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Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

e our room (Mueller Hall Room 154) is changed!

@ Please do use our discussion board (https:
//canvas.uw.edu/courses/895956/discussion_topics) for all

questions, comments, so that all will benefit from them being
answered.

o Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-

@ L1 (3/31): Motivation, Applications, & @ L11:
Basic Definitions @ L12:
@ L2: (4/2): Applications, Basic @ L13:
Definitions, Properties o Ll4:
o L3: @ L15:
° L4 @ L16:
@ L5: @ L17:
@ L6: @ L18:
° LT @ L19:
o L38: @ L20:
@ L9
@ L10:

Finals Week: June 9th-13th, 2014.
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Submodular Definitions

Definition 3.2.2 (submodular concave)

A function f: 2V — R is submodular if for any A, B C V', we have that:

f(A) + f(B) =2 f(AUB) + f(AN B) (3-2)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.3 (diminishing returns)

A function f : 2" — R is submodular if for any A C B C V, and
v € V'\ B, we have that:

fLAU{o}) = f(A) = f(BU{v}) — f(B) (33)

This means that the incremental “value”, “gain”, or “cost” of v
decreases (diminishes) as the context in which v is considered grows from
A to B.
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Many Properties

@ In the last lecture, we started looking at properties of and gaining
intuition about submodular functions.
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Review
i

Many Properties

@ In the last lecture, we started looking at properties of and gaining
intuition about submodular functions.

@ We began to see that there were many functions that were
submodular, and operations on sets of submodular functions that

preserved submodularity.
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Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).
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Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.
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Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.

@ Many functions based on graphs are either submodular or

supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.
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Review
I

Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.

@ Many functions based on graphs are either submodular or
supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.

@ Matrix rank - rank of a set of vectors from a set of vector indices.
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Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.

@ Many functions based on graphs are either submodular or
supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.

@ Matrix rank - rank of a set of vectors from a set of vector indices.
e Geometric interpretation of f(A) + f(B) > f(AUB) + f(AN B).
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I

Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.

@ Many functions based on graphs are either submodular or
supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.

@ Matrix rank - rank of a set of vectors from a set of vector indices.
e Geometric interpretation of f(A) + f(B) > f(AUB) + f(AN B).

@ Cost of manufacturing — supply side economies of scale
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Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.

@ Many functions based on graphs are either submodular or
supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.

Matrix rank - rank of a set of vectors from a set of vector indices.
Geometric interpretation of f(A) + f(B) > f(AUB) + f(AN B).

Cost of manufacturing — supply side economies of scale

Network Externalities — Demand side Economies of Scale
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Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.

@ Many functions based on graphs are either submodular or
supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.

Matrix rank - rank of a set of vectors from a set of vector indices.
Geometric interpretation of f(A) + f(B) > f(AUB) + f(AN B).
Cost of manufacturing — supply side economies of scale

Network Externalities — Demand side Economies of Scale

Social Network Influence
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Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.

@ Many functions based on graphs are either submodular or
supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.

Matrix rank - rank of a set of vectors from a set of vector indices.
Geometric interpretation of f(A) + f(B) > f(AUB) + f(AN B).
Cost of manufacturing — supply side economies of scale

Network Externalities — Demand side Economies of Scale

Social Network Influence

Information and Summarization - document summarization via
sentence selection
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The Venn and Art of Submodularity

r(A) + r(B) Z r(AU B) -+ r(Aﬂ B)

+2, /) r(By) AmB
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Other Examples
[NRNRRN

Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).
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Other Examples
[NRNRRN

Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.
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Other Examples
[NRNRRN

Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

e Foreach X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X being a set of vector indices.
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Other Examples
[NRNRRN

Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

e Foreach X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X being a set of vector indices.

@ Then, defining f : 25 — R as follows,
f(X) = r(Uses Xs) (3.1)

we have that f is submodular, and is known to be a polymatroid
rank function.
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Other Examples

Polymatroid rank function

Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X being a set of vector indices.

Then, defining f : 25 R as follows,
F(X) = r(Uses Xs) (3.1)

we have that f is submodular, and is known to be a polymatroid
rank function.
In general (as we will see) polymatroid rank functions are

submodular, normalized f(0)) = 0, and monotone non-decreasing
(f(A) < f(B) whenever A C B).
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Other Examples
(LNANNR!

Spanning trees

@ Let E be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges)
spanning forest in the vertex-induced graph, induced by vertices

incident to edges S.

F10/70 (pg.23/166)

EE596b/Spring 2014 /Submodularity - Lecture 3 - April 7th, 2014

Prof. Jeff Bilmes



Other Examples

Spanning trees

@ Let E be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges)
spanning forest in the vertex-induced graph, induced by vertices
incident to edges S.

@ Example: Given G = (V, E), V ={1,2,3,4,5,6,7,8},
E={1,2,...,12}. S§={1,2,3,4,5,8,9} C E. Two spanning trees
have the same edge count (the rank of ).
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Other Examples
[LNANNR!

Spanning trees

@ Let E be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges)
spanning forest in the vertex-induced graph, induced by vertices
incident to edges S.

e Example: Given G = (V, E), V ={1,2,3,4,5,6,7,8},
E={1,2,...,12}. S={1,2,3,4,5,8,9} C E. Two spanning trees
have the same edge count (the rank of ).

@ Then 7(S) is submodular, and is another matrix rank function
corresponding to the incidence matrix of the graph.
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Other Examples
(NLRNNR!

Supply Side Economies of scale

o What is a good model of the cost of manufacturing a set of items?

@ Let V be a set of possible items that a company might possibly wish
to manufacture, and let f(S) for S C V be the cost to that
company to manufacture subset S.

@ Ex: V might be colors of paint in a paint manufacturer: green, red,
blue, yellow, white, etc.

@ Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

F(green, blue, ) — f(blue, ) <= f(green, blue) — f(blue)
(3.1)

So diminishing returns (a submodular function) would be a good
model.
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Other Examples
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A model of Influence in Social Networks

e Given a graph G = (V, E), each v € V' corresponds to a person, to
each v we have an activation function f, : 2" — [0, 1] dependent
only on its neighbors. l.e., f,(A) = fu(ANT(v)).

@ Goal - Viral Marketing: find a small subset S C V of individuals to
directly influence, and thus indirectly influence the greatest number
of possible other individuals (via the social network G).

@ We define a function f : 2V — Z* that models the ultimate
influence of an initial set .S of nodes based on the following iterative
process: At each step, a given set of nodes S are activated, and we
activate new nodes v € V'\ S'if f,(S) > U[0, 1] (where U[0,1] is a
uniform random number between 0 and 1).

@ It can be shown that for many f, (including simple linear functions,
and where f, is submodular itself) that f is submodular.
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Other Examples
[NNAR AR

The value of a friend

@ Let V be a group of individuals. How valuable to you is a given
friend v € V7?7

@ It depends on how many friends you have.

@ Given a group of friends S C V, can you valuate them with a
function f(.S) an how?

@ Let f(S) be the value of the set of friends S. Is submodular or
supermodular a good model?
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Other Examples
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Information and Summarization

@ Let V be a set of information containing elements (V' might say be
either words, sentences, documents, web pages, or blogs, each
v € V is one element, so v might be a word, a sentence, a
document, etc.). The total amount of information in V' is measure
by a function f(V'), and any given subset S C V measures the
amount of information in S, given by f(S5).

@ How informative is any given item v in different sized contexts? Any
such real-world information function would exhibit diminishing
returns, i.e., the value of v decreases when it is considered in a
larger context.

@ So a submodular function would likely be a good model.
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Other Examples
(NRANN |

Submodular Polyhedra

@ Submodular functions have associated polyhedra with nice
properties: when a set of constraints in a linear program is a
submodular polyhedron, a simple greedy algorithm can find the
optimal solution even though the polyhedrop is formed via an
exponential nymber of constraints. l}

Pr 3 {z eRF :2(S) < f(S (3.2)
= Prn{z eR”:z >0} (3.3)
Bf=P;n{z e R” : x(E) = f(E)} (3.4)
@ The linear programming problem is W, compute:
f(c) £ max {c"z: 2 € Py} (3.5)

@ This can be solved using the greedy algorithm! Moreover, f(c)
computed using greedy is convex if and only of f is submodular (we
will go into this in some detail this quarter).
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Bit More Notation
[NERN

Ground set: E or V7

Submodular functions are functions defined on subsets of some finite set,
called the ground set .

@ It is common in the literature to use either E or V' as the ground set.
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Bit More Notation
[NERN

Ground set: E or V7

Submodular functions are functions defined on subsets of some finite set,
called the ground set .

@ It is common in the literature to use either E or V' as the ground set.

@ We will follow this inconsistency in the literature and will
inconsistently use either E or V' as our ground set (hopefully not in
the same equation, if so, please point this out).
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Bit More Notation
(LANN]

Notation RZ

What does = € R¥ mean? m = J E\

R ={z=(z;eR:j€ E)} (3.6)

RY={z=(z;:j€E):z>0} (3.7)

Any vector x € R¥ can be treated as a normalized modular function, and
vice verse. That is

z(A) = vaa (3.8)

a€A

Note that x is said to be normalized since z(()) = 0.
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Bit More Notation
LN

characteristic vectors of sets & modular functions

@ Given an A C FE, define the vector 14 € ]Rif to be

RS P 59)
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Bit More Notation
(RN RN]

characteristic vectors of sets & modular functions

@ Given an A C FE, define the vector 14 € Rf to be

L[ riea
W0 ifjga

@ Sometimes this will be written as y4 = 14.
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Bit More Notation
(RN RN]

characteristic vectors of sets & modular functions

@ Given an A C FE, define the vector 14 € Rf to be

RS P 59)

@ Sometimes this will be written as x4 = 14.

@ Thus, given modular function # € R”, we can write z(4) in a
variety of ways, i.e.,

xs) h)t/ wA)=z-14= Y 2() (3.10)
i€A
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Bit More Notation
1L

Other Notation: singletons and sets

When A is a set and k is a singleton (i.e., a single item), the union is
properly written as A U {k}, but sometimes | will write just A + k.
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Bit More Notation
(ANRN ]

General notation: what does(ST mfean when S and T are

arbitrary sets

@ Let S and T be two arbitrary sets (either of which could be
countable, or uncountable).
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Bit More Notation
(ANRN ]

General notation: what does ST mean when S and T are

arbitrary sets

@ Let S and T be two arbitrary sets (either of which could be
countable, or uncountable).

@ We define the notation e the
from T to S. That is, ff f € S*), the
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Bit More Notation
(ANRN ]

General notation: what does ST mean when S and T are

arbitrary sets

@ Let S and T be two arbitrary sets (either of which could be
countable, or uncountable).

@ We define the notation ST to be the set of all functions that map
from T to S. Thatis, if f € ST, then f:T — S.

e Hence, given a finite set E, R¥ is the set of all functions that map
from elements of E to the reals R, and such functions are identical
to a vector in a vector space with axes labeled as elements of
(i.e., if m € RF, then for all e € E, m(e) € R).
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Bit More Notation
(ANRN ]

General notation: what does ST mean when S and T are

arbitrary sets

@ Let S and T be two arbitrary sets (either of which could be
countable, or uncountable).

@ We define the notation ST to be the set of all functions that map
from T to S. Thatis, if f € ST, then f:T — S.

@ Hence, given a finite set F, RE is the set of all functions that map
from elements of E to the reals R, and such functions are identical
to a vector in a vector space with axes labeled as elements of E
(i.e., if m € RF, then for all e € E, m(e) € R).

o Similarly, 2E is the set of all functions from E to “two” — in this
case, we really mean 2 = {0, 1}, so 2% is shorthand for {0,1}"

cev 'F-}V/ﬂK
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Bit More Notation
(ANRN ]

General notation: what does ST mean when S and T are

arbitrary sets

@ Let S and T be two arbitrary sets (either of which could be
countable, or uncountable).

@ We define the notation ST to be the set of all functions that map
from T to S. Thatis, if f € ST, then f:T — S.

@ Hence, given a finite set F, RE is the set of all functions that map
from elements of E to the reals R, and such functions are identical
to a vector in a vector space with axes labeled as elements of E
(i.e., if m € RF, then for all e € E, m(e) € R).

o Similarly, 2E is the set of all functions from E to “two”’ — in this
case, we really mean 2 = {0, 1}, so 2% is shorthand for {0,1}" —
hence, 2F is the set of all functions that map from elements of E to
{0, 1}, equivalent to all binary vectors with elements indexed by
elements of E, equivalent to subsets of E/. Hence, if A € 2E then
ACE.
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Bit More Notation
(ANRN ]

General notation: what does ST mean when S and T are

arbitrary sets

@ Let S and T be two arbitrary sets (either of which could be
countable, or uncountable).

@ We define the notation ST to be the set of all functions that map
from T to S. Thatis, if f € ST, then f:T — S.

@ Hence, given a finite set F, RE is the set of all functions that map
from elements of E to the reals R, and such functions are identical
to a vector in a vector space with axes labeled as elements of E
(i.e., if m € RF, then for all e € E, m(e) € R).

o Similarly, 2E is the set of all functions from E to “two”’ — in this
case, we really mean 2 = {0, 1}, so 2% is shorthand for {0,1}" —
hence, 2F is the set of all functions that map from elements of E to
{0, 1}, equivalent to all binary vectors with elements indexed by
elements of E, equivalent to subsets of E. Hence, if A € 2 then
A C E. What might 3% mean?
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More Sub Funcs.
[ERNRARRERRAN]

Summing Submodular Functions

Given E, let f1, fo : 2 — R be two submodular functions. Then
f:2F > Rwith f(A) = fi(A) + fo(A) (3.11)

is submodular.
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More Sub Funcs.
[ERNRARRERRAN]

Summing Submodular Functions

Given E, let f1, fo : 2 — R be two submodular functions. Then
f:28 5 Rwith f(A) = fi(A) + f2(A) (3.11)

is submodular. This follows easily since

f(A) + f(B) = f(A) + f2(A) + f1(B) + fa(B) (3.12)
> fi(AUB) Hfa(AUB) + fi(ANB)& f2(ANB)

(3.13)

— f(AUB) + f(AN B). (3.14)

l.e., it holds for each component of f in each term in the inequality.
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More Sub Funcs.
[ERNRARRERRAN]

Summing Submodular Functions

Given E, let f1, fo : 2 — R be two submodular functions. Then
f:28 5 Rwith f(A) = fi(A) + f2(A) (3.11)

is submodular. This follows easily since

J(A)+ f(B) = fi(A) + f2(A) + f1(B) + f2(B) (3.12)
> fi(AUB) + f2(AUB) + fi(AN B) + f2(AN B)

(3.13)

_ f(AUB)+ f(AN B). (3.14)

l.e., it holds for each component of f in each term in the inequality. In
fact, any conic combination (i.e., non-negative linear combination) of
submodular functions is submodular, as in f(A) = a1 f1(A) + aaf2(A)
for a1, o Z 0.
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More Sub Funcs.
(REARRARNAREN]

Summing Submodular and Modular Functions

Given E, let fi,m : 2 — R be a submodular and a modular function.
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More Sub Funcs.
(REARRARNAREN]

Summing Submodular and Modular Functions

Given E, let fi,m : 2F s R be a submodular and a modular function.
Then

f:28 = R with f(A4) = fi(A) — m(A) (3.15)

is submodular (as'is f(A) = f1(A) + m(A)).
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More Sub Funcs.
(REARRARNAREN]

Summing Submodular and Modular Functions

Given E, let fi,m : 2F s R be a submodular and a modular function.
Then

f:28 5 Rwith f(A) = fi(A) —m(A) (3.15)

is submodular (asis f(A) = fi(A) +m(A)). This follows easily since

f(A) + f(B) = fi(A)=m(A)+ f1(B) = m(B) (3.16)
> f1i(AUB)=m(AUB)+ fi(ANnB)—m(AN B)

(3.17)

= f(AUB)+ f(AN B). (3.18)
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More Sub Funcs.
(REARRARNAREN]

Summing Submodular and Modular Functions

Given E, let fi,m : 2F s R be a submodular and a modular function.
Then

f:28 5 Rwith f(A) = fi(A) —m(A) (3.15)

is submodular (asis f(A) = fi(A) +m(A)). This follows easily since

f(A) + f(B) = f1i(A) = m(A) + f1(B) — m(B) (3.16)
> fi(AUB) —m(AUB)+ fi(ANB) —m(AN B)

(3.17)

= f(AUB)+ f(AN B). (3.18)

That is, the modular component with
m(A) +m(B) =m(AU B) + m(AN B) never destroys the inequality.
Note of course that if m is modular than so is —m.
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More Sub Funcs.
(NLRNRARNAREN]

Restricting Submodular Functions

Given E, let f : 2F — R be a submodular functions. And let S C E be
an arbitrary fixed set. Then

f'2P 5 Rwith f/(A) = f(ANS) (3.19)

is submodular.
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More Sub Funcs.
(NLRNRARNAREN]

Restricting Submodular Functions

Given E, let f : 2F — R be a submodular functions. And let S C E be
an arbitrary fixed set. Then

f 28 5 Rwith f/(A) = f(ANS) (3.19)
is submodular.

L]
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More Sub Funcs.
(NLRNRARNAREN]

Restricting Submodular Functions

Given E, let f : 2F — R be a submodular functions. And let S C E be
an arbitrary fixed set. Then

f 28 5 Rwith f/(A) = f(ANS) (3.19)
is submodular.
Proof.
Given A C B C E'\ v, consider

f((A+v)NnS) = f(ANS) = f((B+v)NS)—f(BNS)  (3.20)
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More Sub Funcs.
(NLRNRARNAREN]

Restricting Submodular Functions

Given E, let f : 2F — R be a submodular functions. And let S C E be
an arbitrary fixed set. Then

f 28 5 Rwith f/(A) = f(ANS) (3.19)
is submodular.
Proof.
Given A C B C E'\ v, consider

f((A+0)nS) = f(ANS) = f(B+v)NS) - f(BNS)  (3.20)

If v ¢S, then both differences on each size are zero.
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More Sub Funcs.
(NLRNRARNAREN]

Restricting Submodular Functions

Given E, let f : 2F — R be a submodular functions. And let S C E be
an arbitrary fixed set. Then

f 28 5 Rwith f/(A) = f(ANS) (3.19)
is submodular.
Proof.
Given A C B C E'\ v, consider

f((A+v)NS)—f(ANS)> f((B+v)NnS)—f(BNS) (3.20)

If v ¢ S, then both differences on each size are zero. If v € S, then we
can consider this

(A +v) = f(A) > f(B'+v) - f(B) (3.21)

with A’ = AN S and B'= BN S. Since A’ C B’, this holds due to
submodularity of f. [
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More Sub Funcs.
(R ARARNAREN]

Summing Restricted Submodular Functions

Given V, let f1, f> : 2¥ — R be two submodular functions and let Sy, S5
be two arbitrary fixed sets. Then

f:2Y > Rwith f(A) = f1(ANSy) + f2(AN Sy) (3.22)

is submodular. This follows easily from the preceding two results.
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More Sub Funcs.
(R ARARNAREN]

Summing Restricted Submodular Functions

Given V, let f1, f2 : 2¥ — R be two submodular functions and let Sy, S5
be two arbitrary fixed sets. Then

f:2V = Rwith f(A) = f1(ANSy) + f2(AN Sy) (3.22)

is submodular. This follows easily from the preceding two results.
Given V, let C = {C4,C4,...,Ck} be a set of subsets of V, and for each
C eC, let fc : 2V — R be a submodular function. Then

f:2" > Rwith f(A) =) fo(ANC) (3.23)
ceC

is submodular.
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More Sub Funcs.
(R ARARNAREN]

Summing Restricted Submodular Functions

Given V, let f1, f2 : 2¥ — R be two submodular functions and let Sy, S5
be two arbitrary fixed sets. Then

f:2V = Rwith f(A) = f1(ANSy) + f2(AN Sy) (3.22)

is submodular. This follows easily from the preceding two results.
Given V, let C = {C4,C4,...,Ck} be a set of subsets of V', and for each
C €C, let fo : 2V — R be a submodular function. Then

f:2" 5 Rwith f(A) =) fo(ANC) (3.23)
ceC

is submodular. This property is critical for image processing and
graphical models. For example, let C be all pairs of the form

{{u,v} 1 u,v € V}, or let it be all pairs corresponding to the edges of
some undirected graphical model. We plan to revisit this topic later in
the term.
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More Sub Funcs.
(NEAR NRRNARAN]

Max - normzalized

a given fixed vector. Then f: 2"V — R, , where
f(A) = a- (3.24)

Consider
(3.25)
which follows since we have
max(rjneajc @y Ijneaé( ¢j) = (3.26)
and
min(r]ne%cj,lgleaéccj) > (3.27)
]
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More Sub Funcs.

Given V, let ¢ € R be a given fixed vector (not necessarily
non-negative). Then f:2" — R, where

) = st (3.28)

is submodular, where we take f()) < min; ¢; (so the function is not
normalized).

The proof is identical to the normalized case.
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More Sub Funcs.
(NEARRA RNAREN]

Facility/Plant Location (uncapacitated)

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

o S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢;; be the "benefit” (e.g., 1/c;; is the cost) of servicing site i
with facility location j.

@ Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the
cost) to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.

@ Define f(A) as the “delivery benefit” plus “construction benefit”
when the locations A C F' are to be constructed.

e We can define the (uncapacita facqw'?y location function

f(4) (3.4)

@ Goal is to find a set A tha mizes f(A) (the benefit) placing a
bound on the number of plants A (e.g., |A| < k).
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More Sub Funcs.
(NEARRRY NRREN]

Facility Location

Given V, E, let ¢ € RV*E be a given |V| x |E| matrix. Then

f:28 5 R, where f(A Zmaxcw (3.29)
zEV

is submodular.

We can write f(A) as f(A) = > ,cy fi(A) where fi(A) = max;cacij is
submodular (max of a it" row vector), so f can be written as a sum of
submodular functions. O

Thus, the facility location function (which only adds a modular function
to the above) is submodular.
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More Sub Funcs.
(RRRRRRRY NRAN]

Log Determinant

@ Let 3 be an n x n positive definite matrix. Let
V ={1,2,...,n} = [n] be an index set, and for A CV, let ¥ 4 be
the (square) submatrix of 3 obtained by including only gntries in

the rows/columns given by A. _g
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More Sub Funcs.
(NEARRARY RRAN]

Log Determinant

@ Let 3 be an n x n positive definite matrix. Let
V ={1,2,...,n} = [n] be an index set, and for A CV, let ¥ 4 be
the (square) submatrix of 3 obtained by including only entries in
the rows/columns given by A.

o We have that:

f(A) =logdet(X,) is submodular. (3.30)
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More Sub Funcs.
(NEARRARY RRAN]

Log Determinant

@ Let 3 be an n x n positive definite matrix. Let
V ={1,2,...,n} = [n] be an index set, and for A CV, let ¥ 4 be
the (square) submatrix of 3 obtained by including only entries in
the rows/columns given by A.

o We have that:

f(A) =logdet(X,) is submodular. (3.30)

@ The submodularity of the log determinant is crucial for
determinantal point processes (DPPs) (defined later in the class).
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More Sub Funcs.
(NEARRART RRAN]

Log Determinant

@ Let 3 be an n x n positive definite matrix. Let
V ={1,2,...,n} = [n] be an index set, and for A CV, let ¥ 4 be
the (square) submatrix of 3 obtained by including only entries in
the rows/columns given by A.

o We have that:

f(A) =logdet(X,) is submodular. (3.30)

@ The submodularity of the log determinant is crucial for
determinantal point processes (DPPs) (defined later in the class).

Proof of submodularity of the logdet function.

Suppose X € R” is multivariate Gaussian random variable, that is

5E-wE e -0) 63

1
TrEeEPr) = —eX
p(z) TS| p< 5
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More Sub Funcs.
(NEARRARNA RRN]

Log Determinant

...cont.

Then the (differential) entropy of the r.v. X is given by

h(X) = log v/|2meX| = log \/(2me)"[Z| (3:32)
and in particular, for a variable subset
f(A) =h(Xa) = (3.33)
Entropy is submodular (conditioning r tropy), and moreover
F(4) = h(X) = m(4) + ;log (3.34)
where m(A) is a modular function. O

Note: still submodular in the semi-definite case as well.
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More Sub Funcs.
(NEANRARNRY NI

Summary so far

e Summing: if a; > 0 and f; : 2 — R is submodular, then so is

Zi a; fi.
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More Sub Funcs.
(NEANRARNRY NI

Summary so far

@ Summing: if &; >0 and f; : 2V — R is submodular, then so is
> i ifi.
@ Restrictions: f/(A) = f(ANS)
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More Sub Funcs.
(NEANRARNRY NI

Summary so far

@ Summing: if &; >0 and f; : 2V — R is submodular, then so is
> i ifi.
@ Restrictions: f'(A) = f(ANS)

e max: f(A) =max;cac; and facility location.
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More Sub Funcs.
(NEANRARNRY NI

Summary so far

Summing: if o; > 0 and f; : 2V — R is submodular, then so is
> ifi

Restrictions: f/(A) = f(ANS)

max: f(A) = max;c ¢; and facility location.

Log determinant f(A) = logdet(X4)
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More Sub Funcs.
(NEARRARNARE ¥

Concave over non-negative modular

Let.m € Rf be a modular function; oncave function over R.
Define f:2¥ - R as

f(A) = g(m(A)) / 3.35)
then f is submodular. A AtC b !:(-C

have 0 <

0 < ¢ = m(v). For g concave, we ha c) —g(a) > g(b+c) —g(b),
and thus

9(m(A) +m(v)) — g(m(A4)) = g(m(B) +m(v)) — g(m(B)) (3.36)

Ol

A form of converse is true as well.
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More Sub Funcs.
[NEARRARNRRN] ]

Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:

© For all modular functions m : 2V — R, then f : 2V 5 R defined as
f(A) = g(m(A)) is submodular

Q g:R. — R is concave.

@ If g is non-decreasing concave, then f is polymatroidal.

g

(1]=0
L=
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More Sub Funcs.
[NEARRARNRRN] ]

Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:

© For all modular functions m : 2V — R, then f : 2V 5 R defined as
f(A) = g(m(A)) is submodular

Q g:R. — R is concave.

@ If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
F(A) = gi(ma(A)) (3.37)
=il
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More Sub Funcs.
[NEARRARNRRN] ]

Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:

© For all modular functions m : 2V — R, then f : 2V 5 R defined as
f(A) = g(m(A)) is submodular

Q g:R. — R is concave.

@ If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
F(A) = gi(ma(A)) (3.37)
i=1

@ Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).
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More Sub Funcs.
[NEARRARNRRN] ]

Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:

© For all modular functions m : 2V — R, then f : 2V 5 R defined as
f(A) = g(m(A)) is submodular

Q g:R. — R is concave.

@ If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
F(A) = gi(ma(A)) (3.37)
i=1

@ Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).

@ However, Vondrak showed that a graphic matroid rank function over
Ky (we'll define this after we define matroids) are not members.
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More Sub Funcs.
[ERRRRRERN

Monotonicity

Definition 3.6.1

A function f : 2V — R is monotone nondecreasing (resp. monotone
increasing) if for alll A € B, we have f(A) B) (resp. f(A4) < f(B)).
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More Sub Funcs.
[ERRRRRERN

Monotonicity

Definition 3.6.1

A function f : 2V — R is monotone nondecreasing (resp. monotone
increasing) if for all A C B, we have f(A) < f(B) (resp. f(A) < f(B))

v

Definition 3.6.2

A function f : 2V — R is monotone nonincreasing (resp. monotone
decreasing) if for all A € B, we have f(A4) > f(B) (resp. f(A) > f(B))

v
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More Sub Funcs.
[LRNRRNRR

Composition of submodular an concave

Theorem 3.6.3

Given two functions, one defined on sets

f:2V >R .38)
and another continuous valued one:

g:R—R (3.39)

the composition formed as h = go f : 2V — R (defined as
h(S) = g(f(S))) is nondecreasing submodular, if g is non-decreasing
concave and f is nondecreasing submodular.
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More Sub Funcs.
INLRNRRNRR

Monotone difference of two functions

Let f and g both be submodular functions on subsets of V' and let

(f — g)(+) be either monotone increasing or monotone decreasing. Then
h: 2V — R defined by

h(A) = min(f(A), g(A)) (3.40)
is submodular.
Proof.
If h(A) agrees with either f or g on both X and Y, and since

fX)+FY) =2 f(XUY)+ (X NY) (3.41)
9(X)+9(Y) 2 g(XUY)+g(XNY), (3.42)

the result (Equation 3.40) follows since
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More Sub Funcs.
[NRE ARRNRR

Monotone difference of two functions

...cont.

Otherwise, w.l.o.g., A(X) = f(X) and h(Y) = g(Y), giving

h(X)+h(Y)=f(X)+g9(Y)> f(XUY)+ f(XNY)+g(Y) —(f(Y))
3.44
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More Sub Funcs.
[NRE ARRNRR

Monotone difference of two functions

...cont.
Otherwise, w.l.o.g., h(X) = f(X) and h(Y) = g(Y), giving

h(X)+h(Y) = f(X) +9(Y) 2 YXUY) + f(XNY) +9(Y) - f(Y)

Assume the case where f — g isawTO on
JEXUY) +g(¥) - (V)

h(X) + h(Y) > g(X UY) T T X NYY> WX UY) + h(X N Y)
(3.45)

Ol

What is an easy way to prove the case where f — g is monotone
decreasing?
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More Sub Funcs.
[NRRR ARNRR

Saturation via the min(-) function

Let f: 2" — R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function h : 2V — R defined
by

h(A) = min(k, f(A

AN T
y %
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More Sub Funcs.
[NRRR ARNRR

Saturation via the min(-) function

Let f:2" — R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function h : 2V — R defined
by

h(A) = min(k, f(A)) (3.46)

is submodular.

For constant k, we have that (f — k) is increasing (or decreasing) so this
follows from the previous result. ]
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More Sub Funcs.
[NRRR ARNRR

Saturation via the min(-) function

Let f: 2" — R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function h : 2V — R defined
by

is submodular.

For constant k, we have that (f — k) is increasing (or decreasing) so this
follows from the previous result. O

Note also, g(a) = min(k, a) for constant k is a non-decreasing concave
function, so when f is monotone nondecreasing submodular, we can use
the earlier result about composing a monotone concave function with a
monotone submodular function to get a version of this.
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More Sub Funcs.
[NRRNR RNRR

More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions).
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More Sub Funcs.
[NRRNR NNRR

More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions).

@ However, when wishing to maximize two monotone non-decreasing
submodular functions, we can define function /4 : 2¥ — R as

h(A) = %(min(k‘, ) a6l (3.47)

then h is submodular, and h(A) > k if and only if both<f(A4) > k
and g(A) > k.
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More Sub Funcs.
[NRRNR NNRR

More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions).

@ However, when wishing to maximize two monotone non- decreasing

submodular functions, we gan define fungtj 2V ]R
U= i [E18) (4]
/ﬁ

h(A) = 2(m1n(k‘ f) + min(k, g)) (3.47)

then h is submodular, and h(A) > k if and only if both f(A) > k
and g(A) > k.

@ This can be useful in many applications. Moreover, this is an
instance of a submodular surrogate (where we take a
non-submodular problem and find a submodular one that can tell us
something). We hope to revisit this again later in the quarter.
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More Sub Funcs.
INRRNNT AR

Arbitrary functions as difference between submodular

funcs.

Given an arbitrary set function f, it can be expressed as a difference
between two submodular functions: f = g — h where both g and h are

submodular.
Let f be given and arbitrary, and define:
A .
o 2 min(f(X) + f(Y) = f(XUY) = f(XNY)) (3.48)

If & > 0 then f is submodular, so by assumption a < 0.
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More Sub Funcs.
INRRNNT AR

Arbitrary functions as difference between submodular

funcs.

Given an arbitrary set function f, it can be expressed as a difference
between two submodular functions: f = g — h where both g and h are
submodular.

Let f be given and arbitrary, and define:
o 2 min(f(X) + (V) - f(XUY) - F(XNY)) (3.48)

If & > 0 then f is submodular, so by assumption o < 0. Now let h be an
arbitrary strict submodular function and define

ga r)lgi}l;l(h(X) FR(Y) = R(XUY) - h(XN Y)). (3.49)

Strict means that 5 > 0.
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More Sub Funcs.
[NRRNNRY AR

Arbitrary functions as difference between submodular

funcs.

Define f': 2V — R as

Then f’ is submodular (why?), and f = f/(A) — |%lh(A), a difference
between two submodular functions as desired.

(3.50)

Ol
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More Sub Funcs.
[NARNRRNR Y

Arbitrary function as difference between two polymatroids

@ Any submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular)
function g and a modular function m,.
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More Sub Funcs.
[NRRNRRNR Y

Arbitrary function as difference between two polymatroids

@ Any submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular)
functlon g and a modular function m,.

- — R _construct §: 2V — R as

2 )’2/;/\/17);0
71[(/) 8) 7’?[ {35)
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More Sub Funcs.
[NRRNRRNR Y

Arbitrary function as difference between two polymatroids

@ Any submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular)
function g and a modular function m,.

@ Given submodular g : 2V — R, construct g : 2 — R as
G(A) = 9(A) = Saca 9(alV \ {a}). Let mg(A) 2 Yo s g(alV \ {a})

@ Then, given arbitrary f = g — h where g and h are submodular,

f=g-—h=g+myg—h—my (3.51)
=g—h+(my—my) (3.52)
=g§—h+my_p (3.53)
=g+m/_, — (h+ (=mg_n)") (3.54)

where m™ is the positive part of modular function m. That is,
m*(A) = 3 geam(a)l(m(a) > 0).
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More Sub Funcs.
[NARNRRNR Y

Arbitrary function as difference between two polymatroids

@ Any submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular)
function g and a modular function m,.

@ Given submodular g : 2V — R, construct g : 2 — R as

9(A) = g(A) = Yoea9(alV \ {a}). Let my(A) £ 3,4 9(alV \ {a})
@ Then, given arbitrary f = g — h where g and h are submodular,
f=g-h=g+mg—h—my, (3.51)
=g~ h+ (mg —mp) (3.52)
=g—h+mg_y (3.53)
=g+m}_, — (h+(=mgp)") (3.54)
where m™ is the positive part of modular function m. That is,

m*(4) = Sye s ml@)1(m(a) > 0).
e But both g + m;ih and h + (—mgy_p)" are polymatroid functions.
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More Sub Funcs.
[NARNRRNR Y

Arbitrary function as difference between two polymatroids

@ Any submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular)
function g and a modular function m,.

@ Given submodular g : 2V — R, construct g : 2 — R as

9(A) = g(A) = Yoea9(alV \ {a}). Let my(A) £ 3,4 9(alV \ {a})
@ Then, given arbitrary f = g — h where g and h are submodular,
f=g-h=g+mg—h—my, (3.51)
=g~ h+ (mg —mp) (3.52)
=g—h+mg_y (3.53)
=g+m}_, — (h+(=mgp)") (3.54)
where m™ is the positive part of modular function m. That is,

m*(A) = Y ye s m(@)1(m(a) > 0).
o But both g + m;h and h + (—mgy_p,)" are polymatroid functions.
@ Thus, any function can be expressed as a difference between two

bolymatroid functions.
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More Sub Funcs.
(NRRNRRNNT |

Applications

@ Sensor placement with submodular costs. l.e., let V be a set of
possible sensor locations, f(A) = I(Xa; Xy 4) measures the
quality of a subsgt A of placed sensors, and ¢(A) the submodular
cost. We have ffin4 f(A) = Ae(A).

WX~
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More Sub Funcs.
(NRRNRRNNT |

Applications

@ Sensor placement with submodular costs. l.e., let V be a set of
possible sensor locations, f(A) = I(Xa; Xy 4) measures the
quality of a subset A of placed sensors, and ¢(A) the submodular
cost. We have ming f(A) — Ac(A).

@ Discriminatively structured graphical models, EAR measure
I(Xa; Xy a) — 1(Xa; Xyn\4|C), and synergy in neuroscience.
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More Sub Funcs.
(NRRNRRNNT |

Applications

@ Sensor placement with submodular costs. l.e., let V be a set of
possible sensor locations, f(A) = I(Xa; Xy 4) measures the
quality of a subset A of placed sensors, and ¢(A) the submodular
cost. We have ming f(A) — Ac(A).

@ Discriminatively structured graphical models, EAR measure
I(Xa; Xy a) — 1(Xa; Xy1\4|C), and synergy in neuroscience.

@ Feature selection: a problem of maximizing
I(X4;C) — Ae(A) = H(X ) — [H(X4|C) + Ac(A)], the difference
between two submodular functions, where H is the entropy and c is
a feature cost function.
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More Sub Funcs.
(NRRNRRNNT |

Applications

@ Sensor placement with submodular costs. l.e., let V be a set of
possible sensor locations, f(A) = I(Xa; Xy 4) measures the
quality of a subset A of placed sensors, and ¢(A) the submodular
cost. We have ming f(A) — Ac(A).

@ Discriminatively structured graphical models, EAR measure
I(Xa; Xy a) — 1(Xa; Xy1\4|C), and synergy in neuroscience.

@ Feature selection: a problem of maximizing
I(X4;C) = Ac(A) = H(Xa) — [H(X4|C) 4+ Ac(A)], the difference
between two submodular functions, where H is the entropy and c is
a feature cost function.

@ Graphical Model Inference. Finding x that maximizes
p(z) < exp(—v(x)) where x € {0,1}" and v is a pseudo-Boolean
function. When v is non-submodular, it can be represented as a
difference between submodular functions.
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Definitions of Submodularity
[ NRRRER RN RNRRRANN

Submodular Definitions

Definition 3.7.2 (submodular concave)

A function f: 2" — R is submodular if for any A, B C V', we have that:

f(A) + f(B) = f(AUB) + f(AN B) (3.2)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.7.3 (diminishing returns)

A function f : 2" — R is submodular if for any A C B C V, and
v € V'\ B, we have that:

fAU{v}) — f(A) > f(BU{v}) = f(B) (33)

This means that the incremental “value”, “gain”, or “cost” of v
decreases (diminishes) as the context in which v is considered grows from
A to B.
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Definitions of Submodularity

Submodular Definition: Group Diminishing Returns

An alternate and equivalent definition is:

Definition 3.7.1 (group diminishing returns)

A function f : 2V — R is submodular if for any A € B C V, and
C C V' \ B, we have that:

f(AUC) = f(A) = f(BUC) - f(B) (3.55)

This means that the incremental “value” or “gain” of set C' decreases as
the context in which C' is considered grows from A to B (diminishing
returns)
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Definitions of Submodularity

@ We often wish to express the gain of an item j € V' in context A,

namely f(AU{j}) — f(A).
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Definitions of Submodularity
(N RNRRNNRRRRRRNNA]

Gain

@ We often wish to express the gain of an item j € V in context A,

namely f(AU {j}) — f(A).
@ This is called the gain and is used so often, there are equally as
many ways to notate this. l.e., you might see:

FAU{GY) — F(A) £ pi(A)
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Definitions of Submodularity
(N RNRRNNRRRRRRNNA]

Gain

@ We often wish to express the gain of an item j € V in context A,
namely f(AU {j}) — f(A).

@ This is called the gain and is used so often, there are equally as
many ways to notate this. l.e., you might see:

FIAU{GY) — F(A) 2 pi(A) (3.56)
2 pa(j) (3.57)
2 v, f(A) (3.58)
2 ({5114 (3.59)
2 1(j14) (3.60)

o We'll use f(j|A).
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Definitions of Submodularity
(N RNRRNNRRRRRRNNA]

Gain

@ We often wish to express the gain of an item j € V in context A,

namely f(AU {j}) — f(A).
@ This is called the gain and is used so often, there are equally as
many ways to notate this. l.e., you might see:

FIAULGY) — F(A) 2 pi(A) (3.56)
2 pa(j) (3.57)
£V,f(4) (3.58)
£ f({i}14) (3.59)
2 1(j14) (3.60)

o We'll use f(jlA).

@ Submodularity’s diminishing returns definition can be stated as
saying that f(j|A) is a monotone non-increasing function of A, since
f(43]A) > f(j|B) whenever A C B (conditioning reduces valuation).
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Definitions of Submodularity
(AR ARRNNARRRRRNNAN]

Gain Notation

It will also be useful to extend this to sets.
Let A, B be any two sets. Then

f(A|B) £ f(AUB) - f(B)
So when j is any singleton

fGIB) = f({i}1B) = f{i} U B) - f(B)
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Definitions of Submodularity
(AR ARRRNARRRRRNNAN]

Gain Notation

It will also be useful to extend this to sets.
Let A, B be any two sets. Then

f(A|B) = f(AUB) — f(B) (3.61)
So when j is any singleton
fG1B) = f({i}|B) = f({j} U B) — f(B) (3.62)

Note that this is inspired from information theory and the notation used
for conditional entropy H(X4|Xp) = H(Xa,Xp) — H(Xp).
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Definitions of Submodularity
(ARRN NRRNARRRRRNNAN]

Submodular Definition Basic Equivalencies

We want to show that Submodular Concave (Definition 3.7.2),

Diminishing Returns (Definition 3.7.3), and Group Diminishing Returns
(Definition 3.7.1) are identical.
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Definitions of Submodularity
(ARRN NRRNARRRRRNNAN]

Submodular Definition Basic Equivalencies

We want to show that Submodular Concave (Definition 3.7.2),
Diminishing Returns (Definition 3.7.3), and Group Diminishing Returns
(Definition 3.7.1) are identical. We will show that:

@ Submodular Concave = Diminishing Returns
@ Diminishing Returns = Group Diminishing Returns

@ Group Diminishing Returns = Submodular Concave
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Definitions of Submodularity
(ARRNI RRNARRRRRNNAN]

Submodular Concave = Diminishing Returns

fUS)+f(T) > f(SUT)+ f(SNT) = f(v|A) > f(v|B),AC BCV\v.
@ Assume Submodular concave, so V.S, T we have

FS)+f(T) 2 fF(SUT)+ F(SNT).

Ol
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Definitions of Submodularity
(ARRNI RRNARRRRRNNAN]

Submodular Concave = Diminishing Returns

f(S)+f(T) = f(SUT)+f(SNT) = f(v|A) > f(v|B),AC BC V\v.
@ Assume Submodular concave, so VS, T we have
fS)+ f(T) = f(SUT) + f(SNT).
@ Given A, B and v € V such that: A C B C V' \ {v}, we have from
submodular concave that:

f(A+v)+ f(B) > f(B+v) + f(A4) (3.63)

Ol
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Definitions of Submodularity
(ARRNI RRNARRRRRNNAN]

Submodular Concave = Diminishing Returns

f(S)+f(T) = f(SUT)+f(SNT) = f(v|A) > f(v|B),AC BC V\v.
@ Assume Submodular concave, so VS, T we have
fS) + f(T) = f(SUT) + f(SNT).

@ Given A, B and v € V such that: A C B C V \ {v}, we have from
submodular concave that:

f(A+v) + f(B) 2 f(B +v) + f(4) (3.63)
@ Rearranging, we have

f(A+v) = f(A) 2 f(B+v) - f(B) (3.64)

Ol
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Definitions of Submodularity
(ARRNNT ARARRRRRNNAN]

Diminishing Returns = Group Diminishing Returns

F([S) > f(|T),SCT CV\v= f(C|A) > f(C|B),AC BCV\C.

Let C = {c1,¢2,...,ck}. Then diminishing returns implies
f(AUC) - f(A) (3.65)
= f(AU0) - ( (Au{cl,...,ci})ff(AU{cl,...,ci}))ff(A) (3.66)
k
= Zf(AU{cl...c,-}) —f(Auf{er...ci1}) (3.67)
k
> Zf(BU{cl..‘ci}) —f(BU{c1...ci-1}) (3.68)
= f(BUC) — Z( (BU{e,...,ei}) — fF(BU{er, ... cl})) —f(B) (3.69)
— f(BUC) - £(B) (3.70)
L]
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Definitions of Submodularity
(ARRNNRR NRRRRRRNNAN]

Group Diminishing Returns = Submodular Concave

fWUIS) = fWUIT), S €T C VAU = f(A)+f(B) > f(AUB)+f(ANB).
Assume group diminishing returns. Assume A # B otherwise trivial.
Define /= ANB, C = A\ B, and B’ = B. Then since A’ C B/,

f(A+C) = f(A) > f(B'+C) - f(B) (3.71)
giving
f(A+C)+ f(B) > f(B'+O) + f(A) (3.72)
or
fANB+A\B)+ f(B) > f(B+ A\B)+ f(ANB)  (3.73)
which is the same as the submodular concave condition

f(A)+f(B) = f(AUB) + f(ANB) (3.74)
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Definitions of Submodularity
(ARRNRRNR ARRRRRNNAN]

Submodular Definition: Four Points

Definition 3.7.2 (“singleton”, or “four points™)

A function f : 2V — R is submodular iff for any A C V, and any
a,b €V \ A, we have that:

f(AU{a}) + fF(AU{b}) = f(AU{a,b}) + f(A) (3.75)
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Definitions of Submodularity
(ARRNRRNR ARRRRRNNAN]

Submodular Definition: Four Points

Definition 3.7.2 (“singleton”, or “four points™)

A function f : 2V — R is submodular iff for any A C V, and any
a,b €V \ A, we have that:

f(AU{a}) + fF(AU{b}) = f(AU{a,b}) + f(A) (3.75)

This follows immediately from diminishing returns.
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Definitions of Submodularity
(ARRNRRNR ARRRRRNNAN]

Submodular Definition: Four Points

Definition 3.7.2 (“singleton”, or “four points™)

A function f : 2V — R is submodular iff for any A C V, and any
a,b €V \ A, we have that:

f(AU{a}) + fF(AU{b}) = f(AU{a,b}) + f(A) (3.75)

This follows immediately from diminishing returns. To achieve
diminishing returns, assume A C B with B\ A = {b1,b2,...,b;}. Then

f(A+a)—f(A) = f(A+b1+a)— f(A+b) (3.76)
> f(A—i—bl—i-bg—i-a)—f(A-l-bl—i-bg) (3.77)
> .. (3.78)
> f(A4+bi+---+bg+a)— f(A+br+---+bg)
(3.79)
= f(B+a)— f(B) (3.80)
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Definitions of Submodularity

Submodular Definitions

Given function f : 2V 5 R, then
f(A)+ f(B)> f(AUB)+ f(ANDB) forall A,BCV (SC)

if and only if

f|X)> f(w]Y) forall X CY CV andv ¢ B (DR)
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Definitions of Submodularity
(ARRNRRNNE FRRRRNAAN]

Submodular Definitions

Theorem 3.7.3

Given function f : 2V 5 R, then
f(A)+ f(B)> f(AUB)+ f(ANDB) forall A,BCV (SC)
if and only if
f|X)> f(w]Y) forall X CY CV andv ¢ B (DR)

Proof.

(SC)=(DR): Set A+~ X U{v}, B« Y. Then AUB = BU {v} and
ANB =X and f(A)— f(ANB) > f(AUB) — f(B) implies (DR).
(DR)=(SC): Order A\ B = {v1,v2,...,v,} arbitrarily. Then
flu|[AN BU{vy,va,...,vi—1}) = f(vi|BU{v1,v2,...,0,-1}), i € [r — ]
Applying telescoping summation to both sides, we get:

Zf(’UAA NnBU {Ul,vg, .. .,’Uifl}) > Zf(UZ|B U {’Ul,’UQ, ce ,’Ul',l})
=0 =0

or

Prof. Jeff Bilmes



Definitions of Submodularity
(ARRNRRNNRY RRRRNNAN]

Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C E with either
D D C or D CC, and have an expression of the form:

() = f(D) (3.81)
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Definitions of Submodularity
(ARRNRRNNRY RRRRNNAN]

Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C E with either
D D C or D CC, and have an expression of the form:

f(C) = (D) (3.81)
o If D D C, then for any X with D = C' U X then
f(C) = f(D)=f(C) - f(CUX) > f(CNX)— f(X)

(3.83)
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Definitions of Submodularity
(ARRNRRNNRY RRRRNNAN]

Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C E with either
D D C or D CC, and have an expression of the form:

f(C) - f(D) (3.81)
o If D D C, then for any X with D = C U X then
f(C)=fD)=f(C)- f(CUX) > f(CNX)—f(X) (3.82)

f(CUX|C) < f(XICNX) (3.83)
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Definitions of Submodularity
(ARRNRRNNRY RRRRNNAN]

Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C E with either
D D C or D CC, and have an expression of the form:

f(C) = (D) (3.81)
o If D D C, then for any X with D = C U X then
J(€) = F(D) = F(C) - F(CUX) = {(CNX) - f(X) (382)
or
f(CuX|C) < f(XICNX) (3.83)
@ Alternatively, if D C ', given any Y such that D = C'NY then
f(C) = f(D)=f(C) = f(CNY) = f(CUY) - f(Y)

(3.85)
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Definitions of Submodularity
(ARRNRRNNRY RRRRNNAN]

Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C E with either
D D C or D CC, and have an expression of the form:

7(C) - £(D) (3.81)
o If D D C, then for any X with D = C U X then
F(C) = f(D)=f(C) - f(CUX) = f(CNX) - f(X) (382)
or
f(CuX|C) < f(XICNX) (3.83)
o Alternatively, if D C C, given any Y such that D = C'NY then
J(C) ~ £(D) = f(C) ~ FCNY) = F(CUY) - f(Y) (3.84)
or

F(C|CNY) > F(CUYY) (3.85)
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Definitions of Submodularity
(ARRNRRNNRY RRRRNNAN]

Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C E with either
D D C or D CC, and have an expression of the form:

f(C) - f(D) (3.81)
o If D D C, then for any X with D = C U X then
F(C) = f(D)=f(C) - f(CUX) = f(CNX) - f(X) (382)
or
f(CuX|C) < f(XICNX) (3.83)
o Alternatively, if D C C, given any Y such that D = C'NY then
F(C)=f(D) = f(C) = f(CNY) = f(CUY) - f(Y) (3.84)
or
fleieny) > f(Cuyly) (3.85)
@ Equations (3.83) and (3.85) have same form.
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Definitions of Submodularity
(ARRNRRNNARY ARRNAAN]

Many (Equivalent) Definitions of Submodularity

F(A) + f(B)> f(AUB)+ f(ANB), YA,BCV (3.86)
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Definitions of Submodularity
(ARRNRRNNARY ARRNAAN]

Many (Equivalent) Definitions of Submodularity

f(A)+ f(B)> f(AUB) + f(ANB), YA,BCV (3.86)
f(41S) > fGIT), VS C T CV, with j e V\T (3.87)
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Definitions of Submodularity
(ARRNRRNNARY ARRNAAN]

Many (Equivalent) Definitions of Submodularity

F(A)+ f(B)> f(AUB) + f(ANB), VA, BCV (3.86)
FG1S) > fUIT), VSCT CV, with j € V\ T (3.87)
£(C1S) = f(C|T),YSCT CV, withC CV\T (3.88)
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Definitions of Submodularity
(ARRNRRNNARY ARRNAAN]

Many (Equivalent) Definitions of Submodularity

F(A) + f(B) > f(AUB)+ f(ANB), YA, BCV (3.86)
FGIS) = fGIT), YS CT CV, with j € VAT (3.87)
F(C|S) > f(C|T),¥S CT CV, with C CV\T (3.88)
f(18) > f(GISU{k}), VS C V with j € V\ (SU{k}) (3.89)
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Definitions of Submodularity
(ARRNRRNNARY ARRNAAN]

Many (Equivalent) Definitions of Submodularity

f(A)+ f(B)> f(AUB)+ f(ANB), VA, BCV (3.86)
FG1S) = f(IT), ¥S CT CV, with j € V\ T (3.87)

f(C18) > f(C|T),¥SCT CV, with CCV\T (3.88)

FG1S) = f(ISU{R}Y), VS €V with j € V\ (SU{k}) (3.89)
f(AUBJANB) < f(A|IANB) + f(BI[ANB), VA, BCV (3.90)
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Definitions of Submodularity
(ARRNRRNNARY ARRNAAN]

Many (Equivalent) Definitions of Submodularity

f(A)+ f(B)> f(AUB) + f(ANB), VA, BCV (3.86)
FG1S) = f(IT), ¥S CT CV, with j € V\ T (3.87)

f(C|S) > f(C|T),¥ySCT CV, with CCV\T (3.88)

FG1S) = f(ISU{R}Y), VS €V with j € V\ (SU{k}) (3.89)
(AuB|AmB) < f(AJANB)+ f(BJANB), VA, BCV (3.90)

F) < FS)+ D fGIS) = D fUISUT = {4}, VS, TV
JET\S jES\T
(3.91)
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Defini of Subm arity
(ARRNRRNNARY ARRNAAN]

Many (Equivalent) Definitions of Submodularity

f(A)+ f(B)> f(AUB)+ f(ANB), YA,BCV (3.86)
fG1S) = fUIT), vSCT CV, with j € VAT (3.87)
f(C|8) > f(C|T),¥SCT CV, withCCV\T (3.88)
fG18) = fGISU{k}), VS CV with j € V\ (SU{k}) (3.89)
f(AuB|AﬂB) < f(AJANB) + f(B|IANB), YA,BCV (3.90)
FT)<FS)+ D fGIS) = Y fUISUT ={j}), VS, T CV
JET\S JES\T
(3.91)
FO)<FS)+ > fGIS), ¥vSCTCV (3.92)
JET\S

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 3 - April 7th, 2014 F55/70 (pg.133/166



Defini of Subm arity
(ARRNRRNNARY ARRNAAN]

Many (Equivalent) Definitions of Submodularity

f(A)+ f(B) > f(AUB)+ f(ANB), YA, BCV (3.86)
FG1S) = fGIT), ¥SCT CV, with j € V\ T (3.87)
f(C|S) > f(C|T),YSCT CV, withCCV\T (3.88)
fGIS) = f(ISU{k}), VS CV with j € V\ (SU{k}) (3.89)
f(AuB|AmB) < f(AJANB)+ f(BJANB), VA, BCV (3.90)
)< S+ D FUIS) = D fUISUT—{5}), VS, T CV
JET\S jeS\T
(3.91)
JO)<FS)+ D fGlS), vscTCV (3.92)
JET\S
FO) < fF(S) = D FGEIS\GH + D fUISNT) VS, T CV
JjES\T JET\S
(3.93)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 3 - April 7th, 2014 F55/70 (pg.134/166



Defini of Subm arity
(ARRNRRNNARY ARRNAAN]

Many (Equivalent) Definitions of Submodularity

f(A)+ f(B) > f(AUB)+ f(ANB), YA, BCV (3.86)
FGIS) = fGIT), ¥S CT C V, with j € V\ T (3.87)
F(CIS) > f(C|T),¥S CT CV, with C CV\T (3.88)
fG1S) = f(GISULk}), VS CV with j € V\ (SU{k}) (3.89)
f(AuB|AnB) < f(AJANB)+ f(BIJANB), YA,BCV (3.90)
FT)<FS)+ D fGIS) = Y fUISUT ={j}), VS, T CV
JET\S jeS\T
(3.91)
JO)<FS)+ D fGlS), vscTCV (3.92)
JET\S
() < = Y fUISNGH+ D fGISNT) VS, TCV
JjeS\T JET\S
(3.93)
FT)<f(S) = Y fGIS\ i), vTcscV (3.94)
JES\T
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Definitions of Submodularity
(ARRNRRNNARNL FRNAAN]

Equivalent Definitions of Submodularity

We've already seen that Eq. 3.86 = Eq. 3.87 = Eq. 3.88 = Eq. 3.89 =
Eq. 3.90.
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Definitions of Submodularity
(ARRNRRNNARNL FRNAAN]

Equivalent Definitions of Submodularity

We've already seen that Eq. 3.86 = Eq. 3.87 = Eq. 3.88 = Eq. 3.89 =
Eq. 3.90.
We next show that Eq. 3.89 = Eq. 3.91 = Eq. 3.92 = Eq. 3.89.
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Definitions of Submodularity
(ARRNRRNNARNRY ANNAN]

Approach

To show these next results, we essentially first use:

f(SUT) = f(S)+ f(T]S) < f(S5) + upper bond (3.95)
and
f(T) + lower bound < f(T) + f(S|T) = f(SUT) (3.96)
leading to
f(T) + lower bound < f(S) + upper bound (3.97)
or
F(T) < f(S) + upper bound — lower bound (3.98)
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Definitions of Submodularity
(ARRNRRNNARNNRY ARAN]

Eq. 3.89 = Eq. 3.91

Let T\ S ={j1,...,4r} and S\ T = {ki1,...,kq}.
First, we upper bound the gain of 7" in the context of S

T

FSUT) = £(8) =S (FS UL, 0deh) = FSU L, dia])

t=1
(3.99)

= Zf (el S U1, i1 }) < F(GIS) (3.100)
t=1
Z £Gi19) (3.101)

JET\S
or

FTIS) < D F3IS) (3.102)

JET\S
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Definitions of Submodularity
(ARRNRRNNARRERNY VAN

Eq. 3.89 = Eq. 3.91

LetT\S:{jl,...,jT} and S\T:{kl,,k‘q}
Next, lower bound S in the context of T

FSUT) = f(1) = S LT U {hry o kid) = FTU (s Jo 1))

t=1
(3.103)
= FRT ULk, ked \ {ke}) = Y f(ke| TU S\ {ke})
- - (3.104)
= > fUISUT\{}) (3.105)
JjES\T
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Definitions of Submodularity
(ARRNRRNNRRRRRNN] AN

Eq. 3.89 = Eq. 3.91

LetT\S:{jl,...,jT} and S\T:{kl,...,kq}.
So we have the upper bound

F(T|S) = f(SUT) — < > f3IS) (3.106)
JET\S

and the lower bound

FSIT) = f(SUT) = f(T) = Y fUISUT\{5}) (3.107)

FES\T
This gives upper and lower bounds of the form

f(T) 4 lower bound < f(SUT) < f(S) + upper bound, (3.108)

and combining directly the left and right hand side gives the desired
inequality.
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Definitions of Submodularity
(ARRNRRNNARRRRRNAT N

Eq. 3.91 = Eq. 3.92

This follows immediately since if S C T', then S\ T = (), and the last
term of Eq. 3.91 vanishes.
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Eq. 3.92 = Eq. 3.89

Here, we set T = SU{j,k}, j ¢ SU{k} into Eq. 3.92 to obtain

FSULG,k}) < f(S) + f(51S) + f(K]S) (3.109)
= f(S) + f(S+{j}) — f(S) + f(S+{k}) — f(5)

(3.110)

= f(S+{5}) + F(S+ {k}) = £(5) (3.111)

= f(jI8) + f(S + {k}) (3.112)

giving

FUISULR}) = f(SU{G,k}) — F(SU{k}) (3.113)
< f(jlS) (3.114)
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Independence
[NRNNRRY]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 01 3 1
2losoaooaal (D0 T
310000300 5| (™78
4\2 0 0 0 0 0O 0 5 | | | | | | | |
o Let A=1{1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}
@ Then r(A) =3, r(B) =3, r(C) =2.
o r(AUC) =3, r(BUC)=3.
° (AUA)—3 r(BUB,) =3, 1r(AUB,) =4, r(BUA,) =4
e "(AUB)=4, r(AnB)=1 <T(C):2.
° 6= r(A)+r(B)>r(AUB)+T(AﬂB)
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Independence
e

On Rank

@ Let rank : 2V — Z, be the rank function.
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Independence
e

On Rank

o Let rank : 2V — Z, be the rank function.

@ In general, rank(A) < |A|, and vectors in A are linearly independent
if and only if rank(A) = |A].
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Independence
e

On Rank

o Let rank : 2V — Z, be the rank function.

o In general, rank(A) < |A|, and vectors in A are linearly independent
if and only if rank(A) = |A].

e If A, B are such that rank(A) = |A| and rank(B) = |B|, with
|A| < |B|, then the space spanned by B is greater, and we can find
a vector in B that is linearly independent of the space spanned by
vectors in A.
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Independence
e

On Rank

o Let rank : 2V — Z, be the rank function.

o In general, rank(A) < |A|, and vectors in A are linearly independent
if and only if rank(A) = |A].

e If A, B are such that rank(A) = |A| and rank(B) = |B|, with
|A| < |B|, then the space spanned by B is greater, and we can find
a vector in B that is linearly independent of the space spanned by
vectors in A.

@ To stress this point, note that the above condition is |A| < |B|, not
A C B which is sufficient (to be able to find an independent vector)
but not necessary.
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Independence
e

On Rank

o Let rank : 2V — Z, be the rank function.

o In general, rank(A) < |A|, and vectors in A are linearly independent
if and only if rank(A) = |A].

e If A, B are such that rank(A) = |A| and rank(B) = |B|, with
|A| < |B|, then the space spanned by B is greater, and we can find
a vector in B that is linearly independent of the space spanned by
vectors in A.

@ To stress this point, note that the above condition is |A| < |B|, not
A C B which is sufficient (to be able to find an independent vector)
but not necessary.

@ In other words, given A, B with rank(A) = |A| & rank(B) = B,
then |A| < |B| < 3 an b € B such that rank(AU {b}) = |A| + 1.
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Independence
(NLRRRAY]

Spanning trees/forests

@ We are given a graph G = (V| E), and consider the edges
E = E(G) as an index set.

e Consider the |V| x |E| incidence matrix of undirected graph G,
which is the matrix Xg = (%y.e)vev (@), ccE(G) Where

. — {1 !fUEe (3.115)

’ 0 ifude
12 3 4 5 6 7 8 9 10 11 12
1/1 10 0O0O0O0O0O0O0OC O O
2110101 00 0O O O O
310 101 01 0 0O0 O O O
410 0 1.1 0 0 1. 1.0 0 0 O
5(0 0 0 001 100 1 0 O
60 0 0000011 0 1 O
710 0 001 0001 0 0 1
8\0 0 0OOOOOOOT1 1 1
(3.116)
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Independence
(RN AR

Spanning trees/forests & incidence matrices

e We are given a graph G = (V, E), we can arbitrarily orient the
graph (make it directed) consider again the edges £ = F(G) as an
index set.

e Consider instead the |V| x |E| incidence matrix of undirected graph
G, which is the matrix Xg = (Ty.¢)vev(@),ceE(q) Where

1 ifveet
Tpe=4—1 ifvee (3.117)
0 ifvéee

and where e is the tail and e~ is the head of (now) directed edge e.
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Independence

Spanning trees/forests & incidence matrices

@ A directed version of the graph
(right) and its adjacency matrix
(below).

@ Orientation can be arbitrary.

@ Note, rank of this matrix is 7.

1 3 4 5 6 7 8 9 10 11 12
1 /-1 1 0 0 0 0 0 0 0 0 0 0
21 1 0 -1 0 1 0 0 0 0 0 0 0
310 -1 0 1 0 -1 0 0 0 0 0 0
41 0 0 1 -1 0 0 1 -1 0 0 0 0
51 0 0 0 0 0 1 -1 0 0 1 0 0
6] 0 0 0 0 0 0 0 1 -1 0 -1 0
7 O 0 0 0 -1 0 0 0 1 0 0 1
8\ 0 0 0 0 0 0 0 0 o -1 1 -1

Prof. Jeff Bilmes



Independence
(NRRNR N

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding
matrix columns.

(3.118)

0~ O U W N
OO OO OO

Here, rank({z1}) = 1.
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Independence
(NRRNR N

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding
matrix columns.

1 2
1 /-1 1
21 1 0
31 0 -1
41 0 0
3.118
51 O 0 ( )
6] O 0
7{ O 0
8\ 0 0

Here, rank({z1,z2}) = 2.
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Independence
(NRRNR N

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding
matrix columns.

1 2 3
1/-1 1 0
2l 1 0 -1
31 0 -1 0
410 0o 1
11
510 0 0 (3.118)
6l 0 0 o0
7o 0o o
s\0 0 0

Here, rank({z1, z2,x3}) = 3.
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Independence
(NRRNR N

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding
matrix columns.

1 2 3 5
1/-1 1 0 0
21 1 0 -1 1
310 -1 0 o0
410 0 1 0
11
500 0 0 0 (3.118)
6] 0 0 0 0
710 o o -1
8\0 0 0 0

Here, rank({z1, 22, 23, 25}) = 4.
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Independence
(NRRNR N

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding
matrix columns.

1 3 4 5
1/-1 1 0 0 0
211 0 -1 0 1
310 -1 0 1 0
4l 0 0 1 -1 0
11
510 0 0 0 o0 (3.118)
6]l 0 0 0 0 0
710 0o o 0o -1
8\0 0 0 0 0

Here, rank({z1, z2, 23,24, 25}) = 4.
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Independence
(NRRNR N

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding
matrix columns.

1 2 3 4
1 /-1 1 0 0
2 1 0 -1 0
3 0O -1 0 1
4 0 0 1 -1

11
510 0o o o0 (3.118)
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
Here, rank({z1, z2, 23, 24}) = 3 since 4 = —x1 — 22 — 3.
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Independence
(NRRRRT N

Spanning trees

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

@ This means that all forests in the graph correspond to a set of
linearly independent column vectors in the matrix.

@ Consider a “rank” function defined as follows: given a set of edges
A C E(G), the rank(A) is the size of the largest forest in the
A-edge induced subgraph of G.

@ The rank of the entire graph then is then a spanning forest of the
graph (spanning tree if the graph is connected).

@ The rank of the graph is rank(G) = |V| — k where k is the number

of connected components of G (recall, we saw that kg(A) is a
supermodular function in previous lectures).
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Independence
[NERNNAT ]

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

@ Given a tree T', the cost of the tree is cost(T) = > . w(e), the
sum of the weights of the edges.

@ There are several algorithms for MST:

Algorithm 1: Boriivka's Algorithm

F < 0 /* We build up the edges of a forest in F’ */
while G(V, F') is disconnected do
forall the components C; of F' do
L F < FU/{e;} for e; = the min-weight edge out of Cj;

s Ny =
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Independence
[NERNNAT ]

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

@ Given a tree T', the cost of the tree is cost(T) = > . w(e), the
sum of the weights of the edges.

@ There are several algorithms for MST:
Algorithm 2: Jarnik /Prim/Dijkstra Algorithm

1T +0;

2 while T is not a spanning tree do

T < T U{e} for e = the minimum weight edge extending the
tree T to a new vertex ;

w
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Independence
[NERNNAT ]

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

@ Given a tree T', the cost of the tree is cost(T) = > . w(e), the
sum of the weights of the edges.

@ There are several algorithms for MST:

Algorithm 3: Kruskal's Algorithm

Sort the edges so that w(er) < w(ez) < -+ < w(epy) ;
T+ (V(G),0) = (V,E) ;

for i =1tom do

L if E(T)U{e;} does not create a cycle in T then

A W =

| E(T) « E(T) U{e};
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Independence
[NERNNAT ]

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

o Given a tree T', the cost of the tree is cost(T) = > . w(e), the
sum of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal
minimum spanning tree in (low order) polynomial time.
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Independence
[NERNNAT ]

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

o Given a tree T', the cost of the tree is cost(T) = > . w(e), the
sum of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal
minimum spanning tree in (low order) polynomial time.

@ All these algorithms are related to the “greedy” algorithm. l.e., “add
next whatever looks best".
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Independence
[NERNNAT ]

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

o Given a tree T', the cost of the tree is cost(T) = > . w(e), the
sum of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal
minimum spanning tree in (low order) polynomial time.

@ All these algorithms are related to the “greedy” algorithm. l.e., “add
next whatever looks best".

@ These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.
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Independence
[NERNNAT ]

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges
of the graph. The goal is to find the minimum spanning tree (MST)
of the graph.

o Given a tree T', the cost of the tree is cost(T) = > . w(e), the
sum of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal
minimum spanning tree in (low order) polynomial time.

@ All these algorithms are related to the “greedy” algorithm. l.e., “add
next whatever looks best".

@ These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.

@ The above are all examples of a matroid, which is the fundamental
reason why the greedy algorithms work.
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