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Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

e our room (Mueller Hall Room 154) is changed!

@ Please do use our discussion board (https:
//canvas.uw.edu/courses/895956/discussion_topics) for all

questions, comments, so that all will benefit from them being
answered.

o Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-

@ L1 (3/31): Motivation, Applications, & @ L11:
Basic Definitions o L12:

@ L2: (4/2): Applications, Basic @ L13:
Definitions, Properties o Ll4:

@ L3: More examples and properties (e.g., @ L15:
closur_e properties), and examples, o Li6:
spanning trees

@ L4: proofs of equivalent definitions, o Lir:
independence, start matroids o Lis:

o L5 @ L19:

o L6: @ L20:

e L7:

o L8:

o Lo

@ L1o0:

Finals Week: June 9th-13th, 2014.
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Summary so far

Summing: if o; > 0 and f; : 2V — R is submodular, then so is
> ifi

Restrictions: f/(A) = f(ANS)

max: f(A) = max;ca ¢; and facility location.

Log determinant f(A) = logdet(X4)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 4 - April 9th, 2014 F5/79 (pg.5/241)



Review
(RNRRRRN

Concave over non-negative modular

Let m € Rf be a modular function, and g a concave function over R.
Define f: 2P - R as

f(A) = g(m(A)) (4.35)
then f is submodular.

Proof.

Given AC BC E\ v, we have 0 <a=m(A) <b=m(B), and
0 < ¢ =m(v). For g concave, we have g(a+c) —g(a) > g(b+c) — g(b),
and thus

g(m(A) +m(v)) — g(m(A)) = g(m(B) +m(v)) — g(m(B))  (4.36)

Ol

A form of converse is true as well.
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Concave composed with non-negative modular

Theorem 4.2.1
Given a ground set V. The following two are equivalent:

© For all modular functions m : 2V — R, then f : 2V 5 R defined as
f(A) = g(m(A)) is submodular

Q g: R — R is concave.

@ If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
F(A) = gi(ma(A)) (4.35)
i=1

@ Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).

@ However, Vondrak showed that a graphic matroid rank function over
K4 (we'll define this after we define matroids) are not members.
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Composition of non-decreasting submodular and
non-decreasing concave

Theorem 4.2.1

Given two functions, one defined on sets

f:2V >R (4.35)
and another continuous valued one:

g:R—=R (4.36)

the composition formed as h = go f : 2V — R (defined as
h(S) = g(f(S))) is nondecreasing submodular, if g is non-decreasing
concave and f is nondecreasing submodular.
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Monotone difference of two functions

Let f and g both be submodular functions on subsets of V' and let

(f — g)(+) be either monotone increasing or monotone decreasing. Then
h:2Y — R defined by

h(A) = min(f(A),g(A4)) (4.35)

is submodular.

If h(A) agrees with either f or g on both X and Y, and since

FX)+fY) =2 f(XUY)+f(XNY) (4.36)
9(X) +9(Y) 2 g(XUY) +g(XNY), (4.37)

the result (Equation ??) follows since

f(X)+ £(Y)

9(X) + g(¥) = min(f(X UY),g(X UY)) +min(f(X NY),g(X NY))

/]
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Saturation via the min(-) function

Let f: 2" — R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function h : 2V — R defined
by

h(A) = min(k, f(A)) (4.37)

is submodular.

For constant k, we have that (f — k) is increasing (or decreasing) so this
follows from the previous result. O

Note also, g(a) = min(k, a) for constant k is a non-decreasing concave
function, so when f is monotone nondecreasing submodular, we can use
the earlier result about composing a monotone concave function with a
monotone submodular function to get a version of this.
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Gain Notation

It will also be useful to extend this to sets.
Let A, B be any two sets. Then

f(A|B) £ f(AUB) — f(B) (4.41)
So when j is any singleton
fGIB) = f({s}IB) = f{i} U B) — f(B) (4.42)

Note that this is inspired from information theory and the notation used
for conditional entropy H(X4|Xp) = H(Xa,Xp) — H(Xp).
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Other properties

e Any submodular function h : 2" — R can be represented as the
difference between two submodular functions, i.e.,
h(A) = f(A) — g(A) where both f and g are submodular.
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Other properties

@ Any submodular function h : 2" — R can be represented as the
difference between two submodular functions, i.e.,
h(A) = f(A) — g(A) where both f and g are submodular.

@ Any submodular function f can be represented as a sum of a

normalized monotone non-decreasing submodular function and a
modular function, f = f+m
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Other properties

@ Any submodular function h : 2" — R can be represented as the
difference between two submodular functions, i.e.,
h(A) = f(A) — g(A) where both f and g are submodular.

@ Any submodular function f can be represented as a sum of a
normalized monotone non-decreasing submodular function and a
modular function, f = f+m

@ Any function h can be represented as the difference between two
monotone non-decreasing submodular functions.
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Submodular Definitions

Definition 4.3.2 (submodular concave)

A function f: 2" — R is submodular if for any A, B C V', we have that:

f(A)+ f(B) =z f(AUB) + f(AN B) (4.2)

An alternate and (as we will soon see) equivalent definition is:

Definition 4.3.3 (diminishing returns)

A function f : 2" — R is submodular if for any A C B C V, and
v € V'\ B, we have that:

fLAU{o}) = f(A) = f(BU{v}) — f(B) (4.3)

This means that the incremental “value”, “gain”, or “cost” of v
decreases (diminishes) as the context in which v is considered grows from
A to B.
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Definitions of Submodularity

Submodular Definition: Group Diminishing Returns

An alternate and equivalent definition is:

Definition 4.3.1 (group diminishing returns)

A function f : 2V — R is submodular if for any A C B C V, and
C C V'\ B, we have that:

fLAUC) = f(A) = f(BUC) - f(B) (4.1)

This means that the incremental “value” or “gain” of set C' decreases as
the context in which C' is considered grows from A to B (diminishing
returns)
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Submodular Definition Basic Equivalencies

We want to show that Submodular Concave (Definition 4.3.2),
Diminishing Returns (Definition 4.3.3), and Group Diminishing Returns
(Definition 4.3.1) are identical.
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Definitions of Submodularity
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Submodular Definition Basic Equivalencies

We want to show that Submodular Concave (Definition 4.3.2),
Diminishing Returns (Definition 4.3.3), and Group Diminishing Returns
(Definition 4.3.1) are identical. We will show that:

@ Submodular Concave = Diminishing Returns
@ Diminishing Returns = Group Diminishing Returns

@ Group Diminishing Returns = Submodular Concave
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Submodular Concave = Diminishing Returns

fUS)+f(T) > f(SUT)+ f(SNT) = f(v|A) > f(v|B),AC BCV\v.
@ Assume Submodular concave, so V.S, T we have

f8)+ (1) = f(SUT) + f(SNT).

Ol
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Submodular Concave = Diminishing Returns

f(S)+f(T) > f(SUT)+ f(SNT) = f(v|A) > f(v|B),AC BC V\v.
@ Assume Submodular concave, so VS, T we have
fS)+ f(T) =2 F(SUT) + f(SNT).
@ Given A, B and v € V such that: A C B C V \ {v}, we have from

submodular concave #fat: (‘\
e 4

fLAA+v)+ f(B) = f(B+v) + f(4) (4.2)

LI U

U
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Definitions of Submodularity
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Submodular Concave = Diminishing Returns

f(S)+f(T) 2 f(SUT)+f(SNT) = f(v|A) > f(v|B),AC BC V\v.
@ Assume Submodular concave, so VS, T we have
fS) + (1) = f(SUT) + f(SNT).
@ Given A, B and v € V such that: A C B C V' \ {v}, we have from
submodular concave that:

f(A+v) + f(B) 2 f(B +v) + f(A) (4.2)
@ Rearranging, we have

f(A+v) = f(A) 2 f(B+v) - f(B) (4.3)

Ol
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Let C = {01702, 50 ck} Then diminishing returns |mp||es
D=5 = 1040 -5 = 104 (~149 47~ 47 -6 +6) =

fave) - )_ = (10-)+ (5-2)4(8-3) H{ 7 - €) H(T) (44
f(AUC) 43 ( (AU{ct,...,c}) — f(AU{c, ..., c,»})) _fA) (45)

; ‘ SO A
:;(f AU{c .. cl} (AU{cl...ci_l})) — Zﬂé/#(j (4.6)
: y = ia, %)
Z(f BuU{ci...ci}) — (BU{cl...ci,l})> 1 / (47/)/

i
—

= f(BUC) - Z( (BU{ec,...,ci}) — (BU{cl,‘..,ci}))—f(B) (4.8)
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(NNANR ARNARRNRRNNARER|

Group Diminishing Returns = Submodular Concave

fWUIS) = fWUIT), S €T C V\U = f(A)+f(B) > f(AUB)+f(ANB).
Assume group diminishing returns. Assume A # B otherwise trivial.
Define /= ANB, C = A\ B, and B’ = B. Then since A’ C B/,

fA'+C) = f(A) = f(B'+C) - f(B) (4.10)

giving (L M

A@@ fA'+C) + f(B") =2 f(B'+C) + f(A) (4.11)

or
f(ANB+A\B)+ f(B) > f(B+ A\ B) + f(An B) (4.12)
which is the same as the submodular concave condition

f(A)+ f(B) > f(AUB) + f(AN B) (4.13)
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Submodular Definition: Four Points

Definition 4.3.2 (“singleton”, or “four points™)

A function f : 2V — R is submodular iff for any A C V, and any
a,b €V \ A, we have that:

f(AU{a}) + fF(AU{b}) > f(AU{a,b}) + f(A) (4.14)

oy,
o
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Definitions of Submodularity
(NNANNA RNRRNNRRNNARER|

Submodular Definition: Four Points

Definition 4.3.2 (“singleton”, or “four points™)

A function f : 2V — R is submodular iff for any A C V, and any
a,b €V \ A, we have that:

f(AU{a}) + fF(AU{b}) = f(AU{a,b}) + f(A) (4.14)

This follows immediately from diminishing returns.
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Definitions of Submodularity
(NNANNA RNRRRNRRNNARER|

Submodular Definition: Four Points

Definition 4.3.2 (“singleton”, or “four points™)

A function f : 2V — R is submodular iff for any A C V,landany A £
a,b eV \ A, we have that:

fAUA{a)) +F(AU{D}) > f(AU{a,0}) + f(4) | 4)

This follows immediately from diminishing returns. To achiegg A
diminishing returns, assume A C B with B\ A ={b1,b2,...,bg}. Then

f(A+a) = f(A) > f(A+bi+a) = f(A+br) (4.15)
> f(A+b1+by+a) = f(A+ b +b2) (4.16)
> (4.17)

;f(A+b1—i-"'—l—bk—i-a)—f(A—I—bl—l-"'—i-bk)
= — (#18)
=f(B+4a)—f (4.19)
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Submodular Definitions
Theorem 4.3.3
Given function f : 2V 5 R, then
f(A)+ f(B)> f(AUB)+ f(ANDB) forall A,BCV (SC)
if and only if
f|X)> f(w]Y) forall X CY CV andv ¢ B (DR)
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Definitions of Submodularity
(NNANNRY NRRRNRRNNARER|

Submodular Definitions

Theorem 4.3.3

Given function f : 2V 5 R, then
f(A)+ f(B)> f(AUB)+ f(ANDB) forall A,BCV (SC)
if and only if
f|X)> f(w]Y) forall X CY CV andv ¢ B (DR)

Proof.

(SC)=(DR): Set A+ X U{v}, B« Y. Then AUB = BU {v} and
ANB =X and f(A)— f(ANB) > f(AUB) — f(B) implies (DR).
(DR)=(SC): Order A\ B = {vy,vs,...,v,} arbitrarily. Then
flu|[AN BU{vy,va,...,vi—1}) = f(vi| BU{v1,v2,...,v;-1}), i € [r — 1]
Applying telescoping summation to both sides, we get:

Zf(’UAA NnBU {Ul,vg, .. .,’Uifl}) > Zf(UZ|B U {’Ul,’UQ, ce ,’Ul',l})
=0 =0

or

(]
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Definitions of Submodularity
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Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C E with either
D D C or D C C, and have an expression of the form:

f(C) = f(D) (4.20)
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Definitions of Submodularity
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Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C E with either
D D C or D CC, and have an expression of the form:

f(C) = f(D) (4.20)
o If D D C, then for any X with D = C' U X then
f(C) = f(D)=f(C) - f(CUX) > f(CNX) - f(X)

(4.22)
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Definitions of Submodularity
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Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C E with either
D D C or D CC, and have an expression of the form:

f(C) - f(D) (4.20)
o If D D C, then for any X with D = C U X then
f(C)=fD)=f(C) - f(CUX) > f(CNX)—f(X) (421)

f(CUX|C) < f(XICNX) (4.22)
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Definitions of Submodularity
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Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C E with either
D D C or D CC, and have an expression of the form:

7(C) - £(D) (4.20)
o If D D C, then for any X with D = C U X then
J(€) = F(D) = F(C) ~ F(CUX) = {(CNX) ~ f(X) (421)
or
f(CuX|C) < f(XICNX) (4.22)
@ Alternatively, if D C C', given any Y such that D = C'NY then
f(C) = (D)= f(C) - f(CNY) = f(CUY) = f(Y)

(4.24)
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Definitions of Submodularity
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Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C E with either
D D C or D CC, and have an expression of the form:

7(C) - £(D) (4.20)
o If D D C, then for any X with D = C U X then
J(€) = F(D) = F(C) ~ F(CUX) = {(CNX) ~ f(X) (421)
or
f(CUuX|C) < f(XICNX) (4.22)
o Alternatively, if D C C, given any Y such that D = C'NY then
J(C) ~ £(D) = f(C) = FCNY) = ([CUY) ~ f(Y) (4.23)
or

f(C|CNY) > f(CUY|Y) (4.24)
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Definitions of Submodularity
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Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C E with either
D D C or D CC, and have an expression of the form:

f(C) - f(D) (4.20)
o If D D C, then for any X with D = C U X then
F(C) = f(D)=f(C) = f(CUX) = f(CNX) - f(X) (421)
or
f(CuX|C) < f(XICNX) (4.22)
o Alternatively, if D C C, given any Y such that D = C'NY then
FC) = f(D) = f(C) = f(CNY) = f(CUY) - f(Y) (4.23)
or
fleieny) > f(Cuyly) (4.24)
e Equations (4.22) and (4.24) have same form.
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Many (Equivalent) Definitions of Submodularity

F(A)+ f(B)> f(AUB) + f(ANB), YA, BCV (4.25)
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Definitions of Submodularity
(NNANNARNE RRNRRNNARER|

Many (Equivalent) Definitions of Submodularity

f(A)+ f(B)> f(AUB) + f(ANB), YA,BCV (4.25)
£(1S) = fGIT), ¥S ST CV, with j € V\ T (4.26)
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Definitions of Submodularity
(NNANNARNE RRNRRNNARER|

Many (Equivalent) Definitions of Submodularity

f(A)+ f(B)> f(AUB)+ f(ANB), VA,BCV (4.25)
FG1S) > fUIT), VSCT CV, with j € V\ T (4.26)
F(CIS) > f(C|T), VS CT CV, withCCV\T (4.27)
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Definitions of Submodularity
(NNANNARNE RRNRRNNARER|

Many (Equivalent) Definitions of Submodularity

F(A)+ f(B)> f(AUB) + f(ANB), VA, BCV (4.25)
FGIS) > fGIT), ¥S CT CV, with j € V\ T (4.26)
F(CIS) > F(CIT),¥S C T CV, with C CV\T (4.27)
f(G18) > f(HISU{k}), VS CV with j € V\ (SU{k}) (4.28)
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Definitions of Submodularity
(NNANNARNE RRNRRNNARER|

Many (Equivalent) Definitions of Submodularity

F(A) + f(B)> f(AUB) + f(ANB), YA, BCV (4.25)
FG1S) = FGIT), ¥S ST CV, with j € VT (4.26)
F(C1S) > F(CIT),¥S CT CV, with C CV\ T (4.27)
f(31S) = f(iISU{k}), VS C V with j € V\ (SU{k}) (4.28)
F(AUB|ANB) < f(AJANB) + f(BIANB), YA, BCV (4.29)
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Definitions of Submodularity
(NNANNARNA RRNRRNNARER|

Many (Equivalent) Definitions of Submodularity

F(A)+ f(B) > f(AUB) + f(ANB), YA,BCV (4.25)

F(71S) = FGIT), ¥S C T CV, with j € V\ T (4.26)

F(C|8) > f(C|T),¥S CT CV, with C CV\T (4.27)

fGIS) = f(ISU{k}), VS CV with j € V\ (SU{k}) (4.28)

(AuB|AﬂB) < f(A\AﬂB)+f(B|AmB) VA,BCV (4.29)
FT) < F(S)+ > FGIS) - ), VS, TCV

JET\S JES\T.
(4.30)

T <
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Definitions of Submodularity

Many (Equivalent) Definitions of Submodularity

F(A) + f(B)> f(AUB) + f(ANB), VA,BCV (4.25)

£G1S) > fGIT), VS CT CV, with j € V\ T (4.26)

F(C|S) > f(CIT),¥S CT CV, with C CV\T (4.27)

fGIS) = f(ISU{k}), VS CV with j € V\ (SU{k}) (4.28)

(AuB|AmB) < f(AJANB) + f(BJANB), YA, BCV (4.29)
FI) < F(S)+ > fG1S) - Z £ — ), VS, TCV

(4.30)

(4.31)
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ubm y
[RRRRRRRNE ARNARRRRRAN]

Many (Equivalent) Definitions of Submodularity

f(A)+ f(B)> f(AUB) + f(ANB), YA,BCV (4.25)
FG1S) > fGIT), VS CT CV, withj € V\T (4.26)
f(C|S) > f(C|T),YSCT CV, withCCV\T (4.27)
fG1S) = fISULk}), VS CV with j € V\ (SU{k}) (4.28)
f(AuB|AﬂB) < f(A|JANB) + f(B|ANB), YA, BCV (4.29)
)< S+ D FUIS) = D fUISUT—{5}), VS, T CV
JET\S JES\T
(4.30)
f(T) < f(S ZfﬂS VSCTCV (4.31)
JET\S
FO) < fF(S) = D FGEIS\GH + D fUISNT) VS, T CV
jES\T JET\S
(4.32)
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Defini of Submodularity
(NNANNARNA RRNRRNNARER|

Many (Equivalent) Definitions of Submodularity

f(A)+ f(B) > f(AUB)+ f(ANB), YA, BCV (4.25)
fG1S) = fUIT), ¥S ST CV, with j € V\T (4.26)
f(C|S) > f(C|T),¥ySCT CV, with CCV\T (4.27)
FG1S) > F(GISU{RY), VS CV with j € V\ (SU{k}) (4.28)
(AuB|AmB) < f(AJANB)+ f(BJANB), VA, BCV (4.29)
F)+ > FGIS) = D fGISUT - {3}), VS, TV
JET\S jeS\T
(4.30)
FI)<FS)+ D fGlS), vScTCV (4.31)
JET\S
FT)<f(S) = D FGIS\NUGH+ Y fGISnT)vS,TCV
JjeS\T JET\S
(4.32)
FT) < f(S)= D fUIS\{4}), VT CSCV (4.33)
JES\T
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Definitions of Submodularity
(NNANNARNRY ANRRNNARER|

Equivalent Definitions of Submodularity

We've already seen that Eq. 4.25 = Eq. 4.26 = Eq. 4.27 = Eq. 4.28 =
Eq. 4.29.
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Definitions of Submodularity
(NNANNARNRY ANRRNNARER|

Equivalent Definitions of Submodularity

We've already seen that Eq. 4.25 = Eq. 4.26 = Eq. 4.27 = Eq. 4.28 =
Eq. 4.29.
We next show that Eq. 4.28 = Eq. 4.30 = Eq. 4.31 = Eq. 4.28.
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Definitions of Submodularity
(NNANNARNARE ARNNNARER|

Approach  F(TL)=£(70)—£(s)

To show thesernext results, we essentially first use:
F(SUT) = fi5) _ f(S) + upper-bound (4.34)

and

f(T) + lower-bound < f(T") + f(S|T) = f(SUT) (4.35)

- ¢
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Definitions of Submodularity
(NNANNARNARE ARNNNARER|

Approach

To show these next results, we essentially first use:

F(SUT) = £(S) + f(T|S) < £(S) + upper-bound (4.34)
and
£(T) + lower-bound < f(T) + f(S|T) = f(SUT) (4.35)
leading to
F(T) + lower-bound < f(S) + upper-bound (4.36)
or
F(T) < £(S) + upper-bound — lower-bound (4.37)
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Definitions of Submodularity
(NNANNARNARRL ARNRARER|

Eq. 4.28 = Eq. 4.30

Let T\ S ={j1,...,4r} and S\ T = {ki,...,kq}.
First, we upper bound the gain of 7" in the context of S

r

FEUT) = £(8) =S (FS UL, o deh) = FSU L, Gia})

t=1
(4.38)

= f(elS U (Y 7)) < f(7elS)  (4.39)
> 10 Wy i > 10
= ) f319)

JET\S

(4.40)

or

F(T18) < Y fGI1S) (4.41)

JET\S
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Definitions of Submodularity
(NNANNARNARNNT ANNARER|

Eq. 4.28 = Eq. 4.30

Let T\ S = {j1,....5:} and S\ T = (ks i ikg). =

Next, lower bound S in the context of T

FSUT) = f(T) =Y [T ULk, ke}) = (T U k1, ke })]

t=1
(4.42)
= f|T Ufkry. o ked \ {k}) = > f(ke| TUSN {ke})
- s ? 4.43)
= > fGISUT\{}) (4.44)
JES\T
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Definitions of Submodularity
(NNANNARNARNNRY ANRRAR|

Eq. 4.28 = Eq. 4.30

LetT\S:{jl,...,jT} and S\T:{kl,...,kq}.
So we have the upper bound

f(T]S) = f(SUT) — < > f3IS) (4.45)
JET\S

and the lower bound

FSIT) = f(SUT) = f(T) = Y fUISUT\{5}) (4.46)

JES\T
This gives upper and lower bounds of the form
f(T) + lower bound < f(SUT) < f(S) + upper bound, (4.47)

and combining directly the left and right hand side gives the desired
inequality.
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Definitions of Submodularity
(NNANNARNARNNRRY NRRAR|

Eq. 4.30 = Eq. 4.31

This follows immediately since if S C T', then S\ T = (), and the last
term of Eq. 4.30 vanishes.
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Eq. 4.31 = Eq. 4.28

Here, we set T'= S U {j,k}, j ¢ SU{k} into Eq. 4.31 to obtain

F(SU{G,k}) < F(S) + fIS) + f(K]S) (4.48)

= ST F(S + () AT) + £(S + (K) ~ £(5)
— —~ (4.49)
= f(S+{j}) + f(S+{k}) — f(S) (4.50)
= f(j1S) + f(S+{k}) (4.51)

giving

fGISULRY) = F(SU{j k}) — F(SU{k}) (4.52)
< f(419) (4.53)
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Definitions of Submodularity
[RRRRRRRANRRNERRR] NN

Submodular Concave

e Why do we call the f(A) + f(B) > f(AU B) + f(AN B) definition
of submodularity, submodular concave?
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Definitions of Submodularity
[RRRRRRRANRRNERRR] NN

Submodular Concave

e Why do we call the f(A) + f(B) > f(AU B) + f(AN B) definition
of submodularity, submodular concave?

@ A continuous twice differentiable function f : R™ — R is concave iff
V2f < 0 (the Hessian matrix is nonpositive definite).
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Definitions of Submodularity
[RRRRRRRANRRNERRR] NN

Submodular Concave

e Why do we call the f(A) + f(B) > f(AU B) + f(AN B) definition
of submodularity, submodular concave?

@ A continuous twice differentiable function f : R® — R is concave iff
V2f =0 (the Hessian matrix is nonpositive definite).

@ Define a "discrete derivative” or difference operator defined on
discrete functions f : 2" — R as follows:

(Vsf)(A) £ f(AUB) - f(A\ B) = f(BI(A\ B))  (454)

read as: the derivative of f at A in the direction B.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 4 - April 9th, 2014 F30/79 (pg.55/241)



Definitions of Submodularity
(NNANNARNARNNRNNNL RN

Submodular Concave

e Why do we call the f(A) + f(B) > f(AU B) + f(AN B) definition
of submodularity, submodular concave?

@ A continuous twice differentiable function f : R® — R is concave iff
V2f =0 (the Hessian matrix is nonpositive definite).

@ Define a "discrete derivative” or difference operator defined on
discrete functions f : 2" — R as follows:

(Vsf)(A) £ f(AUB) - f(A\ B) = f(BI(A\ B))  (454)

read as: the derivative of f at A in the direction B.
@ Hence, if AN B =10, then (Vpf)(A) = f(B|A).
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Definitions of Submodularity
(NNANNARNARNNRNNNL RN

Submodular Concave

e Why do we call the f(A) + f(B) > f(AU B) + f(AN B) definition
of submodularity, submodular concave?

@ A continuous twice differentiable function f : R® — R is concave iff
V2f = 0 (the Hessian matrix is nonpositive definite).

@ Define a "discrete derivative” or difference operator defined on
discrete functions f : 2" — R as follows:

(Vsf)(A) £ f(AUB) - f(A\ B) = f(BI(A\ B))  (454)

read as: the derivative of f at A in the direction B.
@ Hence, if AN B =0, then (Vpf)(A) = f(B|A).
@ Consider a form of second derivative or 2nd difference:

(VeVsf)(A) = Vel[f(AUB) — f(A\ B)]
=f(AUBUC) - f((AUC)\ B)
—f(A\NC)UB) + f((A\NC)\ B)  (4.55)
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Definitions of Submodularity
[RRRRRRRANRRNRRRRRY NE]

Submodular Concave

@ If the second difference operator everywhere nonpositive:

fLAUBUC) = f((AUC)\ B)
—f(ANC)UB)+ f(ANC\B)<0  (4.56)
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Definitions of Submodularity
(NNANNARNARRNRNNNRY VR

Submodular Concave

o If the second difference operator everywhere nonpositive:
f(AUBUC) - f((AUC)\ B)
— f((A\NC)UB) + f(A\N\C\B)<0  (4.56)
then we have the equation:

f((AUC)\B)+f((A\C)UB)>f(AUBUC)+f(A\C(\B))
4.57
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Definitions of Submodularity
(NNANNARNARRNRNNNRY VR

Submodular Concave

o If the second difference operator everywhere nonpositive:

fLAUBUCQC) - f((AUC)\ B)
~ F((A\C)UB) + f(A\C\B)<0  (456)

then we have the equation:

f((AUC)\B)+f((A\C)UB)Zf(AUBUC)Jrf(A\CE\B))
4.57

@ Define A/ =(AUC)\ B and B'=(A\ C)U B. Then the above

implies:

f(A)+ f(B") > f(AUB) + f(ANB') (4.58)

and note that A’ and B’ so defined can be arbitrary.

F31/79 (pg.60/241)
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Definitions of Submodularity
(NNANNARNARNNRNNNRY AR

Submodular Concave

o If the second difference operator everywhere nonpositive:

fLAUBUCQC) - f((AUC)\ B)
— f((A\C)UB)+ f(A\C\B)<0 (4.56)

then we have the equation:

f((AUC)\B)+f((A\C)UB)Zf(AUBUC)Jrf(A\C(\B))
4.57

@ Define A’ = (AUC)\ B and B' = (A\ C) U B. Then the above

implies:
fA) + f(B') = f(AUB') + f(A'NB) (4.58)
and note that A’ and B’ so defined can be arbitrary.

@ One sense in which submodular functions are like concave functions.
F31/79 (pg.61/241)
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Definitions of Submodularity
[RERRRRRANRRNRRRRRRL V]

Submodular Concave

C C

A B A
(a) A= (AUC)\ B (b) B' = (A\C)UB

Figure : A figure showing A’ UB'= AUBUC and A’ NB' = A\ C\ B.
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Definitions of Submodularity

Submodular Concave

Ceo

(AUC)\ B — (A\C)UB
Figure : A figure showing A’ UB'= AUBUC and A/ NB' = A\ C\ B.
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Definitions of Submodularity
(NNANRARNARNNRNNRRRA |

Submodularity and Concave

@ This submodular/concave relationship is more simply done with
singletons.
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Definitions of Submodularity
(RRRRARRRRRRNRRRRRNAN)

Submodularity and Concave

@ This submodular/concave relationship is more simply done with
singletons.

@ Recall four points definition: A function is submodular if for all
XCVandjkeV

JX+)+f(X+Ek)>f(X+7+k)+ f(X) (4.59)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 4 - April 9th, 2014 F33/79 (pg.65/241)



Definitions of Submodularity
(NNANRARNARNNRNNRRRA |

Submodularity and Concave

@ This submodular/concave relationship is more simply done with

singletons.
@ Recall four points definition: A function is submodular if for all
X CVandj ke )(j

JX+)+ (X +k) 2 f(X+j+k)+ f(X) (4.59)

@ This gives us a simpler notion corresponding to concavity.
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Definitions of Submodularity
(NNANRARNARNNRNNRRRA] |

Submodularity and Concave

@ This submodular/concave relationship is more simply done with
singletons.

@ Recall four points definition: A function is submodular if for all
XCVandjkeV

JX+)+ (X +k) 2 f(X+j+k)+ f(X) (4.59)

@ This gives us a simpler notion corresponding to concavity.

@ Define gain as' V(X)) = f(X + j) — f(X), a form of discrete
gradient.
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Definitions of Submodularity
(NNANRARNARNNRNNRRRA] |

Submodularity and Concave

@ This submodular/concave relationship is more simply done with
singletons.

@ Recall four points definition: A function is submodular if for all
XCVandjkeV

JX+)+f(X+k) =2 F(X+7+Ek)+ f(X) (4.59)

@ This gives us a simpler notion corresponding to concavity.
@ Define gain as V;(X) = f(X + j) — f(X), a form of discrete
gradient.

@ Trivially becomes a second-order condition, akin to concave
functions: A function is submodular if for all X C V and j,k € V,
we have:

VVief(X) <0 (4.60)
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Independence
[ NRNRRRN

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V. ={1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 38

1/0 2 2 3 01 3 1
20 3 0 4 0 0 2 4| | | | | | | | |
310 000300 55| (707 s e
4\2 0 0 0 0 0 O 5 | | | | | | | |

o Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.

@ Then r(A) =3, r(B) =3, r(C) =2.

o r(AUC)=3, r(BUC)=3.

e r(AUA,) =3 r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.

o r(AUB) =4 ARBy—= ) = 2.

o 6 r(A)+rB)>r(AUB)+r(AnB) =5
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Independence
(LERRRRN

On Rank

@ Let rank : 2V — Z, be the rank function.
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Independence
(LERRRRN

On Rank

o Let rank : 2V — Z, be the rank function.

@ In general, rank(A) < |A|, and vectors in A are linearly independent
if and only if rank(A) = |A].
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Independence
(LERRRRN

On Rank

o Let rank : 2V — Z, be the rank function.

o In general, rank(A) < |A|, and vectors in A are linearly independent
if and only if rank(A) = |A].

e If A, B are such that rank(A) = |A| and rank(B) = |B|, with
|A] < | B|, then the space spanned by B is greater, and we can find
a vector in B that is linearly independent of the space spanned by
vectors in A.
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Independence
(LERRRRN

On Rank

o Let rank : 2V — Z, be the rank function.

o In general, rank(A) < |A|, and vectors in A are linearly independent
if and only if rank(A) = |A].

e If A, B are such that rank(A) = |A| and rank(B) = |B|, with
|A| < |B|, then the space spanned by B is greater, and we can find
a vector in B that is linearly independent of the space spanned by
vectors in A.

@ To stress thisgpoint, note that the above condition’is |A| < |B|, not
A'C B which”is sufficient (to be able to find an independent vector)
but not necessary.
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Independence
(LERRRRN

On Rank

o Let rank : 2V — Z, be the rank function.

o In general, rank(A) < |A|, and vectors in A are linearly independent
if and only if rank(A) = |A].

e If A, B are such that rank(A) = |A| and rank(B) = |B|, with
|A| < |B|, then the space spanned by B is greater, and we can find
a vector in B that is linearly independent of the space spanned by
vectors in A.

@ To stress this point, note that the above condition is |A| < |B|, not
A C B which is sufficient (to be able to find an independent vector)
but not necessary.

@ In other words, given A, B with rank(A) = [A| & rank(B) = B,
then |A[<|BJ < 3 an b € B such that rank(AU {b}) = |A| + 1.
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Independence
(NLRRRRN

Spanning trees/forests

@ We are given a graph G = (V| E), and consider the edges
E = E(G) as an index set.

e Consider the |V| x |E| incidence matrix of undirected graph G,
which is the matrix Xg = (%y.e)vev (@), ccE(G) Where

JUve:{l !fUEe (4.61)
’ 0 ifude
12 3 4 5 6 78 9 10 11 12
1/110000O0O0O0 O O O
21 60101 0 000 0 0 O
310 1. 01 01 000 0 0 O
410 0 1.1 0 0 1 1.0 0 0 O
5/]0 0 0001 100 1 0 O
60 0 0 000011 0 1 O
710 0 001 0001 0 0 1
8\0 0 0OOOOOOOT1 1 1
(4.62)
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Independence
(NRR NRRN

Spanning trees/forests & incidence matrices

e We are given a graph G = (V, E), we can arbitrarily orient the
graph (make it directed) consider again the edges £ = F(G) as an
index set.

o Consider instead the |V| x |E| incidence matrix of undirected graph
G, which is the matrix Xg = (Ty.¢)vev(@),ceE(q) Where

1 ifveet
Tye=94—1 ifvee (4.63)
0 ifvéee

and where e is the tail and e is the head of (now) directed edge e.

5
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Independence

Spanning trees/forests & incidence matrices

@ A directed version of the graph
(right) and its adjacency matrix
(below).

@ Orientation can be arbitrary.

@ Note, rank of this matrix is 7.

1 3 4 5 6 7 8 9 10 11 12
1 /-1 1 0 0 0 0 0 0 0 0 0 0
21 1 0 -1 0 1 0 0 0 0 0 0 0
310 -1 0 1 0 =1 0 0 0 0 0 0
41 0 0 1 -1 0 0 1 -1 0 0 0 0
51 0 0 0 0 0 1 -1 0 0 1 0 0
6] 0 0 0 0 0 0 0 1 -1 0 -1 0
7 O 0 0 0o -1 0 0 0 1 0 0 1
8\ 0 0 0 0 0 0 0 0 0o -1 1 -1
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Independence
(NRNRR RN

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding
matrix columns.

(4.64)

0O Utk Wi
=l eleBoNoNel

Here, rank({z1}) = 1.
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Independence

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding
matrix columns.

12
1/-1 1
2] 1 o0
31 0 -1
41 0 o0

4.64
50 0 o0 (4.64)
6] 0 0
71 o o
s\ 0 0

Here, rank({z1,z2}) = 2.
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Independence

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding
matrix columns.

1 2 3
1 /=1 1 0
21 1 0 -1
310 -1 0
41 0 0 1
5o 0 0 (4.64)
6] 0 0 0
7{ O 0 0
8\ 0 0 0

Here, rank({z1, z2,z3}) = 3.
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Independence
(NRNER RN

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding
matrix columns.

1 3 5
1 /-1 1 0 0
21 1 0o -1 1
310 -1 0 0
41 0 0 1 0
500 0 0 O (4.64)
6] 0 0 0 O
710 0 0 -1
§8\0 0 0 O

Here, rank({z1, 22, 23, 25}) = 4.
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Independence

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding
matrix columns.

1 2 3 4 5
1/-1 1 0 0 0
2l 1 0o -1 0 1
3l o =1 0 1 o0
410 0 1 -1 0
4.64
500 o o o o0 (4.64)
6 o o 0o o0 o0
7o o o o -1
s\o 0 0 0 0

Here, rank({z1, z2, 23,24, 25}) = 4.
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Independence
(NRNER RN

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding
matrix columns.

1 3 4
1 /-1 1 0 0
2 1 0O -1 0
3 0O -1 0 1
4 0 0 1 -1
4.64
5 0 0 0 0 ( )
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
Here, rank({z1, z2, 23, 24}) = 3 since 4 = —x1 — 29 — 3.
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Spanning trees

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

@ This means that all forests in the graph correspond to a set of
linearly independent column vectors in the matrix.

@ Consider a “rank” function defined as follows: given a set of edges
A C E(G), the rank(A) is the size of the largest forest in the
A-edge induced subgraph of G.

@ The rank of the entire graph then is then a spanning forest of the
graph (spanning tree if the graph is connected).

@ The rank of the graph is rank(G) = |V| — k where k is the number

of connected components of G (recall, we saw that kg(A) is a
supermodular function in previous lectures).

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 4 - April 9th, 2014 F40/79 (pg.84/241)



Independence
[NRRNNAT ]

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

@ Given a tree T', the cost of the tree is cost(T) = > . w(e), the
sum of the weights of the edges.

@ There are several algorithms for MST:

Algorithm 1: Boriivka's Algorithm

F «+ 0 /* We build up the edges of a forest in F’ */
while G(V, F) is disconnected do
forall the components C; of F' do
L F < FU/{e;} for e; = the min-weight edge out of Cj;

s Ny =
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Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

@ Given a tree T', the cost of the tree is cost(T) = > . w(e), the
sum of the weights of the edges.

@ There are several algorithms for MST:
Algorithm 2: Jarnik /Prim/Dijkstra Algorithm

1T +0;

2 while T is not a spanning tree do

T < T U{e} for e = the minimum weight edge extending the
tree T to a new vertex ;

w
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Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

@ Given a tree T', the cost of the tree is cost(T) = > . w(e), the
sum of the weights of the edges.

@ There are several algorithms for MST:

Algorithm 3: Kruskal's Algorithm

Sort the edges so that w(er) < w(ez) < -+ < w(epy) ;
T+ (V(G),0) = (V,E) ;

for i =1tom do

L if E(T)U{e;} does not create a cycle in T then

A W =

| E(T) « E(T) U{e};
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Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

o Given a tree T', the cost of the tree is cost(T) = > . w(e), the
sum of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal
minimum spanning tree in (low order) polynomial time.
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Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

o Given a tree T', the cost of the tree is cost(T) = > . w(e), the
sum of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal
minimum spanning tree in (low order) polynomial time.

@ These algorithms are all related to the “greedy” algorithm. l.e.,
“add next whatever looks best”.
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Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

o Given a tree T', the cost of the tree is cost(T) = > . w(e), the
sum of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal
minimum spanning tree in (low order) polynomial time.

@ These algorithms are all related to the “greedy” algorithm. l.e.,
“add next whatever looks best”.

@ These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.
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Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

o Given a tree T', the cost of the tree is cost(T) = > . w(e), the
sum of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal
minimum spanning tree in (low order) polynomial time.

@ These algorithms are all related to the “greedy” algorithm. l.e.,
“add next whatever looks best”.

@ These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.

@ The above are all examples of a matroid, which is the fundamental
reason why the greedy algorithms work.
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.
@ Let Z be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

o Let 7 be a set obsets of V such that for any I € Z, the vectors
indexed by I are linearly independent.

@ Given a set B € 7 of linearly independent vectors, then any subset
A C B is also linearly independent.
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

@ Given a set B € T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, Z is down-closed or
“subclusive”, under subsets.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 4 - April 9th, 2014 F42/79 (pg.95/241)



Matroids
[ERRRNRRRRARNARN

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

@ Given a set B € T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, 7 is down-closed or
“subclusive”, under subsets. In other words,

ACBand BeZI=AecZl (4.65)
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

@ Given a set B € T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, 7 is down-closed or
“subclusive”, under subsets. In other words,

ACBand BelI=Acl (4.65)
@ maxInd: Inclusionwise maximal independent subsets (or bases) of 35\/

maxind(B) 2 {ACB:AcZandVv e B\ A, AU {v} ¢ I} (4.66)
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

o Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

@ Given a set B € T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, 7 is down-closed or
“subclusive”, under subsets. In other words,

ACBand BeZI=AcTl (4.65)
e maxInd: Inclusionwise maximal independent subsets (or bases) of B.
maxind(B) 2 {ACB:AcZandVYve B\ A, AU{v} ¢ I} (4.66)

@ Given any set B C V of vectors, all maximal (by set inclusion) subsets
of linearly independent vectors are the same size. That is, for all
BCV,

VA17A2 € maxlnd(B), ‘Aﬂ = |A2‘ (467)
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From Matrix Rank — Matroid

@ Thus, for all I € Z, the matrix rank function has the property
r(I) = |I| (4.68)
and for any B ¢ 7,

r(B) =max{|A|: AC Band 4 < |B| (4.69)

. 7J
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Matroid

@ Matroids abstract the notion of linear independence of a set of
vectors to general algebraic properties.
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Matroid

@ Matroids abstract the notion of linear independence of a set of
vectors to general algebraic properties.

@ In a matroid, there is an underlying ground set, say E (or V), and a
collection of subsets of E that correspond to independent elements.
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Matroid

@ Matroids abstract the notion of linear independence of a set of
vectors to general algebraic properties.

@ In a matroid, there is an underlying ground set, say E (or V'), and a
collection of subsets of E that correspond to independent elements.

@ There are many definitions of matroids that are mathematically
equivalent, we'll see some of them here.
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Independence System

Definition 4.5.1 (set system)

A (finite) ground set E and a set of subsets of E, ) # Z C 2% is called a
set system, notated (E,Z).

@ Set systems can be arbitrarily complex since, as stated, there is no
method to determine if a given set S C F has S € 7.
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Independence System

Definition 4.5.1 (set system)

A (finite) ground set F and a set of subsets of £, () # Z C 2% is called a
set system, notated (F,Z).

@ Set systems can be arbitrarily complex since, as stated, there is no
method to determine if a given set S C F has S € 7.

@ One useful property is "heredity.”. Namely, a set system is a
hereditary set system if for any A C(B € Z, we have that 4 € 7.
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Independence System

Definition 4.5.2 (independence (or hereditary) system)

A set system (VL) is an independence
) €Z (emptyset containing) (1)
and
VIeZ,JCI=JeZ (subclusive) (12)

@ Property 12 is called “down monotone,” “down closed,” or
“subclusive”
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Independence System

Definition 4.5.2 (independence (or hereditary) system)

A set system (V,Z) is an independence system if
) €Z (emptyset containing) (11)
and
VIeZ,JCI= JeZI (subclusive) (12)

@ Property 12 is called “down monotone,” “down closed,” or
“subclusive”
e Example: B ={1,2,3,4}: With Z = {0, {1}, {1, 2}, {1,2,4}}.
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Independence System

Definition 4.5.2 (independence (or hereditary) system)

A set system (V,Z) is an independence system if
) €Z (emptyset containing) (11)
and
VIeZ,JCI= JeZI (subclusive) (12)

@ Property 12 is called “down monotone,” “down closed,” or
“subclusive”

e Example: F ={1,2,3,4}. With Z = {0, {1}, {1,2},{1,2,4}}.

@ Then (E,Z) is a set system, but not an independence system since
it is not down closed (i.e., we have {1,2} € Z but not {2} € 7).
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Independence System

Definition 4.5.2 (independence (or hereditary) system)

A set system (V,Z) is an independence system if
) €Z (emptyset containing) (11)
and
VIeZ,JCI= JeZI (subclusive) (12)

@ Property 12 is called “down monotone,” “down closed,” or
“subclusive”

e Example: F ={1,2,3,4}. With Z = {0, {1}, {1,2},{1,2,4}}.

@ Then (E,Z) is a set system, but not an independence system since
it is not down closed (i.e., we have {1,2} € Z but not {2} € 7).

o With Z = {0, {1}, {2},{1,2}}, then (E,Z) is now an independence
(hereditary) system.
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Independence System

1
0
0
1

1 2 3 4 5 6 7 8
e

Ty T2 T3 T4 Ts Te Tr I8

I
(4.70)

= = O N
— = =W
S O o
S NN Ot
w O = O
= N W
Tt~ =
Il

@ Given any set of linearly independent vectors A, any subset B C A
will also be linearly independent.
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Independence System

1
0
0
1

1 2 3 4 5 6 7 8
e

Ty T2 T3 T4 Ts Te Tr I8

I
(4.70)

= = O N
— = =W
S O o
S NN Ot
w O = O
= N W
Tt~ =
Il

@ Given any set of linearly independent vectors A, any subset B C A
will also be linearly independent.

@ Given any forest Gy that is an edge-induced sub-graph of a graph
G, any sub-graph of G is also a forest.
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Independence System

1
0
0
1

1 2 3 4 5 6 7 8
e

Ty T2 T3 T4 Ts Te Tr I8

I
(4.70)

= = O N
—_ = =W
S O =
S NN Ot
w O = O
= N W
U~ o
Il

@ Given any set of linearly independent vectors A, any subset B C A
will also be linearly independent.

@ Given any forest Gy that is an edge-induced sub-graph of a graph
G, any sub-graph of G/ is also a forest.

@ So these both constitute independence systems.
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J € Z, then J is said to be an independent set.

Definition 4.5.3 (Matroid)

A set systgm (E,Z) is a Matroid if
(1) ez
(2)ViIeZ,JcI=JeZ

(13) VI,J € Z, with |I| = |J| + 1, then there exists € I \ J such that
JU{z} e
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Matroid

Slight modification (non unit increment) that is equivalent.

Definition 4.5.4 (Matroid-11)

A set system (F,Z) is a Matroid if

(11 ez
12"y VIeZ,JCI= JeZ (or “down-closed")

(13") VI,J € Z, with |I| > |J|, then there exists = € I \ J such that
Ju{z}eZ

Note (11)=(I1"), (12)=(12"), and we get (13)=(I3") using induction.
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Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E is
called independent if A € Z and otherwise A is called dependent.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 4 - April 9th, 2014 F50/79 (pg.114/241



Matroids
(ERRNRANR ARRARAN]

Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € 7 and otherwise A is called dependent.

@ Abaseof U C E: For U C E, a subset B C U is called a base of U
if B is inclusionwise maximally independent subset of U. That is,
B €7 and thereisno Z € Z with BC Z CU.
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Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € 7 and otherwise A is called dependent.

@ Abaseof U C E: For U C E, a subset B C U is called a base of U
if B is inclusionwise maximally independent subset of U. That is,
B eZ and thereisno Z € Z with BC Z CU.

@ A base of a matroid: If U = E, then a "base of E" is just called a
base of the matroid M (this corresponds to a basis in a linear space).
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Matroids - important property

Proposition 4.5.5

In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.
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Matroids - important property

Proposition 4.5.5

In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.
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Matroids - important property

Proposition 4.5.5

In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.
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Matroids - important property

Proposition 4.5.5

In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 4.5.6 (Matroid)

A set system (V,Z) is a Matroid if
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Matroids - important property

Proposition 4.5.5

In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 4.5.6 (Matroid)

A set system (V,Z) is a Matroid if

(I1") @ € Z (emptyset containing)
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Matroids - important property

Proposition 4.5.5
In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 4.5.6 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
(12") YI € Z,J C I = J € T (down-closed or subclusive)
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Matroids - important property

Proposition 4.5.5
In a matroid M = (E,T), for any U C E(M), any two bases of U have
the same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (I1),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 4.5.6 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
(12") VI € Z,J C I = J € T (down-closed or subclusive)

(13") VX CV, and I, I € maxInd(X), we have |I;| = |I2| (all maximally
independent subsets of X have the same size).
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Matroids - rank

@ Recall, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.
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Matroids - rank

@ Recall, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just r(U) when the matroid in equation is
unambiguous.
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Matroids - rank

@ Recall, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just #(U) when the matroid in equation is
unambiguous.

e 7(E) = r(gz) is the rank of the matroid, and is the common size of
all the bases of the matroid.
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Matroids - rank

@ Recall, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just #(U) when the matroid in equation is
unambiguous.

o 7(E) = r(gz) is the rank of the matroid, and is the common size of
all the bases of the matroid.

@ We can a bit more formally define the rank function this way.
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Matroids - rank

@ Recall, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just #(U) when the matroid in equation is
unambiguous.

o 7(E) = r(gz) is the rank of the matroid, and is the common size of
all the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 4.5.7 (matroid rank function)

The rank of a matroid is a function 7 : 28 — 7 defined by

T(A):max{]X\:XQA,XEI}:r)r(la%dAﬂX] (4.71)
€
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Matroids - rank

@ Recall, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just #(U) when the matroid in equation is
unambiguous.

o 7(E) = r(gz) is the rank of the matroid, and is the common size of
all the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 4.5.7 (matroid rank function)

The rank of a matroid is a function 7 : 28 — 7 defined by

T(A):max{]X\:XQA,XEI}:r)r(la%dAﬂX] (4.71)
€

@ From the above, we immediately see that 7(A4) < |A].
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Matroids - rank

@ Recall, in any matroid M = (E,Z), YU C E(M), any two bases of
U have the same size.

@ The common size of all the bases of U is called the rank of U,
denoted r/(U) or just #(U) when the matroid in equation is
unambiguous.

o 7(E) = r(gz) is the rank of the matroid, and is the common size of
all the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 4.5.7 (matroid rank function)

The rank of a matroid is a function 7 : 28 — 7 defined by

T(A):max{]X\:XQA,XEI}:r)r(la%dAﬂX] (4.71)
€

@ From the above, we immediately see that r(A) < |A|.
@ Moreover, if r(A) = |A|, then A € Z, meaning A is independent (in
this case, A is a self base).
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 4.5.8 (closed/flat/subspace)

A subset A C F is closed (equivalently, a flat or a subspace) of matroid
M ifforallz € E\ A, r(AU{z}) =r(4) + 1.
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 4.5.8 (closed/flat/subspace)

A subset A C F is closed (equivalently, a flat or a subspace) of matroid
M ifforallz € E\ A, r(AU{z}) =r(4) + 1.

Definition 4.5.9 (closure)

Given A C F, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(4)}.
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 4.5.8 (closed/flat/subspace)

A subset A C F is closed (equivalently, a flat or a subspace) of matroid
M ifforallz € E\ A, r(AU{z}) =r(4) + 1.

Definition 4.5.9 (closure)

Given A C F, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(4)}.

Therefore, a closed set A has span(A) = A.
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 4.5.8 (closed/flat/subspace)

A subset A C F is closed (equivalently, a flat or a subspace) of matroid
M ifforallz € E\ A, r(AU{z}) =r(4) + 1.

Definition 4.5.9 (closure)

Given A C F, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(4)}.

Therefore, a closed set A has span(A) = A.

Definition 4.5.10 (circuit)

A subset A C F is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A| and for any a € A,

r(A\{a}) = [A] - 1).
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Matroids

Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 4.5.11 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then
the following are equivalent.

@ B is the collection of bases of a matroid;

@ ifB,B' € B, and x € B'\ B, then B' — x + y € B for some
y€ B\ B.

© IfB,B' € B, and x € B'\ B, then B —y + x € B for some
y € B\ B.

Properties 2 and 3 are called “exchange properties.”
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Matroids

Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 4.5.11 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then
the following are equivalent.

@ B is the collection of bases of a matroid;

@ ifB,B' € B, and x € B'\ B, then B' — x + y € B for some
y€ B\ B.

© IfB,B' € B, and x € B'\ B, then B —y + x € B for some
y € B\ B.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of
linear spaces and matrices, and (alternatively) spanning trees.
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is
not surprising that circuits can also characterize a matroid.
Theorem 4.5.12 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E/ that satisfy the
following three properties:

0 (Cl):0éc
Q (C2) if01,02 € C and C| C Cy, then C1 = (.

Q (C3): if C1,Cy € C with Cy # Co, and C € Cy N Cq, then there
exists a Cs € C such that C5 C (C1 U Cy) \ {e}.
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Matroids

Matroids by circuits

Several circuit definitions for matroids.

Theorem 4.5.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such

that no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx € CNC', then (CUC")\ {z} contains a set inC;

Q@ ifC,C"eC,andz e CNC',andy € C\ ', then (CUC)\ {z}
contains a set in C containing y;
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 4.5.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such
that no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx € CNC', then (CUC")\ {z} contains a set inC;

Q@ ifC,C"eC,andz e CNC',andy € C\ ', then (CUC)\ {z}
contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and
matrices, and spanning trees.
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Matroids by submodular functions

Theorem 4.5.14 (Matroid by submodular functions)

Let f : 2F — 7 be a integer valued monotone non-decreasing
submodular function. Define a set of sets as follows:

C(f)= {C’ C E: C is non-empty,
is inclusionwise-minimal,

and has £(C) < |C] } (4.72)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal means that if C' € C(f), then there exists no
C’ C C with C" € C(f) (i.e., C' C C would either be empty or have
[T < F(C)).
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Uniform Matroid

@ Given FE, consider Z to be all subsets of £/ that are at most size k.
Thatis Z={AC E:|A| < k}.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 4 - April 9th, 2014 F58/79 (pg.141/241



Matroid Examples
[NERRN]

Uniform Matroid

@ Given FE, consider Z to be all subsets of E that are at most size k.
ThatisZ={AC E:|A| <k}
@ Then (E,Z) is a matroid called a k-uniform matroid.
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Matroid Examples
[NERRN]

Uniform Matroid
e Given FE, consider Z to be all subsets of F that are at most size k.
ThatisZ={AC E:|A| <k}
@ Then (FE,Z) is a matroid called a k-uniform matroid.
e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [I + j| < kandso I+ j€Z.
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Matroid Examples
[NERRN]

Uniform Matroid

e Given FE, consider Z to be all subsets of F that are at most size k.
ThatisZ={AC E:|A| <k}

@ Then (FE,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [T + j| < kandso I+ j€Z.

@ Rank function
Al if A <k
ray = A AT (4.73)
k if |[A] >k
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Uniform Matroid

e Given FE, consider Z to be all subsets of F that are at most size k.
ThatisZ={AC E:|A| <k}

@ Then (FE,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [T + j| < kandso I+ j€Z.

@ Rank function
Al if|A| <k
ray = A IS (4.73)
k if |[A] >k
@ Note, this function is submodular. Not surprising since

r(A) = min(|Al, k) which is a non-decreasing concave function
applied to a modular function.
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Uniform Matroid

e Given FE, consider Z to be all subsets of F that are at most size k.
ThatisZ={AC E:|A| <k}

@ Then (FE,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [T + j| < kandso I+ j€Z.

@ Rank function
Al if|A| <k
ray = A IS (4.73)
k if |[A] >k
@ Note, this function is submodular. Not surprising since
r(A) = min(]A|, k) which is a non-decreasing concave function
applied to a modular function.
@ Closure function
A if |A] <k,

_ (4.74)
E if|A] >k,

span(A) = {
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Uniform Matroid

e Given FE, consider Z to be all subsets of F that are at most size k.
ThatisZ={AC E:|A| <k}

@ Then (FE,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I,
then j is such that [T + j| < kandso I+ j€Z.

@ Rank function
Al if|A <k
ray = A IS (4.73)
k if |[A] >k
@ Note, this function is submodular. Not surprising since
r(A) = min(]A|, k) which is a non-decreasing concave function

applied to a modular function.
@ Closure function

A if|A| <k,

) (4.74)
E if|Al >k,

span(A) = {

e A “free” matroid sets k = |E|, so everything is independent.
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Linear (or Matric) Matroid

@ Let X be an n x m matrix and E = {1,...,m}
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Linear (or Matric) Matroid

o Let X be an n x m matrix and E = {1,...,m}

@ Let 7 consists of subsets of F such that if A € Z, and
A ={ai,aq,...,ax} then the vectors x4, Zay,, ..., T4
independent.

. are linearly
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Linear (or Matric) Matroid

o Let X be an n x m matrix and E = {1,...,m}

@ Let 7 consists of subsets of F such that if A € Z, and
A ={a1,ag,...,a;} then the vectors 4, Zq,, . .., T4, are linearly
independent.

@ the rank function is just the rank of the space spanned by the
corresponding set of vectors.
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Matroid Examples
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Linear (or Matric) Matroid

o Let X be an n x m matrix and E = {1,...,m}

@ Let 7 consists of subsets of F such that if A € Z, and
A ={a1,ag,...,a;} then the vectors 4, Zq,, . .., T4, are linearly
independent.

@ the rank function is just the rank of the space spanned by the
corresponding set of vectors.

@ rank is submodular, it is intuitive that it satisfies the diminishing
returns property (a given vector can only become linearly dependent
in a greater context, thereby no longer contributing to rank).
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Linear (or Matric) Matroid

o Let X be an n x m matrix and E = {1,...,m}

@ Let 7 consists of subsets of F such that if A € Z, and
A ={a1,ag,...,a;} then the vectors 4, Zq,, . .., T4, are linearly
independent.

@ the rank function is just the rank of the space spanned by the
corresponding set of vectors.

@ rank is submodular, it is intuitive that it satisfies the diminishing
returns property (a given vector can only become linearly dependent
in a greater context, thereby no longer contributing to rank).

@ Called both linear matroids and matric matroids.
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Cycle Matroid of a graph: Graphic Matroids

@ Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V,A) by A does not contain any cycle.
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Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,Z) is a matroid.
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Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,7) is a matroid.

@ 7 contains all forests.
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Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,I) is a matroid.
@ 7 contains all forests.

@ Bases are spanning forests (spanning trees if G is connected).
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Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,I) is a matroid.

@ 7 contains all forests.

@ Bases are spanning forests (spanning trees if G is connected).

@ Rank function 7(A) is the size of the largest spanning forest

contained in G(V, A).
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Cycle Matroid of a graph: Graphic Matroids

o Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

Then M = (E,Z) is a matroid.
7 contains all forests.

Bases are spanning forests (spanning trees if G is connected).

Rank function 7(A) is the size of the largest spanning forest
contained in G(V, A).

@ Closure function adds all edges between the vertices adjacent to any
edge in A. Closure of a spanning forest is (.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Partition Matroid

o Let V be our ground set.
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Matroid Examples
1

Partition Matroid

@ Let V be our ground set.
o Let V=ViUVoU---UV, be a partition of V' into blocks or disjoint
sets (disjoint union). Define a set of subsets of V" as

I={XCV: | XNnVj|<kjforalli=1,...,¢}. (4.75)

where ki, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.
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Matroid Examples
1

Partition Matroid

@ Let V be our ground set.

o Let V=ViUVoU---UV, be a partition of V' into blocks or disjoint
sets (disjoint union). Define a set of subsets of V" as

T={XCV:|XNV|<kiforalli=1,... 0} (4.75)

where ki, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with £ =1, V4, =V, and k1 = k.
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Matroid Examples
1

Partition Matroid

@ Let V be our ground set.

o Let V=ViUVoU---UV, be a partition of V' into blocks or disjoint
sets (disjoint union). Define a set of subsets of V" as

T={XCV:|XNV|<kiforalli=1,... 0} (4.75)

where ki, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with £ =1, V; =V, and k1 = k.

e We'll show that property (13") in Def 4.5.6 holds. If X,Y € Z with
|Y| > | X|, then there must be at least one i with
Y NV;| > |X NV;|. Therefore, adding one element
ecViNn(Y\ X) to X won't break independence.
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Partition Matroid

Ground set of objects, V' = {

ﬁgﬂ

w O -
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Partition Matroid
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Partition Matroid
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Partition Matroid

Independent subset but not maximally independent.
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Partition Matroid

Maximally independent subset, what is called a base.
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Partition Matroid

Not independent since over limit in set six.
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Matroids - rank

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)
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Matroid Rank
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Matroids - rank

Lemma 4.7.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.
@ Let X € 7 be an inclusionwise maximal set with X C AN B

[l
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Matroid Rank
[NRNRARNT]

Matroids - rank
Lemma 4.7.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.
@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AU B. (We
can find such a Y 2 X because, starting from X C AU B, and since |Y| > |X]|,
we can choose ay € Y C AU B such that X +y € Z but sincey € AU B, also
X +y € AUB. We can keep doing this while |Y'| > | X| since this is a matroid.)
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Matroid Rank
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Matroids - rank

Lemma 4.7.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that 7(AN B) = r(X) = | X|, and
r(AUB)=r(Y)=|Y|. Also, forany U € Z, r(A) > |ANU|.

]
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Matroid Rank
[NRNRARNT]

Matroids - rank

Lemma 4.7.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

@ Since M is a matroid, we know that 7(AN B) = r(X) = | X|, and
r(AUB) =r(Y)=1Y|. Also, forany U € Z, r(A) > |ANU|.

© Then we have

r(A) +r(B) (4.76)

]
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Matroid Rank
[NRNRARNT]

Matroids - rank

Lemma 4.7.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

@ Since M is a matroid, we know that 7(AN B) = r(X) = | X|, and
r(AUB) =r(Y)=1Y|. Also, forany U € Z, r(A) > |ANU|.

© Then we have

r(A)+r(B) > Y NA|+|YNB| (4.76)

[]
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Matroids - rank

Lemma 4.7.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

@ Since M is a matroid, we know that 7(AN B) = r(X) = | X|, and
r(AUB) =r(Y)=1Y|. Also, forany U € Z, r(A) > |ANU|.

© Then we have

r(A)+r(B) > |YNA|l+|Y NB| (4.76)
=|YN(ANB)|+|Y Nn(AUB)| (4.77)
41
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[NRNRARNT]

Matroids - rank

Lemma 4.7.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

@ Since M is a matroid, we know that 7(AN B) = r(X) = | X|, and
r(AUB) =r(Y)=1Y|. Also, forany U € Z, r(A) > |ANU|.

@ Then we have

r(A)+r(B) > |YNA|l+|Y NB| (4.76)
=YN(ANB)|+|YN(AUB)| (4.77)
>|X|+|Y|=r(ANB)+r(AUB) (4.78)

[]
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Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 4.7.2 (Matroid from rank)

Let E be a set and let v : 2F — 7., be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all A,B C E:

(R1) YAC E 0<r(A) <|A| (non-negative cardinality bounded)
(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)
(R3) r(AUB)+r(ANB) <r(A)+r(B) for all A, B C E (submodular)

@ So submodularity and non-negative monotone non-decreasing, and
unit increase is necessary and sufficient to define the matroid.

e Given above, unit increment (if 7(A) = k, then either
r(Au{v}) =k orr(AU{v}) =k +1) holds.

@ A matroid is sometimes given as (E,r) where E is ground set and r
is rank function.
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Matroid Rank

Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 4.7.2 (Matroid from rank)

Let E be a set and let r : 2F — 7., be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all A, B C E:

(R1) VAC E 0<r(A) <|A| (non-negative cardinality bounded)
(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)
(R3) r(AUB)+r(ANB) <r(A)+r(B) for all A, B C E (submodular)

e From above, 7()) = 0. Let v ¢ A, then by monotonicity and
submodularity, r(A) < r(AU{v}) < r(A) +r({v}) which gives only
two possible values to (A U {v}).
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank).

@ Given a matroid M = (FE,Z), we see its rank function as defined in
Eq. 4.71 satisfies (R1), (R2), and, as we saw in Lemma 4.7.1, (R3)
too.
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 4.71 satisfies (R1), (R2), and, as we saw in Lemma 4.7.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={X CE:r(X)=|X|}. We will show that (E,Z) is a matroid.
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 4.71 satisfies (R1), (R2), and, as we saw in Lemma 4.7.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 4 - April 9th, 2014



Matroid Rank
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 4.71 satisfies (R1), (R2), and, as we saw in Lemma 4.7.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.

@ Also, if Y € Z and X C Y then by submodularity,
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 4.71 satisfies (R1), (R2), and, as we saw in Lemma 4.7.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.
@ Also, if Y € Z and X C Y then by submodularity,

r(X) 2 1Y) = (Y \ X) (4.79)
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 4.71 satisfies (R1), (R2), and, as we saw in Lemma 4.7.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.
@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y \ X)—r() (4.79)
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 4.71 satisfies (R1), (R2), and, as we saw in Lemma 4.7.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.
@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y \ X)—r() (4.79)
> Y] —[Y\ X| (4.80)
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 4.71 satisfies (R1), (R2), and, as we saw in Lemma 4.7.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.

@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y \ X)—r() (4.79)
> Y| - Y\ X]| (4.80)
= |X| (4.81)
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 4.71 satisfies (R1), (R2), and, as we saw in Lemma 4.7.1, (R3)
too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.

@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y \ X)—r() (4.79)
> Y| - Y\ X]| (4.80)
= |X| (4.81)

implying r(X) = | X/, and thus X € 7.
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, sor(A) = |A| <r(B) = |B|. Let
B\ A={by,ba,...,br} (note k < |BJ).
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank) cont.

o Let A,B €T, with |A| < |BJ, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,ba,...,br} (note k < |BJ).

@ Suppose, to the contrary, that Vb € B\ A, r(A + b) ¢ Z, which
means for all such b, 7(A +b) =r(A) = |A|. Then
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank) cont.

o Let A,B €T, with |A| < |BJ, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,ba,...,br} (note k < |BJ).
@ Suppose, to the contrary, that Vb € B\ A, r(A + b) ¢ Z, which
means for all such b, 7(A +b) = r(A) = |A|. Then
r(B) <r(AUB) (4.82)
[]
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank) cont.

o Let A,B €T, with |A| < |BJ, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,ba,...,br} (note k < |BJ).
@ Suppose, to the contrary, that Vb € B\ A, r(A + b) ¢ Z, which
means for all such b, r(A +b) = r(A) = |A|. Then
r(B) <r(AUB) (4.82)
<r(AU(B\{t1})) +r(AU{bi}) —r(4) (4.83)
[]

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 4 - April 9th, 2014



Matroid Rank
(NI ARARN

Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank) cont.

o Let A,B €T, with |A| < |BJ, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,ba,...,br} (note k < |BJ).
@ Suppose, to the contrary, that Vb € B\ A, r(A + b) ¢ Z, which
means for all such b, 7(A +b) = r(A) = |A|. Then
r(B) <r(AUB) (4.82)
< 1(AU B\ {bi}) + (AU {br}) - r(4) (4.83)
=r(AU(B\{b}) (4.84)
[]
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank) cont.

o Let A,B €T, with |A| < |BJ, so r(A) = |A| < r(B) = |B|. Let
B\A = {bl,bz, .. ,bk} (note k< |B‘)

@ Suppose, to the contrary, that Vb € B\ A, r(A + b) ¢ Z, which
means for all such b, 7(A +b) = r(A) = |A|. Then

r(B) < (AU B) (4.82)

<r(AU(B\{b1})) +r(Au{bi}) —r(A) (4.83)

=r(AU(B\{b1}) (4.84)

<7(AU(B\ {b1,b2})) + r(AU{b2}) — r(A) (4.85)
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B\ A={b1,ba,...,b;} (note k < |B|).

@ Suppose, to the contrary, that Vb € B\ A, r(A + b) ¢ Z, which
means for all such b, 7(A +b) = r(A) = |A|. Then

r(B) <r(AUB) (4.82)

<r(AU(B\{t1})) +7(AU{b1}) —r(4) (4.83)

=r(AU(B\{b1}) (4.84)

<r(AU(B\ {b1,02})) + r(AU{ba}) —7(A)  (4.85)

=7r(AU(B\{b1,b2})) (4.86)
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B\ A={b1,ba,...,b;} (note k < |B|).

@ Suppose, to the contrary, that Vb € B\ A, r(A + b) ¢ Z, which
means for all such b, 7(A +b) = r(A) = |A|. Then

r(B) <r(AUB) (4.82)

<r(AU(B\{t1})) +7(AU{b1}) —r(4) (4.83)

=r(AU(B\{b1}) (4.84)

<r(AU(B\ {b1,02})) + r(AU{ba}) —7(A)  (4.85)

=7r(AU(B\{b1,b2})) (4.86)

- <r(4) = [A[ < [B] (4.87)

IA
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Matroids from rank

Proof of Theorem 4.7.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B\ A={b1,ba,...,b;} (note k < |B|).

@ Suppose, to the contrary, that Vb € B\ A, r(A + b) ¢ Z, which
means for all such b, 7(A +b) = r(A) = |A|. Then

r(B) <r(AUB) (4.82)

<r(AU(B\{t1})) +7(AU{b1}) —r(4) (4.83)

=r(AU(B\{b1}) (4.84)

<r(AU(B\ {b1,02})) + r(AU{ba}) —7(A)  (4.85)

=7r(AU(B\{b1,b2})) (4.86)

- <r(4) = [A[ < [B] (4.87)

IA

giving a contradiction since B € 7.
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Matroids from rank Il

Another way of using function r to define a matroid.

Theorem 4.7.3 (Matroid from rank II)

Let E be a finite set and let r : 2F — 7., be a function. Then r(-)
defines a matroid with r being its rank function if and only if for all
ACUE, andz,y € E:

(R1") (@) =0;
(R2) #(X) < r(X U {g}) < r(X) +1;
(R3") Ifr(X U{z}) =r(X U{y}) =r(X), then r(X U{x,y}) = r(X).
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Matroid and Rank

@ Thus, we can define a matroid as M = (V,r) where r satisfies
matroid rank axioms.

@ Example: 2-partition matroid rank function: Given natural numbers
a,b € Zy4 with a > b, and any set R C V with |R| = a, two-block
partition V = (R, R), define:

r(A) = min(|]AN R|,b) + min(|A N R|, |R|) (4.88)
=min(|JANR|,b) + |[AN R| (4.89)
@ Example: Truncated matroid rank function.
fr(A) = min{r(A),a} (4.90)
=min {|A|,b+|ANR|,a} (4.91)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
I={ICV:|I|<aand|INR|<b}, (4.92)

useful for showing hardness of constrained submodular minimization.
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).
@ Base axioms (exchangeability)

@ Circuit axioms
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)

o Circuit axioms

@ Closure axioms (we didn't see this, but it is possible)
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to
uniquely define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)

@ Circuit axioms

@ Closure axioms (we didn't see this, but it is possible)

@ Rank axioms (normalized, monotone, cardinality bounded,
submodular)
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Maximization problems for matroids

e Given a matroid M = (F,Z) and a modular cost function
c: FE — R, the task is to find an X € 7 such that
c(X) = > ex c(x) is maximum.
@ This seems remarkably similar to the max spanning tree problem.
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Minimization problems for matroids

e Given a matroid M = (E,Z) and a modular cost function
¢: E — R, the task is to find a basis B € B such that ¢(B) is
minimized.

@ This sounds like a set cover problem (find the minimum cost
covering set of sets).
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Partition Matroid

@ What is the partition matroid's rank function?
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

J4
r(A) = min(|[AN V|, k) (4.93)

=1

which we also immediately see is submodular using properties we
spoke about last week. That is:
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

l
r(A)=> min(|ANVi|, k) (4.93)
=1

which we also immediately see is submodular using properties we
spoke about last week. That is:

Q@ |ANYV;| is submodular (even modular) in A
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

‘
r(A)=> min(|ANVi|, k) (4.93)
i=1
which we also immediately see is submodular using properties we
spoke about last week. That is:

Q@ |ANYV;| is submodular (even modular) in A
@ min(submodular(A), k;) is submodular in A since |[ANV;] is
monotone.
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

L
r(A)=> min(|ANVi|, k) (4.93)
i=1
which we also immediately see is submodular using properties we
spoke about last week. That is:
Q@ |ANYV;| is submodular (even modular) in A
@ min(submodular(A), k;) is submodular in A since |[ANV;] is

monotone.
© sums of submodular functions are submodular.
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

l
r(A)=> min(|ANVi|, k) (4.93)
=1

which we also immediately see is submodular using properties we
spoke about last week. That is:

Q@ |ANYV;| is submodular (even modular) in A

@ min(submodular(A), k;) is submodular in A since |[ANV;] is
monotone.

© sums of submodular functions are submodular.

@ r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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Partition Matroid
1

Partition Matroid, rank as matching

@ A partition matroid can be viewed using a bipartite graph.

o Letting V denote the ground set, and Vi, Vo, ... the partition, the
graph is G = (V, I, E) where V is the ground set, I is a set of
“indices”, and E is the set of edges.

o I =(I1,Is,...,1;) is a set of k = Zle k; nodes, grouped into ¢
clusters, where there are k; nodes in the it group I;.

o (v,i) € E(G) iff v e Vjandie Ij.
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Partition Matroid
1

Partition Matroid, rank as matching

@ Example where £ =5,

(K1, ko, k3, ka, ks) =
(2,2,1,1,3).
V |
Vi h
Vs I
%] I5
Vs la
Vs s
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Partition Matroid
1

Partition Matroid, rank as matching

@ Example where £ =5,
(K1, ko, ks, ka, ks) =

(2,2,1,1,3). @ Recall, I' : 2 — R as the neighbor
V | function in a bipartite graph, the

neighbors of X is defined as I'(X) =

Vi I {ve V(G)\ X : E(X,{v}) # 0}, and
recall that |I'(X)| is submodular.

Vs /2

V3 I3

Vi Iy

Vs Is
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Partition Matroid
1

Partition Matroid, rank as matching

@ Example where £ =5,
(K1, ko, ks, ka, ks) =

(2,2,1,1,3). @ Recall, I' : 2 — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
Vi I {ve V(G)\ X : E(X,{v}) # 0}, and
recall that |I'(X)| is submodular.
Vs I @ Here, for X CV, we have I'(X) =
{iel:(v,i) € E(G) and v € X}.
V3 I3
Va lq
Vs Is
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Partition Matroid
1

Partition Matroid, rank as matching

@ Example where £ =5,
(K1, ko, ks, ka, ks) =

(2,2,1,1,3). @ Recall, I': 2V — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
Vi I {fveV(G)\ X : B(X,{v}) # 0}, and
recall that |I'(X)| is submodular.
Vs I @ Here, for X CV, we have I'(X) =

{iel:(v,i) € E(G) and v € X}.
@ For such a constructed bipartite graph,
| the rank function of a partition matroid
Va 4 is r(X) = S0 min(|X N V;], ki) =
maximum matching involving X .

V3 I3

Vs ls
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Partition Matroid
(NN |

Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
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Partition Matroid
(NN |

Laminar Matroid

@ We can define a matroid with structures richer than just partitions.

@ A set system (V| F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B,or B\ A'is
empty.
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Partition Matroid
(NN |

Laminar Matroid

@ We can define a matroid with structures richer than just partitions.

@ A set system (V| F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B,or B\ Ais
empty.

@ Family is laminar if it has no two “properly intersecting” members:

i.e., intersecting AN B # () and not comparable (one is not
contained in the other).
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Partition Matroid
(NN |

Laminar Matroid

@ We can define a matroid with structures richer than just partitions.

@ A set system (V| F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B,or B\ Ais
empty.

A B B A
@ Family is laminar if it has no two “properly intersecting” members:
i.e., intersecting AN B # () and not comparable (one is not
contained in the other).

@ Suppose we have a laminar family F of subsets of V' and an integer
k(A) for every set A € F.
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Partition Matroid
(NN |

Laminar Matroid

@ We can define a matroid with structures richer than just partitions.

@ A set system (V| F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B,or B\ Ais
empty.

A B B A
@ Family is laminar if it has no two “properly intersecting” members:
i.e., intersecting AN B # () and not comparable (one is not
contained in the other).
@ Suppose we have a laminar family F of subsets of V' and an integer

k(A) for every set A € F.
@ Then (V,Z) defines a matroid where

IT={ICE:|XNA <k(A)foral Ac F} (4.94)
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System of Distinct Reps
LA

System of Representatives

o Let (V,V) be a set system (i.e., V= (Vy:i€I)where) CV,CV
for all 7).
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System of Distinct Reps
LA

System of Representatives

o Let (V,V) be a set system (i.e., V= (Vy:i€I)where) CV,CV
for all 7).

e A family (v; : ¢ € I) with v; € V for index set [ is said to be a
system of representatives of V if 3 a bijection 7w : I — I such that
v; € Vﬂ.(i). v; Is the representative of set m(i), meaning the i*" representative is
meant to represent set Vy(;y. Consider the house of representatives, v; = “John
Smith”, while i = King County.
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System of Distinct Reps
LA

System of Representatives

o Let (V,V) be a set system (i.e., V= (Vy:i€I)where) CV,CV
for all 7).

o A family (v; : ¢ € I) with v; € V for index set [ is said to be a
system of representatives of V if 3 a bijection 7 : I — I such that
v € Vw(i)-

@ In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have vy € T', where v
represents both V7 and V5.
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System of Distinct Reps
LA

System of Representatives

o Let (V,V) be a set system (i.e., V= (Vy:i€I)where) CV,CV
for all 7).

o A family (v; : ¢ € I) with v; € V for index set [ is said to be a
system of representatives of V if 3 a bijection 7 : I — I such that
v € Vw(i)-

@ In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have vy € T', where v
represents both V7 and V5.

@ We can view this as a bipartite graph.
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System of Distinct Reps

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
e Here, (=6, and V = (V1,Va,...,Vs)
= ({e, f,h}.{d, e, g}, {b,c,e, h}, {a,b, h},{a},{a}).

V I

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 4 - April 9th, 2014



System of Distinct Reps
i

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
e Here, (=6, and V = (V1,Va,...,Vs)
= ({e, f,h}.{d, e, g}, {b,c,e, h}, {a,b, h},{a},{a}).
@ A system of representatives would

make sure that there is a representative
for each color group. For example,
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System of Distinct Reps
i

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
e Here, (=6, and V = (V1,Va,...,Vs)
= ({e, f,h}.{d, e, g}, {b,c,e, h}, {a,b, h},{a},{a}).

@ A system of representatives would
make sure that there is a representative
for each color group. For example,

@ The representatives are shown as
colors on the left.
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System of Distinct Reps
i

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked
by color tags on the left, and also via right neighbors in the graph.
e Here, (=6, and V = (V1,Va,...,Vs)
= ({e, f,h}.{d, e, g}, {b,c,e, h}, {a,b, h},{a},{a}).

@ A system of representatives would
make sure that there is a representative
for each color group. For example,

@ The representatives are shown as
colors on the left.

@ Here, the set of representatives is not
distinct. In fact, due to the red and
pink group, a distinct group of
representatives is impossible (since
there is only one common choice to
represent both color groups).
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System of Distinct Reps
(Nl

System of Distinct Representatives

@ Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; C V for
all 7).
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System of Distinct Reps
(Nl

System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all 7). Hence, |I]| = |V|.
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System of Distinct Reps
(Nl

System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all 7). Hence, |I| = |V|.

@ A family (v; : i € I) with v; € V for index set [ is said to be a
system of distinct representatives of V' if 3 a bijection 7 : [ <> I
such that v; € V(;) and v; # v; for all i # j.
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System of Distinct Reps
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all 7). Hence, |I| = |V|.

o A family (v; : i € I) with v; € V for index set [ is said to be a
system of distinct representatives of V if 3 a bijection 7 : [ < I
such that v; € V(;) and v; # v for all @ # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:
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System of Distinct Reps
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all 7). Hence, |I| = |V|.

o A family (v; : i € I) with v; € V for index set [ is said to be a
system of distinct representatives of V if 3 a bijection 7 : [ < I
such that v; € V(;) and v; # v for all @ # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 4.9.1 (transversal)

Given a set system (V. V) as defined above, a set T'C V is a transversal
of V if there is a bijection 7 : T <+ I such that

T € Vi forallzeT (4.95)
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System of Distinct Reps
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi :i € I) where V; CV for
all 7). Hence, |I| = |V|.

o A family (v; : i € I) with v; € V for index set [ is said to be a
system of distinct representatives of V if 3 a bijection 7 : [ < I
such that v; € V(;) and v; # v for all @ # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 4.9.1 (transversal)

Given a set system (V. V) as defined above, a set T'C V is a transversal
of V if there is a bijection 7 : T <+ I such that

T € Vi forallzeT (4.95)

@ Note that due to it being a bijection, all of I and T are “covered”
(so this makes things distinct).
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