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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

our room (Mueller Hall Room 154) is changed!

Please do use our discussion board (https:
//canvas.uw.edu/courses/895956/discussion_topics) for all
questions, comments, so that all will benefit from them being
answered.

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5:

L6:

L7:

L8:

L9:

L10:

L11:

L12:

L13:

L14:

L15:

L16:

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Submodular Definitions

Definition 3.2.2 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (3.2)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.3 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (3.3)

This means that the incremental “value”, “gain”, or “cost” of v
decreases (diminishes) as the context in which v is considered grows from
A to B.
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Logistics Review

Many Properties

In the last lecture, we started looking at properties of and gaining
intuition about submodular functions.

We began to see that there were many functions that were
submodular, and operations on sets of submodular functions that
preserved submodularity.
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Some examples form last time

Coverage functions (either via sets, or via regions in n-D space).

Entropy function (as a function of sets of random variables),
symmetric mutual information.

Many functions based on graphs are either submodular or
supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.

Matrix rank - rank of a set of vectors from a set of vector indices.

Geometric interpretation of f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

Cost of manufacturing – supply side economies of scale

Network Externalities – Demand side Economies of Scale

Social Network Influence

Information and Summarization - document summarization via
sentence selection
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The Venn and Art of Submodularity

+r(A) + r(B) r(A ∪ B)

= r(Ar ) +r(C ) + r(Br )

≥
= r(A ∩ B)

r(A ∩ B)

= r(Ar ) + 2r(C ) + r(Br )

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
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Other Examples Bit More Notation More Sub Funcs. More Sub Funcs.

Polymatroid rank function

Let S be a set of subspaces of a linear space (i.e., each s ∈ S is a
subspace of dimension ≥ 1).

For each X ⊆ S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

We can think of S as a set of sets of vectors from the matrix rank
example, and for each s ∈ S, let Xs being a set of vector indices.

Then, defining f : 2S → R+ as follows,

f(X) = r(∪s∈SXs) (3.1)

we have that f is submodular, and is known to be a polymatroid
rank function.

In general (as we will see) polymatroid rank functions are
submodular, normalized f(∅) = 0, and monotone non-decreasing
(f(A) ≤ f(B) whenever A ⊆ B).
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Other Examples Bit More Notation More Sub Funcs. More Sub Funcs.

Spanning trees

Let E be a set of edges of some graph G = (V,E), and let r(S) for
S ⊆ E be the maximum size (in terms of number of edges)
spanning forest in the vertex-induced graph, induced by vertices
incident to edges S.

Example: Given G = (V,E), V = {1, 2, 3, 4, 5, 6, 7, 8},
E = {1, 2, . . . , 12}. S = {1, 2, 3, 4, 5, 8, 9} ⊂ E. Two spanning trees
have the same edge count (the rank of S).
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Then r(S) is submodular, and is another matrix rank function
corresponding to the incidence matrix of the graph.
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Other Examples Bit More Notation More Sub Funcs. More Sub Funcs.

Supply Side Economies of scale

What is a good model of the cost of manufacturing a set of items?

Let V be a set of possible items that a company might possibly wish
to manufacture, and let f(S) for S ⊆ V be the cost to that
company to manufacture subset S.

Ex: V might be colors of paint in a paint manufacturer: green, red,
blue, yellow, white, etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)− f(blue, yellow) <= f(green, blue)− f(blue)
(3.1)

So diminishing returns (a submodular function) would be a good
model.
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Other Examples Bit More Notation More Sub Funcs. More Sub Funcs.

A model of Influence in Social Networks

Given a graph G = (V,E), each v ∈ V corresponds to a person, to
each v we have an activation function fv : 2V → [0, 1] dependent
only on its neighbors. I.e., fv(A) = fv(A ∩ Γ(v)).

Goal - Viral Marketing: find a small subset S ⊆ V of individuals to
directly influence, and thus indirectly influence the greatest number
of possible other individuals (via the social network G).

We define a function f : 2V → Z+ that models the ultimate
influence of an initial set S of nodes based on the following iterative
process: At each step, a given set of nodes S are activated, and we
activate new nodes v ∈ V \ S if fv(S) ≥ U [0, 1] (where U [0, 1] is a
uniform random number between 0 and 1).

It can be shown that for many fv (including simple linear functions,
and where fv is submodular itself) that f is submodular.
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Other Examples Bit More Notation More Sub Funcs. More Sub Funcs.

The value of a friend

Let V be a group of individuals. How valuable to you is a given
friend v ∈ V ?

It depends on how many friends you have.

Given a group of friends S ⊆ V , can you valuate them with a
function f(S) an how?

Let f(S) be the value of the set of friends S. Is submodular or
supermodular a good model?
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Other Examples Bit More Notation More Sub Funcs. More Sub Funcs.

Information and Summarization

Let V be a set of information containing elements (V might say be
either words, sentences, documents, web pages, or blogs, each
v ∈ V is one element, so v might be a word, a sentence, a
document, etc.). The total amount of information in V is measure
by a function f(V ), and any given subset S ⊆ V measures the
amount of information in S, given by f(S).

How informative is any given item v in different sized contexts? Any
such real-world information function would exhibit diminishing
returns, i.e., the value of v decreases when it is considered in a
larger context.

So a submodular function would likely be a good model.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 3 - April 7th, 2014 F14/45 (pg.29/106)



Other Examples Bit More Notation More Sub Funcs. More Sub Funcs.

Submodular Polyhedra

Submodular functions have associated polyhedra with nice
properties: when a set of constraints in a linear program is a
submodular polyhedron, a simple greedy algorithm can find the
optimal solution even though the polyhedron is formed via an
exponential number of constraints.

Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(3.2)

P+
f = Pf ∩

{
x ∈ RE : x ≥ 0

}
(3.3)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(3.4)

The linear programming problem is to, given c ∈ RE , compute:

f̃(c) , max
{
cTx : x ∈ Pf

}
(3.5)

This can be solved using the greedy algorithm! Moreover, f̃(c)
computed using greedy is convex if and only of f is submodular (we
will go into this in some detail this quarter).
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Other Examples Bit More Notation More Sub Funcs. More Sub Funcs.

Ground set: E or V ?

Submodular functions are functions defined on subsets of some finite set,
called the ground set .

It is common in the literature to use either E or V as the ground set.

We will follow this inconsistency in the literature and will
inconsistently use either E or V as our ground set (hopefully not in
the same equation, if so, please point this out).
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Other Examples Bit More Notation More Sub Funcs. More Sub Funcs.

Notation RE

What does x ∈ RE mean?

RE = {x = (xj ∈ R : j ∈ E)} (3.6)

RE+ = {x = (xj : j ∈ E) : x ≥ 0} (3.7)

Any vector x ∈ RE can be treated as a normalized modular function, and
vice verse. That is

x(A) =
∑

a∈A
xa (3.8)

Note that x is said to be normalized since x(∅) = 0.
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Other Examples Bit More Notation More Sub Funcs. More Sub Funcs.

characteristic vectors of sets & modular functions

Given an A ⊆ E, define the vector 1A ∈ RE+ to be

1A(j) =

{
1 if j ∈ A;

0 if j /∈ A
(3.9)

Sometimes this will be written as χA ≡ 1A.

Thus, given modular function x ∈ RE , we can write x(A) in a
variety of ways, i.e.,

x(A) = x · 1A =
∑

i∈A
x(i) (3.10)
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Other Notation: singletons and sets

When A is a set and k is a singleton (i.e., a single item), the union is
properly written as A ∪ {k}, but sometimes I will write just A+ k.
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General notation: what does ST mean when S and T are
arbitrary sets

Let S and T be two arbitrary sets (either of which could be
countable, or uncountable).

We define the notation ST to be the set of all functions that map
from T to S. That is, if f ∈ ST , then f : T → S.

Hence, given a finite set E, RE is the set of all functions that map
from elements of E to the reals R, and such functions are identical
to a vector in a vector space with axes labeled as elements of E
(i.e., if m ∈ RE , then for all e ∈ E, m(e) ∈ R).

Similarly, 2E is the set of all functions from E to “two” — in this
case, we really mean 2 ≡ {0, 1}, so 2E is shorthand for {0, 1}V

—
hence, 2E is the set of all functions that map from elements of E to
{0, 1}, equivalent to all binary vectors with elements indexed by
elements of E, equivalent to subsets of E. Hence, if A ∈ 2E then
A ⊆ E. What might 3E mean?
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Summing Submodular Functions

Given E, let f1, f2 : 2E → R be two submodular functions. Then

f : 2E → R with f(A) = f1(A) + f2(A) (3.11)

is submodular.

This follows easily since

f(A) + f(B) = f1(A) + f2(A) + f1(B) + f2(B) (3.12)

≥ f1(A ∪B) + f2(A ∪B) + f1(A ∩B) + f2(A ∩B)
(3.13)

= f(A ∪B) + f(A ∩B). (3.14)

I.e., it holds for each component of f in each term in the inequality. In
fact, any conic combination (i.e., non-negative linear combination) of
submodular functions is submodular, as in f(A) = α1f1(A) + α2f2(A)
for α1, α2 ≥ 0.
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Summing Submodular and Modular Functions

Given E, let f1,m : 2E → R be a submodular and a modular function.

Then

f : 2E → R with f(A) = f1(A)−m(A) (3.15)

is submodular (as is f(A) = f1(A) +m(A)). This follows easily since

f(A) + f(B) = f1(A)−m(A) + f1(B)−m(B) (3.16)

≥ f1(A ∪B)−m(A ∪B) + f1(A ∩B)−m(A ∩B)
(3.17)

= f(A ∪B) + f(A ∩B). (3.18)

That is, the modular component with
m(A) +m(B) = m(A ∪B) +m(A ∩B) never destroys the inequality.
Note of course that if m is modular than so is −m.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 3 - April 7th, 2014 F22/45 (pg.47/106)



Other Examples Bit More Notation More Sub Funcs. More Sub Funcs.

Summing Submodular and Modular Functions

Given E, let f1,m : 2E → R be a submodular and a modular function.
Then

f : 2E → R with f(A) = f1(A)−m(A) (3.15)

is submodular (as is f(A) = f1(A) +m(A)).

This follows easily since

f(A) + f(B) = f1(A)−m(A) + f1(B)−m(B) (3.16)

≥ f1(A ∪B)−m(A ∪B) + f1(A ∩B)−m(A ∩B)
(3.17)

= f(A ∪B) + f(A ∩B). (3.18)

That is, the modular component with
m(A) +m(B) = m(A ∪B) +m(A ∩B) never destroys the inequality.
Note of course that if m is modular than so is −m.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 3 - April 7th, 2014 F22/45 (pg.48/106)



Other Examples Bit More Notation More Sub Funcs. More Sub Funcs.

Summing Submodular and Modular Functions

Given E, let f1,m : 2E → R be a submodular and a modular function.
Then

f : 2E → R with f(A) = f1(A)−m(A) (3.15)

is submodular (as is f(A) = f1(A) +m(A)). This follows easily since

f(A) + f(B) = f1(A)−m(A) + f1(B)−m(B) (3.16)

≥ f1(A ∪B)−m(A ∪B) + f1(A ∩B)−m(A ∩B)
(3.17)

= f(A ∪B) + f(A ∩B). (3.18)

That is, the modular component with
m(A) +m(B) = m(A ∪B) +m(A ∩B) never destroys the inequality.
Note of course that if m is modular than so is −m.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 3 - April 7th, 2014 F22/45 (pg.49/106)



Other Examples Bit More Notation More Sub Funcs. More Sub Funcs.

Summing Submodular and Modular Functions

Given E, let f1,m : 2E → R be a submodular and a modular function.
Then

f : 2E → R with f(A) = f1(A)−m(A) (3.15)

is submodular (as is f(A) = f1(A) +m(A)). This follows easily since

f(A) + f(B) = f1(A)−m(A) + f1(B)−m(B) (3.16)

≥ f1(A ∪B)−m(A ∪B) + f1(A ∩B)−m(A ∩B)
(3.17)

= f(A ∪B) + f(A ∩B). (3.18)

That is, the modular component with
m(A) +m(B) = m(A ∪B) +m(A ∩B) never destroys the inequality.
Note of course that if m is modular than so is −m.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 3 - April 7th, 2014 F22/45 (pg.50/106)



Other Examples Bit More Notation More Sub Funcs. More Sub Funcs.

Restricting Submodular Functions

Given E, let f : 2E → R be a submodular functions. And let S ⊆ E be
an arbitrary fixed set. Then

f ′ : 2E → R with f ′(A) = f(A ∩ S) (3.19)

is submodular.

Proof.

Given A ⊆ B ⊆ E \ v, consider

f((A+ v) ∩ S)− f(A ∩ S) ≥ f((B + v) ∩ S)− f(B ∩ S) (3.20)

If v /∈ S, then both differences on each size are zero. If v ∈ S, then we
can consider this

f(A′ + v)− f(A′) ≥ f(B′ + v)− f(B′) (3.21)

with A′ = A ∩ S and B′ = B ∩ S. Since A′ ⊆ B′, this holds due to
submodularity of f .
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Summing Restricted Submodular Functions

Given V , let f1, f2 : 2V → R be two submodular functions and let S1, S2

be two arbitrary fixed sets. Then

f : 2V → R with f(A) = f1(A ∩ S1) + f2(A ∩ S2) (3.22)

is submodular. This follows easily from the preceding two results.

Given V , let C = {C1, C2, . . . , Ck} be a set of subsets of V , and for each
C ∈ C, let fC : 2V → R be a submodular function. Then

f : 2V → R with f(A) =
∑

C∈C
fC(A ∩ C) (3.23)

is submodular. This property is critical for image processing and
graphical models. For example, let C be all pairs of the form
{{u, v} : u, v ∈ V }, or let it be all pairs corresponding to the edges of
some undirected graphical model. We plan to revisit this topic later in
the term.
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Max - normalized

Given V , let c ∈ RV+ be a given fixed vector. Then f : 2V → R+, where

f(A) = max
j∈A

cj (3.24)

is submodular and normalized (we take f(∅) = 0).

Proof.

Consider

max
j∈A

cj + max
j∈B

cj ≥ max
j∈A∪B

cj + max
j∈A∩B

cj (3.25)

which follows since we have that

max(max
j∈A

cj ,max
j∈B

cj) = max
j∈A∪B

cj (3.26)

and

min(max
j∈A

cj ,max
j∈B

cj) ≥ max
j∈A∩B

cj (3.27)
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Max

Given V , let c ∈ RV be a given fixed vector (not necessarily
non-negative). Then f : 2V → R, where

f(A) = max
j∈A

cj (3.28)

is submodular, where we take f(∅) ≤ minj cj (so the function is not
normalized).

Proof.

The proof is identical to the normalized case.
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Facility/Plant Location (uncapacitated)

Let F = {1, . . . , f} be a set of possible factory/plant locations for
facilities to be built.
S = {1, . . . , s} is a set of sites (e.g., cities, clients) needing service.
Let cij be the “benefit” (e.g., 1/cij is the cost) of servicing site i
with facility location j.
Let mj be the benefit (e.g., either 1/mj is the cost or −mj is the
cost) to build a plant at location j.
Each site should be serviced by only one plant but no less than one.
Define f(A) as the “delivery benefit” plus “construction benefit”
when the locations A ⊆ F are to be constructed.
We can define the (uncapacitated) facility location function

f(A) =
∑

j∈A
mj +

∑

i∈F
max
j∈A

cij . (3.4)

Goal is to find a set A that maximizes f(A) (the benefit) placing a
bound on the number of plants A (e.g., |A| ≤ k).
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Facility Location

Given V,E, let c ∈ RV×E be a given |V | × |E| matrix. Then

f : 2E → R, where f(A) =
∑

i∈V
max
j∈A

cij (3.29)

is submodular.

Proof.

We can write f(A) as f(A) =
∑

i∈V fi(A) where fi(A) = maxj∈A cij is
submodular (max of a ith row vector), so f can be written as a sum of
submodular functions.

Thus, the facility location function (which only adds a modular function
to the above) is submodular.
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Log Determinant

Let Σ be an n× n positive definite matrix. Let
V = {1, 2, . . . , n} ≡ [n] be an index set, and for A ⊆ V , let ΣA be
the (square) submatrix of Σ obtained by including only entries in
the rows/columns given by A.

We have that:

f(A) = log det(ΣA) is submodular. (3.30)

The submodularity of the log determinant is crucial for
determinantal point processes (DPPs) (defined later in the class).

Proof of submodularity of the logdet function.

Suppose X ∈ Rn is multivariate Gaussian random variable, that is

x ∈ p(x) =
1√
|2πΣ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(3.31)

. . .
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Log Determinant

...cont.

Then the (differential) entropy of the r.v. X is given by

h(X) = log
√
|2πeΣ| = log

√
(2πe)n|Σ| (3.32)

and in particular, for a variable subset A,

f(A) = h(XA) = log
√

(2πe)|A||ΣA| (3.33)

Entropy is submodular (conditioning reduces entropy), and moreover

f(A) = h(XA) = m(A) +
1

2
log |ΣA| (3.34)

where m(A) is a modular function.

Note: still submodular in the semi-definite case as well.
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Summary so far

Summing: if αi ≥ 0 and fi : 2V → R is submodular, then so is∑
i αifi.

Restrictions: f ′(A) = f(A ∩ S)

max: f(A) = maxj∈A cj and facility location.

Log determinant f(A) = log det(ΣA)
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Concave over non-negative modular

Let m ∈ RE+ be a modular function, and g a concave function over R.
Define f : 2E → R as

f(A) = g(m(A)) (3.35)

then f is submodular.

Proof.

Given A ⊆ B ⊆ E \ v, we have 0 ≤ a = m(A) ≤ b = m(B), and
0 ≤ c = m(v). For g concave, we have g(a+ c)− g(a) ≥ g(b+ c)− g(b),
and thus

g(m(A) +m(v))− g(m(A)) ≥ g(m(B) +m(v))− g(m(B)) (3.36)

A form of converse is true as well.
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Concave composed with non-negative modular

Theorem 3.5.1

Given a ground set V . The following two are equivalent:

1 For all modular functions m : 2V → R+, then f : 2V → R defined as
f(A) = g(m(A)) is submodular

2 g : R+ → R is concave.

If g is non-decreasing concave, then f is polymatroidal.

Sums of concave over modular functions are submodular

f(A) =
K∑

i=1

gi(mi(A)) (3.37)

Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).

However, Vondrak showed that a graphic matroid rank function over
K4 (we’ll define this after we define matroids) are not members.
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Monotonicity

Definition 3.6.1

A function f : 2V → R is monotone nondecreasing (resp. monotone
increasing) if for all A ⊂ B, we have f(A) ≤ f(B) (resp. f(A) < f(B)).

Definition 3.6.2

A function f : 2V → R is monotone nonincreasing (resp. monotone
decreasing) if for all A ⊂ B, we have f(A) ≥ f(B) (resp. f(A) > f(B)).
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Composition of non-decreasting submodular and
non-decreasing concave

Theorem 3.6.3

Given two functions, one defined on sets

f : 2V → R (3.38)

and another continuous valued one:

g : R→ R (3.39)

the composition formed as h = g ◦ f : 2V → R (defined as
h(S) = g(f(S))) is nondecreasing submodular, if g is non-decreasing
concave and f is nondecreasing submodular.
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Monotone difference of two functions

Let f and g both be submodular functions on subsets of V and let
(f − g)(·) be either monotone increasing or monotone decreasing. Then
h : 2V → R defined by

h(A) = min(f(A), g(A)) (3.40)

is submodular.

Proof.

If h(A) agrees with either f or g on both X and Y , and since

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (3.41)

g(X) + g(Y ) ≥ g(X ∪ Y ) + g(X ∩ Y ), (3.42)

the result (Equation 3.40) follows since

f(X) + f(Y )

g(X) + g(Y )
≥ min(f(X ∪ Y ), g(X ∪ Y )) + min(f(X ∩ Y ), g(X ∩ Y ))

(3.43)

. . .
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Monotone difference of two functions

...cont.

Otherwise, w.l.o.g., h(X) = f(X) and h(Y ) = g(Y ), giving

h(X) + h(Y ) = f(X) + g(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) + g(Y )− f(Y )
(3.44)

Assume the case where f − g is monotone increasing. Hence,
f(X ∪ Y ) + g(Y )− f(Y ) ≥ g(X ∪ Y ) giving

h(X) + h(Y ) ≥ g(X ∪ Y ) + f(X ∩ Y ) ≥ h(X ∪ Y ) + h(X ∩ Y )
(3.45)

What is an easy way to prove the case where f − g is monotone
decreasing?
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Saturation via the min(·) function

Let f : 2V → R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function h : 2V → R defined
by

h(A) = min(k, f(A)) (3.46)

is submodular.

Proof.

For constant k, we have that (f − k) is increasing (or decreasing) so this
follows from the previous result.

Note also, g(a) = min(k, a) for constant k is a non-decreasing concave
function, so when f is monotone nondecreasing submodular, we can use
the earlier result about composing a monotone concave function with a
monotone submodular function to get a version of this.
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More on Min - the saturate trick

In general, the minimum of two submodular functions is not
submodular (unlike concave functions).

However, when wishing to maximize two monotone non-decreasing
submodular functions, we can define function h : 2V → R as

h(A) =
1

2
(min(k, f) + min(k, g)) (3.47)

then h is submodular, and h(A) ≥ k if and only if both f(A) ≥ k
and g(A) ≥ k.

This can be useful in many applications. Moreover, this is an
instance of a submodular surrogate (where we take a
non-submodular problem and find a submodular one that can tell us
something). We hope to revisit this again later in the quarter.
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Arbitrary functions as difference between submodular
funcs.

Given an arbitrary set function f , it can be expressed as a difference
between two submodular functions: f = g − h where both g and h are
submodular.

Proof.

Let f be given and arbitrary, and define:

α
∆
= min

X,Y

(
f(X) + f(Y )− f(X ∪ Y )− f(X ∩ Y )

)
(3.48)

If α ≥ 0 then f is submodular, so by assumption α < 0.

Now let h be an
arbitrary strict submodular function and define

β
∆
= min

X,Y

(
h(X) + h(Y )− h(X ∪ Y )− h(X ∩ Y )

)
. (3.49)

Strict means that β > 0. . . .
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Arbitrary functions as difference between submodular
funcs.

...cont.

Define f ′ : 2V → R as

f ′(A) = f(A) +
|α|
β
h(A) (3.50)

Then f ′ is submodular (why?), and f = f ′(A)− |α|β h(A), a difference
between two submodular functions as desired.
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Gain

We often wish to express the gain of an item j ∈ V in context A,
namely f(A ∪ {j})− f(A).

This is called the gain and is used so often, there are equally as
many ways to notate this. I.e., you might see:

f(A ∪ {j})− f(A)
∆
= ρj(A) (3.51)

∆
= ρA(j) (3.52)

∆
= ∇jf(A) (3.53)

∆
= f({j}|A) (3.54)

∆
= f(j|A) (3.55)

We’ll use f(j|A).
Submodularity’s diminishing returns definition can be stated as
saying that f(j|A) is a monotone non-increasing function of A, since
f(j|A) ≥ f(j|B) whenever A ⊆ B (conditioning reduces valuation).
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∆
= f(j|A) (3.55)

We’ll use f(j|A).

Submodularity’s diminishing returns definition can be stated as
saying that f(j|A) is a monotone non-increasing function of A, since
f(j|A) ≥ f(j|B) whenever A ⊆ B (conditioning reduces valuation).
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Gain Notation

It will also be useful to extend this to sets.
Let A,B be any two sets. Then

f(A|B) , f(A ∪B)− f(B) (3.56)

So when j is any singleton

f(j|B) = f({j}|B) = f({j} ∪B)− f(B) (3.57)

Note that this is inspired from information theory and the notation used
for conditional entropy H(XA|XB) = H(XA, XB)−H(XB).
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Arbitrary function as difference between two polymatroids

Any submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular)
function ḡ and a modular function mg.

Given submodular g : 2V → R, construct ḡ : 2V → R as
ḡ(A) = g(A)−∑a∈A g(a|V \ {a}). Let mg(A) ,

∑
a∈A g(a|V \ {a})

Then, given arbitrary f = g − h where g and h are submodular,

f = g − h = ḡ +mg − h̄−mh (3.58)

= ḡ − h̄+ (mg −mh) (3.59)

= ḡ − h̄+mg−h (3.60)

= ḡ +m+
g−h − (h̄+ (−mg−h)+) (3.61)

where m+ is the positive part of modular function m. That is,
m+(A) =

∑
a∈Am(a)1(m(a) > 0).

But both g +m+
g−h and h̄+ (−mg−h)+ are polymatroid functions.

Thus, any function can be expressed as a difference between two
polymatroid functions.
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Applications

Sensor placement with submodular costs. I.e., let V be a set of
possible sensor locations, f(A) = I(XA;XV \A) measures the
quality of a subset A of placed sensors, and c(A) the submodular
cost. We have f(A)− λc(A) as the overall objective.

Discriminatively structured graphical models, EAR measure
I(XA;XV \A)− I(XA;XV \A|C), and synergy in neuroscience.

Feature selection: a problem of maximizing
I(XA;C)− λc(A) = H(XA)− [H(XA|C) + λc(A)], the difference
between two submodular functions, where H is the entropy and c is
a feature cost function.

Graphical Model Inference. Finding x that maximizes
p(x) ∝ exp(−v(x)) where x ∈ {0, 1}n and v is a pseudo-Boolean
function. When v is non-submodular, it can be represented as a
difference between submodular functions.
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