)

≥ |Y | − |Y \X| (4.80)

= |X| (4.81)

implying r(X) = |X|, and thus X ∈ I.
. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 4 - April 9th, 2014 F66/79 (pg.86/101)



Definitions of Submodularity Independence Matroids Matroid Examples Matroid Rank Partition Matroid System of Distinct Reps

Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank) cont.

Let A,B ∈ I, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B \A = {b1, b2, . . . , bk} (note k ≤ |B|).

Suppose, to the contrary, that ∀b ∈ B \A, r(A+ b) /∈ I, which
means for all such b, r(A+ b) = r(A) = |A|. Then

r(B) ≤ r(A ∪B) (4.82)

≤ r(A ∪ (B \ {b1})) + r(A ∪ {b1})− r(A) (4.83)

= r(A ∪ (B \ {b1}) (4.84)

≤ r(A ∪ (B \ {b1, b2})) + r(A ∪ {b2})− r(A) (4.85)

= r(A ∪ (B \ {b1, b2})) (4.86)

≤ . . . ≤ r(A) = |A| < |B| (4.87)

giving a contradiction since B ∈ I.
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Matroids from rank II

Another way of using function r to define a matroid.

Theorem 4.7.3 (Matroid from rank II)

Let E be a finite set and let r : 2E → Z+ be a function. Then r(·)
defines a matroid with r being its rank function if and only if for all
A ⊆ E, and x, y ∈ E:

(R1’) r(∅) = 0;

(R2’) r(X) ≤ r(X ∪ {y}) ≤ r(X) + 1;

(R3’) If r(X ∪ {x}) = r(X ∪ {y}) = r(X), then r(X ∪ {x, y}) = r(X).
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Matroid and Rank

Thus, we can define a matroid as M = (V, r) where r satisfies
matroid rank axioms.

Example: 2-partition matroid rank function: Given natural numbers
a, b ∈ Z+ with a > b, and any set R ⊆ V with |R| = a, two-block
partition V = (R, R̄), define:

r(A) = min(|A ∩R|, b) + min(|A ∩ R̄|, |R̄|) (4.88)

= min(|A ∩R|, b) + |A ∩ R̄| (4.89)

Example: Truncated matroid rank function.

fR(A) = min {r(A), a} (4.90)

= min
{
|A|, b+ |A ∩ R̄|, a

}
(4.91)

Defines a matroid M = (V, fR) = (V, I) (Goemans et. al.) with

I = {I ⊆ V : |I| ≤ a and |I ∩R| ≤ b}, (4.92)

useful for showing hardness of constrained submodular minimization.
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Summarizing: Many ways to define a Matroid

Summarizing what we’ve so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

Independence (define the independent sets).

Base axioms (exchangeability)

Circuit axioms

Closure axioms (we didn’t see this, but it is possible)

Rank axioms (normalized, monotone, cardinality bounded,
submodular)
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Maximization problems for matroids

Given a matroid M = (E, I) and a modular cost function
c : E → R, the task is to find an X ∈ I such that
c(X) =

∑
x∈X c(x) is maximum.

This seems remarkably similar to the max spanning tree problem.
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Minimization problems for matroids

Given a matroid M = (E, I) and a modular cost function
c : E → R, the task is to find a basis B ∈ B such that c(B) is
minimized.

This sounds like a set cover problem (find the minimum cost
covering set of sets).
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Partition Matroid

What is the partition matroid’s rank function?

A partition matroids rank function:

r(A) =
∑̀
i=1

min(|A ∩ Vi|, ki) (4.93)

which we also immediately see is submodular using properties we
spoke about last week. That is:

1 |A ∩ Vi| is submodular (even modular) in A
2 min(submodular(A), ki) is submodular in A since |A ∩ Vi| is

monotone.
3 sums of submodular functions are submodular.

r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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Partition Matroid, rank as matching

A partition matroid can be viewed using a bipartite graph.

Letting V denote the ground set, and V1, V2, . . . the partition, the
graph is G = (V, I, E) where V is the ground set, I is a set of
“indices”, and E is the set of edges.

I = (I1, I2, . . . , I`) is a set of k =
∑`

i=1 ki nodes, grouped into `
clusters, where there are ki nodes in the ith group Ii.

(v, i) ∈ E(G) iff v ∈ Vj and i ∈ Ij .
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Partition Matroid, rank as matching

Example where ` = 5,
(k1, k2, k3, k4, k5) =
(2, 2, 1, 1, 3).

I1

I2

I3

I4

I5

V1

V2

V3

V4

V5

V I
Recall, Γ : 2V → R as the neighbor
function in a bipartite graph, the
neighbors of X is defined as Γ(X) =
{v ∈ V (G) \X : E(X, {v}) 6= ∅}, and
recall that |Γ(X)| is submodular.

Here, for X ⊆ V , we have Γ(X) =
{i ∈ I : (v, i) ∈ E(G) and v ∈ X}.
For such a constructed bipartite graph,
the rank function of a partition matroid
is r(X) =

∑`
i=1 min(|X ∩ Vi|, ki) =

maximum matching involving X.
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Laminar Matroid

We can define a matroid with structures richer than just partitions.
A set system (V,F) is called a laminar family if for any two sets
A,B ∈ F , at least one of the three sets A ∩B, A \B, or B \A is
empty.

A B

A

B A

B

Family is laminar if it has no two “properly intersecting” members:
i.e., intersecting A ∩B 6= ∅ and not comparable (one is not
contained in the other).
Suppose we have a laminar family F of subsets of V and an integer
k(A) for every set A ∈ F .
Then (V, I) defines a matroid where

I = {I ⊆ E : |X ∩A| ≤ k(A) for all A ∈ F} (4.94)
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System of Representatives

Let (V,V) be a set system (i.e., V = (Vk : i ∈ I) where ∅ ⊂ Vi ⊆ V
for all i).

A family (vi : i ∈ I) with vi ∈ V for index set I is said to be a
system of representatives of V if ∃ a bijection π : I → I such that
vi ∈ Vπ(i). vi is the representative of set π(i), meaning the ith representative is
meant to represent set Vπ(i). Consider the house of representatives, vi = “John
Smith”, while i = King County.

In a system of representatives, there is no requirement for the
representatives to be distinct. I.e., we could have v1 ∈ T , where v1
represents both V1 and V2.

We can view this as a bipartite graph.
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System of Representatives

We can view this as a bipartite graph. The groups of V are marked
by color tags on the left, and also via right neighbors in the graph.

Here, ` = 6, and V = (V1, V2, . . . , V6)
= ({e, f, h}, {d, e, g}, {b, c, e, h}, {a, b, h}, {a}, {a}).

V I

1

2

3

4

5

6a
b
c
d
e
f
g

h

A system of representatives would
make sure that there is a representative
for each color group. For example,

The representatives are shown as
colors on the left.

Here, the set of representatives is not
distinct. In fact, due to the red and
pink group, a distinct group of
representatives is impossible (since
there is only one common choice to
represent both color groups).
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System of Distinct Representatives

Let (V,V) be a set system (i.e., V = (Vk : i ∈ I) where Vi ⊆ V for
all i). Hence, |I| = |V|.
A family (vi : i ∈ I) with vi ∈ V for index set I is said to be a
system of distinct representatives of V if ∃ a bijection π : I ↔ I
such that vi ∈ Vπ(i) and vi 6= vj for all i 6= j.

In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 4.9.1 (transversal)

Given a set system (V,V) as defined above, a set T ⊆ V is a transversal
of V if there is a bijection π : T ↔ I such that

x ∈ Vπ(x) for all x ∈ T (4.95)

Note that due to it being a bijection, all of I and T are “covered”
(so this makes things distinct).
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