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Cumulative Outstanding Reading

Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969,
Choquet-1955, Grabisch/Marichal/Mesiar/Pap “Aggregation
Functions”, Lovasz-1983, Bach-2011.

Read Tom McCormick's overview paper on SFM http://people.
commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

Read chapters 1 - 4 from Fujishige book.

Matroid properties http:
//www-math.mit.edu/~goemans/18433509/matroid-notes.pdf

Read lecture 14 slides on lattice theory at our web page (http://j.
ee.washington.edu/~bilmes/classes/ee596b_spring_2014/)

Wolfe “Finding the Nearest Point in a Polytope”, 1976.

Fujishige & lIsotani, “A Submodular Function Minimization
Algorithm Based on the Minimum-Norm Base”, 2009.
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Announcements, Assignments, and Reminders

@ Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-I

@ L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

@ L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

@ L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation
L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

@ L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

L9: From Matroid Polytopes to
Polymatroids.

L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, polymatroids
and entropic Venn diagrams, exchange
capacity,

L16: proof that minimum norm point
yields min of submodular function, and
the lattice of minimizers of a submodular
function, Lovasz extension

L17: Lovasz extension, Choquet
Integration, more properties/examples of
Lovasz extension, convex minimization
and SFM.

L18: Lovasz extension examples and
structured convex norms, The Min-Norm
Point Algorithm detailed.

L19: symmetric submodular function
minimization, maximizing monotone
submodular function w. card constraints.
L20: maximizing monotone submodular
function w. other constraints,
non-monotone maximization.

Finals Week: June 9th-13th, 2014.

Prof. Jeff Bilmes
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[ERNRRN

Min-Norm Point and SFM

Theorem 17.2.1

Let y*, A_, and Aq be as given. Then y* is a maximizer of the I.h.s. of
Eqn. (??). Moreover, A_ is the unique minimal minimizer of f and Aq is
the unique maximal minimizer of f.

e First note, since z* € By, we have 2*(E) = f(E), meaning
sat(z*) = E. Thus, we can consider any e € E within dep(z*, e).

o Consider any pair (e, €’) with ¢’ € dep(z*,e) and e € A_. Then
z*(e) <0, and Ja > 0s.t. 2"+ al. —ale € Py

@ We have z*(E) = f(E) and z* is minimum in 12 sense. We have
(* +al, —aly) € Py, and in fact

(@* + ale — aly)(E) = 2*(E) + a — a = f(E) (17.1)

so z* +al. — aly € By also.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 17 - May 28th, 2014 F5/41 (pg.5/158)



Review
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Min-norm point and other minimizers of f

@ Recall, that the set of minimizers of f forms a lattice.
@ In fact, with z* the min-norm point, and A_ and Ag as defined
above, we have the following theorem:

Theorem 17.2.1

Let A C E be any minimizer of submodular f, and let x* be the
minimum-norm point. Then A has the form:

A=A_U U dep(z*, a) (17.7)
a€An,

for some set A,, C Ag\ A_.
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A continuous extension of submodular f

e That is, given a submodular function f, a w € R¥, and defining

E; ={ej,ea,...,¢e;} and where we choose the element order
(e1,€2,...,en) based on decreasing w,so that
w(er) > w(ez) > -+ > w(ey), we have
f(w) = max(wz : x € Py) (17.11)
= w(ei)f(ei\Ei_l) (17.12)
i=1
=> wle:)(f(E:) — f(Ei-1)) (17.13)
i=1
m—1
= w( )+ w(ei+1)) f(E;) (17.14)
7,:1

e Wesaythat ) £ Ey C By C By C --- C E,, = E forms a chain
based on w.
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A continuous extension of submodular f

@ Definition of the continuous extension, once again, for reference:
f(w) = max(wa : x € Py) (17.11)
@ Therefore, if f is a submodular function, we can write

m—1
Fw) = wlem) f(En) + ) (wlei) —wleir)) f(E)  (17.12)
=1

- iAif(Ei) (17.13)
=1

where A, = w(e,,) and otherwise A\; = w(e;) — w(e;+1), where the
elements are sorted descending according to w as before.

e From convex analysis, we know f(w) = max(wz : 2 € P) is always
convex in w for any set P C RE, since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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An extension of an arbitrary f: 2V — R

@ Thus, for any f: 2{5 — R, even non-submodular f, we can define an
extension, having f(14) = f(A), VA, in this way where

fw) =3 Nf(E:) (17.20)

with the E; = {e1,...,e;}'s defined based on sorted descending
order of w as in w(ey) > w(ez) > -+ > w(ey), and where

foric {1,...,m}, A= {w(ei) —wlei) fi<m g2 o)
w(em) if i =m
so that w =>"7", N\ilp,.
e w= Z?;l Ailg, is an interpolation of certain hypercube vertices.
o f(w) =", \if(E;) is the associated interpolation of the values
of f at sets corresponding to each hypercube vertex.
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Summary: comparison of the two extension forms

e So if f is submodular, then we can write f(w) = max(wz : = € Pf)
(which is clearly convex) in the form:

f(w) = max(wz : x € Py) = Z Nif (E;) (17.24)
i=1
where w = > \1p, and E; = {e1,...,e;} defined based on
sorted descending order w(ey) > w(eg) > -+ > w(eny,).
@ On the other hand, for~any f (even non-submodular), we can
produce an extension f having the form

flw) =3 Nif(E:) (17.25)

where w =" A\1p, and E; = {e1,...,e;} defined based on
sorted descending order w(ey) > w(ez) > -+ > w(en).
o In both Eq. (??) and Eq. (??), we have f(14) = f(A), VA, but
Eq. (?7), might not be convex.
@ Submodularity is sufficient for convexity of but is it necessary?
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Lovasz Extension, Submodularity and Convexity

Theorem 17.2.1

A function f : 2F — R is submodular iff its Lovdsz extension f of f is
convex.

@ We've already seen that if f is submodular, its extension can be
written via Eqn.(??) due to the greedy algorithm, and therefore is
also equivalent to f(w) = max {wx : © € Py}, and thus is convex.

o Conversely, suppose the Lovész extension f(w) = Yo Nif(E;) of
some function f : 2% — R is a convex function.

@ We note that, based on the extension~definition, in particular the
definition of the {\;};, we have that f(aw) = af(w) for any
a € Ry. le., fis a positively homogeneous convex function.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 17 - May 28th, 2014 F11/41 (pg.11/158)



Choquet Integration
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Integration and Aggregation

e Integration is just summation (e.g., the [ symbol has as its origins a
sum).
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Choquet Integration
[NRNRARNRN

Integration and Aggregation

o Integration is just summation (e.g., the [ symbol has as its origins a
sum).

@ Lebesgue integration allows integration w.r.t. an underlying measure
1 of sets. E.g., given measurable function f, we can define

/ fdu =supIx(s) (17.1)
X

where Ix(s) = > 1", cip(X N X;), and where we take the sup over
all measurable functions s such that 0 < s < f and

s(x) =>"" ¢ilx,(x) and where Iy, (x) is indicator of membership
of set X;, with ¢; > 0.
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Choquet Integration
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Integration, Aggregation, and Weighted Averages

@ In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 17 - May 28th, 2014 F13/41 (pg.14/158)



Choquet Integration
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Integration, Aggregation, and Weighted Averages

@ In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

e l.e., given a weight vector w € [0, 1]¥ for some finite ground set F,
then for any = € R” we have the weighted average of z as:

WAVG(z) = Zx(e)w(e) (17.2)

eck
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Choquet Integration
[LNANRARNR!

Integration, Aggregation, and Weighted Averages

@ In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

o le., given a weight vector w € [0, 1]¥ for some finite ground set F,
then for any = € R¥ we have the weighted average of z as:

WAVG(z) = )~ z(e)w(e) (17.2)
eeE
@ Consider 1, for e € E, we have

WAVG(1,) = w(e) (17.3)
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Choquet Integration
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Integration, Aggregation, and Weighted Averages

@ In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

o le., given a weight vector w € [0, 1]¥ for some finite ground set F,
then for any = € R¥ we have the weighted average of z as:

WAVG(z) = )~ z(e)w(e) (17.2)
eclk
@ Consider 1, for e € E/, we have
WAVG(1.) = w(e) (17.3)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a size m = |E| subset of the
vertices of this hypercube, i.e., {1.:e € E}.
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Choquet Integration
[LNANRARNR!

Integration, Aggregation, and Weighted Averages

@ In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

o le., given a weight vector w € [0, 1]¥ for some finite ground set F,
then for any = € R¥ we have the weighted average of z as:

WAVG(z) = )~ z(e)w(e) (17.2)
eclk
@ Consider 1, for e € E/, we have
WAVG(1.) = w(e) (17.3)
so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a size m = |E| subset of the
vertices of this hypercube, i.e., {1.: e € E}. Moreover, we are
interpolating as in
WAVG(z) = > " a(e)w(e) = > x(e) WAVG(1,) (17.4)

eckE eel
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Integration, Aggregation, and Weighted Averages

WAVG(z) = Y z(e)wl(e) (17.5)

ecE

@ Clearly, WAVG function is linear in weights w, in the argument z,
and is homogeneous. That is, for all w, w1, ws, x, z1, 2 € RF and

a e R,
WAVG ), 4, () = WAVG,, () + WAVG,, (z), (17.6)
WAVG,, (21 + z2) = WAVG,(z1) + WAVG,,(z2), (17.7
and,
WAVG(az) = aWAVG(z). (17.8)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 17 - May 28th, 2014 F14/41 (pg.19/158)



Choquet Integration
[NLRNRARNR!

Integration, Aggregation, and Weighted Averages

WAVG(z) = Y z(e)wl(e) (17.5)

ecE

@ Clearly, WAVG function is linear in weights w, in the argument z,
and is homogeneous. That is, for all w, w1, ws, x, z1, 2 € RF and

a e R,
WAVG 1, () = WAVGy, () + WAVG,, (), (17.6)
WAVG,, (21 + 22) = WAVGy, (1) + WAVGy, (z2), (17.7)
and,
WAVG(ax) = aWAVG(x). (17.8)

@ We will see: The Lovasz extension is still be linear in "weights” (i.e.,
the submodular function f), but will not be linear in = and will only
be positively homogeneous (for a > 0).
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Choquet Integration
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Integration, Aggregation, and Weighted Averages

@ More complex “nonlinear” aggregation functions can be constructed
by defining the aggregation function on all vertices of the hypercube.
l.e., for each 14 : A C E we might have (for all A C E):

AG(14) =wy (17.9)
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Choquet Integration
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Integration, Aggregation, and Weighted Averages

@ More complex “nonlinear” aggregation functions can be constructed
by defining the aggregation function on all vertices of the hypercube.
l.e., for each 14 : A C E we might have (for all A C E):

AG(14) = wy (17.9)

o What then might AG(z) be for some = € R¥? Our weighted
average functions might look something more like the r.h.s. in:

AG(z) = > x(A)wa = > x(A)AG(14) (17.10)

ACE ACE
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Choquet Integration
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Integration, Aggregation, and Weighted Averages

@ More complex “nonlinear” aggregation functions can be constructed
by defining the aggregation function on all vertices of the hypercube.
l.e., for each 14 : A C E we might have (for all A C E):

AG(14) = wy (17.9)

o What then might AG(z) be for some x € R¥? Our weighted
average functions might look something more like the r.h.s. in:

AG(z) = Y z(Awa= Y 2(A)AG(14) (17.10)
ACE ACE

@ Note, we can define w(e) = w'(e) and w(A) =0,VA: |A| > 1 and
get back previous (normal) weighted average, in that

WAVG, (z) = AGy(z) (17.11)
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Choquet Integration
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Integration, Aggregation, and Weighted Averages

@ More complex “nonlinear” aggregation functions can be constructed
by defining the aggregation function on all vertices of the hypercube.
l.e., for each 14 : A C E we might have (for all A C E):

AG(14) = wy (17.9)

o What then might AG(z) be for some x € R¥? Our weighted
average functions might look something more like the r.h.s. in:

AG(z) = Y z(Awa= Y 2(A)AG(14) (17.10)

ACE ACE

o Note, we can define w(e) = w'(e) and w(A) =0,VA: |A| > 1 and
get back previous (normal) weighted average, in that

WAVG, (z) = AGy(z) (17.11)

@ Set function f: 2 — R is a game if f is normalized f(()) = 0.
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Integration, Aggregation, and Weighted Averages

@ Set function f: 2% — R is called a capacity if it is monotone
non-decreasing, i.e., f(A) < f(B) whenever A C B.
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Choquet Integration
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Integration, Aggregation, and Weighted Averages

@ Set function f: 2% — R is called a capacity if it is monotone
non-decreasing, i.e., f(A) < f(B) whenever A C B.

@ A Boolean function f is any function f: {0,1}"" — {0,1} and is a
pseudo-Boolean function if f: {0,1}™ — R.
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Choquet Integration
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Integration, Aggregation, and Weighted Averages

@ Set function f: 2% — R is called a capacity if it is monotone
non-decreasing, i.e., f(A) < f(B) whenever A C B.

@ A Boolean function f is any function f: {0,1}"" — {0,1} and is a
pseudo-Boolean function if f: {0,1}™ — R.

@ Any set function corresponds to a pseudo-Boolean function. l.e.,
given f: 28 5 R, form f,: {0,1}™ = R as fy(z) = f(A,) where
the A,z bijectionis A={e€ E:z. =1} and z = 14.
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Integration, Aggregation, and Weighted Averages

@ Set function f: 2% — R is called a capacity if it is monotone
non-decreasing, i.e., f(A) < f(B) whenever A C B.

@ A Boolean function f is any function f: {0,1}"" — {0,1} and is a
pseudo-Boolean function if f: {0,1}™ — R.

@ Any set function corresponds to a pseudo-Boolean function. l.e.,
given f: 2% 5 R, form f,: {0,1}™ = R as fy(z) = f(A) where
the A,z bijectionis A={e€ F:z. =1} and z = 14.

@ Also, if we have an expression for f;, we can construct a set function
fas f(A) = fp(14). We can also often relax f, to any = € [0, 1]™.
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Choquet Integration
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Integration, Aggregation, and Weighted Averages

@ Set function f: 2% — R is called a capacity if it is monotone
non-decreasing, i.e., f(A) < f(B) whenever A C B.

@ A Boolean function f is any function f: {0,1}"" — {0,1} and is a
pseudo-Boolean function if f: {0,1}™ — R.

@ Any set function corresponds to a pseudo-Boolean function. l.e.,
given f: 2% 5 R, form f,: {0,1}™ = R as fy(z) = f(A) where
the A,z bijectionis A={e€ F:z. =1} and z = 14.

@ Also, if we have an expression for f;, we can construct a set function
fas f(A) = fp(14). We can also often relax fj, to any x € [0, 1]™.

@ We saw this for Lovasz extension.
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Choquet Integration

Integration, Aggregation, and Weighted Averages

Set function f : 2F — R is called a capacity if it is monotone
non-decreasing, i.e., f(A) < f(B) whenever A C B.

A Boolean function f is any function f: {0,1}" — {0,1} and is a
pseudo-Boolean function if f: {0,1}™ — R.

Any set function corresponds to a pseudo-Boolean function. l.e.,
given f: 2% 5 R, form f,: {0,1}™ = R as fy(z) = f(A) where
the A,z bijectionis A={e€ F:z. =1} and z = 14.

Also, if we have an expression for f; we can construct a set function
fas f(A) = fp(14). We can also often relax fj, to any x € [0, 1]™.
We saw this for Lovdsz extension.

It turns out that a concept essentially identical to the Lovasz

extension was derived much earlier, in 1954, and using this
derivation (via integration) leads to deeper intuition.
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Choquet integral

Definition 17.3.1

Let f be any capacity on F and w € Rf. The Choquet integral (1954)
of w w.r.t. f is defined by

m

Cf(w) = Z(wei - w6i+1)f(Ei) (17'12)

=1

where in the sum, we have sorted and renamed the elements of E so that
Wey > Wey >+ ¢ > We,, > We,, ., =0, and where E; = {e1,e2,...,¢e;}.

o We immediately see that an equivalent formula is as follows:

m

Crlw) = w(e)(f(E:) — f(Ei-1)) (17.13)
i=1
where E) def .
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Choquet Integration
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Choquet integral

Definition 17.3.1

Let f be any capacity on F and w € Rf. The Choquet integral (1954)
of w w.r.t. f is defined by

m

Cf(w) = Z(wei - w6i+1)f(Ei) (17'12)

=1

where in the sum, we have sorted and renamed the elements of E so that
Wey > Wey >+ ¢ > We,, > We,, ., =0, and where E; = {e1,e2,...,¢e;}.

e BTW: this again essentially Abel's partial summation formula: Given
two arbitrary sequences {a,} and {b,} with A,, = >"7'_, aj, we have

Z apbr = Z Ak(bk — bk+1) + Anbn+1 — Ap—1bm (17.14)

k=m k=m
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Choquet Integration
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The “integral” in the Choquet integral

@ Thought of as an integral over R of a piece-wise constant function.
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Choquet Integration
[NNANNE RAR

The “integral” in the Choquet integral

@ Thought of as an integral over R of a piece-wise constant function.
@ First note, assuming FE is ordered according to descending w, so
that w(ei) > w(ez) > -+ > w(em—1) > w(en), then
E; ={ei,ea,....e;} ={e € E:we > we, }.
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Choquet Integration
[NNANNE RAR

The “integral” in the Choquet integral

@ Thought of as an integral over R of a piece-wise constant function.
@ First note, assuming FE is ordered according to descending w, so
that w(ei) > w(ez) > -+ > w(em—1) > w(en), then
E; ={ei,ea,....e;} ={e € E:we > we, }.
e For any we, > a > we,,, we also have
E;={e,ea,...,¢;} ={e € E:w. > a}.
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Choquet Integration
[NNANNE RAR

The “integral” in the Choquet integral

@ Thought of as an integral over R of a piece-wise constant function.
@ First note, assuming FE is ordered according to descending w, so
that w(ei) > w(ez) > -+ > w(em—1) > w(en), then
E; ={ei,ea,....e;} ={e € E:we > we, }.
e For any we, > a > we,,, we also have
E;={e,ea,...,¢;} ={e € E:w. > a}.
o Consider segmenting the real-axis at boundary points w,, right
most is we, .

wem) wlem—1) " wles) wles) wles) wlez)w(er)
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Choquet Integration
[NNANNE RAR

The “integral” in the Choquet integral

@ Thought of as an integral over R of a piece-wise constant function.
@ First note, assuming FE is ordered according to descending w, so
that w(ei) > w(ez) > -+ > w(em—1) > w(en), then
E; ={ei,ea,....e;} ={e € E:we > we, }.
e For any we, > a > we,,, we also have
E;={e,ea,...,¢;} ={e € E:w. > a}.
o Consider segmenting the real-axis at boundary points w,, right
most is we, .

w(em) w(elm—1) w(les) w(le4) w(I€3) w(el2)wl(el)

@ A function can be defined on a segment of R, namely
We; > & > We,,,. This function F; : [we,,,,we,;) — R is defined as

Fi(a)=f({e € E:w. > a}) = f(E;) (17.15)
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Choquet Integration
[NNANNE RAR

The “integral” in the Choquet integral

@ We can generalize this to multiple segments of R (for now, take
w € RE). The piecewise-constant function is defined as:

f(E) if0<a<w,
Fla)=q f{e€ E:we>a}) ifwe,, <a<we,ic{l,...,m—1}
0 (= f(0)) if w) <«
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Choquet Integration
[NNANNE RAR

The “integral” in the Choquet integral

@ We can generalize this to multiple segments of R (for now, take
w € RE). The piecewise-constant function is defined as:

f(E) if0<a<w,
Fla)=q f{e€ E:we>a}) ifwe,, <a<we,ic{l,...,m—1}
0 (= f(0)) if w) <«

@ Visualizing a piecewise constant function, where the constant values are
given by f evaluated on E; for each i

F(a)
) f(E) f({el,ez,e3,e4,es}) M}
f(E\e,.}) f(fe,e,)
f(EVle, e, ) °°° flle, eyes0) fl(fe,))
T T T T T T | E—
0 w(em) w(em—1) w(es)  w(eq) wles) w(e2) w(er)

Note, what is depicted may be a game but not a capacity. Why?
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Choquet Integration
[NNANNE RAR

The “integral” in the Choquet integral

o Now consider the integral, with w € R¥Y, and normalized f so that
f(0) = 0. Recall wy,11 defy,

Flw) /Ooo F(a)do (17.16)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 17 - May 28th, 2014 F18/41 (pg.40/158)



Choquet Integration
[NNANNE RAR

The “integral” in the Choquet integral

o Now consider the integral, with w € R¥Y, and normalized f so that
f(0) = 0. Recall wy,11 defy,

f(w) dof /000 F(a)da (17.16)
= /OO f{e € E:we > a})da (17.17)
0
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Choquet Integration
[NNANNE RAR

The “integral” in the Choquet integral

o Now consider the integral, with w € R¥Y, and normalized f so that

0) = 0. Recall w,, L.
f(0) +

f(w) dof /000 F(a)da (17.16)
= /OO fl{e€ E:w. > a})da (17.17)

0
— /OO f{e e E:w, > a})da (17.18)
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Choquet Integration
[NNANNE RAR

The “integral” in the Choquet integral

o Now consider the integral, with w € R¥Y, and normalized f so that

0) = 0. Recall w,, L.
f(0) +

f(w) dof /000 F(a)da (17.16)
= /OO f{e € E:we > a})da (17.17)
0
= /OO fle € E:we > a})da (17.18)
S [ f(ee Brwe > a))da (17.19)
i=1 v Witl
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Choquet Integration
[NNANNE RAR

The “integral” in the Choquet integral

o Now consider the integral, with w € R¥Y, and normalized f so that

0) = 0. Recall w,, L.
f(0) +

Flw) /Ooo F(a)da (17.16)
_ /OOO f({e € B we > a})da (17.17)
_ /OO Ffe € E:w. > a})da (17.18)
:i/wl f{e€ E:we > a})da (17.19)
i=1 Y Wit1
S fEyda =3 fEY i - wie)  (17.20)
i=1 Y Wi+l i=1
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Choquet Integration
[NNANNE RAR

The “integral” in the Choquet integral

@ But we saw before that >""" | f(E;)(w; — wit1) is just the Lovasz
extension of a function f.
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Choquet Integration
[NNANNE RAR

The “integral” in the Choquet integral

@ But we saw before that >""" | f(E;)(w; — wit1) is just the Lovasz
extension of a function f.

@ Thus, we have the following definition:

Definition 17.3.2

Given w € R¥, the Lovasz extension (equivalently Choquet integral) may
be defined as follows:

o) /OOO Fla)da (17.21)

where the function F' is defined as before.
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Choquet Integration
[NNANNE RAR

The “integral” in the Choquet integral

@ But we saw before that >""" | f(E;)(w; — wit1) is just the Lovasz
extension of a function f.

@ Thus, we have the following definition:

Definition 17.3.2

Given w € R¥, the Lovasz extension (equivalently Choquet integral) may
be defined as follows:

o) /OOO Fla)da (17.21)

where the function F' is defined as before.

@ Note that it is not necessary in general to require w € Rf (i.e., we
can take w € R¥) nor that f be non-negative, but it is a bit more
involved. Above is the simple case.
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Choquet Integration
[NNANNE RAR

The “integral” in the Choquet integral

@ But we saw before that >""" | f(E;)(w; — wit1) is just the Lovasz
extension of a function f.

@ Thus, we have the following definition:

Definition 17.3.2

Given w € R¥, the Lovasz extension (equivalently Choquet integral) may
be defined as follows:

o) /OOO Fla)da (17.21)

where the function F' is defined as before.

@ Note that it is not necessary in general to require w € Rf (i.e., we
can take w € R¥) nor that f be non-negative, but it is a bit more
involved. Above is the simple case.

@ The above integral will be further generalized a bit later.
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Choquet Integration
[NNANNRY AR

Choquet integral and aggregation

@ Recall, we want to produce some notion of generalized aggregation
function having the flavor of:

AG(z) = > x(A)wa = > z(A)AG(14) (17.22)

ACE ACE

how does this correspond to Lovasz extension?
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Choquet Integration
[NNANNRY AR

Choquet integral and aggregation

@ Recall, we want to produce some notion of generalized aggregation
function having the flavor of:

AG(z) = > z(A)wa = > z(A)AG(14) (17.22)
ACE ACE
how does this correspond to Lovasz extension?

@ Let us partition the hypercube [0, 1]™ into ¢ polytopes, each defined
by a set of vertices Vi, Va,...,V,.
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Choquet Integration
[NNANNRY AR

Choquet integral and aggregation

@ Recall, we want to produce some notion of generalized aggregation
function having the flavor of:

AG(z) = > z(A)wa = > z(A)AG(14) (17.22)
ACE ACE
how does this correspond to Lovasz extension?

@ Let us partition the hypercube [0, 1]™ into g polytopes, each defined
by a set of vertices Vi, Va,...,V,.

e Eg, foreachi, V; ={14,,14,,...,14,} (k vertices) and the
convex hull of V; defines the it" polytope.
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Choquet Integration
[NNANNRY AR

Choquet integral and aggregation

@ Recall, we want to produce some notion of generalized aggregation
function having the flavor of:

AG(z) = > z(A)wa = > z(A)AG(14) (17.22)
ACE ACE
how does this correspond to Lovasz extension?

@ Let us partition the hypercube [0, 1]™ into g polytopes, each defined
by a set of vertices Vi, Va,...,V,.

o Eg, foreachi, V; ={14,,14,,...,14,} (k vertices) and the
convex hull of V; defines the it" polytope.

@ This forms a “triangulation” of the hypercube.
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Choquet Integration
[NNANNRY AR

Choquet integral and aggregation

@ Recall, we want to produce some notion of generalized aggregation
function having the flavor of:

AG(z) = > z(A)wa = > z(A)AG(14) (17.22)
ACE ACE
how does this correspond to Lovasz extension?
Let us partition the hypercube [0, 1]™ into ¢ polytopes, each defined
by a set of vertices Vi, Va,...,V,.
o Eg, foreachi, V; ={14,,14,,...,14,} (k vertices) and the
convex hull of V; defines the it" polytope.

This forms a “triangulation” of the hypercube.

For any x € [0, 1]™ there is a (not necessarily unique) V(x) = V; for
some j such that = € conv(V(x)).
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Choquet Integration
[NNANRRRR N

Choquet integral and aggregation

@ Most generally, for x € [0, 1]™, let us define the (unique) coefficients
af(A) and af(A) that define the affine transformation of the
coefficients of x to be used with the particular hypercube vertex
14 € conv(V(x)). The affine transformation is as follows:

af(A)+ > af(A)z; €R (17.23)
j=1

Note that many of these coefficient are often zero.
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Choquet Integration
[NNANRRRR N

Choquet integral and aggregation

@ Most generally, for z € [0, 1]™, let us define the (unique) coefficients
af(A) and af(A) that define the affine transformation of the
coefficients of x to be used with the particular hypercube vertex
14 € conv(V(x)). The affine transformation is as follows:

af(A)+) af(A)z; R (17.23)
j=1
Note that many of these coefficient are often zero.

@ From this, we can define an aggregation function of the form
X m
AG(z) = Y (ag(A) + Zaf(A)xj)AG(lA) (17.24)
j=1

Al eV(x)
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Choquet Integration
(NNANRRRNT |

Choquet integral and aggregation

@ We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. l.e., given some permutation o,
define

conv(V,) = {z € [0,1]" |2o01) > To2) = - = Zo(my} (17.25)

Then these m! blocks of the partition are called the canonical
partitions of the hypercube.
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Choquet Integration
(NNANRRRNT |

Choquet integral and aggregation

@ We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. l.e., given some permutation o,
define

conv(Vy) = {z € [0, 1]"|z,(1) > Tp2) = -+ = To(my ) (17.25)

Then these m! blocks of the partition are called the canonical
partitions of the hypercube.

e With this, we can define {V;}, as the vertices of conv(V,) for each
permutation o.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 17 - May 28th, 2014 F21/41 (pg.57/158)



Choquet Integration
(NNANRRRNT |

Choquet integral and aggregation

@ We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. l.e., given some permutation o,
define

conv(Vy) = {z € [0, 1]"|z,(1) > Tp2) = -+ = To(my ) (17.25)

Then these m! blocks of the partition are called the canonical
partitions of the hypercube.

e With this, we can define {V;}, as the vertices of conv(V,) for each
permutation o. In this case, we have:
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Choquet Integration
(NNANRRRNT |

Choquet integral and aggregation

@ We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. l.e., given some permutation o,
define

conv(Vy) = {z € [0, 1]"|z,(1) > Tp2) = -+ = To(my ) (17.25)

Then these m! blocks of the partition are called the canonical
partitions of the hypercube.

e With this, we can define {V;}, as the vertices of conv(V,) for each
permutation o. In this case, we have:

Proposition 17.3.3

The above linear interpolation in Eqn. (17.24) using the canonical
partition yields the Lovdsz extension with af(A) + >_7% af (A)x;
=Ty, — Ty, , for A= E; ={es,,...,€s,} for appropriate order o.
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Choquet Integration
(NNANRRRNT |

Choquet integral and aggregation

@ We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. l.e., given some permutation o,
define

conv(Vy) = {z € [0, 1]"|z,(1) > Tp2) = -+ = To(my ) (17.25)

Then these m! blocks of the partition are called the canonical
partitions of the hypercube.

e With this, we can define {V;}, as the vertices of conv(V,) for each
permutation o. In this case, we have:

Proposition 17.3.3

The above linear interpolation in Eqn. (17.24) using the canonical
partition yields the Lovdsz extension with af(A) + >_7% af (A)x;
=Ty, — Ty, , for A= E; ={es,,...,€s,} for appropriate order o.

@ Hence, Lovéasz extension is a generalized aggregation function.
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Lovdsz extn., defs/props
[RERRNNRNN]

Lovasz extension as max over orders

@ We can also write the Lovasz extension as follows:

f(w) = T 17.26
f(w) e wie (17.26)

where Ilj,,,) is the set of m! permutations of [m] = E, o € Ilj,,,) is a
particular permutation, and ¢? is a vector associated with
permutation o defined as:

(oa

& = f(Eo;) = f(Eo; ) (17.27)
where E;, = {€5,, €09, - €0, }-
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Lovdsz extn., defs/props
[RERRNNRNN]

Lovasz extension as max over orders

@ We can also write the Lovasz extension as follows:

f(w) = max wTe’ (17.26)
UEH[m]
where II},,,| is the set of m! permutations of [m] = E, o € I, is a
particular permutation, and ¢? is a vector associated with
permutation o defined as:

Cf = f(EUi) - f(EUi71) (17'27)
where E;, = {€s,, €09, €0, }-
@ Note this immediately follows from the definition of the Lovéasz

extension in the form:

f(w) = maxwTz = max wTx 17.28

Flo) = pgte = g (r:2e)
since we know that the maximum is achieved by an extreme point of
the base B and all extreme points are obtained by a

permutation-of- F-parameterized greedy instance.
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Lovdsz extn., defs/props
[LERRRRNRR

Lovasz extension, defined in multiple ways

@ As shorthand notation, lets use {w > a} ={e € E : w(e) > a},
called the weak a-sup-level set of w.
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Lovdsz extn., defs/props
[LERRRRNRR

Lovasz extension, defined in multiple ways

@ As shorthand notation, lets use {w > a} ={e € E: w(e) > a},
called the weak a-sup-level set of w. A similar definition holds for
{w > a} (called the strong a-sup-level set of w).
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Lovdsz extn., defs/props
[LERRRRNRR

Lovasz extension, defined in multiple ways

@ As shorthand notation, lets use {w > a} = {e € E: w(e) > a},
called the weak a-sup-level set of w. A similar definition holds for
{w > a} (called the strong a-sup-level set of w).

e Given any w € R¥, sort E as w(e) > w(ez) > -+ > w(en).
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Lovdsz extn., defs/props
[LERRRRNRR

Lovasz extension, defined in multiple ways

@ As shorthand notation, lets use {w > a} = {e € E: w(e) > a},
called the weak a-sup-level set of w. A similar definition holds for
{w > a} (called the strong a-sup-level set of w).

o Given any w € R¥, sort E as w(e;) > w(ez) > -+ > w(en). Also,
w.l.0.g., number elements of w so that w; > wy > -+ > wp,.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 17 - May 28th, 2014 F23/41 (pg.66/158)



Lovdsz extn., defs/props
[LERRRRNRR

Lovasz extension, defined in multiple ways

@ As shorthand notation, lets use {w > a} ={e € E: w(e) > a},
called the weak a-sup-level set of w. A similar definition holds for
{w > a} (called the strong a-sup-level set of w).

o Given any w € R¥, sort E as w(e;) > w(ez) > -+ > w(ey). Also,
w.l.0.g., number elements of w so that w; > wy > -+ - > wp,.

@ We have already seen how we can define the Lovdsz extension for
any (not necessarily submodular) function f in the following

equivalent ways:
m

Flw) = "wle) flei|Ei) (17.29)

i—1
m—1

= Z F(E) (w(e;) —w(eiv1)) + f(E)w(em)a  (17.30)

=N AfE) (17.31)
i—1
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Lovdsz extn., defs/props
[NLRRRRNRR

Lovasz extension, as integral

e Additional ways we can define the Lovdsz extension for any (not
necessarily submodular) but normalized function f include:

m

f(w) = Z“J(Q P1|E‘z 1 Z)\ f (1732)

= i f(E)(w(e;) —w(eiv1)) + f(E)w(em) (17.33)
i=1
+00
- / . o fw > a})da+ f(E)min{wy, ..., wy,}
""" " (17.34)
+00 0
. /0 F{w > a})da +/ [f({w > a}) — f(E)]da
(17.35)
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Lovdsz extn., defs/props
[NRE ARRNRR

general Lovdsz extension, as simple integral

e In fact, we have that, given function f, and any w € R¥:

'+OC R

f(w) = / fla)da (17.36)

— 00

where

. {f({w > al}) if @ >=0 (17.37)

f{w>a}) - f(E) ifa<0
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Lovdsz extn., defs/props
[NRE ARRNRR

general Lovdsz extension, as simple integral

@ In fact, we have that, given function f, and any w € RE:

Fw) = /_ ™ Ha)do (17.36)
where
;v J{w = a}) ifa>=0
flo) = {f({w >a})~ f(B) fa<0 (17.37)

@ So we can write it as a simple integral over the right function.
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Lovdsz extn., defs/props
[NRE ARRNRR

general Lovdsz extension, as simple integral

@ In fact, we have that, given function f, and any w € RE:

Fw) = /_ ™ Ha)do (17.36)
where
;v J{w = a}) ifa>=0
flo) = {f({w >a})~ f(B) fa<0 (17.37)

@ So we can write it as a simple integral over the right function.

@ These make it easier to see certain properties of the Lovasz
extension. But first, we show the above.
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Lovdsz extn., defs/props
[NRRR NRNRR

Lovasz extension, as integral

@ To show Eqn. (17.34), first note that the r.h.s. terms are the same
since w(ey,) = min {w, ..., wy}.
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Lovdsz extn., defs/props
[NRRR NRNRR

Lovasz extension, as integral

e To show Eqn. (17.34), first note that the r.h.s. terms are the same
since w(ey,) = min {w, ..., wy}.

@ Then, consider that, as a function of «, we have

0 if @ > w(ep)
fw>a})=1q f(Ey) ifae (wegs1),w(er)), ke {l,...,m—1}
fE) ifa<w(eny)
(17.38)

we may use open intervals since sets of zero measure don't change
integration.
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Lovdsz extn., defs/props
[NRRR NRNRR

Lovasz extension, as integral

e To show Eqn. (17.34), first note that the r.h.s. terms are the same
since w(ey,) = min {w, ..., wy}.

@ Then, consider that, as a function of «, we have

0 if > w(ep)
f{w>a}) =< f(Ey) ifa€ (wlegsr),w(er)), ke {l,...,m—1}
f(E) if « <w(en)
(17.38)

we may use open intervals since sets of zero measure don’t change
integration.

@ Inside the integral, then, this recovers Eqn. (17.33).
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Lovdsz extn., defs/props
[NRRNRRNRR

Lovasz extension, as integral

@ To show Eqn. (17.35), start with Eqn. (17.34), note
Wy, = min{w1, ..., wy}, take any f < min {0, w,...,w,,}, and form:

F(w)
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Lovdsz extn., defs/props
[NRRNRRNRR

Lovasz extension, as integral

@ To show Eqn. (17.35), start with Eqn. (17.34), note
Wy, = min{w1, ..., wy}, take any f < min {0, ws,...,w,,}, and form:

~ +oo
fw) = / fHw > a})da+ f(E)min{wi, ..., wnm,}

Umn,
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Lovasz extension, as integral

@ To show Eqn. (17.35), start with Eqn. (17.34), note
Wy, = min{w1, ..., wy}, take any f < min {0, ws,...,w,,}, and form:
+oo

flw) = / f({w > a})da + f(E)min {wy, ... wn}

Wm

Wm

00 Wi
= [ sz apda— [ f(w= ahda+ 5®) [ da
3 0

Ié]
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Lovasz extension, as integral

@ To show Eqn. (17.35), start with Eqn. (17.34), note
Wy, = min{w1, ..., wy}, take any f < min {0, ws,...,w,,}, and form:
+oo

ﬂwwi/ f({w > a})da + f(E)min {wy, ... wn}

Wm

Wm

+o0 Wm
= [ sz apda— [ f(w= ahda+ 5@) [ da
B 0

B

Wm Wm

“+o00
_ /3 fw>aYda— [ f(E)da+ [ f(E)da

B 0

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 17 - May 28th, 2014 F27/41 (pg.78/158)



Lovdsz extn., defs/props
[NRRNRRNRR

Lovasz extension, as integral
@ To show Eqn. (17.35), start with Eqn. (17.34), note

Wy, = min{w1, ..., wy}, take any f < min {0, ws,...,w,,}, and form:
. +oo
fw) = [ 1w = ahda + f(Bymin fun, ..., wn)

Wm

+o0 Wm
= [ sz apda— [ f(w= ahda+ 5@) [ da
B 0

Wm Wm

f(E)da + ; f(E)da

B

+o0
— [ #w = apyda -
B B

0

= /M>C f{w > a})do + /ﬁO fH{w > a})da — /: f(E)da
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Lovasz extension, as integral
@ To show Eqn. (17.35), start with Eqn. (17.34), note

Wy, = min{w1, ..., wy}, take any f < min {0, ws,...,w,,}, and form:
- +oo
ﬂwﬁi/ F({w > a})da + f(E) min {wr, ..., wn}
+o0o W Wm
— [ twzapda- [ iwz apdat 5(8) [ da
B B 0

Wm Wm

:/ﬁ+oof({w2a})da f(E)da + ; f(E)da

B

+00 0 0
- w > al)da w > al)do — E)da
[ stw= oy +Aﬂ{ZD Aﬂ)
400 0
- / f{w > a})da + / [f({w > a}) = f(E)lda
Jo Jg
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Lovasz extension, as integral
@ To show Eqn. (17.35), start with Eqn. (17.34), note

Wy, = min{w1, ..., wy}, take any f < min {0, ws,...,w,,}, and form:
- +oo
Flw) = / F({w > a})da + f(E) min {wr, ..., wn}
+o0o W Wm
— [ twzapda- [ iwz apdat 5(8) [ da
B B 0

Wm Wm

:/ﬁ+oof({w2a})da f(E)da + ; f(E)da

B

= [ stz apda+ / " F({w > al)da - / ' f(B)da

+o00 0
— [ itwzapdat [ 7w = - f(B)da
0 B
and then let 5 — oo and we get Eqn. (17.35), i.e.:
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Lovasz extension, as integral
@ To show Eqn. (17.35), start with Eqn. (17.34), note

Wy, = min{w1, ..., wy}, take any f < min {0, ws,...,w,,}, and form:
- +oo
Flw) = / F({w > a})da + f(E) min {wr, ..., wn}
+o0o W Wm
— [ twzapda- [ iwz apdat 5(8) [ da
B B 0

Wm Wm

:/ﬁ+oof({w2a})da f(E)da + ; f(E)da

B

= [ stz apda+ / " F({w > al)da - / ' f(B)da

+o00 0
— [ itwzapdat [ 7w = - f(B)da
0 B
and then let 5 — oo and we get Eqn. (17.35), i.e.:

00 0
_ / f({w > a})da + / F({w > a}) — f(E)]da
0

— OO
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Lovdasz extension properties

@ Using the above, have the following (some of which we've seen):
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Lovdasz extension properties
e Using the above, have the following (some of which we've seen):

Theorem 17.4.1

Let f,g:2¥ — R be normalized (f () = g(#) = 0). Then
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Lovdasz extension properties

e Using the above, have the following (some of which we've seen):
Theorem 17.4.1
Let f,g:2¥ — R be normalized (f () = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovdsz extensions f and
g then f + g is the Lovasz extension of f 4+ g and \f is the Lovasz
extension of \f for A € R.
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Lovdasz extension properties

e Using the above, have the following (some of which we've seen):

Theorem 17.4.1

Let f,g:2¥ — R be normalized (f () = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovdsz extensions f and

G then f + § is the Lovdsz extension of f + g and \f is the Lovdsz
extension of A\f for A € R.

Q Ifw e RY then f(w) = [ f({w > a})da
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Lovdsz extn., defs/props

Lovdasz extension properties
e Using the above, have the following (some of which we've seen):

Theorem 17.4.1

Let f,g:2¥ — R be normalized (f () = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovdsz extensions f and
G then f + § is the Lovdsz extension of f + g and \f is the Lovdsz
extension of A\f for A € R.

Q Ifw e R¥ then fw) = 0+O° f{w > a})da
© Forw € R, and o € R, we have f(w + alg) = f(w) + af(E).

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 17 - May 28th, 2014 F28/41 (pg.87/158)
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Lovdasz extension properties

e Using the above, have the following (some of which we've seen):

Theorem 17.4.1

Let f,g:2¥ — R be normalized (f () = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovdsz extensions f and
G then f + § is the Lovdsz extension of f + g and \f is the Lovdsz
extension of A\f for A € R.

Q Ifw e R¥ then fw) = 0+O° f{w > a})da
@ Forw € R, and o € R, we have f(w+ alg) = f(w) + af(E).
Q Positive homogeneity: l.e., f(aw) = af(w) for a > 0.
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Lovdasz extension properties

e Using the above, have the following (some of which we've seen):

Theorem 17.4.1

Let f,g:2¥ — R be normalized (f () = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovdsz extensions f and
g then f + g is the Lovdsz extension of f + g and \f is the Lovdsz
extension of A\f for A € R.

Ifw e RE then f(w) = [ f({w > a})da.

Forw € RP, and o € R, we have f(w + alg) = f(w) + af(E).
Positive homogeneity: l.e., f(aw) = a.f(w) for o > 0.

Forall AC E, f(14) = f(A).

© 00 O
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Lovdasz extension properties

e Using the above, have the following (some of which we've seen):

Theorem 17.4.1

Let f,g:2¥ — R be normalized (f () = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovdsz extensions f and
g then f + g is the Lovdsz extension of f + g and \f is the Lovdsz
extension of A\f for A € R.

Ifw e RE then f(w) = [ f({w > a})da.

Forw € RP, and o € R, we have f(w + alg) = f(w) + af(E).

Positive homogeneity: l.e., f(aw) = a.f(w) for o > 0.

Forall AC E, f(14) = f(A).

@ f symmetric as in f(A) = f(E\ A),YA, then f(w) = f(—w) (f is even).

© 00 O
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Lovdasz extension properties

e Using the above, have the following (some of which we've seen):

Theorem 17.4.1

Let f,g:2¥ — R be normalized (f () = g(#) = 0). Then

© Superposition of LE operator: Given f and g with Lovdsz extensions f and
g then f + g is the Lovdsz extension of f + g and \f is the Lovdsz
extension of A\f for A € R.

Ifw e RE then f(w) = [ f({w > a})da.

Forw € RP, and o € R, we have f(w + alg) = f(w) + af(E).

Positive homogeneity: l.e., f(aw) = a.f(w) for o > 0.

Forall AC E, f(14) = f(A).

f symmetric as in f(A) = f(E\ A),VA, then f(w) = f(—w) (f is even).

Given partition E' UE2U---UE* of E and w = Y% v;1p, with
V1> 92 > >k, and with BV = EYUE?U---U EY, then

£ k i i— k-1 i

fw) =3 wf(BUERY) = 3500 F(E) (i — virr) + F(E) e
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[NRRNRRY AR

Lovdasz extension properties: ex. property 3

o Consider property property 3, for example, which says that
flw+alg) = f(w) + af(E).
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Lovdasz extension properties: ex. property 3

o Consider property property 3, for example, which says that

flw+alg) = f(w) + af(E).
@ This means that, say when m = 2, that as we move along the line
wy = ws, the Lovasz extension scales linearly.
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Lovdasz extension properties: ex. property 3

o Consider property property 3, for example, which says that

fw+alg) = f(w) + af(E).

@ This means that, say when m = 2, that as we move along the line
wy = wa, the Lovasz extension scales linearly.

e And if f(E) =0, then the Lovasz extension is constant along the
direction 1.
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Lovdasz extension properties

@ Given Eqgns. (17.32) through (17.35), most of the above properties
are relatively easy to derive.
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Lovdasz extension properties

e Given Eqgns. (17.32) through (17.35), most of the above properties
are relatively easy to derive.

@ For example, if f is symmetric, and since f(FE) = f()) = 0, we have

f(=w)

(17.41)
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Lovdasz extension properties

e Given Eqgns. (17.32) through (17.35), most of the above properties
are relatively easy to derive.

e For example, if f is symmetric, and since f(FE) = f()) = 0, we have

fl—w) = /_.OO f{~w > a})da

(17.41)
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Lovdasz extension properties

e Given Eqgns. (17.32) through (17.35), most of the above properties
are relatively easy to derive.

e For example, if f is symmetric, and since f(FE) = f()) = 0, we have

flew) = [~ -w=ahda= [ f({w < —apda (1739)

(17.41)
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Lovdasz extension properties

e Given Eqgns. (17.32) through (17.35), most of the above properties
are relatively easy to derive.
e For example, if f is symmetric, and since f(FE) = f()) = 0, we have
few = [ fwzahda= [~ fw< -ahda (1739)
@ [
9 [ f({w < a}da

(17.41)
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Lovdasz extension properties

e Given Eqgns. (17.32) through (17.35), most of the above properties
are relatively easy to derive.
e For example, if f is symmetric, and since f(FE) = f()) = 0, we have
few = [ fwzahda= [~ fw< -ahda (1739)
@ [ ® [,
= fw < a})da = f{w > a})da (17.40)

(17.41)
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Lovdasz extension properties

e Given Eqgns. (17.32) through (17.35), most of the above properties
are relatively easy to derive.
e For example, if f is symmetric, and since f(FE) = f()) = 0, we have
few = [ fwzahda= [~ fw< -ahda (1739)
@ [ o [
= f{w < a})da = f{w > a})da  (17.40)

= /OO Fw > a})da (17.41)
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Lovdasz extension properties

e Given Eqgns. (17.32) through (17.35), most of the above properties
are relatively easy to derive.
e For example, if f is symmetric, and since f(FE) = f()) = 0, we have
few = [ fwzahda= [~ fw< -ahda (1739)
@ [ o [
= f{w < a})da = f{w > a})da  (17.40)

— /_OO fw > a})da = f(w) (17.41)
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Lovdasz extension properties

e Given Eqgns. (17.32) through (17.35), most of the above properties
are relatively easy to derive.

o For example, if f is symmetric, and since f(E) = f(0) = 0, we have
~ [ swzapda= [ fws —a)da (1739)

Q[ rwzanda® [~ jw>ahia (740)

— [ 1wz apyda = fw) (17.41)

Equality (a) follows since [*°_ f(a)da = [*°_ f(aa + b)da for any b

and a € %1, and equality (b) follows since f(A) = f(E\ A), so
flw < a}) = f{w > a}).
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Lovasz extension, expected value of random variable
e Recall, for w € R¥, we have f(w) = [y f{w > a})da
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Lovdasz extension, expected value of random variable

o Recall, for w € RE, we have f(w) = [;° f({w > a})da
@ Since f({w > a}) =0 for a > w; 2 wy, we have for w € RY, we
have f(w) = o f{w > al)da
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Lovdasz extension, expected value of random variable

o Recall, for w € RE, we have f(w) = [;° f({w > a})da

@ Since f({w > a}) =0 for a > w; 2 wy, we have for w € RY, we
have f(w) = [ f({w > a})do

e For w € [0,1]¥, then
fw)y= [ f ({w > a})da = fo ({w > a})da since
fH{w > a}) =0forl>a>w
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Lovdasz extension, expected value of random variable

o Recall, for w € RE, we have f(w) = [;° f({w > a})da

@ Since f({w > a}) =0 for o > wy 2 wy, we have for w € RY, we
have f(w) = [ f({w > o})do

e Forw € [() 1] then
f(w) = ({w > a})da = fo ({w > a})da since

({w>a})—0for1>a>w1

e Consider v as a uniform random variable on [O, 1] and Iet h(oz) be a

funciton of a. Then the expected value E[h(«) jo
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Lovdasz extension, expected value of random variable

o Recall, for w € RE, we have f(w) = [;° f({w > a})da

@ Since f({w > a}) =0 for o > wy 2 wy, we have for w € RY, we
have f(w) = [ f({w > a})da

e Forw € [() 1] then
f(w) = ({w > a})da = fo ({w > a})da since
f({wZa})—Ofor12a>w1

o Consider « as a uniform random variable on [O 1] and Iet h( ) be a
funciton of a. Then the expected value E[h fo

@ Hence, for w € [0, 1]™, we can also define the Lovasz exten5|on as

Fw) =Epyo[f{w > a})] = Eylfle € E:w(e;) > a)] (17.42)
—————

h(a) h(a)

where « is uniform random variable in [0, 1].
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Lovdasz extension, expected value of random variable

o Recall, for w € RE, we have f(w) = [;° f({w > a})da

@ Since f({w > a}) =0 for a > w; 2 wy, we have for w € RY, we
have f(w) = [ f({w > a})do

e Forw € [() 1] then
f(w) = ({w > a})da = fo ({w > a})da since
f({wZa})—Ofor12a>w1

o Consider « as a uniform random variable on [O 1] and Iet h( ) be a
funciton of a. Then the expected value E[h fo

@ Hence, for w € [0, 1]™, we can also define the Lovasz exten5|on as

Fw) =By f({w > a})] = Eywlfle € E:wle) > a)] (17.42)
T )

where « is uniform random variable in [0, 1].

@ Useful for showing results for randomized rounding schemes in solving
submodular opt. problems subject to constraints via relaxations
to convex optimization problems subject to linear constraints.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 17 - May 28th, 2014 F31/41 (pg.109/158



Convex min. & SFM
LERNRRRNNR

Ellipsoid algorithm, and polynomial time SFM

e For a long time, it was not known if general purpose submodular
function minimization was doable in polynomial time.
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Convex min. & SFM
LERNRRRNNR

Ellipsoid algorithm, and polynomial time SFM

e For a long time, it was not known if general purpose submodular
function minimization was doable in polynomial time.

@ This was answered in the early 1980s via the help of Edmonds's greedy
algorithm from 1970.
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Convex min. & SFM
LERNRRRNNR

Ellipsoid algorithm, and polynomial time SFM

e For a long time, it was not known if general purpose submodular
function minimization was doable in polynomial time.

@ This was answered in the early 1980s via the help of Edmonds's greedy
algorithm from 1970. Let C' C RY be a non-empty convex compact set.
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Convex min. & SFM
LERNRRRNNR

Ellipsoid algorithm, and polynomial time SFM

e For a long time, it was not known if general purpose submodular
function minimization was doable in polynomial time.

@ This was answered in the early 1980s via the help of Edmonds's greedy
algorithm from 1970. Let C' C RY be a non-empty convex compact set.

Definition 17.5.1 ((strong) optimization problem)

Given ¢ € RY, find a vector = € C that maximizes ¢Tz on C. l.e., solve

max c'x (17.43)
zeC
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Convex min. & SFM
LERNRRRNNR

Ellipsoid algorithm, and polynomial time SFM

e For a long time, it was not known if general purpose submodular
function minimization was doable in polynomial time.

@ This was answered in the early 1980s via the help of Edmonds's greedy
algorithm from 1970. Let C' C RY be a non-empty convex compact set.

Definition 17.5.1 ((strong) optimization problem)

Given ¢ € RY, find a vector = € C that maximizes ¢Tz on C. l.e., solve

max c'x (17.43)
zeC

Definition 17.5.2 ((strong) separation problem)

Given a vector y € RV, decide if y € C, and if not, find a hyperplane
that separates y from C'. l.e., find vector ¢ € RV such that:

Ty > U 17.44
cly > maxcle ( )
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Convex min. & SFM
N RRNRREY

Ellipsoid algorithm, and polynomial time SFM

@ We have the following important theorem:
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Convex min. & SFM

Ellipsoid algorithm, and polynomial time SFM

@ We have the following important theorem:

Theorem 17.5.3 (Grétschel, Lovasz, and Schrijver, 1981)

Let C be set of convex sets. Then there is a polynomial-time algorithm
to solve the separation problem for the members of C iff there is a
polynomial-time algorithm to solve the optimization problem for the
members of C.
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Convex min. & SFM

Ellipsoid algorithm, and polynomial time SFM

@ We have the following important theorem:

Theorem 17.5.3 (Grétschel, Lovasz, and Schrijver, 1981)

Let C be set of convex sets. Then there is a polynomial-time algorithm
to solve the separation problem for the members of C iff there is a
polynomial-time algorithm to solve the optimization problem for the
members of C.

@ We saw already that the greedy algorithm solves the strong separation
problem for polymatroidal polytopes.
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Convex min. & SFM

Ellipsoid algorithm, and polynomial time SFM

@ We have the following important theorem:

Theorem 17.5.3 (Grétschel, Lovasz, and Schrijver, 1981)

Let C be set of convex sets. Then there is a polynomial-time algorithm
to solve the separation problem for the members of C iff there is a
polynomial-time algorithm to solve the optimization problem for the
members of C.

@ We saw already that the greedy algorithm solves the strong separation
problem for polymatroidal polytopes.

@ The ellipsoid algorithm first bounds a polytope P with an ellipsoid, and
then creates a sequence of elipsoids of exponentially decreasing volume
which are used to address a P membership problem.
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Convex min. & SFM

Ellipsoid algorithm, and polynomial time SFM

@ We have the following important theorem:

Theorem 17.5.3 (Grétschel, Lovasz, and Schrijver, 1981)

Let C be set of convex sets. Then there is a polynomial-time algorithm
to solve the separation problem for the members of C iff there is a
polynomial-time algorithm to solve the optimization problem for the
members of C.

@ We saw already that the greedy algorithm solves the strong separation
problem for polymatroidal polytopes.

@ The ellipsoid algorithm first bounds a polytope P with an ellipsoid, and
then creates a sequence of elipsoids of exponentially decreasing volume
which are used to address a P membership problem.

@ This is sufficient to show that we can solve SFM in polynomial time!
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Convex min. & SFM

Ellipsoid algorithm, and polynomial time SFM

@ We have the following important theorem:

Theorem 17.5.3 (Grétschel, Lovasz, and Schrijver, 1981)

Let C be set of convex sets. Then there is a polynomial-time algorithm
to solve the separation problem for the members of C iff there is a
polynomial-time algorithm to solve the optimization problem for the
members of C.

@ We saw already that the greedy algorithm solves the strong separation
problem for polymatroidal polytopes.

@ The ellipsoid algorithm first bounds a polytope P with an ellipsoid, and
then creates a sequence of elipsoids of exponentially decreasing volume
which are used to address a P membership problem.

@ This is sufficient to show that we can solve SFM in polynomial time!

@ See also, the book: Grétschel, Lovdsz, and Schrijver, “Geometric
Algorithms and Combinatorial Optimization”
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Convex min. & SFM
NI RRNRREY

Convex minimization and SFM

@ SFM is also related to the convexity of the Lovasz extension, the
ease of minimizing convex functions.
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Convex min. & SFM
NI RRNRREY

Convex minimization and SFM

@ SFM is also related to the convexity of the Lovasz extension, the
ease of minimizing convex functions.

@ Also, since we can recover f from f via f(A) = f(14), and (as we
will see) get discrete solutions from continuous convex minimization
solution.
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Convex min. & SFM
NI RRNRREY

Convex minimization and SFM

@ SFM is also related to the convexity of the Lovasz extension, the
ease of minimizing convex functions.

e Also, since we can recover f from f via f(A) = f(14), and (as we
will see) get discrete solutions from continuous convex minimization
solution.

@ Is this the only convex extension of a submodular function? Are
there others that have more attractive properties?
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Convex min. & SFM
INNTANOREY

Continuous Extensions of Discrete Set Functions

e Any function f:2V - R (equivalently f: {0, 1}V = R) can be
extended to a continuous function f : [0,1]V — R.
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Convex min. & SFM
INNTANOREY

Continuous Extensions of Discrete Set Functions

o Any function f : 2" — R (equivalently f : {0 1}V = R) can be
extended to a continuous function f : [0,1]V — R.

@ In fact, any such discrete function defined on the vertices of the n-D
hypercube {0,1}" has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n = 1,

Concave Extensions Discrete Function Convex Extensions

f:{0,1}V =R :[0,1] = R

ﬂﬂ 1F¥MM
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Convex min. & SFM
INNTANOREY

Continuous Extensions of Discrete Set Functions

o Any function f : 2" — R (equivalently f : {0 1}V = R) can be
extended to a continuous function f : [0,1]V — R.

@ In fact, any such discrete function defined on the vertices of the n-D
hypercube {0,1}" has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n = 1,

Concave Extensions Discrete Function Convex Extensions

f:{0,1}V =R :[0,1] = R

ﬂﬂ 1F¥MM

@ Since there are an exponential number of vertices {0, 1}", important
questions regarding such extensions is:
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Convex min. & SFM
INNTANOREY

Continuous Extensions of Discrete Set Functions

o Any function f : 2" — R (equivalently f : {0 1}V = R) can be
extended to a continuous function f : [0,1]V — R.

@ In fact, any such discrete function defined on the vertices of the n-D
hypercube {0,1}" has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n = 1,

Concave Extensions Discrete Function Convex Extensions

f:{0,1}V =R :[0,1] = R

ﬂﬂ 1F¥MM

@ Since there are an exponential number of vertices {0,1}", important
questions regarding such extensions is:

@ When are they computationally feasible to obtain or estimate?
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Convex min. & SFM
INNTANOREY

Continuous Extensions of Discrete Set Functions

o Any function f : 2" — R (equivalently f : {0 1}V = R) can be
extended to a continuous function f : [0,1]V — R.

@ In fact, any such discrete function defined on the vertices of the n-D
hypercube {0,1}" has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n = 1,

Concave Extensions Discrete Function Convex Extensions

f:{0,1}V =R :[0,1] = R

ﬂﬂ 1F¥MM

@ Since there are an exponential number of vertices {0,1}", important
questions regarding such extensions is:

@ When are they computationally feasible to obtain or estimate?
@ When do they have nice mathematical properties?
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Convex min. & SFM
INNTANOREY

Continuous Extensions of Discrete Set Functions

o Any function f : 2" — R (equivalently f : {0 1}V = R) can be
extended to a continuous function f : [0,1]V — R.

@ In fact, any such discrete function defined on the vertices of the n-D
hypercube {0,1}" has a variety of both convex and concave
extensions tight at the vertices (Crama & Hammer). Example n = 1,

Concave Extensions Discrete Function Convex Extensions

f:{0,1}V =R :[0,1] = R

ﬂﬂ 1F¥MM

@ Since there are an exponential number of vertices {0,1}", important
questions regarding such extensions is:

@ When are they computationally feasible to obtain or estimate?
@ When do they have nice mathematical properties?
© When are they useful for something practical?
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Convex min. & SFM
INNRR RREY

Minimizing f vs. minimizing f

In fact, we have:

Theorem 17.5.4

Let f be submodular and f be its Lovdsz extension. Then
min{f(A)|[AC E} = min, .o 145 f(w) = min,¢cp e f(w).

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 17 - May 28th, 2014 F36/41 (pg.130/158



Convex min. & SFM
INNRR RREY

Minimizing f vs. minimizing f

In fact, we have:

Theorem 17.5.4

Let f be submodular and f be its Lovdsz extension. Then
min{f(A)|[AC E} = min, e o g2 f(w) = min,¢cp e f(w).

Proof.

e First, since f(14) = f(A),VA C V, we clearly have
min {f(A)|[ACV} = min, o 1y# f(w) > miny,eo 172 f(w).
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Convex min. & SFM
INNRR RREY

Minimizing f vs. minimizing f

In fact, we have:

Theorem 17.5.4

Let f be submodular and f be its Lovdsz extension. Then
min{f(A)|[AC E} = min, e o g2 f(w) = min,¢cp e f(w).

Proof.
o First, since f(14) = f(A),VA C V, we clearly have
min {f(A)|[ACV} = min, oo 1y f(w) > miny,epo 172 f(w).
@ Next, consider any w € [0,1]F, sort elements £ = {e1,..., e} as
w(er) > w(ez) > -+ > w(ey), define E; = {ey,...,e;}, and define
Am = w(em) and \; = w(e;) —w(e;y1) fori e {1,...,m— 1}.
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Convex min. & SFM
INNRR RREY

Minimizing f vs. minimizing f
In fact, we have:

Theorem 17.5.4

Let f be submodular and f be its Lovdsz extension. Then
min{f(A)|[AC E} = min, e o g2 f(w) = min,¢cp e f(w).

o First, since f(14) = f(A),VA C V, we clearly have
min {f(A)|[ACV} = min, oo 1y f(w) > miny,epo 172 f(w).

o Next, consider any w € [0, 1]¥, sort elements E = {e1,..., e} as
w(er) > w(ez) > -+ > w(ey), define E; = {ey,...,e;}, and define
Am = w(en) and A; = w(e;) —w(eiqq) fori e {1,...,m—1}.

@ Then, as we have seen, w = Zi Ailg, and \; > 0.
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Convex min. & SFM
INNRR RREY

Minimizing f vs. minimizing f
In fact, we have:

Theorem 17.5.4

Let f be submodular and f be its Lovdsz extension. Then
min{f(A)|[AC E} = min, e o g2 f(w) = min,¢cp e f(w).

o First, since f(14) = f(A),YA C V, we clearly have
min {f(A)|[ACV} = min, oo 1y fw) > min,, ¢ 12 f(w).

o Next, consider any w € [0, 1]¥, sort elements E = {e1,..., e} as
w(er) > w(ez) > -+ > w(ey), define E; = {ey,...,e;}, and define
Am = w(en) and A; = w(e;) —w(eiqq) fori e {1,...,m—1}.

@ Then, as we have seen, w =) . \;1g, and \; > 0.

@ Also, >, A\ =w(er) < 1.
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Convex min. & SFM
INNRNR AREY

Minimizing f vs. minimizing f

...cont. proof of Thm. 17.5.4.

@ Note that since f(0)) =0, min {f(A)|A C E} <0.

OJ
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Convex min. & SFM
INNRNR AREY

Minimizing f vs. minimizing f

...cont. proof of Thm. 17.5.4.

@ Note that since f()) = 0, min{f(A)|A C E} <0.

@ Then we have

m

/ F{w > a}) da—Z)\ f(E (17.45)

> .
Z)\ i\ncl%f (17.46)
> 17.4
_ngl%f( ) (17.47)
[
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Convex min. & SFM
INNRNR AREY

Minimizing f vs. minimizing f

...cont. proof of Thm. 17.5.4.

@ Note that since f()) = 0, min{f(A)|A C E} <0.
@ Then we have

1 m
= / flw > a})da =) Nf(E) (17.45)
=1

> Z)\ glcl%f (17.46)
> IILXHCI% f(4) (17.47)

@ Thus, min{f(A)|AC E} = nnnu,e[o ne fw).
]
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Convex min. & SFM
INNRNNE AN

Other minimizers based on min of f

@ Let w* € argmin {f(w)|w €0, 1]E} and let
A* € argmin {f(A)|A C V}.
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Convex min. & SFM
INNRNNE AN

Other minimizers based on min of f

o Let w* € argmin{f(w)|w € [o, 1]E} and let
A* € argmin {f(A)[ACV}.
@ Previous theorem states that f(w*) = f(A*).
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Convex min. & SFM
INNRNNE AN

Other minimizers based on min of f

o Let w* € argmin { f(w)|w € [0,1]¥ } and let
A* € argmin {f(A)|A C V}.

o Previous theorem states that f(w*) = f(A*).

@ Let A7 be the function weights and E; be the sets associated with
w*. From previous theorem, we have

flw) = ZAZ‘f(EE‘) = [(A") =min{f(A)[AC E}  (17.48)
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Convex min. & SFM
INNRNNE AN

Other minimizers based on min of f

o Let w* € argmin{f(w)|w € [o, 1]E} and let
A* € argmin {f(A)|A C V}.

o Previous theorem states that f(w*) = f(A*).

@ Let A7 be the function weights and E be the sets associated with
w*. From previous theorem, we have

Fw) = SINS(E) = J(A7) = min{f(A)AC B} (1748)

and that f(A*) < f(E;), Vi,
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Convex min. & SFM
INNRNNE AN

Other minimizers based on min of f

o Let w* € argmin{f(w)|w € [o, 1]E} and let
A* € argmin {f(A)|A C V}.

o Previous theorem states that f(w*) = f(A*).

@ Let A7 be the function weights and E be the sets associated with
w*. From previous theorem, we have

Fw) = SINS(E) = J(A7) = min{f(A)AC B} (1748)

and that f(A*) < f(E;),Vi, and that f(A*) <0,
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Convex min. & SFM
INNRNNE AN

Other minimizers based on min of f

o Let w* € argmin{f(w)|w € [o, 1]E} and let
A* € argmin {f(A)|A C V}.

o Previous theorem states that f(w*) = f(A*).

@ Let A7 be the function weights and E be the sets associated with
w*. From previous theorem, we have

Fw) = SINS(E) = J(A7) = min{f(A)AC B} (1748)

and that f(A*) < f(E}),Vi, and that f(A*) <0, and >, \; < 1.
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Other minimizers based on min of f

o Let w* € argmin{f(w)|w € [o, 1]E} and let
A* € argmin {f(A)|A C V}.

o Previous theorem states that f(w*) = f(A*).

@ Let A7 be the function weights and E be the sets associated with
w*. From previous theorem, we have

Fw) = SINS(E) = J(A7) = min{f(A)AC B} (1748)

and that f(A*) < f(E]), Vi, and that f(A*) <0, and >, \; < 1.
@ Thus, since w* € [0,1]¥, each 0 < A\¥ < 1, we have for all i such
that \* > 0,

F(EY) = f(A7) (17.49)

meaning such E are also minimizers of f, and ) . \; = 1.
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Other minimizers based on min of f

o Let w* € argmin{f(w)|w € [o, 1]E} and let
A* € argmin {f(A)|A C V}.

o Previous theorem states that f(w*) = f(A*).

@ Let A7 be the function weights and E be the sets associated with
w*. From previous theorem, we have

Fw) = SINS(E) = J(A7) = min{f(A)AC B} (1748)

and that f(A*) < f(E]), Vi, and that f(A*) <0, and >, \; < 1.
@ Thus, since w* € [0,1]¥, each 0 < A <1, we have for all i such
that \* > 0,

f(ED) = f(AY) (17.49)

meaning such E are also minimizers of f, and ) . \; = 1.
@ Note that the negative of f(A*) is crucial here (see next slides).
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Other minimizers based on min of f

o Let w* € argmin{f(w)|w € [o, 1]E} and let
A* € argmin {f(A)|A C V}.

o Previous theorem states that f(w*) = f(A*).

@ Let A7 be the function weights and E be the sets associated with
w*. From previous theorem, we have

Fw) = SINS(E) = J(A7) = min{f(A)AC B} (1748)

and that f(A*) < f(E]), Vi, and that f(A*) <0, and >, \; < 1.
@ Thus, since w* € [0,1]¥, each 0 < A <1, we have for all i such
that \* > 0,

f(E7) = f(A7) (17.49)
meaning such E are also minimizers of f, and ) . \; = 1.
o Note that the negative of f(A*) is crucial here (see next slides).
@ Hence w* =), Af1g, is in convex hull of incidence vectors of
minimizers of f.
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Convex min. & SFM
INNRRNRN A

A bit more on level sets being minimizers

e f is normalized f(0)) = 0, so minimizer is < 0.
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Convex min. & SFM
INNRRNRN A

A bit more on level sets being minimizers

e f is normalized f(()) = 0, so minimizer is < 0.
e We know that f(E}) > f(A*) for all 4, and f(A*) =", \if(E).

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 17 - May 28th, 2014 F39/41 (pg.148/158



Convex min. & SFM
INNRRNRN A

A bit more on level sets being minimizers

o fis normalized f(0)) =0, so minimizer is < 0.

o We know that f(E}) > f(A*) for all 4, and f(A*) =", Nif(E).

o If f(A*) =0, then we must have f(E;) = 0 for any i such that
Ai > 0. Otherwise, assume f(A*) < 0.
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Convex min. & SFM
INNRRNRN A

A bit more on level sets being minimizers

o fis normalized f(0)) =0, so minimizer is < 0.

o We know that f(E}) > f(A*) for all 4, and f(A*) =", Nif(E).

o If f(A*) =0, then we must have f(E}) =0 for any i such that
Ai > 0. Otherwise, assume f(A*) < 0.

@ Suppose there exists an i such that f(E}) > f(A*).
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A bit more on level sets being minimizers

o fis normalized f(0)) =0, so minimizer is < 0.

o We know that f(E}) > f(A*) for all 4, and f(A*) =", Nif(E).

o If f(A*) =0, then we must have f(E}) =0 for any i such that
Ai > 0. Otherwise, assume f(A*) < 0.

@ Suppose there exists an i such that f(E}) > f(A*).

@ Then we have

FOAT) = DONF(ED) > D ONF(AT) = F(AT) YN (17.50)

and since f(A*) < 0, this means that >, A; > 1 which is a
contradiction.
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A bit more on level sets being minimizers

o fis normalized f(0)) =0, so minimizer is < 0.

o We know that f(E}) > f(A*) for all 4, and f(A*) =", Nif(E).

o If f(A*) =0, then we must have f(E}) =0 for any i such that
Ai > 0. Otherwise, assume f(A*) < 0.

Suppose there exists an i such that f(E}) > f(A").

Then we have

FOAT) = DONF(BD) > D ONF(AT) = F(AT) )N (17.50)

and since f(A*) < 0, this means that >, \; > 1 which is a
contradiction.

@ Hence, must have f(Ef) = f(A*) for all i.
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A bit more on level sets being minimizers

o fis normalized f(0)) =0, so minimizer is < 0.

o We know that f(E}) > f(A*) for all 4, and f(A*) =", Nif(E).

o If f(A*) =0, then we must have f(E}) =0 for any i such that
Ai > 0. Otherwise, assume f(A*) < 0.

@ Suppose there exists an i such that f(E}) > f(A*).

@ Then we have
FOAT) = DONF(BD) > D ONF(AT) = F(AT) )N (17.50)

and since f(A*) < 0, this means that >, \; > 1 which is a
contradiction.

@ Hence, must have f(E}) = f(A*) for all i.
@ Hence, >, A\; = 1 since f(A*) =), Nif(A*).
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Alternate way to see Equation 17.49

e We know f(A*) < 0. Consider two cases in Equation 17.49.
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Convex min. & SFM
INNRRRRRTY

Alternate way to see Equation 17.49

@ We know f(A*) < 0. Consider two cases in Equation 17.49.

@ Case 1: f(A*) =0. Then for any i with A; > 0 we must have
f(E;) =0 as well for all i since f(A*) < f(E;).
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Alternate way to see Equation 17.49

@ We know f(A*) < 0. Consider two cases in Equation 17.49.

e Case 1: f(A*) =0. Then for any i with A; > 0 we must have
f(E;) =0 as well for all i since f(A*) < f(E;).

@ Case 2 is where f(A*) < 0. In this second case, we have

0> f(A") Z)\ F(E;) > ZAJ(A*) (17.51)

(a)

= Z/\ FAA)+ (1 =N f(A") = f(A%)  (1752)
where A = ", \; and (1 — A) > 0 and where (a) follows since
F(A) < 0.
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Alternate way to see Equation 17.49

@ We know f(A*) < 0. Consider two cases in Equation 17.49.

e Case 1: f(A*) =0. Then for any i with A; > 0 we must have
f(E;) =0 as well for all i since f(A*) < f(E;).

o Case 2 is where f(A*) < 0. In this second case, we have

0> f(A*) Z)\ f(E) > ZAif(A*) (17.51)
> Z/\ f(A") — N f(A*) = f(A*)  (17.52)

where A =", \; and (1 — A) > 0 and where (a) follows since
f(A*) <o.

@ Hence, all inequalities must be equalities, which means that we must
have that A = 1.
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f-rounding the L.E. minimum

We can also view the above as a form of rounding a continuous convex
relaxation to the problem.

Definition 17.5.5 (#-rounding)

Given vector z € [0,1]F, choose # € (0,1) and define a set corresponding
to elements above 0, i.e.,

Xo={i:2(i) >0} = {2 >0} (17.53)

Lemma 17.5.6 (Fujishige-2005)

Given a continuous minimizer x* € argmincjo j» f(x), the discrete
minimizers are exactly the maximal chain of sets ) C Xy, C ... Xp,
obtained by 0-rounding x*, for §; € (0,1).
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