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Announcements

Welcome to the class!

Submodular Functions, Optimization, and Applications to Machine
Learning, EE596B.

Paccar 492.

Weekly Office Hours: Wednesdays, 3:30-4:30, 10 minutes after class
ends on Wednesdays.

Class web page is at our web page (http://j.ee.washington.
edu/~bilmes/classes/ee596b_spring_2014/)
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Directions to Paccar Hall from the EECS building

http://goo.gl/

maps/5P3dQ
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About

This course will serve as an introduction to submodular functions
including methods for their optimization, and how they have been (and
can be) applied in many application domains.
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Rough Outline

Introduction to submodular functions, including definitions,
real-world and contrived examples of submodular functions,
properties, operations that preserve submodularity, submodular
variants and special submodular functions, and computational
properties.

Background on submodular functions, including a brief overview of
the theory of matroids and lattices.

Polyhedral properties of submodular functions

The Lovász extension of submodular functions. The Choquet
integral.

Submodular maximization algorithms under simple constraints,
submodular cover problems, greedy algorithms, approximation
guarantees
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Rough Outline (cont. II)

Submodular minimization algorithms, a history of submodular
minimization, including both numerical and combinatorial
algorithms, computational properties of these algorithms, and
descriptions of both known results and currently open problems in
this area.

Submodular flow problems, the principle partition of a submodular
function and its variants.

Constrained optimization problems with submodular functions,
including maximization and minimization problems with various
constraints. An overview of recent problems addressed in the
community.

Applications of submodularity in computer vision, constraint
satisfaction, game theory, information theory, norms, natural
language processing, graphical models, and machine learning
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Classic References

Jack Edmonds’s paper “Submodular Functions, Matroids, and
Certain Polyhedra” from 1970.

Nemhauser, Wolsey, Fisher, “A Analysis of Approximations for
Maximizing Submodular Set Functions-I”, 1978

Lovász’s paper, “Submodular functions and convexity”, from 1983.
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Useful Books

Fujishige, “Submodular Functions and Optimization”, 2005

Narayanan, “Submodular Functions and Electrical Networks”, 1997

Welsh, “Matroid Theory”, 1975.

Oxley, “Matroid Theory”, 1992 (and 2011).

Lawler, “Combinatorial Optimization: Networks and Matroids”,
1976.

Schrijver, “Combinatorial Optimization”, 2003

Gruenbaum, “Convex Polytopes, 2nd Ed”, 2003.

Additional readings that will be announced here.
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Recent online material (some with an ML slant)

Previous version of this class http:
//j.ee.washington.edu/~bilmes/classes/ee596a_fall_2012/.
Stefanie Jegelka & Andreas Krause’s 2013 ICML tutorial
http://techtalks.tv/talks/

submodularity-in-machine-learning-new-directions-part-i/

58125/

NIPS, 2013 tutorial on submodularity
http://melodi.ee.washington.edu/~bilmes/pgs/

b2hd-bilmes2013-nips-tutorial.html and
http://youtu.be/c4rBof38nKQ

Andreas Krause’s web page http://submodularity.org.
Francis Bach’s updated 2013 text. http://hal.archives-ouvertes.
fr/docs/00/87/06/09/PDF/submodular_fot_revised_hal.pdf

Tom McCormick’s overview paper on submodular minimization http:

//people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

Georgia Tech’s 2012 workshop on submodularity: http:
//www.arc.gatech.edu/events/arc-submodularity-workshop
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Facts about the class

Prerequisites: ideally knowledge in probability, statistics, convex
optimization, and combinatorial optimization these will be reviewed
as necessary. The course is open to students in all UW departments.
Any questions, please contact me.

Text: We will be drawing from the book by Satoru Fujishige entitled
”Submodular Functions and Optimization” 2nd Edition, 2005, but
we will also be reading research papers that will be posted here on
this web page, especially for some of the application areas.

Grades and Assignments: Grades will be based on a combination of
a final project (45%), homeworks (55%). There will be between 3-6
homeworks during the quarter.

Final project: The final project will consist of a 4-page paper
(conference style) and a final project presentation. The project must
involve using/dealing mathematically with submodularity in some
way or another.
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Facts about the class

Homework/midterm must be submitted electronically using our
assignment dropbox
(https://canvas.uw.edu/courses/895956/assignments). PDF
submissions only please. Photos of neatly hand written solutions,
combined into one PDF, are fine

Lecture slides - are being prepared as we speak. I will try to have
them up on the web page the night before each class. I will not only
draw from the book but other sources which will be listed at the end
of each set of slides.

Slides from previous version of this class are at http://j.ee.
washington.edu/~bilmes/classes/ee596a_fall_2012/.
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Other logistics

Almost all equations will have numbers.

Equations will be numbered with lecture number, and number
within lecture in the form (!.j) where ! is the lecture number and j
is the jth equation in lecture !. For example,

f(A) = f(V \A) (1.1)

By the way V \A ≡ {v ∈ V : v /∈ A} is set subtraction, sometimes
written as V −A.
Theorems, Lemmas, postulates, etc. will be numbered with (!.s.j)
where ! is the lecture number, s is the section number, and j is the
order within that section.

Theorem 1.1.1 (foo’s theorem)

foo

Exception to these rules is in the review sections, where theorems,
equation, etc. (even if repeated) will have new reference numbers.
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Cumulative Outstanding Reading

Read chapter 1 from Fujishige book.
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Announcements, Assignments, and Reminders

Please do use our discussion board (https:
//canvas.uw.edu/courses/895956/discussion_topics) for all
questions, comments, so that all will benefit from them being
answered.
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Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &
Basic Definitions

L2:

L3:

L4:

L5:

L6:

L7:

L8:

L9:

L10:

L11:

L12:

L13:

L14:

L15:

L16:

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Review

This is where each day we will be reviewing previous lecture material.
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Definition Set functions Motivation & Applications Basic Definitions Examples

Submodular Definitions

Definition 1.3.1 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (1.2)

An alternate and (as we see in lecture 3) equivalent definition is:

Definition 1.3.2 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (1.3)

This means that the incremental “value”, “gain”, or “cost” of v
decreases (diminishes) as the context in which v is considered grows from
A to B.
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Sets and set functions

We are given a finite “ground” set of objects:

V =











Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f(V ) = 6
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Sets and set functions

Subset A ⊆ V of objects:

A =











Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f(A) = 1
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Sets and set functions

Subset B ⊆ V of objects:

B =











Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f(B) = 6
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Discrete Optimization Problems

We are given a finite set of objects V of size n = |V |.

We consider subsets of V . There are 2n such subsets (denoted 2V )

We have a function f : 2V → R that judges the quality (or value, or
cost, or etc.) of each subset.

We may be interested only in a subset of the set of possible subsets,
namely S ⊆ 2V . E.g., S = {S ⊆ V : |S| ≤ k}. The set of sets S
might or might not itself be a function of f (e.g.,
S = {S ⊆ V : f(S) ≤ α}.
A general discrete optimization problem we consider here is:

maximize
S⊆2V

f(S)

subject to S ∈ S (1.4)

Alternatively, we may minimize rather than maximize.
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Set functions are pseudo-Boolean functions

Any set A ⊆ V can be represented as a binary vector
x ∈ {0, 1}V (a “bit vector” representation of a set).

The characteristic vector of a set is given by 1A ∈ {0, 1}V where for
all v ∈ V , we have:

1A(v) =

{
1 if v ∈ A

0 else
(1.5)

It is sometimes useful to go back and forth between X and

x(X)
∆
= 1X .

f(x) : {0, 1}V → R is a pseudo-Boolean function, and submodular
functions are a special case.
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Discrete Optimization Problems

Ignoring how complex and general this problem can be for the
moment, lets consider some possible applications.

In the rest of this section of slides, we will see many seemingly
different applications that, ultimately, you will all hopefully see are
strongly related to submodularity.

We’ll see, submodularity is as common and natural for discrete
problems as is convexity for continuous problems.
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Example Discrete Optimization Problems

Combinatorial Problems: e.g., set cover, max k coverage, vertex
cover, edge cover, graph cut problems.
Operations Research: facility location (uncapacited)
Sensor placement
Information: Information gain and feature selection, information
theory
Mathematics: e.g., monge matrices
Networks: Social networks, influence, viral marketing, information
cascades, diffusion networks
Graphical models: tree distributions, factors, and image
segmentation
Diversity and its models
NLP: Natural language processing: document summarization, web
search, information retrieval
ML: Machine Learning: active/semi-supervised learning
Economics: markets, economies of scale
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Set Cover and Maximum Coverage

We are given a finite set V of n elements and a set of subsets
V = {V1, V2, . . . , Vm} of m subsets of V , so that Vi ⊆ V and⋃

i Vi = V .

The goal of minimum set cover is to choose the smallest subset
A ⊆ [m] ! {1, . . . ,m} such that

⋃
a∈A Va = V .

Maximum k cover: The goal in maximum coverage is, given an
integer k ≤ m, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [m]
such that |

⋃k
i=1 Vai | is maximized.

Both Set cover and maximum coverage are well known to be
NP-hard, but have a fast greedy approximation algorithm.
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a∈A Va = V .

Maximum k cover: The goal in maximum coverage is, given an
integer k ≤ m, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [m]
such that |

⋃k
i=1 Vai | is maximized.

Both Set cover and maximum coverage are well known to be
NP-hard, but have a fast greedy approximation algorithm.
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Other Covers

Definition 1.5.1 (vertex cover)

A vertex cover (an “vertex-based cover of edges”) in graph G = (V,E) is
a set S ⊆ V (G) of vertices such that every edge in G is incident to at
least one vertex in S.

Let I(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S ⊆ V subject to I(S) = |E|.

Definition 1.5.2 (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V,E) is
a set F ⊆ E(G) of edges such that every vertex in G is incident to at
least one edge in F .

Let |V |(F ) be the number of vertices incident to edge set F . Then
we wish to find the smallest set F ⊆ E subject to |V |(F ) = |V |.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 1 - Mar 31st, 2014 F24/74 (pg.41/203)



Definition Set functions Motivation & Applications Basic Definitions Examples

Graph Cut Problems

Minimum cut: Given a graph G = (V,E), find a set of vertices
S ⊆ V that minimize the cut (set of edges) between S and V \ S.

Maximum cut: Given a graph G = (V,E), find a set of vertices
S ⊆ V that minimize the cut (set of edges) between S and V \ S.
Let f : 2V → R+ be the cut function, namely for any given set of
nodes X ⊆ V , f(X) measures the number of edges between nodes
X and V \X.

Weighted versions, where rather than count, we sum the
(non-negative) weights of the edges of a cut.

Many examples of this, we will see more later.
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Facility/Plant Location (uncapacitated)

Core problem in operations research and strong early motivation for
submodular functions.
Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.
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Facility/Plant Location (uncapacitated)

Let F = {1, . . . , f} be a set of possible factory/plant locations for
facilities to be built.

S = {1, . . . , s} is a set of sites needing to be serviced (e.g., cities,
clients).

Let cij be the “benefit” (e.g., 1/cij is the cost) of servicing site i
with facility location j.

Let mj be the benefit (e.g., either 1/mj is the cost or −mj is the
cost) to build a plant at location j.

Each site needs to be serviced by only one plant but no less than
one.

Define f(A) as the “delivery benefit” plus “construction benefit”
when the locations A ⊆ F are to be constructed.

We can define f(A) =
∑

j∈Amj +
∑

i∈F maxj∈A cij .

Goal is to find a set A that maximizes f(A) (the benefit) placing a
bound on the number of plants A (e.g., |A| ≤ k).
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Sensor Placement

Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria
or other environmental contaminant, etc.).

We have a function f(S) that measures the “coverage” of any given
set S of sensor placement decisions. Then f(V ) is maximum
possible coverage.

One possible goal: choose smallest set S such that f(S) = αf(V )
with 0 < α ≤ 1.

Another possible goal: choose size at most k set S such that f(S) is
maximized.

Environment could be a floor of a building, water network,
monitored ecological preservation.
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Sensor Placement within Buildings

An example of a room layout. Should be possible to determine
temperature at all points in the room. Sensors cannot sense beyond
wall (thick black line) boundaries.
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Sensor Placement within Buildings

Example sensor placement using small range cheap sensors (located
at red dots).
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Sensor Placement within Buildings

Example sensor placement using longer range expensive sensors
(located at red dots).
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Sensor Placement within Buildings

Example sensor placement using mixed range sensors (located at red
dots).
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Information Gain and Feature Selection

Task: pattern recognition based on (at most) features XV to predict
random variable Y . True model is p(Y,XV ), where V is a finite set
of feature indices.

Given subset of features A ⊆ V , prediction based on p(y|xA).
Goal: choose the smallest set of features that retains accuracy.

Information gain is defined as:

f(A) = I(Y ;XA) = H(Y )−H(Y |XA) = H(XA)−H(XA|Y )
(1.6)

Goal is to find a subset A of size k that has high information gain.

Applicable not only in pattern recognition, but in the sensor
coverage problem as well, where Y is whatever question we wish to
ask about the room.
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Information Theory: Block Coding

Given a set of random variables {Xi}i∈V indexed by set V , how do
we partition them so that we can best block-code them within each
block.

I.e., how do we form S ⊆ V such that I(XS ;XV \S) is as small as
possible, where I(XA;XB) is the mutual information between
random variables XA and XB, i.e.,

I(XA;XB) = H(XA) +H(XB)−H(XA, XB) (1.7)

and H(XA) = −
∑

xA
p(xA) log p(xA) is the joint entropy of the set

XA of random variables.
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Information Theory: Networks Communication

X1, Y1 X2, Y2

X3, Y3

X4, Y4. . .

Xm, Ym

A network of senders/receivers

Each sender Xi is trying to
communicate simultaneously
with each receiver Yi (i.e., for
all i, Xi is sending to {Yi}i
The Xi are not necessarily
independent.

Communication rates from i to j are R(i→j) to send message

W (i→j) ∈
{
1, 2, . . . , 2nR

(i→j)
}
.

Goal: necessary and sufficient conditions for achievability as we’ve
done for other channels.
I.e., can we find functions f such that any rates must satisfy

∀S ⊆ V,
∑

i∈S,j∈V \S

R(i→j) ≤ f(S) (1.8)
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Monge Matrices

m× n matrices C = [cij ]ij are called Monge matrices if they satisfy
the Monge property, namely:

cij + crs ≤ cis + crj (1.9)

for all 1 ≤ i < r ≤ m and 1 ≤ j < s ≤ n.

Consider four elements of the matrix:

Useful for speeding up certain dynamic programming problems.
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Monge Matrices

Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances
cij satisfy Monge property (or quadrangle inequality).
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A model of Influence in Social Networks

Given a graph G = (V,E), each v ∈ V corresponds to a person, to
each v we have an activation function fv : 2V → [0, 1] dependent
only on its neighbors. I.e., fv(A) = fv(A ∩ Γ(v)).

Goal - Viral Marketing: find a small subset S ⊆ V of individuals to
directly influence, and thus indirectly influence the greatest number
of possible other individuals (via the social network G).

We define a function f : 2V → Z+ that models the ultimate
influence of an initial set S of nodes based on the following iterative
process: At each step, a given set of nodes S are activated, and we
activate new nodes v ∈ V \ S if fv(S) ≥ U [0, 1] (where U [0, 1] is a
uniform random number between 0 and 1).

It can be shown that for many fv (including simple linear functions,
and where fv is submodular itself) that f is submodular.
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The value of a friend

Let V be a group of individuals. How valuable to you is a given
friend v ∈ V ?

It depends on how many friends you have.

Given a group of friends S ⊆ V , can you valuate them with a
function f(S) an how?

Let f(S) be the value of the set of friends S. Is submodular or
supermodular a good model?
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Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

How to find the most influential sources, the ones that often set off
cascades, which are like large “waves” of information flow?
There might be only one seed source (shown below) or many.
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Diffusion Networks

Information propagation: when blogs or news stories break, and
creates an information cascade over multiple other
blogs/newspapers/magazines.

Viral marketing: What is the pattern of trendsetters that cause an
individual to purchase a product?

Epidemiology: who got sick from whom, and what is the network of
such links?

How can we infer the connectivity of a network (of memes, purchase
decisions, virusus, etc.) based only on diffusion traces (the time that
each node is “infected”)? How to find the most likely tree?
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Graphical Models: Tree Distributions

Family of probability distributions p : {0, 1}V → [0, 1]:

p(x) =
1

Z
exp(f(x)) (1.10)

Given a graphical model G = (V,E) and a family of probability
distributions p ∈ F(G,M) that factor w.r.t. that distribution. I.e.,
f(x) =

∑
c∈C fc(xc) where C are a set of cliques.

Find the closest distribution pt to p subject to pt factoring w.r.t.
some tree T = (V, F ), i.e., pt ∈ F(T,M).
I.e., optimization problem

minimize
pt∈F(G,M)

D(p||pt)

subject to pt ∈ F(T,M).

T = (V, F ) is a tree (1.11)

Discrete problem: Choose the right subset of edges from E that
make up a tree (i.e., find a spanning tree of G of best quality).
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Graphical Models: Image Segmentation

an image needing to be segmented.
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Graphical Models: Image Segmentation

labeled data in the form of some pixels being marked foreground
(red). and others being marked background (blue).
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Graphical Models: Image Segmentation

the foreground is removed from the background.
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Markov random fields and image segmentation

Markov random field

log p(x) ∝
∑

v∈V (G)

ev(xv) +
∑

(i,j)∈E(G)

eij(xi, xj) (1.12)

When G is a 2D grid graph, we have
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Markov random fields and image segmentation

We can create auxiliary graph that involves two new nodes s and t
and connect each of s and t to all of the original nodes.

I.e.,Ga = (V ∪ {s, t}, E + ∪v∈V ((s, v) ∪ (v, t))).
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Markov random fields and image segmentation

Original Graph: log p(x) ∝
∑

v∈V (G) ev(xv) +
∑

(i,j)∈E(G) eij(xi, xj)
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Markov random fields and image segmentation

Augmented graph-cut graph.
The edge weights of graph are derived
from {ev}v∈V and {eij}(i,j)∈E(G)

t

s
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Markov random fields and image segmentation

Augmented graph-cut graph
with indicated cut corresponding
to particular vector x̄ ∈ {0, 1}n.
Each cut x̄ has a score
corresponding to p(x̄)

t

s
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Other applications in or related to computer vision

Image denoising, total variation, structured convex norms.

g(w) =

N∑

i=2

|wi − wi−1| (1.13)

(from Rodriguez, 2009)

Multi-label graph cuts

graphical model inference, computing the Viterbi (or the MPE or
the MAP) assignment of a set of random variables.

Clustering of data sets.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 1 - Mar 31st, 2014 F44/74 (pg.111/203)



Definition Set functions Motivation & Applications Basic Definitions Examples

Diversity Functions

Diverse web search. Given search term (e.g., “jaguar”) but no other
information, one probably does not want only articles about cars.

Given a set V of of items, how do we choose a subset S ⊆ V that is
as diverse as possible, with perhaps constraints on S such as its size.

How do we choose the smallest set S that maintains a given quality
of diversity?

Goal of diversity: ensure proper representation in chosen set that,
say otherwise in a random sample, could lead to poor representation
of normally underrepresented groups.
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Extractive Document Summarization

The figure below represents the sentences of a document

The summary on the left is a subset of the summary on the right.

Consider adding a new (blue) sentence to each of the two
summaries.

The marginal (incremental) benefit of adding the new (blue)
sentence to the smaller (left) summary is no more than the marginal
benefit of adding the new sentence to the larger (right) summary.

diminishing returns ↔ submodularity
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Web search and information retrieval

A web search is a form of summarization based on query.

Goal of a web search engine is to produce a ranked list of web pages
that, conditioned on the text query entered, summarizes the most
important links on the web.

Information retrieval (the science of automatically acquiring
information), book and music recommendation systems —

Overall goal: user should quickly find information that is informative,
concise, accurate, relevant (to the user’s needs), and comprehensive.
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Active Learning and Semi-Supervised Learning

Given training data DV = {(xi, yi)}i∈V of (x, y) pairs where x is a
query (data item) and y is an answer (label), goal is to learn a good
mapping y = h(x).

Often, getting y is time-consuming, expensive, and error prone
(manual transcription, Amazon Turk, etc.)

Batch active learning: choose a subset S ⊂ V so that only the
labels {yi}i∈S should be acquired.

Adaptive active learning: choose a policy whereby we choose an
i1 ∈ V , get the label yi1 , choose another i2 ∈ V , get label yi2 ,where
each chose can be based on previously acquired labels.

Semi-supervised (transductive) learning: Once we have {yi}i∈S ,
infer the remaining labels {yi}i∈V \S .
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Markets: Supply Side Economies of scale

Economies of Scale: Many goods and services can be produced at a
much lower per-unit cost only if they are produced in very large
quantities.

The profit margin for producing a unit of goods improved as more of
those goods are created.

If you already make a good, making a similar good is easier than if
you start from scratch (e.g., Apple making both iPod and iPhone).

An argument in favor of free trade is that it opens up larger markets
to firms in (especially otherwise small markets), thereby enabling
better economies of scale, and hence greater efficiency (lower costs
and resources per unit of good produced).
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Supply Side Economies of scale: Cost of manufacturing a
set of items

Let V be a set of possible items that a company might possibly wish
to manufacture, and let f(S) for S ⊆ V be the cost to that
company to manufacture subset S.

Ex: V might be colors of paint in a paint manufacturer: green, red,
blue, yellow, white, etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)− f(blue, yellow) <= f(green, blue)− f(blue)
(1.14)

So a submodular function would be a good model.
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Demand side Economies of Scale: Network Externalities

consumers of a good derive positive value when size of the market
increases.

the value of a network to a user depends on the number of other
users in that network.

Hence, network externalities (Katz & Shapiro 1986) are a form of
“demand” economies of scale

“value” in this case can be seen as a “willingness-to-pay” for the
service (WTP)

WTP tends to increase but then saturate (like a logistic function)

Given network externalities, a consumer in today’s market cares also
about the future success of the product and competing products.

If the good is durable (or there is human capital investment), the
total benefits derived from a good will depend on the number of
consumers who adopt compatible products in the future.
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Positive Network Externalities

railroad - standard rail format and shared access

The telephone, who wants to talk by phone only to oneself?
the internet, more valuable per person the more people use it.
ebooks (the more people comment, the better it gets)
social network sites: facebook more valuable with everyone online
online education, Coursera, edX, etc. – with many people
simultaneously taking a class, all gain due to richer peer discussions
due to greater pool of well matched study groups, more
simultaneous similar questions/problems that are asked, leading to
more efficient learning.
Software, Microsoft office, smartphone apps: more people use it
more people report bugs, help with problems, software gets better
for every user.
wikipedia
any widely used standard (job training now is useful in the future)
Concepts like the “tipping point”, and “winner take all” markets.
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Other Network Externalities

No Network Externalities

food/drink - (should be) independent of how many others are eating
the type of food.

Music - your enjoyment should be independent of others’ enjoyment.

Negative Network Externalities

clothing

costumes
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Optimization Problem Involving Network Externalities

(From Mirrokni, Roch, Sundararajan 2012): Let V be a set of users.

Let vi(S) be the value that user i has for a good if S ⊆ V already
own the good — e.g. vi(S) = ωi + fi(

∑
j∈S wij) where ωi is

inherent value, and fi might be a concave function, and wij is now
important j ∈ S is to i (e.g., a network).

Given price p for good, user i buys good if vi(S) ≥ p.

We choose initial price p and initial set of users A ⊆ V who get the
good for free.

Define S1 = {i /∈ A : vi(A) ≥ p} initial set of buyers.

S2 = {i /∈ A ∪ S1 : vi(A ∪ S1) ≥ p}.
This starts a cascade. Let Sk = {∪j<kSj ∪A|vj(∪j<kSj ∪A) ≥ p},
and let Sk∗ be the saturation point, lowest value of k such that
Sk = Sk+1

Goal: find A and p to maximize p× |Sk∗ |.
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own the good — e.g. vi(S) = ωi + fi(

∑
j∈S wij) where ωi is

inherent value, and fi might be a concave function, and wij is now
important j ∈ S is to i (e.g., a network).

Given price p for good, user i buys good if vi(S) ≥ p.

We choose initial price p and initial set of users A ⊆ V who get the
good for free.

Define S1 = {i /∈ A : vi(A) ≥ p} initial set of buyers.

S2 = {i /∈ A ∪ S1 : vi(A ∪ S1) ≥ p}.
This starts a cascade. Let Sk = {∪j<kSj ∪A|vj(∪j<kSj ∪A) ≥ p},
and let Sk∗ be the saturation point, lowest value of k such that
Sk = Sk+1

Goal: find A and p to maximize p× |Sk∗ |.
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Anecdote

From David Brooks, NYTs column, March 28th, 2011 on “Tools for
Thinking”. In response to Steven Pinker (Harvard) asking a number of
people “What scientific concept would improve everybody’s cognitive
toolkit?”

Emergent systems are ones in which many different elements
interact. The pattern of interaction then produces a new
element that is greater than the sum of the parts, which then
exercises a top-down influence on the constituent elements.
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Submodular Motivation Recap

Given a set of objects V = {v1, . . . , vn} and a function f : 2V → R
that returns a real value for any subset S ⊆ V .

Suppose we are interested in finding the subset that either
maximizes or minimizes the function, e.g., argmaxS⊆V f(S),
possibly subject to some constraints.

In general, this problem has exponential time complexity.

Example: f might correspond to the value (e.g., information gain)
of a set of sensor locations in an environment, and we wish to find
the best set S ⊆ V of sensors locations given a fixed upper limit on
the number of sensors |S|.
In many cases (such as above) f has properties that make its
optimization tractable to either exactly or approximately compute.

One such property is submodularity.
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Submodular Definitions

Definition 1.6.1 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (1.2)

An alternate and (as we see in lecture 3) equivalent definition is:

Definition 1.6.2 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (1.3)

This means that the incremental “value”, “gain”, or “cost” of v
decreases (diminishes) as the context in which v is considered grows from
A to B.
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Subadditive Definitions

Definition 1.6.1 (subadditive)

A function f : 2V → R is subadditive if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) (1.15)

This means that the “whole” is less than the sum of the parts.
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Supermodular Definitions

Definition 1.6.2 (supermodular convex)

A function f : 2V → R is supermodular if for any A,B ⊆ V , we have
that:

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B) (1.16)

An alternate and equivalent definition is:

Definition 1.6.3 (increasing returns)

A function f : 2V → R is supermodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≤ f(B ∪ {v})− f(B) (1.17)

The incremental “value”, “gain”, or “cost” of v increases as the context
in which v is considered grows from A to B.
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Submodular vs. Supermodular

Submodular and supermodular functions are closely related.

In fact, f is submodular iff −f is supermodular.
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Superadditive Definitions

Definition 1.6.4 (superadditive)

A function f : 2V → R is superadditive if for any A,B ⊆ V , we have
that:

f(A) + f(B) ≤ f(A ∪B) (1.18)

This means that the “whole” is greater than the sum of the parts.
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Modular Definitions

Definition 1.6.5 (modular)

A function that is both submodular and supermodular is called modular

If f is a modular function, than for any A,B ⊆ V , we have

f(A) + f(B) = f(A ∩B) + f(A ∪B) (1.19)

Modular functions have no interaction, and have value based only on
singleton values.

Proposition 1.6.6

If f is modular, it may be written as

f(A) = f(∅) +
∑

a∈A

(
f({a})− f(∅)

)
(1.20)
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Modular Definitions

Proof.

We inductively construct the value for A = {a1, a2, . . . , ak}.

f(a1) + f(a2) = f(a1, a2) + f(∅) (1.21)

implies f(a1, a2) = f(a1)− f(∅) + f(a2)− f(∅) + f(∅) (1.22)

then

f(a1, a2) + f(a3) = f(a1, a2, a3) + f(∅) (1.23)

implies f(a1, a2, a3) = f(a1, a2)− f(∅) + f(a3)− f(∅) + f(∅) (1.24)

= f(∅) +
3∑

i=1

f(ai)− f(∅) (1.25)
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Complement function

Given a function f : 2V → R, we can find a complement function
f̄ : 2V → R as f̄(A) = f(V \A) for any A.

Proposition 1.6.7

f̄ is submodular if f is submodular.

Proof.

f̄(A) + f̄(B) ≥ f̄(A ∪B) + f̄(A ∩B) (1.26)

follows from

f(V \A) + f(V \B) ≥ f(V \ (A ∪B)) + f(V \ (A ∩B)) (1.27)

which is true because V \ (A ∪B) = (V \A) ∩ (V \B) and
V \ (A ∩B) = (V \A) ∪ (V \B).
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Submodularity

Submodular functions have a long history in economics, game
theory, combinatorial optimization, electrical networks, and
operations research.

They are gaining importance in machine learning as well (one of our
main motivations for offering this course).

Arbitrary set functions are hopelessly difficult to optimize, while the
minimum of submodular functions can be found in polynomial time,
and the maximum can be constant-factor approximated in low-order
polynomial time.

Submodular functions share properties in common with both convex
and concave functions.
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Attractions of Convex Functions

Why do we like Convex Functions? (Quoting Lovász 1983):

1 Convex functions occur in many mathematical models in economy,
engineering, and other sciences. Convexity is a very natural property
of various functions and domains occurring in such models; quite
often the only non-trivial property which can be stated in general.

2 Convexity is preserved under many natural operations and
transformations, and thereby the effective range of results can be
extended, elegant proof techniques can be developed as well as
unforeseen applications of certain results can be given.

3 Convex functions and domains exhibit sufficient structure so that a
mathematically beautiful and practically useful theory can be
developed.

4 There are theoretically and practically (reasonably) efficient methods
to find the minimum of a convex function.
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Attractions of Submodular Functions

In this course, we wish to demonstrate that submodular functions also
possess attractions of these four sorts as well.
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Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls,
f(S) counts the number of distinct colors.

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).

Thus, f is submodular.
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Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls,
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Initial value: 3 (colors in urn).
New value with added blue ball: 3
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Ex. Submodular: Consumer Costs of Living

Consumer costs are very often submodular.
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Ex. Submodular: Consumer Costs of Living

Consumer costs are very often submodular. For example:

f ( ) ≥ f ( ) + f ( )f ( )+
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Ex. Submodular: Consumer Costs of Living

Consumer costs are very often submodular. For example:

f ( ) ≥ f ( ) + f ( )f ( )+

Rearranging terms, we can see this as diminishing returns:
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Ex. Submodular: Consumer Costs of Living

Consumer costs are very often submodular. For example:

f ( ) ≥ f ( ) + f ( )f ( )+

Rearranging terms, we can see this as diminishing returns:

f ( ) f ( ) ≥ f ( ) f ( )

This is very common: The additional cost of a coke is, say, free if
you add it to fries and a hamburger, but when added just to an
order of fries, the coke is not free.
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Area of the union of areas indexed by A

Let V be a set of indices, and each v ∈ V indexes a given sub-area
of some region. Let area(v) be the area corresponding to item v.

Let f(S) =
⋃

s∈S area(s) be the union of the areas indexed by
elements in A.

Then f(S) is submodular.
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Area of the union of areas indexed by A

Union of areas of elements of A is given by:

f(A) = f({a1, a2, a3, a4})
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Area of the union of areas indexed by A

Area of A along with with v:

f(A ∪ {v}) = f({a1, a2, a3, a4} ∪ {v})
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Area of the union of areas indexed by A

Gain (value) of v in context of A:

f(A ∪ {v})− f(A) = f({v})

We get full value f({v}) in this case since the area of v has no overlap
with that of A.
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Area of the union of areas indexed by A

Area of A once again.

f(A) = f({a1, a2, a3, a4})
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Area of the union of areas indexed by A

Union of areas of elements of B ⊃ A, where v is not included:

f(B) where v /∈ B and where A ⊆ B
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Area of the union of areas indexed by A

Area of B now also including v:

f(B ∪ {v})
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Area of the union of areas indexed by A

Incremental value of v in the context of B ⊃ A.

f(B ∪ {v})− f(B) < f({v}) = f(A ∪ {v})− f(A)

So benefit of v in the context of A is greater than the benefit of v in the
context of B ⊇ A.
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Example Submodular: Entropy from Information Theory

Entropy is submodular. Let V be the index set of a set of random
variables, then the function

f(A) = H(XA) = −
∑

xA

p(xA) log p(xA) (1.28)

is submodular.

Proof: conditioning reduces entropy. With A ⊆ B and v /∈ B,

H(Xv|XB) = H(XB+v)−H(XB) (1.29)

≤ H(XA+v)−H(XA) = H(Xv|XA) (1.30)
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Example Submodular: Entropy from Information Theory

Alternate Proof: Conditional mutual Information is always non-negative.

Given A,B,C ⊆ V , consider conditional mutual information quantity:

I(XA\B;XB\A|XA∩B) =
∑

xA∪B

p(xA∪B) log
p(xA\B, xB\A|xA∩B)

p(xA\B|xA∩B)p(xB\A|xA∩B)

=
∑

xA∪B

p(xA∪B) log
p(xA∪B)p(xA∩B)

p(xA)p(xB)
≥ 0

(1.31)

then

I(XA\B;XB\A|XA∩B)

= H(XA) +H(XB)−H(XA∪B)−H(XA∩B) ≥ 0 (1.32)

so entropy satisfies

H(XA) +H(XB) ≥ H(XA∪B) +H(XA∩B) (1.33)
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Example Submodular: Mutual Information

Also, symmetric mutual information is submodular,

f(A) = I(XA;XV \A) = H(XA) +H(XV \A)−H(XV ) (1.34)

Note that f(A) = H(XA) and f̄(A) = H(XV \A), and adding
submodular functions preserves submodularity (which we will see
quite soon).
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