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Logistics Review

Cumulative Outstanding Reading

Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969,
Choquet-1955, Grabisch/Marichal/Mesiar/Pap “Aggregation
Functions”, Lovász-1983, Bach-2011.

Read Tom McCormick’s overview paper on SFM http://people.

commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

Read chapters 1 - 4 from Fujishige book.

Matroid properties http:

//www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf

Read lecture 14 slides on lattice theory at our web page (http://j.
ee.washington.edu/~bilmes/classes/ee596b_spring_2014/)

Wolfe “Finding the Nearest Point in a Polytope”, 1976.

Fujishige & Isotani, “A Submodular Function Minimization
Algorithm Based on the Minimum-Norm Base”, 2009.
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Logistics Review

Sources for Today’s Lecture

“Submodular Function Maximization”, Krause and Golovin.

Chekuri, Vondrak, Zenklusen, “Submodular Function Maximization via
the Multilinear Relaxation and Contention Resolution Schemes”, 2011 (a
recent paper (appeared yesterday) that, among other things, has a nice
up-to-date summary on all the results on submodular max).

Minoux, “Accelerated Greedy Algorithms for Maximizing Submodular Set
Functions”, 1977.

Feige, Mirrokni, Vondrak, “Maximizing non-monotone submodular
functions”, 2007.

Fujishige, “Submodular Functions and Optimization”, 2005.

Fujishige, “Submodular Systems and Related Topics”, 1984.

Fisher, Nemhauser, Wolsey, “An Analysis of Approximations for
Maximizing Submodular Set Functions - II”, 1978.

Lin & Bilmes, ”A Class Of Submodular Functions for Document
Summarization”, 2011.
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Logistics Review

Other readings

J. Vondrak, “Submodularity and curvature: the optimal algorithm”
in RIMS Kokyuroku Bessatsu B23, Kyoto, 2010.

M. Conforti and G. Cornuéjols. Submodular set functions, matroids
and the greedy algorithm: tight worst-case bounds and some
generalizations of the Rado-Edmonds theorem. Discrete Applied
Math, 7(3):251-274, 1984.
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Logistics Review

Announcements, Assignments, and Reminders

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics Review

Class Road Map - IT-I
L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

L9: From Matroid Polytopes to
Polymatroids.

L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, polymatroids
and entropic Venn diagrams, exchange
capacity,

L16: proof that minimum norm point
yields min of submodular function, and
the lattice of minimizers of a submodular
function, Lovasz extension

L17: Lovasz extension, Choquet
Integration, more properties/examples of
Lovasz extension, convex minimization
and SFM.

L18: Lovasz extension examples and
structured convex norms, The Min-Norm
Point Algorithm detailed.

L19: symmetric submodular function
minimization, maximizing monotone
submodular function w. card constraints.

L20: maximizing monotone submodular
function w. other constraints,
non-monotone maximization.

Finals Week: June 9th-13th, 2014.
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Sym. SFM Polymatroid Max w. card constr. Polymatroid Max w. other constr.

Symmetric Submodular Functions

Given: f̆ : 2E → R, if f̆ is submodular and also has the property
that f̆(A) = f̆(E \A) for all A, then f̆ is said to be symmetric
submodular
Given any non-symmetric submodular function f , we can always
symmetrize it, fsymmetric(A) = f(A) + f(E \A).

Symmetrize and normalize f as f → f̆ via the operation:
f̆(A) = f(A) + f(E \A)− f(E), so that f̆(∅) = 0 if f(∅) = 0.
Such an f̆ is also non-negative since

2f̆(A) = f̆(A) + f̆(E \A) ≥ f̆(∅) + f̆(E) = 2f̆(∅) ≥ 0 (19.1)

Equivalence class: f → f̆ same up to modular shift since f̆ = ğ if
f = g +m with m modular ⇒ consider only polymatroidal f .
Combinatorial mutual information function, so f̆(A) = If (A;V \A)
where If (A;B) = f(A) + f(B)− f(A ∪B)− f(A ∩B).

Example: f(A) = H(XA) = entropy, then f̆ = I(XA;XE\A) =
symmetric mutual information.
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Sym. SFM Polymatroid Max w. card constr. Polymatroid Max w. other constr.

Separators of submodular function via symmetrized version

Such a symmetrized submodular function measures a form of
“dependence” between A and Ā , E \A.

Theorem 19.3.1

We are given an f that is normalized & submodular. If
∃A s.t. f̆(A) , f(A) + f(Ā)− f(E) = 0 then f is “decomposable”
w.r.t. A — this means f(B) = f(B ∩A) + f(B ∩ Ā), ∀B.

Proof.

By submodularity (subadditivity for non-intersecting sets), we have:

f(B) = f
(

(B ∩A) ∪ (B ∩ Ā)
)
≤ f(B ∩A) + f(B ∩ Ā) (19.2)

Hence, f(B) ≤ f(B ∩A) + f(B ∩ Ā).

. . .
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Sym. SFM Polymatroid Max w. card constr. Polymatroid Max w. other constr.

Separators of submodular function via symmetrized version

. . . proof of Theorem 19.3.1 cont.

By submodularity

f(B)− f(B ∩A)− f(B ∩ Ā) ≥ f(A ∪B)− f(A)− f(B ∩ Ā) (19.3)

≥ f((A ∪B) ∪ Ā)− f(A)− f(Ā) (19.4)

= f(E)− f(A) + f(Ā) = 0 (19.5)

Eqn. (19.3) follows since f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), and
Eqn. (19.4) follows since B ∩ Ā = (A ∪B) ∩ Ā and
f(A ∪B) + f(Ā) ≥ f((A ∪B) ∪ Ā) + f((A ∪B) ∩ Ā).

Hence, both f(B) ≥ f(B ∩A) + f(B ∩ Ā) (from above) and
f(B) ≤ f(B ∩A) + f(B ∩ Ā) (previous slide).
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Sym. SFM Polymatroid Max w. card constr. Polymatroid Max w. other constr.

Separators of submodular function via symmetrized version

Again, let f̆ be the symmetrized version of f .

Definition: If f̆(A) = 0, then any A′ ⊆ A and Ā′ ⊆ E \A are
“independent” w.r.t. submodular g, and A is called a separator.

random variables: XA⊥⊥XB ⇒ XA′⊥⊥XB′ ∀ A′ ⊆ A and B′ ⊆ B.

Set of separators of f̆ is closed under intersection, union, and
complementation. Hence, the separators partition E.

In following slides, f̆ is symmetrized & normalized version of f .
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Sym. SFM Polymatroid Max w. card constr. Polymatroid Max w. other constr.

Review

Next slide is from Lecture 4.
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Many (Equivalent) Definitions of Submodularity

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), ∀A,B ⊆ V (19.6)

f(j|S) ≥ f(j|T ), ∀S ⊆ T ⊆ V, with j ∈ V \ T (19.7)

f(C|S) ≥ f(C|T ),∀S ⊆ T ⊆ V, with C ⊆ V \ T (19.8)

f(j|S) ≥ f(j|S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k}) (19.9)

f(A ∪B|A ∩B) ≤ f(A|A ∩B) + f(B|A ∩B), ∀A,B ⊆ V (19.10)

f(T ) ≤ f(S) +
∑

j∈T\S

f(j|S)−
∑

j∈S\T

f(j|S ∪ T − {j}), ∀S, T ⊆ V

(19.11)

f(T ) ≤ f(S) +
∑

j∈T\S

f(j|S), ∀S ⊆ T ⊆ V (19.12)

f(T ) ≤ f(S)−
∑

j∈S\T

f(j|S \ {j}) +
∑

j∈T\S

f(j|S ∩ T ) ∀S, T ⊆ V

(19.13)

f(T ) ≤ f(S)−
∑

j∈S\T

f(j|S \ {j}), ∀T ⊆ S ⊆ V (19.14)
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Sym. SFM Polymatroid Max w. card constr. Polymatroid Max w. other constr.

Minimization of a Symmetric Submodular Functions

Minimizing symmetric submodular functions can be done in strongly
polynomial time O(n3). The algorithm by Nagamochi & Ibaracki 1992
for graph cuts shown by Queyranne in 1995 to work for sym. SFM.

The algorithm finds (as a subroutine) MA (maximum adjacency) or a
maximum back orders (not same as greedy order).

1 Choose v1 arbitrarily ;
2 W1 ← (v1) /* The first of an ordered list Wi. */ ;
3 for i← 1 . . . |V | − 1 do
4 Choose vi+1 ∈ argminu∈V \Wi

f(Wi|{u}) ;

5 Wi+1 ← (Wi, vi+1) ; /* Append vi+1 to end of Wi */

Note algorithm operates on non-symmetric function f . If f is already
symmetric and normalized, then f = f̆ .

The final ordered set Wn = (v1, v2, . . . , vn) is special in that the last two
nodes (vn−1, vn) serve as a surrogate minimizer for a special case.
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Pendent pair

A ordered pair of elements (t, u) is called a pendent pair if u is a
minimizer amongst all sets that separate u and t.

That is (t, u) is a pendent pair if

{u} ∈ argmin
A⊆V :u∈A,t/∈A

f̆(A) (19.6)

That is,

f̆({u}) ≤ f̆(A) ∀A s.t. t /∈ A 3 u (19.7)

Theorem 19.3.2

In the ordered set W = (v1, . . . , vn) generated by the MA algorithm,
then (vn−1, vn) is a pendent pair.

Interestingly, this algorithm is the same as maximum cardinality
search (MCS), when f represents a graph cut function (recall, MCS
is used to efficiently test graph chordality).
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Sym. SFM Polymatroid Max w. card constr. Polymatroid Max w. other constr.

Minimization of a Symmetric Submodular Functions

Now, given a pendent pair (t, u) there are two cases.
Either: The global minimizer, say X∗ of f̆ is such that t /∈ X∗ 3 u
or we, by symmetry, can w.l.o.g. choose the minimizer so that both
{t, u} ∈ X∗.
We store the score (min value) in the first case, then, consider a
new element “tu” and clustered ground set V ′ = V \ {t, u} ∪ {tu},
and new symmetric submodular function f ′ : 2V

′ → R with

f̆ ′(X) =

{
f̆(X) if tu /∈ X
f̆(X ∪ {t, u} \ {tu}) if tu ∈ X

(19.8)

We then find a new pendent pair on f ′ using the above algorithm,
store the new min value, and merge, and repeat.
We do this n times. We take the min over all of the stored values.
The pendent pair corresponding to the min element, say (t′, u′) will
(most probability) correspond to nested clusters, so we use the
original ground elements corresponding to u′.
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Minimization of a Symmetric Submodular Functions

Theorem 19.3.3

The final resultant u′ when expanded to original ground elements
minimizes the symmetric submodular function f in O(n3) time.

This has become known as Queyranne’s algorithm for symmetric
submodular function minimization.
This was done in 1995 and it is said that this result, at that time,
rekindled the efforts to find general combinatorial SFM.
The actual algorithm was originally developed by Nagamochi and
Ibaraki for a simple algorithm for finding graph cut. Queyranne
showed it worked for any symmetric submodular function.
Hence, it seems reasonable that symmetric SFM is faster than
general SFM (although this question is still unknown).

Quoting Fujishige from NIPS 2012, he said that he “hopes general

purpose SFM is O(n4)” ,.
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Sym. SFM Polymatroid Max w. card constr. Polymatroid Max w. other constr.

Maximization of Submodular Functions

We spent much time on submodular function minimization (SFM)
and saw this can be done in polynomial time.

Submodular maximization is also quite useful.

Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set
of elements that cover some domain as much as possible).

For polymatroid function (or any monotone non-decreasing
function), unconstrained maximization is trivial (take ground set).

Thus, when we do monotone submodular maximization, we either

Find the maximum under some constraint
Find the maximum for a non-polymatroid submodular function
Do both.

There is also a sort of dual problem that is often considered together
with max, and those are minimum cover problems (to be defined).
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The Set Cover Problem

Let E be a ground set and let E1, E2, . . . , Em be a set of subsets.

Let V = {1, 2, . . . ,m} be the set of integers.

Define f : 2V → Z+ as f(X) = |⋃v∈X Ev|
Then f is the set cover function. As we say, f is monotone
submodular (a polymatroid).

The set cover problem asks for the smallest subset X of V such that
f(X) = |E| (smallest subset of the subsets of E) where E is still
covered. I.e.,

minimize|X| subject to f(X) ≥ |E| (19.9)

We might wish to use a more general modular function m(X) rather
than cardinality |X|.
This problem is NP-hard, and Feige in 1998 showed that it cannot
be approximated with a ratio better than (1− ε) log n unless NP is
slightly superpolynomial (nO(log logn)).
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What About Non-monotone

So even simple case of cardinality constrained submodular function
maximization is NP-hard.

This will be true of most submodular max (and related) problems.

Hence, the only hope is approximation algorithms. Question is, what
is the tradeoff between running time and approximation quality, and
is it possible to get tight bounds (i.e., an algorithm that achieves an
approximation ratio, and a proof that one can’t do better than that
unless some extremely unlike event were to be true, such as P=NP).
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The Max k-Cover Problem

Let E be a ground set and let E1, E2, . . . , Em be a set of subsets.

Let V = {1, 2, . . . ,m} be the set of integers.

Define f : 2V → Z+ as f(X) = |⋃v∈V Ev|
Then f is the set cover function. As we saw, f is monotone
submodular (a polymatroid).

The max k cover problem asks, given a k, what sized k set of sets
X can we choose that covers the most? I.e., that maximizes f(X)
as in:

max f(X) subject to |X| ≤ k (19.10)

This problem is NP-hard, and Feige in 1998 showed that it cannot
be approximated with a ratio better than (1− 1/e).
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Cardinality Constrained Max. of Polymatroid Functions

Now we are given an arbitrary polymatroid function f .

Given k, goal is: find A∗ ∈ argmax {f(A) : |A| ≤ k}
w.l.o.g., we can find A∗ ∈ argmax {f(A) : |A| = k}
An important result by Nemhauser et. al. (1978) states that for
normalized (f(∅) = 0) monotone submodular functions (i.e.,
polymatroids) can be approximately maximized using a simple
greedy algorithm.

Starting with S0 = ∅, we repeat the following greedy step for
i = 0 . . . (k − 1):

Si+1 = Si ∪
{

argmax
v∈V \Si

f(Si ∪ {v})
}

(19.11)
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The Greedy Algorithm for Submodular Max

A bit more precisely:

Algorithm 2: The Greedy Algorithm

1 Set S0 ← ∅ ;
2 for i← 0 . . . |E| − 1 do
3 Choose vi as follows:

vi ∈
{

argmaxv∈V \Si
f({v}|Si)

}
=
{

argmaxv∈V \Si
f(Si ∪ {v})

}
;

4 Set Si+1 ← Si ∪ {vi} ;
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The Greedy Algorithm for Submodular Max

This algorithm has a guarantee

Theorem 19.4.1

Given a polymatroid function f , the above greedy algorithm returns sets
Si such that for each i we have f(Si) ≥ (1− 1/e) max|S|≤i f(S).

To find A∗ ∈ argmax {f(A) : |A| ≤ k}, we repeat the greedy step
until k = i+ 1:

Again, since this generalizes max k-cover, Feige (1998) showed that
this can’t be improved. Unless P = NP , no polynomial time
algorithm can do better than (1− 1/e+ ε) for any ε > 0.
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The Greedy Algorithm: 1− 1/e intuition.
At step i < k, greedy chooses vi to maximize f(v|Si).
Let S∗ be optimal solution (of size k) and OPT = f(S∗). By
submodularity, we will show:

∃v ∈ S∗ \ Si : f(Si + v|Si) ≥
1

k
(OPT− f(Si)) (19.12)

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(
1 − 1

k

)k

1

e

k

Equation (19.21) will
show that
Equation (19.12) ⇒:

OPT− f(Si+1)

≤ (1− 1/k)(OPT− f(Si))

⇒ OPT− f(Sk)

≤ (1− 1/k)kOPT

≤ 1/eOPT

⇒ OPT(1− 1/e) ≤ f(Sk)
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Cardinality Constrained Polymatroid Max Theorem

Theorem 19.4.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V → R+, define
{Si}i≥0 to be the chain formed by the greedy algorithm (Eqn. (19.11)).
Then for all k, ` ∈ Z++, we have:

f(S`) ≥ (1− e−`/k) max
S:|S|≤k

f(S) (19.13)

and in particular, for ` = k, we have f(Sk) ≥ (1− 1/e) maxS:|S|≤k f(S).

k is size of optimal set, i.e., OPT = f(S∗) with |S∗| = k

` is size of set we are choosing (i.e., we choose S` from greedy chain).

Bound is how well does S` (of size `) do relative to S∗, the optimal set
of size k.

Intuitively, bound should get worse when ` < k and get better when
` > k.
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Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 19.4.2.

Fix ` (number of items greedy will chose) and k (size of optimal set
to compare against).

Set S∗ ∈ argmax {f(S) : |S| ≤ k}
w.l.o.g. assume |S∗| = k.

Order S∗ = (v∗1, v
∗
2, . . . , v

∗
k) arbitrarily.

Let Si = (v1, v2, . . . , vi) be the greedy order chain chosen by the
algorithm, for i ∈ {1, 2, . . . , `}.
Then the following inequalities (on the next slide) follow:

. . .
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Cardinality Constrained Polymatroid Max Theorem

. . . proof of Theorem 19.4.2 cont.

For all i < `, we have

f(S∗) ≤ f(S∗ ∪ Si) (19.14)

= f(Si) +
k∑

j=1

f(v∗j |Si ∪
{
v∗1, v

∗
2, . . . , v

∗
j−1
}

) (19.15)

≤ f(Si) +
∑

v∈S∗
f(v|Si) (19.16)

≤ f(Si) +
∑

v∈S∗
f(vi+1|Si) = f(Si) +

∑

v∈S∗
f(Si+1|Si) (19.17)

= f(Si) + kf(Si+1|Si) (19.18)

Therefore, we have Equation 19.12, i.e.,:

f(S∗)− f(Si) ≤ kf(Si+1|Si) = k(f(Si+1)− f(Si)) (19.19)

. . .
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Cardinality Constrained Polymatroid Max Theorem

. . . proof of Theorem 19.4.2 cont.

Define δi , f(S∗)− f(Si), so δi − δi+1 = f(Si+1)− f(Si), giving

δi ≤ k(δi − δi+1) (19.20)

or

δi+1 ≤ (1− 1

k
)δi (19.21)

The relationship between δ0 and δ` is then

δl ≤ (1− 1

k
)`δ0 (19.22)

Now, δ0 = f(S∗)− f(∅) ≤ f(S∗) since f ≥ 0.

Also, by variational bound 1− x ≤ e−x for x ∈ R, we have

δ` ≤ (1− 1

k
)`δ0 ≤ e−`/kf(S∗) (19.23)

. . .
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Cardinality Constrained Polymatroid Max Theorem

. . . proof of Theorem 19.4.2 cont.

When we identify δl = f(S∗)− f(S`), a bit of rearranging then gives:

f(S`) ≥ (1− e−`/k)f(S∗) (19.24)

With ` = k, when picking k items, greedy gets (1− 1/e) ≈ 0.6321
bound. This means that if Sk is greedy solution of size k, and S∗ is an
optimal solution of size k, f(Sk) ≥ (1− 1/e)f(S∗) ≈ 0.6321f(S∗).

What if we want to guarantee a solution no worse than .95f(S∗)
where |S∗| = k? Set 0.95 = (1− e−`/k), which gives
` = d−k ln(1− 0.95)e = 4k. And d− ln(1− 0.999)e = 7.

So solution, in the worst case, quickly gets very good.
Typical/practical case is much better.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 19 - June 4th, 2014 F29/38 (pg.29/38)

Sym. SFM Polymatroid Max w. card constr. Polymatroid Max w. other constr.

Greedy running time

Greedy computes a new maximum n = |V | times, and each
maximum computation requires O(n) comparisons, leading to O(n2)
computation for greedy.

This is the best we can do for arbitrary functions, but O(n2) is not
practical to some.

Greedy can be made much faster by a simple strategy made
possible, once again, via the use of submodularity.

This is called Minoux’s 1977 Accelerated Greedy strategy (and has
been rediscovered a few times, e.g., “Lazy greedy”), and runs much
faster (typically n log n) while still producing same answer.

We describe it next:
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Minoux’s Accelerated Greedy for Submodular Functions

At stage i in the algorithm, we have a set of gains f(v|Si) for all
v /∈ Si. Store these values αv ← f(v|Si) in sorted priority queue.

Priority queue, O(1) to find max, O(log n) to insert in right place.

Once we choose a max v, then set Si+1 ← Si + v.

For v /∈ Si+1 we have f(v|Si+1) ≤ f(v|Si) by submodularity.

Therefore, if we find a v′ such that f(v′|Si+1) ≥ αv for all v 6= v′,
then since

f(v′|Si+1) ≥ αv = f(v|Si) ≥ f(v|Si+1) (19.25)

we have the true max, and we need not re-evaluate gains of other
elements again.

Strategy is: find the argmaxv′∈V \Si+1
αv′ , and then compute the

real f(v′|Si+1). If it is greater than all other αv’s then that’s the
next greedy step. Otherwise, replace αv′ with its real value, resort,
and repeat.
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Minoux’s Accelerated Greedy for Submodular Functions

Minoux’s algorithm is exact, in that it has the same guarantees as
does the O(n2) greedy Algorithm 2 (this means it will return either
the same answers, or answers that have the 1− 1/e guarantee).

In practice: Minoux’s trick has enormous speedups (≈ 700×) over
the standard greedy procedure due to reduced function evaluations
and use of good data structures (priority queue).

When choosing a of size k, näıve greedy algorithm is O(nk) but
accelerated variant at the very best does O(n+ k), so this limits the
speedup.

Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)

Can be used used for “big data” sets (e.g., social networks, selecting
blogs of greatest influence, document summarization, etc.).
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Priority Queue

Use a priority queue Q as a data structure: operations include:
Insert an item (v, α) into queue, with v ∈ V and α ∈ R.

insert(Q, (v, α)) (19.26)

Pop the item (v, α) with maximum value α off the queue.

(v, α)← pop(Q) (19.27)

Query the value of the max item in the queue

max(Q) ∈ R (19.28)

On next slide, we call a popped item “fresh” if the value (v, α) popped
has the correct value α = f(v|Si). Use extra “bit” to store this info

If a popped item is fresh, it must be the maximum — this can happen if,
at given iteration, v was first popped and neither fresh nor maximum so
placed back in the queue, and it then percolates back to the top at
which point it is fresh — thereby avoid extra queue check.
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Minoux’s Accelerated Greedy Algorithm Submodular Max

Algorithm 3: Minoux’s Accelerated Greedy Algorithm

1 Set S0 ← ∅ ; i← 0 ; Initialize priority queue Q ;
2 for v ∈ E do
3 INSERT(Q, f(v))

4 repeat
5 (v, α)← pop(Q) ;
6 if α not “fresh” then
7 recompute α← f(v|Si)
8 if (popped α in line 5 was “fresh”) OR (α ≥ max(Q)) then
9 Set Si+1 ← Si ∪ {v} ;

10 i← i+ 1 ;

11 else
12 insert(Q, (v, α))

13 until i = |E|;
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Minimum Submodular Cover

Given polymatroid f , goal is to find a covering set of minimum cost:

S∗ ∈ argmin
S⊆V

|S| such that f(S) ≥ α (19.29)

where α is a “cover” requirement.
Normally take α = f(V ) but defining f ′(A) = min {f(A), α} we
can take any α. Hence, we have equivalent formulation:

S∗ ∈ argmin
S⊆V

|S| such that f ′(S) ≥ f ′(V ) (19.30)

Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.
Algorithm: Pick the first Si chosen by aforementioned greedy
algorithm such that f(Si) ≥ α.
For integer valued f , this greedy algorithm an
O(log(maxs∈V f({s}))) approximation. Set cover is hard to
approximate with a factor better than (1− ε) logα, where α is the
desired cover constraint.
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Summary: Monotone Submodular Maximization

Only makes sense when there is a constraint.

We discussed cardinality constraint

Generalizes the max k-cover problem, and also similar to the set
cover problem.

Simple greedy algorithm gets 1− e−`/k approximation, where k is
size of optimal set we compare against, and ` is size of set greedy
algorithm chooses.

Submodular cover: min. |S| s.t. f(S) ≥ α.

Minoux’s accelerated greedy trick.
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Generalizations

Consider a k-uniform matroid M = (V, I) where
I = {S ⊆ V : |S| ≤ k}, and consider problem max {f(A) : A ∈ I}
Hence, the greedy algorithm is 1− 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

Might be useful to allow an arbitrary matroid (e.g., partition
matroid I = {X ⊆ V : |X ∩ Vi| ≤ ki for all i = 1, . . . , `}., or a
transversal, etc).

Knapsack constraint: if each item v ∈ V has a cost c(v), we may
ask for c(S) ≤ b where b is a budget, in units of costs. Q: Is
I = {I : c(I) ≤ b} the independent sets of a matroid?

We may wish to maximize f subject to multiple matroid constraints.
I.e., S ∈ I1, S ∈ I2, . . . , S ∈ Ip where Ii are independent sets of the
ith matroid.

Combinations of the above (e.g., knapsack & multiple matroid
constraints).
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Greedy over multiple matroids

Obvious heuristic is to use the greedy step but always stay feasible.
I.e., Starting with S0 = ∅, we repeat the following greedy step

Si+1 = Si ∪
{

argmax
v∈V \Si : Si+v∈

⋂p
i=1 Ii

f(Si ∪ {v})
}

(19.31)

That is, we keep choosing next whatever feasible element looks best.
This algorithm is simple and also has a guarantee

Theorem 19.5.1

Given a polymatroid function f , and set of matroids {Mj = (E, Ij)}pj=1,
the above greedy algorithm returns sets Si such that for each i we have
f(Si) ≥ 1

p+1 max|S|≤i,S∈
⋂p

i=1 Ii f(S), assuming such sets exists.

For one matroid, we have a 1/2 approximation.
Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints — but the bound is not that good
when there are many matroids.
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