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Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

@ our room (Mueller Hall Room 154) is changed!

@ Please do use our discussion board (https:
//canvas.uw.edu/courses/895956/discussion_topics) for all
questions, comments, so that all will benefit from them being
answered.

o Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-I

@ L1 (3/31): Motivation, Applications, & @ L11:
Basic Definitions @ L12:

@ L2: (4/2): Applications, Basic @ L13:
Definitions, Properties o L14:

@ L3: More examples and properties (e.g., ° Li5:
cIosur'e properties), and examples, o Li6:
spanning trees

@ L4: proofs of equivalent definitions, o Lir:
independence, start matroids e LI3:

° L5: @ L19:

° L6 @ L20:

o L7:

@ L8:

@ LO:

@ L10:

Finals Week: June 9th-13th, 2014.
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Submodular Definitions

Definition 3.2.2 (submodular concave)

A function f : 2V — R is submodular if for any A, B C V, we have that:

f(A)+ f(B) = f(AUB) + f(AN B) (3.2)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.3 (diminishing returns)

A function f : 2V — R is submodular if for any A C B C V, and
v € V' \ B, we have that:

fLAU{v}) = f(4) = f(BU{v}) — f(B) (3.3)

v

This means that the incremental “value”, “gain”, or “cost” of v

decreases (diminishes) as the context in which v is considered grows from
A to B.
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Many Properties

@ In the last lecture, we started looking at properties of and gaining
intuition about submodular functions.

@ We began to see that there were many functions that were
submodular, and operations on sets of submodular functions that
preserved submodularity.
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Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.

@ Many functions based on graphs are either submodular or
supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.

Matrix rank - rank of a set of vectors from a set of vector indices.
Geometric interpretation of f(A) + f(B) > f(AUB) + f(AN B).
Cost of manufacturing — supply side economies of scale

Network Externalities — Demand side Economies of Scale

Social Network Influence

Information and Summarization - document summarization via
sentence selection
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The Venn and Art of Submodularity

_J/

r(A)+r(B) 2 r(AUB) 4+ r(ANB)

=r(A)+2r(C)+r(B,) =r(A)+r(C)+r(B)) =r(ANB)

.
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X being a set of vector indices.

@ Then, defining f: 25 — R, as follows,
f(X) = r(Uses Xs) (31)

we have that f is submodular, and is known to be a polymatroid
rank function.
@ In general (as we will see) polymatroid rank functions are

submodular, normalized f(()) = 0, and monotone non-decreasing
(f(A) < f(B) whenever A C B).
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1011

Spanning trees

@ Let F be a set of edges of some graph G = (V, E), and let r(.5) for
S C E be the maximum size (in terms of number of edges)
spanning forest in the vertex-induced graph, induced by vertices
incident to edges S.

e Example: Given G = (V,E), V. ={1,2,3,4,5,6,7,8},
E={1,2,...,12}. §={1,2,3,4,5,8,9} C E. Two spanning trees
have the same edge count (the rank of 5).

@ Then r(S) is submodular, and is another matrix rank function
corresponding to the incidence matrix of the graph.
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Information and Summarization

@ Let V be a set of information containing elements (V' might say be
either words, sentences, documents, web pages, or blogs, each
v € V is one element, so v might be a word, a sentence, a
document, etc.). The total amount of information in V' is measure
by a function f(V'), and any given subset S C V' measures the
amount of information in S, given by f(S).

@ How informative is any given item v in different sized contexts? Any
such real-world information function would exhibit diminishing
returns, i.e., the value of v decreases when it is considered in a
larger context.

@ So a submodular function would likely be a good model.
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Submodular Polyhedra

@ Submodular functions have associated polyhedra with nice
properties: when a set of constraints in a linear program is a
submodular polyhedron, a simple greedy algorithm can find the
optimal solution even though the polyhedron is formed via an
exponential number of constraints.

Py ={z e R" : 2(S) < f(5),VS C E} (3.2)
P+:Pfﬂ{:ﬁ€RE:az20} (3.3)
By =Pin{z eR? :z(E) = f(E)} (3.4)

@ The linear programming problem is to, given ¢ € R¥, compute:
f(c) £ max {c"z:z € Py} (3.5)
@ This can be solved using the greedy algorithm! Moreover, f(c)

computed using greedy is convex if and only of f is submodular (we
will go into this in some detail this quarter).
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Bit More Notation
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Ground set: E or V7

Submodular functions are functions defined on subsets of some finite set,
called the ground set .
@ It is common in the literature to use either E' or V' as the ground set.

@ We will follow this inconsistency in the literature and will
inconsistently use either £ or V' as our ground set (hopefully not in
the same equation, if so, please point this out).
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Notation R

What does z € R¥ mean?

RY ={z=(z; €R:j € E)} (3.6)

RY={z=(z;:j€E): x>0} (3.7)

Any vector z € R can be treated as a normalized modular function, and
vice verse. That is

z(A) = Zwa (3.8)

Note that x is said to be normalized since x()) = 0.
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Bit More Notation
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characteristic vectors of sets & modular functions

@ Given an A C FE, define the vector 14 € RE to be

14(5) = {(1) ij Z j; (39)

@ Sometimes this will be written as y4 = 14.

@ Thus, given modular function € R¥, we can write xz(A) in a
variety of ways, i.e.,

r(A)=x-14 = Z:L’(z) (3.10)

€A
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Other Notation: singletons and sets

When A is a set and k is a singleton (i.e., a single item), the union is
properly written as A U {k}, but sometimes | will write just A + k.
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General notation: what does S¥ mean when S and T are

arbitrary sets

@ Let S and T be two arbitrary sets (either of which could be
countable, or uncountable).

@ We define the notation S” to be the set of all functions that map
from T to S. Thatis, if f € ST, then f: T — S.

o Hence, given a finite set £, R¥ is the set of all functions that map
from elements of E to the reals R, and such functions are identical
to a vector in a vector space with axes labeled as elements of E
(i.e., if m € RE, then for all e € E, m(e) € R).

e Similarly, 2% is the set of all functions from E to “two”’ — in this
case, we really mean 2 = {0, 1}, so 2% is shorthand for {0,1}" —
hence, 2F is the set of all functions that map from elements of E to
{0, 1}, equivalent to all binary vectors with elements indexed by
elements of E, equivalent to subsets of E. Hence, if A € 2F then
A C E. What might 3 mean?
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Summing Submodular Functions

Given E, let f1, f2 : 2 — R be two submodular functions. Then
f:2P 5 Rwith f(A) = f1(A) + f2(A) (3.11)

is submodular.This follows easily since

f(A) + f(B) = f1(4) + f2(A) + f1(B) + f2(B) (3.12)
> fiI(AUB) + fo(AUB) + fi(ANB) + f2(AN B)

(3.13)

= f(AUB)+ f(AN B). (3.14)

l.e., it holds for each component of f in each term in the inequality. In
fact, any conic combination (i.e., non-negative linear combination) of
submodular functions is submodular, as in f(A) = a1 f1(A) + aafa(A)
for aq, 09 > 0.
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Summing Submodular and Modular Functions

Given E, let f1,m : 2P — R be a submodular and a modular function.
Then

f:2F 5 R with f(A) = fi(A) — m(A) (3.15)

is submodular (as is f(A) = fi(A) +m(A)). This follows easily since

f(A) + f(B) = f1(A) —m(A) + f1(B) — m(B) (3.16)
> fi(AUB)—m(AUB)+ fi(ANB) —m(ANB)

(3.17)

= f(AUB)+ f(AN B). (3.18)

That is, the modular component with
m(A) +m(B) =m(AU B) + m(AN B) never destroys the inequality.
Note of course that if m is modular than so is —m.
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Restricting Submodular Functions

Given E, let f: 2E 3 R be a submodular functions. And let S C E be
an arbitrary fixed set. Then

f 28 5 Rwith f/(A) = f(AN S) (3.19)
is submodular.
Proof.
Given A C B C E \ v, consider

F(A+0)N8) — fF(ANS) > f(B+v)NS)— f(BNS)  (3.20)

If v ¢ S, then both differences on each size are zero. If v € S, then we
can consider this

fA +v) - f(A) > f(B' +v) - f(B) (3.21)

with A’ = AN S and B'=BNS. Since A’ C B’, this holds due to
submodularity of f. H
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Summing Restricted Submodular Functions

Given V, let f1, f2 : 2¥ — R be two submodular functions and let S;, S
be two arbitrary fixed sets. Then

2V S Rwith f(A) = fi(ANS1) + f2(ANS) (3.22)

is submodular. This follows easily from the preceding two results.
Given V, let C = {C1,Cy,...,Ck} be a set of subsets of V, and for each
C e€C, let fo : 2V — R be a submodular function. Then

f:2V > Rwith f(A) =D fo(ANC) (3.23)
ceC

is submodular. This property is critical for image processing and
graphical models. For example, let C be all pairs of the form

{{u,v} : u,v € V}, or let it be all pairs corresponding to the edges of
some undirected graphical model. We plan to revisit this topic later in
the term.
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Max - normalized

Given V, let c € RK be a given fixed vector. Then f : 2V R, where
A) = ; 24
JA) = e (3.24)

is submodular and normalized (we take f(0) = 0).

Consider
max c; + maxc; > max ¢; + max ¢; (3.25)
jEA jEB jEAUB JEANB

which follows since we have that

; ) = - 3.26
maX(%%Cg,%%cy) jg}beB & (3.26)
and
i ; ) > ; 3.27
O (G SR ) 22 LT (3.27)
[
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More Sub Funcs.
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Given V, let ¢ € RV be a given fixed vector (not necessarily
non-negative). Then f: 2V — R, where

) = (3.28)

is submodular, where we take f(f)) < min;¢; (so the function is not
normalized).

The proof is identical to the normalized case.
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Facility /Plant Location (uncapacitated)

@ Let FF={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

o S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢;; be the "benefit” (e.g., 1/c;; is the cost) of servicing site ¢
with facility location j.

@ Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the
cost) to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.

@ Define f(A) as the “delivery benefit” plus “construction benefit"
when the locations A C F' are to be constructed.

@ We can define the (uncapacitated) facility location function

f(A) = ij + Zmaj(cij. (3.4)
jEA ier 7€
@ Goal is to find a set A that maximizes f(A) (the benefit) placing a
bound on the number of plants A (e.g., |A| < k).
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Facility Location

Given V, E, let ¢ € RV*E be a given |V| x |E| matrix. Then

f:2F 5 R, where f(A) = Zmax e (3.29)

is submodular.

We can write f(A) as f(A) = > ,cy fi(A) where f;(A) = max;cg c;j is
submodular (max of a it row vector), so f can be written as a sum of
submodular functions. O]

Thus, the facility location function (which only adds a modular function
to the above) is submodular.
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Log Determinant

@ Let X be an n X n positive definite matrix. Let
V ={1,2,...,n} = [n] be an index set, and for A C V, let 34 be
the (square) submatrix of 3 obtained by including only entries in
the rows/columns given by A.

@ We have that:

f(A) =logdet(X4) is submodular. (3.30)

@ The submodularity of the log determinant is crucial for
determinantal point processes (DPPs) (defined later in the class).

Proof of submodularity of the logdet function.

Suppose X € R” is multivariate Gaussian random variable, that is

—;ex —lx— TyHz -
v e = o p( Lo TS m) (3.31)
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Log Determinant

...cont.

Then the (differential) entropy of the r.v. X is given by

h(X) = log+/|2meX]| = log v/ (2me)"| X| (3.32)

and in particular, for a variable subset A,

F(A4) = h(Xa) = log \/ (2me) | Sy (3.33)

Entropy is submodular (conditioning reduces entropy), and moreover

£(4) = h(X4) = m(A) + 3 log|Sl (334)

where m(A) is a modular function. O

Note: still submodular in the semi-definite case as well.
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Summary so far

e Summing: if a; > 0 and f; : 2 — R is submodular, then so is
Zi a; fi.-

@ Restrictions: f/(A) = f(ANS)

e max: f(A) = max;c c; and facility location.

o Log determinant f(A) = logdet(X4)
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More Sub Funcs.
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Concave over non-negative modular

Let m € Rf be a modular function, and g a concave function over R.
Define f: 2F — R as

f(A) = g(m(A)) (3.35)
then f is submodular.

Proof.

Given AC B C E\ v, we have 0 < a=m(A) <b=m(B), and
0 < ¢ =m(v). For g concave, we have g(a+c) —g(a) > g(b+c) — g(b),
and thus

g(m(A) +m(v)) — g(m(A)) = g(m(B) +m(v)) — g(m(B)) (3.36)

A form of converse is true as well.
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Concave composed with non-negative modular

Theorem 3.5.1

Given a ground set V. The following two are equivalent:

@ For all modular functions m : 2V — R, then f : 2V — R defined as
f(A) = g(m(A)) is submodular

Q@ ¢g:R, — R is concave.

If g is non-decreasing concave, then f is polymatroidal.
Sums of concave over modular functions are submodular

K
f(A) =) gi(mi(4)) (3.37)
i=1

Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).

However, Vondrak showed that a graphic matroid rank function over
Ky (we'll define this after we define matroids) are not members.
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Monotonicity

Definition 3.6.1

A function f : 2V — R is monotone nondecreasing (resp. monotone
increasing) if for all A C B, we have f(A) < f(B) (resp. f(A) < f(B))

v

Definition 3.6.2

A function f : 2V — R is monotone nonincreasing (resp. monotone
decreasing) if for all A C B, we have f(A) > f(B) (resp. f(A) > f(B))

v
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Composition of non-decreasting submodular and
non-decreasing concave

Theorem 3.6.3

Given two functions, one defined on sets

f:2V =R (3.38)
and another continuous valued one:

g:R—=>R (3.39)

the composition formed as h = go f : 2V — R (defined as
h(S) = g(f(S))) is nondecreasing submodular, if g is non-decreasing
concave and f is nondecreasing submodular.
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Monotone difference of two functions

Let f and g both be submodular functions on subsets of V' and let
(f — g)(-) be either monotone increasing or monotone decreasing. Then
h: 2V — R defined by

h(A) = min(f(A),9(4)) (3.40)
is submodular.

Proof.
If h(A) agrees with either f or g on both X and Y, and since

fX)+fY) =z f(XUY)+ f(XNY) (3.41)
g(X)+9(Y) 2 g(XUY)+g(XNY), (3.42)

the result (Equation 3.40) follows since

fX)+ f(Y)

9(X) + g(Y) = min(f(X UY),g(X UY)) 4+ min(f(X NY),g(X NY))
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Monotone difference of two functions

...cont.

Otherwise, w.l.o.g., h(X) = f(X) and h(Y) = g(Y), giving

MX)+h(Y)=f(X)+gY) > f(XUY)+ f(XNY)+g(Y) —(f(Y))
3.44

Assume the case where f — g is monotone increasing. Hence,
F(XUY)+g(Y) - f(Y) = g(X UY) giving

MX)+h(Y)>gXUY)+ f(XNY)>hA(XUY)+h(XNY)
(3.45)

[l

v

What is an easy way to prove the case where f — g is monotone
decreasing?
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Saturation via the min(-) function

Let f: 2V — R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function h : 2V — R defined
by

h(A) = min(k, f(A)) (3.46)

is submodular.

For constant k, we have that (f — k) is increasing (or decreasing) so this
follows from the previous result. ]

Note also, g(a) = min(k, a) for constant k is a non-decreasing concave
function, so when f is monotone nondecreasing submodular, we can use
the earlier result about composing a monotone concave function with a
monotone submodular function to get a version of this.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 3 - April 7th, 2014 F35/42 (pg.35/42)

More Sub Funcs.
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More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions).

@ However, when wishing to maximize two monotone non-decreasing
submodular functions, we can define function i : 2V — R as

M&:%@m%ﬂ+mmmm) (3.47)

then h is submodular, and h(A) > k if and only if both f(A) > k
and g(A) > k.

@ This can be useful in many applications. Moreover, this is an
instance of a submodular surrogate (where we take a
non-submodular problem and find a submodular one that can tell us
something). We hope to revisit this again later in the quarter.
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Arbitrary functions as difference between submodular

funcs.

Given an arbitrary set function f, it can be expressed as a difference
between two submodular functions: f = g — h where both g and h are
submodular.

Let f be given and arbitrary, and define:
A .
ol 1)1(11§1<f(X) Y)Y — f(XUY) - f(X N Y)) (3.48)

If & > 0 then f is submodular, so by assumption o < 0. Now let i be an
arbitrary strict submodular function and define
ga r)rfli}r/l(h(X) FR(Y) - (X UY) - k(XN Y)). (3.49)

)

Strict means that 3 > 0.
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Arbitrary functions as difference between submodular
funcs.

Define f': 2V — R as
f'(4) = f(4) + — h(4) (3.50)

Then f’ is submodular (why?), and f = f/(A) — %h(A), a difference
between two submodular functions as desired.
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Gain

@ We often wish to express the gain of an item j € V' in context A,

namely f(AU {j}) — f(A).
@ This is called the gain and is used so often, there are equally as

many ways to notate this. l.e., you might see:

FAU{}) — F(A) £ p;(A) (3.51)
2 pa(j) (3.52)
2 V,f(4) (3.53)
2 f({5}14) (3.54)
£ 1(j14) (3.55)

o We'll use f(j|A).

@ Submodularity’s diminishing returns definition can be stated as
saying that f(j|A) is a monotone non-increasing function of A, since
f(7]A) > f(j|B) whenever A C B (conditioning reduces valuation).
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Gain Notation

It will also be useful to extend this to sets.
Let A, B be any two sets. Then

f(AIB) 2 f(AUB) - f(B) (3.56)
So when j is any singleton
f(1B) = f({7}IB) = f{i} U B) — f(B) (3.57)

Note that this is inspired from information theory and the notation used
for conditional entropy H(X4|Xp) = H(X4,Xp) — H(Xp).
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Arbitrary function as difference between two polymatroids

@ Any submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular)
function g and a modular function m.

e Given submodular g : 2V — R, construct g : 2V — R as
3(A) = g(A) = Yoen 9(alV \ {a}). Let my(4) £ 3o, g(alV \ {a})

@ Then, given arbitrary f = g — h where g and h are submodular,

f=g—h=g+my—h—my (3.58)
=g — h+ (my — mp) (3.59)
=g—h+myp (3.60)
=g+mi_, — (h+ (~mg_p)") (3.61)

where m™ is the positive part of modular function m. That is,
m*(A) = Yy q mla)L(m(a) > 0).
e But both g + m;_h and h + (—mg_h)jL are polymatroid functions.
@ Thus, any function can be expressed as a difference between two

polymatroid functions.
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Applications

@ Sensor placement with submodular costs. l.e., let V be a set of
possible sensor locations, f(A) = I(X4; Xy 4) measures the
quality of a subset A of placed sensors, and ¢(A) the submodular
cost. We have f(A) — Ac(A) as the overall objective.

@ Discriminatively structured graphical models, EAR measure
I(Xa; Xy\a) — I(Xa; Xy 4]C), and synergy in neuroscience.

@ Feature selection: a problem of maximizing
I(X4;C) = Ac(A) = H(X 4) — [H(X4|C) + Ac(A)], the difference
between two submodular functions, where H is the entropy and c is
a feature cost function.

@ Graphical Model Inference. Finding x that maximizes
p(x) o< exp(—v(x)) where x € {0,1}"™ and v is a pseudo-Boolean
function. When v is non-submodular, it can be represented as a
difference between submodular functions.
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