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Logistics Review

Cumulative Outstanding Reading

Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969,
Choquet-1955, Grabisch/Marichal/Mesiar/Pap “Aggregation
Functions”, Lovász-1983, Bach-2011.

Read Tom McCormick’s overview paper on SFM http://people.

commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

Read chapters 1 - 4 from Fujishige book.

Matroid properties http:
//www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf

Read lecture 14 slides on lattice theory at our web page (http://j.
ee.washington.edu/~bilmes/classes/ee596b_spring_2014/)

Wolfe “Finding the Nearest Point in a Polytope”, 1976.

Fujishige & Isotani, “A Submodular Function Minimization
Algorithm Based on the Minimum-Norm Base”, 2009.
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Logistics Review

Announcements, Assignments, and Reminders

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics Review

Class Road Map - IT-I
L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

L9: From Matroid Polytopes to
Polymatroids.

L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, polymatroids
and entropic Venn diagrams, exchange
capacity,

L16: proof that minimum norm point
yields min of submodular function, and
the lattice of minimizers of a submodular
function, Lovasz extension

L17: Lovasz extension, Choquet
Integration, more properties/examples of
Lovasz extension, convex minimization
and SFM.

L18: Lovasz extension examples and
structured convex norms, The Min-Norm
Point Algorithm detailed.

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Logistics Review

Choquet integral

Definition 18.2.1

Let f be any capacity on E and w ∈ RE
+. The Choquet integral (1954)

of w w.r.t. f is defined by

Cf (w) =

m∑

i=1

(wei − wei+1)f(Ei) (18.12)

where in the sum, we have sorted and renamed the elements of E so that
we1 ≥ we2 ≥ · · · ≥ wem ≥ wem+1 ! 0, and where Ei = {e1, e2, . . . , ei}.

We immediately see that an equivalent formula is as follows:

Cf (w) =

m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (18.13)

where E0
def
= ∅.
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Logistics Review

Lovász extension, as integral

Additional ways we can define the Lovász extension for any (not
necessarily submodular) but normalized function f include:

f̃(w) =

m∑

i=1

w(ei)f(ei|Ei−1) =

m∑

i=1

λif(Ei) (18.22)

=

m−1∑

i=1

f(Ei)(w(ei)− w(ei+1)) + f(E)w(em) (18.23)

=

∫ +∞

min {w1,...,wm}
f({w ≥ α})dα+ f(E)min {w1, . . . , wm}

(18.24)

=

∫ +∞

0
f({w ≥ α})dα+

∫ 0

−∞
[f({w ≥ α})− f(E)]dα

(18.25)
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Logistics Review

Lovász extension properties
Using the above, have the following (some of which we’ve seen):

Theorem 18.2.2

Let f, g : 2E → R be normalized (f(∅) = g(∅) = 0). Then

1 Superposition of LE operator: Given f and g with Lovász extensions f̃ and
g̃ then f̃ + g̃ is the Lovász extension of f + g and λf̃ is the Lovász
extension of λf for λ ∈ R.

2 If w ∈ RE
+ then f̃(w) =

∫ +∞
0

f({w ≥ α})dα.

3 For w ∈ RE , and α ∈ R, we have f̃(w + α1E) = f̃(w) + αf(E).

4 Positive homogeneity: I.e., f̃(αw) = αf̃(w) for α ≥ 0.

5 For all A ⊆ E, f̃(1A) = f(A).

6 f symmetric as in f(A) = f(E \A), ∀A, then f̃(w) = f̃(−w) (f̃ is even).

7 Given partition E1 ∪ E2 ∪ · · · ∪ Ek of E and w =
∑k

i=1 γi1Ek
with

γ1 ≥ γ2 ≥ · · · ≥ γk, and with E1:i = E1 ∪ E2 ∪ · · · ∪ Ei, then
f̃(w) =

∑k
i=1 γif(E

i|E1:i−1) =
∑k−1

i=1 f(E1:i)(γi − γi+1) + f(E)γk.
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Logistics Review

Minimizing f̃ vs. minimizing f

In fact, we have:

Theorem 18.2.5

Let f be submodular and f̃ be its Lovász extension. Then
min {f(A)|A ⊆ E} = minw∈{0,1}E f̃(w) = minw∈[0,1]E f̃(w).

Proof.

First, since f̃(1A) = f(A), ∀A ⊆ V , we clearly have
min {f(A)|A ⊆ V } = minw∈{0,1}E f̃(w) ≥ minw∈[0,1]E f̃(w).

Next, consider any w ∈ [0, 1]E , sort elements E = {e1, . . . , em} as
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), define Ei = {e1, . . . , ei}, and define
λm = w(em) and λi = w(ei)− w(ei+1) for i ∈ {1, . . . ,m− 1}.
Then, as we have seen, w =

∑
i λi1Ei and λi ≥ 0.

Also,
∑

i λi = w(e1) ≤ 1.

. . .
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Lovász extension examples Min-Norm Point Algorithm

Simple expressions for Lovász E. with m = 2, E = {1, 2}

If w1 ≥ w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (18.1)

= (w1 − w2)f({1}) + w2f({1, 2}) (18.2)

If w1 ≤ w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (18.3)

= (w2 − w1)f({2}) + w1f({1, 2}) (18.4)
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Lovász extension examples Min-Norm Point Algorithm

Simple expressions for Lovász E. with m = 2, E = {1, 2}

If w1 ≥ w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (18.5)

= (w1 − w2)f({1}) + w2f({1, 2}) (18.6)

=
1

2
f(1)(w1 − w2) +

1

2
f(1)(w1 − w2) (18.7)

+
1

2
f({1, 2})(w1 + w2)−

1

2
f({1, 2})(w1 − w2) (18.8)

+
1

2
f(2)(w1 − w2) +

1

2
f(2)(w2 − w1) (18.9)

A similar (symmetric) expression holds when w1 ≤ w2.
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Lovász extension examples Min-Norm Point Algorithm

Simple expressions for Lovász E. with m = 2, E = {1, 2}

This gives, for general w1, w2, that

f̃(w) =
1

2
(f({1}) + f({2})− f({1, 2})) |w1 − w2| (18.10)

+
1

2
(f({1})− f({2}) + f({1, 2}))w1 (18.11)

+
1

2
(−f({1}) + f({2}) + f({1, 2}))w2 (18.12)

= − (f({1}) + f({2})− f({1, 2}))min {w1, w2} (18.13)

+ f({1})w1 + f({2})w2 (18.14)

Thus, if f(A) = H(XA) is the entropy function, we have
f̃(w) = H(e1)w1 +H(e2)w2 − I(e1; e2)min {w1, w2} which must be
convex in w, where I(e1; e2) is the mutual information.

This “simple” but general form of the Lovász extension with m = 2 can
be useful.
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Lovász extension examples Min-Norm Point Algorithm

Example: m = 2, E = {1, 2}, contours

If w1 ≥ w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (18.15)

If w = (1, 0)/f({1}) =
(
1/f({1}), 0

)
then f̃(w) = 1.

If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

If w1 ≤ w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (18.16)

If w = (0, 1)/f({2}) = (0, 1/f({2})) then f̃(w) = 1.
If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

Can plot contours of the form
{
w ∈ R2 : f̃(w) = 1

}
, particular marked

points of form w = 1A × 1
f(A) for certain A, where f̃(w) = 1.
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Lovász extension examples Min-Norm Point Algorithm

Example: m = 2, E = {1, 2}

Contour plot of m = 2 Lovász extension (from Bach-2011).

0

w2 > w1

w1 > w2

(1, 1)/f({1, 2})

(1, 0)/f({1})

(0, 1)/f({2})

˜
{
w : f(w) = 1

}

w2

w1
45°
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Lovász extension examples Min-Norm Point Algorithm

Example: m = 3, E = {1, 2, 3}

In order to visualize in 3D, we make a few simplifications.

Consider any submodular f ′ and x ∈ Bf ′ . Then
f(A) = f ′(A)− x(A) is submodular

, and moreover
f(E) = f ′(E)− x(E) = 0.

Hence, from f̃(w + α1E) = f̃(w) + αf(E), we have that
f̃(w + α1E) = f̃(w).

Thus, we can look “down” on the contour plot of the Lovász

extension,
{
w : f̃(w) = 1

}
, from a vantage point right on the line

{x : x = α1E ,α > 0} since moving in direction 1E changes nothing.
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Consider any submodular f ′ and x ∈ Bf ′ . Then
f(A) = f ′(A)− x(A) is submodular, and moreover
f(E) = f ′(E)− x(E) = 0.

Hence, from f̃(w + α1E) = f̃(w) + αf(E), we have that
f̃(w + α1E) = f̃(w).

Thus, we can look “down” on the contour plot of the Lovász

extension,
{
w : f̃(w) = 1

}
, from a vantage point right on the line

{x : x = α1E ,α > 0} since moving in direction 1E changes nothing.
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Example: m = 3, E = {1, 2, 3}

Example 1 (from Bach-2011): f(A) = 1|A|∈{1,2}
= min {|A|, 1}+min {|E \A|, 1}− 1 is submodular, and
f̃(w) = maxk∈{1,2,3}wk −mink∈{1,2,3}wk.
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Example: m = 3, E = {1, 2, 3}
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= min {|A|, 1}+min {|E \A|, 1}− 1 is submodular, and
f̃(w) = maxk∈{1,2,3}wk −mink∈{1,2,3}wk.

w > w >w1 2

1w > w >w3 2

32w > w >w1

13w > w >w2

2w > w >w1 3

21w =w

w =w1 3
32w =w

12w > w >w3

(0,1,1)/F({2,3})

(0,0,1)/F({3})

(1,0,1)/F({1,3})

(1,0,0)/F({1})

(1,1,0)/F({1,2})

(0,1,0)/F({2})

3

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 18 - June 2nd, 2014 F15/57 (pg.30/172)



Lovász extension examples Min-Norm Point Algorithm

Example: m = 3, E = {1, 2, 3}

Example 2 (from
Bach-2011):
f(A) = |11∈A − 12∈A|+
|12∈A − 13∈A|

This gives a “total
variation” function for the
Lovász extension, with
f̃(w) = |w1−w2|+|w2−w3|,
a prior to prefer
piecewise-constant signals.

(0,1,0)/2

(0,0,1)

(0,1,1)
(1,0,1)/2

(1,0,0)

(1,1,0)
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Total Variation Example

From “Nonlinear total
variation based noise
removal algorithms”
Rudin, Osher, and
Fatemi, 1992. Top
left original, bottom
right total variation.
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Example: Lovász extension of concave over modular

Let m : E → R+ be a modular function and define
f(A) = g(m(A)) where g is concave. Then f is submodular.

Let Mj =
∑j

i=1m(ei)

f̃(w) is given as

f̃(w) =
m∑

i=1

w(ei)
(
g(Mi)− g(Mi−1)

)
(18.17)

And if m(A) = |A|, we get

f̃(w) =
m∑

i=1

w(ei)
(
g(i)− g(i− 1)

)
(18.18)
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Example: Lovász extension of concave over modular
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Example: Lovász extension and cut functions

Cut Function: Given a non-negative weighted graph G = (V,E,m)
where m : E → R+ is a modular function over the edges, we know
from Lecture 2 that f : 2V → R+ with f(X) = m(Γ(X)) where
Γ(X) = {(u, v)|(u, v) ∈ E, u ∈ X, v ∈ V \X} is non-monotone
submodular.

Simple way to write it, with mij = m((i, j)):

f(X) =
∑

i∈X,j∈V \X

mij (18.19)

Exercise: show that Lovász extension of graph cut may be written
as:

f̃(w) =
∑

i,j∈V
mij max {(wi − wj), 0} (18.20)

where elements are ordered as usual, w1 ≥ w2 ≥ · · · ≥ wn.

This is also a form of “total variation”
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Example: Lovász extension and cut functions

Cut Function: Given a non-negative weighted graph G = (V,E,m)
where m : E → R+ is a modular function over the edges, we know
from Lecture 2 that f : 2V → R+ with f(X) = m(Γ(X)) where
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submodular.
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A few more Lovász extension examples

Some additional submodular functions and their Lovász extensions,
where w(e1) ≥ w(e2) ≥ · · · ≥ w(em) ≥ 0. Let Wk !

∑k
i=1w(ei).

f(A) f̃(w)

|A| ‖w‖1
min(|A|, 1) ‖w‖∞

min(|A|, 1)−max(|A|−m+ 1, 0) ‖w‖∞ −miniwi

min(|A|, k) Wk

min(|A|, k)−max(|A|− (n− k) + 1, 1) 2Wk −Wm

min(|A|, |E \A|) 2W%m/2& −Wm

(thanks to K. Narayanan).
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Supervised And Unsupervised Machine Learning

Given training data D = {(xi, yi)}mi=1 with (xi, yi) ∈ Rn × R,
perform the following risk minimization problem:

min
w∈Rn

1

m

m∑

i=1

$(yi, w
ᵀxi) + λΩ(w), (18.21)

where $(·) is a loss function (e.g., squared error) and Ω(w) is a norm.
When
data has multiple responses (xi, yi) ∈ Rn × Rk, learning becomes:

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

$(yki , (w
k)

ᵀ
xi) + λΩ(wk), (18.22)

When data has multiple responses only that are observed, (yi) ∈ Rk

we get dictionary learning (Krause & Guestrin, Das & Kempe):

min
x1,...,xm

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

$(yki , (w
k)

ᵀ
xi) + λΩ(wk), (18.23)
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Norms, sparse norms, and computer vision

Common norms include p-norm Ω(w) = ‖w‖p = (
∑p

i=1w
p
i )

1/p
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Norms, sparse norms, and computer vision

Common norms include p-norm Ω(w) = ‖w‖p = (
∑p

i=1w
p
i )

1/p

1-norm promotes sparsity (prefer solutions with zero entries).
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Norms, sparse norms, and computer vision

Common norms include p-norm Ω(w) = ‖w‖p = (
∑p

i=1w
p
i )

1/p

1-norm promotes sparsity (prefer solutions with zero entries).
Image denoising, total variation is useful, norm takes form:

Ω(w) =

N∑

i=2

|wi − wi−1| (18.24)
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Norms, sparse norms, and computer vision

Common norms include p-norm Ω(w) = ‖w‖p = (
∑p

i=1w
p
i )

1/p

1-norm promotes sparsity (prefer solutions with zero entries).
Image denoising, total variation is useful, norm takes form:

Ω(w) =

N∑

i=2

|wi − wi−1| (18.24)

Points of difference should be “sparse” (frequently zero).

(Rodriguez,

2009)
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ‖w‖0 = supp(w).
Using Ω(w) = ‖w‖0 is NP-hard, instead we often optimize tightest
convex relaxation, ‖w‖1 which is the convex envelope.
With ‖w‖0 or its relaxation, each non-zero element has equal degree
of penalty. Penalties do not interact.
Given submodular function f : 2V → R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|)
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but ∃ many more!
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Submodular parameterization of a sparse convex norm
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Submodular parameterization of a sparse convex norm
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ‖w‖0 = supp(w).
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Submodular parameterization of a sparse convex norm
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the Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).
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f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|)
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).

Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but ∃ many more!
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“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|)
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!

Ex: total variation is Lovász-ext. of graph cut, but ∃ many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ‖w‖0 = supp(w).
Using Ω(w) = ‖w‖0 is NP-hard, instead we often optimize tightest
convex relaxation, ‖w‖1 which is the convex envelope.
With ‖w‖0 or its relaxation, each non-zero element has equal degree
of penalty. Penalties do not interact.
Given submodular function f : 2V → R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|)
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovász-extension f̃ of f (Vondrák 2007, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but ∃ many more!
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Lovász extension and norms

Using Lovász extension to define various norms of the form
‖w‖f̃ = f̃(|w|), renders the function symmetric about all orthants

(i.e., ‖w‖f̃ = ‖b- w‖f̃ where b ∈ {−1, 1}m and - is element-wise
multiplication).

Simple example. The Lovász extension of the modular function
f(A) = |A| is the $1 norm, and the Lovász extension of the modular
function f(A) = m(A) is the weighted $1 norm.

With more general submodular functions, one can generate a large
and interesting variety of norms, all of which have polyhedral
contours (unlike, say, something like the $2 norm).

Hence, not all norms come from the Lovász extension of some
submodular function.

Similarly, not all convex functions are the Lovász extension of some
submodular function.

Bach-2011 has a complete discussion of this.
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Lovász extension and norms
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Hence, not all norms come from the Lovász extension of some
submodular function.
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Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 18 - June 2nd, 2014 F24/57 (pg.60/172)



Lovász extension examples Min-Norm Point Algorithm
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Lovász extension and norms

Using Lovász extension to define various norms of the form
‖w‖f̃ = f̃(|w|), renders the function symmetric about all orthants

(i.e., ‖w‖f̃ = ‖b- w‖f̃ where b ∈ {−1, 1}m and - is element-wise
multiplication).

Simple example. The Lovász extension of the modular function
f(A) = |A| is the $1 norm, and the Lovász extension of the modular
function f(A) = m(A) is the weighted $1 norm.

With more general submodular functions, one can generate a large
and interesting variety of norms, all of which have polyhedral
contours (unlike, say, something like the $2 norm).

Hence, not all norms come from the Lovász extension of some
submodular function.

Similarly, not all convex functions are the Lovász extension of some
submodular function.

Bach-2011 has a complete discussion of this.
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Review

The following four slides are review, and are from Lectures 12, 15, and
16.
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 18.4.1

Let f be a submodular function defined on subsets of E. For any
x ∈ RE , we have:

rank(x) = max (y(E) : y ≤ x, y ∈ Pf ) = min (x(A) + f(E \A) : A ⊆ E)
(18.5)

If we take x to be zero, we get:

Corollary 18.4.2

Let f be a submodular function defined on subsets of E. x ∈ RE , we
have:

rank(0) = max (y(E) : y ≤ 0, y ∈ Pf ) = min (f(A) : A ⊆ E) (18.6)
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Min-Norm Point: Definition

Restating what we saw before, we have:

max {y(E)|y ∈ Pf , y ≤ 0} = min {f(X)|X ⊆ V } (18.12)

Consider the optimization:

minimize ‖x‖22 (18.13a)

subject to x ∈ Bf (18.13b)

where Bf is the base polytope of submodular f , and
‖x‖22 =

∑
e∈E x(e)2 is the squared 2-norm. Let x∗ be the optimal

solution.

Note, x∗ is the unique optimal solution since we have a strictly
convex objective over a set of convex constraints.

x∗ is called the minimum norm point of the base polytope.
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Min-Norm Point and Submodular Function Minimization

Given optimal solution x∗ to the above, consider the quantities

y∗ = x∗ ∧ 0 = (min(x∗(e), 0)|e ∈ E) (18.1)

A− = {e : x∗(e) < 0} (18.2)

A0 = {e : x∗(e) ≤ 0} (18.3)

Thus, we immediately have that:

A− ⊆ A0 (18.4)

and that

x∗(A−) = x∗(A0) = y∗(A−) = y∗(A0) (18.5)

It turns out, these quantities will solve the submodular function
minimization problem, as we now show.

The proof is nice since it uses the tools we’ve been recently
developing.
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Min-Norm Point and SFM

Theorem 18.4.1

Let y∗, A−, and A0 be as given. Then y∗ is a maximizer of the l.h.s. of
Eqn. (??). Moreover, A− is the unique minimal minimizer of f and A0 is
the unique maximal minimizer of f .

Proof.

First note, since x∗ ∈ Bf , we have x∗(E) = f(E), meaning
sat(x∗) = E. Thus, we can consider any e ∈ E within dep(x∗, e).

Consider any pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−. Then
x∗(e) < 0, and ∃α > 0 s.t. x∗ + α1e − α1e′ ∈ Pf .

We have x∗(E) = f(E) and x∗ is minimum in l2 sense. We have
(x∗ + α1e − α1e′) ∈ Pf , and in fact

(x∗ + α1e − α1e′)(E) = x∗(E) + α− α = f(E) (18.1)

so x∗ + α1e − α1e′ ∈ Bf also.
. . .
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Duality: convex minimization of L.E. and min-norm alg.

Let f be a submodular function with f̃ it’s Lovász extension. Then the
following two problems are duals (Bach-2013):

minimize
w∈RV

f̃(w) +
1

2
‖w‖22 (18.25)

maximize − ‖x‖22
subject to x ∈ Bf

(18.26a)

(18.26b)

where Bf = Pf ∩
{
x ∈ RV : x(V ) = f(V )

}
is the base polytope of

submodular function f , and ‖x‖22 =
∑

e∈V x(e)2 is squared 2-norm.

Equation (18.25) is related to proximal methods to minimize the
Lovász extension (see Parikh&Boyd, “Proximal Algorithms” 2013).

Equation (18.26b) is solved by the minimum-norm point algorithm
(Wolfe-1976, Fujishige-1984, Fujishige-2005, Fujishige-2011) is (as we
will see) essentially an active-set procedure for quadratic programming,
and uses Edmonds’s greedy algorithm to make it efficient.

Unknown worst-case running time, although in practice it usually
performs quite well (see below).
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Ex: 3D base Bf : permutahedron

Consider submodular
function f : 2V → R with
|V | = 4, and for X ⊆ V ,
concave g,

f(X) = g(|X|)

=

|X|∑

i=1

(4− i+ 1)

Then Bf is a 3D
polytope, and in this
particular case gives us a
permutahedron with 24
distinct extreme points, on
the right (from wikipedia).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 18 - June 2nd, 2014 F31/57 (pg.69/172)



Lovász extension examples Min-Norm Point Algorithm

Modified max-min theorem

We have a variant of Theorem 12.5.2, the min-max theorem, namely
that:

Theorem 18.4.1 (Edmonds-1970)

min {f(X)|X ⊆ E} = max
{
x−(E)|x ∈ Bf

}
(18.27)

where x−(e) = min {x(e), 0} for e ∈ E.

Proof.

min {f(X)|X ⊆ E} = min
w∈[0,1]E

f̃(w) = min
w∈[0,1]E

max
x∈Pf

wᵀx (18.28)

= min
w∈[0,1]E

max
x∈Bf

wᵀx (18.29)

= max
x∈Bf

min
w∈[0,1]E

wᵀx (18.30)

= max
x∈Bf

x−(E) (18.31)
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Modified max-min theorem
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Modified max-min theorem
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Convexity, Strong duality, and min/max swap

The min/max switch follows from strong duality. I.e., consider
g(w, x) = wᵀx and we have domains w ∈ [0, 1]E and x ∈ Bf . then for
any (w, x) ∈ [0, 1]E ×Bf , we have

min
w′∈[0,1]E

g(w′, x) ≤ g(w, x) ≤ max
x′∈Bf

g(w, x′) (18.32)

which means that we have weak duality

max
x∈Bf

min
w′∈[0,1]E

g(w′, x) ≤ min
w∈[0,1]E

max
x′∈Bf

g(w, x′) (18.33)

but since g(w, x) is linear, we have strong duality, meaning

max
x∈Bf

min
w′∈[0,1]E

g(w′, x) = min
w∈[0,1]E

max
x′∈Bf

g(w, x′) (18.34)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 18 - June 2nd, 2014 F33/57 (pg.73/172)



Lovász extension examples Min-Norm Point Algorithm

min {wᵀx : x ∈ Bf}

Recall that the greedy algorithm solves, for w ∈ RE
+

max {wᵀx|x ∈ Pf} = max {wᵀx|x ∈ Bf} (18.35)

since for all x ∈ Pf , there exists y ≥ x with y ∈ Bf .

For arbitrary w ∈ RE , greedy algorithm will also solve:

max {wᵀx|x ∈ Bf} (18.36)

Also, since

min {wᵀx|x ∈ Bf} = −max {−wᵀx|x ∈ Bf} (18.37)

the greedy algorithm using ordering (e1, e2, . . . , em) such that

w(e1) ≤ w(e2) ≤ · · · ≤ w(em) (18.38)

will solve Equation (18.37).
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max {wᵀx|x ∈ Bf} for arbitrary w ∈ RE

Let f(A) be arbitrary submodular function, and f(A) = f ′(A)−m(A)
where f ′ is polymatroidal, and w ∈ RE .

max {wᵀx|x ∈ Bf} = max {wᵀx|x(A) ≤ f(A) ∀A, x(E) = f(E)}
= max

{
wᵀx|x(A) ≤ f ′(A)−m(A) ∀A, x(E) = f ′(E)−m(E)

}

= max
{
wᵀx|x(A) +m(A) ≤ f ′(A) ∀A, x(E) +m(E) = f ′(E)

}

= max
{
wᵀx+ wᵀm|

x(A) +m(A) ≤ f ′(A) ∀A, x(E) +m(E) = f ′(E)
}
− wᵀm

= max
{
wᵀy|y ∈ Bf ′

}
− wᵀm

= wᵀy∗ − wᵀm = wᵀ(y∗ −m)

where y = x+m, so that x∗ = y∗ −m.
So y∗ uses greedy algorithm with positive orthant Bf ′ . To show, we use
Theorem 12.4.1 in Lecture 12, but we don’t require y ≥ 0, and don’t
stop when w goes negative to ensure y∗ ∈ Bf ′ . Then when we subtract
off m from y∗, we get solution to the original problem.
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Notation

Define H(x) as the hyperplane that is orthogonal to the line from 0
to x, while also containing x, i.e.

H(x) !
{
y ∈ RV |xᵀy = ‖x‖22

}
(18.39)

Any set
{
y ∈ RV |xᵀy = c

}
is orthogonal to the line from 0 to x. To

also contain x, we need ‖x‖2 ‖x‖2 cos 0 = c giving c = ‖x‖22.

Given a set of points P = {p1, p2, . . . , pk} with pi ∈ RV , let convP
be the convex hull of P , i.e.,

convP !
{

k∑

i=1

λipi :
∑

i

λi = 1, λi ≥ 0, i ∈ [k]

}
. (18.40)

and for Q = {q1, q2, . . . , qk}, with qi ∈ RV , let aff Q be the affine
hull of Q, i.e.,

aff Q !
{

k∑

i∈1
λiqi :

k∑

i=1

λi = 1

}
. (18.41)
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also contain x, we need ‖x‖2 ‖x‖2 cos 0 = c giving c = ‖x‖22.
Given a set of points P = {p1, p2, . . . , pk} with pi ∈ RV , let convP
be the convex hull of P , i.e.,

convP !
{

k∑

i=1

λipi :
∑

i

λi = 1, λi ≥ 0, i ∈ [k]

}
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Notation

The line between x and y: given two points x, y ∈ RV , let
[x, y] ! {λx+ (1− λy) : λ ∈ [0, 1]}.

Note, if we wish to minimize the 2-norm of a vector ‖x‖2, we can
equivalently minimize its square ‖x‖22 =

∑
i x

2
i , and vice verse.
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Lovász extension examples Min-Norm Point Algorithm

Fujishige-Wolfe Min-Norm Algorithm

Wolfe-1976 developed an algorithm to compute the minimum norm
point of a polytope, specified as a set of vertices.

Fujishige-1984 “Submodular Systems and Related Topics” realized
this algorithm can find the the min. norm point of Bf .

Seems to be (among) the fastest general purpose SFM algo.

Given set of points P = {p1, · · · , pm} where pi ∈ Rn: find the
minimum norm point in convex hull of P :

min
x∈convP

‖x‖2 (18.42)

Wolfe’s algorithm is guaranteed terminating, and explicitly uses a
representation of x as a convex combination of points in P

Algorithm maintains a set of points Q ⊆ P , which is always
assuredly affinely independent.
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Lovász extension examples Min-Norm Point Algorithm

Fujishige-Wolfe Min-Norm Algorithm

When Q are affinely independent, minimum norm point in the affine
hull of Q can easily be found, as a closed form solution for
minx∈aff Q ‖x‖2 is available (see below).

Algorithm repeatedly produces min. norm point x∗ for selected set Q.

If we find wi ≥ 0, i = 1, · · · ,m for the minimum norm point, then x∗

also belongs to convQ and also a minimum norm point over convQ.

If Q ⊆ P is suitably chosen, x∗ may even be the minimum norm point
over convP solving the original problem.

One of the most expensive parts of Wolfe’s algorithm is solving linear
optimization problem over the polytope, doable by examining all the
extreme points in the polytope.

If number of extreme points is exponential, hard to do in general.

Number of extreme points of submodular base polytope is
exponentially large, but linear optimization over the base polytope Bf

doable O(n log n) time via Edmonds’s greedy algorithm.
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Pseudocode of Fujishige-Wolfe Min-Norm (MN) algorithm

Input : P = {p1, · · · , pm}, pi ∈ Rn, i = 1, · · · ,m.
Output: x∗: the minimum-norm-point in convP .

1 x∗ ←− pi∗ where pi∗ ∈ argminp∈P ‖p‖2 /* or choose it arbitrarily */ ;

2 Q ←− {x∗};
3 while 1 do /* major loop */
4 if x∗ = 0 or H(x∗) separates P from origin then

return : x∗

5 else
6 Choose x̂ ∈ P on the near (closer to 0) side of H(x∗);
7 Q = Q ∪ {x̂};
8 while 1 do /* minor loop */
9 x0 ←− minx∈aff Q ‖x‖2;

10 if x0 ∈ convQ then
11 x∗ ←− x0;

12 break;

13 else
14 y ←− minx∈convQ∩[x∗,x0] ‖x− x0‖2;
15 Delete from Q points not on the face of convQ where y lies;
16 x∗ ←− y;



Lovász extension examples Min-Norm Point Algorithm

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

It is advised that for the next set of slides, you have a print out of
the previous MN algorithm available on display/paper somewhere.

Algorithm maintains an invariant, which is that

x∗ ∈ convQ ⊆ convP (18.43)

This is true after each place it is possibly assigned (Line 1, Line 11,
and Line 16):

1 True after Line 1 since Q = {x∗},
2 True after Line 11 since x0 ∈ convQ,
3 and true after Line 16 since y ∈ convQ even after deleting points.

Note also for any x∗ ∈ convQ ⊆ convP , we have

min
x∈aff Q

‖x‖2 ≤ min
x∈convQ

‖x‖2 ≤ ‖x∗‖2 (18.44)

There are six places that might be seemingly tricky or expensive:
Line 4, Line 6, Line 9, Line 10, Line 14, and Line 15.

We will consider each in turn, but first we do a geometric example.
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Lovász extension examples Min-Norm Point Algorithm

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

Polytope, and circles concentric at 0.

P1

P2

P3

0

Minimum Norm
Point
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Lovász extension examples Min-Norm Point Algorithm

Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

The initial polytope consisting of the convex hull of three points
p1, p2, p3, and the origin 0.
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Lovász extension examples Min-Norm Point Algorithm

Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

H(p1)

(x∗)

p1 is the extreme point closest to 0 and so we choose it first, although
we can choose any arbitrary extreme point as the initial point. We set
x∗ ← p1 in Line 1, and Q ← {p1} in Line 2. H(x∗) = H(p1) (green
dashed line) is not a supporting hyperplane of conv(P ) in Line 4, so we
move on to the else condition in Line 5.
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Lovász extension examples Min-Norm Point Algorithm

Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

H(p1)

(x̂)

(x∗)

We need to add some extreme point x̂ on the “near” side of H(p1) in
Line 6, we choose x̂ = p2. In Line 7, we set Q ← Q ∪ {p2}, so
Q = {p1, p2}.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

R
H(p1)

(x0)

(x̂)

(x∗)

x0 = R is the min-norm point in aff {p1, p2} computed in Line 9.

Also,
with Q = {p1, p2}, since R ∈ convQ, we set x∗ ← x0 = R in Line 11.
Note, after Line 11, we still have x∗ ∈ P and ‖x∗‖2 = ‖x∗new‖2 < ‖x∗old‖2
strictly.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

R
H(p1)

(x0)

(x̂)

(x∗)

H(
)R

R = x0 = x∗. We consider next H(R) = H(x∗) in Line 4. H(x∗) is not
a supporting hyperplane of convP . So we choose p3 on the “near” side
of H(x∗) in Line 6. Add Q ← Q ∪ {p3} in Line 7. Now
Q = P = {p1, p2, p3}.

The origin x0 = 0 is the min-norm point in aff Q
(Line 9), and it is not in the interior of convQ (condition in Line 10 is
false).
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

R
H(p1)

(x0)
(x̂)

(x∗)

H(
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R = x0 = x∗. We consider next H(R) = H(x∗) in Line 4. H(x∗) is not
a supporting hyperplane of convP . So we choose p3 on the “near” side
of H(x∗) in Line 6. Add Q ← Q ∪ {p3} in Line 7. Now
Q = P = {p1, p2, p3}. The origin x0 = 0 is the min-norm point in aff Q
(Line 9), and it is not in the interior of convQ (condition in Line 10 is
false).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 18 - June 2nd, 2014 F43/57 (pg.109/172)
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

R

S

H(p1)

(x0)
(x̂)

(x∗)

conv(Q)

∩[x∗, x0]

(y)

Q = P = {p1, p2, p3}. Line 14: S = y = minx∈convQ∩[x∗,x0] ‖x− x0‖2
where x0 is 0 and x∗ is R here. Thus, y lies on the boundary of convQ.
Note, ‖y‖2 < ‖x∗‖2 since x∗ ∈ convQ, ‖x0‖2 < ‖x∗‖2.

Line 15: Delete
p1 from Q since it is not on the face where S lies. Q = {p2, p3} after
Line 15. Note, we still have y = S ∈ convQ for the updated Q. Line
16: x∗ ← y, hence we again have ‖x∗‖2 = ‖x∗new‖2 < ‖x∗old‖2 strictly.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

R

S

H(p1)

(x0)
(x̂)

(x∗)

conv(Q)

∩[x∗, x0]

(y)

Q = P = {p1, p2, p3}. Line 14: S = y = minx∈convQ∩[x∗,x0] ‖x− x0‖2
where x0 is 0 and x∗ is R here. Thus, y lies on the boundary of convQ.
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p1 from Q since it is not on the face where S lies. Q = {p2, p3} after
Line 15. Note, we still have y = S ∈ convQ for the updated Q. Line
16: x∗ ← y, hence we again have ‖x∗‖2 = ‖x∗new‖2 < ‖x∗old‖2 strictly.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3
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R
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T

H(p1)

H(
)R

H( )T

(x̂)

(x∗)

(y)
(x0)

Q = {p2, p3}, and so x0 = T computed in Line 9 is the min-norm point
in aff Q. We also have x0 ∈ convQ in Line 10 so we assign x∗ ← x0 in
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

T

(x̂)

(x∗)
H( )T

H(T ) separates P from the origin in Line 4, and therefore is a supporting
hyperplane, and therefore x∗ is the min-norm point in convP , so we
return with x∗.
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Lovász extension examples Min-Norm Point Algorithm

Condition for Min-Norm Point

Theorem 18.4.2

With P = {p1, p2, . . . , pm}, x∗ ∈ convP is the minimum norm point in
convP iff

pi
ᵀx∗ ≥ ‖x∗‖22 ∀i = 1, · · · ,m. (18.45)

Proof.

Assume x∗ is the min-norm point, let y ∈ convP , and 0 ≤ θ ≤ 1.

Then z ! x∗ + θ(y − x∗) = (1− θ)x∗ + θy ∈ convP

‖z‖22 = ‖x∗ + θ(y − x∗)‖22 = ‖x∗‖22+2θ(x∗ᵀy−x∗ᵀx∗)+θ2 ‖y − x∗‖22
It is possible for ‖z‖22 < ‖x∗‖22 for small θ, unless x∗ᵀy ≥ x∗ᵀx∗ for
all y ∈ convP ⇒ Equation (18.45).

Conversely, given Eq (18.45), and given that y =
∑

i λipi ∈ convP ,

yᵀx∗ =
∑

i

λipi
ᵀx∗ ≥

∑

i

λix
∗ᵀx∗ = x∗ᵀx∗ (18.46)

implying that ‖z‖22 > ‖x∗‖22.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 18 - June 2nd, 2014 F44/57 (pg.115/172)



Lovász extension examples Min-Norm Point Algorithm

Condition for Min-Norm Point

Theorem 18.4.2

With P = {p1, p2, . . . , pm}, x∗ ∈ convP is the minimum norm point in
convP iff

pi
ᵀx∗ ≥ ‖x∗‖22 ∀i = 1, · · · ,m. (18.45)

Proof.

Assume x∗ is the min-norm point, let y ∈ convP , and 0 ≤ θ ≤ 1.

Then z ! x∗ + θ(y − x∗) = (1− θ)x∗ + θy ∈ convP

‖z‖22 = ‖x∗ + θ(y − x∗)‖22 = ‖x∗‖22+2θ(x∗ᵀy−x∗ᵀx∗)+θ2 ‖y − x∗‖22
It is possible for ‖z‖22 < ‖x∗‖22 for small θ, unless x∗ᵀy ≥ x∗ᵀx∗ for
all y ∈ convP ⇒ Equation (18.45).

Conversely, given Eq (18.45), and given that y =
∑

i λipi ∈ convP ,

yᵀx∗ =
∑

i

λipi
ᵀx∗ ≥

∑

i

λix
∗ᵀx∗ = x∗ᵀx∗ (18.46)

implying that ‖z‖22 > ‖x∗‖22.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 18 - June 2nd, 2014 F44/57 (pg.116/172)



Lovász extension examples Min-Norm Point Algorithm

Condition for Min-Norm Point

Theorem 18.4.2

With P = {p1, p2, . . . , pm}, x∗ ∈ convP is the minimum norm point in
convP iff

pi
ᵀx∗ ≥ ‖x∗‖22 ∀i = 1, · · · ,m. (18.45)

Proof.

Assume x∗ is the min-norm point, let y ∈ convP , and 0 ≤ θ ≤ 1.

Then z ! x∗ + θ(y − x∗) = (1− θ)x∗ + θy ∈ convP

‖z‖22 = ‖x∗ + θ(y − x∗)‖22 = ‖x∗‖22+2θ(x∗ᵀy−x∗ᵀx∗)+θ2 ‖y − x∗‖22

It is possible for ‖z‖22 < ‖x∗‖22 for small θ, unless x∗ᵀy ≥ x∗ᵀx∗ for
all y ∈ convP ⇒ Equation (18.45).

Conversely, given Eq (18.45), and given that y =
∑

i λipi ∈ convP ,

yᵀx∗ =
∑

i

λipi
ᵀx∗ ≥

∑

i

λix
∗ᵀx∗ = x∗ᵀx∗ (18.46)

implying that ‖z‖22 > ‖x∗‖22.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 18 - June 2nd, 2014 F44/57 (pg.117/172)



Lovász extension examples Min-Norm Point Algorithm

Condition for Min-Norm Point

Theorem 18.4.2

With P = {p1, p2, . . . , pm}, x∗ ∈ convP is the minimum norm point in
convP iff

pi
ᵀx∗ ≥ ‖x∗‖22 ∀i = 1, · · · ,m. (18.45)

Proof.

Assume x∗ is the min-norm point, let y ∈ convP , and 0 ≤ θ ≤ 1.

Then z ! x∗ + θ(y − x∗) = (1− θ)x∗ + θy ∈ convP

‖z‖22 = ‖x∗ + θ(y − x∗)‖22 = ‖x∗‖22+2θ(x∗ᵀy−x∗ᵀx∗)+θ2 ‖y − x∗‖22
It is possible for ‖z‖22 < ‖x∗‖22 for small θ, unless x∗ᵀy ≥ x∗ᵀx∗ for
all y ∈ convP ⇒ Equation (18.45).

Conversely, given Eq (18.45), and given that y =
∑

i λipi ∈ convP ,

yᵀx∗ =
∑

i

λipi
ᵀx∗ ≥

∑

i

λix
∗ᵀx∗ = x∗ᵀx∗ (18.46)

implying that ‖z‖22 > ‖x∗‖22.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 18 - June 2nd, 2014 F44/57 (pg.118/172)



Lovász extension examples Min-Norm Point Algorithm

Condition for Min-Norm Point

Theorem 18.4.2

With P = {p1, p2, . . . , pm}, x∗ ∈ convP is the minimum norm point in
convP iff

pi
ᵀx∗ ≥ ‖x∗‖22 ∀i = 1, · · · ,m. (18.45)

Proof.

Assume x∗ is the min-norm point, let y ∈ convP , and 0 ≤ θ ≤ 1.

Then z ! x∗ + θ(y − x∗) = (1− θ)x∗ + θy ∈ convP

‖z‖22 = ‖x∗ + θ(y − x∗)‖22 = ‖x∗‖22+2θ(x∗ᵀy−x∗ᵀx∗)+θ2 ‖y − x∗‖22
It is possible for ‖z‖22 < ‖x∗‖22 for small θ, unless x∗ᵀy ≥ x∗ᵀx∗ for
all y ∈ convP ⇒ Equation (18.45).

Conversely, given Eq (18.45), and given that y =
∑

i λipi ∈ convP ,

yᵀx∗ =
∑

i

λipi
ᵀx∗ ≥

∑

i

λix
∗ᵀx∗ = x∗ᵀx∗ (18.46)

implying that ‖z‖22 > ‖x∗‖22.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 18 - June 2nd, 2014 F44/57 (pg.119/172)



Lovász extension examples Min-Norm Point Algorithm

The set Q is always affinely independent

Lemma 18.4.3

The set Q in the MN Algorithm is always affinely independent.

Proof.

Q is of course affinely independent when there is at most one point in
it (e.g., after Line 2).

After the initialization, it changes only by deletion of single point or
adding a single point. Deletion does not change the independence.

Before adding x̂ at Line 7, we know x∗ is the minimum norm point in
aff Q (since we break only at Line 11).

Therefore, x∗ is normal to aff Q, which implies aff Q ⊆ H(x∗).

Since x̂ /∈ H(x∗) chosen at Line 6, we have x̂ /∈ aff Q.

∴ update Q ∪ {x̂} at Line 7 is affinely independent as long as Q is.

Thus, by Lemma 18.4.3, we have for any x ∈ aff Q such that
x =

∑
iwiqi with

∑
iwi = 1, the weights wi are uniquely determined.
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Lovász extension examples Min-Norm Point Algorithm

Minimum Norm in an affine set

Line 9 of the algorithm requires x0 ← minx∈aff Q ‖x‖2.

When Q is affinely independent, this is relatively easy.
Let Q also represent the n× k matrix with points as columns q ∈ Q.
We get the following, solvable with matrix inversion/linear solver:

minimize ‖x‖22 = wᵀQᵀQw (18.47)

subject to 1ᵀw = 1 (18.48)

Note, this also solves Line 10, since feasibility requires
∑

iwi = 1, we
need only check w ≥ 0 to ensure x0 =

∑
iwiqi ∈ convQ.

In fact, a feature of the algorithm (in Wolfe’s 1976 paper) is that we
keep the convex coefficients {wi}i where x∗ =

∑
i λipi of x

∗ and from
this vector. We also keep v such that x0 =

∑
i viqi for points qi ∈ Q,

from Line 9.
Given w and v, we can also easily solve Lines 14 and 15 (see “Step 3”
on page 133 of Wolfe-1976, which also defines numerical tolerances).
We have yet to see how to efficiently solve Lines 4 and 6, however.
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Lovász extension examples Min-Norm Point Algorithm

MN Algorithm finds the MN point in finite time.

Theorem 18.4.4

The MN Algorithm finds the minimum norm point in convP after a
finite number of iterations of the major loop.

Proof.

In minor loop, we always have x∗ ∈ convQ, since whenever Q is
modified, x∗ is updated as well (Line 16) such that the updated x∗

remains in new convQ.

Hence, every time x∗ is updated (in minor loop), its norm never
increases i.e., before Line 8, ‖x0‖2 ≤ ‖x∗‖2 since x∗ ∈ aff Q and
x0 = minx∈aff Q ‖x‖2.

Similarly, before Line 16, ‖y‖2 ≤ ‖x∗‖2, since
invariant x∗ ∈ convQ but while x0 ∈ aff Q, we have x0 /∈ convQ,
and ‖x0‖2 < ‖x∗‖2.

. . .
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MN Algorithm finds the MN point in finite time.

Theorem 18.4.4

The MN Algorithm finds the minimum norm point in convP after a
finite number of iterations of the major loop.

Proof.

In minor loop, we always have x∗ ∈ convQ, since whenever Q is
modified, x∗ is updated as well (Line 16) such that the updated x∗

remains in new convQ.

Hence, every time x∗ is updated (in minor loop), its norm never
increases i.e., before Line 8, ‖x0‖2 ≤ ‖x∗‖2 since x∗ ∈ aff Q and
x0 = minx∈aff Q ‖x‖2.

Similarly, before Line 16, ‖y‖2 ≤ ‖x∗‖2, since
invariant x∗ ∈ convQ but while x0 ∈ aff Q, we have x0 /∈ convQ,
and ‖x0‖2 < ‖x∗‖2.

. . .
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MN Algorithm finds the MN point in finite time.

Theorem 18.4.4

The MN Algorithm finds the minimum norm point in convP after a
finite number of iterations of the major loop.

Proof.

In minor loop, we always have x∗ ∈ convQ, since whenever Q is
modified, x∗ is updated as well (Line 16) such that the updated x∗

remains in new convQ.

Hence, every time x∗ is updated (in minor loop), its norm never
increases i.e., before Line 8, ‖x0‖2 ≤ ‖x∗‖2 since x∗ ∈ aff Q and
x0 = minx∈aff Q ‖x‖2. Similarly, before Line 16, ‖y‖2 ≤ ‖x∗‖2, since
invariant x∗ ∈ convQ but while x0 ∈ aff Q, we have x0 /∈ convQ,
and ‖x0‖2 < ‖x∗‖2.
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 18.4.4 continued.

Moreover, there can be no more iterations within a minor loop than
the dimension of convQ for the initial Q given to the minor loop
initially at Line 8 (dimension of convQ is |Q|− 1 since Q is affinely
independent).

Each iteration of the minor loop removes at least one point from Q
in Line 15.

When Q reduces to a singleton, the minor loop always terminates.

Thus, the minor loop terminates in finite number of iterations, at
most dimension of Q.

In fact, total number of iterations of minor loop in entire algorithm
is at most number of points in P since we never add back in points
to Q that have been removed.

. . .
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 18.4.4 continued.

Moreover, there can be no more iterations within a minor loop than
the dimension of convQ for the initial Q given to the minor loop
initially at Line 8 (dimension of convQ is |Q|− 1 since Q is affinely
independent).

Each iteration of the minor loop removes at least one point from Q
in Line 15.

When Q reduces to a singleton, the minor loop always terminates.

Thus, the minor loop terminates in finite number of iterations, at
most dimension of Q.

In fact, total number of iterations of minor loop in entire algorithm
is at most number of points in P since we never add back in points
to Q that have been removed.

. . .
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 18.4.4 continued.

Moreover, there can be no more iterations within a minor loop than
the dimension of convQ for the initial Q given to the minor loop
initially at Line 8 (dimension of convQ is |Q|− 1 since Q is affinely
independent).

Each iteration of the minor loop removes at least one point from Q
in Line 15.

When Q reduces to a singleton, the minor loop always terminates.

Thus, the minor loop terminates in finite number of iterations, at
most dimension of Q.

In fact, total number of iterations of minor loop in entire algorithm
is at most number of points in P since we never add back in points
to Q that have been removed.

. . .
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 18.4.4 continued.

Moreover, there can be no more iterations within a minor loop than
the dimension of convQ for the initial Q given to the minor loop
initially at Line 8 (dimension of convQ is |Q|− 1 since Q is affinely
independent).

Each iteration of the minor loop removes at least one point from Q
in Line 15.

When Q reduces to a singleton, the minor loop always terminates.

Thus, the minor loop terminates in finite number of iterations, at
most dimension of Q.

In fact, total number of iterations of minor loop in entire algorithm
is at most number of points in P since we never add back in points
to Q that have been removed.
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 18.4.4 continued.

Moreover, there can be no more iterations within a minor loop than
the dimension of convQ for the initial Q given to the minor loop
initially at Line 8 (dimension of convQ is |Q|− 1 since Q is affinely
independent).

Each iteration of the minor loop removes at least one point from Q
in Line 15.

When Q reduces to a singleton, the minor loop always terminates.

Thus, the minor loop terminates in finite number of iterations, at
most dimension of Q.

In fact, total number of iterations of minor loop in entire algorithm
is at most number of points in P since we never add back in points
to Q that have been removed.

. . .
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 18.4.4 continued.

Each time Q is augmented with x̂ at Line 7, followed by updating
x∗ with x0 at Line 11, (i.e., when the minor loop returns with only
one iteration), ‖x∗‖2 strictly decreases from what it was before.

To see this, consider x∗ + θ(x̂− x∗) where 0 ≤ θ ≤ 1. Since both
x̂, x∗ ∈ convQ, we have x∗ + θ(x̂− x∗) ∈ convQ.

Therefore, we have ‖x∗ + θ(x̂− x∗)‖2 ≥ ‖x0‖2, which implies

‖x∗ + θ(x̂− x∗)‖22 = ‖x∗‖22 + 2θ
(
(x∗)$x̂− ‖x∗‖22

)
+ θ2 ‖x̂− x∗‖22

≥ ‖x0‖22 (18.49)

x̂ is on the same side of H(x∗) as the origin, i.e. (x∗)$x̂ < ‖x∗‖22.
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 18.4.4 continued.

Each time Q is augmented with x̂ at Line 7, followed by updating
x∗ with x0 at Line 11, (i.e., when the minor loop returns with only
one iteration), ‖x∗‖2 strictly decreases from what it was before.

To see this, consider x∗ + θ(x̂− x∗) where 0 ≤ θ ≤ 1. Since both
x̂, x∗ ∈ convQ, we have x∗ + θ(x̂− x∗) ∈ convQ.

Therefore, we have ‖x∗ + θ(x̂− x∗)‖2 ≥ ‖x0‖2, which implies

‖x∗ + θ(x̂− x∗)‖22 = ‖x∗‖22 + 2θ
(
(x∗)$x̂− ‖x∗‖22

)
+ θ2 ‖x̂− x∗‖22

≥ ‖x0‖22 (18.49)

x̂ is on the same side of H(x∗) as the origin, i.e. (x∗)$x̂ < ‖x∗‖22.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 18 - June 2nd, 2014 F49/57 (pg.144/172)



Lovász extension examples Min-Norm Point Algorithm

MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 18.4.4 continued.

Each time Q is augmented with x̂ at Line 7, followed by updating
x∗ with x0 at Line 11, (i.e., when the minor loop returns with only
one iteration), ‖x∗‖2 strictly decreases from what it was before.

To see this, consider x∗ + θ(x̂− x∗) where 0 ≤ θ ≤ 1. Since both
x̂, x∗ ∈ convQ, we have x∗ + θ(x̂− x∗) ∈ convQ.

Therefore, we have ‖x∗ + θ(x̂− x∗)‖2 ≥ ‖x0‖2, which implies

‖x∗ + θ(x̂− x∗)‖22 = ‖x∗‖22 + 2θ
(
(x∗)$x̂− ‖x∗‖22

)
+ θ2 ‖x̂− x∗‖22

≥ ‖x0‖22 (18.49)

x̂ is on the same side of H(x∗) as the origin, i.e. (x∗)$x̂ < ‖x∗‖22.
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 18.4.4 continued.

Therefore, for sufficiently small θ, specifically for

θ <
2
(
‖x∗‖22 − (x∗)$x̂

)

‖x̂− x∗‖22
(18.50)

we have that ‖x∗‖22 > ‖x0‖22.

For a similar reason, we have ‖x∗‖2 strictly decreases each time Q is
updated at Line 7 and followed by updating x∗ with y at Line 16.

Therefore, in each iteration of major loop, ‖x∗‖2 strictly decreases,
and the MN Algorithm must terminate and it can only do so when
the optimal is found.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 18 - June 2nd, 2014 F50/57 (pg.146/172)



Lovász extension examples Min-Norm Point Algorithm

MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 18.4.4 continued.

Therefore, for sufficiently small θ, specifically for

θ <
2
(
‖x∗‖22 − (x∗)$x̂

)

‖x̂− x∗‖22
(18.50)

we have that ‖x∗‖22 > ‖x0‖22.
For a similar reason, we have ‖x∗‖2 strictly decreases each time Q is
updated at Line 7 and followed by updating x∗ with y at Line 16.

Therefore, in each iteration of major loop, ‖x∗‖2 strictly decreases,
and the MN Algorithm must terminate and it can only do so when
the optimal is found.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 18 - June 2nd, 2014 F50/57 (pg.147/172)
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 18.4.4 continued.

Therefore, for sufficiently small θ, specifically for

θ <
2
(
‖x∗‖22 − (x∗)$x̂

)

‖x̂− x∗‖22
(18.50)

we have that ‖x∗‖22 > ‖x0‖22.
For a similar reason, we have ‖x∗‖2 strictly decreases each time Q is
updated at Line 7 and followed by updating x∗ with y at Line 16.

Therefore, in each iteration of major loop, ‖x∗‖2 strictly decreases,
and the MN Algorithm must terminate and it can only do so when
the optimal is found.
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Lovász extension examples Min-Norm Point Algorithm

Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

The “near” side means the side that contains the origin.

Ideally, find x̂ such that the reduction of ‖x∗‖2 is maximized to
reduce number of major iterations.

From Eqn. 18.49, reduction on norm is lower-bounded:

∆ = ‖x∗‖22 − ‖x0‖22 ≥ 2θ
(
‖x∗‖22 − (x∗)$x̂

)
− θ2 ‖x̂− x∗‖22 ! ∆

(18.51)

When 0 ≤ θ <
2(‖x∗‖22−(x∗)"x̂)

‖x̂−x∗‖22
, we can get the maximal value of the

lower bound, over θ, as follows:

max

0≤θ<
2(‖x∗‖22−(x∗)"x̂)

‖x̂−x∗‖22

∆ =

(
‖x∗‖22 − (x∗)$x̂

‖x̂− x∗‖2

)2

(18.52)
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Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

The “near” side means the side that contains the origin.

Ideally, find x̂ such that the reduction of ‖x∗‖2 is maximized to
reduce number of major iterations.

From Eqn. 18.49, reduction on norm is lower-bounded:

∆ = ‖x∗‖22 − ‖x0‖22 ≥ 2θ
(
‖x∗‖22 − (x∗)$x̂

)
− θ2 ‖x̂− x∗‖22 ! ∆

(18.51)

When 0 ≤ θ <
2(‖x∗‖22−(x∗)"x̂)

‖x̂−x∗‖22
, we can get the maximal value of the

lower bound, over θ, as follows:

max

0≤θ<
2(‖x∗‖22−(x∗)"x̂)

‖x̂−x∗‖22

∆ =

(
‖x∗‖22 − (x∗)$x̂

‖x̂− x∗‖2

)2

(18.52)
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Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

The “near” side means the side that contains the origin.

Ideally, find x̂ such that the reduction of ‖x∗‖2 is maximized to
reduce number of major iterations.

From Eqn. 18.49, reduction on norm is lower-bounded:

∆ = ‖x∗‖22 − ‖x0‖22 ≥ 2θ
(
‖x∗‖22 − (x∗)$x̂

)
− θ2 ‖x̂− x∗‖22 ! ∆

(18.51)

When 0 ≤ θ <
2(‖x∗‖22−(x∗)"x̂)

‖x̂−x∗‖22
, we can get the maximal value of the

lower bound, over θ, as follows:

max

0≤θ<
2(‖x∗‖22−(x∗)"x̂)

‖x̂−x∗‖22

∆ =

(
‖x∗‖22 − (x∗)$x̂

‖x̂− x∗‖2

)2

(18.52)
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Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

The “near” side means the side that contains the origin.

Ideally, find x̂ such that the reduction of ‖x∗‖2 is maximized to
reduce number of major iterations.

From Eqn. 18.49, reduction on norm is lower-bounded:

∆ = ‖x∗‖22 − ‖x0‖22 ≥ 2θ
(
‖x∗‖22 − (x∗)$x̂

)
− θ2 ‖x̂− x∗‖22 ! ∆

(18.51)

When 0 ≤ θ <
2(‖x∗‖22−(x∗)"x̂)

‖x̂−x∗‖22
, we can get the maximal value of the

lower bound, over θ, as follows:

max

0≤θ<
2(‖x∗‖22−(x∗)"x̂)

‖x̂−x∗‖22

∆ =

(
‖x∗‖22 − (x∗)$x̂

‖x̂− x∗‖2

)2

(18.52)
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Lovász extension examples Min-Norm Point Algorithm

Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

To maximize lower bound of norm reduction at each major iteration,
want to find an x̂ such that the above lower bound (Equation 18.52)
is maximized.

That is, we want to find

x̂ ∈ argmax
x∈P

(
‖x∗‖22 − (x∗)$x

‖x− x∗‖2

)2

(18.53)

to ensure that a large norm reduction is assured.

This problem, however, is at least as hard as the MN problem itself
as we have a quadratic term in the denominator.
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Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

To maximize lower bound of norm reduction at each major iteration,
want to find an x̂ such that the above lower bound (Equation 18.52)
is maximized.

That is, we want to find

x̂ ∈ argmax
x∈P

(
‖x∗‖22 − (x∗)$x

‖x− x∗‖2

)2

(18.53)

to ensure that a large norm reduction is assured.

This problem, however, is at least as hard as the MN problem itself
as we have a quadratic term in the denominator.
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Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

To maximize lower bound of norm reduction at each major iteration,
want to find an x̂ such that the above lower bound (Equation 18.52)
is maximized.

That is, we want to find

x̂ ∈ argmax
x∈P

(
‖x∗‖22 − (x∗)$x

‖x− x∗‖2

)2

(18.53)

to ensure that a large norm reduction is assured.

This problem, however, is at least as hard as the MN problem itself
as we have a quadratic term in the denominator.
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Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

As a surrogate, we maximize numerator in Eqn. 18.53, i.e., find

x̂ ∈ argmax
x∈P

‖x∗‖22 − (x∗)$x = argmin
x∈P

(x∗)$x, (18.54)

Intuitively, by solving the above, we find x̂ such that it has the
largest distance to the hyperplane H(x∗), and this is exactly the
strategy used in the Wolfe-1976 algorithm.

Also, solution x̂ can be used to determine if hyperplane H(x∗)
separates convP from the origin: if the point in P having greatest
distance to H(x∗) is not on the side where origin lies, then H(x∗)
separates convP from the origin.

Mathematically, we terminate the algorithm if

(x∗)$x̂ ≥ ‖x∗‖22 ,

where x̂ is the solution of Eq. 18.54.
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Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

As a surrogate, we maximize numerator in Eqn. 18.53, i.e., find

x̂ ∈ argmax
x∈P

‖x∗‖22 − (x∗)$x = argmin
x∈P

(x∗)$x, (18.54)

Intuitively, by solving the above, we find x̂ such that it has the
largest distance to the hyperplane H(x∗), and this is exactly the
strategy used in the Wolfe-1976 algorithm.

Also, solution x̂ can be used to determine if hyperplane H(x∗)
separates convP from the origin: if the point in P having greatest
distance to H(x∗) is not on the side where origin lies, then H(x∗)
separates convP from the origin.

Mathematically, we terminate the algorithm if

(x∗)$x̂ ≥ ‖x∗‖22 ,

where x̂ is the solution of Eq. 18.54.
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Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

As a surrogate, we maximize numerator in Eqn. 18.53, i.e., find

x̂ ∈ argmax
x∈P

‖x∗‖22 − (x∗)$x = argmin
x∈P

(x∗)$x, (18.54)

Intuitively, by solving the above, we find x̂ such that it has the
largest distance to the hyperplane H(x∗), and this is exactly the
strategy used in the Wolfe-1976 algorithm.

Also, solution x̂ can be used to determine if hyperplane H(x∗)
separates convP from the origin: if the point in P having greatest
distance to H(x∗) is not on the side where origin lies, then H(x∗)
separates convP from the origin.

Mathematically, we terminate the algorithm if

(x∗)$x̂ ≥ ‖x∗‖22 ,

where x̂ is the solution of Eq. 18.54.
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Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

As a surrogate, we maximize numerator in Eqn. 18.53, i.e., find

x̂ ∈ argmax
x∈P

‖x∗‖22 − (x∗)$x = argmin
x∈P

(x∗)$x, (18.54)

Intuitively, by solving the above, we find x̂ such that it has the
largest distance to the hyperplane H(x∗), and this is exactly the
strategy used in the Wolfe-1976 algorithm.

Also, solution x̂ can be used to determine if hyperplane H(x∗)
separates convP from the origin: if the point in P having greatest
distance to H(x∗) is not on the side where origin lies, then H(x∗)
separates convP from the origin.

Mathematically, we terminate the algorithm if

(x∗)$x̂ ≥ ‖x∗‖22 ,

where x̂ is the solution of Eq. 18.54.
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Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

In practice,the above optimality test might never hold numerically.
Hence, as suggested by Wolfe, we introduce a tolerance parameter
ε > 0, and terminates the algorithm if

(x∗)$x̂ > ‖x∗‖22 − εmax
x∈Q

‖x‖22 (18.55)

When convP is a submodular base polytope (i.e., convP = Bf for
a submodular function f), then the problem in Eqn 18.54 can be
solved efficiently by Edmonds’s greedy algorithm (even though there
may be an exponential number of extreme points).

Hence, Edmonds’s discovery is one of the main reasons that the MN
algorithm is applicable to submodular function minimization.
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Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

In practice,the above optimality test might never hold numerically.
Hence, as suggested by Wolfe, we introduce a tolerance parameter
ε > 0, and terminates the algorithm if

(x∗)$x̂ > ‖x∗‖22 − εmax
x∈Q

‖x‖22 (18.55)

When convP is a submodular base polytope (i.e., convP = Bf for
a submodular function f), then the problem in Eqn 18.54 can be
solved efficiently by Edmonds’s greedy algorithm (even though there
may be an exponential number of extreme points).

Hence, Edmonds’s discovery is one of the main reasons that the MN
algorithm is applicable to submodular function minimization.
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Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

In practice,the above optimality test might never hold numerically.
Hence, as suggested by Wolfe, we introduce a tolerance parameter
ε > 0, and terminates the algorithm if

(x∗)$x̂ > ‖x∗‖22 − εmax
x∈Q

‖x‖22 (18.55)

When convP is a submodular base polytope (i.e., convP = Bf for
a submodular function f), then the problem in Eqn 18.54 can be
solved efficiently by Edmonds’s greedy algorithm (even though there
may be an exponential number of extreme points).

Hence, Edmonds’s discovery is one of the main reasons that the MN
algorithm is applicable to submodular function minimization.
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SFM Summary (modified from S. Iwata’s slides)

General Submodular Function Minimization 

 

Iwata, Fleischer, Fujishige (2000) Schrijver (2000) 

Iwata (2003) 

Fleischer, Iwata (2000) 

Orlin (2007) 

Iwata (2002) 

Fully Combinatorial 

Grötschel, Lovász, Schrijver (1981, 1988)

Ellipsoid Method 

minimum norm point
algorithm

Cunningham (1985) 

Fujishige (1980/1991)

Bixby,Cunningham,Topkis (1984) 

Edmonds (1965/1970) 

Bach (2012/13) 

Iwata, Orlin (2009) 

Wolfe (1976)/von Hohenbalken (1975)
gen. convex methods
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MN Algorithm Complexity

The currently fastest strongly polynomial combinatorial algorithm
for SFM achieves a running time of O(n5T + n6) (Orlin’09) where
T is the time for function evaluation, far from practical for large
problem instances.

Fujishige & Isotani report that MN algorithm is fast in practice, but
they use only a limited set of submodular functions.
Complexity of MN Algorithm is still an unsolved problem.
Obvious facts:

each major iteration requires O(n) function oracle calls
complexity of each major iteration could be at least O(n3) due to the
affine projection step (solving a linear system).
Therefore, the complexity of each major iteration is

O(n3 + n1+p)

where each function oracle call requires O(np) time.

Since the number of major iterations required is unknown, the
complexity of MN is also unknown.
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affine projection step (solving a linear system).
Therefore, the complexity of each major iteration is

O(n3 + n1+p)

where each function oracle call requires O(np) time.

Since the number of major iterations required is unknown, the
complexity of MN is also unknown.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 18 - June 2nd, 2014 F56/57 (pg.165/172)



Lovász extension examples Min-Norm Point Algorithm

MN Algorithm Complexity

The currently fastest strongly polynomial combinatorial algorithm
for SFM achieves a running time of O(n5T + n6) (Orlin’09) where
T is the time for function evaluation, far from practical for large
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Fujishige & Isotani report that MN algorithm is fast in practice, but
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Therefore, the complexity of each major iteration is
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where each function oracle call requires O(np) time.

Since the number of major iterations required is unknown, the
complexity of MN is also unknown.
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Therefore, the complexity of each major iteration is
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where each function oracle call requires O(np) time.

Since the number of major iterations required is unknown, the
complexity of MN is also unknown.
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for SFM achieves a running time of O(n5T + n6) (Orlin’09) where
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problem instances.
Fujishige & Isotani report that MN algorithm is fast in practice, but
they use only a limited set of submodular functions.
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Since the number of major iterations required is unknown, the
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The currently fastest strongly polynomial combinatorial algorithm
for SFM achieves a running time of O(n5T + n6) (Orlin’09) where
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Since the number of major iterations required is unknown, the
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The currently fastest strongly polynomial combinatorial algorithm
for SFM achieves a running time of O(n5T + n6) (Orlin’09) where
T is the time for function evaluation, far from practical for large
problem instances.
Fujishige & Isotani report that MN algorithm is fast in practice, but
they use only a limited set of submodular functions.
Complexity of MN Algorithm is still an unsolved problem.
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affine projection step (solving a linear system).
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Since the number of major iterations required is unknown, the
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Lovász extension examples Min-Norm Point Algorithm

MN Algorithm Empirical Complexity
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(a) α = 0.1
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(b) α = 0.2
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(c) α = 0.3
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(d) α = 0.4
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(e) α = 0.5
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(f) α = 0.6
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(g) α = 0.7
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(h) α = 0.8

6

8

10

12

14

16

18

6 7 8 9 10 11

L
o
g
 
n
u
m
.
 
o
f
 
m
a
j
o
r
 
i
t
e
r
a
t
i
o
n
s
 

Log ground set size 

O(N
2.1

) 
O(N

2.0
) 

MN 

(i) α = 0.9

Figure : The number of major iteration for f(S) = −m1(S) + 100 · (w1(N (S)))
α. The red lines are the linear interpolations of the worst case points, and the

black lines are the linear interpolations of the average case points. From Lin&Bilmes 2014 (unpublished)
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