

 L1 (3/31): Motivation, Applications, & Basic Definitions L2: (4/2): Applications, Basic Definitions, Properties L3: L4: L5: L6: L7: L8: L9: L10: 	 L11: L12: L13: L14: L15: L16: L17: L18: L19: L20:
Finals Week: Ju	ne 9th-13th, 2014.

Submodular Definitions

Definition 2.2.2 (submodular concave)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$
(2.2)

An alternate and (as we will soon see) equivalent definition is:

Definition 2.2.3 (diminishing returns)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \ge f(B \cup \{v\}) - f(B)$$
(2.3)

This means that the incremental "value", "gain", or "cost" of v decreases (diminishes) as the context in which v is considered grows from A to B.

EE596b/Spring 2014/Submodularity - Lecture 2 - April 2nd, 2014

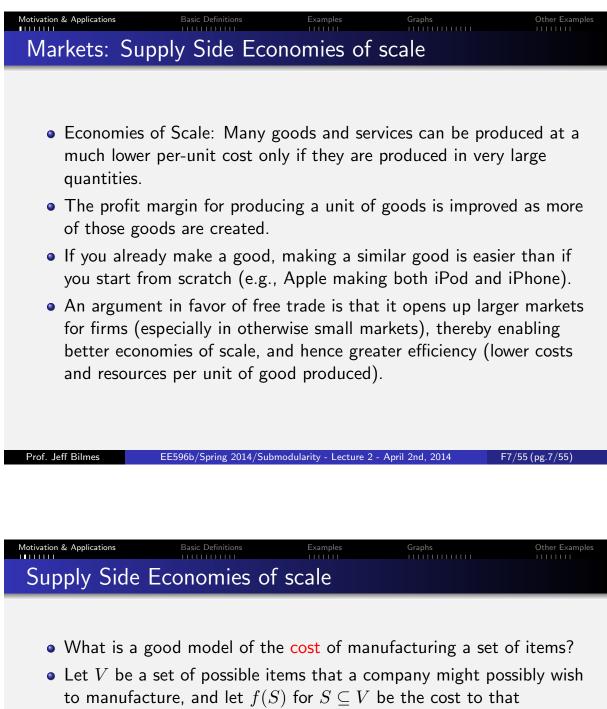
Logistics

Prof. Jeff Bilmes

Example Discrete Optimization Problems

- **Combinatorial Problems**: e.g., set cover, max k coverage, vertex cover, edge cover, graph cut problems.
- **Operations Research**: facility location (uncapacited)
- Sensor placement
- Information: Information gain and feature selection, information theory
- Mathematics: e.g., monge matrices
- **Networks**: Social networks, influence, viral marketing, information cascades, diffusion networks
- **Graphical models**: tree distributions, factors, and image segmentation
- **Diversity** and its models
- NLP: Natural language processing: document summarization, web search, information retrieval
- ML: Machine Learning: active/semi-supervised learning
- Economics: markets, economies of scale

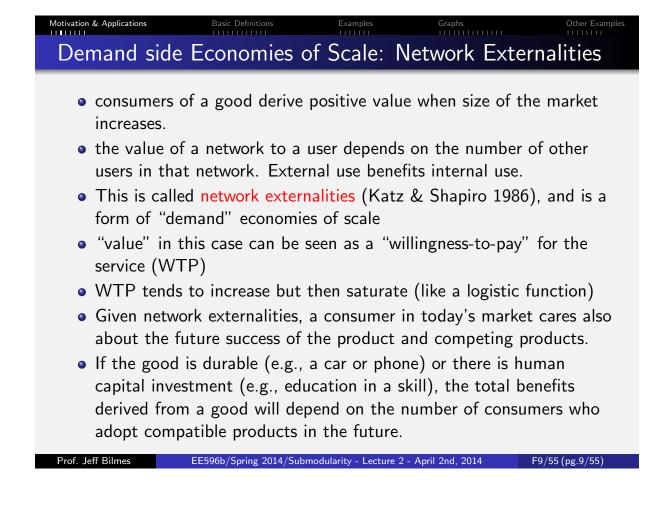
F5/55 (pg.5/55)



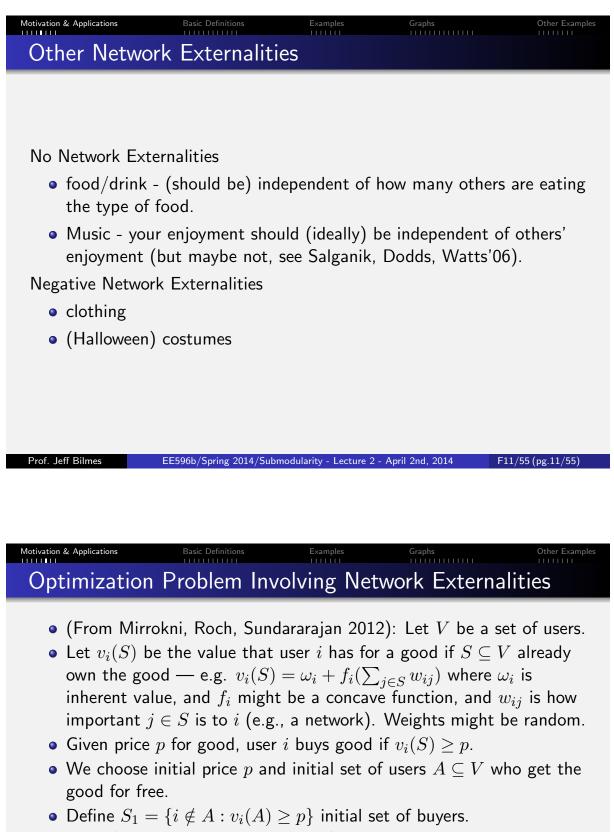
- company to manufacture subset S.
 Ex: V might be colors of paint in a paint manufacturer: green, red,
- blue, yellow, white, etc.
- Producing green when you are already producing yellow and blue is probably cheaper than if you were only producing some other colors.

 $f(\text{green}, \text{blue}, \text{yellow}) - f(\text{blue}, \text{yellow}) \le f(\text{green}, \text{blue}) - f(\text{blue})$ (2.1)

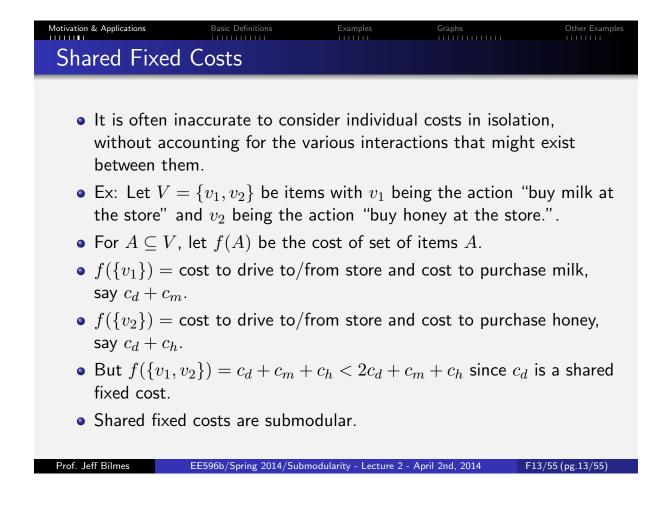
• So a submodular function would be a good model.



Motivation & Applications	Basic Definitions	Examples	Graphs	Other Examples
Positive Netwo	rk Externa	lities		
 railroad - stan 	idard rail form	nat and shared	d access	
The telephone	e, who wants	to talk by pho	one only to onesel	f?
the internet, r	nore valuable	per person th	ne more people us	e it.
ebooks (the m	nore people co	omment, the l	petter it gets)	
 social network 	sites: facebo	ook more valu	able with everyon	e online
 online educati 	on, Massive (Open Online (Courses (MOOCs)	such as
Coursera, edX	(, etc. – with	many people	simultaneously ta	king a
class, all gain	due to richer	peer discussion	ons due to greater	r pool of
well matched	study groups,	, more simulta	neous similar	
questions/pro	blems that ar	e asked \Rightarrow mo	ore efficient learni	ng &
training data	for ML algorit	thms to learn	how people learn.	
 Software (e.g. 	, Microsoft of	ffice, smartpho	one apps, etc.): m	ore people
means more b	oug reporting	\Rightarrow better & fa	aster software evo	lution.
 gmail and web 	o-based email	(collaborative	e spam filtering).	
 wikipedia, coll 	laborative doo	cuments		
 any widely use 	ed standard (j	job training no	ow is useful in the	e future)
			" (one platform p	
Prof. Jeff Bilmes El	E596b/Spring 2014/Su	bmodularity - Lecture 2	- April 2nd, 2014 F1	.0/55 (pg.10/55)



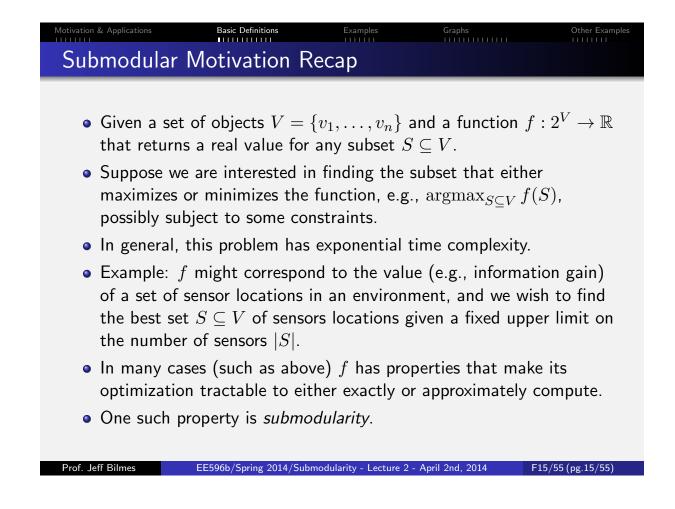
- $S_2 = \{i \notin A \cup S_1 : v_i(A \cup S_1) \ge p\}.$
- This starts a cascade. Let
 S_k = {i ∉ ∪_{j<k}S_j ∪ A : v_j(∪_{j<k}S_j ∪ A) ≥ p},
- and let S_{k^\ast} be the saturation point, lowest value of k such that $S_k = S_{k+1}$
- Goal: find A and p to maximize $f_p(A) = \mathbb{E}[p \times |S_{k^*}|]$.



Motivation & Applications	Basic Definitions	Examples	Graphs	Other Examples
Anecdote				

From David Brooks, NYTs column, March 28th, 2011 on "Tools for Thinking". In response to Steven Pinker (Harvard) asking a number of people "What scientific concept would improve everybody's cognitive toolkit?"

Emergent systems are ones in which many different elements interact. The pattern of interaction then produces a new element that is greater than the sum of the parts, which then exercises a top-down influence on the constituent elements.



 Motivation & Applications
 Basic Definitions
 Examples
 Graphs
 Other Examples

 Submodular Definitions
 Examples
 Examples</

Definition 2.4.2 (submodular concave)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B) \tag{2.2}$$

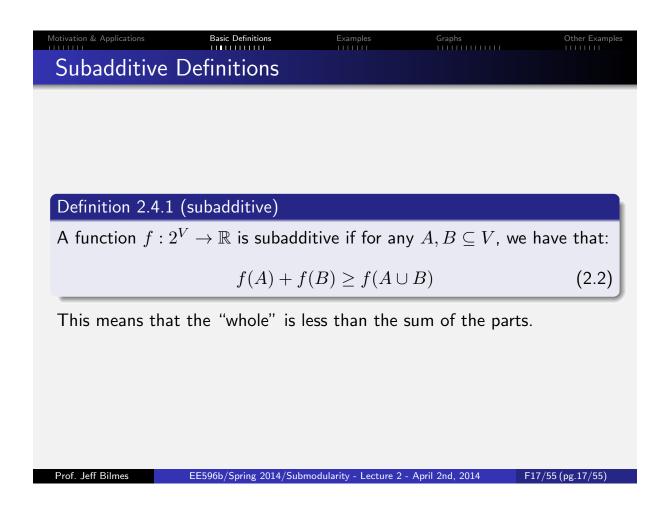
An alternate and (as we will soon see) equivalent definition is:

Definition 2.4.3 (diminishing returns)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \ge f(B \cup \{v\}) - f(B)$$
(2.3)

This means that the incremental "value", "gain", or "cost" of v decreases (diminishes) as the context in which v is considered grows from A to B.



 Motivation & Applications
 Basic Definitions
 Examples
 Graphs
 Other Examples

 Supermodular Definitions
 Examples
 Graphs
 Other Examples

Definition 2.4.2 (supermodular convex)

A function $f: 2^V \to \mathbb{R}$ is supermodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \le f(A \cup B) + f(A \cap B)$$
(2.3)

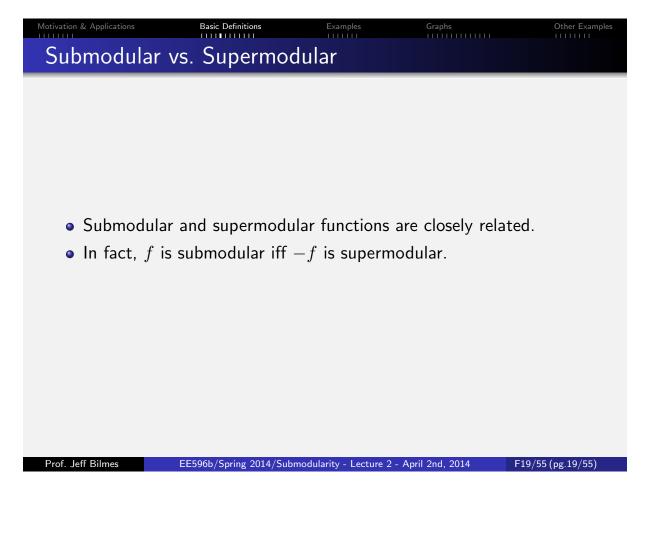
An alternate and equivalent definition is:

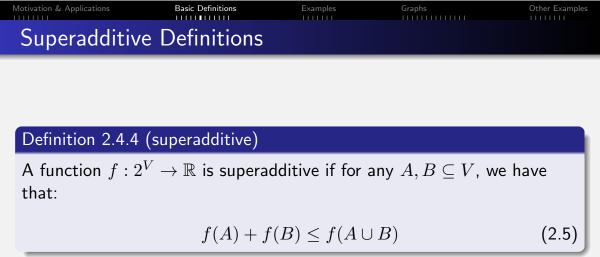
Definition 2.4.3 (increasing returns)

A function $f: 2^V \to \mathbb{R}$ is supermodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \le f(B \cup \{v\}) - f(B)$$
(2.4)

The incremental "value", "gain", or "cost" of v increases as the context in which v is considered grows from A to B.





- This means that the "whole" is greater than the sum of the parts.
- In general, submodular and subadditive (and supermodular and superadditive) are different properties.

Modular Definitions

Definition 2.4.5 (modular)

A function that is both submodular and supermodular is called modular

If f is a modular function, than for any $A, B \subseteq V$, we have

$$f(A) + f(B) = f(A \cap B) + f(A \cup B)$$
 (2.6)

Graphs

In modular functions, elements do not interact (or cooperate, or compete, or influence each other), and have value based only on singleton values.

Proposition 2.4.6

If f is modular, it may be written as

$$f(A) = f(\emptyset) + \sum_{a \in A} \left(f(\{a\}) - f(\emptyset) \right)$$
(2.7)

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 2 - April 2nd, 2014

F21/55 (pg.21/55)

Motivation & Applications	Basic Definitions	Examples	Graphs	Other Examples
Modular Def	initions			

Proof.

We inductively construct the value for $A = \{a_1, a_2, \ldots, a_k\}$. For k = 2,

$$f(a_1) + f(a_2) = f(a_1, a_2) + f(\emptyset)$$
(2.8)

implies
$$f(a_1, a_2) = f(a_1) - f(\emptyset) + f(a_2) - f(\emptyset) + f(\emptyset)$$
 (2.9)

then for k = 3,

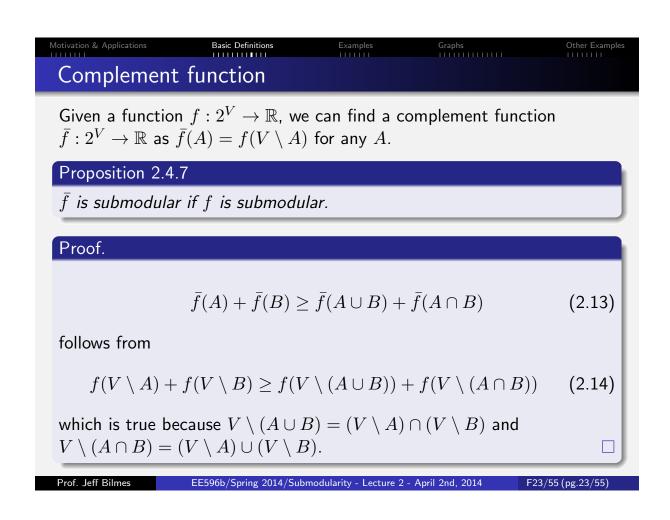
$$f(a_1, a_2) + f(a_3) = f(a_1, a_2, a_3) + f(\emptyset)$$
 (2.10)

implies $f(a_1, a_2, a_3) = f(a_1, a_2) - f(\emptyset) + f(a_3) - f(\emptyset) + f(\emptyset)$ (2.11)

$$= f(\emptyset) + \sum_{i=1}^{3} (f(a_i) - f(\emptyset))$$
 (2.12)

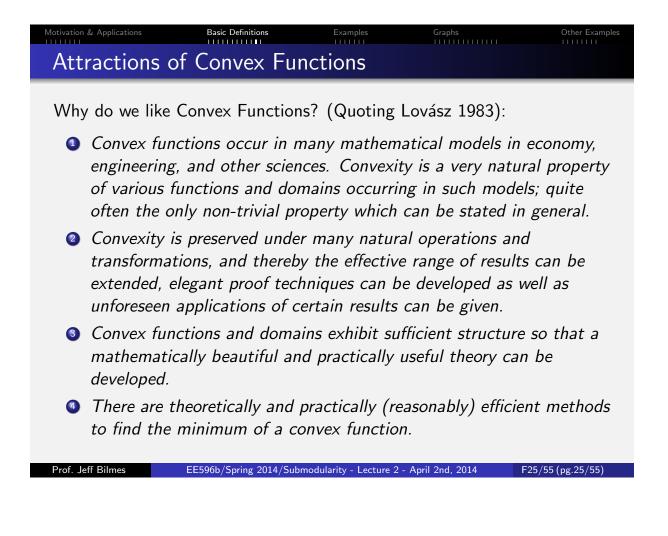
and so on ...

Prof. Jeff Bilmes



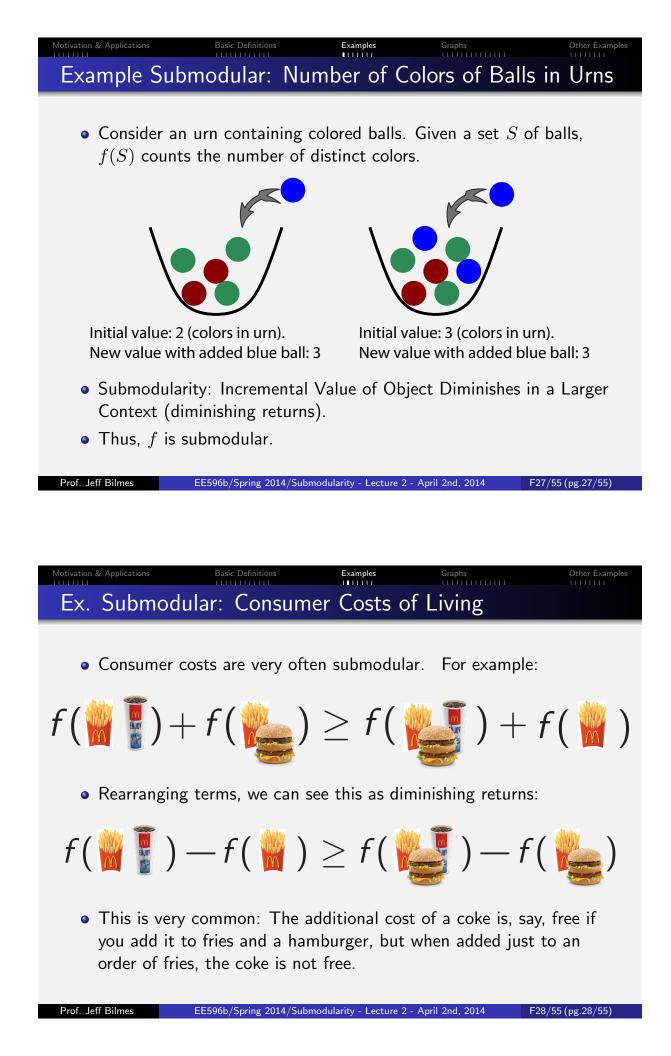
Motivation & Applications	Basic Definitions	Graphs	Other Examples
Submodularity			

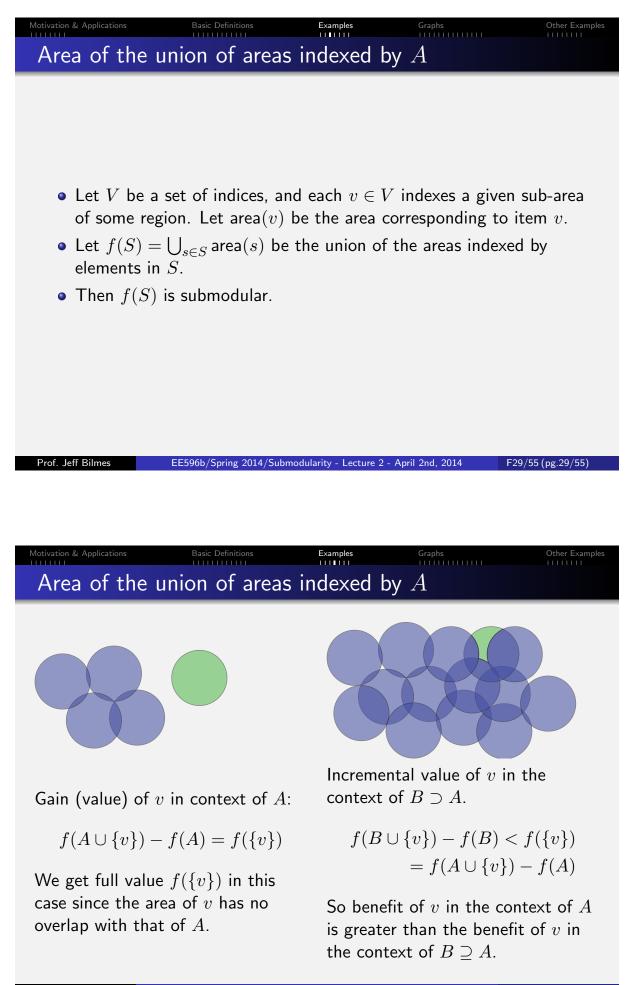
- Submodular functions have a long history in economics, game theory, combinatorial optimization, electrical networks, and operations research.
- They are gaining importance in machine learning as well (one of our main motivations for offering this course).
- Arbitrary set functions are hopelessly difficult to optimize, while the minimum of submodular functions can be found in polynomial time, and the maximum can be constant-factor approximated in low-order polynomial time.
- Submodular functions share properties in common with both convex and concave functions, but they are quite different.

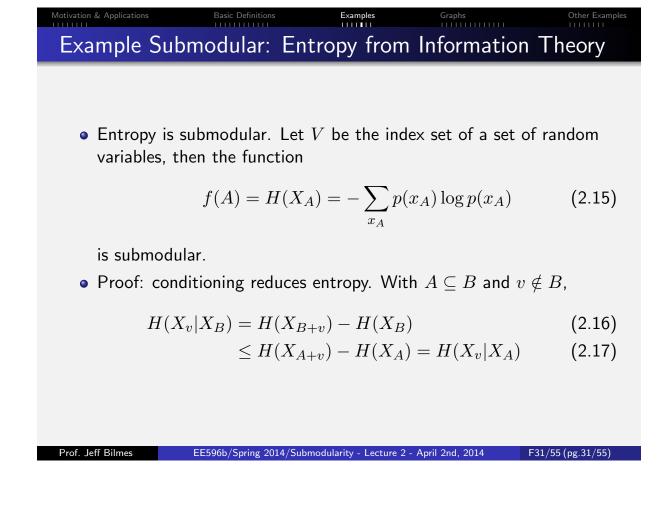


Motivation & Applications	Basic Definitions	Examples	Graphs	Other Examples
Attractions	of Submodula	r Function	S	

In this course, we wish to demonstrate that submodular functions also possess attractions of these four sorts as well.







Motivation & Applications Basic Definitions Examples Graphs Other Examples Example Submodular: Entropy from Information Theory

- Alternate Proof: Conditional mutual Information is always non-negative.
- Given $A, B, C \subseteq V$, consider conditional mutual information quantity:

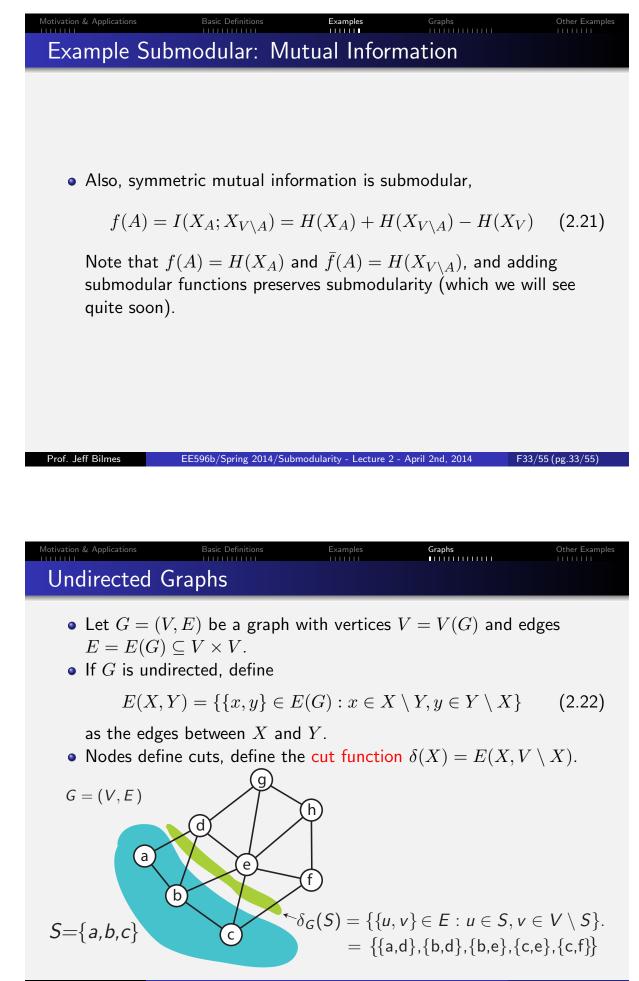
$$I(X_{A\setminus B}; X_{B\setminus A} | X_{A\cap B}) = \sum_{x_{A\cup B}} p(x_{A\cup B}) \log \frac{p(x_{A\setminus B}, x_{B\setminus A} | x_{A\cap B})}{p(x_{A\setminus B} | x_{A\cap B}) p(x_{B\setminus A} | x_{A\cap B})}$$
$$= \sum_{x_{A\cup B}} p(x_{A\cup B}) \log \frac{p(x_{A\cup B}) p(x_{A\cap B})}{p(x_{A}) p(x_{B})} \ge 0$$
(2.18)

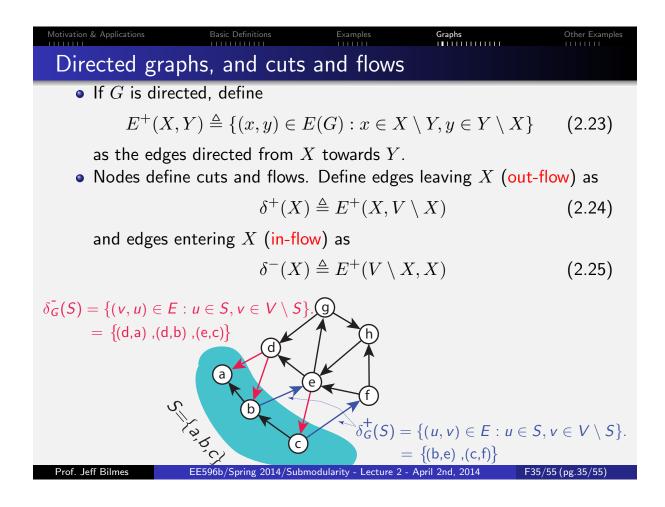
then

$$I(X_{A \setminus B}; X_{B \setminus A} | X_{A \cap B}) = H(X_A) + H(X_B) - H(X_{A \cup B}) - H(X_{A \cap B}) \ge 0$$
(2.19)

so entropy satisfies

$$H(X_A) + H(X_B) \ge H(X_{A \cup B}) + H(X_{A \cap B})$$
 (2.20)





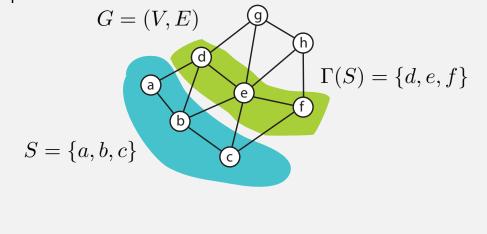
 Motivation & Applications
 Basic Definitions
 Examples
 Graphs
 Other Examples

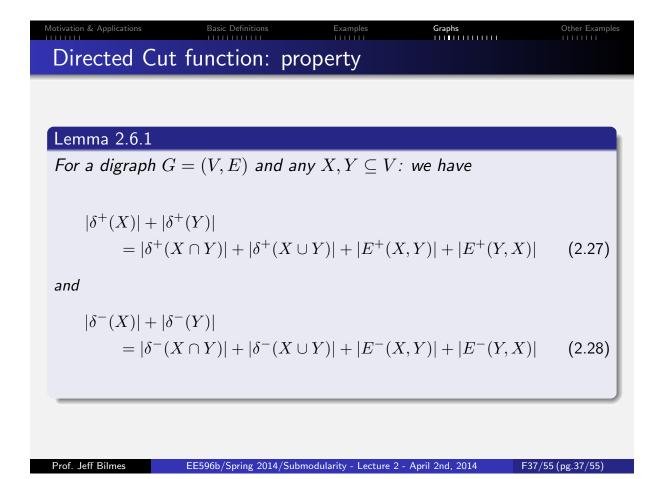
 The Neighbor function in undirected graphs
 Other Examples
 Other Examples
 Other Examples

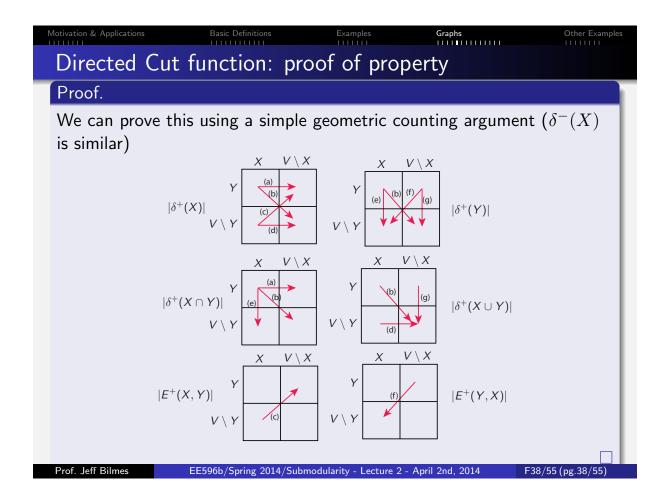
• Given a set $X \subseteq V$, the neighbors function of X is defined as

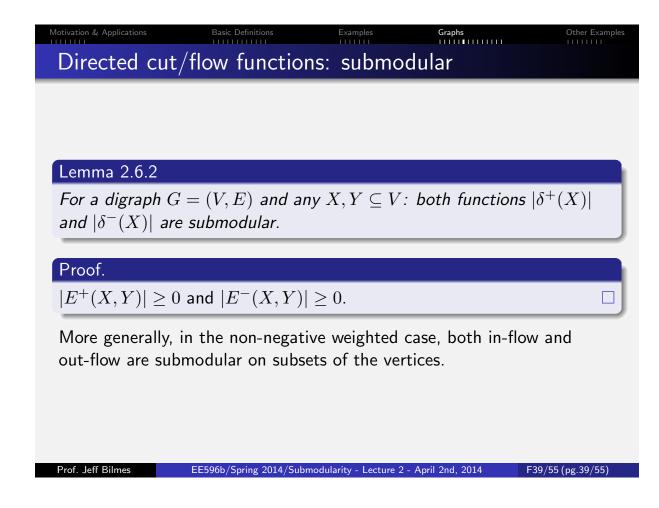
$$\Gamma(X) \triangleq \{ v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset \}$$
(2.26)

• Example:

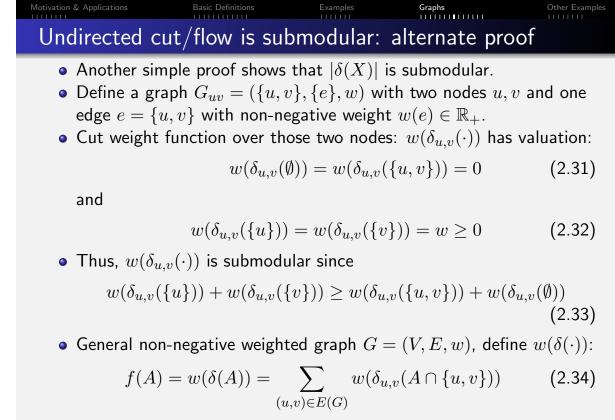




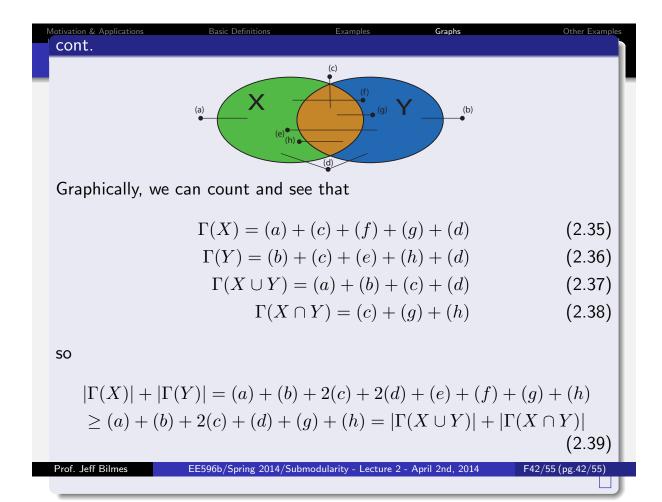


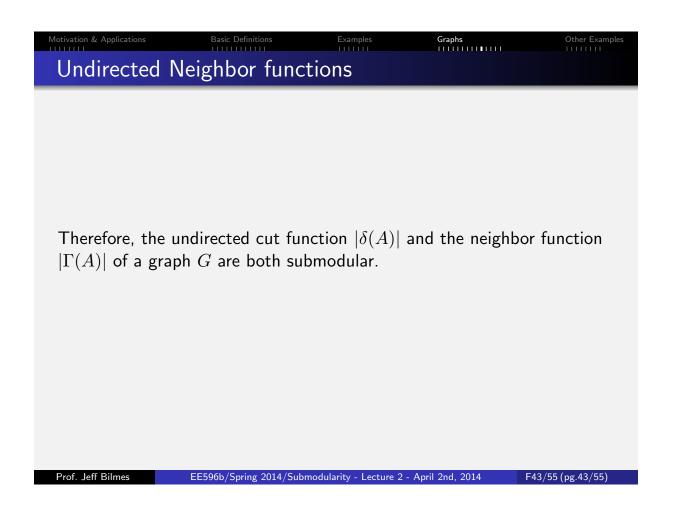


Motivation & Applications	Basic Definitions	Examples	Graphs	Other Examples
Undirecte	d Cut/Flow & t	he Neighb	or function:	submodular
Lemma 2.6.	3			
both the un	rected graph $G = (V$ directed cut (or flow X) are submodular) function $ \delta $		
$ \delta(X) $	$ + \delta(Y) = \delta(X \cap Y) $	$ Y + \delta(X \cup Y) $	Y) +2 E(X,Y)	(2.29)
and				
	$ \Gamma(X) + \Gamma(Y) $	$ \Gamma(X \cap Y) \ge \Gamma(X \cap Y) $	$ X' + \Gamma(X \cup Y) $	(2.30)
Proof.				
$\{u,v\}$ Then w	29) follows from Eq. with two oppositely- ve use same counting 30) follows as shown	directed direc g argument.	ted edges (u, v)	•



• This is easily shown to be submodular using properties we will soon Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 2 - April 2nd, 2014 F41/55 (pg.41/55) See (Harriery, Submodularity closed under Summation and Testificition).

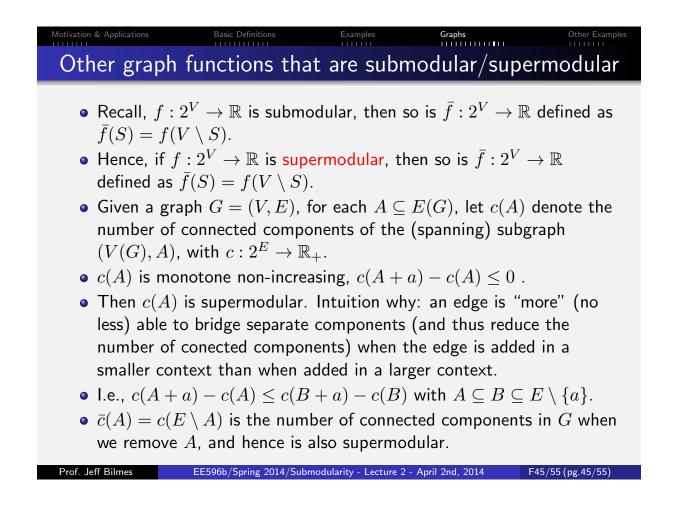




Motivation & ApplicationsBasic DefinitionsExamplesGraphsOther ExamplesOther graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

- Let V(X) be the vertices adjacent to some edge in $X \subseteq E(G)$, then |V(X)| (the vertex function) is submodular.
- Let E(S) be the edges with both vertices in $S \subseteq V(G)$. Then |E(S)| (the interior edge function) is supermodular.
- Let I(S) be the edges with at least one vertex in $S \subseteq V(G)$. Then |I(S)| (the <u>incidence function</u>) is submodular.
- Recall $|\delta(S)|$, is the set size of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut size function). Thus, we have $I(S) = E(S) \cup \delta(S)$ and $E(S) \cap \delta(S) = \emptyset$, and thus that $|I(S)| = |E(S)| + |\delta(S)|$. So we can get a submodular function by summing a submodular and a supermodular function. If you had to guess, is this always the case?
- Consider $f(A) = |\delta^+(A)| |\delta^+(V \setminus A)|$. Guess, submodular, supermodular, modular, or neither? Exercise: determine which one and prove it.



Motivation & Applications	Basic Definitions	Examples	Graphs	Other Examples
Graph Streng	gth			

- So $\bar{c}(A) = c(E \setminus A)$ is the number of connected components in G when we remove A, is supermodular.
- Maximizing $\bar{c}(A)$ might seem as a goal for a network attacker many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set A and shatter the graph into many connected components, then the graph is weak.
- An attacker wishes to choose a small number of edges (since it is cheap) to shatter the graph into as many components as possible.
- Let G=(V,E,w) with $w:E\to \mathbb{R}+$ be a weighted graph with non-negative weights.
- For (u, v) = e ∈ E, let w(e) be a measure of the strength of the connection between vertices u and v (strength meaning the difficulty of cutting the edge e).

Graph Strength

• Then w(A) for $A \subseteq E$ is a modular function

$$w(A) = \sum_{e \in A} w_e \tag{2.40}$$

so that w(E(G[S])) is the "internal strength" of the vertex set S.

- Suppose removing A shatters G into a graph with $\bar{c}(A) > 1$ components — then $w(A)/(\bar{c}(A) - 1)$ is like the "effort per achieved component" for a network attacker.
- A form of graph strength can then be defined as the following:

$$strength(G,w) = \min_{A \subseteq E(G):\bar{c}(A) > 1} \frac{w(A)}{\bar{c}(A) - 1}$$
(2.41)

- Graph strength is like the minimum effort per component. An attacker would use the argument of the min to choose which edges to attack. A network designer would maximize, over G and/or w, the graph strength, strength(G, w).
- Since submodularity, problems have strongly-poly-time solutions.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 2 - April 2nd, 2014 F47/55 (pg.4

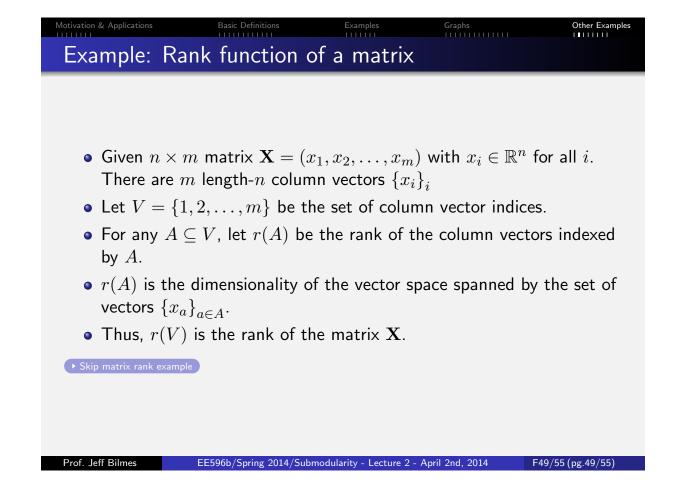
Motivation & Applications Basic Definitions Examples Graphs Other Examples Matrix Rank functions

- Let V, with |V| = m be an index set of a set of vectors in ℝⁿ for some n (unrelated to m).
- For a given set {v, v₁, v₂,..., v_k}, it might or might not be possible to find (α_i)_i such that:

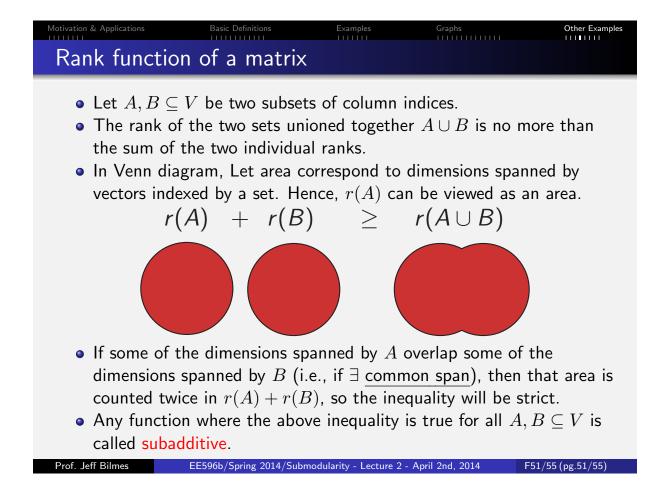
$$x_v = \sum_{i=1}^k \alpha_i x_{v_i} \tag{2.42}$$

If not, then x_v is linearly independent of x_{v_1}, \ldots, x_{v_k} .

 Let r(S) for S ⊆ V be the rank of the set of vectors S. Then r(·) is a submodular function, and in fact is called a matric matroid rank function.



Motivation & Applications	Basic Definit	tions Examples	Graphs	Other Examples
Example:	Rank funct	tion of a matrix	K	
Consider the	e following $4 imes$	≈ 8 matrix, so $V= -$	$\{1, 2, 3, 4, 5, 6, 7, 8$	}.
	4 5 6 7 2 3 0 1 3 4 0 0 2 0 3 0 0 0 3 0 0 0 0 3 0 0	$ \begin{array}{cccc} 8 & 1 & 2 \\ 1 \\ 4 \\ 5 \\ 5 \end{array} \right) = \begin{pmatrix} & \\ x_1 & x_2 \\ & \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 7 & 8 \\ & \\ x_7 & x_8 \\ & \end{array} \right)$
• Then r • $r(A \cup a)$ • $r(A \cup a)$	r(A) = 3, r(B) C) = 3, r(B) $A_r) = 3, r(B \cup B) = 4, r(A)$	$= \{3, 4, 5\}, C = \{6\}$ = 3, r(C) = 2. $\cup C) = 3.$ $\cup B_r) = 3, r(A \cup B)$ $\cap B) = 1 < r(C) = 1$ $r(A \cup B) + r(A \cap B)$	$(r_r) = 4, r(B \cup A_r)$ = 2.	



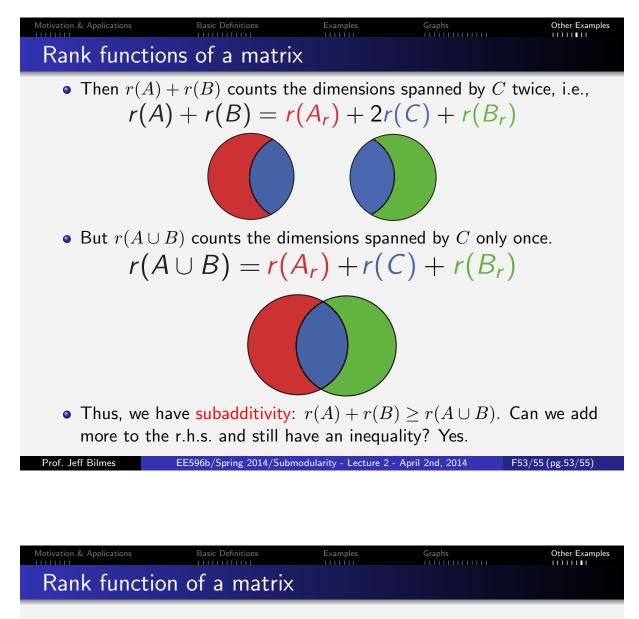
Motivation & Applications Basic Definitions Examples Graphs Other Examples Rank functions of a matrix Vincente Vincente Vincente Vincente

- Vectors A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning dimensions common to A and B.
- Let A_r index vectors spanning dimensions spanned by A but not B.
- Let B_r index vectors spanning dimensions spanned by B but not A.
- Then, $r(A) = r(C) + r(A_r)$
- Similarly, $r(B) = r(C) + r(B_r)$.
- Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

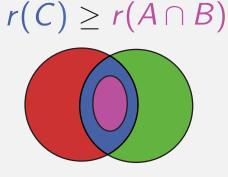
$$r(A) + r(B) = r(A_r) + 2r(C) + r(B_r).$$
 (2.43)

• But $r(A \cup B)$ counts the dimensions spanned by C only once.

$$r(A \cup B) = r(A_r) + r(C) + r(B_r)$$
 (2.44)



Note, r(A ∩ B) ≤ r(C). Why? Vectors indexed by A ∩ B (i.e., the common index set) span no more than the dimensions commonly spanned by A and B (namely, those spanned by the professed C).



In short:

- Common span (blue) is "more" (no less) than span of common index (magenta).
- More generally, common information (blue) is "more" (no less) than information within common index (magenta).

