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Logistics Review

Cumulative Outstanding Reading

Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969,
Choquet-1955, Grabisch/Marichal/Mesiar/Pap “Aggregation
Functions”, Lovász-1983, Bach-2011.

Read Tom McCormick’s overview paper on SFM http://people.

commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

Read chapters 1 - 4 from Fujishige book.

Matroid properties http:
//www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf

Read lecture 14 slides on lattice theory at our web page (http://j.
ee.washington.edu/~bilmes/classes/ee596b_spring_2014/)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 17 - May 26st, 2014 F2/55 (pg.2/208)



Logistics Review

Announcements, Assignments, and Reminders

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

L9: From Matroid Polytopes to
Polymatroids.

L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, polymatroids
and entropic Venn diagrams, exchange
capacity,

L16: minimum norm point algorithm and
the lattice of minimizers of a submodular
function, Lovasz extension

L17: Lovasz extension, Choquet
Integration, more properties/examples of
Lovasz extension, convex minimization
and SFM.

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Min-Norm Point and SFM

Theorem 17.2.1

Let y∗, A−, and A0 be as given. Then y∗ is a maximizer of the l.h.s. of
Eqn. (??). Moreover, A− is the unique minimal minimizer of f and A0 is
the unique maximal minimizer of f .

Proof.

First note, since x∗ ∈ Bf , we have x∗(E) = f(E), meaning
sat(x∗) = E. Thus, we can consider any e ∈ E within dep(x∗, e).

Consider any pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−. Then
x∗(e) < 0, and ∃α > 0 s.t. x∗ + α1e − α1e′ ∈ Pf .

We have x∗(E) = f(E) and x∗ is minimum in l2 sense. We have
(x∗ + α1e − α1e′) ∈ Pf , and in fact

(x∗ + α1e − α1e′)(E) = x∗(E) + α− α = f(E) (17.1)

so x∗ + α1e − α1e′ ∈ Bf also.
. . .
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Min-norm point and other minimizers of f

Recall, that the set of minimizers of f forms a lattice.

In fact, with x∗ the min-norm point, and A− and A0 as defined
above, we have the following theorem:

Theorem 17.2.1

Let A ⊆ E be any minimizer of submodular f , and let x∗ be the
minimum-norm point. Then A has the form:

A = A− ∪
⋃

a∈Am

dep(x∗, a) (17.7)

for some set Am ⊆ A0 \A−.
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A continuous extension of submodular f

That is, given a submodular function f , a w ∈ RE , and defining
Ei = {e1, e2, . . . , ei} and where we choose the element order
(e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), we have

f̃(w) = max(wx : x ∈ Pf ) (17.11)

=

m∑

i=1

w(ei)f(ei|Ei−1) (17.12)

=
m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (17.13)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (17.14)

We say that ∅ ! E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain
based on w.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 17 - May 26st, 2014 F7/55 (pg.7/208)



Logistics Review

A continuous extension of submodular f

Definition of the continuous extension, once again, for reference:

f̃(w) = max(wx : x ∈ Pf ) (17.11)

Therefore, if f is a submodular function, we can write

f̃(w) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (17.12)

=

m∑

i=1

λif(Ei) (17.13)

where λm = w(em) and otherwise λi = w(ei)− w(ei+1), where the
elements are sorted according to w as before.

From convex analysis, we know f̃(w) = max(wx : x ∈ P ) is always
convex in w for any set P ⊆ RE , since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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An extension of an arbitrary f : 2V → R

Thus, for any f : 2E → R, even non-submodular f , we can define an
extension, having f̃(1A) = f(A), ∀A, in this way where

f̃(w) =

m∑

i=1

λif(Ei) (17.20)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending
order of w as in w(e1) ≥ w(e2) ≥ · · · ≥ w(em), and where

for i ∈ {1, . . . ,m}, λi =

{
w(ei)− w(ei+1) if i < m

w(em) if i = m
(17.21)

so that w =
∑m

i=1 λi1Ei .

w =
∑m

i=1 λi1Ei is an interpolation of certain hypercube vertices.

f̃(w) =
∑m

i=1 λif(Ei) is the associated interpolation of the values
of f at sets corresponding to each hypercube vertex.
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Summary: comparison of the two extension forms
So if f is submodular, then we can write f̃(w) = max(wx : x ∈ Pf )
(which is clearly convex) in the form:

f̃(w) = max(wx : x ∈ Pf ) =

m∑

i=1

λif(Ei) (17.1)

where w =
∑m

i=1 λi1Ei and Ei = {e1, . . . , ei} defined based on
sorted descending order w(e1) ≥ w(e2) ≥ · · · ≥ w(em).

On the other hand, for any f (even non-submodular), we can
produce an extension f̃ having the form

f̃(w) =
m∑

i=1

λif(Ei) (17.2)

where w =
∑m

i=1 λi1Ei and Ei = {e1, . . . , ei} defined based on
sorted descending order w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
In both Eq. (17.1) and Eq. (17.2), we have f̃(1A) = f(A), ∀A, but
Eq. (17.2), might not be convex.
Submodularity is sufficient for convexity of but is it necessary?
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Lovász Extension, Submodularity and Convexity

Theorem 17.2.1

A function f : 2E → R is submodular iff its Lovász extension f̃ of f is
convex.

Proof.

We’ve already seen that if f is submodular, its extension can be
written via Eqn.(??) due to the greedy algorithm, and therefore is
also equivalent to f̃(w) = max {wx : x ∈ Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̃(w) =
∑

i λif(Ei) of
some function f : 2E → R is a convex function.

We note that, based on the extension definition, in particular the
definition of the {λi}i, we have that f̃(αw) = αf̃(w) for any
α ∈ R+. I.e., f is a positively homogeneous convex function.

. . .
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Choquet Integration Lovász extn., defs/props Convex min. & SFM Lovász extension examples

Integration and Aggregation

Integration is just summation (e.g., the
∫
symbol has as its origins a

sum).

Lebesgue integration allows integration w.r.t. an underlying measure
µ of sets. E.g., given measurable function f , we can define

∫

X
fdu = sup IX(s) (17.3)

where IX(s) =
∑n

i=1 ciµ(X ∩Xi), and where we take the sup over
all measurable functions s such that 0 ≤ s ≤ f and
s(x) =

∑n
i=1 ciIXi(x) and where IXi(x) is indicator of membership

of set Xi, with ci > 0.
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Choquet Integration Lovász extn., defs/props Convex min. & SFM Lovász extension examples

Integration, Aggregation, and Weighted Averages
In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

I.e., given a weight vector w ∈ [0, 1]E for some finite ground set E,
then for any x ∈ RE we have

WAVG(x) =
∑

e∈E
x(e)w(e) (17.4)

Consider 1e for e ∈ E, we have

WAVG(1e) = w(e) (17.5)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a size m = |E| subset of the
vertices of this hypercube, i.e., {1e : e ∈ E}. Moreover, we are
interpolating as in

WAVG(x) =
∑

e∈E

x(e)w(e) =
∑

e∈E

x(e)WAVG(1e) (17.6)

Note, WAVG function is linear in the weights w, and homogeneous.
WAVGw1+w2

(x) = WAVGw1
(x) +WAVGw2

(x), WAVG(αx) = αWAVG(x).
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Choquet Integration Lovász extn., defs/props Convex min. & SFM Lovász extension examples

Integration, Aggregation, and Weighted Averages

More complex “nonlinear” aggregation functions can be constructed
by defining the aggregation function on all vertices of the hypercube.
I.e., for each 1A : A ⊆ E we might have (for all A ⊆ E):

AG(1A) = wA (17.7)

What then might AG(x) be for some x ∈ RE? Our weighted
average functions might look something more like the r.h.s. in:

AG(x) =
∑

A⊆E

x(A)wA =
∑

A⊆E

x(A)AG(1A) (17.8)

Note, we can define w(e) = w′(e) and w(A) = 0, ∀A : |A| > 1 and
get back previous (normal) weighted average, in that

WAVGw′(x) = AGw(x) (17.9)

Set function f : 2E → R is a game if f is normalized f(∅) = 0.
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I.e., for each 1A : A ⊆ E we might have (for all A ⊆ E):

AG(1A) = wA (17.7)

What then might AG(x) be for some x ∈ RE? Our weighted
average functions might look something more like the r.h.s. in:

AG(x) =
∑

A⊆E

x(A)wA =
∑

A⊆E

x(A)AG(1A) (17.8)

Note, we can define w(e) = w′(e) and w(A) = 0, ∀A : |A| > 1 and
get back previous (normal) weighted average, in that

WAVGw′(x) = AGw(x) (17.9)

Set function f : 2E → R is a game if f is normalized f(∅) = 0.
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Integration, Aggregation, and Weighted Averages

Set function f : 2E → R is called a capacity if it is monotone
non-decreasing, i.e., f(A) ≤ f(B) whenever A ⊆ B.

A Boolean function f is any function f : {0, 1}m → {0, 1} and is a
pseudo-Boolean function if f : {0, 1}m → R.
Any set function corresponds to a pseudo-Boolean function. I.e.,
given f : 2E → R, form fb : {0, 1}m → R as fb(x) = f(Ax) where
the A, x bijection is A = {e ∈ E : xe = 1} and x = 1A.

Also, if we have an expression for fb we can construct a set function
f as f(A) = fb(1A). We can also often relax fb to any x ∈ [0, 1]m.

We saw this for Lovász extension.

It turns out that a concept essentially identical to the Lovász
extension was derived much earlier, in 1954, and using this
derivation (via integration) leads to deeper intuition.
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Choquet integral

Definition 17.3.1

Let f be any capacity on E and w ∈ RE
+. The Choquet integral (1954)

of w w.r.t. f is defined by

Cf (w) =

m∑

i=1

(wei − wei+1)f(Ei) (17.10)

where in the sum, we have sorted and renamed the elements of E so that
we1 ≥ we2 ≥ · · · ≥ wem ≥ wem+1 = 0, and where Ei = {e1, e2, . . . , ei}.

We immediately see that an equivalent formula is as follows:

Cf (w) =

m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (17.11)

where E0
def
= ∅.
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Choquet integral

Definition 17.3.1

Let f be any capacity on E and w ∈ RE
+. The Choquet integral (1954)

of w w.r.t. f is defined by

Cf (w) =

m∑

i=1

(wei − wei+1)f(Ei) (17.10)

where in the sum, we have sorted and renamed the elements of E so that
we1 ≥ we2 ≥ · · · ≥ wem ≥ wem+1 = 0, and where Ei = {e1, e2, . . . , ei}.

BTW: this again essentially Abel’s partial summation formula: Given
two arbitrary sequences {an} and {bn} with An =

∑n
k=1 ak, we have

n∑

k=m

akbk =
n∑

k=m

Ak(bk − bk+1) +Anbn+1 −Am−1bm (17.12)
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The “integral” in the Choquet integral

Thought of as an integral over R of a piece-wise constant function.

First note, assuming E is ordered according to descending w, so
that w(e1) ≥ w(e2) ≥ · · · ≥ w(em−1) ≥ w(em), then
Ei = {e1, e2, . . . , ei} = {e ∈ E : we ≥ wei}.
For any wei > α ≥ wei+1 we also have
Ei = {e1, e2, . . . , ei} = {e ∈ E : we > α}.
Consider segmenting the real-axis at boundary points wei , right
most is we1 .

A function can be defined on a segment of R, namely
wei > α ≥ wei+1 . This function Fi : [wei+1 , wei) → R is defined as

Fi(α) = f({e ∈ E : we > α}) = f(Ei) (17.13)
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The “integral” in the Choquet integral

Thought of as an integral over R of a piece-wise constant function.
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that w(e1) ≥ w(e2) ≥ · · · ≥ w(em−1) ≥ w(em), then
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Consider segmenting the real-axis at boundary points wei , right
most is we1 .

... w(e1)w(e2)w(e3)w(e4)w(e5)w(em) w(em−1)

A function can be defined on a segment of R, namely
wei > α ≥ wei+1 . This function Fi : [wei+1 , wei) → R is defined as

Fi(α) = f({e ∈ E : we > α}) = f(Ei) (17.13)
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The “integral” in the Choquet integral

We can generalize this to multiple segments of R (for now, take
w ∈ RE

+). The piecewise-constant function is defined as:

F (α) =






f(E) if 0 ≤ α < wm

f({e ∈ E : we > α}) if wei+1 ≤ α < wei , i ∈ {1, . . . ,m− 1}
0 if w1 < α

Visualizing a piecewise constant function, where the constant values are
given by f evaluated on Ei for each i

Note, what is depicted may be a game but not a capacity. Why?
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The “integral” in the Choquet integral

We can generalize this to multiple segments of R (for now, take
w ∈ RE

+). The piecewise-constant function is defined as:

F (α) =






f(E) if 0 ≤ α < wm

f({e ∈ E : we > α}) if wei+1 ≤ α < wei , i ∈ {1, . . . ,m− 1}
0 if w1 < α

Visualizing a piecewise constant function, where the constant values are
given by f evaluated on Ei for each i

...
...

0

f({e1})
f({e1,e2})

f({e1,e2,e3})

f({e1,e2,e3,e4})

f({e1,e2,e3,e4,e5})f(E)
f(E\{em})

w(e1)w(e2)w(e3)w(e4)w(e5)w(em)w(em−1)

f(E\{em,em-1})

F (α)

α

Note, what is depicted may be a game but not a capacity. Why?
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The “integral” in the Choquet integral

Now consider the integral, with w ∈ RE
+, and normalized f so that

f(∅) = 0. Recall wm+1
def
= 0.

f̃(w)
def
=

∫ ∞

0
F (α)dα (17.14)

=

∫ ∞

0
f({e ∈ E : we > α})dα (17.15)

=

∫ ∞

wm+1

f({e ∈ E : we > α})dα (17.16)

=
m∑

i=1

∫ wi

wi+1

f({e ∈ E : we > α})dα (17.17)

=
m∑

i=1

∫ wi

wi+1

f(Ei)dα =

m∑

i=1

f(Ei)(wi − wi+1) (17.18)
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The “integral” in the Choquet integral

But we saw before that
∑m

i=1 f(Ei)(wi − wi+1) is just the Lovász
extension of a function f .

Thus, we have the following definition:

Definition 17.3.2

Given w ∈ RE
+, the Lovász extension (equivalently Choquet integral) may

be defined as follows:

f̃(w)
def
=

∫ ∞

0
F (α)dα (17.19)

where the function F is defined as before.

Note that it is not necessary in general to require w ∈ RE
+ (i.e., we

can take w ∈ RE) nor that f be non-negative, but it is a bit more
involved. Above is the simple case.
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Choquet integral and aggregation

Recall, we want to produce some notion of generalized aggregation
function having the flavor of:

AG(x) =
∑

A⊆E

x(A)wA =
∑

A⊆E

x(A)AG(1A) (17.20)

how does this correspond to Lovász extension?

Let us partition the hypercube [0, 1]m into q polytopes, each defined
by a set of vertices V1,V2, . . . ,Vq.

E.g., for each i, Vi = {1A1 ,1A2 , . . . ,1Ak
} (k vertices) and the

convex hull of Vi defines the ith polytope.

This forms a “triangulation” of the hypercube.

For any x ∈ [0, 1]m there is a (not necessarily unique) V(x) = Vj for
some j such that x ∈ conv(V(x)).
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Choquet integral and aggregation

Most generally, for x ∈ [0, 1]m, let us define the (unique) coefficients
αx
0(A) and αx

i (A) that define the affine transformation of the
coefficients of x to be used with the particular hypercube vertex 1A.
The affine transformation is as follows:

αx
0(A) +

m∑

j=1

αx
j (A)xj ∈ R (17.21)

Note that many of these coefficient are often zero.

From this, we can define an aggregation function of the form

AG(x)
def
=

∑

A:1A∈V(x)

(
αx
0(A) +

m∑

j=1

αx
j (A)xj

)
AG(1A) (17.22)
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From this, we can define an aggregation function of the form
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Choquet integral and aggregation

We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. I.e., given some permutation σ,
define

conv(Vσ) =
{
x ∈ [0, 1]n|xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(m)

}
(17.23)

Then these m! blocks of the partition are called the canonical
partitions of the hypercube.

With this, we can define {Vi}i as the vertices of conv(Vσ) for each
permutation σ.

In this case, we have:

Proposition 17.3.3

The above linear interpolation in Eqn. (17.22) using the canonical
partition yields the Lovász extension with αx

0(A) +
∑m

j=1 α
x
j (A)xj

= xσi − xσi−1 for A = Ei = {eσ1 , . . . , eσi} for appropriate order σ.

Hence, Lovász extension is a generalized aggregation function.
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Choquet integral and aggregation
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{
x ∈ [0, 1]n|xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(m)
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(17.23)

Then these m! blocks of the partition are called the canonical
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With this, we can define {Vi}i as the vertices of conv(Vσ) for each
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Choquet integral and aggregation
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Then these m! blocks of the partition are called the canonical
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With this, we can define {Vi}i as the vertices of conv(Vσ) for each
permutation σ. In this case, we have:
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The above linear interpolation in Eqn. (17.22) using the canonical
partition yields the Lovász extension with αx

0(A) +
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x
j (A)xj

= xσi − xσi−1 for A = Ei = {eσ1 , . . . , eσi} for appropriate order σ.
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Lovász extension as max over orders

We can also write the Lovász extension as follows:

f̃(w) = max
σ∈Π[m]

wᵀcσ (17.24)

where Π[m] is the set of m! permutations of [m] = E, σ ∈ Π[m] is a
particular permutation, and cσ is a vector associated with
permutation σ defined as:

cσi = f(Eσi)− f(Eσi−1) (17.25)

where Eσi = {eσ1 , eσ2 , . . . , eσi}.

Note this immediately follows from the definition of the Lovász
extension in the form:

f̃(w) = max
x∈Pf

wᵀx = max
x∈Bf

wᵀx (17.26)

since we know that the maximum is achieved by an extreme point of
the base Bf and all extreme points are obtained by a
permutation-of-E-parameterized greedy instance.
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Lovász extension, defined in multiple ways

As shorthand notation, lets use {w ≥ α} ≡ {e ∈ E : w(e) ≥ α},
called the weak α-sup-level set of w.

A similar definition holds for
{w > α} (called the strong α-sup-level set of w).

Given any w ∈ RE , sort E as w(e1) ≥ w(e2) ≥ · · · ≥ w(em).

Also,
w.l.o.g., number elements of w so that w1 ≥ w2 ≥ · · · ≥ wm.

We have already seen how we can define the Lovász extension for
any (not necessarily submodular) function f in the following
equivalent ways:

f̃(w) =
m∑

i=1

w(ei)f(ei|Ei−1) (17.27)

=

m−1∑

i=1

f(Ei)(w(ei)− w(ei+1)) + f(E)w(em)a (17.28)

=

m−1∑

i=1

λif(Ei) (17.29)
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Lovász extension, defined in multiple ways

As shorthand notation, lets use {w ≥ α} ≡ {e ∈ E : w(e) ≥ α},
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Lovász extension, as integral

Additional ways we can define the Lovász extension for any (not
necessarily submodular) but normalized function f include:

f̃(w) =

m∑

i=1

w(ei)f(ei|Ei−1) =

m∑

i=1

λif(Ei) (17.30)

=

m−1∑

i=1

f(Ei)(w(ei)− w(ei+1)) + f(E)w(em) (17.31)

=

∫ +∞

min {w1,...,wm}
f({w ≥ α})dα+ f(E)min {w1, . . . , wm}

(17.32)

=

∫ +∞

0
f({w ≥ α})dα+

∫ 0

−∞
[f({w ≥ α})− f(E)]dα

(17.33)
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general Lovász extension, as simple integral

In fact, we have that, given function f , and any w ∈ RE :

f̃(w) =

∫ +∞

−∞
f̂(α)dα (17.34)

where

f̂(α) =

{
f({w ≥ α}) if α >= 0

f({w ≥ α})− f(E) if α < 0
(17.35)

So we can write it as a simple integral over the right function.

These make it easier to see certain properties of the Lovász
extension. But first, we show the above.
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So we can write it as a simple integral over the right function.
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Lovász extension, as integral

To show Eqn. (17.32), first note that the r.h.s. terms are the same
since w(em) = min {w1, . . . , wm}.

Then, consider that, as a function of α, we have

f({w ≥ α}) =






0 if α > w(e1)

f(Ek) if α ∈ (w(ek+1), w(ek)), k ∈ {1, . . . ,m− 1}
f(E) if α < w(em)

(17.36)

we use open intervals since sets of zero measure don’t change
integration.

Inside the integral, then, this recovers Eqn. (17.31).
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Then, consider that, as a function of α, we have
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(17.36)

we use open intervals since sets of zero measure don’t change
integration.
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Lovász extension, as integral

To show Eqn. (17.32), first note that the r.h.s. terms are the same
since w(em) = min {w1, . . . , wm}.
Then, consider that, as a function of α, we have

f({w ≥ α}) =






0 if α > w(e1)

f(Ek) if α ∈ (w(ek+1), w(ek)), k ∈ {1, . . . ,m− 1}
f(E) if α < w(em)

(17.36)

we use open intervals since sets of zero measure don’t change
integration.

Inside the integral, then, this recovers Eqn. (17.31).
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Lovász extension, as integral
To show Eqn. (17.33), start with Eqn. (17.32), note
wm = min {w1, . . . , wm}, take any β ≤ min {0, w1, . . . , wm}, and form:

f̃(w)

=

∫ +∞

wm

f({w ≥ α})dα+ f(E)min {w1, . . . , wm}

=

∫ +∞

β
f({w ≥ α})dα−

∫ wm

β
f({w ≥ α})dα+ f(E)

∫ wm

0
dα

=

∫ +∞

β
f({w ≥ α})dα−

∫ wm

β
f(E)dα+

∫ wm

0
f(E)dα

=

∫ +∞

0
f({w ≥ α})dα+

∫ 0

β
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Lovász extension properties
Using the above, have the following (some of which we’ve seen):

Theorem 17.4.1

Let f, g : 2E → R be normalized (f(∅) = g(∅) = 0). Then

1 Superposition of LE operator: Given f and g with Lovász extensions f̃ and
g̃ then f̃ + g̃ is the Lovász extension of f + g and λf̃ is the Lovász
extension of λf for λ ∈ R.

2 If w ∈ RE
+ then f̃(w) =

∫ +∞
0

f({w ≥ α})dα.

3 For w ∈ RE , and α ∈ R, we have f̃(w + α1E) = f̃(w) + αf(E).

4 Positive homogeneity: I.e., f̃(αw) = αf̃(w) for α ≥ 0.

5 For all A ⊆ E, f̃(1A) = f(A).

6 f symmetric as in f(A) = f(E \A), ∀A, then f̃(w) = f̃(−w) (f̃ is even).

7 Given partition E1 ∪ E2 ∪ · · · ∪ Ek of E and w =
∑k

i=1 γi1Ek
with

γ1 ≥ γ2 ≥ · · · ≥ γk, and with E1:i = E1 ∪ E2 ∪ · · · ∪ Ei, then
f̃(w) =

∑k
i=1 γif(E

i|E1:i−1) =
∑k−1

i=1 f(E1:i)(γi − γi+1) + f(E)γk.
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with

γ1 ≥ γ2 ≥ · · · ≥ γk, and with E1:i = E1 ∪ E2 ∪ · · · ∪ Ei, then
f̃(w) =

∑k
i=1 γif(E

i|E1:i−1) =
∑k−1

i=1 f(E1:i)(γi − γi+1) + f(E)γk.
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Lovász extension properties: ex. property 3

Consider property property 3, for example, which says that
f̃(w + α1E) = f̃(w) + αf(E).

This means that, say when m = 2, that as we move along the line
w1 = w2, the Lovász extension scales linearly.

And if f(E) = 0, then the Lovász extension is constant along the
direction 1E .
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Lovász extension properties: ex. property 3

Consider property property 3, for example, which says that
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This means that, say when m = 2, that as we move along the line
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Lovász extension properties

Given Eqns. (17.30) through (17.33), most of the above properties
are relatively easy to derive.

For example, if f is symmetric, and since f(E) = f(∅) = 0, we have

f̃(−w)

=

∫ ∞

−∞
f({−w ≥ α})dα =

∫ ∞

−∞
f({w ≤ −α})dα (17.37)

(a)
=

∫ ∞

−∞
f({w ≤ α})dα (b)

=

∫ ∞

−∞
f({w > α})dα (17.38)

=

∫ ∞

−∞
f({w ≥ α})dα = f̃(w)

(17.39)

Equality (a) follows since
∫ ∞
−∞ f(α)dα =

∫ ∞
−∞ f(aα+ b)dα for any b

and a ∈ ±1, and equality (b) follows since f(A) = f(E \A), so
f({w ≤ α}) = f({w > α}).
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Lovász extension properties
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Lovász extension, expected value of random variable

Recall, for w ∈ RE
+, we have f̃(w) =

∫ ∞
0 f({w ≥ α})dα

Since f({w ≥ α}) = 0 for α > w1 ≥ w#, we have for w ∈ RE
+, we

have f̃(w) =
∫ w1

0 f({w ≥ α})dα
For w ∈ [0, 1]E , then
f̃(w) =

∫ w1

0 f({w ≥ α})dα =
∫ 1
0 f({w ≥ α})dα since

f({w ≥ α}) = 0 for 1 ≥ α > w1.
Consider α as a uniform random variable on [0, 1] and let h(α) be a
funciton of α. Then the expected value E[f(α)] =

∫ 1
0 h(α)dα.

Hence, for w ∈ [0, 1]m, we can also define the Lovász extension as

f̃(w) = E[f({w ≥ α})] = E[f(e ∈ E : w(ei) ≥ α)] (17.40)

where α is uniform random variable in [0, 1].
This is very useful for showing results for various randomized
rounding schemes when solving submodular optimization problems
subject to constraints via relaxations to convex optimization
problems subject to linear constraints.
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Ellipsoid algorithm, and polynomial time SFM

For a long time, it was not known if general purpose submodular
function minimization was doable in polynomial time.

This was answered in the early 1980s via the help of Edmonds’s greedy
algorithm from 1970.

Let C ⊆ RV be a non-empty convex compact set.

Definition 17.5.1 ((strong) optimization problem)

Given c ∈ RV , find a vector x ∈ C that maximizes cᵀx on C. I.e., solve

max
x∈C

cᵀx (17.41)

Definition 17.5.2 ((strong) separation problem)

Given a vector y ∈ RV , decide if y ∈ C, and if not, find a hyperplane
that separates y from C. I.e., find vector c ∈ RV such that:

cᵀy > max
x∈C

cᵀx (17.42)
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Ellipsoid algorithm, and polynomial time SFM

For a long time, it was not known if general purpose submodular
function minimization was doable in polynomial time.
This was answered in the early 1980s via the help of Edmonds’s greedy
algorithm from 1970.

Let C ⊆ RV be a non-empty convex compact set.

Definition 17.5.1 ((strong) optimization problem)
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Ellipsoid algorithm, and polynomial time SFM

For a long time, it was not known if general purpose submodular
function minimization was doable in polynomial time.
This was answered in the early 1980s via the help of Edmonds’s greedy
algorithm from 1970. Let C ⊆ RV be a non-empty convex compact set.

Definition 17.5.1 ((strong) optimization problem)

Given c ∈ RV , find a vector x ∈ C that maximizes cᵀx on C. I.e., solve

max
x∈C

cᵀx (17.41)
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Ellipsoid algorithm, and polynomial time SFM

For a long time, it was not known if general purpose submodular
function minimization was doable in polynomial time.
This was answered in the early 1980s via the help of Edmonds’s greedy
algorithm from 1970. Let C ⊆ RV be a non-empty convex compact set.

Definition 17.5.1 ((strong) optimization problem)

Given c ∈ RV , find a vector x ∈ C that maximizes cᵀx on C. I.e., solve

max
x∈C

cᵀx (17.41)

Definition 17.5.2 ((strong) separation problem)
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Ellipsoid algorithm, and polynomial time SFM

For a long time, it was not known if general purpose submodular
function minimization was doable in polynomial time.
This was answered in the early 1980s via the help of Edmonds’s greedy
algorithm from 1970. Let C ⊆ RV be a non-empty convex compact set.

Definition 17.5.1 ((strong) optimization problem)
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Ellipsoid algorithm, and polynomial time SFM

We have the following important theorem:

Theorem 17.5.3 (Grötschel, Lovász, and Schrijver, 1981)

Let C be set of convex sets. Then there is a polynomial-time algorithm
to solve the separation problem for the members of C iff there is a
polynomial-time algorithm to solve the optimization problem for the
members of C.

We saw already that the greedy algorithm solves the storng separation
problem for polymatroidal polytopes.

The ellipsoid algorithm first bounds a polytope P with an ellipsoid, and
then creates a sequence of elipsoids of exponentially decreasing volume
which are used to address a P membership problem.

This is sufficient to show that we can solve SFM in polynomial time!

See also, the book: Grötschel, Lovász, and Schrijver, “Geometric
Algorithms and Combinatorial Optimization”
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Ellipsoid algorithm, and polynomial time SFM
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Convex minimization and SFM

SFM is also related to the convexity of the Lovász extension, the
ease of minimizing convex functions.

Also, since we can recover f from f̃ via f(A) = f̃(1A), and (as we
will see) get discrete solutions from continuous convex minimization
solution.
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Convex minimization and SFM
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will see) get discrete solutions from continuous convex minimization
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Minimizing f̃ vs. minimizing f

In fact, we have:

Theorem 17.5.4

Let f be submodular and f̃ be its Lovász extension. Then
min {f(A)|A ⊆ E} = minw∈{0,1}E f̃(w) = minw∈[0,1]E f̃(w).

Proof.

First, since f̃(1A) = f(A), ∀A ⊆ V , we clearly have
min {f(A)|A ⊆ V } = minw∈{0,1}E f̃(w) ≥ minw∈[0,1]E f̃(w).

Next, consider any w ∈ [0, 1]E , sort elements E = {e1, . . . , em} as
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), define Ei = {e1, . . . , ei}, and define
λm = w(em) and λi = w(ei)− w(ei+1) for i ∈ {1, . . . ,m− 1}.
Then, as we have seen, w =

∑
i λi1Ei and λi ≥ 0.

Also,
∑

i λi = w(e1) ≤ 1.

. . .
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Minimizing f̃ vs. minimizing f
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. . .
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Minimizing f̃ vs. minimizing f
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Minimizing f̃ vs. minimizing f
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Minimizing f̃ vs. minimizing f

. . . cont. proof of Thm. 17.5.4.

Note that since f(∅) = 0, min {f(A)|A ⊆ E} ≤ 0.

Then we have

f̃(w) =

∫ 1

0
f({w ≥ α})dα =

m∑

i=1

λif(Ei) (17.43)

≥
m∑

i=1

λi min
A⊆E

f(A) (17.44)

≥ min
A⊆E

f(A) (17.45)

Thus, min {f(A)|A ⊆ E} = minw∈[0,1]E f̃(w).
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Minimizing f̃ vs. minimizing f
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Minimizing f̃ vs. minimizing f
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Other minimizers based on min of f̃

Let w∗ ∈ argmin
{
f̃(w)|w ∈ [0, 1]E

}
and let

A∗ ∈ argmin {f(A)|A ⊆ V }.

Previous theorem states that f̃(w∗) = f(A∗).
Let λ∗

i be the function weights and E∗
i be the sets associated with

w∗. From previous theorem, we have

f̃(w∗) =
∑

i

λ∗
i f(E

∗
i ) = f(A∗) = min {f(A)|A ⊆ E} (17.46)

and that f(A∗) ≤ f(E∗
i ), ∀i, and that f(A∗) ≤ 0, and

∑
i λi ≤ 1.

Thus, since w∗ ∈ [0, 1]E , each 0 ≤ λ∗
i ≤ 1, we have for all i such

that λ∗
i > 0,

f(E∗
i ) = f(A∗) (17.47)

meaning such E∗
i are also minimizers of f , and

∑
i λi = 1.

Note that the negative of f(A∗) is crucial here. See next slide that
further explains this.
Hence w∗ =

∑
i λ

∗
i1Ei is in convex hull of incidence vectors of

minimizers of f .
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Previous theorem states that f̃(w∗) = f(A∗).
Let λ∗

i be the function weights and E∗
i be the sets associated with

w∗. From previous theorem, we have

f̃(w∗) =
∑

i

λ∗
i f(E

∗
i ) = f(A∗) = min {f(A)|A ⊆ E} (17.46)

and that f(A∗) ≤ f(E∗
i ), ∀i, and that f(A∗) ≤ 0, and

∑
i λi ≤ 1.

Thus, since w∗ ∈ [0, 1]E , each 0 ≤ λ∗
i ≤ 1, we have for all i such

that λ∗
i > 0,

f(E∗
i ) = f(A∗) (17.47)

meaning such E∗
i are also minimizers of f , and

∑
i λi = 1.

Note that the negative of f(A∗) is crucial here. See next slide that
further explains this.

Hence w∗ =
∑

i λ
∗
i1Ei is in convex hull of incidence vectors of

minimizers of f .
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Other minimizers based on min of f̃

Let w∗ ∈ argmin
{
f̃(w)|w ∈ [0, 1]E

}
and let

A∗ ∈ argmin {f(A)|A ⊆ V }.
Previous theorem states that f̃(w∗) = f(A∗).
Let λ∗

i be the function weights and E∗
i be the sets associated with

w∗. From previous theorem, we have

f̃(w∗) =
∑

i

λ∗
i f(E

∗
i ) = f(A∗) = min {f(A)|A ⊆ E} (17.46)

and that f(A∗) ≤ f(E∗
i ), ∀i, and that f(A∗) ≤ 0, and

∑
i λi ≤ 1.

Thus, since w∗ ∈ [0, 1]E , each 0 ≤ λ∗
i ≤ 1, we have for all i such

that λ∗
i > 0,

f(E∗
i ) = f(A∗) (17.47)

meaning such E∗
i are also minimizers of f , and

∑
i λi = 1.

Note that the negative of f(A∗) is crucial here. See next slide that
further explains this.
Hence w∗ =

∑
i λ

∗
i1Ei is in convex hull of incidence vectors of

minimizers of f .
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A bit more on level sets being minimizers

f is normalized f(∅) = 0, so minimizer is ≤ 0.

We know that f(E∗
i ) ≥ f(A∗) for all i, and f(A∗) =

∑
i λif(E

∗
i ).

If f(A∗) = 0, then we must have f(E∗
i ) = 0 for any i such that

λi > 0. Otherwise, assume f(A∗) < 0.

Suppose there exists an i such that f(E∗
i ) > f(A∗).

Then we have

f(A∗) =
∑

i

λif(E
∗
i ) >

∑

i

λif(A
∗) = f(A∗)

∑

i

λi (17.48)

and since f(A∗) < 0, this means that
∑

i λi > 1 which is a
contradiction.

Hence, must have f(E∗
i ) = f(A∗) for all i.

Hence,
∑

i λi = 1 since f(A∗) =
∑

i λif(A
∗).
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A bit more on level sets being minimizers

f is normalized f(∅) = 0, so minimizer is ≤ 0.

We know that f(E∗
i ) ≥ f(A∗) for all i, and f(A∗) =

∑
i λif(E

∗
i ).

If f(A∗) = 0, then we must have f(E∗
i ) = 0 for any i such that

λi > 0. Otherwise, assume f(A∗) < 0.

Suppose there exists an i such that f(E∗
i ) > f(A∗).

Then we have

f(A∗) =
∑

i

λif(E
∗
i ) >

∑

i

λif(A
∗) = f(A∗)

∑

i

λi (17.48)

and since f(A∗) < 0, this means that
∑

i λi > 1 which is a
contradiction.

Hence, must have f(E∗
i ) = f(A∗) for all i.

Hence,
∑

i λi = 1 since f(A∗) =
∑

i λif(A
∗).
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A bit more on level sets being minimizers

f is normalized f(∅) = 0, so minimizer is ≤ 0.

We know that f(E∗
i ) ≥ f(A∗) for all i, and f(A∗) =

∑
i λif(E

∗
i ).

If f(A∗) = 0, then we must have f(E∗
i ) = 0 for any i such that

λi > 0. Otherwise, assume f(A∗) < 0.

Suppose there exists an i such that f(E∗
i ) > f(A∗).

Then we have

f(A∗) =
∑

i

λif(E
∗
i ) >

∑

i

λif(A
∗) = f(A∗)

∑

i

λi (17.48)

and since f(A∗) < 0, this means that
∑

i λi > 1 which is a
contradiction.

Hence, must have f(E∗
i ) = f(A∗) for all i.

Hence,
∑

i λi = 1 since f(A∗) =
∑

i λif(A
∗).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 17 - May 26st, 2014 F37/55 (pg.143/208)



Choquet Integration Lovász extn., defs/props Convex min. & SFM Lovász extension examples

A bit more on level sets being minimizers

f is normalized f(∅) = 0, so minimizer is ≤ 0.

We know that f(E∗
i ) ≥ f(A∗) for all i, and f(A∗) =

∑
i λif(E

∗
i ).

If f(A∗) = 0, then we must have f(E∗
i ) = 0 for any i such that

λi > 0. Otherwise, assume f(A∗) < 0.

Suppose there exists an i such that f(E∗
i ) > f(A∗).

Then we have

f(A∗) =
∑

i

λif(E
∗
i ) >

∑

i

λif(A
∗) = f(A∗)

∑

i

λi (17.48)

and since f(A∗) < 0, this means that
∑

i λi > 1 which is a
contradiction.

Hence, must have f(E∗
i ) = f(A∗) for all i.

Hence,
∑

i λi = 1 since f(A∗) =
∑

i λif(A
∗).
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A bit more on level sets being minimizers

f is normalized f(∅) = 0, so minimizer is ≤ 0.

We know that f(E∗
i ) ≥ f(A∗) for all i, and f(A∗) =

∑
i λif(E

∗
i ).

If f(A∗) = 0, then we must have f(E∗
i ) = 0 for any i such that

λi > 0. Otherwise, assume f(A∗) < 0.

Suppose there exists an i such that f(E∗
i ) > f(A∗).

Then we have

f(A∗) =
∑

i

λif(E
∗
i ) >

∑

i

λif(A
∗) = f(A∗)

∑

i

λi (17.48)

and since f(A∗) < 0, this means that
∑

i λi > 1 which is a
contradiction.

Hence, must have f(E∗
i ) = f(A∗) for all i.

Hence,
∑

i λi = 1 since f(A∗) =
∑

i λif(A
∗).
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A bit more on level sets being minimizers

f is normalized f(∅) = 0, so minimizer is ≤ 0.

We know that f(E∗
i ) ≥ f(A∗) for all i, and f(A∗) =

∑
i λif(E

∗
i ).

If f(A∗) = 0, then we must have f(E∗
i ) = 0 for any i such that

λi > 0. Otherwise, assume f(A∗) < 0.

Suppose there exists an i such that f(E∗
i ) > f(A∗).

Then we have

f(A∗) =
∑

i

λif(E
∗
i ) >

∑

i

λif(A
∗) = f(A∗)

∑

i

λi (17.48)

and since f(A∗) < 0, this means that
∑

i λi > 1 which is a
contradiction.

Hence, must have f(E∗
i ) = f(A∗) for all i.

Hence,
∑

i λi = 1 since f(A∗) =
∑

i λif(A
∗).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 17 - May 26st, 2014 F37/55 (pg.146/208)



Choquet Integration Lovász extn., defs/props Convex min. & SFM Lovász extension examples

A bit more on level sets being minimizers

f is normalized f(∅) = 0, so minimizer is ≤ 0.

We know that f(E∗
i ) ≥ f(A∗) for all i, and f(A∗) =

∑
i λif(E

∗
i ).

If f(A∗) = 0, then we must have f(E∗
i ) = 0 for any i such that

λi > 0. Otherwise, assume f(A∗) < 0.

Suppose there exists an i such that f(E∗
i ) > f(A∗).

Then we have

f(A∗) =
∑

i

λif(E
∗
i ) >

∑

i

λif(A
∗) = f(A∗)

∑

i

λi (17.48)

and since f(A∗) < 0, this means that
∑

i λi > 1 which is a
contradiction.

Hence, must have f(E∗
i ) = f(A∗) for all i.

Hence,
∑

i λi = 1 since f(A∗) =
∑

i λif(A
∗).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 17 - May 26st, 2014 F37/55 (pg.147/208)



Choquet Integration Lovász extn., defs/props Convex min. & SFM Lovász extension examples

Alternate way to see Equation 17.47

We know f(A∗) ≤ 0. Consider two cases in Equation 17.47.

Case 1: f(A∗) = 0. Then for any i with λi > 0 we must have
f(Ei) = 0 as well for all i since f(A∗) ≤ f(Ei).

Case 2 is where f(A∗) < 0. In this second case, we have

0 > f(A∗) =
∑

i

λif(Ei) ≥
∑

i

λif(A
∗) (17.49)

(a)

≥
∑

i

λif(A
∗) + (1− λ̄)f(A∗) = f(A∗) (17.50)

where λ̄ =
∑

i λi and (1− λ̄) ≥ 0 and where (a) follows since
f(A∗) < 0.

Hence, all inequalities must be equalities, which means that we must
have that λ̄ = 1.
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Alternate way to see Equation 17.47

We know f(A∗) ≤ 0. Consider two cases in Equation 17.47.

Case 1: f(A∗) = 0. Then for any i with λi > 0 we must have
f(Ei) = 0 as well for all i since f(A∗) ≤ f(Ei).

Case 2 is where f(A∗) < 0. In this second case, we have

0 > f(A∗) =
∑

i

λif(Ei) ≥
∑

i

λif(A
∗) (17.49)

(a)

≥
∑

i

λif(A
∗) + (1− λ̄)f(A∗) = f(A∗) (17.50)

where λ̄ =
∑

i λi and (1− λ̄) ≥ 0 and where (a) follows since
f(A∗) < 0.

Hence, all inequalities must be equalities, which means that we must
have that λ̄ = 1.
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Alternate way to see Equation 17.47

We know f(A∗) ≤ 0. Consider two cases in Equation 17.47.

Case 1: f(A∗) = 0. Then for any i with λi > 0 we must have
f(Ei) = 0 as well for all i since f(A∗) ≤ f(Ei).

Case 2 is where f(A∗) < 0. In this second case, we have

0 > f(A∗) =
∑

i

λif(Ei) ≥
∑

i

λif(A
∗) (17.49)

(a)

≥
∑

i

λif(A
∗) + (1− λ̄)f(A∗) = f(A∗) (17.50)

where λ̄ =
∑

i λi and (1− λ̄) ≥ 0 and where (a) follows since
f(A∗) < 0.

Hence, all inequalities must be equalities, which means that we must
have that λ̄ = 1.
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Alternate way to see Equation 17.47

We know f(A∗) ≤ 0. Consider two cases in Equation 17.47.

Case 1: f(A∗) = 0. Then for any i with λi > 0 we must have
f(Ei) = 0 as well for all i since f(A∗) ≤ f(Ei).

Case 2 is where f(A∗) < 0. In this second case, we have

0 > f(A∗) =
∑

i

λif(Ei) ≥
∑

i

λif(A
∗) (17.49)

(a)

≥
∑

i

λif(A
∗) + (1− λ̄)f(A∗) = f(A∗) (17.50)

where λ̄ =
∑

i λi and (1− λ̄) ≥ 0 and where (a) follows since
f(A∗) < 0.

Hence, all inequalities must be equalities, which means that we must
have that λ̄ = 1.
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θ-rounding the L.E. minimum

We can also view the above as a form of rounding a continuous convex
relaxation to the problem.

Definition 17.5.5 (θ-rounding)

Given vector x ∈ [0, 1]E , choose θ ∈ (0, 1) and define a set corresponding
to elements above θ, i.e.,

X̂θ = {i : x̂(i) ≥ θ} " {x̂ ≥ θ} (17.51)

Lemma 17.5.6 (Fujishige-2005)

Given a continuous minimizer x∗ ∈ argminx∈[0,1]n f̃(x), the discrete
minimizers are exactly the maximal chain of sets ∅ ⊂ Xθ1 ⊂ . . . Xθk

obtained by θ-rounding x∗, for θj ∈ (0, 1).
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

If w1 ≥ w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.52)

= (w1 − w2)f({1}) + w2f({1, 2}) (17.53)

If w1 ≤ w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (17.54)

= (w2 − w1)f({2}) + w1f({1, 2}) (17.55)
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

If w1 ≥ w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.52)

= (w1 − w2)f({1}) + w2f({1, 2}) (17.53)

If w1 ≤ w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (17.54)

= (w2 − w1)f({2}) + w1f({1, 2}) (17.55)
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

If w1 ≥ w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.56)

= (w1 − w2)f({1}) + w2f({1, 2}) (17.57)

=
1

2
f(1)(w1 − w2) +

1

2
f(1)(w1 − w2) (17.58)

+
1

2
f({1, 2})(w1 + w2)−

1

2
f({1, 2})(w1 − w2) (17.59)

+
1

2
f(2)(w1 − w2) +

1

2
f(2)(w2 − w1) (17.60)

A similar (symmetric) expression holds when w1 ≤ w2.
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

If w1 ≥ w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.56)

= (w1 − w2)f({1}) + w2f({1, 2}) (17.57)

=
1

2
f(1)(w1 − w2) +

1

2
f(1)(w1 − w2) (17.58)

+
1

2
f({1, 2})(w1 + w2)−

1

2
f({1, 2})(w1 − w2) (17.59)

+
1

2
f(2)(w1 − w2) +

1

2
f(2)(w2 − w1) (17.60)

A similar (symmetric) expression holds when w1 ≤ w2.
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

This gives, for general w1, w2, that

f̃(w) =
1

2
(f({1}) + f({2})− f({1, 2})) |w1 − w2| (17.61)

+
1

2
(f({1})− f({2}) + f({1, 2}))w1 (17.62)

+
1

2
(−f({1}) + f({2}) + f({1, 2}))w2 (17.63)

= − (f({1}) + f({2})− f({1, 2}))min {w1, w2} (17.64)

+ f({1})w1 + f({2})w2 (17.65)

Thus, if f(A) = H(XA) is the entropy function, we have
f̃(w) = H(e1)w1 +H(e2)w2 − I(e1; e2)min {w1, w2} which must be
convex in w, where I(e1; e2) is the mutual information.

This “simple” but general form of the Lovász extension with m = 2 can
be useful.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 17 - May 26st, 2014 F42/55 (pg.157/208)



Choquet Integration Lovász extn., defs/props Convex min. & SFM Lovász extension examples

Simple expressions for Lovász E. with m = 2, E = {1, 2}

This gives, for general w1, w2, that

f̃(w) =
1

2
(f({1}) + f({2})− f({1, 2})) |w1 − w2| (17.61)

+
1

2
(f({1})− f({2}) + f({1, 2}))w1 (17.62)

+
1

2
(−f({1}) + f({2}) + f({1, 2}))w2 (17.63)

= − (f({1}) + f({2})− f({1, 2}))min {w1, w2} (17.64)

+ f({1})w1 + f({2})w2 (17.65)

Thus, if f(A) = H(XA) is the entropy function, we have
f̃(w) = H(e1)w1 +H(e2)w2 − I(e1; e2)min {w1, w2} which must be
convex in w, where I(e1; e2) is the mutual information.

This “simple” but general form of the Lovász extension with m = 2 can
be useful.
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Simple expressions for Lovász E. with m = 2, E = {1, 2}

This gives, for general w1, w2, that

f̃(w) =
1

2
(f({1}) + f({2})− f({1, 2})) |w1 − w2| (17.61)

+
1

2
(f({1})− f({2}) + f({1, 2}))w1 (17.62)

+
1

2
(−f({1}) + f({2}) + f({1, 2}))w2 (17.63)

= − (f({1}) + f({2})− f({1, 2}))min {w1, w2} (17.64)

+ f({1})w1 + f({2})w2 (17.65)

Thus, if f(A) = H(XA) is the entropy function, we have
f̃(w) = H(e1)w1 +H(e2)w2 − I(e1; e2)min {w1, w2} which must be
convex in w, where I(e1; e2) is the mutual information.

This “simple” but general form of the Lovász extension with m = 2 can
be useful.
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Example: m = 2, E = {1, 2}, contours

If w1 ≥ w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.66)

If w = (1, 0)/f({1}) =
(
1/f({1}), 0

)
then f̃(w) = 1.

If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

If w1 ≤ w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (17.67)

If w = (0, 1)/f({2}) = (0, 1/f({2})) then f̃(w) = 1.
If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

Can plot contours of the form
{
w ∈ R2 : f̃(w) = 1

}
, particular marked

points of form w = 1A × 1
f(A) for certain A, where f̃(w) = 1.
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Example: m = 2, E = {1, 2}, contours

If w1 ≥ w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.66)

If w = (1, 0)/f({1}) =
(
1/f({1}), 0

)
then f̃(w) = 1.

If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

If w1 ≤ w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (17.67)

If w = (0, 1)/f({2}) = (0, 1/f({2})) then f̃(w) = 1.
If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

Can plot contours of the form
{
w ∈ R2 : f̃(w) = 1

}
, particular marked

points of form w = 1A × 1
f(A) for certain A, where f̃(w) = 1.
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Example: m = 2, E = {1, 2}, contours

If w1 ≥ w2, then

f̃(w) = w1f({1}) + w2f({2}|{1}) (17.66)

If w = (1, 0)/f({1}) =
(
1/f({1}), 0

)
then f̃(w) = 1.

If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

If w1 ≤ w2, then

f̃(w) = w2f({2}) + w1f({1}|{2}) (17.67)

If w = (0, 1)/f({2}) = (0, 1/f({2})) then f̃(w) = 1.
If w = (1, 1)/f({1, 2}) then f̃(w) = 1.

Can plot contours of the form
{
w ∈ R2 : f̃(w) = 1

}
, particular marked

points of form w = 1A × 1
f(A) for certain A, where f̃(w) = 1.
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Example: m = 2, E = {1, 2}

Contour plot of m = 2 Lovász extension (from Bach-2011).

0

w2 > w1

w1 > w2

(1, 1)/f({1, 2})

(1, 0)/f({1})

(0, 1)/f({2})

˜
{
w : f(w) = 1

}

w2

w1
45°
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Example: m = 3, E = {1, 2, 3}

In order to visualize in 3D, we make a few simplifications.

Consider any submodular f ′ and x ∈ Bf ′ . Then
f(A) = f ′(A)− x(A) is submodular

, and moreover
f(E) = f ′(E)− x(E) = 0.

Hence, from f̃(w + α1E) = f̃(w) + αf(E), we have that
f̃(w + α1E) = f̃(w).

Thus, we can look “down” on the contour plot of the Lovász

extension,
{
w : f̃(w) = 1

}
, from a vantage point right on the line

{x : x = α1E ,α > 0} since moving in direction 1E changes nothing.
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Example: m = 3, E = {1, 2, 3}

Example 1 (from Bach-2011): f(A) = 1|A|∈{1,2}
= min {|A|, 1}+min {|E \A|, 1}− 1 is submodular, and
f̃(w) = maxk∈{1,2,3} wk −mink∈{1,2,3} wk.
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Example: m = 3, E = {1, 2, 3}

Example 1 (from Bach-2011): f(A) = 1|A|∈{1,2}
= min {|A|, 1}+min {|E \A|, 1}− 1 is submodular, and
f̃(w) = maxk∈{1,2,3} wk −mink∈{1,2,3} wk.

w > w >w1 2

1w > w >w3 2

32w > w >w1

13w > w >w2

2w > w >w1 3

21w =w

w =w1 3
32w =w

12w > w >w3

(0,1,1)/F({2,3})

(0,0,1)/F({3})

(1,0,1)/F({1,3})

(1,0,0)/F({1})

(1,1,0)/F({1,2})

(0,1,0)/F({2})

3
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Example: m = 3, E = {1, 2, 3}

Example 2 (from
Bach-2011):
f(A) = |11∈A − 12∈A|+
|12∈A − 13∈A|

This gives a “total
variation” function for the
Lovász extension, with
f̃(w) = |w1−w2|+|w2−w3|,
a prior to prefer
piecewise-constant signals.

(0,1,0)/2

(0,0,1)

(0,1,1)
(1,0,1)/2

(1,0,0)

(1,1,0)
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Total Variation Example

From “Nonlinear total
variation based noise
removal algorithms”
Rudin, Osher, and
Fatemi, 1992. Top
left original, bottom
right total variation.
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Example: Lovász extension of concave over modular

Let m : E → R+ be a modular function and define
f(A) = g(m(A)) where g is concave. Then f is submodular.

Let Mj =
∑j

i=1m(ei)

f̃(w) is given as

f̃(w) =
m∑

i=1

w(ei)
(
g(Mi)− g(Mi−1)

)
(17.68)

And if m(A) = |A|, we get

f̃(w) =
m∑

i=1

w(ei)
(
g(i)− g(i− 1)

)
(17.69)
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Example: Lovász extension and cut functions

Cut Function: Given a non-negative weighted graph G = (V,E,m)
where m : E → R+ is a modular function over the edges, we know
from Lecture 2 that f : 2V → R+ with f(X) = m(Γ(X)) where
Γ(X) = {(u, v)|(u, v) ∈ E, u ∈ X, v ∈ V \X} is non-monotone
submodular.

Simple way to write it, with mij = m((i, j)):

f(X) =
∑

i∈X,j∈V \X
mij (17.70)

Exercise: show that Lovász extension of graph cut may be written
as:

f̃(w) =
∑

i,j∈V

mij max {(wi − wj), 0} (17.71)

where elements are ordered as usual, w1 ≥ w2 ≥ · · · ≥ wn.

This is also a form of “total variation”
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A few more Lovász extension examples

Some additional submodular functions and their Lovász extensions,
where w(e1) ≥ w(e2) ≥ · · · ≥ w(em) ≥ 0. Let Wk "

∑k
i=1w(ei).

f(A) f̃(w)

|A| ‖w‖1
min(|A|, 1) ‖w‖∞

min(|A|, 1)−max(|A|−m+ 1, 0) ‖w‖∞ −miniwi

min(|A|, k) Wk

min(|A|, k)−max(|A|− (n− k) + 1, 1) 2Wk −Wm

min(|A|, |E \A|) 2W'm/2( −Wm

(thanks to K. Narayanan).
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Supervised And Unsupervised Machine Learning

Given training data D = {(xi, yi)}mi=1 with (xi, yi) ∈ Rn × R,
perform the following risk minimization problem:

min
w∈Rn

1

m

m∑

i=1

'(yi, w
ᵀxi) + λΩ(w), (17.72)

where '(·) is a loss function (e.g., squared error) and Ω(w) is a norm.

When data has multiple responses (xi, yi) ∈ Rn × Rk, learning
becomes:

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

'(yki , (w
k)

ᵀ
xi) + λΩ(wk), (17.73)

When data has multiple responses only that are observed, (yi) ∈ Rk

we get dictionary learning (Krause & Guestrin, Das & Kempe):

min
x1,...,xm

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

'(yki , (w
k)

ᵀ
xi) + λΩ(wk), (17.74)
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we get dictionary learning (Krause & Guestrin, Das & Kempe):

min
x1,...,xm

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

'(yki , (w
k)

ᵀ
xi) + λΩ(wk), (17.74)
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Choquet Integration Lovász extn., defs/props Convex min. & SFM Lovász extension examples

Norms, sparse norms, and computer vision

Common norms include p-norm Ω(w) = ‖w‖p = (
∑p

i=1w
p
i )

1/p
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Norms, sparse norms, and computer vision

Common norms include p-norm Ω(w) = ‖w‖p = (
∑p

i=1w
p
i )

1/p

1-norm promotes sparsity (prefer solutions with zero entries).
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Norms, sparse norms, and computer vision

Common norms include p-norm Ω(w) = ‖w‖p = (
∑p

i=1w
p
i )

1/p

1-norm promotes sparsity (prefer solutions with zero entries).
Image denoising, total variation is useful, norm takes form:

Ω(w) =

N∑

i=2

|wi − wi−1| (17.75)
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Norms, sparse norms, and computer vision

Common norms include p-norm Ω(w) = ‖w‖p = (
∑p

i=1w
p
i )

1/p

1-norm promotes sparsity (prefer solutions with zero entries).
Image denoising, total variation is useful, norm takes form:

Ω(w) =

N∑

i=2

|wi − wi−1| (17.75)

Points of difference should be “sparse” (frequently zero).

(Rodriguez,

2009)
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Choquet Integration Lovász extn., defs/props Convex min. & SFM Lovász extension examples

Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ‖w‖0 = supp(w).
Using Ω(w) = ‖w‖0 is NP-hard, instead we often optimize tightest
convex relaxation, ‖w‖ which is the convex envelope.
With ‖w‖0 or its relaxation, each non-zero element has equal degree
of penalty. Penalties do not interact.
Given submodular function f : 2V → R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|)
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovász-extension f̃ of f (Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but ∃ many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0

Desirable sparse norm: count the non-zeros, ‖w‖0 = supp(w).
Using Ω(w) = ‖w‖0 is NP-hard, instead we often optimize tightest
convex relaxation, ‖w‖ which is the convex envelope.
With ‖w‖0 or its relaxation, each non-zero element has equal degree
of penalty. Penalties do not interact.
Given submodular function f : 2V → R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|)
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovász-extension f̃ of f (Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but ∃ many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ‖w‖0 = supp(w).

Using Ω(w) = ‖w‖0 is NP-hard, instead we often optimize tightest
convex relaxation, ‖w‖ which is the convex envelope.
With ‖w‖0 or its relaxation, each non-zero element has equal degree
of penalty. Penalties do not interact.
Given submodular function f : 2V → R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|)
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovász-extension f̃ of f (Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but ∃ many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ‖w‖0 = supp(w).
Using Ω(w) = ‖w‖0 is NP-hard, instead we often optimize tightest
convex relaxation, ‖w‖ which is the convex envelope.

With ‖w‖0 or its relaxation, each non-zero element has equal degree
of penalty. Penalties do not interact.
Given submodular function f : 2V → R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|)
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovász-extension f̃ of f (Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but ∃ many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ‖w‖0 = supp(w).
Using Ω(w) = ‖w‖0 is NP-hard, instead we often optimize tightest
convex relaxation, ‖w‖ which is the convex envelope.
With ‖w‖0 or its relaxation, each non-zero element has equal degree
of penalty. Penalties do not interact.

Given submodular function f : 2V → R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|)
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovász-extension f̃ of f (Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but ∃ many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ‖w‖0 = supp(w).
Using Ω(w) = ‖w‖0 is NP-hard, instead we often optimize tightest
convex relaxation, ‖w‖ which is the convex envelope.
With ‖w‖0 or its relaxation, each non-zero element has equal degree
of penalty. Penalties do not interact.
Given submodular function f : 2V → R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.

f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|)
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovász-extension f̃ of f (Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but ∃ many more!

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 17 - May 26st, 2014 F54/55 (pg.199/208)
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ‖w‖0 = supp(w).
Using Ω(w) = ‖w‖0 is NP-hard, instead we often optimize tightest
convex relaxation, ‖w‖ which is the convex envelope.
With ‖w‖0 or its relaxation, each non-zero element has equal degree
of penalty. Penalties do not interact.
Given submodular function f : 2V → R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|)
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovász-extension f̃ of f (Bach 2010).

Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but ∃ many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ‖w‖0 = supp(w).
Using Ω(w) = ‖w‖0 is NP-hard, instead we often optimize tightest
convex relaxation, ‖w‖ which is the convex envelope.
With ‖w‖0 or its relaxation, each non-zero element has equal degree
of penalty. Penalties do not interact.
Given submodular function f : 2V → R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|)
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovász-extension f̃ of f (Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!

Ex: total variation is Lovász-ext. of graph cut, but ∃ many more!
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Desirable sparse norm: count the non-zeros, ‖w‖0 = supp(w).
Using Ω(w) = ‖w‖0 is NP-hard, instead we often optimize tightest
convex relaxation, ‖w‖ which is the convex envelope.
With ‖w‖0 or its relaxation, each non-zero element has equal degree
of penalty. Penalties do not interact.
Given submodular function f : 2V → R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|)
(i.e., largest convex under-estimator of f(supp(w))) is obtained via
the Lovász-extension f̃ of f (Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
Ex: total variation is Lovász-ext. of graph cut, but ∃ many more!
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Lovász extension and norms

Using Lovász extension to define various norms of the form
‖w‖f̃ = f̃(|w|), renders the functionf symmetric about all orthants

(i.e., ‖w‖f̃ = ‖b1 w‖f̃ where b ∈ {−1, 1}m and 1 is element-wise
multiplication).

Simple example. The Lovász extension of the modular function
f(A) = |A| is the '1 norm, and the Lovász extension of the modular
function f(A) = m(A) is the weighted '1 norm.

With more general submodular functions, one can generate a large
and interesting variety of norms, all of which have polyhedral
contours (unlike, say, something like the '2 norm).

Hence, not all norms come from the Lovász extension of some
submodular function.

Similarly, not all convex functions are the Lovász extension of some
submodular function.

Bach-2011 has a complete discussion of this.
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Lovász extension and norms

Using Lovász extension to define various norms of the form
‖w‖f̃ = f̃(|w|), renders the functionf symmetric about all orthants

(i.e., ‖w‖f̃ = ‖b1 w‖f̃ where b ∈ {−1, 1}m and 1 is element-wise
multiplication).

Simple example. The Lovász extension of the modular function
f(A) = |A| is the '1 norm, and the Lovász extension of the modular
function f(A) = m(A) is the weighted '1 norm.

With more general submodular functions, one can generate a large
and interesting variety of norms, all of which have polyhedral
contours (unlike, say, something like the '2 norm).

Hence, not all norms come from the Lovász extension of some
submodular function.

Similarly, not all convex functions are the Lovász extension of some
submodular function.

Bach-2011 has a complete discussion of this.
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Lovász extension and norms

Using Lovász extension to define various norms of the form
‖w‖f̃ = f̃(|w|), renders the functionf symmetric about all orthants

(i.e., ‖w‖f̃ = ‖b1 w‖f̃ where b ∈ {−1, 1}m and 1 is element-wise
multiplication).

Simple example. The Lovász extension of the modular function
f(A) = |A| is the '1 norm, and the Lovász extension of the modular
function f(A) = m(A) is the weighted '1 norm.

With more general submodular functions, one can generate a large
and interesting variety of norms, all of which have polyhedral
contours (unlike, say, something like the '2 norm).

Hence, not all norms come from the Lovász extension of some
submodular function.

Similarly, not all convex functions are the Lovász extension of some
submodular function.

Bach-2011 has a complete discussion of this.
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Lovász extension and norms

Using Lovász extension to define various norms of the form
‖w‖f̃ = f̃(|w|), renders the functionf symmetric about all orthants

(i.e., ‖w‖f̃ = ‖b1 w‖f̃ where b ∈ {−1, 1}m and 1 is element-wise
multiplication).

Simple example. The Lovász extension of the modular function
f(A) = |A| is the '1 norm, and the Lovász extension of the modular
function f(A) = m(A) is the weighted '1 norm.

With more general submodular functions, one can generate a large
and interesting variety of norms, all of which have polyhedral
contours (unlike, say, something like the '2 norm).

Hence, not all norms come from the Lovász extension of some
submodular function.

Similarly, not all convex functions are the Lovász extension of some
submodular function.

Bach-2011 has a complete discussion of this.
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Lovász extension and norms

Using Lovász extension to define various norms of the form
‖w‖f̃ = f̃(|w|), renders the functionf symmetric about all orthants

(i.e., ‖w‖f̃ = ‖b1 w‖f̃ where b ∈ {−1, 1}m and 1 is element-wise
multiplication).

Simple example. The Lovász extension of the modular function
f(A) = |A| is the '1 norm, and the Lovász extension of the modular
function f(A) = m(A) is the weighted '1 norm.

With more general submodular functions, one can generate a large
and interesting variety of norms, all of which have polyhedral
contours (unlike, say, something like the '2 norm).

Hence, not all norms come from the Lovász extension of some
submodular function.

Similarly, not all convex functions are the Lovász extension of some
submodular function.

Bach-2011 has a complete discussion of this.
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Lovász extension and norms

Using Lovász extension to define various norms of the form
‖w‖f̃ = f̃(|w|), renders the functionf symmetric about all orthants

(i.e., ‖w‖f̃ = ‖b1 w‖f̃ where b ∈ {−1, 1}m and 1 is element-wise
multiplication).

Simple example. The Lovász extension of the modular function
f(A) = |A| is the '1 norm, and the Lovász extension of the modular
function f(A) = m(A) is the weighted '1 norm.

With more general submodular functions, one can generate a large
and interesting variety of norms, all of which have polyhedral
contours (unlike, say, something like the '2 norm).

Hence, not all norms come from the Lovász extension of some
submodular function.

Similarly, not all convex functions are the Lovász extension of some
submodular function.

Bach-2011 has a complete discussion of this.
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