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Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

e our room (Mueller Hall Room 154) is changed!

@ Please do use our discussion board (https:
//canvas.uw.edu/courses/895956/discussion_topics) for all

questions, comments, so that all will benefit from them being
answered.

o Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-I

@ L1 (3/31): Motivation, Applications, & @ L11:
Basic Definitions @ L12:

@ L2: (4/2): Applications, Basic @ L13:
Definitions, Properties o Ll4:

@ L3: More examples and properties (e.g., @ L15:
closur_e properties), and examples, o Li6:
spanning trees

@ L4: proofs of equivalent definitions, o Lir:
independence, start matroids o Lis:

o L5 @ L19:

o L6: @ L20:

@ L7:

@ L8:

@ L9

@ L10:

Finals Week: June 9th-13th, 2014.
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(AN

Submodular Definitions

Definition 3.2.2 (submodular concave)

A function f: 2" — R is submodular if for any A, B C V', we have that:

f(A)+ f(B) =z f(AUB) + f(AN B) (3-2)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.3 (diminishing returns)

A function f : 2" — R is submodular if for any A C B C V, and
v € V'\ B, we have that:

fLAU{o}) = f(A) = f(BU{v}) — f(B) (33)

This means that the incremental “value”, “gain”, or “cost” of v
decreases (diminishes) as the context in which v is considered grows from
A to B.
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Review
i

Many Properties

@ In the last lecture, we started looking at properties of and gaining
intuition about submodular functions.
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Review
i

Many Properties

@ In the last lecture, we started looking at properties of and gaining
intuition about submodular functions.

@ We began to see that there were many functions that were
submodular, and operations on sets of submodular functions that

preserved submodularity.
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Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).
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Review
1N

Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.
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Review
1N

Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.

@ Many functions based on graphs are either submodular or

supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.
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Review
1N

Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.

@ Many functions based on graphs are either submodular or
supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.

@ Matrix rank - rank of a set of vectors from a set of vector indices.
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Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.

@ Many functions based on graphs are either submodular or
supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.

@ Matrix rank - rank of a set of vectors from a set of vector indices.
@ Geometric interpretation of f(A) + f(B) > f(AUB) + f(AN B).
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Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.

@ Many functions based on graphs are either submodular or
supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.

@ Matrix rank - rank of a set of vectors from a set of vector indices.
e Geometric interpretation of f(A) + f(B) > f(AUB) + f(AN B).

@ Cost of manufacturing — supply side economies of scale
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Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.

@ Many functions based on graphs are either submodular or
supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.

Matrix rank - rank of a set of vectors from a set of vector indices.
Geometric interpretation of f(A) + f(B) > f(AUB) + f(AN B).

Cost of manufacturing — supply side economies of scale

Network Externalities — Demand side Economies of Scale

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 3 - April 7th, 2014 F7/45 (pg.14/106)



Review
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Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.

@ Many functions based on graphs are either submodular or
supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.

Matrix rank - rank of a set of vectors from a set of vector indices.
Geometric interpretation of f(A) + f(B) > f(AUB) + f(AN B).
Cost of manufacturing — supply side economies of scale

Network Externalities — Demand side Economies of Scale

Social Network Influence
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Some examples form last time

e Coverage functions (either via sets, or via regions in n-D space).

e Entropy function (as a function of sets of random variables),
symmetric mutual information.

@ Many functions based on graphs are either submodular or
supermodular, and other functions might not be (e.g., graph
strength) but involve submodularity in a critical way.

Matrix rank - rank of a set of vectors from a set of vector indices.
Geometric interpretation of f(A) + f(B) > f(AUB) + f(AN B).
Cost of manufacturing — supply side economies of scale

Network Externalities — Demand side Economies of Scale

Social Network Influence

Information and Summarization - document summarization via
sentence selection
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The Venn and Art of Submodularity

r(A)+r(B ) r(A U B) —|— r(A nB)

J/
= AQB

=r(A, )+2r(C)+
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Other Examples
[NRNRRN]

Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).
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Other Examples
[NRNRRN]

Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.
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Other Examples
[NRNRRN]

Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

o Foreach X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X being a set of vector indices.
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Other Examples
[NRNRRN]

Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

o Foreach X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X being a set of vector indices.

@ Then, defining f : 25 — R as follows,
F(X) = r(Uses Xs) (3.1)

we have that f is submodular, and is known to be a polymatroid
rank function.
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Other Examples

Polymatroid rank function

Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X being a set of vector indices.

Then, defining f : 25 R as follows,
F(X) = r(Uses Xs) (3.1)

we have that f is submodular, and is known to be a polymatroid
rank function.
In general (as we will see) polymatroid rank functions are

submodular, normalized f(0)) = 0, and monotone non-decreasing
(f(A) < f(B) whenever A C B).
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Other Examples
[LNANNR!

Spanning trees

@ Let E be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges)
spanning forest in the vertex-induced graph, induced by vertices

incident to edges S.

F10/45 (pg.23/106)
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Other Examples

Spanning trees

@ Let E be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges)
spanning forest in the vertex-induced graph, induced by vertices
incident to edges S.

e Example: Given G = (V, E), V ={1,2,3,4,5,6,7,8},
E={1,2,...,12}. S={1,2,3,4,5,8,9} C E. Two spanning trees
have the same edge count (the rank of ).
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Other Examples
[LNANNR!

Spanning trees

o Let E be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges)
spanning forest in the vertex-induced graph, induced by vertices
incident to edges S.

e Example: Given G = (V, E), V ={1,2,3,4,5,6,7,8},
E={1,2,...,12}. S={1,2,3,4,5,8,9} C E. Two spanning trees
have the same edge count (the rank of ).

@ Then 7(S) is submodular, and is another matrix rank function
corresponding to the incidence matrix of the graph.
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Other Examples
(NLRNNR!

Supply Side Economies of scale

o What is a good model of the cost of manufacturing a set of items?

@ Let V be a set of possible items that a company might possibly wish
to manufacture, and let f(S) for S C V be the cost to that
company to manufacture subset S.

@ Ex: V might be colors of paint in a paint manufacturer: green, red,
blue, yellow, white, etc.

@ Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

F(green, blue, ) — f(blue, ) <= f(green, blue) — f(blue)
(3.1)

@ So diminishing returns (a submodular function) would be a good
model.
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Other Examples
(NNLNNR!

A model of Influence in Social Networks

e Given a graph G = (V, E), each v € V' corresponds to a person, to
each v we have an activation function f, : 2V — [0, 1] dependent
only on its neighbors. le., f,(4) = f,(ANT(v)).

@ Goal - Viral Marketing: find a small subset S C V of individuals to
directly influence, and thus indirectly influence the greatest number
of possible other individuals (via the social network G).

o We define a function f : 2V — Z* that models the ultimate
influence of an initial set .S of nodes based on the following iterative
process: At each step, a given set of nodes S are activated, and we
activate new nodes v € V'\ S'if f,(S) > U[0, 1] (where U[0,1] is a
uniform random number between 0 and 1).

@ It can be shown that for many f, (including simple linear functions,
and where f, is submodular itself) that f is submodular.
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Other Examples
[NNRR AR

The value of a friend

@ Let V be a group of individuals. How valuable to you is a given
friend v € V7?7

@ It depends on how many friends you have.

@ Given a group of friends S C V, can you valuate them with a
function f(.S) an how?

@ Let f(S) be the value of the set of friends S. Is submodular or
supermodular a good model?
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Other Examples
(NNANR X!

Information and Summarization

@ Let V be a set of information containing elements (V' might say be
either words, sentences, documents, web pages, or blogs, each
v € V is one element, so v might be a word, a sentence, a
document, etc.). The total amount of information in V' is measure
by a function f(V'), and any given subset S C V' measures the
amount of information in S, given by f(S5).

@ How informative is any given item v in different sized contexts? Any
such real-world information function would exhibit diminishing
returns, i.e., the value of v decreases when it is considered in a
larger context.

@ So a submodular function would likely be a good model.
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Other Examples
[NNANR |

Submodular Polyhedra

@ Submodular functions have associated polyhedra with nice
properties: when a set of constraints in a linear program is a
submodular polyhedron, a simple greedy algorithm can find the
optimal solution even though the polyhedron is formed via an
exponential number of constraints.

Py = {z e RF : 2(S) < f(5),VS C E}
Pf=Prn{zeR”:z >0}

Bf=Prn{zeR” :z(E) = f(E)} (3.4)
@ The linear programming problem is to, given ¢ € R¥ compute:
f(c) £ max {c"z: 2 € Py} (3.5)

@ This can be solved using the greedy algorithm! Moreover, f(c)
computed using greedy is convex if and only of f is submodular (we
will go into this in some detail this quarter).
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Bit More Notation
[NERN

Ground set: E or V7

Submodular functions are functions defined on subsets of some finite set,
called the ground set .

@ It is common in the literature to use either E or V' as the ground set.
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Bit More Notation
[NERN

Ground set: E or V7

Submodular functions are functions defined on subsets of some finite set,
called the ground set .

@ It is common in the literature to use either E or V' as the ground set.

@ We will follow this inconsistency in the literature and will
inconsistently use either E or V' as our ground set (hopefully not in
the same equation, if so, please point this out).
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Bit More Notation
(LARN

Notation RZ

What does = € RE mean?

RY ={z=(z;€R:j€ E)} (3.6)

RY={r=(zj:j€E):2>0} (3.7)

Any vector = € R¥ can be treated as a normalized modular function, and
vice verse. That is

z(A) = vaa (3:8)

a€A

Note that x is said to be normalized since z((})) = 0.
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Bit More Notation
(NR RN

characteristic vectors of sets & modular functions

@ Given an A C F, define the vector 14 € Rf to be

140j) = 1 ifjeA,
A=V ifjea
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Bit More Notation
(NR RN

characteristic vectors of sets & modular functions

@ Given an A C FE, define the vector 14 € Rf to be

L[ riea
W0 ifjga

@ Sometimes this will be written as y4 = 14.
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Bit More Notation
(NR RN

characteristic vectors of sets & modular functions

@ Given an A C FE, define the vector 14 € Rf to be

RS P 59)

@ Sometimes this will be written as x4 = 14.

@ Thus, given modular function # € R”, we can write z(4) in a
variety of ways, i.e.,

r(A)=x-1a=> z(i) (3.10)

i€A
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Bit More Notation
(NRA N

Other Notation: singletons and sets

When A is a set and k is a singleton (i.e., a single item), the union is
properly written as A U {k}, but sometimes | will write just A + k.
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Bit More Notation
(WAL

General notation: what does ST mean when S and T are

arbitrary sets

@ Let S and T be two arbitrary sets (either of which could be
countable, or uncountable).
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Bit More Notation
(WAL

General notation: what does ST mean when S and T are

arbitrary sets

@ Let S and T be two arbitrary sets (either of which could be
countable, or uncountable).

@ We define the notation ST to be the set of all functions that map
from T to S. Thatis, if f € ST, then f:T — S.
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Bit More Notation
(WAL

General notation: what does ST mean when S and T are

arbitrary sets

@ Let S and T be two arbitrary sets (either of which could be
countable, or uncountable).

e We define the notation ST to be the set of all functions that map
from T to S. Thatis, if f € ST, then f:T — S.

e Hence, given a finite set £, R is the set of all functions that map
from elements of E to the reals R, and such functions are identical
to a vector in a vector space with axes labeled as elements of
(i.e., if m € RF, then for all e € E, m(e) € R).
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Bit More Notation
(WAL

General notation: what does ST mean when S and T are

arbitrary sets

@ Let S and T be two arbitrary sets (either of which could be
countable, or uncountable).

e We define the notation ST to be the set of all functions that map
from T to S. Thatis, if f € ST, then f:T — S.

@ Hence, given a finite set F, RE is the set of all functions that map
from elements of E to the reals R, and such functions are identical
to a vector in a vector space with axes labeled as elements of E/
(i.e., if m € RF, then for all e € E, m(e) € R).

o Similarly, 2E is the set of all functions from E to “two” — in this
case, we really mean 2 = {0, 1}, so 2% is shorthand for {0,1}"
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Bit More Notation
(WAL

General notation: what does ST mean when S and T are

arbitrary sets

@ Let S and T be two arbitrary sets (either of which could be
countable, or uncountable).

e We define the notation ST to be the set of all functions that map
from T to S. Thatis, if f € ST, then f:T — S.

@ Hence, given a finite set F, RE is the set of all functions that map
from elements of E to the reals R, and such functions are identical
to a vector in a vector space with axes labeled as elements of E/
(i.e., if m € RF, then for all e € E, m(e) € R).

o Similarly, 2E is the set of all functions from E to “two”’ — in this
case, we really mean 2 = {0, 1}, so 2% is shorthand for {0,1}" —
hence, 2F is the set of all functions that map from elements of E to
{0, 1}, equivalent to all binary vectors with elements indexed by
elements of F, equivalent to subsets of E/. Hence, if A € 2E then
ACE.
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Bit More Notation
(WAL

General notation: what does ST mean when S and T are

arbitrary sets

@ Let S and T be two arbitrary sets (either of which could be
countable, or uncountable).

e We define the notation ST to be the set of all functions that map
from T to S. Thatis, if f € ST, then f:T — S.

@ Hence, given a finite set F, RE is the set of all functions that map
from elements of E to the reals R, and such functions are identical
to a vector in a vector space with axes labeled as elements of E/
(i.e., if m € RF, then for all e € E, m(e) € R).

o Similarly, 2E is the set of all functions from E to “two”’ — in this
case, we really mean 2 = {0, 1}, so 2% is shorthand for {0,1}" —
hence, 2F is the set of all functions that map from elements of E to
{0, 1}, equivalent to all binary vectors with elements indexed by
elements of E, equivalent to subsets of E. Hence, if A € 2 then
A C E. What might 3% mean?
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More Sub Funcs.
[NRRRERRRNARN]

Summing Submodular Functions

Given E, let f1, fo : 2 — R be two submodular functions. Then
f:28 > Rwith f(A) = fi(A) + fo(A) (3.11)

is submodular.
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More Sub Funcs.
[NRRRERRRNARN]

Summing Submodular Functions

Given E, let f1, fo: 2E s R be two submodular functions. Then
f:28 5 Rwith f(A) = fi(A) + f2(A) (3.11)

is submodular. This follows easily since

f(A) + f(B) = fi(A) + f2(A) + f1(B) + f2(B) (3.12)
> fi(AUB) + fo(AUB) + fi(ANB) + f2(AN B)

(3.13)

= f(AUB) + f(AN B). (3.14)

l.e., it holds for each component of f in each term in the inequality.
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More Sub Funcs.
[NRRRERRRNARN]

Summing Submodular Functions

Given E, let f1, fo : 2 — R be two submodular functions. Then
f:28 5 Rwith f(A) = fi(A) + f2(A) (3.11)

is submodular. This follows easily since

J(A)+ f(B) = fi(A) + f2(A) + f1(B) + f2(B) (3.12)
> fi(AUB) + f2(AUB) + fi(AN B) + f2(AN B)

(3.13)

_ f(AUB)+ f(AN B). (3.14)

l.e., it holds for each component of f in each term in the inequality. In
fact, any conic combination (i.e., non-negative linear combination) of
submodular functions is submodular, as in f(A) = a1 f1(A) + aaf2(A)
for a1, o Z 0.
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More Sub Funcs.
(RERRNARNRRAN]

Summing Submodular and Modular Functions

Given E, let fi,m : 2 — R be a submodular and a modular function.
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More Sub Funcs.
(RERRNARNRRAN]

Summing Submodular and Modular Functions

Given E, let fi,m : 2EF s R be a submodular and a modular function.
Then

f:28 5 Rwith f(A) = fi(A) —m(A) (3.15)

is submodular (as'is f(A) = f1(A) + m(A)).
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More Sub Funcs.
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Summing Submodular and Modular Functions

Given E, let fi,m : 2EF s R be a submodular and a modular function.
Then

f:28 5 Rwith f(A) = fi(A) —m(A) (3.15)

is submodular (asis f(A) = fi(A) +m(A)). This follows easily since

f(A) + f(B) = f1(4) — m(A4) + f1(B) — m(B) (3.16)
> fi(AUB) —m(AUB)+ fi(ANB) —m(AN B)

(3.17)

= f(AUB)+ f(AN B). (3.18)
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More Sub Funcs.
(RERRNARNRRAN]

Summing Submodular and Modular Functions

Given E, let fi,m : 2EF s R be a submodular and a modular function.
Then

f:28 5 Rwith f(A) = fi(A) —m(A) (3.15)

is submodular (asis f(A) = fi(A) +m(A)). This follows easily since

f(A) + f(B) = f1(A) = m(A) + f1(B) — m(B) (3.16)
> f1i(AUB) —m(AUB)+ fi(ANB) —m(AN B)

(3.17)

= f(AUB)+ f(ANB). (3.18)

That is, the modular component with
m(A) +m(B) =m(AU B) + m(AN B) never destroys the inequality.
Note of course that if m is modular than so is —m.
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More Sub Funcs.
(R RNARNRNAN]

Restricting Submodular Functions

Given E, let f : 2 — R be a submodular functions. And let S C E be
an arbitrary fixed set. Then

f12F 5 Rwith f/(A) = f(ANS) (3.19)

is submodular.
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More Sub Funcs.
(R RNARNRNAN]

Restricting Submodular Functions

Given E, let f : 2 — R be a submodular functions. And let S C E be
an arbitrary fixed set. Then

f1:2F 5 Rwith f/(A) = f(ANS) (3.19)
is submodular.

L]
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More Sub Funcs.
(R RNARNRNAN]

Restricting Submodular Functions

Given E, let f : 2 — R be a submodular functions. And let S C E be
an arbitrary fixed set. Then

f1:2F 5 Rwith f/(A) = f(ANS) (3.19)
is submodular.
Proof.
Given A C B C E'\ v, consider

f(A+v)N8) — F(ANS) > f(B+v)NS) - fF(BNS)  (3.20)
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More Sub Funcs.
(R RNARNRNAN]

Restricting Submodular Functions

Given E, let f : 2 — R be a submodular functions. And let S C E be
an arbitrary fixed set. Then

f1:2F 5 Rwith f/(A) = f(ANS) (3.19)
is submodular.
Proof.
Given A C B C E'\ v, consider

f((A+0)nS) = f(ANS) = f(B+v)NS) - f(BNS)  (3.20)

If v ¢S, then both differences on each size are zero.
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More Sub Funcs.
(R RNARNRNAN]

Restricting Submodular Functions

Given E, let f : 2 — R be a submodular functions. And let S C E be
an arbitrary fixed set. Then

f1:2F 5 Rwith f/(A) = f(ANS) (3.19)
is submodular.

Proof.
Given A C B C E'\ v, consider

f((A+0)nS) = f(ANS) = f(B+v)NS) - f(BNS)  (3.20)

If v ¢ S, then both differences on each size are zero. If v € S, then we
can consider this

FA +v) = f(A) = f(B'+v) — f(B) (3.21)

with A’ = AN S and B'= BN S. Since A’ C B’, this holds due to
submodularity of f. [
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More Sub Funcs.
(NRE RNRRNRAAN]

Summing Restricted Submodular Functions

Given V, let f1, f> : 2¥ — R be two submodular functions and let Sy, S5
be two arbitrary fixed sets. Then

f:2Y - Rwith f(A) = f1(ANS)) + f2(AN Sy) (3.22)

is submodular. This follows easily from the preceding two results.
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More Sub Funcs.
(NRE RNRRNRAAN]

Summing Restricted Submodular Functions

Given V, let f1, f2 : 2¥ — R be two submodular functions and let Sy, S5
be two arbitrary fixed sets. Then

f:2V = Rwith f(A) = f1(ANSy) + f2(AN Sy) (3.22)

is submodular. This follows easily from the preceding two results.
Given V, let C = {C4,C4,...,Ck} be a set of subsets of V', and for each
C eC, let fo : 2V — R be a submodular function. Then

f:2" 5 Rwith f(A) =) fo(ANC) (3.23)
ceC

is submodular.
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More Sub Funcs.
(NRE RNRRNRAAN]

Summing Restricted Submodular Functions

Given V, let f1, f2 : 2¥ — R be two submodular functions and let Sy, S5
be two arbitrary fixed sets. Then

f:2V = Rwith f(A) = f1(ANSy) + f2(AN Sy) (3.22)

is submodular. This follows easily from the preceding two results.
Given V, let C = {C4,C4,...,Ck} be a set of subsets of V', and for each
C €C, let fc : 2V — R be a submodular function. Then

f:2" 5 Rwith f(A) =) fo(ANC) (3.23)
ceC

is submodular. This property is critical for image processing and
graphical models. For example, let C be all pairs of the form

{{u,v} 1 u,v € V}, or let it be all pairs corresponding to the edges of
some undirected graphical model. We plan to revisit this topic later in
the term.
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More Sub Funcs.
(NERT NRRNRRAN]

Max - normalized

Given V, let c € RK be a given fixed vector. Then f : 2" — R, where
A) = ; 3.24
J(4) = maxc; (3.24)

is submodular and normalized (we take f(0)) = 0).

Consider
maxc; + maxc; > max ¢j + max c¢; (3.25)
jeA jeB jeAUB JjEANB

which follows since we have that

' i) = ' 3.26
max(rjneaj( 5> Igleaé( ¢j) jIeI}?uXB & (3.26)
and
min(rjnéﬁ( cj, 1}1€a§< cj) > jghach cj (3.27)
[]
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More Sub Funcs.

Given V, let ¢ € R be a given fixed vector (not necessarily
non-negative). Then f:2" — R, where

7(A) = maxe, (3.28)

is submodular, where we take f()) < min; ¢; (so the function is not
normalized).

The proof is identical to the normalized case.
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More Sub Funcs.
(NERRNE RRRAAN]

Facility/Plant Location (uncapacitated)

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

o S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢;; be the "benefit” (e.g., 1/c;; is the cost) of servicing site i
with facility location j.

@ Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the
cost) to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.

@ Define f(A) as the “delivery benefit” plus “construction benefit”
when the locations A C F' are to be constructed.

@ We can define the (uncapacitated) facility location function

flA) = ij + Zmaji( Cij- (3.4)
jEA ier 7€
@ Goal is to find a set A that maximizes f(A) (the benefit) placing a
bound on the number of plants A (e.g., |A| < k).
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More Sub Funcs.
(NERRNRY RRAAN]

Facility Location

Given V, E, let ¢ € RV*E be a given |V| x |E| matrix. Then

f:28 5 R, where f(A Zmaxcw (3.29)
zEV

is submodular.

We can write f(A) as f(A) = > ,cy fi(A) where fi(A) = max;cacij is
submodular (max of a it" row vector), so f can be written as a sum of
submodular functions. O

Thus, the facility location function (which only adds a modular function
to the above) is submodular.
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More Sub Funcs.
(NERRNARY NN

Log Determinant

@ Let 3 be an n x n positive definite matrix. Let
V ={1,2,...,n} = [n] be an index set, and for A C V, let ¥ 4 be
the (square) submatrix of 3 obtained by including only entries in
the rows/columns given by A.
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More Sub Funcs.
(NERRNARY NN

Log Determinant

@ Let 3 be an n x n positive definite matrix. Let
V ={1,2,...,n} = [n] be an index set, and for A C V, let ¥ 4 be
the (square) submatrix of 3 obtained by including only entries in
the rows/columns given by A.

o We have that:

f(A) =logdet(X,) is submodular. (3.30)
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More Sub Funcs.
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Log Determinant

@ Let 3 be an n x n positive definite matrix. Let
V ={1,2,...,n} = [n] be an index set, and for A C V, let ¥ 4 be
the (square) submatrix of 3 obtained by including only entries in
the rows/columns given by A.

o We have that:

f(A) =logdet(X,) is submodular. (3.30)

@ The submodularity of the log determinant is crucial for
determinantal point processes (DPPs) (defined later in the class).
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More Sub Funcs.
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Log Determinant

@ Let 3 be an n x n positive definite matrix. Let
V ={1,2,...,n} = [n] be an index set, and for A C V, let ¥ 4 be
the (square) submatrix of 3 obtained by including only entries in
the rows/columns given by A.

o We have that:

f(A) =logdet(X,) is submodular. (3.30)

@ The submodularity of the log determinant is crucial for
determinantal point processes (DPPs) (defined later in the class).

Proof of submodularity of the logdet function.

Suppose X € R"” is multivariate Gaussian random variable, that is

5E-w'S e -0)  G3Y

1
T EeEPTr) = —eX
p(z) TS| p< 5
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More Sub Funcs.
(NERRNARNT NAN]

Log Determinant

Then the (differential) entropy of the r.v. X is given by

h(X) =log+/|2meX| = log / (2me)" | X| (3.32)

and in particular, for a variable subset A,
f(A) = h(X4) = log \/ (2me)lAl|X 4| (3.33)
Entropy is submodular (conditioning reduces entropy), and moreover

F(4) = h(Xa) = m(4) + 3 log|Sl (3.34)

where m(A) is a modular function. O

Note: still submodular in the semi-definite case as well.
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More Sub Funcs.
(NERRNARNNI N

Summary so far

@ Summing: if a; > 0 and f; : 2 — R is submodular, then so is

Zi @i fi-
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More Sub Funcs.
(NERRNARNNI N

Summary so far

@ Summing: if &; > 0 and f; : 2V — R is submodular, then so is
> i ifi.
@ Restrictions: f/(A) = f(ANS)
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More Sub Funcs.
(NERRNARNNI N

Summary so far

@ Summing: if &; > 0 and f; : 2V — R is submodular, then so is
> i ifi.
@ Restrictions: f'(A) = f(ANS)

e max: f(A) =max;c c; and facility location.
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More Sub Funcs.
(NERRNARNNI N

Summary so far

Summing: if o; > 0 and f; : 2V — R is submodular, then so is
> ifi

Restrictions: f/(A) = f(ANS)

max: f(A) = max;c ¢; and facility location.

Log determinant f(A) = logdet(X4)
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More Sub Funcs.
(NERRNARNRNT ¥

Concave over non-negative modular

Let m € Rf be a modular function, and g a concave function over R.
Define f: 2P - R as

f(A) = g(m(A)) (3.35)
then f is submodular.

Proof.

Given AC BC E\ v, we have 0 <a=m(A) <b=m(B), and
0 < ¢ =m(v). For g concave, we have g(a+c) —g(a) > g(b+c) — g(b),
and thus

g(m(A) +m(v)) — g(m(A4)) = g(m(B) + m(v)) — g(m(B)) (3.36)

Ol

A form of converse is true as well.
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More Sub Funcs.
[NERRNRRRNNAY |

Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:

© For all modular functions m : 2V — R, then f : 2V 5 R defined as
f(A) = g(m(A)) is submodular

Q g:R. — R is concave.

@ If g is non-decreasing concave, then f is polymatroidal.
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Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:

© For all modular functions m : 2V — R, then f : 2V 5 R defined as
f(A) = g(m(A)) is submodular

Q g:R. — R is concave.

@ If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
F(A) = gi(mi(A)) (3.37)
i=1
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More Sub Funcs.
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Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:

© For all modular functions m : 2V — R, then f : 2V 5 R defined as
f(A) = g(m(A)) is submodular

Q g:R. — R is concave.

@ If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
F(A) = gi(ma(A)) (3.37)
i=1

@ Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).
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Concave composed with non-negative modular

Given a ground set V. The following two are equivalent:

© For all modular functions m : 2V — R, then f : 2V 5 R defined as
f(A) = g(m(A)) is submodular

Q g:R. — R is concave.

@ If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
F(A) = gi(ma(A)) (3.37)
i=1

@ Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).

@ However, Vondrak showed that a graphic matroid rank function over
K4 (we'll define this after we define matroids) are not members.
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More Sub Funcs.
[ANRRRRRNNNY]

Monotonicity

Definition 3.6.1

A function f : 2V — R is monotone nondecreasing (resp. monotone
increasing) if for all A C B, we have f(A) < f(B) (resp. f(A4) < f(B)).
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More Sub Funcs.
[ANRRRRRNNNY]

Monotonicity

Definition 3.6.1

A function f : 2V — R is monotone nondecreasing (resp. monotone
increasing) if for all A C B, we have f(A) < f(B) (resp. f(A) < f(B))

v

Definition 3.6.2

A function f : 2V — R is monotone nonincreasing (resp. monotone
decreasing) if for all A C B, we have f(A) > f(B) (resp. f(A) > f(B))

v
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More Sub Funcs.
R NRRRRRNARN

Composition of non-decreasting submodular and
non-decreasing concave

Theorem 3.6.3

Given two functions, one defined on sets

f:2V >R (3.38)
and another continuous valued one:
g:R—=R (3.39)

the composition formed as h = go f : 2V — R (defined as
h(S) = g(f(S))) is nondecreasing submodular, if g is non-decreasing
concave and f is nondecreasing submodular.
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More Sub Funcs.
NI RRRRRNARN

Monotone difference of two functions

Let f and g both be submodular functions on subsets of V' and let

(f — g)(+) be either monotone increasing or monotone decreasing. Then
h:2Y — R defined by

h(A) = min(f(A),g(A4)) (3.40)

is submodular.

If h(A) agrees with either f or g on both X and Y, and since

FX)+ V) =2 f(XUY)+f(XNY) (3.41)
9(X) +9(Y) =2 g(XUY) +g(XNY), (3.42)

the result (Equation 3.40) follows since

f(X)+ £(Y)

9(X) + g(¥) = min(f(X UY),g(X UY)) +min(f(X NY),g(X NY))
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More Sub Funcs.
INNT ARRRNARN

Monotone difference of two functions

...cont.

Otherwise, w.l.o.g., h(X) = f(X) and h(Y) = g(Y), giving

A(X)+hY)=f(X)+g9(Y)> f(XUY)+ f(XNY)+g(Y) —(f(Y))
3.44
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More Sub Funcs.
INNT ARRRNARN

Monotone difference of two functions

...cont.

Otherwise, w.l.o.g., h(X) = f(X) and h(Y) = g(Y), giving

A(X)+hY)=f(X)+g9(Y)> f(XUY)+ f(XNY)+g(Y) —(f(Y))
3.44

Assume the case where f — g is monotone increasing. Hence,
FXUY) +g(Y) - f(¥) 2 g(X UY) giving

MX)+h(Y) > g(XUY)+ f(XNY)>RhXUY)+hXNY)
(3.45)

Ol

What is an easy way to prove the case where f — g is monotone
decreasing?
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More Sub Funcs.
(RRNR ARRRRRNI

Saturation via the min(-) function

Let f:2" — R be an monotone increasing or decreasing submodular

function and let k be a constant. Then the function h : 2V — R defined
by

h(A) = min(k, f(A)) (3.46)

is submodular.
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More Sub Funcs.
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Saturation via the min(-) function

Let f:2" — R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function h : 2V — R defined
by

h(A) = min(k, f(A)) (3.46)

is submodular.

For constant k, we have that (f — k) is increasing (or decreasing) so this
follows from the previous result. O
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More Sub Funcs.
(RRNR ARRRRRNI

Saturation via the min(-) function

Let f:2" — R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function h : 2V — R defined
by

h(A) = min(k, f(A)) (3.46)

is submodular.

For constant k, we have that (f — k) is increasing (or decreasing) so this
follows from the previous result. O

Note also, g(a) = min(k, a) for constant k is a non-decreasing concave
function, so when f is monotone nondecreasing submodular, we can use
the earlier result about composing a monotone concave function with a
monotone submodular function to get a version of this.
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More Sub Funcs.
(RRNRE NRRRRNI

More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions).
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More Sub Funcs.
(RRNRE NRRRRNI

More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions).

@ However, when wishing to maximize two monotone non-decreasing
submodular functions, we can define function i : 2V — R as

h(A) = %(min(k:, £) + min(k, g)) (3.47)

then h is submodular, and h(A) > k if and only if both f(A) > k
and g(A) > k.
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More Sub Funcs.
(RRNRE NRRRRNI

More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions).

@ However, when wishing to maximize two monotone non-decreasing
submodular functions, we can define function h: 2V — R as

h(A) = %(min(k‘, £) + min(k, g)) (3.47)

then h is submodular, and h(A) > k if and only if both f(A) > k
and g(A) > k.

@ This can be useful in many applications. Moreover, this is an
instance of a submodular surrogate (where we take a
non-submodular problem and find a submodular one that can tell us
something). We hope to revisit this again later in the quarter.
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More Sub Funcs.
INNRNNE NNARN

Arbitrary functions as difference between submodular

funcs.

Given an arbitrary set function f, it can be expressed as a difference
between two submodular functions: f = g — h where both g and h are
submodular.

Let f be given and arbitrary, and define:
A
o 2 min(f(X) + (V) - f(XUY) - f(XNY)) (3.48)

If & > 0 then f is submodular, so by assumption o < 0.
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More Sub Funcs.
INNRNNE NNARN

Arbitrary functions as difference between submodular

funcs.

Given an arbitrary set function f, it can be expressed as a difference
between two submodular functions: f = g — h where both g and h are
submodular.

Let f be given and arbitrary, and define:
o 2 min(f(X) + (V) - f(XUY) - f(XNY)) (3.48)

If & > 0 then f is submodular, so by assumption a < 0. Now let h be an
arbitrary strict submodular function and define

ga r)r(;ig(h(X) FR(Y) = (X UY) - h(XnN Y)). (3.49)

Strict means that 5 > 0.
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More Sub Funcs.
INNRNNRY NARN

Arbitrary functions as difference between submodular

funcs.

Define f': 2V — R as
F1(A) = F(A) + '?h(A) (3.50)

Then f’ is submodular (why?), and f = f/(A) — |%'h(A), a difference
between two submodular functions as desired.

Ol
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More Sub Funcs.
(RRRRARRY RRN

@ We often wish to express the gain of an item j € V' in context A,

namely f(AU{j}) — f(A).
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More Sub Funcs.
(RRRRARRY RRN

Gain

@ We often wish to express the gain of an item j € V in context A,
namely f(AU {j}) — f(A).

@ This is called the gain and is used so often, there are equally as
many ways to notate this. l.e., you might see:

FAU{GY) — F(A) 2 pi(4) (3.51)
2 pa(j (3.52)
2V, £(4) (3.53)
2 f({5}14) (3.54)
2 1(j14) (3.55)
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More Sub Funcs.
(RRRRARRY RRN

Gain

@ We often wish to express the gain of an item j € V in context A,
namely f(AU {j}) — f(A).

@ This is called the gain and is used so often, there are equally as
many ways to notate this. l.e., you might see:

FIAULGY) — F(A) 2 pi(A) (3.51)
2 pa(j) (3.52)
2V, f(A) (3.53)
2 ({5314 (3.54)
2 1(j14) (3.55)

e We'll use f(jlA).
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More Sub Funcs.
(RRRRARRY RRN

Gain

@ We often wish to express the gain of an item j € V in context A,

namely f(AU {j}) — f(A).
@ This is called the gain and is used so often, there are equally as
many ways to notate this. l.e., you might see:

FIAULGY) — F(A) 2 pi(A) (3.51)
2 pa(j) (3.52)
2V, f(A) (3.53)
2 ({5314 (3.54)
2 1(j14) (3.55)

o We'll use f(jlA).

@ Submodularity’s diminishing returns definition can be stated as
saying that f(j|A) is a monotone non-increasing function of A, since
f(jlA) > f(j|B) whenever A C B (conditioning reduces valuation).
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More Sub Funcs.
(RRRRARREY RN

Gain Notation

It will also be useful to extend this to sets.
Let A, B be any two sets. Then

f(AIB) = f(AUB) — f(B) (3.56)

So when j is any singleton

fGIB) = f({5}B) = f{i} U B) — f(B) (3.57)
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More Sub Funcs.
(RRRRARREY RN

Gain Notation

It will also be useful to extend this to sets.
Let A, B be any two sets. Then

f(A|B) = f(AUB) — f(B) (3.56)
So when j is any singleton
fG1B) = f({i}|B) = f({j} U B) — f(B) (3.57)

Note that this is inspired from information theory and the notation used
for conditional entropy H(X4|Xp) = H(Xa,Xp) — H(Xp).
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More Sub Funcs.
(RRRRRRRRRY B

Arbitrary function as difference between two polymatroids

@ Any submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular)
function g and a modular function m,.
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More Sub Funcs.
(RRRRRRRRRY B

Arbitrary function as difference between two polymatroids

@ Any submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular)
function g and a modular function m,.

@ Given submodular g : 2V — R, construct g : 2 — R as

9(A) = g(A) = Xaeag(alV \ {a}). Let my(A) =37, 4 g(alV\ {a})
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More Sub Funcs.
(RRRRRRRRRY B

Arbitrary function as difference between two polymatroids

@ Any submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular)
function g and a modular function m,.

@ Given submodular g : 2V — R, construct g : 2 — R as
G(A) = (A) = Suca g(alV \ {a}). Let mg(A) 2 Yo, g(alV \ {a})

@ Then, given arbitrary f = g — h where g and h are submodular,

f=g-—h=g+myg—h—my, (3.58)
=g—h+ (mg —mp) (3.59)
=g—h+mg_p (3.60)
=g+ m;'_h — (h+ (—mg—p)™") (3.61)

where m™ is the positive part of modular function m. That is,
m*(A) = Y e amla)L(m(a) > 0).
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More Sub Funcs.
(RRRRRRRRRY B

Arbitrary function as difference between two polymatroids

@ Any submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular)
function g and a modular function m,.

@ Given submodular g : 2V — R, construct g : 2 — R as

9(A) = g(A) = Yoea9(alV \ {a}). Let my(A) £ 3 4 9(alV \ {a})
@ Then, given arbitrary f = g — h where g and h are submodular,
f=g-h=g+mg—h—my, (3.58)
=g~ h+ (mg —mp) (3.59)
=g—h+mg_y (3.60)
=g+m}_, — (h+(=mgp)") (3.61)
where m™ is the positive part of modular function m. That is,

m*(A) = S peq m(a)L(m(a) > 0).
e But both g + m;ih and h + (—mgy_p)" are polymatroid functions.
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More Sub Funcs.
(RRRRRRRRRY B

Arbitrary function as difference between two polymatroids

@ Any submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular)
function g and a modular function m,.

@ Given submodular g : 2V — R, construct g : 2 — R as

9(A) = g(A) = Y pea 9(alV \ {a}). Let my(A) £ 3 4 9(alV \ {a})
@ Then, given arbitrary f = g — h where g and h are submodular,
f=9-h=g+mg—h—my, (3.58)
=g —h+ (mg—mp) (3.59)
=g—h+ Mg_h (3.60)
=g+m}_, — (h+(=mgp)") (3.61)
where m™ is the positive part of modular function m. That is,
m*(A) = Yy s m(@)1(m(a) > 0).
o But both g + m;h and h + (—mgy_p)" are polymatroid functions.
@ Thus, any function can be expressed as a difference between two

bolymatroid functions.
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More Sub Funcs.
[RRRRRRRRNAY ]

Applications

@ Sensor placement with submodular costs. l.e., let V be a set of
possible sensor locations, f(A) = I(X; Xy, 4) measures the
quality of a subset A of placed sensors, and ¢(A) the submodular
cost. We have f(A) — Ac(A) as the overall objective.
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More Sub Funcs.
[RRRRRRRRNAY ]

Applications

@ Sensor placement with submodular costs. l.e., let V be a set of
possible sensor locations, f(A) = I(Xa; Xy 4) measures the
quality of a subset A of placed sensors, and ¢(A) the submodular
cost. We have f(A) — Ac(A) as the overall objective.

@ Discriminatively structured graphical models, EAR measure
I(Xa; Xy a) — 1(Xa; Xyn\4|C), and synergy in neuroscience.
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More Sub Funcs.
[RRRRRRRRNAY ]

Applications

@ Sensor placement with submodular costs. l.e., let V be a set of
possible sensor locations, f(A) = I(Xa; Xy 4) measures the
quality of a subset A of placed sensors, and ¢(A) the submodular
cost. We have f(A) — Ac(A) as the overall objective.

@ Discriminatively structured graphical models, EAR measure
I(Xa; Xy a) — 1(Xa; Xyn\4|C), and synergy in neuroscience.

@ Feature selection: a problem of maximizing
I(X4;C) — Ae(A) = H(X ) — [H(X4|C) + Ac(A)], the difference
between two submodular functions, where H is the entropy and c is
a feature cost function.
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More Sub Funcs.
[RRRRRRRRNAY ]

Applications

@ Sensor placement with submodular costs. l.e., let V be a set of
possible sensor locations, f(A) = I(Xa; Xy 4) measures the
quality of a subset A of placed sensors, and ¢(A) the submodular
cost. We have f(A) — Ac(A) as the overall objective.

@ Discriminatively structured graphical models, EAR measure
I(Xa; Xy a) — 1(Xa; Xyn\4|C), and synergy in neuroscience.

@ Feature selection: a problem of maximizing
I(X4;C) — Ac(A) = H(X4) — [H(X4|C) 4+ Ac(A)], the difference
between two submodular functions, where H is the entropy and c is
a feature cost function.

@ Graphical Model Inference. Finding x that maximizes
p(z) < exp(—v(x)) where x € {0,1}" and v is a pseudo-Boolean
function. When v is non-submodular, it can be represented as a
difference between submodular functions.
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