Submodular Functions, Optimization, and Applications to Machine Learning

— Spring Quarter, Lecture 17 —

http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

May 28th, 2014

 $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$ - $f(A) + 2f(C) + f(B) - f(A) + f(C) + f(B) - f(A \cap B)$

Cumulative Outstanding Reading

- Good references for today: Schrijver-2003, Oxley-1992/2011, Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969, Choquet-1955, Grabisch/Marichal/Mesiar/Pap "Aggregation Functions", Lovász-1983, Bach-2011.
- Read Tom McCormick's overview paper on SFM http://people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
- Read chapters 1 4 from Fujishige book.
- Matroid properties http: //www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf
- Read lecture 14 slides on lattice theory at our web page (http://j. ee.washington.edu/~bilmes/classes/ee596b_spring_2014/)
- Wolfe "Finding the Nearest Point in a Polytope", 1976.
- Fujishige & Isotani, "A Submodular Function Minimization Algorithm Based on the Minimum-Norm Base", 2009.

Announcements, Assignments, and Reminders

 Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, & Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes.
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity

- L11: More properties of polymatroids, SFM special cases
- L12: polymatroid properties, extreme points polymatroids,
- L13: sat, dep, supp, exchange capacity, examples
- L14: Lattice theory: partially ordered sets; lattices; distributive, modular, submodular, and boolean lattices; ideals and join irreducibles.
- L15: Supp, Base polytope, polymatroids and entropic Venn diagrams, exchange capacity,
- L16: proof that minimum norm point yields min of submodular function, and the lattice of minimizers of a submodular function. Lovasz extension
- L17: Lovasz extension, Choquet Integration, more properties/examples of Lovasz extension, convex minimization and SFM
- L18: Lovasz extension examples and structured convex norms, The Min-Norm Point Algorithm detailed.
- L19: symmetric submodular function minimization, maximizing monotone submodular function w. card constraints.
- L20: maximizing monotone submodular function w. other constraints, non-monotone maximization

Finals Week: June 9th-13th, 2014.

Review

Min-Norm Point and SFM

Theorem 17.2.1

Let y^* , A_- , and A_0 be as given. Then y^* is a maximizer of the l.h.s. of Eqn. (??). Moreover, A_- is the unique minimal minimizer of f and A_0 is the unique maximal minimizer of f.

Proof.

- First note, since $x^* \in B_f$, we have $x^*(E) = f(E)$, meaning $\operatorname{sat}(x^*) = E$. Thus, we can consider any $e \in E$ within $\operatorname{dep}(x^*, e)$.
- Consider any pair (e,e') with $e'\in \operatorname{dep}(x^*,e)$ and $e\in A_-$. Then $x^*(e)<0$, and $\exists \alpha>0$ s.t. $x^*+\alpha \mathbf{1}_e-\alpha \mathbf{1}_{e'}\in P_f$.
- We have $x^*(E)=f(E)$ and x^* is minimum in I2 sense. We have $(x^*+\alpha \mathbf{1}_e-\alpha \mathbf{1}_{e'})\in P_f$, and in fact

$$(x^* + \alpha \mathbf{1}_e - \alpha \mathbf{1}_{e'})(E) = x^*(E) + \alpha - \alpha = f(E)$$
(17.1)

so $x^* + \alpha \mathbf{1}_e - \alpha \mathbf{1}_{e'} \in B_f$ also.

. . .

Min-norm point and other minimizers of f

- Recall, that the set of minimizers of f forms a lattice.
- In fact, with x^* the min-norm point, and A_- and A_0 as defined above, we have the following theorem:

Theorem 17.2.1

Let $A\subseteq E$ be any minimizer of submodular f, and let x^* be the minimum-norm point. Then A has the form:

$$A = A_{-} \cup \bigcup_{a \in A_{m}} \operatorname{dep}(x^{*}, a)$$
 (17.7)

for some set $A_m \subseteq A_0 \setminus A_-$.

A continuous extension of submodular f

• That is, given a submodular function f, a $w \in \mathbb{R}^E$, and defining $E_i = \{e_1, e_2, \dots, e_i\}$ and where we choose the element order (e_1, e_2, \dots, e_m) based on decreasing w,so that $w(e_1) \geq w(e_2) \geq \dots \geq w(e_m)$, we have

$$\tilde{f}(w) = \max(wx : x \in P_f) \tag{17.11}$$

$$= \sum_{i=1}^{m} w(e_i) f(e_i | E_{i-1})$$
 (17.12)

$$= \sum_{i=1}^{m} w(e_i)(f(E_i) - f(E_{i-1}))$$
(17.13)

$$= w(e_m)f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}))f(E_i)$$
 (17.14)

• We say that $\emptyset \triangleq E_0 \subset E_1 \subset E_2 \subset \cdots \subset E_m = E$ forms a chain based on w.

A continuous extension of submodular f

• Definition of the continuous extension, once again, for reference:

$$\tilde{f}(w) = \max(wx : x \in P_f) \tag{17.11}$$

ullet Therefore, if f is a submodular function, we can write

$$\tilde{f}(w) = w(e_m)f(E_m) + \sum_{i=1}^{m-1} (w(e_i) - w(e_{i+1}))f(E_i)$$
 (17.12)

$$=\sum_{i=1}^{m}\lambda_{i}f(E_{i})\tag{17.13}$$

where $\lambda_m = w(e_m)$ and otherwise $\lambda_i = w(e_i) - w(e_{i+1})$, where the elements are sorted descending according to w as before.

• From convex analysis, we know $\tilde{f}(w) = \max(wx : x \in P)$ is always convex in w for any set $P \subseteq R^E$, since it is the maximum of a set of linear functions (true even when f is not submodular or P is not a convex set).

An extension of an arbitrary $f: 2^V \to \mathbb{R}$

• Thus, for any $f: 2^E \to \mathbb{R}$, even non-submodular f, we can define an extension, having $\tilde{f}(\mathbf{1}_A) = f(A), \ \forall A$, in this way where

$$\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$$
(17.20)

with the $E_i=\{e_1,\ldots,e_i\}$'s defined based on sorted descending order of w as in $w(e_1)\geq w(e_2)\geq \cdots \geq w(e_m)$, and where

for
$$i \in \{1, ..., m\}$$
, $\lambda_i = \begin{cases} w(e_i) - w(e_{i+1}) & \text{if } i < m \\ w(e_m) & \text{if } i = m \end{cases}$ (17.21)

so that $w = \sum_{i=1}^m \lambda_i \mathbf{1}_{E_i}$.

- $w = \sum_{i=1}^{m} \lambda_i \mathbf{1}_{E_i}$ is an interpolation of certain hypercube vertices.
- $\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$ is the associated interpolation of the values of f at sets corresponding to each hypercube vertex.

Summary: comparison of the two extension forms

• So if f is submodular, then we can write $\tilde{f}(w) = \max(wx : x \in P_f)$ (which is clearly convex) in the form:

$$\tilde{f}(w) = \max(wx : x \in P_f) = \sum_{i=1}^{m} \lambda_i f(E_i)$$
 (17.24)

where $w = \sum_{i=1}^{m} \lambda_i \mathbf{1}_{E_i}$ and $E_i = \{e_1, \dots, e_i\}$ defined based on sorted descending order $w(e_1) \geq w(e_2) \geq \dots \geq w(e_m)$.

ullet On the other hand, for any f (even non-submodular), we can produce an extension \tilde{f} having the form

$$\tilde{f}(w) = \sum_{i=1}^{m} \lambda_i f(E_i)$$
(17.25)

where $w = \sum_{i=1}^m \lambda_i \mathbf{1}_{E_i}$ and $E_i = \{e_1, \dots, e_i\}$ defined based on sorted descending order $w(e_1) \geq w(e_2) \geq \dots \geq w(e_m)$.

- In both Eq. (??) and Eq. (??), we have $\tilde{f}(\mathbf{1}_A)=f(A), \ \forall A$, but Eq. (??), might not be convex.
- Submodularity is sufficient for convexity of but is it necessary?

Lovász Extension, Submodularity and Convexity

Theorem 17.2.1

A function $f:2^E\to\mathbb{R}$ is submodular iff its Lovász extension \tilde{f} of f is convex.

Proof.

- We've already seen that if f is submodular, its extension can be written via Eqn.(??) due to the greedy algorithm, and therefore is also equivalent to $\tilde{f}(w) = \max\{wx : x \in P_f\}$, and thus is convex.
- Conversely, suppose the Lovász extension $\tilde{f}(w) = \sum_i \lambda_i f(E_i)$ of some function $f: 2^E \to \mathbb{R}$ is a convex function.
- We note that, based on the extension definition, in particular the definition of the $\{\lambda_i\}_i$, we have that $\tilde{f}(\alpha w) = \alpha \tilde{f}(w)$ for any $\alpha \in \mathbb{R}_+$. I.e., f is a positively homogeneous convex function.

• Integration is just summation (e.g., the \int symbol has as its origins a sum).

- Integration is just summation (e.g., the \int symbol has as its origins a sum).
- Lebesgue integration allows integration w.r.t. an underlying measure μ of sets. E.g., given measurable function f, we can define

$$\int_{X} f du = \sup I_X(s) \tag{17.1}$$

where $I_X(s) = \sum_{i=1}^n c_i \mu(X \cap X_i)$, and where we take the \sup over all measurable functions s such that $0 \le s \le f$ and $s(x) = \sum_{i=1}^n c_i I_{X_i}(x)$ and where $I_{X_i}(x)$ is indicator of membership of set X_i , with $c_i > 0$.

• In finite discrete spaces, Lebesgue integration is just a weighted average, and can be seen as an aggregation function.

- In finite discrete spaces, Lebesgue integration is just a weighted average, and can be seen as an aggregation function.
- I.e., given a weight vector $w \in [0,1]^E$ for some finite ground set E, then for any $x \in \mathbb{R}^E$ we have the weighted average of x as:

$$WAVG(x) = \sum_{e \in E} x(e)w(e)$$
 (17.2)

- In finite discrete spaces, Lebesgue integration is just a weighted average, and can be seen as an aggregation function.
- I.e., given a weight vector $w \in [0,1]^E$ for some finite ground set E, then for any $x \in \mathbb{R}^E$ we have the weighted average of x as:

$$WAVG(x) = \sum_{e \in E} x(e)w(e)$$
 (17.2)

• Consider $\mathbf{1}_e$ for $e \in E$, we have

$$WAVG(\mathbf{1}_e) = w(e) \tag{17.3}$$

- In finite discrete spaces, Lebesgue integration is just a weighted average, and can be seen as an aggregation function.
- I.e., given a weight vector $w \in [0,1]^E$ for some finite ground set E, then for any $x \in \mathbb{R}^E$ we have the weighted average of x as:

$$\mathsf{WAVG}(x) = \sum_{e \in E} x(e)w(e) \tag{17.2}$$

• Consider $\mathbf{1}_e$ for $e \in E$, we have

$$WAVG(\mathbf{1}_e) = w(e) \tag{17.3}$$

so seen as a function on the hypercube vertices, the entire WAVG function is given based on values on a size m=|E| subset of the vertices of this hypercube, i.e., $\{\mathbf{1}_e:e\in E\}$.

- In finite discrete spaces, Lebesgue integration is just a weighted average, and can be seen as an aggregation function.
- I.e., given a weight vector $w \in [0,1]^E$ for some finite ground set E, then for any $x \in \mathbb{R}^E$ we have the weighted average of x as:

$$WAVG(x) = \sum_{e \in E} x(e)w(e)$$
 (17.2)

• Consider $\mathbf{1}_e$ for $e \in E$, we have

$$WAVG(\mathbf{1}_e) = w(e) \tag{17.3}$$

so seen as a function on the hypercube vertices, the entire WAVG function is given based on values on a size m=|E| subset of the vertices of this hypercube, i.e., $\{\mathbf{1}_e:e\in E\}$. Moreover, we are interpolating as in

$$WAVG(x) = \sum_{e \in E} x(e)w(e) = \sum_{e \in E} x(e)WAVG(\mathbf{1}_e)$$
 (17.4)

$$WAVG(x) = \sum_{e \in E} x(e)w(e)$$
 (17.5)

• Clearly, WAVG function is linear in weights w, in the argument x, and is homogeneous. That is, for all $w, w_1, w_2, x, x_1, x_2 \in \mathbb{R}^E$ and $\alpha \in \mathbb{R}$.

$$WAVG_{w_1+w_2}(x) = WAVG_{w_1}(x) + WAVG_{w_2}(x),$$
 (17.6)

$$WAVG_w(x_1 + x_2) = WAVG_w(x_1) + WAVG_w(x_2),$$
 (17.7)

and,

$$WAVG(\alpha x) = \alpha WAVG(x). \tag{17.8}$$

$$WAVG(x) = \sum_{e \in E} x(e)w(e)$$
 (17.5)

• Clearly, WAVG function is linear in weights w, in the argument x, and is homogeneous. That is, for all $w, w_1, w_2, x, x_1, x_2 \in \mathbb{R}^E$ and $\alpha \in \mathbb{R}$.

$$WAVG_{w_1+w_2}(x) = WAVG_{w_1}(x) + WAVG_{w_2}(x),$$
 (17.6)

$$WAVG_w(x_1 + x_2) = WAVG_w(x_1) + WAVG_w(x_2),$$
 (17.7)

and,

$$WAVG(\alpha x) = \alpha WAVG(x). \tag{17.8}$$

• We will see: The Lovász extension is still be linear in "weights" (i.e., the submodular function f), but will not be linear in x and will only be positively homogeneous (for $\alpha \geq 0$).

 More complex "nonlinear" aggregation functions can be constructed by defining the aggregation function on all vertices of the hypercube. I.e., for each $\mathbf{1}_A:A\subseteq E$ we might have (for all $A\subseteq E$):

$$\mathsf{AG}(\mathbf{1}_A) = w_A \tag{17.9}$$

• More complex "nonlinear" aggregation functions can be constructed by defining the aggregation function on all vertices of the hypercube. I.e., for each $\mathbf{1}_A:A\subseteq E$ we might have (for all $A\subseteq E$):

$$\mathsf{AG}(\mathbf{1}_A) = w_A \tag{17.9}$$

• What then might AG(x) be for some $x \in \mathbb{R}^E$? Our weighted average functions might look something more like the r.h.s. in:

$$AG(x) = \sum_{A \subseteq E} x(A)w_A = \sum_{A \subseteq E} x(A)AG(\mathbf{1}_A)$$
 (17.10)

• More complex "nonlinear" aggregation functions can be constructed by defining the aggregation function on all vertices of the hypercube. I.e., for each $\mathbf{1}_A:A\subseteq E$ we might have (for all $A\subseteq E$):

$$\mathsf{AG}(\mathbf{1}_A) = w_A \tag{17.9}$$

• What then might AG(x) be for some $x \in \mathbb{R}^E$? Our weighted average functions might look something more like the r.h.s. in:

$$AG(x) = \sum_{A \subseteq E} x(A)w_A = \sum_{A \subseteq E} x(A)AG(\mathbf{1}_A)$$
 (17.10)

• Note, we can define w(e)=w'(e) and $w(A)=0, \forall A: |A|>1$ and get back previous (normal) weighted average, in that

$$WAVG_{w'}(x) = AG_w(x) \tag{17.11}$$

• More complex "nonlinear" aggregation functions can be constructed by defining the aggregation function on all vertices of the hypercube. I.e., for each $\mathbf{1}_A:A\subseteq E$ we might have (for all $A\subseteq E$):

$$\mathsf{AG}(\mathbf{1}_A) = w_A \tag{17.9}$$

• What then might AG(x) be for some $x \in \mathbb{R}^E$? Our weighted average functions might look something more like the r.h.s. in:

$$AG(x) = \sum_{A \subseteq E} x(A)w_A = \sum_{A \subseteq E} x(A)AG(\mathbf{1}_A)$$
 (17.10)

• Note, we can define w(e)=w'(e) and $w(A)=0, \forall A: |A|>1$ and get back previous (normal) weighted average, in that

$$WAVG_{w'}(x) = AG_w(x) \tag{17.11}$$

• Set function $f: 2^E \to \mathbb{R}$ is a game if f is normalized $f(\emptyset) = 0$.

• Set function $f: 2^E \to \mathbb{R}$ is called a capacity if it is monotone non-decreasing, i.e., $f(A) \le f(B)$ whenever $A \subseteq B$.

- Set function $f: 2^E \to \mathbb{R}$ is called a capacity if it is monotone non-decreasing, i.e., $f(A) \leq f(B)$ whenever $A \subseteq B$.
- A Boolean function f is any function $f: \{0,1\}^m \to \{0,1\}$ and is a pseudo-Boolean function if $f: \{0,1\}^m \to \mathbb{R}$.

- Set function $f: 2^E \to \mathbb{R}$ is called a capacity if it is monotone non-decreasing, i.e., $f(A) \le f(B)$ whenever $A \subseteq B$.
- A Boolean function f is any function $f: \{0,1\}^m \to \{0,1\}$ and is a pseudo-Boolean function if $f: \{0,1\}^m \to \mathbb{R}$.
- Any set function corresponds to a pseudo-Boolean function. I.e., given $f: 2^E \to \mathbb{R}$, form $f_b: \{0,1\}^m \to \mathbb{R}$ as $f_b(x) = f(A_x)$ where the A,x bijection is $A = \{e \in E : x_e = 1\}$ and $x = \mathbf{1}_A$.

- Set function $f: 2^E \to \mathbb{R}$ is called a capacity if it is monotone non-decreasing, i.e., $f(A) \le f(B)$ whenever $A \subseteq B$.
- A Boolean function f is any function $f: \{0,1\}^m \to \{0,1\}$ and is a pseudo-Boolean function if $f: \{0,1\}^m \to \mathbb{R}$.
- Any set function corresponds to a pseudo-Boolean function. I.e., given $f: 2^E \to \mathbb{R}$, form $f_b: \{0,1\}^m \to \mathbb{R}$ as $f_b(x) = f(A_x)$ where the A,x bijection is $A = \{e \in E : x_e = 1\}$ and $x = \mathbf{1}_A$.
- Also, if we have an expression for f_b we can construct a set function f as $f(A) = f_b(\mathbf{1}_A)$. We can also often relax f_b to any $x \in [0,1]^m$.

- Set function $f: 2^E \to \mathbb{R}$ is called a capacity if it is monotone non-decreasing, i.e., $f(A) \le f(B)$ whenever $A \subseteq B$.
- A Boolean function f is any function $f: \{0,1\}^m \to \{0,1\}$ and is a pseudo-Boolean function if $f: \{0,1\}^m \to \mathbb{R}$.
- Any set function corresponds to a pseudo-Boolean function. I.e., given $f: 2^E \to \mathbb{R}$, form $f_b: \{0,1\}^m \to \mathbb{R}$ as $f_b(x) = f(A_x)$ where the A,x bijection is $A = \{e \in E : x_e = 1\}$ and $x = \mathbf{1}_A$.
- Also, if we have an expression for f_b we can construct a set function f as $f(A) = f_b(\mathbf{1}_A)$. We can also often relax f_b to any $x \in [0,1]^m$.
- We saw this for Lovász extension.

- Set function $f: 2^E \to \mathbb{R}$ is called a capacity if it is monotone non-decreasing, i.e., $f(A) \le f(B)$ whenever $A \subseteq B$.
- A Boolean function f is any function $f: \{0,1\}^m \to \{0,1\}$ and is a pseudo-Boolean function if $f: \{0,1\}^m \to \mathbb{R}$.
- Any set function corresponds to a pseudo-Boolean function. I.e., given $f: 2^E \to \mathbb{R}$, form $f_b: \{0,1\}^m \to \mathbb{R}$ as $f_b(x) = f(A_x)$ where the A,x bijection is $A = \{e \in E : x_e = 1\}$ and $x = \mathbf{1}_A$.
- Also, if we have an expression for f_b we can construct a set function f as $f(A) = f_b(\mathbf{1}_A)$. We can also often relax f_b to any $x \in [0,1]^m$.
- We saw this for Lovász extension.
- It turns out that a concept essentially identical to the Lovász extension was derived much earlier, in 1954, and using this derivation (via integration) leads to deeper intuition.

Definition 17.3.1

Let f be any capacity on E and $w \in \mathbb{R}_+^E$. The Choquet integral (1954) of w w.r.t. f is defined by

$$C_f(w) = \sum_{i=1}^{m} (w_{e_i} - w_{e_{i+1}}) f(E_i)$$
(17.12)

where in the sum, we have sorted and renamed the elements of E so that $w_{e_1} \geq w_{e_2} \geq \cdots \geq w_{e_m} \geq w_{e_{m+1}} \triangleq 0$, and where $E_i = \{e_1, e_2, \dots, e_i\}$.

• We immediately see that an equivalent formula is as follows:

$$C_f(w) = \sum_{i=1}^m w(e_i)(f(E_i) - f(E_{i-1}))$$
 (17.13)

where $E_0 \stackrel{\text{def}}{=} \emptyset$.

Choquet integral

Definition 17.3.1

Let f be any capacity on E and $w \in \mathbb{R}_+^E$. The Choquet integral (1954) of w w.r.t. f is defined by

$$C_f(w) = \sum_{i=1}^{m} (w_{e_i} - w_{e_{i+1}}) f(E_i)$$
(17.12)

where in the sum, we have sorted and renamed the elements of E so that $w_{e_1} \geq w_{e_2} \geq \cdots \geq w_{e_m} \geq w_{e_{m+1}} \triangleq 0$, and where $E_i = \{e_1, e_2, \dots, e_i\}$.

• BTW: this again essentially Abel's partial summation formula: Given two arbitrary sequences $\{a_n\}$ and $\{b_n\}$ with $A_n = \sum_{k=1}^n a_k$, we have

$$\sum_{k=0}^{n} a_k b_k = \sum_{k=0}^{n} A_k (b_k - b_{k+1}) + A_n b_{n+1} - A_{m-1} b_m$$
 (17.14)

ullet Thought of as an integral over ${\mathbb R}$ of a piece-wise constant function.

Choquet Integration

- ullet Thought of as an integral over ${\mathbb R}$ of a piece-wise constant function.
- First note, assuming E is ordered according to descending w, so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_{m-1}) \geq w(e_m)$, then $E_i = \{e_1, e_2, \ldots, e_i\} = \{e \in E : w_e \geq w_{e_i}\}.$

- ullet Thought of as an integral over $\mathbb R$ of a piece-wise constant function.
- First note, assuming E is ordered according to descending w, so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_{m-1}) \geq w(e_m)$, then $E_i = \{e_1, e_2, \ldots, e_i\} = \{e \in E : w_e \geq w_{e_i}\}.$
- For any $w_{e_i} > \alpha \ge w_{e_{i+1}}$ we also have $E_i = \{e_1, e_2, \dots, e_i\} = \{e \in E : w_e > \alpha\}.$

- ullet Thought of as an integral over ${\mathbb R}$ of a piece-wise constant function.
- First note, assuming E is ordered according to descending w, so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_{m-1}) \geq w(e_m)$, then $E_i = \{e_1, e_2, \ldots, e_i\} = \{e \in E : w_e \geq w_{e_i}\}.$
- For any $w_{e_i} > \alpha \ge w_{e_{i+1}}$ we also have $E_i = \{e_1, e_2, \dots, e_i\} = \{e \in E : w_e > \alpha\}.$
- Consider segmenting the real-axis at boundary points w_{e_i} , right most is w_{e_1} .

$$\overline{w(e_m)} \ w(e_{m-1}) \ \cdots \ w(e_5) \ w(e_4) \ w(e_3) \ w(e_2) w(e_1)$$

- ullet Thought of as an integral over ${\mathbb R}$ of a piece-wise constant function.
- First note, assuming E is ordered according to descending w, so that $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_{m-1}) \geq w(e_m)$, then $E_i = \{e_1, e_2, \ldots, e_i\} = \{e \in E : w_e \geq w_{e_i}\}.$
- For any $w_{e_i} > \alpha \ge w_{e_{i+1}}$ we also have $E_i = \{e_1, e_2, \dots, e_i\} = \{e \in E : w_e > \alpha\}.$
- Consider segmenting the real-axis at boundary points w_{e_i} , right most is w_{e_1} .

$$\overline{w(e_m)} \ w(e_{m-1}) \ \cdots \ w(e_5) \ w(e_4) \ w(e_3) \ w(e_2)w(e_1)$$

• A function can be defined on a segment of \mathbb{R} , namely $w_{e_i} > \alpha \geq w_{e_{i+1}}$. This function $F_i : [w_{e_{i+1}}, w_{e_i}) \to \mathbb{R}$ is defined as

$$F_i(\alpha) = f(\{e \in E : w_e > \alpha\}) = f(E_i)$$
 (17.15)

• We can generalize this to multiple segments of \mathbb{R} (for now, take $w \in \mathbb{R}_+^E$). The piecewise-constant function is defined as:

$$F(\alpha) = \begin{cases} f(E) & \text{if } 0 \leq \alpha < w_m \\ f(\{e \in E : w_e > \alpha\}) & \text{if } w_{e_{i+1}} \leq \alpha < w_{e_i}, \ i \in \{1, \dots, m-1\} \\ 0 \ (= f(\emptyset)) & \text{if } w_1 < \alpha \end{cases}$$

• We can generalize this to multiple segments of \mathbb{R} (for now, take $w \in \mathbb{R}_+^E$). The piecewise-constant function is defined as:

$$F(\alpha) = \begin{cases} f(E) & \text{if } 0 \leq \alpha < w_m \\ f(\{e \in E : w_e > \alpha\}) & \text{if } w_{e_{i+1}} \leq \alpha < w_{e_i}, \ i \in \{1, \dots, m-1\} \\ 0 \ (= f(\emptyset)) & \text{if } w_1 < \alpha \end{cases}$$

• Visualizing a piecewise constant function, where the constant values are given by f evaluated on E_i for each i

Note, what is depicted may be a game but not a capacity. Why?

$$\tilde{f}(w) \stackrel{\text{def}}{=} \int_{0}^{\infty} F(\alpha) d\alpha$$
 (17.16)

$$\tilde{f}(w) \stackrel{\text{def}}{=} \int_0^\infty F(\alpha) d\alpha$$
 (17.16)

$$= \int_0^\infty f(\{e \in E : w_e > \alpha\}) d\alpha \tag{17.17}$$

$$\tilde{f}(w) \stackrel{\text{def}}{=} \int_{0}^{\infty} F(\alpha) d\alpha$$
 (17.16)

$$= \int_0^\infty f(\{e \in E : w_e > \alpha\}) d\alpha \tag{17.17}$$

$$= \int_{w_{m+1}}^{\infty} f(\{e \in E : w_e > \alpha\}) d\alpha \tag{17.18}$$

$$\tilde{f}(w) \stackrel{\text{def}}{=} \int_{0}^{\infty} F(\alpha) d\alpha$$
 (17.16)

$$= \int_0^\infty f(\{e \in E : w_e > \alpha\}) d\alpha \tag{17.17}$$

$$= \int_{w_{m+1}}^{\infty} f(\lbrace e \in E : w_e > \alpha \rbrace) d\alpha \tag{17.18}$$

$$= \sum_{i=1}^{m} \int_{w_{i+1}}^{w_i} f(\{e \in E : w_e > \alpha\}) d\alpha$$
 (17.19)

$$\tilde{f}(w) \stackrel{\text{def}}{=} \int_{0}^{\infty} F(\alpha) d\alpha$$
 (17.16)

$$= \int_0^\infty f(\{e \in E : w_e > \alpha\}) d\alpha \tag{17.17}$$

$$= \int_{w_{m+1}}^{\infty} f(\lbrace e \in E : w_e > \alpha \rbrace) d\alpha \tag{17.18}$$

$$= \sum_{i=1}^{m} \int_{w_{i+1}}^{w_i} f(\{e \in E : w_e > \alpha\}) d\alpha$$
 (17.19)

$$=\sum_{i=1}^{m} \int_{w_{i+1}}^{w_i} f(E_i) d\alpha = \sum_{i=1}^{m} f(E_i) (w_i - w_{i+1})$$
 (17.20)

• But we saw before that $\sum_{i=1}^{m} f(E_i)(w_i - w_{i+1})$ is just the Lovász extension of a function f.

- But we saw before that $\sum_{i=1}^{m} f(E_i)(w_i w_{i+1})$ is just the Lovász extension of a function f.
- Thus, we have the following definition:

Definition 17.3.2

Given $w \in \mathbb{R}_+^E$, the Lovász extension (equivalently Choquet integral) may be defined as follows:

$$\tilde{f}(w) \stackrel{\text{def}}{=} \int_0^\infty F(\alpha) d\alpha$$
 (17.21)

where the function F is defined as before.

- But we saw before that $\sum_{i=1}^{m} f(E_i)(w_i w_{i+1})$ is just the Lovász extension of a function f.
- Thus, we have the following definition:

Definition 17.3.2

Given $w \in \mathbb{R}_+^E$, the Lovász extension (equivalently Choquet integral) may be defined as follows:

$$\tilde{f}(w) \stackrel{\text{def}}{=} \int_0^\infty F(\alpha) d\alpha$$
 (17.21)

where the function F is defined as before.

• Note that it is not necessary in general to require $w \in \mathbb{R}_+^E$ (i.e., we can take $w \in \mathbb{R}^E$) nor that f be non-negative, but it is a bit more involved. Above is the simple case.

- But we saw before that $\sum_{i=1}^{m} f(E_i)(w_i w_{i+1})$ is just the Lovász extension of a function f.
- Thus, we have the following definition:

Definition 17.3.2

Given $w \in \mathbb{R}_+^E$, the Lovász extension (equivalently Choquet integral) may be defined as follows:

$$\tilde{f}(w) \stackrel{\text{def}}{=} \int_0^\infty F(\alpha) d\alpha$$
 (17.21)

where the function F is defined as before.

- Note that it is not necessary in general to require $w \in \mathbb{R}_+^E$ (i.e., we can take $w \in \mathbb{R}^E$) nor that f be non-negative, but it is a bit more involved. Above is the simple case.
 - The above integral will be further generalized a bit later.

 Recall, we want to produce some notion of generalized aggregation function having the flavor of:

$$AG(x) = \sum_{A \subseteq E} x(A)w_A = \sum_{A \subseteq E} x(A)AG(\mathbf{1}_A)$$
 (17.22)

 Recall, we want to produce some notion of generalized aggregation function having the flavor of:

$$\mathsf{AG}(x) = \sum_{A \subseteq E} x(A)w_A = \sum_{A \subseteq E} x(A)\mathsf{AG}(\mathbf{1}_A) \tag{17.22}$$

how does this correspond to Lovász extension?

• Let us partition the hypercube $[0,1]^m$ into q polytopes, each defined by a set of vertices $\mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_q$.

 Recall, we want to produce some notion of generalized aggregation function having the flavor of:

$$AG(x) = \sum_{A \subseteq E} x(A)w_A = \sum_{A \subseteq E} x(A)AG(\mathbf{1}_A)$$
 (17.22)

- Let us partition the hypercube $[0,1]^m$ into q polytopes, each defined by a set of vertices $\mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_q$.
- E.g., for each i, $V_i = \{\mathbf{1}_{A_1}, \mathbf{1}_{A_2}, \dots, \mathbf{1}_{A_k}\}$ (k vertices) and the convex hull of V_i defines the i^{th} polytope.

 Recall, we want to produce some notion of generalized aggregation function having the flavor of:

$$AG(x) = \sum_{A \subseteq E} x(A)w_A = \sum_{A \subseteq E} x(A)AG(\mathbf{1}_A)$$
 (17.22)

- Let us partition the hypercube $[0,1]^m$ into q polytopes, each defined by a set of vertices $\mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_q$.
- E.g., for each i, $\mathcal{V}_i = \{\mathbf{1}_{A_1}, \mathbf{1}_{A_2}, \dots, \mathbf{1}_{A_k}\}$ (k vertices) and the convex hull of V_i defines the i^{th} polytope.
- This forms a "triangulation" of the hypercube.

 Recall, we want to produce some notion of generalized aggregation function having the flavor of:

$$AG(x) = \sum_{A \subseteq E} x(A)w_A = \sum_{A \subseteq E} x(A)AG(\mathbf{1}_A)$$
 (17.22)

- Let us partition the hypercube $[0,1]^m$ into q polytopes, each defined by a set of vertices $\mathcal{V}_1, \mathcal{V}_2, \dots, \mathcal{V}_q$.
- E.g., for each i, $V_i = \{\mathbf{1}_{A_1}, \mathbf{1}_{A_2}, \dots, \mathbf{1}_{A_k}\}$ (k vertices) and the convex hull of V_i defines the i^{th} polytope.
- This forms a "triangulation" of the hypercube.
- For any $x \in [0,1]^m$ there is a (not necessarily unique) $\mathcal{V}(x) = \mathcal{V}_j$ for some j such that $x \in \text{conv}(\mathcal{V}(x))$.

• Most generally, for $x \in [0,1]^m$, let us define the (unique) coefficients $\alpha_0^x(A)$ and $\alpha_i^x(A)$ that define the affine transformation of the coefficients of x to be used with the particular hypercube vertex $\mathbf{1}_A \in \operatorname{conv}(\mathcal{V}(x))$. The affine transformation is as follows:

$$\alpha_0^x(A) + \sum_{j=1}^m \alpha_j^x(A) x_j \in \mathbb{R}$$
 (17.23)

Note that many of these coefficient are often zero.

• Most generally, for $x \in [0,1]^m$, let us define the (unique) coefficients $\alpha_0^x(A)$ and $\alpha_i^x(A)$ that define the affine transformation of the coefficients of x to be used with the particular hypercube vertex $\mathbf{1}_A \in \mathrm{conv}(\mathcal{V}(x))$. The affine transformation is as follows:

$$\alpha_0^x(A) + \sum_{j=1}^m \alpha_j^x(A) x_j \in \mathbb{R}$$
 (17.23)

Note that many of these coefficient are often zero.

• From this, we can define an aggregation function of the form

$$\mathsf{AG}(x) \stackrel{\text{def}}{=} \sum_{A: \mathbf{1}_A \in \mathcal{V}(x)} \left(\alpha_0^x(A) + \sum_{j=1}^m \alpha_j^x(A) x_j \right) \mathsf{AG}(\mathbf{1}_A) \tag{17.24}$$

• We can define a canonical triangulation of the hypercube in terms of permutations of the coordinates. I.e., given some permutation σ , define

$$conv(\mathcal{V}_{\sigma}) = \left\{ x \in [0,1]^n | x_{\sigma(1)} \ge x_{\sigma(2)} \ge \dots \ge x_{\sigma(m)} \right\}$$
 (17.25)

Then these m! blocks of the partition are called the canonical partitions of the hypercube.

• We can define a canonical triangulation of the hypercube in terms of permutations of the coordinates. I.e., given some permutation σ , define

$$conv(\mathcal{V}_{\sigma}) = \left\{ x \in [0,1]^n | x_{\sigma(1)} \ge x_{\sigma(2)} \ge \dots \ge x_{\sigma(m)} \right\}$$
 (17.25)

Then these m! blocks of the partition are called the canonical partitions of the hypercube.

• With this, we can define $\{\mathcal{V}_i\}_i$ as the vertices of $\operatorname{conv}(\mathcal{V}_\sigma)$ for each permutation σ .

• We can define a canonical triangulation of the hypercube in terms of permutations of the coordinates. I.e., given some permutation σ , define

$$conv(\mathcal{V}_{\sigma}) = \left\{ x \in [0,1]^n | x_{\sigma(1)} \ge x_{\sigma(2)} \ge \dots \ge x_{\sigma(m)} \right\}$$
 (17.25)

Then these m! blocks of the partition are called the canonical partitions of the hypercube.

• With this, we can define $\{\mathcal{V}_i\}_i$ as the vertices of $\operatorname{conv}(\mathcal{V}_{\sigma})$ for each permutation σ . In this case, we have:

• We can define a canonical triangulation of the hypercube in terms of permutations of the coordinates. I.e., given some permutation σ , define

$$conv(\mathcal{V}_{\sigma}) = \left\{ x \in [0,1]^n | x_{\sigma(1)} \ge x_{\sigma(2)} \ge \dots \ge x_{\sigma(m)} \right\}$$
 (17.25)

Then these m! blocks of the partition are called the canonical partitions of the hypercube.

• With this, we can define $\{\mathcal{V}_i\}_i$ as the vertices of $\operatorname{conv}(\mathcal{V}_{\sigma})$ for each permutation σ . In this case, we have:

Proposition 17.3.3

The above linear interpolation in Eqn. (17.24) using the canonical partition yields the Lovász extension with $\alpha_0^x(A) + \sum_{j=1}^m \alpha_j^x(A) x_j = x_{\sigma_i} - x_{\sigma_{i-1}}$ for $A = E_i = \{e_{\sigma_1}, \dots, e_{\sigma_i}\}$ for appropriate order σ .

• We can define a canonical triangulation of the hypercube in terms of permutations of the coordinates. I.e., given some permutation σ , define

$$\operatorname{conv}(\mathcal{V}_{\sigma}) = \left\{ x \in [0, 1]^n | x_{\sigma(1)} \ge x_{\sigma(2)} \ge \dots \ge x_{\sigma(m)} \right\} \quad (17.25)$$

Then these m! blocks of the partition are called the canonical partitions of the hypercube.

• With this, we can define $\{\mathcal{V}_i\}_i$ as the vertices of $\operatorname{conv}(\mathcal{V}_{\sigma})$ for each permutation σ . In this case, we have:

Proposition 17.3.3

The above linear interpolation in Eqn. (17.24) using the canonical partition yields the Lovász extension with $\alpha_0^x(A) + \sum_{j=1}^m \alpha_j^x(A) x_j = x_{\sigma_i} - x_{\sigma_{i-1}}$ for $A = E_i = \{e_{\sigma_1}, \dots, e_{\sigma_i}\}$ for appropriate order σ .

• Hence, Lovász extension is a generalized aggregation function.

Lovász extension as max over orders

• We can also write the Lovász extension as follows:

$$\tilde{f}(w) = \max_{\sigma \in \Pi_{[m]}} w^{\mathsf{T}} c^{\sigma} \tag{17.26}$$

where $\Pi_{[m]}$ is the set of m! permutations of [m] = E, $\sigma \in \Pi_{[m]}$ is a particular permutation, and c^{σ} is a vector associated with permutation σ defined as:

$$c_i^{\sigma} = f(E_{\sigma_i}) - f(E_{\sigma_{i-1}})$$
 (17.27)

where $E_{\sigma_i} = \{e_{\sigma_1}, e_{\sigma_2}, \dots, e_{\sigma_i}\}.$

Lovász extension as max over orders

• We can also write the Lovász extension as follows:

$$\tilde{f}(w) = \max_{\sigma \in \Pi_{[m]}} w^{\mathsf{T}} c^{\sigma} \tag{17.26}$$

where $\Pi_{[m]}$ is the set of m! permutations of [m] = E, $\sigma \in \Pi_{[m]}$ is a particular permutation, and c^{σ} is a vector associated with permutation σ defined as:

$$c_i^{\sigma} = f(E_{\sigma_i}) - f(E_{\sigma_{i-1}})$$
 (17.27)

where $E_{\sigma_i} = \{e_{\sigma_1}, e_{\sigma_2}, \dots, e_{\sigma_i}\}.$

 Note this immediately follows from the definition of the Lovász extension in the form:

$$\tilde{f}(w) = \max_{x \in P_f} w^{\mathsf{T}} x = \max_{x \in B_f} w^{\mathsf{T}} x \tag{17.28}$$

since we know that the maximum is achieved by an extreme point of the base B_f and all extreme points are obtained by a permutation-of-E-parameterized greedy instance.

Lovász extension, defined in multiple ways

• As shorthand notation, lets use $\{w \geq \alpha\} \equiv \{e \in E : w(e) \geq \alpha\}$, called the weak α -sup-level set of w.

• As shorthand notation, lets use $\{w \geq \alpha\} \equiv \{e \in E : w(e) \geq \alpha\}$, called the weak α -sup-level set of w. A similar definition holds for $\{w > \alpha\}$ (called the strong α -sup-level set of w).

- As shorthand notation, lets use $\{w \geq \alpha\} \equiv \{e \in E : w(e) \geq \alpha\}$, called the weak α -sup-level set of w. A similar definition holds for $\{w > \alpha\}$ (called the strong α -sup-level set of w).
- Given any $w \in \mathbb{R}^E$, sort E as $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.

- As shorthand notation, lets use $\{w \geq \alpha\} \equiv \{e \in E : w(e) \geq \alpha\}$, called the weak α -sup-level set of w. A similar definition holds for $\{w > \alpha\}$ (called the strong α -sup-level set of w).
- Given any $w \in \mathbb{R}^E$, sort E as $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$. Also, w.l.o.g., number elements of w so that $w_1 \ge w_2 \ge \cdots \ge w_m$.

Lovász extension, defined in multiple ways

- As shorthand notation, lets use $\{w \geq \alpha\} \equiv \{e \in E : w(e) \geq \alpha\}$, called the weak α -sup-level set of w. A similar definition holds for $\{w > \alpha\}$ (called the strong α -sup-level set of w).
- Given any $w \in \mathbb{R}^E$, sort E as $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$. Also, w.l.o.g., number elements of w so that $w_1 \geq w_2 \geq \cdots \geq w_m$.
- We have already seen how we can define the Lovász extension for any (not necessarily submodular) function f in the following equivalent ways:

$$\tilde{f}(w) = \sum_{i=1}^{m} w(e_i) f(e_i | E_{i-1})$$

$$= \sum_{i=1}^{m-1} f(E_i) (w(e_i) - w(e_{i+1})) + f(E) w(e_m) a$$

$$= \sum_{i=1}^{m-1} \lambda_i f(E_i)$$
(17.30)

 Additional ways we can define the Lovász extension for any (not necessarily submodular) but normalized function f include:

$$\tilde{f}(w) = \sum_{i=1}^{m} w(e_i) f(e_i | E_{i-1}) = \sum_{i=1}^{m} \lambda_i f(E_i) \tag{17.32}$$

$$= \sum_{i=1}^{m-1} f(E_i) (w(e_i) - w(e_{i+1})) + f(E) w(e_m) \tag{17.33}$$

$$= \int_{\min\{w_1, \dots, w_m\}}^{+\infty} f(\{w \ge \alpha\}) d\alpha + f(E) \min\{w_1, \dots, w_m\}$$

$$= \int_0^{+\infty} f(\{w \ge \alpha\}) d\alpha + \int_{-\infty}^0 [f(\{w \ge \alpha\}) - f(E)] d\alpha$$

$$(17.35)$$

general Lovász extension, as simple integral

• In fact, we have that, given function f, and any $w \in \mathbb{R}^E$:

$$\tilde{f}(w) = \int_{-\infty}^{+\infty} \hat{f}(\alpha) d\alpha \tag{17.36}$$

where

$$\hat{f}(\alpha) = \begin{cases} f(\{w \ge \alpha\}) & \text{if } \alpha >= 0\\ f(\{w \ge \alpha\}) - f(E) & \text{if } \alpha < 0 \end{cases}$$
 (17.37)

general Lovász extension, as simple integral

• In fact, we have that, given function f, and any $w \in \mathbb{R}^E$:

$$\tilde{f}(w) = \int_{-\infty}^{+\infty} \hat{f}(\alpha) d\alpha \tag{17.36}$$

where

Choquet Integration

$$\hat{f}(\alpha) = \begin{cases} f(\{w \ge \alpha\}) & \text{if } \alpha >= 0\\ f(\{w \ge \alpha\}) - f(E) & \text{if } \alpha < 0 \end{cases}$$
 (17.37)

• So we can write it as a simple integral over the right function.

general Lovász extension, as simple integral

• In fact, we have that, given function f, and any $w \in \mathbb{R}^E$:

$$\tilde{f}(w) = \int_{-\infty}^{+\infty} \hat{f}(\alpha) d\alpha \tag{17.36}$$

where

$$\hat{f}(\alpha) = \begin{cases} f(\{w \ge \alpha\}) & \text{if } \alpha >= 0\\ f(\{w \ge \alpha\}) - f(E) & \text{if } \alpha < 0 \end{cases}$$
 (17.37)

- So we can write it as a simple integral over the right function.
- These make it easier to see certain properties of the Lovász extension. But first, we show the above.

• To show Eqn. (17.34), first note that the r.h.s. terms are the same since $w(e_m) = \min\{w_1, \dots, w_m\}$.

- To show Eqn. (17.34), first note that the r.h.s. terms are the same since $w(e_m) = \min\{w_1, \dots, w_m\}$.
- Then, consider that, as a function of α , we have

$$f(\{w \ge \alpha\}) = \begin{cases} 0 & \text{if } \alpha > w(e_1) \\ f(E_k) & \text{if } \alpha \in (w(e_{k+1}), w(e_k)), k \in \{1, \dots, m-1\} \\ f(E) & \text{if } \alpha < w(e_m) \end{cases}$$
(17.38)

we may use open intervals since sets of zero measure don't change integration.

- To show Eqn. (17.34), first note that the r.h.s. terms are the same since $w(e_m) = \min \{w_1, \dots, w_m\}$.
- Then, consider that, as a function of α , we have

$$f(\{w \ge \alpha\}) = \begin{cases} 0 & \text{if } \alpha > w(e_1) \\ f(E_k) & \text{if } \alpha \in (w(e_{k+1}), w(e_k)), k \in \{1, \dots, m-1\} \\ f(E) & \text{if } \alpha < w(e_m) \end{cases}$$
(17.38)

we may use open intervals since sets of zero measure don't change integration.

• Inside the integral, then, this recovers Eqn. (17.33).

- To show Eqn. (17.35), start with Eqn. (17.34), note
 - $w_m = \min{\{w_1, \dots, w_m\}}$, take any $\beta \leq \min{\{0, w_1, \dots, w_m\}}$, and form:
 - $\tilde{f}(w)$

• To show Eqn. (17.35), start with Eqn. (17.34), note

$$w_m = \min\{w_1, \dots, w_m\}$$
, take any $\beta \leq \min\{0, w_1, \dots, w_m\}$, and form:

$$\tilde{f}(w) = \int_{w_m}^{+\infty} f(\{w \ge \alpha\}) d\alpha + f(E) \min\{w_1, \dots, w_m\}$$

$$\tilde{f}(w) = \int_{w_m}^{+\infty} f(\{w \ge \alpha\}) d\alpha + f(E) \min \{w_1, \dots, w_m\}$$

$$= \int_{\beta}^{+\infty} f(\{w \ge \alpha\}) d\alpha - \int_{\beta}^{w_m} f(\{w \ge \alpha\}) d\alpha + f(E) \int_{0}^{w_m} d\alpha$$

$$\tilde{f}(w) = \int_{w_m}^{+\infty} f(\{w \ge \alpha\}) d\alpha + f(E) \min\{w_1, \dots, w_m\}$$

$$= \int_{\beta}^{+\infty} f(\{w \ge \alpha\}) d\alpha - \int_{\beta}^{w_m} f(\{w \ge \alpha\}) d\alpha + f(E) \int_{0}^{w_m} d\alpha$$

$$= \int_{\beta}^{+\infty} f(\{w \ge \alpha\}) d\alpha - \int_{\beta}^{w_m} f(E) d\alpha + \int_{0}^{w_m} f(E) d\alpha$$

$$\tilde{f}(w) = \int_{w_m}^{+\infty} f(\{w \ge \alpha\}) d\alpha + f(E) \min \{w_1, \dots, w_m\}$$

$$= \int_{\beta}^{+\infty} f(\{w \ge \alpha\}) d\alpha - \int_{\beta}^{w_m} f(\{w \ge \alpha\}) d\alpha + f(E) \int_{0}^{w_m} d\alpha$$

$$= \int_{\beta}^{+\infty} f(\{w \ge \alpha\}) d\alpha - \int_{\beta}^{w_m} f(E) d\alpha + \int_{0}^{w_m} f(E) d\alpha$$

$$= \int_{0}^{+\infty} f(\{w \ge \alpha\}) d\alpha + \int_{\beta}^{0} f(\{w \ge \alpha\}) d\alpha - \int_{\beta}^{0} f(E) d\alpha$$

$$\tilde{f}(w) = \int_{w_m}^{+\infty} f(\{w \ge \alpha\}) d\alpha + f(E) \min\{w_1, \dots, w_m\}$$

$$= \int_{\beta}^{+\infty} f(\{w \ge \alpha\}) d\alpha - \int_{\beta}^{w_m} f(\{w \ge \alpha\}) d\alpha + f(E) \int_{0}^{w_m} d\alpha$$

$$= \int_{\beta}^{+\infty} f(\{w \ge \alpha\}) d\alpha - \int_{\beta}^{w_m} f(E) d\alpha + \int_{0}^{w_m} f(E) d\alpha$$

$$= \int_{0}^{+\infty} f(\{w \ge \alpha\}) d\alpha + \int_{\beta}^{0} f(\{w \ge \alpha\}) d\alpha - \int_{\beta}^{0} f(E) d\alpha$$

$$= \int_{0}^{+\infty} f(\{w \ge \alpha\}) d\alpha + \int_{\beta}^{0} [f(\{w \ge \alpha\}) - f(E)] d\alpha$$

• To show Eqn. (17.35), start with Eqn. (17.34), note $w_m = \min\{w_1, \dots, w_m\}$, take any $\beta \leq \min\{0, w_1, \dots, w_m\}$, and form:

$$\tilde{f}(w) = \int_{w_m}^{+\infty} f(\{w \ge \alpha\}) d\alpha + f(E) \min\{w_1, \dots, w_m\}$$

$$= \int_{\beta}^{+\infty} f(\{w \ge \alpha\}) d\alpha - \int_{\beta}^{w_m} f(\{w \ge \alpha\}) d\alpha + f(E) \int_{0}^{w_m} d\alpha$$

$$= \int_{\beta}^{+\infty} f(\{w \ge \alpha\}) d\alpha - \int_{\beta}^{w_m} f(E) d\alpha + \int_{0}^{w_m} f(E) d\alpha$$

$$= \int_{0}^{+\infty} f(\{w \ge \alpha\}) d\alpha + \int_{\beta}^{0} f(\{w \ge \alpha\}) d\alpha - \int_{\beta}^{0} f(E) d\alpha$$

$$= \int_{0}^{+\infty} f(\{w \ge \alpha\}) d\alpha + \int_{\beta}^{0} [f(\{w \ge \alpha\}) - f(E)] d\alpha$$

and then let $\beta \to \infty$ and we get Eqn. (17.35), i.e.:

• To show Eqn. (17.35), start with Eqn. (17.34), note $w_m = \min\{w_1, \dots, w_m\}$, take any $\beta \leq \min\{0, w_1, \dots, w_m\}$, and form:

$$\tilde{f}(w) = \int_{w_m}^{+\infty} f(\{w \ge \alpha\}) d\alpha + f(E) \min\{w_1, \dots, w_m\}$$

$$= \int_{\beta}^{+\infty} f(\{w \ge \alpha\}) d\alpha - \int_{\beta}^{w_m} f(\{w \ge \alpha\}) d\alpha + f(E) \int_{0}^{w_m} d\alpha$$

$$= \int_{\beta}^{+\infty} f(\{w \ge \alpha\}) d\alpha - \int_{\beta}^{w_m} f(E) d\alpha + \int_{0}^{w_m} f(E) d\alpha$$

$$= \int_{0}^{+\infty} f(\{w \ge \alpha\}) d\alpha + \int_{\beta}^{0} f(\{w \ge \alpha\}) d\alpha - \int_{\beta}^{0} f(E) d\alpha$$

$$= \int_{0}^{+\infty} f(\{w \ge \alpha\}) d\alpha + \int_{\beta}^{0} [f(\{w \ge \alpha\}) - f(E)] d\alpha$$

and then let $\beta \to \infty$ and we get Eqn. (17.35), i.e.:

$$= \int_0^{+\infty} f(\{w \ge \alpha\}) d\alpha + \int_{-\infty}^0 [f(\{w \ge \alpha\}) - f(E)] d\alpha$$

Theorem 17.4.1

Theorem 17.4.1

Let $f,g:2^E \to \mathbb{R}$ be normalized ($f(\emptyset)=g(\emptyset)=0$). Then

① Superposition of LE operator: Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f}+\tilde{g}$ is the Lovász extension of f+g and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.

Theorem 17.4.1

- Superposition of LE operator: Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f}+\tilde{g}$ is the Lovász extension of f+g and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.
- 2 If $w \in \mathbb{R}_+^E$ then $\tilde{f}(w) = \int_0^{+\infty} f(\{w \ge \alpha\}) d\alpha$.

Theorem 17.4.1

- Superposition of LE operator: Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f}+\tilde{g}$ is the Lovász extension of f+g and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.
- 2 If $w \in \mathbb{R}_+^E$ then $\tilde{f}(w) = \int_0^{+\infty} f(\{w \ge \alpha\}) d\alpha$.

• Using the above, have the following (some of which we've seen):

Theorem 17.4.1

- Superposition of LE operator: Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f}+\tilde{g}$ is the Lovász extension of f+g and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.
- 2 If $w \in \mathbb{R}_+^E$ then $\tilde{f}(w) = \int_0^{+\infty} f(\{w \ge \alpha\}) d\alpha$.
- $\textbf{ § For } w \in \mathbb{R}^E \text{, and } \alpha \in \mathbb{R} \text{, we have } \tilde{f}(w + \alpha \mathbf{1}_E) = \tilde{f}(w) + \alpha f(E).$
- Positive homogeneity: I.e., $\tilde{f}(\alpha w) = \alpha \tilde{f}(w)$ for $\alpha \geq 0$.

• Using the above, have the following (some of which we've seen):

Theorem 17.4.1

- Superposition of LE operator: Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f}+\tilde{g}$ is the Lovász extension of f+g and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.
- 2 If $w \in \mathbb{R}_+^E$ then $\tilde{f}(w) = \int_0^{+\infty} f(\{w \ge \alpha\}) d\alpha$.
- $\textbf{ § For } w \in \mathbb{R}^E \text{, and } \alpha \in \mathbb{R} \text{, we have } \tilde{f}(w + \alpha \mathbf{1}_E) = \tilde{f}(w) + \alpha f(E).$
- Positive homogeneity: I.e., $\tilde{f}(\alpha w) = \alpha \tilde{f}(w)$ for $\alpha \geq 0$.

• Using the above, have the following (some of which we've seen):

Theorem 17.4.1

- Superposition of LE operator: Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f}+\tilde{g}$ is the Lovász extension of f+g and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.
- 2 If $w \in \mathbb{R}_+^E$ then $\tilde{f}(w) = \int_0^{+\infty} f(\{w \ge \alpha\}) d\alpha$.
- Positive homogeneity: I.e., $\tilde{f}(\alpha w) = \alpha \tilde{f}(w)$ for $\alpha \geq 0$.
- \bullet For all $A \subseteq E$, $\tilde{f}(\mathbf{1}_A) = f(A)$.
- f symmetric as in $f(A) = f(E \setminus A), \forall A$, then $\tilde{f}(w) = \tilde{f}(-w)$ (\tilde{f} is even).

Theorem 17.4.1

- Superposition of LE operator: Given f and g with Lovász extensions \tilde{f} and \tilde{g} then $\tilde{f}+\tilde{g}$ is the Lovász extension of f+g and $\lambda \tilde{f}$ is the Lovász extension of λf for $\lambda \in \mathbb{R}$.
- 2 If $w \in \mathbb{R}_+^E$ then $\tilde{f}(w) = \int_0^{+\infty} f(\{w \ge \alpha\}) d\alpha$.
- \bullet For $w \in \mathbb{R}^E$, and $\alpha \in \mathbb{R}$, we have $\tilde{f}(w + \alpha \mathbf{1}_E) = \tilde{f}(w) + \alpha f(E)$.
- Positive homogeneity: I.e., $\tilde{f}(\alpha w) = \alpha \tilde{f}(w)$ for $\alpha \geq 0$.
- \bullet For all $A \subseteq E$, $\tilde{f}(\mathbf{1}_A) = f(A)$.
- **1** f symmetric as in $f(A) = f(E \setminus A), \forall A$, then $\tilde{f}(w) = \tilde{f}(-w)$ (\tilde{f} is even).
- **②** Given partition $E^1 \cup E^2 \cup \cdots \cup E^k$ of E and $w = \sum_{i=1}^k \gamma_i \mathbf{1}_{E_k}$ with $\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_k$, and with $E^{1:i} = E^1 \cup E^2 \cup \cdots \cup E^i$, then $\tilde{f}(w) = \sum_{i=1}^k \gamma_i f(E^i | E^{1:i-1}) = \sum_{i=1}^{k-1} f(E^{1:i})(\gamma_i \gamma_{i+1}) + f(E)\gamma_k$.

Lovász extension properties: ex. property 3

• Consider property property 3, for example, which says that $\tilde{f}(w + \alpha \mathbf{1}_E) = \tilde{f}(w) + \alpha f(E)$.

Lovász extension properties: ex. property 3

- Consider property property 3, for example, which says that $\tilde{f}(w + \alpha \mathbf{1}_E) = \tilde{f}(w) + \alpha f(E)$.
- This means that, say when m=2, that as we move along the line $w_1=w_2$, the Lovász extension scales linearly.

Lovász extension properties: ex. property 3

- Consider property property 3, for example, which says that $\tilde{f}(w + \alpha \mathbf{1}_E) = \tilde{f}(w) + \alpha f(E)$.
- This means that, say when m=2, that as we move along the line $w_1=w_2$, the Lovász extension scales linearly.
- And if f(E) = 0, then the Lovász extension is constant along the direction $\mathbf{1}_E$.

• Given Eqns. (17.32) through (17.35), most of the above properties are relatively easy to derive.

- Given Eqns. (17.32) through (17.35), most of the above properties are relatively easy to derive.
- ullet For example, if f is symmetric, and since $f(E)=f(\emptyset)=0$, we have

$$\tilde{f}(-w)$$

- Given Eqns. (17.32) through (17.35), most of the above properties are relatively easy to derive.
- ullet For example, if f is symmetric, and since $f(E)=f(\emptyset)=0$, we have

$$\tilde{f}(-w) = \int_{-\infty}^{\infty} f(\{-w \ge \alpha\}) d\alpha$$

- Given Eqns. (17.32) through (17.35), most of the above properties are relatively easy to derive.
- ullet For example, if f is symmetric, and since $f(E)=f(\emptyset)=0$, we have

$$\tilde{f}(-w) = \int_{-\infty}^{\infty} f(\{-w \ge \alpha\}) d\alpha = \int_{-\infty}^{\infty} f(\{w \le -\alpha\}) d\alpha \quad (17.39)$$

- Given Eqns. (17.32) through (17.35), most of the above properties are relatively easy to derive.
- ullet For example, if f is symmetric, and since $f(E)=f(\emptyset)=0$, we have

$$\tilde{f}(-w) = \int_{-\infty}^{\infty} f(\{-w \ge \alpha\}) d\alpha = \int_{-\infty}^{\infty} f(\{w \le -\alpha\}) d\alpha \quad (17.39)$$

$$\stackrel{(a)}{=} \int_{-\infty}^{\infty} f(\{w \le \alpha\}) d\alpha$$

- Given Eqns. (17.32) through (17.35), most of the above properties are relatively easy to derive.
- ullet For example, if f is symmetric, and since $f(E)=f(\emptyset)=0$, we have

$$\tilde{f}(-w) = \int_{-\infty}^{\infty} f(\{-w \ge \alpha\}) d\alpha = \int_{-\infty}^{\infty} f(\{w \le -\alpha\}) d\alpha \quad (17.39)$$

$$\stackrel{(a)}{=} \int_{-\infty}^{\infty} f(\{w \le \alpha\}) d\alpha \stackrel{(b)}{=} \int_{-\infty}^{\infty} f(\{w > \alpha\}) d\alpha \quad (17.40)$$

$$(17.41)$$

- Given Eqns. (17.32) through (17.35), most of the above properties are relatively easy to derive.
- ullet For example, if f is symmetric, and since $f(E)=f(\emptyset)=0$, we have

$$\tilde{f}(-w) = \int_{-\infty}^{\infty} f(\{-w \ge \alpha\}) d\alpha = \int_{-\infty}^{\infty} f(\{w \le -\alpha\}) d\alpha \quad (17.39)$$

$$\stackrel{(a)}{=} \int_{-\infty}^{\infty} f(\{w \le \alpha\}) d\alpha \stackrel{(b)}{=} \int_{-\infty}^{\infty} f(\{w > \alpha\}) d\alpha \quad (17.40)$$

$$= \int_{-\infty}^{\infty} f(\{w \ge \alpha\}) d\alpha \quad (17.41)$$

- Given Eqns. (17.32) through (17.35), most of the above properties are relatively easy to derive.
- ullet For example, if f is symmetric, and since $f(E)=f(\emptyset)=0$, we have

$$\tilde{f}(-w) = \int_{-\infty}^{\infty} f(\{-w \ge \alpha\}) d\alpha = \int_{-\infty}^{\infty} f(\{w \le -\alpha\}) d\alpha \quad (17.39)$$

$$\stackrel{(a)}{=} \int_{-\infty}^{\infty} f(\{w \le \alpha\}) d\alpha \stackrel{(b)}{=} \int_{-\infty}^{\infty} f(\{w > \alpha\}) d\alpha \quad (17.40)$$

$$= \int_{-\infty}^{\infty} f(\{w \ge \alpha\}) d\alpha = \tilde{f}(w) \quad (17.41)$$

- Given Eqns. (17.32) through (17.35), most of the above properties are relatively easy to derive.
- ullet For example, if f is symmetric, and since $f(E)=f(\emptyset)=0$, we have

$$\tilde{f}(-w) = \int_{-\infty}^{\infty} f(\{-w \ge \alpha\}) d\alpha = \int_{-\infty}^{\infty} f(\{w \le -\alpha\}) d\alpha \quad (17.39)$$

$$\stackrel{(a)}{=} \int_{-\infty}^{\infty} f(\{w \le \alpha\}) d\alpha \stackrel{(b)}{=} \int_{-\infty}^{\infty} f(\{w > \alpha\}) d\alpha \quad (17.40)$$

$$= \int_{-\infty}^{\infty} f(\{w \ge \alpha\}) d\alpha = \tilde{f}(w) \quad (17.41)$$

Equality (a) follows since $\int_{-\infty}^{\infty} f(\alpha) d\alpha = \int_{-\infty}^{\infty} f(a\alpha + b) d\alpha$ for any b and $a \in \pm 1$, and equality (b) follows since $f(A) = f(E \setminus A)$, so $f(\{w \le \alpha\}) = f(\{w > \alpha\})$.

ullet Recall, for $w \in \mathbb{R}_+^E$, we have $\tilde{f}(w) = \int_0^\infty f(\{w \geq \alpha\}) d\alpha$

- Recall, for $w \in \mathbb{R}_+^E$, we have $\tilde{f}(w) = \int_0^\infty f(\{w \geq \alpha\}) d\alpha$
- Since $f(\{w \geq \alpha\}) = 0$ for $\alpha > w_1 \geq w_\ell$, we have for $w \in \mathbb{R}_+^E$, we have $\tilde{f}(w) = \int_0^{w_1} f(\{w \geq \alpha\}) d\alpha$

- Recall, for $w \in \mathbb{R}_+^E$, we have $\tilde{f}(w) = \int_0^\infty f(\{w \geq \alpha\}) d\alpha$
- Since $f(\{w \geq \alpha\}) = 0$ for $\alpha > w_1 \geq w_\ell$, we have for $w \in \mathbb{R}_+^E$, we have $\tilde{f}(w) = \int_0^{w_1} f(\{w \geq \alpha\}) d\alpha$
- $\bullet \text{ For } w \in [0,1]^{\widetilde{E}}, \text{ then }$ $\widetilde{f}(w) = \int_0^{w_1} f(\{w \geq \alpha\}) d\alpha = \int_0^1 f(\{w \geq \alpha\}) d\alpha \text{ since }$ $f(\{w \geq \alpha\}) = 0 \text{ for } 1 \geq \alpha > w_1.$

- Recall, for $w \in \mathbb{R}_+^E$, we have $\tilde{f}(w) = \int_0^\infty f(\{w \ge \alpha\}) d\alpha$
- Since $f(\{w \geq \alpha\}) = 0$ for $\alpha > w_1 \geq w_\ell$, we have for $w \in \mathbb{R}_+^E$, we have $\tilde{f}(w) = \int_0^{w_1} f(\{w \geq \alpha\}) d\alpha$
- For $w \in [0,1]^E$, then $\tilde{f}(w) = \int_0^{w_1} f(\{w \geq \alpha\}) d\alpha = \int_0^1 f(\{w \geq \alpha\}) d\alpha \text{ since } f(\{w \geq \alpha\}) = 0 \text{ for } 1 \geq \alpha > w_1.$
- Consider α as a uniform random variable on [0,1] and let $h(\alpha)$ be a funciton of α . Then the expected value $\mathbb{E}[h(\alpha)] = \int_0^1 h(\alpha) d\alpha$.

- Recall, for $w \in \mathbb{R}_+^E$, we have $\tilde{f}(w) = \int_0^\infty f(\{w \geq \alpha\}) d\alpha$
- Since $f(\{w \geq \alpha\}) = 0$ for $\alpha > w_1 \geq w_\ell$, we have for $w \in \mathbb{R}_+^E$, we have $\tilde{f}(w) = \int_0^{w_1} f(\{w \geq \alpha\}) d\alpha$
- For $w \in [0,1]^E$, then $\tilde{f}(w) = \int_0^{w_1} f(\{w \geq \alpha\}) d\alpha = \int_0^1 f(\{w \geq \alpha\}) d\alpha \text{ since } f(\{w \geq \alpha\}) = 0 \text{ for } 1 \geq \alpha > w_1.$
- Consider α as a uniform random variable on [0,1] and let $h(\alpha)$ be a funciton of α . Then the expected value $\mathbb{E}[h(\alpha)] = \int_0^1 h(\alpha) d\alpha$.
- \bullet Hence, for $w \in [0,1]^m$, we can also define the Lovász extension as

$$\tilde{f}(w) = \mathbb{E}_{p(\alpha)}[\underbrace{f(\{w \ge \alpha\})}_{h(\alpha)}] = \mathbb{E}_{p(\alpha)}[\underbrace{f(e \in E : w(e_i) \ge \alpha)}_{h(\alpha)}] \quad (17.42)$$

where α is uniform random variable in [0,1].

Lovász extension, expected value of random variable

- Recall, for $w \in \mathbb{R}_+^E$, we have $\tilde{f}(w) = \int_0^\infty f(\{w \geq \alpha\}) d\alpha$
- Since $f(\{w \geq \alpha\}) = 0$ for $\alpha > w_1 \geq w_\ell$, we have for $w \in \mathbb{R}_+^E$, we have $\tilde{f}(w) = \int_0^{w_1} f(\{w \geq \alpha\}) d\alpha$
- For $w \in [0,1]^E$, then $\tilde{f}(w) = \int_0^{w_1} f(\{w \geq \alpha\}) d\alpha = \int_0^1 f(\{w \geq \alpha\}) d\alpha \text{ since } f(\{w \geq \alpha\}) = 0 \text{ for } 1 \geq \alpha > w_1.$
- Consider α as a uniform random variable on [0,1] and let $h(\alpha)$ be a function of α . Then the expected value $\mathbb{E}[h(\alpha)] = \int_0^1 h(\alpha) d\alpha$.
- ullet Hence, for $w\in [0,1]^m$, we can also define the Lovász extension as

$$\widetilde{f}(w) = \mathbb{E}_{p(\alpha)}[\underbrace{f(\{w \ge \alpha\})}_{h(\alpha)}] = \mathbb{E}_{p(\alpha)}[\underbrace{f(e \in E : w(e_i) \ge \alpha)}_{h(\alpha)}] \quad (17.42)$$

where α is uniform random variable in [0,1].

 Useful for showing results for randomized rounding schemes in solving submodular opt. problems subject to constraints via relaxations to convex optimization problems subject to linear constraints.

 For a long time, it was not known if general purpose submodular function minimization was doable in polynomial time.

- For a long time, it was not known if general purpose submodular function minimization was doable in polynomial time.
- This was answered in the early 1980s via the help of Edmonds's greedy algorithm from 1970.

- For a long time, it was not known if general purpose submodular function minimization was doable in polynomial time.
- This was answered in the early 1980s via the help of Edmonds's greedy algorithm from 1970. Let $C \subseteq \mathbb{R}^V$ be a non-empty convex compact set.

- For a long time, it was not known if general purpose submodular function minimization was doable in polynomial time.
- This was answered in the early 1980s via the help of Edmonds's greedy algorithm from 1970. Let $C \subseteq \mathbb{R}^V$ be a non-empty convex compact set.

Definition 17.5.1 ((strong) optimization problem)

Given $c \in \mathbb{R}^V$, find a vector $x \in C$ that maximizes $c^{\mathsf{T}}x$ on C. I.e., solve

$$\max_{x \in C} c^{\mathsf{T}} x$$

(17.43)

- For a long time, it was not known if general purpose submodular function minimization was doable in polynomial time.
- This was answered in the early 1980s via the help of Edmonds's greedy algorithm from 1970. Let $C \subseteq \mathbb{R}^V$ be a non-empty convex compact set.

Definition 17.5.1 ((strong) optimization problem)

Given $c \in \mathbb{R}^V$, find a vector $x \in C$ that maximizes $c^{\mathsf{T}}x$ on C. I.e., solve

$$\max_{x \in C} c^{\mathsf{T}} x$$

(17.43)

Definition 17.5.2 ((strong) separation problem)

Given a vector $y \in \mathbb{R}^V$, decide if $y \in C$, and if not, find a hyperplane that separates y from C. I.e., find vector $c \in \mathbb{R}^V$ such that:

$$c^{\mathsf{T}}y > \max_{x \in C} c^{\mathsf{T}}x \tag{17.44}$$

• We have the following important theorem:

• We have the following important theorem:

Theorem 17.5.3 (Grötschel, Lovász, and Schrijver, 1981)

We have the following important theorem:

Theorem 17.5.3 (Grötschel, Lovász, and Schrijver, 1981)

Let $\mathcal C$ be set of convex sets. Then there is a polynomial-time algorithm to solve the separation problem for the members of $\mathcal C$ iff there is a polynomial-time algorithm to solve the optimization problem for the members of $\mathcal C$.

• We saw already that the greedy algorithm solves the strong separation problem for polymatroidal polytopes.

We have the following important theorem:

Theorem 17.5.3 (Grötschel, Lovász, and Schrijver, 1981)

- We saw already that the greedy algorithm solves the strong separation problem for polymatroidal polytopes.
- The ellipsoid algorithm first bounds a polytope P with an ellipsoid, and then creates a sequence of elipsoids of exponentially decreasing volume which are used to address a P membership problem.

We have the following important theorem:

Theorem 17.5.3 (Grötschel, Lovász, and Schrijver, 1981)

- We saw already that the greedy algorithm solves the strong separation problem for polymatroidal polytopes.
- ullet The ellipsoid algorithm first bounds a polytope P with an ellipsoid, and then creates a sequence of elipsoids of exponentially decreasing volume which are used to address a P membership problem.
- This is sufficient to show that we can solve SFM in polynomial time!

• We have the following important theorem:

Theorem 17.5.3 (Grötschel, Lovász, and Schrijver, 1981)

- We saw already that the greedy algorithm solves the strong separation problem for polymatroidal polytopes.
- ullet The ellipsoid algorithm first bounds a polytope P with an ellipsoid, and then creates a sequence of elipsoids of exponentially decreasing volume which are used to address a P membership problem.
- This is sufficient to show that we can solve SFM in polynomial time!
- See also, the book: Grötschel, Lovász, and Schrijver, "Geometric Algorithms and Combinatorial Optimization"

Convex minimization and SFM

 SFM is also related to the convexity of the Lovász extension, the ease of minimizing convex functions.

Convex minimization and SFM

- SFM is also related to the convexity of the Lovász extension, the ease of minimizing convex functions.
- Also, since we can recover f from \tilde{f} via $f(A) = \tilde{f}(\mathbf{1}_A)$, and (as we will see) get discrete solutions from continuous convex minimization solution.

Convex minimization and SFM

- SFM is also related to the convexity of the Lovász extension, the ease of minimizing convex functions.
- Also, since we can recover f from \tilde{f} via $f(A) = \tilde{f}(\mathbf{1}_A)$, and (as we will see) get discrete solutions from continuous convex minimization solution.
- Is this the only convex extension of a submodular function? Are there others that have more attractive properties?

• Any function $f: 2^V \to \mathbb{R}$ (equivalently $f: \{0,1\}^V \to \mathbb{R}$) can be extended to a continuous function $\tilde{f}: [0,1]^V \to \mathbb{R}$.

- Any function $f: 2^V \to \mathbb{R}$ (equivalently $f: \{0,1\}^V \to \mathbb{R}$) can be extended to a continuous function $\tilde{f}:[0,1]^V\to\mathbb{R}$.
- In fact, any such discrete function defined on the vertices of the n-D hypercube $\{0,1\}^n$ has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer). Example n=1, Convex Extensions

Concave Extensions

 $\tilde{f}:[0,1]\to\mathbb{R}$ $f:\{0,1\}^V\to\mathbb{R}$

Discrete Function

- Any function $f: 2^V \to \mathbb{R}$ (equivalently $f: \{0,1\}^V \to \mathbb{R}$) can be extended to a continuous function $\tilde{f}: [0,1]^V \to \mathbb{R}$.
- In fact, any such discrete function defined on the vertices of the n-D hypercube $\{0,1\}^n$ has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer). Example n=1,

Concave Extensions Discrete Function $\tilde{f}:[0,1]\to\mathbb{R}$ Discrete Function $\tilde{f}:[0,1]\to\mathbb{R}$ Convex Extensions $\tilde{f}:[0,1]\to\mathbb{R}$ $\tilde{f}:[0,1]\to\mathbb{R}$

• Since there are an exponential number of vertices $\{0,1\}^n$, important questions regarding such extensions is:

- Any function $f: 2^V \to \mathbb{R}$ (equivalently $f: \{0,1\}^V \to \mathbb{R}$) can be extended to a continuous function $\tilde{f}:[0,1]^V\to\mathbb{R}$.
- In fact, any such discrete function defined on the vertices of the n-D hypercube $\{0,1\}^n$ has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer). Example n=1, Discrete Function Convex Extensions

Concave Extensions $\tilde{f}:[0,1]\to\mathbb{R}$ $f:\{0,1\}^V\to\mathbb{R}$

- Since there are an exponential number of vertices $\{0,1\}^n$, important questions regarding such extensions is:
 - When are they computationally feasible to obtain or estimate?

- Any function $f: 2^V \to \mathbb{R}$ (equivalently $f: \{0,1\}^V \to \mathbb{R}$) can be extended to a continuous function $\tilde{f}:[0,1]^V\to\mathbb{R}$.
- In fact, any such discrete function defined on the vertices of the n-D hypercube $\{0,1\}^n$ has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer). Example n=1, Concave Extensions Discrete Function Convex Extensions

 $\tilde{f}:[0,1]\to\mathbb{R}$ $f:\{0,1\}^V\to\mathbb{R}$

 $f:[0,1]\to\mathbb{R}$

- Since there are an exponential number of vertices $\{0,1\}^n$, important questions regarding such extensions is:
 - When are they computationally feasible to obtain or estimate?
 - When do they have nice mathematical properties?

- Any function $f: 2^V \to \mathbb{R}$ (equivalently $f: \{0,1\}^V \to \mathbb{R}$) can be extended to a continuous function $\tilde{f}:[0,1]^V\to\mathbb{R}$.
- In fact, any such discrete function defined on the vertices of the n-D hypercube $\{0,1\}^n$ has a variety of both convex and concave extensions tight at the vertices (Crama & Hammer). Example n=1,

Concave Extensions $\tilde{f}:[0,1]\to\mathbb{R}$ $f:\{0,1\}^V\to\mathbb{R}$

- Since there are an exponential number of vertices $\{0,1\}^n$, important questions regarding such extensions is:
 - When are they computationally feasible to obtain or estimate?
 - When do they have nice mathematical properties?
 - When are they useful for something practical?

In fact, we have:

Theorem 17.5.4

Let f be submodular and \tilde{f} be its Lovász extension. Then $\min \{f(A) | A \subseteq E\} = \min_{w \in \{0,1\}^E} \tilde{f}(w) = \min_{w \in [0,1]^E} \tilde{f}(w)$.

In fact, we have:

Theorem 17.5.4

Let f be submodular and f be its Lovász extension. Then $\min \{f(A) | A \subseteq E\} = \min_{w \in \{0,1\}^E} \tilde{f}(w) = \min_{w \in [0,1]^E} \tilde{f}(w)$.

Proof.

• First, since $\tilde{f}(\mathbf{1}_A) = f(A), \forall A \subseteq V$, we clearly have $\min \{f(A) | A \subseteq V\} = \min_{w \in \{0,1\}^E} \tilde{f}(w) \ge \min_{w \in [0,1]^E} \tilde{f}(w)$.

In fact, we have:

Theorem 17.5.4

Let f be submodular and f be its Lovász extension. Then $\min \{f(A) | A \subseteq E\} = \min_{w \in \{0,1\}^E} \tilde{f}(w) = \min_{w \in [0,1]^E} \tilde{f}(w)$.

Proof.

- First, since $\tilde{f}(\mathbf{1}_A) = f(A), \forall A \subseteq V$, we clearly have $\min \{f(A) | A \subseteq V\} = \min_{w \in \{0,1\}^E} \tilde{f}(w) \ge \min_{w \in [0,1]^E} \tilde{f}(w)$.
- Next, consider any $w \in [0,1]^E$, sort elements $E = \{e_1,\ldots,e_m\}$ as $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$, define $E_i = \{e_1,\ldots,e_i\}$, and define $\lambda_m = w(e_m)$ and $\lambda_i = w(e_i) w(e_{i+1})$ for $i \in \{1,\ldots,m-1\}$.

In fact, we have:

Theorem 17.5.4

Let f be submodular and f be its Lovász extension. Then $\min \{f(A) | A \subseteq E\} = \min_{w \in \{0,1\}^E} \tilde{f}(w) = \min_{w \in [0,1]^E} \tilde{f}(w)$.

Proof.

- First, since $\tilde{f}(\mathbf{1}_A) = f(A), \forall A \subseteq V$, we clearly have $\min \{f(A) | A \subseteq V\} = \min_{w \in \{0,1\}^E} \tilde{f}(w) \ge \min_{w \in [0,1]^E} \tilde{f}(w)$.
- Next, consider any $w \in [0,1]^E$, sort elements $E = \{e_1,\ldots,e_m\}$ as $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$, define $E_i = \{e_1,\ldots,e_i\}$, and define $\lambda_m = w(e_m)$ and $\lambda_i = w(e_i) w(e_{i+1})$ for $i \in \{1,\ldots,m-1\}$.
- Then, as we have seen, $w = \sum_i \lambda_i \mathbf{1}_{E_i}$ and $\lambda_i \geq 0$.

In fact, we have:

Theorem 17.5.4

Let f be submodular and f be its Lovász extension. Then $\min \{f(A) | A \subseteq E\} = \min_{w \in \{0,1\}^E} \tilde{f}(w) = \min_{w \in [0,1]^E} \tilde{f}(w)$.

Proof.

- First, since $\tilde{f}(\mathbf{1}_A) = f(A), \forall A \subseteq V$, we clearly have $\min \{f(A) | A \subseteq V\} = \min_{w \in \{0,1\}^E} \tilde{f}(w) \ge \min_{w \in [0,1]^E} \tilde{f}(w)$.
- Next, consider any $w \in [0,1]^E$, sort elements $E = \{e_1,\ldots,e_m\}$ as $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$, define $E_i = \{e_1,\ldots,e_i\}$, and define $\lambda_m = w(e_m)$ and $\lambda_i = w(e_i) w(e_{i+1})$ for $i \in \{1,\ldots,m-1\}$.
- Then, as we have seen, $w = \sum_i \lambda_i \mathbf{1}_{E_i}$ and $\lambda_i \geq 0$.
- Also, $\sum_i \lambda_i = w(e_1) \leq 1$.

- ... cont. proof of Thm. 17.5.4.
 - Note that since $f(\emptyset) = 0$, $\min \{ f(A) | A \subseteq E \} \le 0$.

... cont. proof of Thm. 17.5.4.

- Note that since $f(\emptyset) = 0$, $\min \{ f(A) | A \subseteq E \} \le 0$.
- Then we have

$$\tilde{f}(w) = \int_0^1 f(\{w \ge \alpha\}) d\alpha = \sum_{i=1}^m \lambda_i f(E_i)$$
(17.45)

$$\geq \sum_{i=1}^{m} \lambda_i \min_{A \subseteq E} f(A) \tag{17.46}$$

$$\geq \min_{A \subseteq E} f(A) \tag{17.47}$$

... cont. proof of Thm. 17.5.4.

- Note that since $f(\emptyset) = 0$, $\min \{ f(A) | A \subseteq E \} \le 0$.
- Then we have

$$\tilde{f}(w) = \int_0^1 f(\{w \ge \alpha\}) d\alpha = \sum_{i=1}^m \lambda_i f(E_i)$$
(17.45)

$$\geq \sum_{i=1}^{m} \lambda_i \min_{A \subseteq E} f(A) \tag{17.46}$$

$$\geq \min_{A \subseteq E} f(A) \tag{17.47}$$

• Thus, $\min \{f(A) | A \subseteq E\} = \min_{w \in [0,1]^E} \tilde{f}(w)$.

• Let $w^* \in \operatorname{argmin}\left\{ \tilde{f}(w) | w \in [0,1]^E \right\}$ and let $A^* \in \operatorname{argmin}\left\{ f(A) | A \subseteq V \right\}$.

- Let $w^* \in \operatorname{argmin}\left\{ \tilde{f}(w) | w \in [0,1]^E \right\}$ and let $A^* \in \operatorname{argmin}\left\{ f(A) | A \subseteq V \right\}$.
- Previous theorem states that $\tilde{f}(w^*) = f(A^*)$.

Other minimizers based on min of \tilde{f}

- Let $w^* \in \operatorname{argmin}\left\{\tilde{f}(w)|w \in [0,1]^E\right\}$ and let $A^* \in \operatorname{argmin}\left\{f(A)|A \subseteq V\right\}$.
- Previous theorem states that $\tilde{f}(w^*) = f(A^*)$.
- Let λ_i^* be the function weights and E_i^* be the sets associated with w^* . From previous theorem, we have

$$\tilde{f}(w^*) = \sum_{i} \lambda_i^* f(E_i^*) = f(A^*) = \min\{f(A) | A \subseteq E\}$$
 (17.48)

Other minimizers based on min of \tilde{f}

- Let $w^* \in \operatorname{argmin}\left\{ \tilde{f}(w) | w \in [0,1]^E \right\}$ and let $A^* \in \operatorname{argmin}\left\{ f(A) | A \subseteq V \right\}$.
- Previous theorem states that $\tilde{f}(w^*) = f(A^*)$.
- Let λ_i^* be the function weights and E_i^* be the sets associated with w^* . From previous theorem, we have

$$\tilde{f}(w^*) = \sum_{i} \lambda_i^* f(E_i^*) = f(A^*) = \min\{f(A) | A \subseteq E\}$$
 (17.48)

and that $f(A^*) \leq f(E_i^*), \forall i$,

- Let $w^* \in \operatorname{argmin}\left\{ \tilde{f}(w) | w \in [0,1]^E \right\}$ and let $A^* \in \operatorname{argmin}\left\{ f(A) | A \subseteq V \right\}$.
- Previous theorem states that $\tilde{f}(w^*) = f(A^*)$.
- Let λ_i^* be the function weights and E_i^* be the sets associated with w^* . From previous theorem, we have

$$\tilde{f}(w^*) = \sum_{i} \lambda_i^* f(E_i^*) = f(A^*) = \min\{f(A) | A \subseteq E\}$$
 (17.48)

and that $f(A^*) \leq f(E_i^*), \forall i$, and that $f(A^*) \leq 0$,

Other minimizers based on min of \tilde{f}

- Let $w^* \in \operatorname{argmin}\left\{\tilde{f}(w)|w \in [0,1]^E\right\}$ and let $A^* \in \operatorname{argmin}\left\{f(A)|A \subseteq V\right\}$.
- Previous theorem states that $\tilde{f}(w^*) = f(A^*)$.
- Let λ_i^* be the function weights and E_i^* be the sets associated with w^* . From previous theorem, we have

$$\tilde{f}(w^*) = \sum_{i} \lambda_i^* f(E_i^*) = f(A^*) = \min\{f(A) | A \subseteq E\}$$
 (17.48)

and that $f(A^*) \leq f(E_i^*), \forall i$, and that $f(A^*) \leq 0$, and $\sum_i \lambda_i \leq 1$.

- Let $w^* \in \operatorname{argmin}\left\{\tilde{f}(w)|w \in [0,1]^E\right\}$ and let $A^* \in \operatorname{argmin}\left\{f(A)|A \subseteq V\right\}$.
- Previous theorem states that $\tilde{f}(w^*) = f(A^*)$.
- Let λ_i^* be the function weights and E_i^* be the sets associated with w^* . From previous theorem, we have

$$\tilde{f}(w^*) = \sum_{i} \lambda_i^* f(E_i^*) = f(A^*) = \min \{ f(A) | A \subseteq E \}$$
 (17.48)

and that $f(A^*) \leq f(E_i^*), \forall i$, and that $f(A^*) \leq 0$, and $\sum_i \lambda_i \leq 1$.

• Thus, since $w^* \in [0,1]^E$, each $0 \le \lambda_i^* \le 1$, we have for all i such that $\lambda_i^* > 0$,

$$f(E_i^*) = f(A^*) (17.49)$$

meaning such E_i^* are also minimizers of f, and $\sum_i \lambda_i = 1$.

Other minimizers based on min of \widetilde{f}

- Let $w^* \in \operatorname{argmin}\left\{\tilde{f}(w)|w \in [0,1]^E\right\}$ and let $A^* \in \operatorname{argmin}\left\{f(A)|A \subseteq V\right\}$.
- Previous theorem states that $\tilde{f}(w^*) = f(A^*)$.
- Let λ_i^* be the function weights and E_i^* be the sets associated with w^* . From previous theorem, we have

$$\tilde{f}(w^*) = \sum_{i} \lambda_i^* f(E_i^*) = f(A^*) = \min\{f(A) | A \subseteq E\}$$
 (17.48)

and that $f(A^*) \leq f(E_i^*), \forall i$, and that $f(A^*) \leq 0$, and $\sum_i \lambda_i \leq 1$.

• Thus, since $w^* \in [0,1]^E$, each $0 \le \lambda_i^* \le 1$, we have for all i such that $\lambda_i^* > 0$,

$$f(E_i^*) = f(A^*) (17.49)$$

meaning such E_i^* are also minimizers of f, and $\sum_i \lambda_i = 1$.

• Note that the negative of $f(A^*)$ is crucial here (see next slides).

- Let $w^* \in \operatorname{argmin}\left\{\tilde{f}(w)|w \in [0,1]^E\right\}$ and let $A^* \in \operatorname{argmin}\left\{f(A)|A \subseteq V\right\}$.
- Previous theorem states that $\tilde{f}(w^*) = f(A^*)$.
- Let λ_i^* be the function weights and E_i^* be the sets associated with w^* . From previous theorem, we have

$$\tilde{f}(w^*) = \sum_{i} \lambda_i^* f(E_i^*) = f(A^*) = \min\{f(A) | A \subseteq E\}$$
 (17.48)

and that $f(A^*) \leq f(E_i^*), \forall i$, and that $f(A^*) \leq 0$, and $\sum_i \lambda_i \leq 1$.

• Thus, since $w^* \in [0,1]^E$, each $0 \le \lambda_i^* \le 1$, we have for all i such that $\lambda_i^* > 0$,

$$f(E_i^*) = f(A^*) (17.49)$$

meaning such E_i^* are also minimizers of f, and $\sum_i \lambda_i = 1$.

- Note that the negative of $f(A^*)$ is crucial here (see next slides).
- Hence $w^* = \sum_i \lambda_i^* \mathbf{1}_{E_i}$ is in convex hull of incidence vectors of minimizers of f.

• f is normalized $f(\emptyset) = 0$, so minimizer is ≤ 0 .

- f is normalized $f(\emptyset) = 0$, so minimizer is ≤ 0 .
- We know that $f(E_i^*) \geq f(A^*)$ for all i, and $f(A^*) = \sum_i \lambda_i f(E_i^*)$.

- f is normalized $f(\emptyset) = 0$, so minimizer is ≤ 0 .
- We know that $f(E_i^*) \geq f(A^*)$ for all i, and $f(A^*) = \sum_i \lambda_i f(E_i^*)$.
- If $f(A^*) = 0$, then we must have $f(E_i^*) = 0$ for any i such that $\lambda_i > 0$. Otherwise, assume $f(A^*) < 0$.

- f is normalized $f(\emptyset) = 0$, so minimizer is ≤ 0 .
- We know that $f(E_i^*) \geq f(A^*)$ for all i, and $f(A^*) = \sum_i \lambda_i f(E_i^*)$.
- If $f(A^*)=0$, then we must have $f(E_i^*)=0$ for any i such that $\lambda_i>0$. Otherwise, assume $f(A^*)<0$.
- Suppose there exists an i such that $f(E_i^*) > f(A^*)$.

- f is normalized $f(\emptyset) = 0$, so minimizer is ≤ 0 .
- We know that $f(E_i^*) \geq f(A^*)$ for all i, and $f(A^*) = \sum_i \lambda_i f(E_i^*)$.
- If $f(A^*)=0$, then we must have $f(E_i^*)=0$ for any i such that $\lambda_i>0$. Otherwise, assume $f(A^*)<0$.
- Suppose there exists an i such that $f(E_i^*) > f(A^*)$.
- Then we have

$$f(A^*) = \sum_{i} \lambda_i f(E_i^*) > \sum_{i} \lambda_i f(A^*) = f(A^*) \sum_{i} \lambda_i$$
 (17.50)

and since $f(A^*) < 0$, this means that $\sum_i \lambda_i > 1$ which is a contradiction.

- f is normalized $f(\emptyset) = 0$, so minimizer is ≤ 0 .
- We know that $f(E_i^*) \geq f(A^*)$ for all i, and $f(A^*) = \sum_i \lambda_i f(E_i^*)$.
- If $f(A^*)=0$, then we must have $f(E_i^*)=0$ for any i such that $\lambda_i>0$. Otherwise, assume $f(A^*)<0$.
- Suppose there exists an i such that $f(E_i^*) > f(A^*)$.
- Then we have

$$f(A^*) = \sum_{i} \lambda_i f(E_i^*) > \sum_{i} \lambda_i f(A^*) = f(A^*) \sum_{i} \lambda_i$$
 (17.50)

and since $f(A^*) < 0$, this means that $\sum_i \lambda_i > 1$ which is a contradiction.

• Hence, must have $f(E_i^*) = f(A^*)$ for all i.

- f is normalized $f(\emptyset) = 0$, so minimizer is ≤ 0 .
- We know that $f(E_i^*) \geq f(A^*)$ for all i, and $f(A^*) = \sum_i \lambda_i f(E_i^*)$.
- If $f(A^*)=0$, then we must have $f(E_i^*)=0$ for any i such that $\lambda_i>0$. Otherwise, assume $f(A^*)<0$.
- Suppose there exists an i such that $f(E_i^*) > f(A^*)$.
- Then we have

$$f(A^*) = \sum_{i} \lambda_i f(E_i^*) > \sum_{i} \lambda_i f(A^*) = f(A^*) \sum_{i} \lambda_i$$
 (17.50)

and since $f(A^*) < 0$, this means that $\sum_i \lambda_i > 1$ which is a contradiction.

- Hence, must have $f(E_i^*) = f(A^*)$ for all i.
- Hence, $\sum_{i} \lambda_{i} = 1$ since $f(A^{*}) = \sum_{i} \lambda_{i} f(A^{*})$.

Alternate way to see Equation 17.49

• We know $f(A^*) \leq 0$. Consider two cases in Equation 17.49.

Alternate way to see Equation 17.49

- We know $f(A^*) \le 0$. Consider two cases in Equation 17.49.
- Case 1: $f(A^*) = 0$. Then for any i with $\lambda_i > 0$ we must have $f(E_i) = 0$ as well for all i since $f(A^*) \leq f(E_i)$.

- We know $f(A^*) \leq 0$. Consider two cases in Equation 17.49.
- Case 1: $f(A^*) = 0$. Then for any i with $\lambda_i > 0$ we must have $f(E_i) = 0$ as well for all i since $f(A^*) \leq f(E_i)$.
- Case 2 is where $f(A^*) < 0$. In this second case, we have

$$0 > f(A^*) = \sum_{i} \lambda_i f(E_i) \ge \sum_{i} \lambda_i f(A^*)$$

$$\stackrel{(a)}{\ge} \sum_{i} \lambda_i f(A^*) + (1 - \bar{\lambda}) f(A^*) = f(A^*)$$
(17.52)

where $\bar{\lambda}=\sum_i \lambda_i$ and $(1-\bar{\lambda})\geq 0$ and where (a) follows since $f(A^*)<0$.

Alternate way to see Equation 17.49

- We know $f(A^*) \leq 0$. Consider two cases in Equation 17.49.
- Case 1: $f(A^*) = 0$. Then for any i with $\lambda_i > 0$ we must have $f(E_i) = 0$ as well for all i since $f(A^*) \leq f(E_i)$.
- Case 2 is where $f(A^*) < 0$. In this second case, we have

$$0 > f(A^*) = \sum_{i} \lambda_i f(E_i) \ge \sum_{i} \lambda_i f(A^*)$$
(17.51)

$$\stackrel{(a)}{\geq} \sum_{i} \lambda_{i} f(A^{*}) + (1 - \bar{\lambda}) f(A^{*}) = f(A^{*})$$
 (17.52)

where $\bar{\lambda}=\sum_i \lambda_i$ and $(1-\bar{\lambda})\geq 0$ and where (a) follows since $f(A^*)<0$.

• Hence, all inequalities must be equalities, which means that we must have that $\bar{\lambda} = 1$.

θ -rounding the L.E. minimum

We can also view the above as a form of rounding a continuous convex relaxation to the problem.

Definition 17.5.5 (θ -rounding)

Given vector $x \in [0,1]^E$, choose $\theta \in (0,1)$ and define a set corresponding to elements above θ , i.e.,

$$\hat{X}_{\theta} = \{i : \hat{x}(i) \ge \theta\} \triangleq \{\hat{x} \ge \theta\}$$
(17.53)

Lemma 17.5.6 (Fujishige-2005)

Given a continuous minimizer $x^* \in \operatorname{argmin}_{x \in [0,1]^n} \tilde{f}(x)$, the discrete minimizers are exactly the maximal chain of sets $\emptyset \subset X_{\theta_1} \subset \dots X_{\theta_k}$ obtained by θ -rounding x^* , for $\theta_j \in (0,1)$.