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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

our room (Mueller Hall Room 154) is changed!

Please do use our discussion board (https:
//canvas.uw.edu/courses/895956/discussion_topics) for all
questions, comments, so that all will benefit from them being
answered.

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics Review

Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3:

L4:

L5:

L6:

L7:

L8:

L9:

L10:

L11:

L12:

L13:

L14:

L15:

L16:

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Logistics Review

Submodular Definitions

Definition 2.2.2 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (2.2)

An alternate and (as we will soon see) equivalent definition is:

Definition 2.2.3 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (2.3)

This means that the incremental “value”, “gain”, or “cost” of v
decreases (diminishes) as the context in which v is considered grows from
A to B.
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Logistics Review

Example Discrete Optimization Problems

Combinatorial Problems: e.g., set cover, max k coverage, vertex
cover, edge cover, graph cut problems.
Operations Research: facility location (uncapacited)
Sensor placement
Information: Information gain and feature selection, information
theory
Mathematics: e.g., monge matrices
Networks: Social networks, influence, viral marketing, information
cascades, diffusion networks
Graphical models: tree distributions, factors, and image
segmentation
Diversity and its models
NLP: Natural language processing: document summarization, web
search, information retrieval
ML: Machine Learning: active/semi-supervised learning
Economics: markets, economies of scale
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Motivation & Applications Basic Definitions Examples Graphs Other Examples

Markets: Supply Side Economies of scale

Economies of Scale: Many goods and services can be produced at a
much lower per-unit cost only if they are produced in very large
quantities.

The profit margin for producing a unit of goods is improved as more
of those goods are created.

If you already make a good, making a similar good is easier than if
you start from scratch (e.g., Apple making both iPod and iPhone).

An argument in favor of free trade is that it opens up larger markets
for firms (especially in otherwise small markets), thereby enabling
better economies of scale, and hence greater efficiency (lower costs
and resources per unit of good produced).
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Motivation & Applications Basic Definitions Examples Graphs Other Examples

Supply Side Economies of scale

What is a good model of the cost of manufacturing a set of items?

Let V be a set of possible items that a company might possibly wish
to manufacture, and let f(S) for S ⊆ V be the cost to that
company to manufacture subset S.

Ex: V might be colors of paint in a paint manufacturer: green, red,
blue, yellow, white, etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)− f(blue, yellow) <= f(green, blue)− f(blue)
(2.1)

So a submodular function would be a good model.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 2 - April 2nd, 2014 F8/55 (pg.8/184)



Motivation & Applications Basic Definitions Examples Graphs Other Examples

Supply Side Economies of scale

What is a good model of the cost of manufacturing a set of items?

Let V be a set of possible items that a company might possibly wish
to manufacture, and let f(S) for S ⊆ V be the cost to that
company to manufacture subset S.

Ex: V might be colors of paint in a paint manufacturer: green, red,
blue, yellow, white, etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)− f(blue, yellow) <= f(green, blue)− f(blue)
(2.1)

So a submodular function would be a good model.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 2 - April 2nd, 2014 F8/55 (pg.9/184)



Motivation & Applications Basic Definitions Examples Graphs Other Examples

Supply Side Economies of scale

What is a good model of the cost of manufacturing a set of items?

Let V be a set of possible items that a company might possibly wish
to manufacture, and let f(S) for S ⊆ V be the cost to that
company to manufacture subset S.

Ex: V might be colors of paint in a paint manufacturer: green, red,
blue, yellow, white, etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)− f(blue, yellow) <= f(green, blue)− f(blue)
(2.1)

So a submodular function would be a good model.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 2 - April 2nd, 2014 F8/55 (pg.10/184)



Motivation & Applications Basic Definitions Examples Graphs Other Examples

Supply Side Economies of scale

What is a good model of the cost of manufacturing a set of items?

Let V be a set of possible items that a company might possibly wish
to manufacture, and let f(S) for S ⊆ V be the cost to that
company to manufacture subset S.

Ex: V might be colors of paint in a paint manufacturer: green, red,
blue, yellow, white, etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)− f(blue, yellow) <= f(green, blue)− f(blue)
(2.1)

So a submodular function would be a good model.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 2 - April 2nd, 2014 F8/55 (pg.11/184)



Motivation & Applications Basic Definitions Examples Graphs Other Examples

Demand side Economies of Scale: Network Externalities

consumers of a good derive positive value when size of the market
increases.

the value of a network to a user depends on the number of other
users in that network. External use benefits internal use.

This is called network externalities (Katz & Shapiro 1986), and is a
form of “demand” economies of scale

“value” in this case can be seen as a “willingness-to-pay” for the
service (WTP)

WTP tends to increase but then saturate (like a logistic function)

Given network externalities, a consumer in today’s market cares also
about the future success of the product and competing products.

If the good is durable (e.g., a car or phone) or there is human
capital investment (e.g., education in a skill), the total benefits
derived from a good will depend on the number of consumers who
adopt compatible products in the future.
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Positive Network Externalities

railroad - standard rail format and shared access

The telephone

, who wants to talk by phone only to oneself?

the internet, more valuable per person the more people use it.
ebooks (the more people comment, the better it gets)
social network sites: facebook more valuable with everyone online
online education, Massive Open Online Courses (MOOCs) such as
Coursera, edX, etc. – with many people simultaneously taking a
class, all gain due to richer peer discussions due to greater pool of
well matched study groups, more simultaneous similar
questions/problems that are asked ⇒ more efficient learning &
training data for ML algorithms to learn how people learn.
Software (e.g., Microsoft office, smartphone apps, etc.): more people
means more bug reporting ⇒ better & faster software evolution.
gmail and web-based email (collaborative spam filtering).
wikipedia, collaborative documents
any widely used standard (job training now is useful in the future)
the “tipping point”, and “winner take all” (one platform prevails)
markets.
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Other Network Externalities

No Network Externalities

food/drink - (should be) independent of how many others are eating
the type of food.

Music - your enjoyment should (ideally) be independent of others’
enjoyment (but maybe not, see Salganik, Dodds, Watts’06).

Negative Network Externalities

clothing

(Halloween) costumes
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Optimization Problem Involving Network Externalities

(From Mirrokni, Roch, Sundararajan 2012): Let V be a set of users.

Let vi(S) be the value that user i has for a good if S ⊆ V already
own the good — e.g. vi(S) = ωi + fi(

∑
j∈S wij) where ωi is

inherent value, and fi might be a concave function, and wij is how
important j ∈ S is to i (e.g., a network). Weights might be random.

Given price p for good, user i buys good if vi(S) ≥ p.

We choose initial price p and initial set of users A ⊆ V who get the
good for free.

Define S1 = {i /∈ A : vi(A) ≥ p} initial set of buyers.

S2 = {i /∈ A ∪ S1 : vi(A ∪ S1) ≥ p}.
This starts a cascade. Let
Sk = {i /∈ ∪j<kSj ∪A : vj(∪j<kSj ∪A) ≥ p},
and let Sk∗ be the saturation point, lowest value of k such that
Sk = Sk+1

Goal: find A and p to maximize fp(A) = E[p× |Sk∗ |].
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Shared Fixed Costs

It is often inaccurate to consider individual costs in isolation,
without accounting for the various interactions that might exist
between them.

Ex: Let V = {v1, v2} be items with v1 being the action “buy milk at
the store” and v2 being the action “buy honey at the store.”.

For A ⊆ V , let f(A) be the cost of set of items A.

f({v1}) = cost to drive to/from store and cost to purchase milk,
say cd + cm.

f({v2}) = cost to drive to/from store and cost to purchase honey,
say cd + ch.

But f({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd is a shared
fixed cost.

Shared fixed costs are submodular.
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Anecdote

From David Brooks, NYTs column, March 28th, 2011 on “Tools for
Thinking”. In response to Steven Pinker (Harvard) asking a number of
people “What scientific concept would improve everybody’s cognitive
toolkit?”

Emergent systems are ones in which many different elements
interact. The pattern of interaction then produces a new
element that is greater than the sum of the parts, which then
exercises a top-down influence on the constituent elements.
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Submodular Motivation Recap

Given a set of objects V = {v1, . . . , vn} and a function f : 2V → R
that returns a real value for any subset S ⊆ V .

Suppose we are interested in finding the subset that either
maximizes or minimizes the function, e.g., argmaxS⊆V f(S),
possibly subject to some constraints.

In general, this problem has exponential time complexity.

Example: f might correspond to the value (e.g., information gain)
of a set of sensor locations in an environment, and we wish to find
the best set S ⊆ V of sensors locations given a fixed upper limit on
the number of sensors |S|.
In many cases (such as above) f has properties that make its
optimization tractable to either exactly or approximately compute.

One such property is submodularity.
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Submodular Definitions

Definition 2.4.2 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (2.2)

An alternate and (as we will soon see) equivalent definition is:

Definition 2.4.3 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (2.3)

This means that the incremental “value”, “gain”, or “cost” of v
decreases (diminishes) as the context in which v is considered grows from
A to B.
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Subadditive Definitions

Definition 2.4.1 (subadditive)

A function f : 2V → R is subadditive if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) (2.2)

This means that the “whole” is less than the sum of the parts.
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Supermodular Definitions

Definition 2.4.2 (supermodular convex)

A function f : 2V → R is supermodular if for any A,B ⊆ V , we have
that:

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B) (2.3)

An alternate and equivalent definition is:

Definition 2.4.3 (increasing returns)

A function f : 2V → R is supermodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≤ f(B ∪ {v})− f(B) (2.4)

The incremental “value”, “gain”, or “cost” of v increases as the context
in which v is considered grows from A to B.
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Submodular vs. Supermodular

Submodular and supermodular functions are closely related.

In fact, f is submodular iff −f is supermodular.
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Superadditive Definitions

Definition 2.4.4 (superadditive)

A function f : 2V → R is superadditive if for any A,B ⊆ V , we have
that:

f(A) + f(B) ≤ f(A ∪B) (2.5)

This means that the “whole” is greater than the sum of the parts.

In general, submodular and subadditive (and supermodular and
superadditive) are different properties.
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Modular Definitions

Definition 2.4.5 (modular)

A function that is both submodular and supermodular is called modular

If f is a modular function, than for any A,B ⊆ V , we have

f(A) + f(B) = f(A ∩B) + f(A ∪B) (2.6)

In modular functions, elements do not interact (or cooperate, or compete,
or influence each other), and have value based only on singleton values.

Proposition 2.4.6

If f is modular, it may be written as

f(A) = f(∅) +
∑

a∈A

(
f({a})− f(∅)

)
(2.7)
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Modular Definitions

Proof.

We inductively construct the value for A = {a1, a2, . . . , ak}.
For k = 2,

f(a1) + f(a2) = f(a1, a2) + f(∅) (2.8)

implies f(a1, a2) = f(a1)− f(∅) + f(a2)− f(∅) + f(∅) (2.9)

then for k = 3,

f(a1, a2) + f(a3) = f(a1, a2, a3) + f(∅) (2.10)

implies f(a1, a2, a3) = f(a1, a2)− f(∅) + f(a3)− f(∅) + f(∅) (2.11)

= f(∅) +

3∑

i=1

(
f(ai)− f(∅)

)
(2.12)

and so on . . .
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Complement function

Given a function f : 2V → R, we can find a complement function
f̄ : 2V → R as f̄(A) = f(V \A) for any A.

Proposition 2.4.7

f̄ is submodular if f is submodular.

Proof.

f̄(A) + f̄(B) ≥ f̄(A ∪B) + f̄(A ∩B) (2.13)

follows from

f(V \A) + f(V \B) ≥ f(V \ (A ∪B)) + f(V \ (A ∩B)) (2.14)

which is true because V \ (A ∪B) = (V \A) ∩ (V \B) and
V \ (A ∩B) = (V \A) ∪ (V \B).
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Submodularity

Submodular functions have a long history in economics, game
theory, combinatorial optimization, electrical networks, and
operations research.

They are gaining importance in machine learning as well (one of our
main motivations for offering this course).

Arbitrary set functions are hopelessly difficult to optimize, while the
minimum of submodular functions can be found in polynomial time,
and the maximum can be constant-factor approximated in low-order
polynomial time.

Submodular functions share properties in common with both convex
and concave functions, but they are quite different.
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Attractions of Convex Functions

Why do we like Convex Functions? (Quoting Lovász 1983):

1 Convex functions occur in many mathematical models in economy,
engineering, and other sciences. Convexity is a very natural property
of various functions and domains occurring in such models; quite
often the only non-trivial property which can be stated in general.

2 Convexity is preserved under many natural operations and
transformations, and thereby the effective range of results can be
extended, elegant proof techniques can be developed as well as
unforeseen applications of certain results can be given.

3 Convex functions and domains exhibit sufficient structure so that a
mathematically beautiful and practically useful theory can be
developed.

4 There are theoretically and practically (reasonably) efficient methods
to find the minimum of a convex function.
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Attractions of Submodular Functions

In this course, we wish to demonstrate that submodular functions also
possess attractions of these four sorts as well.
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Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls,
f(S) counts the number of distinct colors.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).

Thus, f is submodular.
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Ex. Submodular: Consumer Costs of Living

Consumer costs are very often submodular.

For example:

f ( ) ≥ f ( ) + f ( )f ( )+

Rearranging terms, we can see this as diminishing returns:

f ( ) f ( ) ≥ f ( ) f ( )

This is very common: The additional cost of a coke is, say, free if
you add it to fries and a hamburger, but when added just to an
order of fries, the coke is not free.
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Area of the union of areas indexed by A

Let V be a set of indices, and each v ∈ V indexes a given sub-area
of some region. Let area(v) be the area corresponding to item v.

Let f(S) =
⋃

s∈S area(s) be the union of the areas indexed by
elements in S.

Then f(S) is submodular.
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Area of the union of areas indexed by A

Union of areas of elements of A is given by:

f(A) = f({a1, a2, a3, a4})
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Area of the union of areas indexed by A

Area of A along with with v:

f(A ∪ {v}) = f({a1, a2, a3, a4} ∪ {v})
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Area of the union of areas indexed by A

Gain (value) of v in context of A:

f(A ∪ {v})− f(A) = f({v})

We get full value f({v}) in this case since the area of v has no overlap
with that of A.
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Area of the union of areas indexed by A

Area of A once again.

f(A) = f({a1, a2, a3, a4})
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Area of the union of areas indexed by A

Union of areas of elements of B ⊃ A, where v is not included:

f(B) where v /∈ B and where A ⊆ B
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Area of the union of areas indexed by A

Area of B now also including v:

f(B ∪ {v})
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Area of the union of areas indexed by A

Incremental value of v in the context of B ⊃ A.

f(B ∪ {v})− f(B) < f({v}) = f(A ∪ {v})− f(A)

So benefit of v in the context of A is greater than the benefit of v in the
context of B ⊇ A.
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Example Submodular: Entropy from Information Theory

Entropy is submodular. Let V be the index set of a set of random
variables, then the function

f(A) = H(XA) = −
∑

xA

p(xA) log p(xA) (2.15)

is submodular.

Proof: conditioning reduces entropy. With A ⊆ B and v /∈ B,

H(Xv|XB) = H(XB+v)−H(XB) (2.16)

≤ H(XA+v)−H(XA) = H(Xv|XA) (2.17)
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Example Submodular: Entropy from Information Theory

Alternate Proof: Conditional mutual Information is always non-negative.

Given A,B,C ⊆ V , consider conditional mutual information quantity:

I(XA\B;XB\A|XA∩B) =
∑

xA∪B

p(xA∪B) log
p(xA\B, xB\A|xA∩B)

p(xA\B|xA∩B)p(xB\A|xA∩B)

=
∑

xA∪B

p(xA∪B) log
p(xA∪B)p(xA∩B)

p(xA)p(xB)
≥ 0

(2.18)

then

I(XA\B;XB\A|XA∩B)

= H(XA) +H(XB)−H(XA∪B)−H(XA∩B) ≥ 0 (2.19)

so entropy satisfies

H(XA) +H(XB) ≥ H(XA∪B) +H(XA∩B) (2.20)
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Example Submodular: Mutual Information

Also, symmetric mutual information is submodular,

f(A) = I(XA;XV \A) = H(XA) +H(XV \A)−H(XV ) (2.21)

Note that f(A) = H(XA) and f̄(A) = H(XV \A), and adding
submodular functions preserves submodularity (which we will see
quite soon).
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Undirected Graphs

Let G = (V,E) be a graph with vertices V = V (G) and edges
E = E(G) ⊆ V × V .

If G is undirected, define

E(X,Y ) = {{x, y} ∈ E(G) : x ∈ X \ Y, y ∈ Y \X} (2.22)

as the edges between X and Y .

Nodes define cuts, define the cut function δ(X) = E(X,V \X).

G = (V ,E )

S={a,b,c} δG (S) = {{u, v}∈ E : u ∈ S , v ∈ V \ S}.

a

b

c

e
f

h

g

d

 = {{a,d},{b,d},{b,e},{c,e},{c,f}}
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Directed graphs, and cuts and flows
If G is directed, define

E+(X,Y ) , {(x, y) ∈ E(G) : x ∈ X \ Y, y ∈ Y \X} (2.23)

as the edges directed from X towards Y .

Nodes define cuts and flows. Define edges leaving X (out-flow) as

δ+(X) , E+(X,V \X) (2.24)

and edges entering X (in-flow) as

δ−(X) , E+(V \X,X) (2.25)

S={a,b,c}

a

b

c

e
f

h

g

d

δG (S) = {(u, v ) ∈ E : u ∈ S , v ∈ V \ S}.
 = {(b,e) ,(c,f)}

+

 = {(d,a) ,(d,b) ,(e,c)}
δG (S) = {(v , u) ∈ E : u ∈ S , v ∈ V \ S}.-
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The Neighbor function in undirected graphs

Given a set X ⊆ V , the neighbors function of X is defined as

Γ(X) , {v ∈ V (G) \X : E(X, {v}) 6= ∅} (2.26)

Example:

a

b

c

e
f

h

g

d

G = (V,E)

S = {a, b, c}

Γ(S) = {d, e, f}
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Directed Cut function: property

Lemma 2.6.1

For a digraph G = (V,E) and any X,Y ⊆ V : we have

|δ+(X)|+ |δ+(Y )|
= |δ+(X ∩ Y )|+ |δ+(X ∪ Y )|+ |E+(X,Y )|+ |E+(Y,X)| (2.27)

and

|δ−(X)|+ |δ−(Y )|
= |δ−(X ∩ Y )|+ |δ−(X ∪ Y )|+ |E−(X,Y )|+ |E−(Y,X)| (2.28)
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Directed Cut function: proof of property
Proof.

We can prove this using a simple geometric counting argument (δ−(X)
is similar)

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

(e)

(e)

(b)
(a)

(a)

(b)

(b)
(b)

(c)

(c)

(f )

(f )

(g)

(g)

(d)

(d)

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

|δ+(X )| |δ+(Y )|

|δ+(X ∩ Y )| |δ+(X ∪ Y )|

|E+(X ,Y )| |E+(Y ,X )|

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 2 - April 2nd, 2014 F38/55 (pg.100/184)



Motivation & Applications Basic Definitions Examples Graphs Other Examples

Directed cut/flow functions: submodular

Lemma 2.6.2

For a digraph G = (V,E) and any X,Y ⊆ V : both functions |δ+(X)|
and |δ−(X)| are submodular.

Proof.

|E+(X,Y )| ≥ 0 and |E−(X,Y )| ≥ 0.

More generally, in the non-negative weighted case, both in-flow and
out-flow are submodular on subsets of the vertices.
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Undirected Cut/Flow & the Neighbor function: submodular

Lemma 2.6.3

For an undirected graph G = (V,E) and any X,Y ⊆ V : we have that
both the undirected cut (or flow) function |δ(X)| and the neighbor
function |Γ(X)| are submodular. I.e.,

|δ(X)|+ |δ(Y )| = |δ(X ∩ Y )|+ |δ(X ∪ Y )|+ 2|E(X,Y )| (2.29)

and

|Γ(X)|+ |Γ(Y )| ≥ |Γ(X ∩ Y )|+ |Γ(X ∪ Y )| (2.30)

Proof.

Eq. (2.29) follows from Eq. (2.27): we replace each undirected edge
{u, v} with two oppositely-directed directed edges (u, v) and (v, u).
Then we use same counting argument.

Eq. (2.30) follows as shown in the following page.

. . .
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Undirected Cut/Flow & the Neighbor function: submodular

Lemma 2.6.3

For an undirected graph G = (V,E) and any X,Y ⊆ V : we have that
both the undirected cut (or flow) function |δ(X)| and the neighbor
function |Γ(X)| are submodular. I.e.,

|δ(X)|+ |δ(Y )| = |δ(X ∩ Y )|+ |δ(X ∪ Y )|+ 2|E(X,Y )| (2.29)

and

|Γ(X)|+ |Γ(Y )| ≥ |Γ(X ∩ Y )|+ |Γ(X ∪ Y )| (2.30)

Proof.

Eq. (2.29) follows from Eq. (2.27): we replace each undirected edge
{u, v} with two oppositely-directed directed edges (u, v) and (v, u).
Then we use same counting argument.

Eq. (2.30) follows as shown in the following page.
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Undirected cut/flow is submodular: alternate proof

Another simple proof shows that |δ(X)| is submodular.

Define a graph Guv = ({u, v}, {e}, w) with two nodes u, v and one
edge e = {u, v} with non-negative weight w(e) ∈ R+.
Cut weight function over those two nodes: w(δu,v(·)) has valuation:

w(δu,v(∅)) = w(δu,v({u, v})) = 0 (2.31)

and

w(δu,v({u})) = w(δu,v({v})) = w ≥ 0 (2.32)

Thus, w(δu,v(·)) is submodular since

w(δu,v({u})) + w(δu,v({v})) ≥ w(δu,v({u, v})) + w(δu,v(∅))
(2.33)

General non-negative weighted graph G = (V,E,w), define w(δ(·)):

f(A) = w(δ(A)) =
∑

(u,v)∈E(G)

w(δu,v(A ∩ {u, v})) (2.34)

This is easily shown to be submodular using properties we will soon
see (namely, submodularity closed under summation and restriction).
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(2.33)
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∑
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w(δu,v(A ∩ {u, v})) (2.34)
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Undirected cut/flow is submodular: alternate proof

Another simple proof shows that |δ(X)| is submodular.
Define a graph Guv = ({u, v}, {e}, w) with two nodes u, v and one
edge e = {u, v} with non-negative weight w(e) ∈ R+.
Cut weight function over those two nodes: w(δu,v(·)) has valuation:

w(δu,v(∅)) = w(δu,v({u, v})) = 0 (2.31)
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Thus, w(δu,v(·)) is submodular since

w(δu,v({u})) + w(δu,v({v})) ≥ w(δu,v({u, v})) + w(δu,v(∅))
(2.33)

General non-negative weighted graph G = (V,E,w), define w(δ(·)):

f(A) = w(δ(A)) =
∑

(u,v)∈E(G)

w(δu,v(A ∩ {u, v})) (2.34)

This is easily shown to be submodular using properties we will soon
see (namely, submodularity closed under summation and restriction).
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Undirected cut/flow is submodular: alternate proof

Another simple proof shows that |δ(X)| is submodular.
Define a graph Guv = ({u, v}, {e}, w) with two nodes u, v and one
edge e = {u, v} with non-negative weight w(e) ∈ R+.
Cut weight function over those two nodes: w(δu,v(·)) has valuation:
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(2.33)

General non-negative weighted graph G = (V,E,w), define w(δ(·)):

f(A) = w(δ(A)) =
∑

(u,v)∈E(G)

w(δu,v(A ∩ {u, v})) (2.34)

This is easily shown to be submodular using properties we will soon
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Undirected cut/flow is submodular: alternate proof

Another simple proof shows that |δ(X)| is submodular.
Define a graph Guv = ({u, v}, {e}, w) with two nodes u, v and one
edge e = {u, v} with non-negative weight w(e) ∈ R+.
Cut weight function over those two nodes: w(δu,v(·)) has valuation:

w(δu,v(∅)) = w(δu,v({u, v})) = 0 (2.31)

and

w(δu,v({u})) = w(δu,v({v})) = w ≥ 0 (2.32)

Thus, w(δu,v(·)) is submodular since

w(δu,v({u})) + w(δu,v({v})) ≥ w(δu,v({u, v})) + w(δu,v(∅))
(2.33)

General non-negative weighted graph G = (V,E,w), define w(δ(·)):

f(A) = w(δ(A)) =
∑

(u,v)∈E(G)

w(δu,v(A ∩ {u, v})) (2.34)

This is easily shown to be submodular using properties we will soon
see (namely, submodularity closed under summation and restriction).
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Undirected cut/flow is submodular: alternate proof

Another simple proof shows that |δ(X)| is submodular.
Define a graph Guv = ({u, v}, {e}, w) with two nodes u, v and one
edge e = {u, v} with non-negative weight w(e) ∈ R+.
Cut weight function over those two nodes: w(δu,v(·)) has valuation:

w(δu,v(∅)) = w(δu,v({u, v})) = 0 (2.31)

and

w(δu,v({u})) = w(δu,v({v})) = w ≥ 0 (2.32)

Thus, w(δu,v(·)) is submodular since

w(δu,v({u})) + w(δu,v({v})) ≥ w(δu,v({u, v})) + w(δu,v(∅))
(2.33)

General non-negative weighted graph G = (V,E,w), define w(δ(·)):

f(A) = w(δ(A)) =
∑

(u,v)∈E(G)

w(δu,v(A ∩ {u, v})) (2.34)

This is easily shown to be submodular using properties we will soon
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Undirected Neighbor function
cont.

X Y(a) (b)

(c)

(f )

(g)

(h)
(e)

(d)

Graphically, we can count and see that

Γ(X) = (a) + (c) + (f) + (g) + (d) (2.35)

Γ(Y ) = (b) + (c) + (e) + (h) + (d) (2.36)

Γ(X ∪ Y ) = (a) + (b) + (c) + (d) (2.37)

Γ(X ∩ Y ) = (c) + (g) + (h) (2.38)

so

|Γ(X)|+ |Γ(Y )| = (a) + (b) + 2(c) + 2(d) + (e) + (f) + (g) + (h)

≥ (a) + (b) + 2(c) + (d) + (g) + (h) = |Γ(X ∪ Y )|+ |Γ(X ∩ Y )|
(2.39)
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Undirected Neighbor functions

Therefore, the undirected cut function |δ(A)| and the neighbor function
|Γ(A)| of a graph G are both submodular.
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.

Let E(S) be the edges with both vertices in S ⊆ V (G). Then
|E(S)| (the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.
Recall |δ(S)|, is the set size of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut size function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|.

So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one
and prove it.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 2 - April 2nd, 2014 F44/55 (pg.112/184)



Motivation & Applications Basic Definitions Examples Graphs Other Examples

Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.
Let E(S) be the edges with both vertices in S ⊆ V (G). Then
|E(S)| (the interior edge function) is supermodular.
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S ⊆ V (G) is submodular (cut size function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|.

So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one
and prove it.
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.
Let E(S) be the edges with both vertices in S ⊆ V (G). Then
|E(S)| (the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.

Recall |δ(S)|, is the set size of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut size function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|.

So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one
and prove it.
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.
Let E(S) be the edges with both vertices in S ⊆ V (G). Then
|E(S)| (the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.
Recall |δ(S)|, is the set size of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut size function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|.

So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?
Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one
and prove it.
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.
Let E(S) be the edges with both vertices in S ⊆ V (G). Then
|E(S)| (the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
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I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|. So we can get a submodular function by
summing a submodular and a supermodular function.

If you had to
guess, is this always the case?
Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one
and prove it.
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Other graph functions that are submodular/supermodular
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|I(S)| = |E(S)|+ |δ(S)|. So we can get a submodular function by
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guess, is this always the case?

Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.
Let E(S) be the edges with both vertices in S ⊆ V (G). Then
|E(S)| (the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.
Recall |δ(S)|, is the set size of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut size function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?
Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one
and prove it.
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Other graph functions that are submodular/supermodular

Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).

Hence, if f : 2V → R is supermodular, then so is f̄ : 2V → R
defined as f̄(S) = f(V \ S).

Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+.

c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .

Then c(A) is supermodular. Intuition why: an edge is “more” (no
less) able to bridge separate components (and thus reduce the
number of conected components) when the edge is added in a
smaller context than when added in a larger context.

I.e., c(A+ a)− c(A) ≤ c(B + a)− c(B) with A ⊆ B ⊆ E \ {a}.
c̄(A) = c(E \A) is the number of connected components in G when
we remove A, and hence is also supermodular.
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Other graph functions that are submodular/supermodular

Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).

Hence, if f : 2V → R is supermodular, then so is f̄ : 2V → R
defined as f̄(S) = f(V \ S).

Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
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Other graph functions that are submodular/supermodular

Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).

Hence, if f : 2V → R is supermodular, then so is f̄ : 2V → R
defined as f̄(S) = f(V \ S).

Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+.

c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .

Then c(A) is supermodular. Intuition why: an edge is “more” (no
less) able to bridge separate components (and thus reduce the
number of conected components) when the edge is added in a
smaller context than when added in a larger context.

I.e., c(A+ a)− c(A) ≤ c(B + a)− c(B) with A ⊆ B ⊆ E \ {a}.
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Other graph functions that are submodular/supermodular

Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).

Hence, if f : 2V → R is supermodular, then so is f̄ : 2V → R
defined as f̄(S) = f(V \ S).

Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+.

c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .

Then c(A) is supermodular. Intuition why: an edge is “more” (no
less) able to bridge separate components (and thus reduce the
number of conected components) when the edge is added in a
smaller context than when added in a larger context.

I.e., c(A+ a)− c(A) ≤ c(B + a)− c(B) with A ⊆ B ⊆ E \ {a}.
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we remove A, and hence is also supermodular.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 2 - April 2nd, 2014 F45/55 (pg.123/184)



Motivation & Applications Basic Definitions Examples Graphs Other Examples

Other graph functions that are submodular/supermodular

Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).

Hence, if f : 2V → R is supermodular, then so is f̄ : 2V → R
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Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
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(V (G), A), with c : 2E → R+.

c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .

Then c(A) is supermodular. Intuition why: an edge is “more” (no
less) able to bridge separate components (and thus reduce the
number of conected components) when the edge is added in a
smaller context than when added in a larger context.

I.e., c(A+ a)− c(A) ≤ c(B + a)− c(B) with A ⊆ B ⊆ E \ {a}.

c̄(A) = c(E \A) is the number of connected components in G when
we remove A, and hence is also supermodular.
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Graph Strength

So c̄(A) = c(E \A) is the number of connected components in G
when we remove A, is supermodular.

Maximizing c̄(A) might seem as a goal for a network attacker —
many connected components means that many points in the network
have lost connectivity to many other points (unprotected network).

If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

Let G = (V,E,w) with w : E → R+ be a weighted graph with
non-negative weights.

For (u, v) = e ∈ E, let w(e) be a measure of the strength of the
connection between vertices u and v (strength meaning the difficulty
of cutting the edge e).
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Graph Strength

Then w(A) for A ⊆ E is a modular function

w(A) =
∑

e∈A
we (2.40)

so that w(E(G[S])) is the “internal strength” of the vertex set S.
Notation: S is a set of nodes, G[S] is the vertex-induced subgraph of G induced
by vertices S, E(G[S]) are the edges contained within this induced subgraph,
and w(E(G[S])) is the weight of these edges.

Suppose removing A shatters G into a graph with c̄(A) > 1
components — then w(A)/(c̄(A)− 1) is like the “effort per
achieved component” for a network attacker.
A form of graph strength can then be defined as the following:

strength(G,w) = min
A⊆E(G):c̄(A)>1

w(A)

c̄(A)− 1
(2.41)

Graph strength is like the minimum effort per component. An
attacker would use the argument of the min to choose which edges
to attack. A network designer would maximize, over G and/or w,
the graph strength, strength(G,w).
Since submodularity, problems have strongly-poly-time solutions.
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Matrix Rank functions

Let V , with |V | = m be an index set of a set of vectors in Rn for
some n (unrelated to m).

For a given set {v, v1, v2, . . . , vk}, it might or might not be possible
to find (αi)i such that:

xv =
k∑

i=1

αixvi (2.42)

If not, then xv is linearly independent of xv1 , . . . , xvk .

Let r(S) for S ⊆ V be the rank of the set of vectors S. Then r(·) is
a submodular function, and in fact is called a matric matroid rank
function.
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Example: Rank function of a matrix

Given n×m matrix X = (x1, x2, . . . , xm) with xi ∈ Rn for all i.
There are m length-n column vectors {xi}i

Let V = {1, 2, . . . ,m} be the set of column vector indices.

For any A ⊆ V , let r(A) be the rank of the column vectors indexed
by A.

r(A) is the dimensionality of the vector space spanned by the set of
vectors {xa}a∈A.

Thus, r(V ) is the rank of the matrix X.

Skip matrix rank example
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Example: Rank function of a matrix

Consider the following 4× 8 matrix, so V = {1, 2, 3, 4, 5, 6, 7, 8}.





1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5




=





1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |





Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪Ar) = 3, r(B ∪Br) = 3, r(A ∪Br) = 4, r(B ∪Ar) = 4.

r(A ∪B) = 4, r(A ∩B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪B) + r(A ∩B) = 5
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| | | | | | | |





Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
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Rank function of a matrix

Let A,B ⊆ V be two subsets of column indices.

The rank of the two sets unioned together A ∪B is no more than
the sum of the two individual ranks.
In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence, r(A) can be viewed as an area.

r(A) + r(B) ≥ r(A ∪ B)

If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if ∃ common span), then that area is
counted twice in r(A) + r(B), so the inequality will be strict.
Any function where the above inequality is true for all A,B ⊆ V is
called subadditive.
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Let A,B ⊆ V be two subsets of column indices.
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In Venn diagram, Let area correspond to dimensions spanned by
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Rank function of a matrix

Let A,B ⊆ V be two subsets of column indices.
The rank of the two sets unioned together A ∪B is no more than
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In Venn diagram, Let area correspond to dimensions spanned by
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Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (2.43)

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪B) = r(Ar) + r(C) + r(Br) (2.44)
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Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (2.43)

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪B) = r(Ar) + r(C) + r(Br) (2.44)
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Rank functions of a matrix

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar ) + 2r(C ) + r(Br )

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar ) +r(C ) + r(Br )

Thus, we have subadditivity: r(A) + r(B) ≥ r(A ∪B). Can we add
more to the r.h.s. and still have an inequality? Yes.
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Rank function of a matrix

Note, r(A ∩B) ≤ r(C). Why? Vectors indexed by A ∩B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C).

r(A ∩ B)≥r(C )

In short:

Common span (blue) is “more” (no less) than span of common
index (magenta).

More generally, common information (blue) is “more” (no less) than
information within common index (magenta).
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The Venn and Art of Submodularity

+r(A) + r(B) r(A ∪ B)

= r(Ar ) +r(C ) + r(Br )

≥
= r(A ∩ B)

r(A ∩ B)

= r(Ar ) + 2r(C ) + r(Br )

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
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