

Logistics

Cumulative Outstanding Reading

- Good references for today: Schrijver-2003, Oxley-1992/2011, Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969, Choquet-1955, Grabisch/Marichal/Mesiar/Pap "Aggregation Functions", Lovász-1983, Bach-2011.
- Read Tom McCormick's overview paper on SFM http://people. commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
- Read chapters 1 4 from Fujishige book.
- Matroid properties http: //www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf
- Read lecture 14 slides on lattice theory at our web page (http://j. ee.washington.edu/~bilmes/classes/ee596b_spring_2014/)
- Wolfe "Finding the Nearest Point in a Polytope", 1976.
- Fujishige & Isotani, "A Submodular Function Minimization Algorithm Based on the Minimum-Norm Base", 2009.

F3/38 (pg.3/38)

Logistics

Sources for Today's Lecture

- "Submodular Function Maximization", Krause and Golovin.
- Chekuri, Vondrak, Zenklusen, "Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes", 2011 (a recent paper (appeared yesterday) that, among other things, has a nice up-to-date summary on all the results on submodular max).
- Minoux, "Accelerated Greedy Algorithms for Maximizing Submodular Set Functions", 1977.
- Feige, Mirrokni, Vondrak, "Maximizing non-monotone submodular functions", 2007.
- Fujishige, "Submodular Functions and Optimization", 2005.
- Fujishige, "Submodular Systems and Related Topics", 1984.
- Fisher, Nemhauser, Wolsey, "An Analysis of Approximations for Maximizing Submodular Set Functions - II", 1978.
- Lin & Bilmes, "A Class Of Submodular Functions for Document Summarization", 2011.

Prof. Jeff Bilmes

Other readings
J. Vondrak, "Submodularity and curvature: the optimal algorithm" in RIMS Kokyuroku Bessatsu B23, Kyoto, 2010.
M. Conforti and G. Cornuéjols. Submodular set functions, matroids

EE596b/Spring 2014/Submodularity - Lecture 19 - June 4th, 2014

and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem. Discrete Applied Math, 7(3):251-274, 1984.

 L1 (3/31): Motivation, Applications, & Basic Definitions L2: (4/2): Applications, Basic Definitions, Properties L3: More examples and properties (e.g., closure properties), and examples, spanning trees L4: proofs of equivalent definitions, independence, start matroids L5: matroids, basic definitions and examples L6: More on matroids, System of Distinct Reps, Transversal, Transversal, Matroid and representation L7: Dual Matroids, other matroid properties, Combinatorial Geometries, Matroid Polytopes, L9: From Matroid Polytopes to Polymatroids. L10: Polymatroids and Submodularition L11: L0: Polymatroids and Submodularition L12: L12: polymatroids and Submodularition L13: Supp. Base polytope, polymatroids and entropic Venn diagrams, exchange capacity, L14: provide the minimum norm point yields min of submodular function, and the lattice of minimizers of a submodular function, and the lattice of minimizers of a submodular function, and SFM. L11: L12: Polymatroids and Submodularition L13: L11: L13: L13: L13: L13: L13: L13:	acc Dood Man		
 L1 (3/31): Motivation, Applications, & Basic Definitions L2: (4/2): Applications, Basic Definitions, Properties L3: More examples and properties (e.g., closure properties), and examples, spanning trees L4: proofs of equivalent definitions, independence, start matroids L5: matroids, basic definitions and examples L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid and representation L7: Dual Matroids, other matroid ard representation L7: Dual Matroid and representation L7: Dual Matroid Geometries L8: Combinatorial Geometries L9: From Matroid Polytopes to Polymatroids. L10: Polymatroids and Submodularity L10: Polymatroids and Submodularity L10: Polymatroids and Submodularity L10: Polymatroids and Submodularity L11: More properties of polymatroids, SFM special cases L12: polymatroid properties of polymatroids, start matroid more properties of a submodular function, Lovasz extension, Choquet Integration, more properties/examples of Lovasz extension, Choquet Integration, more properties/examples of L12: Lovasz extension examples and structured convex norms, The Min-Norm Point Algorithm detailed. 	ass Noau Map -	-1	
 L19: symmetric submodular function minimization, maximizing monotone submodular function w. card constraints. L20: maximizing monotone submodular function w. other constraints, non-monotone maximization. 	 (3/31): Motivation, Applications, & sic Definitions : (4/2): Applications, Basic finitions, Properties : More examples and properties (e.g., sure properties), and examples, anning trees : proofs of equivalent definitions, lependence, start matroids : matroids, basic definitions and amples : More on matroids, System of stinct Reps, Transversals, Transversal stroid, Matroid and representation : Dual Matroids, other matroid operties, Combinatorial Geometries : Combinatorial Geometries, matroids d greedy, Polyhedra, Matroid lytopes, : From Matroid Polytopes to lymatroids. 0: Polymatroids and Submodularity 	 11: More properties of polymatroids, FM special cases 12: polymatroid properties, extreme oints polymatroids, 13: sat, dep, supp, exchange capacity, kamples 14: Lattice theory: partially ordered 2ts; lattices; distributive, modular, Jbmodular, and boolean lattices; ideals and join irreducibles. 15: Supp, Base polytope, polymatroids and entropic Venn diagrams, exchange apacity, 16: proof that minimum norm point ields min of submodular function, and he lattice of minimizers of a submodular unction, Lovasz extension 17: Lovasz extension Choquet 18: Lovasz extension examples and tructured convex norms, The Min-Norm 'oint Algorithm detailed. 19: symmetric submodular function himimization, maximizing monotone ubmodular function w. card constraints. 20: maximizing monotone submodular unction w. other constraints, on-monotone maximization. 	
Finals Week: June 9th-13th, 2014.	Finals Week: June	-13th, 2014.	
Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 19 - June 4th, 2014 F6/38 (pg.6/	. Jeff Bilmes EE596b/S	g 2014/Submodularity - Lecture 19 - June 4th, 2014 F6/38 (pg	g.6/38)

Symmetric Submodular Functions

- Given: $\check{f}: 2^E \to \mathbb{R}$, if \check{f} is submodular and also has the property that $\check{f}(A) = \check{f}(E \setminus A)$ for all A, then \check{f} is said to be symmetric submodular
- Given any non-symmetric submodular function f, we can always symmetrize it, $f_{\text{symmetric}}(A) = f(A) + f(E \setminus A)$.
- Symmetrize and normalize f as $f \to \breve{f}$ via the operation: $\breve{f}(A) = f(A) + f(E \setminus A) - f(E)$, so that $\breve{f}(\emptyset) = 0$ if $f(\emptyset) = 0$.
- Such an \tilde{f} is also non-negative since

$$2\breve{f}(A) = \breve{f}(A) + \breve{f}(E \setminus A) \ge \breve{f}(\emptyset) + \breve{f}(E) = 2\breve{f}(\emptyset) \ge 0$$
(19.1)

- Equivalence class: $f \to \check{f}$ same up to modular shift since $\check{f} = \check{g}$ if f = g + m with m modular \Rightarrow consider only polymatroidal f.
- Combinatorial mutual information function, so $\check{f}(A) = I_f(A; V \setminus A)$ where $I_f(A; B) = f(A) + f(B) - f(A \cup B) - f(A \cap B)$.
- Example: $f(A) = H(X_A) =$ entropy, then $\check{f} = I(X_A; X_{E \setminus A}) =$ symmetric mutual information.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 19 - June

F7/38 (pg.7/38)

Sym. SFM Polymatroid Max w. card constr. Polymatroid Max w. other constr. Separators of submodular function via symmetrized version

Theorem 19.3.1

We are given an f that is normalized & submodular. If $\exists A \text{ s.t. } \check{f}(A) \triangleq f(A) + f(\bar{A}) - f(E) = 0$ then f is "decomposable" w.r.t. A — this means $f(B) = f(B \cap A) + f(B \cap \bar{A}), \forall B$.

Proof.

• By submodularity (subadditivity for non-intersecting sets), we have: $f(B) = f((B \cap A) \cup (B \cap \bar{A})) < f(B \cap A) + f(B \cap \bar{A})$

$$f(B) = f\left((B \cap A) \cup (B \cap \bar{A})\right) \le f(B \cap A) + f(B \cap \bar{A})$$
(19.2)

• Hence, $f(B) \leq f(B \cap A) + f(B \cap \overline{A})$.

Separators of submodular function via symmetrized version

... proof of Theorem 19.3.1 cont.

2014/Submodularity - Lecture 19 - June 4th.

- Again, let \breve{f} be the symmetrized version of f.
- Definition: If $\check{f}(A) = 0$, then any $A' \subseteq A$ and $\bar{A}' \subseteq E \setminus A$ are "independent" w.r.t. submodular g, and A is called a separator.
- random variables: $X_A \perp\!\!\perp X_B \Rightarrow X_{A'} \perp\!\!\perp X_{B'} \forall A' \subseteq A \text{ and } B' \subseteq B.$
- Set of separators of \check{f} is closed under intersection, union, and complementation. Hence, the separators partition E.
- In following slides, \breve{f} is symmetrized & normalized version of f.

Sym. SFM	Polymatroid Max w. card constr.	Polymatroid Max w. other constr.
Many (Equiv	alent) Definitions of Subr	nodularity
f(A) + f(B)	$\geq f(A\cup B)+f(A\cap B), \ \forall A,B\subseteq V$	(19.6)
f(j S)	$\geq f(j T), \; \forall S \subseteq T \subseteq V, \; \text{with} \; j \in V \setminus$	<i>T</i> (19.7)
f(C S)	$\geq f(C T), \forall S \subseteq T \subseteq V, \text{ with } C \subseteq V$	\ <i>T</i> (19.8)
f(j S)	$\geq f(j S\cup\{k\}), \; \forall S\subseteq V \text{ with } j\in V \setminus$	$(S \cup \{k\})$ (19.9)
$f(A\cup B A\cap B)$	$\leq f(A A\cap B)+f(B A\cap B), \ \forall A,B$	$\subseteq V$ (19.10)
$f(T) \le f(S)$	$+ \sum_{j=1}^{\infty} f(j S) - \sum_{j=1}^{\infty} f(j S \cup T - \{j\})$	$i\}), \ \forall S,T \subseteq V$
	$j \in T \setminus S$ $j \in S \setminus T$	(10.11)
		(19.11)
f(T)	$\leq f(S) + \sum f(j S), \ \forall S \subseteq T \subseteq V$	(19.12)
	$j{\in}Tackslash S$	
f(T)	$\leq f(S) - \sum f(j S \setminus \{j\}) + \sum f(j S \setminus \{j\})$	$f(j S \cap T) \; \forall S, T \subseteq V$
	$j \in S \setminus T$ $j \in T \setminus S$	
		(19.13)
f(T)	$\leq f(S) - \sum f(j S \setminus \{j\}), \ \forall T \subseteq S$	$\subseteq V$ (19.14)
	$j \in S \setminus T$	

Sym. SFM

Minimization of a Symmetric Submodular Functions

- Minimizing symmetric submodular functions can be done in strongly polynomial time $O(n^3)$. The algorithm by Nagamochi & Ibaracki 1992 for graph cuts shown by Queyranne in 1995 to work for sym. SFM.
- The algorithm finds (as a subroutine) MA (maximum adjacency) or a maximum back orders (not same as greedy order).

1 Choose v_1 arbitrarily ;

2 $W_1 \leftarrow (v_1)$ /* The first of an ordered list W_i . */;

3 for
$$i \leftarrow 1 \dots |V| - 1$$
 do

4 Choose $v_{i+1} \in \operatorname{argmin}_{u \in V \setminus W_i} f(W_i | \{u\})$;

5
$$W_{i+1} \leftarrow (W_i, v_{i+1})$$
; /* Append v_{i+1} to end of W_i

- Note algorithm operates on non-symmetric function f. If f is already symmetric and normalized, then $f = \breve{f}$.
- The final ordered set $W_n = (v_1, v_2, \dots, v_n)$ is special in that the last two nodes (v_{n-1}, v_n) serve as a surrogate minimizer for a special case.

```
Prof. Jeff Bilmes
```

 $\mathsf{EE596b}/\mathsf{Spring}$ 2014/Submodularity - Lecture 19 - June 4th,

F13/38 (pg.13/38)

*/

Sym. SFM	Polymatroid Max w. card constr.	Polymatroid Max w. other constr.	
Pendent pair			
 A ordered pair of elements (t, u) is called a pendent pair if u is a minimizer amongst all sets that separate u and t. That is (t, u) is a pendent pair if 			
	$\{u\} \in \operatorname*{argmin}_{A \subseteq V: u \in A, t \notin A} reve{f}(A)$	(19.6)	
• That is,			
	$\breve{f}(\{u\}) \leq \breve{f}(A) \ \forall A \text{ s.t. } t \notin A \ni$	<i>u</i> (19.7)	
Theorem 19.3.2			
In the ordered set $W = (v_1, \ldots, v_n)$ generated by the MA algorithm, then (v_{n-1}, v_n) is a pendent pair.			
 Interestingly, this algorithm is the same as maximum cardinality search (MCS), when <i>f</i> represents a graph cut function (recall, MCS 			

is used to efficiently test graph chordality).

Sym. SFM

Minimization of a Symmetric Submodular Functions

- Now, given a pendent pair (t, u) there are two cases.
- Either: The global minimizer, say X* of *f* is such that t ∉ X* ∋ u or we, by symmetry, can w.l.o.g. choose the minimizer so that both {t, u} ∈ X*.
- We store the score (min value) in the first case, then, consider a new element "tu" and clustered ground set $V' = V \setminus \{t, u\} \cup \{tu\}$, and new symmetric submodular function $f' : 2^{V'} \to \mathbb{R}$ with

$$\breve{f}'(X) = \begin{cases} \breve{f}(X) & \text{if } tu \notin X \\ \breve{f}(X \cup \{t, u\} \setminus \{tu\}) & \text{if } tu \in X \end{cases}$$
(19.8)

- We then find a new pendent pair on f' using the above algorithm, store the new min value, and merge, and repeat.
- We do this n times. We take the min over all of the stored values.
- The pendent pair corresponding to the min element, say (t', u') will (most probability) correspond to nested clusters, so we use the original ground elements corresponding to u'.

EE596b/Spring 2014/Submodularity - Lecture 19 - June 4th, 2014

Prof. Jeff Bilm

Sym. SFM

olymatroid Max w. other constr.

F15/38 (pg.15/38

Minimization of a Symmetric Submodular Functions

Theorem 19.3.3

The final resultant u' when expanded to original ground elements minimizes the symmetric submodular function f in $O(n^3)$ time.

- This has become known as Queyranne's algorithm for symmetric submodular function minimization.
- This was done in 1995 and it is said that this result, at that time, rekindled the efforts to find general combinatorial SFM.
- The actual algorithm was originally developed by Nagamochi and Ibaraki for a simple algorithm for finding graph cut. Queyranne showed it worked for any symmetric submodular function.
- Hence, it seems reasonable that symmetric SFM is faster than general SFM (although this question is still unknown).
- Quoting Fujishige from NIPS 2012, he said that he "hopes general purpose SFM is $O(n^4)$ " O.

Sym. SFM		Polymatroid Max w. other constr.		
The Set Cover Problem				
 Let E be a ground set and let E₁, E₂,, E_m be a set of subsets. Let V = {1, 2,, m} be the set of integers. Define f : 2^V → Z₊ as f(X) = U_{v∈X} E_v Then f is the set cover function. As we say, f is monotone submodular (a polymatroid). The set cover problem asks for the smallest subset X of V such that f(X) = E (smallest subset of the subsets of E) where E is still covered. I.e., 				
	minimize $ X $ subject to $f(X) \ge E $	(19.9)		
• We might wish to use a more general modular function $m(X)$ rather than cardinality $ X $.				
٩	This problem is NP-hard, and Feige in 1998 showed be approximated with a ratio better than $(1 - \epsilon) \log$ slightly superpolynomial $(n^{O(\log \log n)})$.	that it cannot gn unless NP is		

- Let E be a ground set and let E_1, E_2, \ldots, E_m be a set of subsets.
- Let $V = \{1, 2, \dots, m\}$ be the set of integers.
- Define $f: 2^V \to \mathbb{Z}_+$ as $f(X) = |\bigcup_{v \in V} E_v|$
- Then f is the set cover function. As we saw, f is monotone submodular (a polymatroid).
- The max k cover problem asks, given a k, what sized k set of sets X can we choose that covers the most? I.e., that maximizes f(X) as in:

$$\max f(X) \text{ subject to } |X| \le k \tag{19.10}$$

• This problem is NP-hard, and Feige in 1998 showed that it cannot be approximated with a ratio better than (1 - 1/e).

Cardinality Constrained Max. of Polymatroid Functions

- Now we are given an arbitrary polymatroid function f.
- Given k, goal is: find $A^* \in \operatorname{argmax} \{f(A) : |A| \le k\}$
- w.l.o.g., we can find $A^* \in \operatorname{argmax} \{f(A) : |A| = k\}$
- An important result by Nemhauser et. al. (1978) states that for normalized (f(Ø) = 0) monotone submodular functions (i.e., polymatroids) can be approximately maximized using a simple greedy algorithm.
- Starting with $S_0 = \emptyset$, we repeat the following greedy step for $i = 0 \dots (k-1)$:

$$S_{i+1} = S_i \cup \left\{ \operatorname*{argmax}_{v \in V \setminus S_i} f(S_i \cup \{v\}) \right\}$$
(19.11)

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 19 - June 4th

F21/38 (pg.21/38

 Polymetroid Max w. card const.
 Polymetroid Max w. other const.

 The Greedy Algorithm for Submodular Max

 A bit more precisely:

 Algorithm 2: The Greedy Algorithm

 1 Set $S_0 \leftarrow \emptyset$;

 2 for $i \leftarrow 0 \dots |E| - 1$ do

 3
 Choose v_i as follows:

 $v_i \in \left\{ \arg\max_{v \in V \setminus S_i} f(\{v\} | S_i) \right\} = \left\{ \arg\max_{v \in V \setminus S_i} f(S_i \cup \{v\}) \right\};$

 4
 Set $S_{i+1} \leftarrow S_i \cup \{v_i\};$

The Greedy Algorithm for Submodular Max

• This algorithm has a guarantee

Theorem 19.4.1

Given a polymatroid function f, the above greedy algorithm returns sets S_i such that for each i we have $f(S_i) \ge (1 - 1/e) \max_{|S| \le i} f(S)$.

- To find $A^* \in \operatorname{argmax} \{f(A) : |A| \le k\}$, we repeat the greedy step until k = i + 1:
- Again, since this generalizes max k-cover, Feige (1998) showed that this can't be improved. Unless P = NP, no polynomial time algorithm can do better than $(1 1/e + \epsilon)$ for any $\epsilon > 0$.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 19 - June 4th, 2014

F23/38 (pg.23/38

Polymatroid Max w. card constr.

Cardinality Constrained Polymatroid Max Theorem

Theorem 19.4.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function $f : 2^V \to \mathbb{R}_+$, define $\{S_i\}_{i\geq 0}$ to be the chain formed by the greedy algorithm (Eqn. (19.11)). Then for all $k, \ell \in \mathbb{Z}_{++}$, we have:

$$f(S_{\ell}) \ge (1 - e^{-\ell/k}) \max_{S:|S| \le k} f(S)$$
(19.13)

and in particular, for $\ell = k$, we have $f(S_k) \ge (1 - 1/e) \max_{S:|S| \le k} f(S)$.

- k is size of optimal set, i.e., $OPT = f(S^*)$ with $|S^*| = k$
- ℓ is size of set we are choosing (i.e., we choose S_{ℓ} from greedy chain).
- Bound is how well does S_ℓ (of size ℓ) do relative to S^{*}, the optimal set of size k.
- Intuitively, bound should get worse when $\ell < k$ and get better when $\ell > k$.

```
Prof. Jeff Bilmes
```

EE596b/Spring 2014/Submodularity - Lecture 19 - June 4th,

F25/38 (pg.25/38)

Cardinality Constrained Polymatroid Max W. card constr. Polymatroid Max

Proof of Theorem 19.4.2.

- Fix ℓ (number of items greedy will chose) and k (size of optimal set to compare against).
- Set $S^* \in \operatorname{argmax} \{ f(S) : |S| \le k \}$
- w.l.o.g. assume $|S^*| = k$.
- Order $S^* = (v_1^*, v_2^*, \dots, v_k^*)$ arbitrarily.
- Let $S_i = (v_1, v_2, \dots, v_i)$ be the greedy order chain chosen by the algorithm, for $i \in \{1, 2, \dots, \ell\}$.
- Then the following inequalities (on the next slide) follow:

Polymatroid Max w. card constr. Cardinality Constrained Polymatroid Max Theorem ... proof of Theorem 19.4.2 cont. • Define $\delta_i \triangleq f(S^*) - f(S_i)$, so $\delta_i - \delta_{i+1} = f(S_{i+1}) - f(S_i)$, giving $\delta_i < k(\delta_i - \delta_{i+1})$ (19.20)or $\delta_{i+1} \le (1 - \frac{1}{k})\delta_i$ (19.21)• The relationship between δ_0 and δ_ℓ is then $\delta_l \le (1 - \frac{1}{k})^\ell \delta_0$ (19.22)• Now, $\delta_0 = f(S^*) - f(\emptyset) \le f(S^*)$ since $f \ge 0$. • Also, by variational bound $1-x \leq e^{-x}$ for $x \in \mathbb{R}$, we have $\delta_{\ell} \le (1 - \frac{1}{k})^{\ell} \delta_0 \le e^{-\ell/k} f(S^*)$ (19.23)EE596b/Spring 2014/Submodularity - Lecture F28/38 (pg.28/38) Prof. Jeff Bilmes 2014

Polymatroid Max w. card constr.

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 19.4.2 cont.

• When we identify $\delta_l = f(S^*) - f(S_\ell)$, a bit of rearranging then gives:

$$f(S_{\ell}) \ge (1 - e^{-\ell/k})f(S^*)$$
 (19.24)

- With $\ell = k$, when picking k items, greedy gets $(1 1/e) \approx 0.6321$ bound. This means that if S_k is greedy solution of size k, and S^* is an optimal solution of size k, $f(S_k) \ge (1 - 1/e)f(S^*) \approx 0.6321f(S^*)$.
- What if we want to guarantee a solution no worse than $.95f(S^*)$ where $|S^*| = k$? Set $0.95 = (1 - e^{-\ell/k})$, which gives $\ell = \lfloor -k \ln(1 - 0.95) \rfloor = 4k$. And $\lfloor -\ln(1 - 0.999) \rfloor = 7$.
- So solution, in the worst case, quickly gets very good. Typical/practical case is much better.

EE!

EE596b/Spring 2014/Submodularity - Lecture 19 - June 4th, 2014

F29/38 (pg.29/38)

Sym. SFM	Polymatroid Max w. card constr.	Polymatroid Max w. other constr.
Greedy rur	nning time	

- Greedy computes a new maximum n = |V| times, and each maximum computation requires O(n) comparisons, leading to $O(n^2)$ computation for greedy.
- This is the best we can do for arbitrary functions, but ${\cal O}(n^2)$ is not practical to some.
- Greedy can be made much faster by a simple strategy made possible, once again, via the use of submodularity.
- This is called Minoux's 1977 Accelerated Greedy strategy (and has been rediscovered a few times, e.g., "Lazy greedy"), and runs much faster (typically n log n) while still producing same answer.
- We describe it next:

F31/38 (pg.31/38

Sym. SFM

Polymatroid Max w. card constr.

Minoux's Accelerated Greedy for Submodular Functions

- At stage *i* in the algorithm, we have a set of gains $f(v|S_i)$ for all $v \notin S_i$. Store these values $\alpha_v \leftarrow f(v|S_i)$ in sorted priority queue.
- Priority queue, O(1) to find max, $O(\log n)$ to insert in right place.
- Once we choose a max v, then set $S_{i+1} \leftarrow S_i + v$.
- For $v \notin S_{i+1}$ we have $f(v|S_{i+1}) \leq f(v|S_i)$ by submodularity.
- Therefore, if we find a v' such that $f(v'|S_{i+1}) \ge \alpha_v$ for all $v \ne v'$, then since

$$f(v'|S_{i+1}) \ge \alpha_v = f(v|S_i) \ge f(v|S_{i+1})$$
(19.25)

we have the true max, and we need not re-evaluate gains of other elements again.

• Strategy is: find the $\operatorname{argmax}_{v' \in V \setminus S_{i+1}} \alpha_{v'}$, and then compute the real $f(v'|S_{i+1})$. If it is greater than all other α_v 's then that's the next greedy step. Otherwise, replace $\alpha_{v'}$ with its real value, resort, and repeat.

EE596b/Spring 2014/Submodularity - Lecture 19 - June 4th.

```
Prof. Jeff Bilm
```

Minoux's Accelerated Greedy for Submodular Functions

- Minoux's algorithm is exact, in that it has the same guarantees as does the $O(n^2)$ greedy Algorithm 2 (this means it will return either the same answers, or answers that have the 1 1/e guarantee).
- In practice: Minoux's trick has enormous speedups ($\approx 700 \times$) over the standard greedy procedure due to reduced function evaluations and use of good data structures (priority queue).
- When choosing a of size k, naïve greedy algorithm is O(nk) but accelerated variant at the very best does O(n+k), so this limits the speedup.
- Algorithm has been rediscovered (I think) independently (CELF cost-effective lazy forward selection, Leskovec et al., 2007)
- Can be used used for "big data" sets (e.g., social networks, selecting blogs of greatest influence, document summarization, etc.).

Sym. SFM

Polymatroid Max w. card constr.

Priority Queue

- Use a priority queue Q as a data structure: operations include:
 - Insert an item (v, α) into queue, with $v \in V$ and $\alpha \in \mathbb{R}$.

INSERT
$$(Q, (v, \alpha))$$
 (19.26)

• Pop the item (v, α) with maximum value α off the queue.

$$(v, \alpha) \leftarrow \operatorname{POP}(Q)$$
 (19.27)

• Query the value of the max item in the queue

$$\operatorname{MAX}(Q) \in \mathbb{R} \tag{19.28}$$

- On next slide, we call a popped item "fresh" if the value (v, α) popped has the correct value $\alpha = f(v|S_i)$. Use extra "bit" to store this info
- If a popped item is fresh, it must be the maximum this can happen if, at given iteration, v was first popped and neither fresh nor maximum so placed back in the queue, and it then percolates back to the top at which point it is fresh — thereby avoid extra queue check.

```
Prof. Jeff Bilm
```

EE596b/Spring 2014/Submodularity - Lecture 19 - June 4th, 2014 F33/38 (pg.33/38

Polymatroid Max w. card constr. Minoux's Accelerated Greedy Algorithm Submodular Max Algorithm 3: Minoux's Accelerated Greedy Algorithm **1** Set $S_0 \leftarrow \emptyset$; $i \leftarrow 0$; Initialize priority queue Q; 2 for $v \in E$ do INSERT(Q, f(v))3 4 repeat $(v, \alpha) \leftarrow \operatorname{POP}(Q)$: 5 if α not "fresh" then 6 recompute $\alpha \leftarrow f(v|S_i)$ 7 if (popped α in line 5 was "fresh") OR ($\alpha \geq MAX(Q)$) then 8 Set $S_{i+1} \leftarrow S_i \cup \{v\}$; 9 $i \leftarrow i + 1$; 10 else 11 INSERT $(Q, (v, \alpha))$ 12 13 **until** i = |E|;

Minimum Submodular Cover

• Given polymatroid f, goal is to find a covering set of minimum cost:

$$S^* \in \operatorname*{argmin}_{S \subseteq V} |S|$$
 such that $f(S) \ge \alpha$ (19.29)

where α is a "cover" requirement.

• Normally take $\alpha = f(V)$ but defining $f'(A) = \min \{f(A), \alpha\}$ we can take any α . Hence, we have equivalent formulation:

$$S^* \in \operatorname*{argmin}_{S \subseteq V} |S|$$
 such that $f'(S) \ge f'(V)$ (19.30)

- Note that this immediately generalizes standard set cover, in which case f(A) is the cardinality of the union of sets indexed by A.
- Algorithm: Pick the first S_i chosen by aforementioned greedy algorithm such that $f(S_i) \ge \alpha$.
- For integer valued *f*, this greedy algorithm an
 O(log(max_{s∈V} f({s}))) approximation. Set cover is hard to
 approximate with a factor better than (1 − ε) log α, where α is the
 desired cover constraint.

Sym. SFM Polymatroid Max w. card constr. Polymatroid Max w. other of Summary: Monotone Submodular Maximization

- Only makes sense when there is a constraint.
- We discussed cardinality constraint
- Generalizes the max k-cover problem, and also similar to the set cover problem.
- Simple greedy algorithm gets $1 e^{-\ell/k}$ approximation, where k is size of optimal set we compare against, and ℓ is size of set greedy algorithm chooses.
- Submodular cover: min. |S| s.t. $f(S) \ge \alpha$.
- Minoux's accelerated greedy trick.

F37/38 (pg.37/38

Generalizations

- Consider a k-uniform matroid $\mathcal{M} = (V, \mathcal{I})$ where $\mathcal{I} = \{S \subseteq V : |S| \le k\}$, and consider problem $\max \{f(A) : A \in \mathcal{I}\}$
- Hence, the greedy algorithm is 1 1/e optimal for maximizing polymatroidal f subject to a k-uniform matroid constraint.
- Might be useful to allow an arbitrary matroid (e.g., partition matroid *I* = {X ⊆ V : |X ∩ V_i| ≤ k_i for all i = 1,..., ℓ}., or a transversal, etc).
- Knapsack constraint: if each item $v \in V$ has a cost c(v), we may ask for $c(S) \leq b$ where b is a budget, in units of costs. Q: Is $\mathcal{I} = \{I : c(I) \leq b\}$ the independent sets of a matroid?
- We may wish to maximize f subject to multiple matroid constraints. I.e., $S \in \mathcal{I}_1, S \in \mathcal{I}_2, \ldots, S \in \mathcal{I}_p$ where \mathcal{I}_i are independent sets of the i^{th} matroid.
- Combinations of the above (e.g., knapsack & multiple matroid constraints).

EE596b/Spring 2014/Submodularity - Lecture 19 -

Polymatroid Maxw. card constr. Greedy over multiple matroids • Obvious heuristic is to use the greedy step but always stay feasible. • I.e., Starting with $S_0 = \emptyset$, we repeat the following greedy step $S_{i+1} = S_i \cup \left\{ \underset{v \in V \setminus S_i : S_i + v \in \bigcap_{i=1}^p \mathcal{I}_i}{\operatorname{argmax}} f(S_i \cup \{v\}) \right\}$ (19.31) • That is, we keep choosing next whatever feasible element looks best. • This algorithm is simple and also has a guarantee Theorem 19.5.1 Given a polymatroid function f, and set of matroids $\{M_j = (E, \mathcal{I}_j)\}_{j=1}^p$, the above greedy algorithm returns sets S_i such that for each i we have $f(S_i) \ge \frac{1}{p+1} \max_{|S| \le i, S \in \bigcap_{i=1}^p \mathcal{I}_i} f(S)$, assuming such sets exists. • For one matroid, we have a 1/2 approximation.

 Very easy algorithm, Minoux trick still possible, while addresses multiple matroid constraints — but the bound is not that good when there are many matroids.