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Logistics Review

Cumulative Outstanding Reading

Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969,
Choquet-1955, Grabisch/Marichal/Mesiar/Pap “Aggregation
Functions”, Lovász-1983, Bach-2011.

Read Tom McCormick’s overview paper on SFM http://people.

commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

Read chapters 1 - 4 from Fujishige book.

Matroid properties http:
//www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf

Read lecture 14 slides on lattice theory at our web page (http://j.
ee.washington.edu/~bilmes/classes/ee596b_spring_2014/)
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Logistics Review

Announcements, Assignments, and Reminders

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics Review

Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

L9: From Matroid Polytopes to
Polymatroids.

L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, polymatroids
and entropic Venn diagrams, exchange
capacity,

L16: minimum norm point algorithm and
the lattice of minimizers of a submodular
function, Lovasz extension

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Summary of supp, sat, and dep

For x ∈ Pf , supp(x) = {e : x(e) "= 0} ⊆ sat(x)

For x ∈ Pf , sat(x) (span, closure) is the maximal saturated (x-tight)
set w.r.t. x. I.e., sat(x) = {e : e ∈ E, ∀α > 0, x+ α1e /∈ Pf}. That is,

cl(x)
def
= sat(x) !

⋃
{A : A ∈ D(x)} (16.29)

=
⋃

{A : A ⊆ E, x(A) = f(A)} (16.30)

= {e : e ∈ E, ∀α > 0, x+ α1e /∈ Pf} (16.31)

For e ∈ sat(x), we have dep(x, e) ⊆ sat(x) (fundamental circuit) is the
minimal (common) saturated (x-tight) set w.r.t. x containing e. I.e.,

dep(x, e) =

{⋂
{A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
(16.32)
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Logistics Review

A polymatroid function’s polyhedron is a polymatroid.

Theorem 16.2.1

Let f be a submodular function defined on subsets of E. For any
x ∈ RE , we have:

rank(x) = max (y(E) : y ≤ x, y ∈ Pf ) = min (x(A) + f(E \A) : A ⊆ E)
(16.5)

If we take x to be zero, we get:

Corollary 16.2.2

Let f be a submodular function defined on subsets of E. x ∈ RE , we
have:

rank(0) = max (y(E) : y ≤ 0, y ∈ Pf ) = min (f(A) : A ⊆ E) (16.6)
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Logistics Review

Multiple Polytopes associated with f

PfP+
f

Bf

P+
f = Pf ∩

{
x ∈ RE : x ≥ 0

}
(16.5)

Pf =
{
x ∈ RE : x(S) ≤ f(S), ∀S ⊆ E

}
(16.6)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(16.7)
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Logistics Review

Min-Norm Point: Definition

Restating what we saw before, we have:

max {y(E)|y ∈ Pf , y ≤ 0} = min {f(X)|X ⊆ V } (16.12)

Consider the optimization:

minimize ‖x‖22 (16.13a)

subject to x ∈ Bf (16.13b)

where Bf is the base polytope of submodular f , and
‖x‖22 =

∑
e∈E x(e)2 is the squared 2-norm. Let x∗ be the optimal

solution.

Note, x∗ is the unique optimal solution since we have a strictly
convex objective over a set of convex constraints.

x∗ is called the minimum norm point of the base polytope.
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Min-Norm Point: Examples

Pf Pf Pf

Pf

Pf

Pf
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Min-Norm Point and SFM Lovász extension Choquet Integration Lovász extn., defs/props

Min-Norm Point and Submodular Function Minimization

Given optimal solution x∗ to the above, consider the quantities

y∗ = x∗ ∧ 0 = (min(x∗(e), 0)|e ∈ E) (16.1)

A− = {e : x∗(e) < 0} (16.2)

A0 = {e : x∗(e) ≤ 0} (16.3)

Thus, we immediately have that:

x∗(A−) = x∗(A0) = y∗(A−) = y∗(A0) (16.4)

It turns out, these quantities will solve the submodular function
minimization problem, as we now show.

The proof is nice since it uses the tools we’ve been recently
developing.
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Min-Norm Point and SFM Lovász extension Choquet Integration Lovász extn., defs/props

Min-Norm Point and SFM

Theorem 16.3.1

Let y∗, A−, and A0 be as given. Then y∗ is a maximizer of the l.h.s. of
Eqn. (15.12). Moreover, A− is the unique minimal minimizer of f and
A0 is the unique maximal minimizer of f .

Proof.

First note, since x∗ ∈ Bf , we have x∗(E) = f(E), meaning
sat(x∗) = E. Thus, we can consider any e ∈ E within dep(x∗, e).

Consider any pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−. Then
x∗(e) < 0, and ∃α > 0 s.t. x∗ + α1e − α1e′ ∈ Pf .

We have x∗(E) = f(E) and x∗ is minimum in l2 sense. We have
(x∗ + α1e − α1e′) ∈ Pf , and in fact

(x∗ + α1e − α1e′)(E) = x∗(E) + α− α = f(E) (16.5)

so x∗ + α1e − α1e′ ∈ Bf also.

. . .
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Min-Norm Point and SFM Lovász extension Choquet Integration Lovász extn., defs/props

Min-Norm Point and SFM

. . . proof of Thm. 16.3.1 cont.

Then (x∗ + α1e − α1e′)(E)
= x∗(E \ {e, e′}) + (x∗(e) + α)︸ ︷︷ ︸

x∗
new(e)

+(x∗(e′)− α)︸ ︷︷ ︸
x∗
new(e

′)

= f(E).

Minimality of x∗ ∈ Bf in l2 sense requires that, with such an α > 0,(
x∗(e)

)2
+
(
x∗(e′)

)2
<

(
x∗
new(e)

)2
+
(
x∗
new(e

′)
)2

Given that e ∈ A−, x
∗(e) < 0. Thus, if x∗(e′) > 0, we could have

(x∗(e) + α)2 + (x∗(e′)− α)2 < (x∗(e))2 + (x∗(e′))2, contradicting
the optimality of x∗.

If x∗(e′) = 0, we would have (x∗(e) +α)2 + (α)2 < (x∗(e))2, for any
0 < α < |x∗(e)| (Exercise:), again contradicting the optimality of x∗.

Thus, we must have x∗(e′) < 0 (strict negativity).

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 16.3.1 cont.

Thus, for a pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−, we have
x(e′) < 0 and hence e′ ∈ A−.

Hence, ∀e ∈ A−, we have dep(x∗, e) ⊆ A−.

A very similar argument can show that, ∀e ∈ A0, we have
dep(x∗, e) ⊆ A0.

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 16.3.1 cont.

Therefore, we have ∪e∈A− dep(x∗, e) = A− and
∪e∈A0 dep(x

∗, e) = A0

Ie., {dep(x∗, e)}e∈A−
is cover for A−, as is {dep(x∗, e)}e∈A0

for A0.

dep(x∗, e) is minimal tight set containing e, meaning
x∗(dep(x∗, e)) = f(dep(x∗, e)), and since tight sets are closed
under union, we have that A− and A0 are also tight, meaning:

x∗(A−) = f(A−) (16.6)

x∗(A0) = f(A0) (16.7)

x∗(A−) = x∗(A0) = y∗(E) (16.8)

and therefore, all together we have

f(A−) = f(A0) = x∗(A−) = x∗(A0) = y∗(E) (16.9)

. . .
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Now, y∗ is feasible for the l.h.s. of Eqn. (15.12).

This follows since,
we have y∗ = x∗ ∧ 0 ≤ 0, and since x∗ ∈ Bf ⊂ Pf , and y∗ ≤ x∗ and
Pf is down-closed, we have that y∗ ∈ Pf .

Also, for any y ∈ Pf with y ≤ 0 and for any X ⊆ E, we have
y(E) ≤ y(X) ≤ f(X).

Hence, we have found a feasible for l.h.s. of Eqn. (15.12), y∗ ≤ 0,
y∗ ∈ Pf , so y∗(E) ≤ f(X) for all X.

So y∗(E) ≤ min {f(X)|X ⊆ V }.
Considering Eqn. (16.6), we have found sets A− and A0 with
tightness in Eqn. (15.12), meaning y∗(E) = f(A−) = f(A0).

Hence, y∗ is a maximizer of l.h.s. of Eqn. (15.12), and A− and A0

are minimizers of f .

. . .
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Now, for any X ⊂ A−, we have

f(X) ≥ x∗(X) > x∗(A−) = f(A−) (16.10)

And for any X ⊃ A0, we have

f(X) ≥ x∗(X) > x∗(A0) = f(A0) (16.11)

Hence, A− must be the unique minimal minimizer of f , and A0 is
the unique maximal minimizer of f .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 16 - May 21st, 2014 F16/61 (pg.40/245)



Min-Norm Point and SFM Lovász extension Choquet Integration Lovász extn., defs/props

Min-Norm Point and SFM

. . . proof of Thm. 16.3.1 cont.

Now, for any X ⊂ A−, we have

f(X) ≥ x∗(X) > x∗(A−) = f(A−) (16.10)

And for any X ⊃ A0, we have

f(X) ≥ x∗(X) > x∗(A0) = f(A0) (16.11)

Hence, A− must be the unique minimal minimizer of f , and A0 is
the unique maximal minimizer of f .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 16 - May 21st, 2014 F16/61 (pg.41/245)



Min-Norm Point and SFM Lovász extension Choquet Integration Lovász extn., defs/props

Min-Norm Point and SFM

. . . proof of Thm. 16.3.1 cont.

Now, for any X ⊂ A−, we have

f(X) ≥ x∗(X) > x∗(A−) = f(A−) (16.10)

And for any X ⊃ A0, we have

f(X) ≥ x∗(X) > x∗(A0) = f(A0) (16.11)

Hence, A− must be the unique minimal minimizer of f , and A0 is
the unique maximal minimizer of f .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 16 - May 21st, 2014 F16/61 (pg.42/245)



Min-Norm Point and SFM Lovász extension Choquet Integration Lovász extn., defs/props

Min-Norm Point and SFM

So, if we have a procedure to compute the min-norm point
computation, we can solve SFM.

Nice thing about previous proof is that it uses both expressions for
dep for different purposes.

This was discovered by Fujishige (in fact the proof above is an
expanded version of the one found in the book).

An algorithm (by F. Wolfe) can find this min-norm point, essentially
an active-set procedure for quadratic programming. It uses
Edmonds’s greedy algorithm to make it efficient.

This is currently the best practical algorithm for general purpose
submodular function minimization.

But its underlying lower-bound complexity is unknown, although in
practice its estimated empirical complexity runs anywhere from
O(n3) to O(n4.5) or so (see Jegelka, Lin, Bilmes (NIPS 2011)).
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Min-norm point and other minimizers of f

Recall, that the set of minimizers of f forms a lattice.

In fact, with x∗ the min-norm point, and A− and A0 as defined
above, we have the following theorem:

Theorem 16.3.2

Let A ⊆ E be any minimizer of submodular f , and let x∗ be the
minimum-norm point. Then A has the form:

A = A− ∪
⋃

a∈Am

dep(x∗, a) (16.12)

for some set Am ⊆ A0 \A−.
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Min-norm point and other minimizers of f

proof of Thm. 16.3.2.

If A is a minimizer, then A− ⊆ A ⊆ A0, and f(A) = y∗(E) is the
minimum valuation of f .

But x∗ ∈ Pf , so x∗(A) ≤ f(A) and f(A) = x∗(A−) ≤ x∗(A) (or
alternatively, just note that x∗(A0 \A) = 0).

Hence, x∗(A) = x∗(A−) = f(A) so that A is also a tight set for x∗.

For any a ∈ A, A is a tight set containing a, and dep(x∗, a) is the
minimal tight containing a.

Hence, for any a ∈ A, dep(x∗, a) ⊆ A.

This means that
⋃

a∈A dep(x∗, a) = A.

Since A− ⊆ A ⊆ A0, then ∃Am ⊆ A \A− such that

A =
⋃

a∈A−

dep(x∗, a) ∪
⋃

a∈Am

dep(x∗, a) = A− ∪
⋃

a∈Am

dep(x∗, a)
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Min-norm point and other minimizers of f

proof of Thm. 16.3.2.

If A is a minimizer, then A− ⊆ A ⊆ A0, and f(A) = y∗(E) is the
minimum valuation of f .

But x∗ ∈ Pf , so x∗(A) ≤ f(A) and f(A) = x∗(A−) ≤ x∗(A) (or
alternatively, just note that x∗(A0 \A) = 0).

Hence, x∗(A) = x∗(A−) = f(A) so that A is also a tight set for x∗.

For any a ∈ A, A is a tight set containing a, and dep(x∗, a) is the
minimal tight containing a.

Hence, for any a ∈ A, dep(x∗, a) ⊆ A.

This means that
⋃

a∈A dep(x∗, a) = A.

Since A− ⊆ A ⊆ A0, then ∃Am ⊆ A \A− such that

A =
⋃

a∈A−

dep(x∗, a) ∪
⋃

a∈Am

dep(x∗, a) = A− ∪
⋃

a∈Am

dep(x∗, a)
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Min-norm point and other minimizers of f

proof of Thm. 16.3.2.

If A is a minimizer, then A− ⊆ A ⊆ A0, and f(A) = y∗(E) is the
minimum valuation of f .

But x∗ ∈ Pf , so x∗(A) ≤ f(A) and f(A) = x∗(A−) ≤ x∗(A) (or
alternatively, just note that x∗(A0 \A) = 0).

Hence, x∗(A) = x∗(A−) = f(A) so that A is also a tight set for x∗.

For any a ∈ A, A is a tight set containing a, and dep(x∗, a) is the
minimal tight containing a.

Hence, for any a ∈ A, dep(x∗, a) ⊆ A.

This means that
⋃

a∈A dep(x∗, a) = A.

Since A− ⊆ A ⊆ A0, then ∃Am ⊆ A \A− such that

A =
⋃

a∈A−

dep(x∗, a) ∪
⋃

a∈Am

dep(x∗, a) = A− ∪
⋃

a∈Am

dep(x∗, a)
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Min-norm point and other minimizers of f

proof of Thm. 16.3.2.

If A is a minimizer, then A− ⊆ A ⊆ A0, and f(A) = y∗(E) is the
minimum valuation of f .

But x∗ ∈ Pf , so x∗(A) ≤ f(A) and f(A) = x∗(A−) ≤ x∗(A) (or
alternatively, just note that x∗(A0 \A) = 0).

Hence, x∗(A) = x∗(A−) = f(A) so that A is also a tight set for x∗.

For any a ∈ A, A is a tight set containing a, and dep(x∗, a) is the
minimal tight containing a.

Hence, for any a ∈ A, dep(x∗, a) ⊆ A.

This means that
⋃

a∈A dep(x∗, a) = A.

Since A− ⊆ A ⊆ A0, then ∃Am ⊆ A \A− such that

A =
⋃

a∈A−

dep(x∗, a) ∪
⋃

a∈Am

dep(x∗, a) = A− ∪
⋃

a∈Am

dep(x∗, a)
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Min-norm point and other minimizers of f

proof of Thm. 16.3.2.

If A is a minimizer, then A− ⊆ A ⊆ A0, and f(A) = y∗(E) is the
minimum valuation of f .

But x∗ ∈ Pf , so x∗(A) ≤ f(A) and f(A) = x∗(A−) ≤ x∗(A) (or
alternatively, just note that x∗(A0 \A) = 0).

Hence, x∗(A) = x∗(A−) = f(A) so that A is also a tight set for x∗.

For any a ∈ A, A is a tight set containing a, and dep(x∗, a) is the
minimal tight containing a.

Hence, for any a ∈ A, dep(x∗, a) ⊆ A.

This means that
⋃

a∈A dep(x∗, a) = A.

Since A− ⊆ A ⊆ A0, then ∃Am ⊆ A \A− such that

A =
⋃

a∈A−

dep(x∗, a) ∪
⋃

a∈Am

dep(x∗, a) = A− ∪
⋃

a∈Am

dep(x∗, a)
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Min-norm point and other minimizers of f

proof of Thm. 16.3.2.

If A is a minimizer, then A− ⊆ A ⊆ A0, and f(A) = y∗(E) is the
minimum valuation of f .

But x∗ ∈ Pf , so x∗(A) ≤ f(A) and f(A) = x∗(A−) ≤ x∗(A) (or
alternatively, just note that x∗(A0 \A) = 0).

Hence, x∗(A) = x∗(A−) = f(A) so that A is also a tight set for x∗.

For any a ∈ A, A is a tight set containing a, and dep(x∗, a) is the
minimal tight containing a.

Hence, for any a ∈ A, dep(x∗, a) ⊆ A.

This means that
⋃

a∈A dep(x∗, a) = A.

Since A− ⊆ A ⊆ A0, then ∃Am ⊆ A \A− such that

A =
⋃

a∈A−

dep(x∗, a) ∪
⋃

a∈Am

dep(x∗, a) = A− ∪
⋃

a∈Am

dep(x∗, a)
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Min-norm point and other minimizers of f

proof of Thm. 16.3.2.

If A is a minimizer, then A− ⊆ A ⊆ A0, and f(A) = y∗(E) is the
minimum valuation of f .

But x∗ ∈ Pf , so x∗(A) ≤ f(A) and f(A) = x∗(A−) ≤ x∗(A) (or
alternatively, just note that x∗(A0 \A) = 0).

Hence, x∗(A) = x∗(A−) = f(A) so that A is also a tight set for x∗.

For any a ∈ A, A is a tight set containing a, and dep(x∗, a) is the
minimal tight containing a.

Hence, for any a ∈ A, dep(x∗, a) ⊆ A.

This means that
⋃

a∈A dep(x∗, a) = A.

Since A− ⊆ A ⊆ A0, then ∃Am ⊆ A \A− such that

A =
⋃

a∈A−

dep(x∗, a) ∪
⋃

a∈Am

dep(x∗, a) = A− ∪
⋃

a∈Am

dep(x∗, a)
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On a unique minimizer f

Note that if f(e|A) > 0, ∀A ⊆ E and e ∈ E \A, then we have
A− = A0 (there is one unique minimizer).

On the other hand, if A− = A0, it does not imply f(e|A) > 0 for all
A ⊆ E \ {e}.
If A− = A0 then certainly f(e|A0) > 0 for e ∈ E \A0 and
−f(e|A0 \ {e}) > 0 for all e ∈ A0.
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On a unique minimizer f

Note that if f(e|A) > 0, ∀A ⊆ E and e ∈ E \A, then we have
A− = A0 (there is one unique minimizer).

On the other hand, if A− = A0, it does not imply f(e|A) > 0 for all
A ⊆ E \ {e}.

If A− = A0 then certainly f(e|A0) > 0 for e ∈ E \A0 and
−f(e|A0 \ {e}) > 0 for all e ∈ A0.
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On a unique minimizer f

Note that if f(e|A) > 0, ∀A ⊆ E and e ∈ E \A, then we have
A− = A0 (there is one unique minimizer).

On the other hand, if A− = A0, it does not imply f(e|A) > 0 for all
A ⊆ E \ {e}.
If A− = A0 then certainly f(e|A0) > 0 for e ∈ E \A0 and
−f(e|A0 \ {e}) > 0 for all e ∈ A0.
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Review

The next slide comes from lecture 12.
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Polymatroidal polyhedron and greedy

Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem ??)

Theorem 16.4.1

If f : 2E → R+ is given, and P is a polytope in RE
+ of the form

P =
{
x ∈ RE

+ : x(A) ≤ f(A), ∀A ⊆ E
}
, then the greedy solution to the

problem max(wx : x ∈ P ) is ∀w optimum iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).
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Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (16.13a)
subject to x ∈ Pf (16.13b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large.

Hence, assume w ∈ RE
+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem 15.5.2, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE
+,

maximize wᵀx (16.14a)
subject to x ∈ Bf (16.14b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .
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Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (16.13a)
subject to x ∈ Pf (16.13b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large.

Hence, assume w ∈ RE
+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem 15.5.2, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE
+,

maximize wᵀx (16.14a)
subject to x ∈ Bf (16.14b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .
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Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (16.13a)
subject to x ∈ Pf (16.13b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE

+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem 15.5.2, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE
+,

maximize wᵀx (16.14a)
subject to x ∈ Bf (16.14b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .
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Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (16.13a)
subject to x ∈ Pf (16.13b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE

+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem 15.5.2, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE
+,

maximize wᵀx (16.14a)
subject to x ∈ Bf (16.14b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .
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Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (16.13a)
subject to x ∈ Pf (16.13b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE

+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem 15.5.2, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE
+,

maximize wᵀx (16.14a)
subject to x ∈ Bf (16.14b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .
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Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (16.13a)
subject to x ∈ Pf (16.13b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE

+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem 15.5.2, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE
+,

maximize wᵀx (16.14a)
subject to x ∈ Bf (16.14b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .
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Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (16.13a)
subject to x ∈ Pf (16.13b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE

+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem 15.5.2, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE
+,

maximize wᵀx (16.14a)
subject to x ∈ Bf (16.14b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .
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A continuous extension of f

Consider again optimization problem. Given w ∈ RE ,

maximize wᵀx (16.15a)
subject to x ∈ Pf (16.15b)

We may consider this optimization problem a function f̃ : RE → R
of w ∈ RE , defined as:

f̃(w) = max(wx : x ∈ Pf ) (16.16)

Hence, for any w, from the above theorem, we can compute the
value of this function using the greedy algorithm (after of course
checking for w ∈ RE

+).
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A continuous extension of f

Consider again optimization problem. Given w ∈ RE ,

maximize wᵀx (16.15a)
subject to x ∈ Pf (16.15b)

We may consider this optimization problem a function f̃ : RE → R
of w ∈ RE , defined as:

f̃(w) = max(wx : x ∈ Pf ) (16.16)

Hence, for any w, from the above theorem, we can compute the
value of this function using the greedy algorithm (after of course
checking for w ∈ RE

+).
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A continuous extension of f

Consider again optimization problem. Given w ∈ RE ,

maximize wᵀx (16.15a)
subject to x ∈ Pf (16.15b)

We may consider this optimization problem a function f̃ : RE → R
of w ∈ RE , defined as:

f̃(w) = max(wx : x ∈ Pf ) (16.16)

Hence, for any w, from the above theorem, we can compute the
value of this function using the greedy algorithm (after of course
checking for w ∈ RE

+).
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A continuous extension of f

That is, given a submodular function f , a w ∈ RE , and defining
Ei = {e1, e2, . . . , ei} and where we choose the element order
(e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), we have

f̃(w)

= max(wx : x ∈ Pf ) (16.17)

=
m∑

i=1

w(ei)f(ei|Ei−1) (16.18)

=
m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (16.19)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (16.20)

We say that ∅ ! E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain
based on w.
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A continuous extension of f

That is, given a submodular function f , a w ∈ RE , and defining
Ei = {e1, e2, . . . , ei} and where we choose the element order
(e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), we have

f̃(w) = max(wx : x ∈ Pf ) (16.17)

=
m∑

i=1

w(ei)f(ei|Ei−1) (16.18)

=
m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (16.19)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (16.20)

We say that ∅ ! E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain
based on w.
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A continuous extension of f

That is, given a submodular function f , a w ∈ RE , and defining
Ei = {e1, e2, . . . , ei} and where we choose the element order
(e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), we have

f̃(w) = max(wx : x ∈ Pf ) (16.17)

=

m∑

i=1

w(ei)f(ei|Ei−1) (16.18)

=
m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (16.19)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (16.20)

We say that ∅ ! E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain
based on w.
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A continuous extension of f

That is, given a submodular function f , a w ∈ RE , and defining
Ei = {e1, e2, . . . , ei} and where we choose the element order
(e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), we have

f̃(w) = max(wx : x ∈ Pf ) (16.17)

=

m∑

i=1

w(ei)f(ei|Ei−1) (16.18)

=
m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (16.19)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (16.20)

We say that ∅ ! E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain
based on w.
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A continuous extension of f

That is, given a submodular function f , a w ∈ RE , and defining
Ei = {e1, e2, . . . , ei} and where we choose the element order
(e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), we have

f̃(w) = max(wx : x ∈ Pf ) (16.17)

=

m∑

i=1

w(ei)f(ei|Ei−1) (16.18)

=
m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (16.19)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (16.20)

We say that ∅ ! E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain
based on w.
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A continuous extension of f

That is, given a submodular function f , a w ∈ RE , and defining
Ei = {e1, e2, . . . , ei} and where we choose the element order
(e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), we have

f̃(w) = max(wx : x ∈ Pf ) (16.17)

=

m∑

i=1

w(ei)f(ei|Ei−1) (16.18)

=
m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (16.19)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (16.20)

We say that ∅ ! E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain
based on w.
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A continuous extension of f

Definition of the continuous extension, once again, for reference:

f̃(w) = max(wx : x ∈ Pf ) (16.21)

Therefore, if f is a submodular function, we can write

f̃(w)

= w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (16.22)

=

m∑

i=1

λif(Ei) (16.23)

where λm = w(em) and otherwise λi = w(ei)− w(ei+1), where the
elements are sorted according to w as before.

From convex analysis, we know f̃(w) = max(wx : x ∈ P ) is always
convex in w for any set P ⊆ RE , since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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An extension of f

Recall, for any such w ∈ RE , we have





w1

w2

...
wn




=

(
w1 − w2

)
︸ ︷︷ ︸

λ1





1
0
...
0




+
(
w2 − w3

)
︸ ︷︷ ︸

λ2





1
1
0
...
0




+

· · ·+
(
wn−1 − wn

)
︸ ︷︷ ︸

λm−1





1
1
...
1
0




+
(
wm

)
︸ ︷︷ ︸
λm





1
1
...
1
1




(16.24)

If we take w in decreasing order, then each coefficient of the vectors
is non-negative (except possibly the last one, λm = wm).
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If we take w in decreasing order, then each coefficient of the vectors
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An extension of f
Define sets Ei based on this decreasing order of w as follows, for
i = 0, . . . , n

Ei
def
= {e1, e2, . . . , ei} (16.25)

Note that

1E0 =





0
0
...
0




,1E1 =





1
0
0
...
0




, . . . ,1E!

=





1




#×1

...
1
0






(n− #)×0
...
0





, etc.

Hence, from the previous and current slide, we have
w =

∑m
i=1 λi1Ei
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From f̃ back to f , even when f is not submodular

From the continuous f̃ , we can recover f(A) for any A ⊆ V .

Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (16.26)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̃(w)

=

m∑

i=1

λif(Ei) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +
m−1∑

i=1

(1A(i)− 1A(i+ 1))f(Ei) (16.27)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (16.28)
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so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̃(w) =

m∑

i=1

λif(Ei) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +

m−1∑

i=1

(1A(i)− 1A(i+ 1))f(Ei) (16.27)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (16.28)
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From f̃ back to f

We can view f̃ : [0, 1]E → R defined on the hypercube, with f
defined as f̃ evaluated on the hypercube extreme points (vertices).

To summarize, with f̃(A) =
∑m

i=1 λif(Ei), we have

f̃(1A) = f(A), (16.29)

. . . and when f is submodular, we also have have

f̃(1A) = max {1Ax : x ∈ Pf} (16.30)

= max {1Ax : x(B) ≤ f(B), ∀B ⊆ E} (16.31)

(16.32)
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From f̃ back to f
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defined as f̃ evaluated on the hypercube extreme points (vertices).

To summarize, with f̃(A) =
∑m

i=1 λif(Ei), we have

f̃(1A) = f(A), (16.29)

. . . and when f is submodular, we also have have

f̃(1A) = max {1Ax : x ∈ Pf} (16.30)

= max {1Ax : x(B) ≤ f(B), ∀B ⊆ E} (16.31)

(16.32)
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An extension of f

Thus, for any f : 2E → R, even non-submodular f , we can define an
extension in this way, with

f̃(w) =

m∑

i=1

λif(Ei) (16.33)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending
order of w as in w(e1) ≥ w(e2) ≥ · · · ≥ w(em), and where

for i ∈ {1, . . . ,m}, λi =

{
w(ei)− w(ei+1) if i < m

w(em) if i = m
(16.34)

so that w =
∑m

i=1 λi1Ei

Note that w =
∑m

i=1 λi1Ei is an interpolation of certain vertices of
the hypercube, and that f̃(w) =

∑m
i=1 λif(Ei) is the corresponding

interpolation of the values of f at sets corresponding to each
hypercube vertex.
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An extension of f

Thus, for any f : 2E → R, even non-submodular f , we can define an
extension in this way, with

f̃(w) =

m∑

i=1

λif(Ei) (16.33)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending
order of w as in w(e1) ≥ w(e2) ≥ · · · ≥ w(em), and where

for i ∈ {1, . . . ,m}, λi =

{
w(ei)− w(ei+1) if i < m

w(em) if i = m
(16.34)

so that w =
∑m

i=1 λi1Ei

Note that w =
∑m

i=1 λi1Ei is an interpolation of certain vertices of
the hypercube, and that f̃(w) =

∑m
i=1 λif(Ei) is the corresponding

interpolation of the values of f at sets corresponding to each
hypercube vertex.
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Weighted gains vs. weighted functions

Again sorting E descending in w, the extension summarized:

f̃(w) =

m∑

i=1

w(ei)f(ei|Ei−1) (16.35)

=

m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (16.36)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (16.37)

=
m∑

i=1

λif(Ei) (16.38)

So f̃(w) seen either as sum of weighted gain evaluatiosn (Eqn. (16.35),
or as sum of weighted function evaluations (Eqn. (16.38)).
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Weighted gains vs. weighted functions

Again sorting E descending in w, the extension summarized:

f̃(w) =

m∑

i=1

w(ei)f(ei|Ei−1) (16.35)

=

m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (16.36)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (16.37)

=
m∑

i=1

λif(Ei) (16.38)

So f̃(w) seen either as sum of weighted gain evaluatiosn (Eqn. (16.35),
or as sum of weighted function evaluations (Eqn. (16.38)).
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The Lovász extension of f : 2E → R

Lovász showed that if a function f̃(w) defined as in Eqn. (16.33) is
convex, then f must be submodular.

This continuous extension f̃ of f , in any case (f being submodular
or not), is called the Lovász extension of f .

Note, also possible to define this when f(∅) "= 0 (but doesn’t really
add any generality).
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The Lovász extension of f : 2E → R

Lovász showed that if a function f̃(w) defined as in Eqn. (16.33) is
convex, then f must be submodular.

This continuous extension f̃ of f , in any case (f being submodular
or not), is called the Lovász extension of f .

Note, also possible to define this when f(∅) "= 0 (but doesn’t really
add any generality).
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The Lovász extension of f : 2E → R

Lovász showed that if a function f̃(w) defined as in Eqn. (16.33) is
convex, then f must be submodular.

This continuous extension f̃ of f , in any case (f being submodular
or not), is called the Lovász extension of f .

Note, also possible to define this when f(∅) "= 0 (but doesn’t really
add any generality).
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Lovász Extension, Submodularity and Convexity

Theorem 16.4.1

A function f : 2E → R is submodular iff its Lovász extension f̃ of f is
convex.

Proof.

We’ve already seen that if f is submodular, its extension can be
written via Eqn.(16.33) due to the greedy algorithm, and therefore is
also equivalent to f̃(w) = max {wx : x ∈ Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̃(w) =
∑

i λif(Ei) of
some function f : 2E → R is a convex function.

We note that, based on the extension definition, in particular the
definition of the {λi}i, we have that f̃(αw) = αf̃(w) for any
α ∈ R+. I.e., f is a positively homogeneous convex function.

. . .
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Lovász Extension, Submodularity and Convexity

Theorem 16.4.1

A function f : 2E → R is submodular iff its Lovász extension f̃ of f is
convex.

Proof.

We’ve already seen that if f is submodular, its extension can be
written via Eqn.(16.33) due to the greedy algorithm, and therefore is
also equivalent to f̃(w) = max {wx : x ∈ Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̃(w) =
∑

i λif(Ei) of
some function f : 2E → R is a convex function.

We note that, based on the extension definition, in particular the
definition of the {λi}i, we have that f̃(αw) = αf̃(w) for any
α ∈ R+. I.e., f is a positively homogeneous convex function.

. . .
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Lovász Extension, Submodularity and Convexity

Theorem 16.4.1

A function f : 2E → R is submodular iff its Lovász extension f̃ of f is
convex.

Proof.

We’ve already seen that if f is submodular, its extension can be
written via Eqn.(16.33) due to the greedy algorithm, and therefore is
also equivalent to f̃(w) = max {wx : x ∈ Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̃(w) =
∑

i λif(Ei) of
some function f : 2E → R is a convex function.

We note that, based on the extension definition, in particular the
definition of the {λi}i, we have that f̃(αw) = αf̃(w) for any
α ∈ R+. I.e., f is a positively homogeneous convex function.

. . .
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Earlier, we saw that f̃(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that

f̃(1A + 1B) = f̃(1A∪B + 1A∩B) (16.39)

= f(A ∪B) + f(A ∩B). (16.40)

Let C = A ∩B, order E based on decreasing w = 1A + 1B so that

w = (w(e1), w(e2), . . . , w(em)) (16.41)

= (2, 2, . . . , 2︸ ︷︷ ︸
i∈C

, 1, 1, . . . , 1︸ ︷︷ ︸
i∈A'B

, 0, 0, . . . , 0︸ ︷︷ ︸
i∈E\(A∪B)

) (16.42)

Then, considering f̃(w) =
∑

i λif(Ei), we have λ|C| = 1,
λ|A∪B| = 1, and λi = 0 for i /∈ {|C|, |A ∪B|}.
But then E|C| = A ∩B and E|A∪B| = A ∪B. Therefore,

f̃(w) = f̃(1A + 1B) = f(A ∩B) + f(A ∪B).

. . .
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Earlier, we saw that f̃(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that

f̃(1A + 1B) = f̃(1A∪B + 1A∩B) (16.39)
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f̃(w) = f̃(1A + 1B) = f(A ∩B) + f(A ∪B).
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Earlier, we saw that f̃(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that

f̃(1A + 1B) = f̃(1A∪B + 1A∩B) (16.39)
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Earlier, we saw that f̃(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that

f̃(1A + 1B) = f̃(1A∪B + 1A∩B) (16.39)

= f(A ∪B) + f(A ∩B). (16.40)

Let C = A ∩B, order E based on decreasing w = 1A + 1B so that

w = (w(e1), w(e2), . . . , w(em)) (16.41)

= (2, 2, . . . , 2︸ ︷︷ ︸
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i∈E\(A∪B)
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Then, considering f̃(w) =
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i λif(Ei), we have λ|C| = 1,
λ|A∪B| = 1, and λi = 0 for i /∈ {|C|, |A ∪B|}.

But then E|C| = A ∩B and E|A∪B| = A ∪B. Therefore,

f̃(w) = f̃(1A + 1B) = f(A ∩B) + f(A ∪B).
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Earlier, we saw that f̃(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that

f̃(1A + 1B) = f̃(1A∪B + 1A∩B) (16.39)

= f(A ∪B) + f(A ∩B). (16.40)

Let C = A ∩B, order E based on decreasing w = 1A + 1B so that

w = (w(e1), w(e2), . . . , w(em)) (16.41)

= (2, 2, . . . , 2︸ ︷︷ ︸
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, 1, 1, . . . , 1︸ ︷︷ ︸
i∈A'B

, 0, 0, . . . , 0︸ ︷︷ ︸
i∈E\(A∪B)

) (16.42)

Then, considering f̃(w) =
∑

i λif(Ei), we have λ|C| = 1,
λ|A∪B| = 1, and λi = 0 for i /∈ {|C|, |A ∪B|}.
But then E|C| = A ∩B and E|A∪B| = A ∪B. Therefore,

f̃(w) = f̃(1A + 1B) = f(A ∩B) + f(A ∪B).
. . .
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Also, since f̃ is convex (by assumption) and positively
homogeneous, we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)]

= 0.5[f̃(1A + 1B)] (16.43)

= f̃(0.51A + 0.51B) (16.44)

≤ 0.5f̃(1A) + 0.5f̃(1B) (16.45)

= 0.5(f(A) + f(B))

(16.46)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (16.47)

so f must be submodular.
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Also, since f̃ is convex (by assumption) and positively
homogeneous, we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̃(1A + 1B)] (16.43)

= f̃(0.51A + 0.51B) (16.44)

≤ 0.5f̃(1A) + 0.5f̃(1B) (16.45)

= 0.5(f(A) + f(B))

(16.46)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (16.47)

so f must be submodular.
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Also, since f̃ is convex (by assumption) and positively
homogeneous, we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̃(1A + 1B)] (16.43)

= f̃(0.51A + 0.51B) (16.44)

≤ 0.5f̃(1A) + 0.5f̃(1B) (16.45)

= 0.5(f(A) + f(B))

(16.46)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (16.47)

so f must be submodular.
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Also, since f̃ is convex (by assumption) and positively
homogeneous, we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̃(1A + 1B)] (16.43)

= f̃(0.51A + 0.51B) (16.44)

≤ 0.5f̃(1A) + 0.5f̃(1B) (16.45)

= 0.5(f(A) + f(B))

(16.46)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (16.47)

so f must be submodular.
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Also, since f̃ is convex (by assumption) and positively
homogeneous, we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̃(1A + 1B)] (16.43)

= f̃(0.51A + 0.51B) (16.44)

≤ 0.5f̃(1A) + 0.5f̃(1B) (16.45)

= 0.5(f(A) + f(B)) (16.46)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (16.47)

so f must be submodular.
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Also, since f̃ is convex (by assumption) and positively
homogeneous, we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̃(1A + 1B)] (16.43)

= f̃(0.51A + 0.51B) (16.44)

≤ 0.5f̃(1A) + 0.5f̃(1B) (16.45)

= 0.5(f(A) + f(B)) (16.46)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (16.47)

so f must be submodular.
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Edmonds - Submodularity - 1969
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Lovász - Submodularity - 1983
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Integration and Aggregation

Integration is just summation (e.g., the
∫
symbol has as its origins a

sum).

Lebesgue integration allows integration w.r.t. an underlying measure
µ of sets. E.g., given measurable function f , we can define

∫

X
fdu = sup IX(s) (16.48)

where IX(s) =
∑n

i=1 ciµ(X ∩Xi), and where we take the sup over
all measurable functions s such that 0 ≤ s ≤ f and
s(x) =

∑n
i=1 ciIXi(x) and where IXi(x) is indicator of membership

of set Xi, with ci > 0.
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Integration and Aggregation

Integration is just summation (e.g., the
∫
symbol has as its origins a

sum).

Lebesgue integration allows integration w.r.t. an underlying measure
µ of sets. E.g., given measurable function f , we can define

∫

X
fdu = sup IX(s) (16.48)

where IX(s) =
∑n

i=1 ciµ(X ∩Xi), and where we take the sup over
all measurable functions s such that 0 ≤ s ≤ f and
s(x) =

∑n
i=1 ciIXi(x) and where IXi(x) is indicator of membership

of set Xi, with ci > 0.
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Integration, Aggregation, and Weighted Averages

In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

I.e., given a weight vector w ∈ [0, 1]E for some finite ground set E,
then for any x ∈ RE we have

WAVG(x) =
∑

e∈E
x(e)w(e) (16.49)

Consider 1e for e ∈ E, we have

WAVG(1e) = w(e) (16.50)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a subset of the vertices of this
hypercube, i.e., {1e : e ∈ E}. Moreover, we are interpolating as in

WAVG(x) =
∑

e∈E

x(e)w(e) =
∑

e∈E

x(e)WAVG(1e) (16.51)

Note, WAVG function is linear in the weights w.
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Integration, Aggregation, and Weighted Averages

In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

I.e., given a weight vector w ∈ [0, 1]E for some finite ground set E,
then for any x ∈ RE we have

WAVG(x) =
∑

e∈E

x(e)w(e) (16.49)

Consider 1e for e ∈ E, we have

WAVG(1e) = w(e) (16.50)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a subset of the vertices of this
hypercube, i.e., {1e : e ∈ E}. Moreover, we are interpolating as in

WAVG(x) =
∑

e∈E

x(e)w(e) =
∑

e∈E

x(e)WAVG(1e) (16.51)

Note, WAVG function is linear in the weights w.
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Integration, Aggregation, and Weighted Averages

In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

I.e., given a weight vector w ∈ [0, 1]E for some finite ground set E,
then for any x ∈ RE we have

WAVG(x) =
∑

e∈E

x(e)w(e) (16.49)

Consider 1e for e ∈ E, we have

WAVG(1e) = w(e) (16.50)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a subset of the vertices of this
hypercube, i.e., {1e : e ∈ E}. Moreover, we are interpolating as in

WAVG(x) =
∑

e∈E

x(e)w(e) =
∑

e∈E

x(e)WAVG(1e) (16.51)

Note, WAVG function is linear in the weights w.
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Integration, Aggregation, and Weighted Averages

In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

I.e., given a weight vector w ∈ [0, 1]E for some finite ground set E,
then for any x ∈ RE we have

WAVG(x) =
∑

e∈E

x(e)w(e) (16.49)

Consider 1e for e ∈ E, we have

WAVG(1e) = w(e) (16.50)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a subset of the vertices of this
hypercube, i.e., {1e : e ∈ E}.

Moreover, we are interpolating as in

WAVG(x) =
∑

e∈E

x(e)w(e) =
∑

e∈E

x(e)WAVG(1e) (16.51)

Note, WAVG function is linear in the weights w.
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Integration, Aggregation, and Weighted Averages

In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

I.e., given a weight vector w ∈ [0, 1]E for some finite ground set E,
then for any x ∈ RE we have

WAVG(x) =
∑

e∈E

x(e)w(e) (16.49)

Consider 1e for e ∈ E, we have

WAVG(1e) = w(e) (16.50)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a subset of the vertices of this
hypercube, i.e., {1e : e ∈ E}. Moreover, we are interpolating as in

WAVG(x) =
∑

e∈E

x(e)w(e) =
∑

e∈E

x(e)WAVG(1e) (16.51)

Note, WAVG function is linear in the weights w.
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Integration, Aggregation, and Weighted Averages

In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

I.e., given a weight vector w ∈ [0, 1]E for some finite ground set E,
then for any x ∈ RE we have

WAVG(x) =
∑

e∈E

x(e)w(e) (16.49)

Consider 1e for e ∈ E, we have

WAVG(1e) = w(e) (16.50)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a subset of the vertices of this
hypercube, i.e., {1e : e ∈ E}. Moreover, we are interpolating as in

WAVG(x) =
∑

e∈E

x(e)w(e) =
∑

e∈E

x(e)WAVG(1e) (16.51)

Note, WAVG function is linear in the weights w.
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Integration, Aggregation, and Weighted Averages

More complex “nonlinear” aggregation functions can be constructed
by defining the aggregation function on all vertices of the hypercube.
I.e., for each 1A : A ⊆ E we might have (for all A ⊆ E):

AG(1A) = wA (16.52)

What then might AG(x) be for some x ∈ RE? Our weighted
average functions might look something more like the r.h.s. in:

AG(x) =
∑

A⊆E

x(A)wA =
∑

A⊆E

x(A)AG(1A) (16.53)

Note, we can define w(e) = w′(e) and w(A) = 0, ∀A : |A| > 1 and
get back previous (normal) weighted average, in that

WAVGw′(x) = AGw(x) (16.54)

Set function f : 2E → R is a game if f is normalized f(∅) = 0.
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Integration, Aggregation, and Weighted Averages

More complex “nonlinear” aggregation functions can be constructed
by defining the aggregation function on all vertices of the hypercube.
I.e., for each 1A : A ⊆ E we might have (for all A ⊆ E):

AG(1A) = wA (16.52)

What then might AG(x) be for some x ∈ RE? Our weighted
average functions might look something more like the r.h.s. in:

AG(x) =
∑

A⊆E

x(A)wA =
∑

A⊆E

x(A)AG(1A) (16.53)

Note, we can define w(e) = w′(e) and w(A) = 0, ∀A : |A| > 1 and
get back previous (normal) weighted average, in that

WAVGw′(x) = AGw(x) (16.54)

Set function f : 2E → R is a game if f is normalized f(∅) = 0.
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Integration, Aggregation, and Weighted Averages

More complex “nonlinear” aggregation functions can be constructed
by defining the aggregation function on all vertices of the hypercube.
I.e., for each 1A : A ⊆ E we might have (for all A ⊆ E):

AG(1A) = wA (16.52)

What then might AG(x) be for some x ∈ RE? Our weighted
average functions might look something more like the r.h.s. in:

AG(x) =
∑

A⊆E

x(A)wA =
∑

A⊆E

x(A)AG(1A) (16.53)

Note, we can define w(e) = w′(e) and w(A) = 0, ∀A : |A| > 1 and
get back previous (normal) weighted average, in that

WAVGw′(x) = AGw(x) (16.54)

Set function f : 2E → R is a game if f is normalized f(∅) = 0.
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Integration, Aggregation, and Weighted Averages

More complex “nonlinear” aggregation functions can be constructed
by defining the aggregation function on all vertices of the hypercube.
I.e., for each 1A : A ⊆ E we might have (for all A ⊆ E):

AG(1A) = wA (16.52)

What then might AG(x) be for some x ∈ RE? Our weighted
average functions might look something more like the r.h.s. in:

AG(x) =
∑

A⊆E

x(A)wA =
∑

A⊆E

x(A)AG(1A) (16.53)

Note, we can define w(e) = w′(e) and w(A) = 0, ∀A : |A| > 1 and
get back previous (normal) weighted average, in that

WAVGw′(x) = AGw(x) (16.54)

Set function f : 2E → R is a game if f is normalized f(∅) = 0.
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Integration, Aggregation, and Weighted Averages

Set function f : 2E → R is called a capacity if it is monotone
non-decreasing, i.e., f(A) ≤ f(B) whenever A ⊆ B.

A Boolean function f is any function f : {0, 1}m → {0, 1} and is a
pseudo-Boolean function if f : {0, 1}m → R.
Any set function corresponds to a pseudo-Boolean function. I.e.,
given f : 2E → R, form fb : {0, 1}m → R as fb(x) = f(Ax) where
the A, x bijection is A = {e ∈ E : xe = 1} and x = 1A.

Also, If we have an expression for fb we can construct a set function
f as f(A) = fb(1A). We can also often relax fb to any x ∈ [0, 1]m.

We saw this for Lovász extension.

It turns out that a concept essentially identical to the Lovász
extension was derived much earlier, in 1954, and using this
derivation (via integration) leads to deeper intuition.
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Integration, Aggregation, and Weighted Averages

Set function f : 2E → R is called a capacity if it is monotone
non-decreasing, i.e., f(A) ≤ f(B) whenever A ⊆ B.

A Boolean function f is any function f : {0, 1}m → {0, 1} and is a
pseudo-Boolean function if f : {0, 1}m → R.

Any set function corresponds to a pseudo-Boolean function. I.e.,
given f : 2E → R, form fb : {0, 1}m → R as fb(x) = f(Ax) where
the A, x bijection is A = {e ∈ E : xe = 1} and x = 1A.

Also, If we have an expression for fb we can construct a set function
f as f(A) = fb(1A). We can also often relax fb to any x ∈ [0, 1]m.

We saw this for Lovász extension.

It turns out that a concept essentially identical to the Lovász
extension was derived much earlier, in 1954, and using this
derivation (via integration) leads to deeper intuition.
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Integration, Aggregation, and Weighted Averages

Set function f : 2E → R is called a capacity if it is monotone
non-decreasing, i.e., f(A) ≤ f(B) whenever A ⊆ B.

A Boolean function f is any function f : {0, 1}m → {0, 1} and is a
pseudo-Boolean function if f : {0, 1}m → R.
Any set function corresponds to a pseudo-Boolean function. I.e.,
given f : 2E → R, form fb : {0, 1}m → R as fb(x) = f(Ax) where
the A, x bijection is A = {e ∈ E : xe = 1} and x = 1A.

Also, If we have an expression for fb we can construct a set function
f as f(A) = fb(1A). We can also often relax fb to any x ∈ [0, 1]m.

We saw this for Lovász extension.

It turns out that a concept essentially identical to the Lovász
extension was derived much earlier, in 1954, and using this
derivation (via integration) leads to deeper intuition.
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Integration, Aggregation, and Weighted Averages

Set function f : 2E → R is called a capacity if it is monotone
non-decreasing, i.e., f(A) ≤ f(B) whenever A ⊆ B.

A Boolean function f is any function f : {0, 1}m → {0, 1} and is a
pseudo-Boolean function if f : {0, 1}m → R.
Any set function corresponds to a pseudo-Boolean function. I.e.,
given f : 2E → R, form fb : {0, 1}m → R as fb(x) = f(Ax) where
the A, x bijection is A = {e ∈ E : xe = 1} and x = 1A.

Also, If we have an expression for fb we can construct a set function
f as f(A) = fb(1A). We can also often relax fb to any x ∈ [0, 1]m.

We saw this for Lovász extension.

It turns out that a concept essentially identical to the Lovász
extension was derived much earlier, in 1954, and using this
derivation (via integration) leads to deeper intuition.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 16 - May 21st, 2014 F42/61 (pg.142/245)



Min-Norm Point and SFM Lovász extension Choquet Integration Lovász extn., defs/props

Integration, Aggregation, and Weighted Averages

Set function f : 2E → R is called a capacity if it is monotone
non-decreasing, i.e., f(A) ≤ f(B) whenever A ⊆ B.

A Boolean function f is any function f : {0, 1}m → {0, 1} and is a
pseudo-Boolean function if f : {0, 1}m → R.
Any set function corresponds to a pseudo-Boolean function. I.e.,
given f : 2E → R, form fb : {0, 1}m → R as fb(x) = f(Ax) where
the A, x bijection is A = {e ∈ E : xe = 1} and x = 1A.

Also, If we have an expression for fb we can construct a set function
f as f(A) = fb(1A). We can also often relax fb to any x ∈ [0, 1]m.

We saw this for Lovász extension.

It turns out that a concept essentially identical to the Lovász
extension was derived much earlier, in 1954, and using this
derivation (via integration) leads to deeper intuition.
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Integration, Aggregation, and Weighted Averages

Set function f : 2E → R is called a capacity if it is monotone
non-decreasing, i.e., f(A) ≤ f(B) whenever A ⊆ B.

A Boolean function f is any function f : {0, 1}m → {0, 1} and is a
pseudo-Boolean function if f : {0, 1}m → R.
Any set function corresponds to a pseudo-Boolean function. I.e.,
given f : 2E → R, form fb : {0, 1}m → R as fb(x) = f(Ax) where
the A, x bijection is A = {e ∈ E : xe = 1} and x = 1A.

Also, If we have an expression for fb we can construct a set function
f as f(A) = fb(1A). We can also often relax fb to any x ∈ [0, 1]m.

We saw this for Lovász extension.

It turns out that a concept essentially identical to the Lovász
extension was derived much earlier, in 1954, and using this
derivation (via integration) leads to deeper intuition.
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Choquet integral

Definition 16.5.1

Let f be any capacity on E and w ∈ RE
+. The Choquet integral (1954)

of w w.r.t. f is defined by

Cf (w) =

m∑

i=1

(wei − wei+1)f(Ei) (16.55)

where in the sum, we have sorted and renamed the elements of E so that
we1 ≥ we2 ≥ · · · ≥ wem ≥ wem+1 = 0, and where Ei = {e1, e2, . . . , ei}.

We immediately see that an equivalent formula is as follows:

Cf (w) =

m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (16.56)

where E0
def
= ∅.
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Choquet integral

Definition 16.5.1

Let f be any capacity on E and w ∈ RE
+. The Choquet integral (1954)

of w w.r.t. f is defined by

Cf (w) =

m∑

i=1

(wei − wei+1)f(Ei) (16.55)

where in the sum, we have sorted and renamed the elements of E so that
we1 ≥ we2 ≥ · · · ≥ wem ≥ wem+1 = 0, and where Ei = {e1, e2, . . . , ei}.

BTW: this again essentially Abel’s partial summation formula: Given
two arbitrary sequences {an} and {bn} with An =

∑n
k=1 ak, we have

n∑

k=m

akbk =
n∑

k=m

Ak(bk − bk+1) +Anbn+1 −Am−1bm (16.57)
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The “integral” in the Choquet integral

Thought of as an integral over R of a piece-wise constant function.

First note, assuming E is ordered according to descending w, so
that w(e1) ≥ w(e2) ≥ · · · ≥ w(em−1) ≥ w(em), then
Ei = {e1, e2, . . . , ei} = {e ∈ E : we ≥ wei}.
For any wei > α ≥ wei+1 we also have
Ei = {e1, e2, . . . , ei} = {e ∈ E : we > α}.
Consider segmenting the real-axis at boundary points wei , right
most is we1 .

A function can be defined on a segment of R, namely
wei > α ≥ wei+1 . This function Fi : [wei+1 , wei) → R is defined as

Fi(α) = f({e ∈ E : we > α}) = f(Ei) (16.58)
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The “integral” in the Choquet integral

Thought of as an integral over R of a piece-wise constant function.

First note, assuming E is ordered according to descending w, so
that w(e1) ≥ w(e2) ≥ · · · ≥ w(em−1) ≥ w(em), then
Ei = {e1, e2, . . . , ei} = {e ∈ E : we ≥ wei}.

For any wei > α ≥ wei+1 we also have
Ei = {e1, e2, . . . , ei} = {e ∈ E : we > α}.
Consider segmenting the real-axis at boundary points wei , right
most is we1 .

A function can be defined on a segment of R, namely
wei > α ≥ wei+1 . This function Fi : [wei+1 , wei) → R is defined as

Fi(α) = f({e ∈ E : we > α}) = f(Ei) (16.58)
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The “integral” in the Choquet integral

Thought of as an integral over R of a piece-wise constant function.

First note, assuming E is ordered according to descending w, so
that w(e1) ≥ w(e2) ≥ · · · ≥ w(em−1) ≥ w(em), then
Ei = {e1, e2, . . . , ei} = {e ∈ E : we ≥ wei}.
For any wei > α ≥ wei+1 we also have
Ei = {e1, e2, . . . , ei} = {e ∈ E : we > α}.

Consider segmenting the real-axis at boundary points wei , right
most is we1 .

A function can be defined on a segment of R, namely
wei > α ≥ wei+1 . This function Fi : [wei+1 , wei) → R is defined as

Fi(α) = f({e ∈ E : we > α}) = f(Ei) (16.58)
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The “integral” in the Choquet integral

Thought of as an integral over R of a piece-wise constant function.

First note, assuming E is ordered according to descending w, so
that w(e1) ≥ w(e2) ≥ · · · ≥ w(em−1) ≥ w(em), then
Ei = {e1, e2, . . . , ei} = {e ∈ E : we ≥ wei}.
For any wei > α ≥ wei+1 we also have
Ei = {e1, e2, . . . , ei} = {e ∈ E : we > α}.
Consider segmenting the real-axis at boundary points wei , right
most is we1 .

... w(e1)w(e2)w(e3)w(e4)w(e5)w(em) w(em−1)

A function can be defined on a segment of R, namely
wei > α ≥ wei+1 . This function Fi : [wei+1 , wei) → R is defined as

Fi(α) = f({e ∈ E : we > α}) = f(Ei) (16.58)
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The “integral” in the Choquet integral

Thought of as an integral over R of a piece-wise constant function.

First note, assuming E is ordered according to descending w, so
that w(e1) ≥ w(e2) ≥ · · · ≥ w(em−1) ≥ w(em), then
Ei = {e1, e2, . . . , ei} = {e ∈ E : we ≥ wei}.
For any wei > α ≥ wei+1 we also have
Ei = {e1, e2, . . . , ei} = {e ∈ E : we > α}.
Consider segmenting the real-axis at boundary points wei , right
most is we1 .

... w(e1)w(e2)w(e3)w(e4)w(e5)w(em) w(em−1)

A function can be defined on a segment of R, namely
wei > α ≥ wei+1 . This function Fi : [wei+1 , wei) → R is defined as

Fi(α) = f({e ∈ E : we > α}) = f(Ei) (16.58)
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The “integral” in the Choquet integral

We can generalize this to multiple segments of R (for now, take
w ∈ RE

+). The piecewise-constant function is defined as:

F (α) =






f(E) if 0 ≤ α < wm

f({e ∈ E : we > α}) if wei+1 ≤ α < wei , i ∈ {1, . . . ,m− 1}
0 if w1 < α

Visualizing a piecewise constant function, where the constant values are
given by f evaluated on Ei for each i

Note, what is depicted may be a game but not a capacity.
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The “integral” in the Choquet integral

We can generalize this to multiple segments of R (for now, take
w ∈ RE

+). The piecewise-constant function is defined as:

F (α) =






f(E) if 0 ≤ α < wm

f({e ∈ E : we > α}) if wei+1 ≤ α < wei , i ∈ {1, . . . ,m− 1}
0 if w1 < α

Visualizing a piecewise constant function, where the constant values are
given by f evaluated on Ei for each i

...
...

0

f({e1})
f({e1,e2})

f({e1,e2,e3})

f({e1,e2,e3,e4})

f({e1,e2,e3,e4,e5})f(E)
f(E\{em})

w(e1)w(e2)w(e3)w(e4)w(e5)w(em)w(em−1)

f(E\{em,em-1})

F (α)

α

Note, what is depicted may be a game but not a capacity.
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The “integral” in the Choquet integral

Now consider the integral, with w ∈ RE
+, and normalized f so that

f(∅) = 0. Recall wm+1
def
= 0.

f̃(w)
def
=

∫ ∞

0
F (α)dα (16.59)

=

∫ ∞

0
f({e ∈ E : we > α})dα (16.60)

=

∫ ∞

wm+1

f({e ∈ E : we > α})dα (16.61)

=
m∑

i=1

∫ wi

wi+1

f({e ∈ E : we > α})dα (16.62)

=
m∑

i=1

∫ wi

wi+1

f(Ei)dα =

m∑

i=1

f(Ei)(wi − wi+1) (16.63)
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The “integral” in the Choquet integral

Now consider the integral, with w ∈ RE
+, and normalized f so that
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def
=

∫ ∞
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The “integral” in the Choquet integral

Now consider the integral, with w ∈ RE
+, and normalized f so that
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The “integral” in the Choquet integral

Now consider the integral, with w ∈ RE
+, and normalized f so that

f(∅) = 0. Recall wm+1
def
= 0.

f̃(w)
def
=

∫ ∞

0
F (α)dα (16.59)

=

∫ ∞

0
f({e ∈ E : we > α})dα (16.60)

=

∫ ∞

wm+1

f({e ∈ E : we > α})dα (16.61)

=

m∑

i=1

∫ wi

wi+1

f({e ∈ E : we > α})dα (16.62)

=

m∑

i=1

∫ wi

wi+1

f(Ei)dα =

m∑

i=1

f(Ei)(wi − wi+1) (16.63)
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The “integral” in the Choquet integral

But we saw before that
∑m

i=1 f(Ei)(wi − wi+1) is just the Lovász
extension of a function f .

Thus, we have the following definition:

Definition 16.5.2

Given w ∈ RE
+, the Lovász extension (equivalently Choquet integral) may

be defined as follows:

f̃(w)
def
=

∫ ∞

0
F (α)dα (16.64)

where the function F is defined as before.

Note that it is not necessary in general to require w ∈ RE
+ (i.e., we

can take w ∈ RE) nor that f be non-negative, but it is a bit more
involved. Above is the simple case.
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But we saw before that
∑m

i=1 f(Ei)(wi − wi+1) is just the Lovász
extension of a function f .

Thus, we have the following definition:
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Given w ∈ RE
+, the Lovász extension (equivalently Choquet integral) may

be defined as follows:

f̃(w)
def
=

∫ ∞

0
F (α)dα (16.64)

where the function F is defined as before.

Note that it is not necessary in general to require w ∈ RE
+ (i.e., we

can take w ∈ RE) nor that f be non-negative, but it is a bit more
involved. Above is the simple case.
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The “integral” in the Choquet integral

But we saw before that
∑m

i=1 f(Ei)(wi − wi+1) is just the Lovász
extension of a function f .

Thus, we have the following definition:

Definition 16.5.2

Given w ∈ RE
+, the Lovász extension (equivalently Choquet integral) may

be defined as follows:

f̃(w)
def
=

∫ ∞

0
F (α)dα (16.64)

where the function F is defined as before.

Note that it is not necessary in general to require w ∈ RE
+ (i.e., we

can take w ∈ RE) nor that f be non-negative, but it is a bit more
involved. Above is the simple case.
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Choquet integral and aggregation

Recall, we want to produce some notion of generalized aggregation
function having the flavor of:

AG(x) =
∑

A⊆E

x(A)wA =
∑

A⊆E

x(A)AG(1A) (16.65)

how does this correspond to Lovász extension?

Let us partition the hypercube [0, 1]m into q polytopes, each defined
by a set of vertices V1,V2, . . . ,Vq.

E.g., for each i, Vi = {1A1 ,1A2 , . . . ,1Ak
} (k vertices) and the

convex hull of Vi defines the ith polytope.

This forms a “triangulation” of the hypercube.

For any x ∈ [0, 1]m there is a (not necessarily unique) V(x) = Vj for
some j such that x ∈ conv(V(x)).
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AG(x) =
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Choquet integral and aggregation

Recall, we want to produce some notion of generalized aggregation
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x(A)AG(1A) (16.65)
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Let us partition the hypercube [0, 1]m into q polytopes, each defined
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Choquet integral and aggregation

For x ∈ [0, 1]m, let us define the (unique) coefficients αx
0(A) and

αx
i (A) so that x can be represented as a weighted combination of

vertices of V(x). Note that many of these coefficient are often zero.

From this, we can define an aggregation function of the form

AG(x)
def
=

∑

A:1A∈V(x)

(
αx
0(A) +

m∑

i=1

αx
i (A)xi

)
AG(1A) (16.66)
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Choquet integral and aggregation

For x ∈ [0, 1]m, let us define the (unique) coefficients αx
0(A) and

αx
i (A) so that x can be represented as a weighted combination of

vertices of V(x). Note that many of these coefficient are often zero.

From this, we can define an aggregation function of the form

AG(x)
def
=

∑

A:1A∈V(x)

(
αx
0(A) +
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Choquet integral and aggregation

We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. I.e., given some permutation σ,
define

conv(Vσ) =
{
x ∈ [0, 1]n|xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(m)

}
(16.67)

Then these m! blocks of the partition are called the canonical
partitions of the hypercube.

With this, we can define {Vi}i as the vertices of conv(Vσ) for each
permutation σ.
In this case, we have:

Proposition 16.5.3

The above linear interpolation in Eqn. (16.66) using the canonical
partition yields the Lovász extension.

So the Lovász extension can be seen as a generalized aggregation
function.
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Choquet integral and aggregation

We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. I.e., given some permutation σ,
define
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{
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}
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Then these m! blocks of the partition are called the canonical
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In this case, we have:
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The above linear interpolation in Eqn. (16.66) using the canonical
partition yields the Lovász extension.

So the Lovász extension can be seen as a generalized aggregation
function.
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With this, we can define {Vi}i as the vertices of conv(Vσ) for each
permutation σ.
In this case, we have:

Proposition 16.5.3

The above linear interpolation in Eqn. (16.66) using the canonical
partition yields the Lovász extension.

So the Lovász extension can be seen as a generalized aggregation
function.
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Lovász extension, defined in multiple ways

As shorthand notation, lets use {w ≥ α} ≡ {e ∈ E : w(e) ≥ α},
called the weak α-sup-level set of w.

A similar definition holds for
{w > α} (called the strong α-sup-level set of w).

Given any w ∈ RE , sort E as w(e1) ≥ w(e2) ≥ · · · ≥ w(em). Also,
w.l.o.g., number elements of w so that w1 ≥ w2 ≥ · · · ≥ wm.

We have already seen how we can define the Lovász extension for
any (not necessarily submodular) function f in the following
equivalent ways:

f̃(w) =
m∑

i=1

w(ei)f(ei|Ei−1) (16.68)

=

m−1∑

i=1

f(Ei)(w(ei)− w(ei+1)) + f(E)w(em)a (16.69)

=

m−1∑

i=1

λif(Ei) (16.70)
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Lovász extension, as integral

Additional ways we can define the Lovász extension for any (not
necessarily submodular) but normalized function f include:

f̃(w) =

m∑

i=1

w(ei)f(ei|Ei−1) (16.71)

=

m−1∑

i=1

f(Ei)(w(ei)− w(ei+1)) + f(E)w(em) (16.72)

=

∫ +∞

min {w1,...,wm}
f({w ≥ α})dα+ f(E)min {w1, . . . , wm}

(16.73)

=

∫ +∞

0
f({w ≥ α})dα+

∫ 0

−∞
[f({w ≥ α})− f(E)]dα

(16.74)
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general Lovász extension, as simple integral

In fact, we have that, given function f , and any w ∈ RE :

f̃(w) =

∫ +∞

−∞
f̂(α)dα (16.75)

where

f̂(α) =

{
f({w ≥ α}) if α >= 0

f({w ≥ α})− f(E) if α < 0
(16.76)

So we can write it as a simple integral over the right function.

These make it easier to see certain properties of the Lovász
extension. But first, we show the above.
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Lovász extension, as integral

To show Eqn. (16.73), first note that the r.h.s. terms are the same
since w(em) = min {w1, . . . , wm}.

Then, consider that, as a function of α, we have

f({w ≥ α}) =






0 if α > w(e1)

f(Ek) if α ∈ (w(ek+1), w(ek)), k ∈ {1, . . . ,m− 1}
f(E) if α < w(em)

(16.77)

we use open intervals since sets of zero measure don’t change
integration.

Inside the integral, then, this recovers Eqn. (16.72).
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Lovász extension, as integral
To show Eqn. (16.74), start w. Eqn. (16.73), note
wm = min {w1, . . . , wm}, take any β ≤ min {0, w1, . . . , wm}, and form:

f̃(w)

=

∫ +∞

wm

f({w ≥ α})dα+ f(E)min {w1, . . . , wm}

=

∫ +∞

β
f({w ≥ α})dα−

∫ wm

β
f({w ≥ α})dα+ f(E)

∫ wm

0
dα

=

∫ +∞

β
f({w ≥ α})dα−

∫ wm

β
f(E)dα+

∫ wm

0
f(E)dα

=

∫ +∞

0
f({w ≥ α})dα+

∫ 0

β
f({w ≥ α})dα−

∫ 0

β
f(E)dα

=

∫ +∞

0
f({w ≥ α})dα+

∫ 0

β
[f({w ≥ α})− f(E)]dα

and then let β → ∞ and we get.

=

∫ +∞

0
f({w ≥ α})dα+

∫ 0

−∞
[f({w ≥ α})− f(E)]dα
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Lovász extension properties
Using the above, have the following (some of which we’ve seen):

Theorem 16.6.1

Let f, g : 2E → R be normalized (f(∅) = g(∅) = 0). Then

1 Superposition of LE operator: Given f and g with Lovász extensions f̃ and
g̃ then f̃ + g̃ is the Lovász extension of f + g and λf̃ is the Lovász
extension of λf for λ ∈ R.

2 If w ∈ RE
+ then f̃(w) =

∫ +∞
0

f({w ≥ α})dα.

3 For w ∈ RE , and α ∈ R, we have f̃(w + α1E) = f̃(w) + αf(E).

4 Positive homogeneity: I.e., f̃(αw) = αf̃(w) for α ≥ 0.

5 For all A ⊆ E, f̃(1A) = f(A).

6 f symmetric as in f(A) = f(E \A), ∀A, then f̃(w) = f̃(−w) (f̃ is even).

7 Given partition E1 ∪ E2 ∪ · · · ∪ Ek of E and w =
∑k

i=1 γi1Ek
with

γ1 ≥ γ2 ≥ · · · ≥ γk, and with E1:i = E1 ∪ E2 ∪ · · · ∪ Ei, then
f̃(w) =

∑k
i=1 γif(E

i|E1:i−1) =
∑k−1

i=1 f(E1:i)(γi − γi+1) + f(E)γk.
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Let f, g : 2E → R be normalized (f(∅) = g(∅) = 0). Then

1 Superposition of LE operator: Given f and g with Lovász extensions f̃ and
g̃ then f̃ + g̃ is the Lovász extension of f + g and λf̃ is the Lovász
extension of λf for λ ∈ R.

2 If w ∈ RE
+ then f̃(w) =

∫ +∞
0

f({w ≥ α})dα.

3 For w ∈ RE , and α ∈ R, we have f̃(w + α1E) = f̃(w) + αf(E).

4 Positive homogeneity: I.e., f̃(αw) = αf̃(w) for α ≥ 0.

5 For all A ⊆ E, f̃(1A) = f(A).

6 f symmetric as in f(A) = f(E \A), ∀A, then f̃(w) = f̃(−w) (f̃ is even).

7 Given partition E1 ∪ E2 ∪ · · · ∪ Ek of E and w =
∑k

i=1 γi1Ek
with

γ1 ≥ γ2 ≥ · · · ≥ γk, and with E1:i = E1 ∪ E2 ∪ · · · ∪ Ei, then
f̃(w) =

∑k
i=1 γif(E

i|E1:i−1) =
∑k−1

i=1 f(E1:i)(γi − γi+1) + f(E)γk.
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Lovász extension properties
Using the above, have the following (some of which we’ve seen):

Theorem 16.6.1

Let f, g : 2E → R be normalized (f(∅) = g(∅) = 0). Then

1 Superposition of LE operator: Given f and g with Lovász extensions f̃ and
g̃ then f̃ + g̃ is the Lovász extension of f + g and λf̃ is the Lovász
extension of λf for λ ∈ R.

2 If w ∈ RE
+ then f̃(w) =

∫ +∞
0

f({w ≥ α})dα.

3 For w ∈ RE , and α ∈ R, we have f̃(w + α1E) = f̃(w) + αf(E).

4 Positive homogeneity: I.e., f̃(αw) = αf̃(w) for α ≥ 0.

5 For all A ⊆ E, f̃(1A) = f(A).

6 f symmetric as in f(A) = f(E \A), ∀A, then f̃(w) = f̃(−w) (f̃ is even).

7 Given partition E1 ∪ E2 ∪ · · · ∪ Ek of E and w =
∑k

i=1 γi1Ek
with

γ1 ≥ γ2 ≥ · · · ≥ γk, and with E1:i = E1 ∪ E2 ∪ · · · ∪ Ei, then
f̃(w) =

∑k
i=1 γif(E

i|E1:i−1) =
∑k−1

i=1 f(E1:i)(γi − γi+1) + f(E)γk.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 16 - May 21st, 2014 F53/61 (pg.199/245)



Min-Norm Point and SFM Lovász extension Choquet Integration Lovász extn., defs/props

Lovász extension properties
Using the above, have the following (some of which we’ve seen):

Theorem 16.6.1

Let f, g : 2E → R be normalized (f(∅) = g(∅) = 0). Then

1 Superposition of LE operator: Given f and g with Lovász extensions f̃ and
g̃ then f̃ + g̃ is the Lovász extension of f + g and λf̃ is the Lovász
extension of λf for λ ∈ R.

2 If w ∈ RE
+ then f̃(w) =

∫ +∞
0

f({w ≥ α})dα.

3 For w ∈ RE , and α ∈ R, we have f̃(w + α1E) = f̃(w) + αf(E).

4 Positive homogeneity: I.e., f̃(αw) = αf̃(w) for α ≥ 0.

5 For all A ⊆ E, f̃(1A) = f(A).

6 f symmetric as in f(A) = f(E \A), ∀A, then f̃(w) = f̃(−w) (f̃ is even).

7 Given partition E1 ∪ E2 ∪ · · · ∪ Ek of E and w =
∑k

i=1 γi1Ek
with

γ1 ≥ γ2 ≥ · · · ≥ γk, and with E1:i = E1 ∪ E2 ∪ · · · ∪ Ei, then
f̃(w) =

∑k
i=1 γif(E

i|E1:i−1) =
∑k−1

i=1 f(E1:i)(γi − γi+1) + f(E)γk.
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Lovász extension properties
Using the above, have the following (some of which we’ve seen):

Theorem 16.6.1

Let f, g : 2E → R be normalized (f(∅) = g(∅) = 0). Then

1 Superposition of LE operator: Given f and g with Lovász extensions f̃ and
g̃ then f̃ + g̃ is the Lovász extension of f + g and λf̃ is the Lovász
extension of λf for λ ∈ R.

2 If w ∈ RE
+ then f̃(w) =

∫ +∞
0

f({w ≥ α})dα.

3 For w ∈ RE , and α ∈ R, we have f̃(w + α1E) = f̃(w) + αf(E).

4 Positive homogeneity: I.e., f̃(αw) = αf̃(w) for α ≥ 0.

5 For all A ⊆ E, f̃(1A) = f(A).

6 f symmetric as in f(A) = f(E \A), ∀A, then f̃(w) = f̃(−w) (f̃ is even).

7 Given partition E1 ∪ E2 ∪ · · · ∪ Ek of E and w =
∑k

i=1 γi1Ek
with

γ1 ≥ γ2 ≥ · · · ≥ γk, and with E1:i = E1 ∪ E2 ∪ · · · ∪ Ei, then
f̃(w) =

∑k
i=1 γif(E

i|E1:i−1) =
∑k−1

i=1 f(E1:i)(γi − γi+1) + f(E)γk.
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Lovász extension properties: ex. property 3

Consider property property 3, for example, which says that
f̃(w + α1E) = f̃(w) + αf(E).

This means that, say when m = 2, that as we move along the line
w1 = w2, the Lovász extension scales linearly.

And if f(E) = 0, then the Lovász extension is constant along the
direction 1E .
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Lovász extension properties: ex. property 3

Consider property property 3, for example, which says that
f̃(w + α1E) = f̃(w) + αf(E).

This means that, say when m = 2, that as we move along the line
w1 = w2, the Lovász extension scales linearly.

And if f(E) = 0, then the Lovász extension is constant along the
direction 1E .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 16 - May 21st, 2014 F54/61 (pg.203/245)



Min-Norm Point and SFM Lovász extension Choquet Integration Lovász extn., defs/props

Lovász extension properties: ex. property 3

Consider property property 3, for example, which says that
f̃(w + α1E) = f̃(w) + αf(E).

This means that, say when m = 2, that as we move along the line
w1 = w2, the Lovász extension scales linearly.

And if f(E) = 0, then the Lovász extension is constant along the
direction 1E .
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Lovász extension properties

Given Eqns. (16.71) through (16.74), most of the above properties
are relatively easy to derive.

For example, if f is symmetric, and since f(E) = f(∅) = 0, we have

f̃(−w)

=

∫ ∞

−∞
f({−w ≥ α})dα =

∫ ∞

−∞
f({w ≤ −α})dα (16.78)

=

∫ ∞

−∞
f({w ≤ α})dα =

∫ ∞

−∞
f({w > α})dα (16.79)

=

∫ ∞

−∞
f({w ≥ α})dα = f̃(w)

(16.80)

the above follows since
∫ ∞
−∞ f(α)dα =

∫ ∞
−∞ f(aα+ b)dα for any b

and a ∈ ±1, and also since f(A) = f(E \A), so
f({w ≤ α}) = f({w > α}).
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Lovász extension properties

Given Eqns. (16.71) through (16.74), most of the above properties
are relatively easy to derive.

For example, if f is symmetric, and since f(E) = f(∅) = 0, we have

f̃(−w)

=

∫ ∞

−∞
f({−w ≥ α})dα =

∫ ∞

−∞
f({w ≤ −α})dα (16.78)

=

∫ ∞

−∞
f({w ≤ α})dα =

∫ ∞

−∞
f({w > α})dα (16.79)

=

∫ ∞

−∞
f({w ≥ α})dα = f̃(w)

(16.80)

the above follows since
∫ ∞
−∞ f(α)dα =

∫ ∞
−∞ f(aα+ b)dα for any b

and a ∈ ±1, and also since f(A) = f(E \A), so
f({w ≤ α}) = f({w > α}).
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Lovász extension properties

Given Eqns. (16.71) through (16.74), most of the above properties
are relatively easy to derive.

For example, if f is symmetric, and since f(E) = f(∅) = 0, we have

f̃(−w) =

∫ ∞

−∞
f({−w ≥ α})dα

=

∫ ∞

−∞
f({w ≤ −α})dα (16.78)

=

∫ ∞

−∞
f({w ≤ α})dα =

∫ ∞

−∞
f({w > α})dα (16.79)

=

∫ ∞

−∞
f({w ≥ α})dα = f̃(w)

(16.80)

the above follows since
∫ ∞
−∞ f(α)dα =

∫ ∞
−∞ f(aα+ b)dα for any b

and a ∈ ±1, and also since f(A) = f(E \A), so
f({w ≤ α}) = f({w > α}).
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Lovász extension properties

Given Eqns. (16.71) through (16.74), most of the above properties
are relatively easy to derive.

For example, if f is symmetric, and since f(E) = f(∅) = 0, we have

f̃(−w) =

∫ ∞

−∞
f({−w ≥ α})dα =

∫ ∞

−∞
f({w ≤ −α})dα (16.78)

=

∫ ∞

−∞
f({w ≤ α})dα =

∫ ∞

−∞
f({w > α})dα (16.79)

=

∫ ∞

−∞
f({w ≥ α})dα = f̃(w)

(16.80)

the above follows since
∫ ∞
−∞ f(α)dα =

∫ ∞
−∞ f(aα+ b)dα for any b

and a ∈ ±1, and also since f(A) = f(E \A), so
f({w ≤ α}) = f({w > α}).
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Lovász extension properties

Given Eqns. (16.71) through (16.74), most of the above properties
are relatively easy to derive.

For example, if f is symmetric, and since f(E) = f(∅) = 0, we have

f̃(−w) =

∫ ∞

−∞
f({−w ≥ α})dα =

∫ ∞

−∞
f({w ≤ −α})dα (16.78)

=

∫ ∞

−∞
f({w ≤ α})dα

=

∫ ∞

−∞
f({w > α})dα (16.79)

=

∫ ∞

−∞
f({w ≥ α})dα = f̃(w)

(16.80)

the above follows since
∫ ∞
−∞ f(α)dα =

∫ ∞
−∞ f(aα+ b)dα for any b

and a ∈ ±1, and also since f(A) = f(E \A), so
f({w ≤ α}) = f({w > α}).
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Lovász extension properties

Given Eqns. (16.71) through (16.74), most of the above properties
are relatively easy to derive.

For example, if f is symmetric, and since f(E) = f(∅) = 0, we have

f̃(−w) =

∫ ∞

−∞
f({−w ≥ α})dα =

∫ ∞

−∞
f({w ≤ −α})dα (16.78)

=

∫ ∞

−∞
f({w ≤ α})dα =

∫ ∞

−∞
f({w > α})dα (16.79)

=

∫ ∞

−∞
f({w ≥ α})dα = f̃(w)

(16.80)

the above follows since
∫ ∞
−∞ f(α)dα =

∫ ∞
−∞ f(aα+ b)dα for any b

and a ∈ ±1, and also since f(A) = f(E \A), so
f({w ≤ α}) = f({w > α}).
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Lovász extension properties

Given Eqns. (16.71) through (16.74), most of the above properties
are relatively easy to derive.

For example, if f is symmetric, and since f(E) = f(∅) = 0, we have

f̃(−w) =

∫ ∞

−∞
f({−w ≥ α})dα =

∫ ∞

−∞
f({w ≤ −α})dα (16.78)

=

∫ ∞

−∞
f({w ≤ α})dα =

∫ ∞

−∞
f({w > α})dα (16.79)

=

∫ ∞

−∞
f({w ≥ α})dα

= f̃(w)

(16.80)

the above follows since
∫ ∞
−∞ f(α)dα =

∫ ∞
−∞ f(aα+ b)dα for any b

and a ∈ ±1, and also since f(A) = f(E \A), so
f({w ≤ α}) = f({w > α}).
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Lovász extension properties

Given Eqns. (16.71) through (16.74), most of the above properties
are relatively easy to derive.

For example, if f is symmetric, and since f(E) = f(∅) = 0, we have

f̃(−w) =

∫ ∞

−∞
f({−w ≥ α})dα =

∫ ∞

−∞
f({w ≤ −α})dα (16.78)

=

∫ ∞

−∞
f({w ≤ α})dα =

∫ ∞

−∞
f({w > α})dα (16.79)

=

∫ ∞

−∞
f({w ≥ α})dα = f̃(w) (16.80)

the above follows since
∫ ∞
−∞ f(α)dα =

∫ ∞
−∞ f(aα+ b)dα for any b

and a ∈ ±1, and also since f(A) = f(E \A), so
f({w ≤ α}) = f({w > α}).
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Lovász extension properties

Given Eqns. (16.71) through (16.74), most of the above properties
are relatively easy to derive.

For example, if f is symmetric, and since f(E) = f(∅) = 0, we have

f̃(−w) =

∫ ∞

−∞
f({−w ≥ α})dα =

∫ ∞

−∞
f({w ≤ −α})dα (16.78)

=

∫ ∞

−∞
f({w ≤ α})dα =

∫ ∞

−∞
f({w > α})dα (16.79)

=

∫ ∞

−∞
f({w ≥ α})dα = f̃(w) (16.80)

the above follows since
∫ ∞
−∞ f(α)dα =

∫ ∞
−∞ f(aα+ b)dα for any b

and a ∈ ±1, and also since f(A) = f(E \A), so
f({w ≤ α}) = f({w > α}).
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Lovász extension, expected value of random variable

Recall, for w ∈ R+, we have f̃(w) =
∫ ∞
0 f({w ≥ α})dα

Since f({w ≥ α}) = 0 for α > w1, we have for w ∈ R+, we have
f̃(w) =

∫ w1

0 f({w ≥ α})dα
For w ∈ [0, 1]m, then f̃(w) =

∫ 1
0 f({w ≥ α})dα since

f({w ≥ α}) = 0 for 1 ≥ α > w1.

Consider α as a uniform random variable on [0, 1] and let h(α) be a
funciton of α. Then the expected value E[f(α)] =

∫ 1
0 h(α)dα.

Hence, for w ∈ [0, 1]m, we can also define the Lovász extension as

f̃(w) = E[f({w ≥ α})] = E[f(e ∈ E : w(ei) ≥ α)] (16.81)

where α is uniform random variable in [0, 1].

This is very useful for showing results for various randomized
rounding schemes when solving submodular optimization problems
subject to constraints via relaxations to convex optimization
problems subject to linear constraints.
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Lovász extension, expected value of random variable

Recall, for w ∈ R+, we have f̃(w) =
∫ ∞
0 f({w ≥ α})dα

Since f({w ≥ α}) = 0 for α > w1, we have for w ∈ R+, we have
f̃(w) =

∫ w1

0 f({w ≥ α})dα

For w ∈ [0, 1]m, then f̃(w) =
∫ 1
0 f({w ≥ α})dα since

f({w ≥ α}) = 0 for 1 ≥ α > w1.

Consider α as a uniform random variable on [0, 1] and let h(α) be a
funciton of α. Then the expected value E[f(α)] =

∫ 1
0 h(α)dα.

Hence, for w ∈ [0, 1]m, we can also define the Lovász extension as

f̃(w) = E[f({w ≥ α})] = E[f(e ∈ E : w(ei) ≥ α)] (16.81)

where α is uniform random variable in [0, 1].

This is very useful for showing results for various randomized
rounding schemes when solving submodular optimization problems
subject to constraints via relaxations to convex optimization
problems subject to linear constraints.
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Lovász extension, expected value of random variable

Recall, for w ∈ R+, we have f̃(w) =
∫ ∞
0 f({w ≥ α})dα

Since f({w ≥ α}) = 0 for α > w1, we have for w ∈ R+, we have
f̃(w) =

∫ w1

0 f({w ≥ α})dα
For w ∈ [0, 1]m, then f̃(w) =

∫ 1
0 f({w ≥ α})dα since

f({w ≥ α}) = 0 for 1 ≥ α > w1.

Consider α as a uniform random variable on [0, 1] and let h(α) be a
funciton of α. Then the expected value E[f(α)] =

∫ 1
0 h(α)dα.

Hence, for w ∈ [0, 1]m, we can also define the Lovász extension as

f̃(w) = E[f({w ≥ α})] = E[f(e ∈ E : w(ei) ≥ α)] (16.81)

where α is uniform random variable in [0, 1].

This is very useful for showing results for various randomized
rounding schemes when solving submodular optimization problems
subject to constraints via relaxations to convex optimization
problems subject to linear constraints.
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Lovász extension, expected value of random variable

Recall, for w ∈ R+, we have f̃(w) =
∫ ∞
0 f({w ≥ α})dα

Since f({w ≥ α}) = 0 for α > w1, we have for w ∈ R+, we have
f̃(w) =

∫ w1

0 f({w ≥ α})dα
For w ∈ [0, 1]m, then f̃(w) =

∫ 1
0 f({w ≥ α})dα since

f({w ≥ α}) = 0 for 1 ≥ α > w1.

Consider α as a uniform random variable on [0, 1] and let h(α) be a
funciton of α. Then the expected value E[f(α)] =

∫ 1
0 h(α)dα.

Hence, for w ∈ [0, 1]m, we can also define the Lovász extension as

f̃(w) = E[f({w ≥ α})] = E[f(e ∈ E : w(ei) ≥ α)] (16.81)

where α is uniform random variable in [0, 1].

This is very useful for showing results for various randomized
rounding schemes when solving submodular optimization problems
subject to constraints via relaxations to convex optimization
problems subject to linear constraints.
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Lovász extension, expected value of random variable

Recall, for w ∈ R+, we have f̃(w) =
∫ ∞
0 f({w ≥ α})dα

Since f({w ≥ α}) = 0 for α > w1, we have for w ∈ R+, we have
f̃(w) =

∫ w1

0 f({w ≥ α})dα
For w ∈ [0, 1]m, then f̃(w) =

∫ 1
0 f({w ≥ α})dα since

f({w ≥ α}) = 0 for 1 ≥ α > w1.

Consider α as a uniform random variable on [0, 1] and let h(α) be a
funciton of α. Then the expected value E[f(α)] =

∫ 1
0 h(α)dα.

Hence, for w ∈ [0, 1]m, we can also define the Lovász extension as

f̃(w) = E[f({w ≥ α})] = E[f(e ∈ E : w(ei) ≥ α)] (16.81)

where α is uniform random variable in [0, 1].

This is very useful for showing results for various randomized
rounding schemes when solving submodular optimization problems
subject to constraints via relaxations to convex optimization
problems subject to linear constraints.
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Lovász extension, expected value of random variable

Recall, for w ∈ R+, we have f̃(w) =
∫ ∞
0 f({w ≥ α})dα

Since f({w ≥ α}) = 0 for α > w1, we have for w ∈ R+, we have
f̃(w) =

∫ w1

0 f({w ≥ α})dα
For w ∈ [0, 1]m, then f̃(w) =

∫ 1
0 f({w ≥ α})dα since

f({w ≥ α}) = 0 for 1 ≥ α > w1.

Consider α as a uniform random variable on [0, 1] and let h(α) be a
funciton of α. Then the expected value E[f(α)] =

∫ 1
0 h(α)dα.

Hence, for w ∈ [0, 1]m, we can also define the Lovász extension as

f̃(w) = E[f({w ≥ α})] = E[f(e ∈ E : w(ei) ≥ α)] (16.81)

where α is uniform random variable in [0, 1].

This is very useful for showing results for various randomized
rounding schemes when solving submodular optimization problems
subject to constraints via relaxations to convex optimization
problems subject to linear constraints.
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Lovász extension, and polynomial time SFM

For a long time, it was not known if general purpose submodular
function minimization was doable in polynomial time.

This was answered in the early 1980s via the help of the Lovász
extension.

The convexity of the Lovász extension, the ease of minimizing
convex functions, and the fact that we can recover f from f̃ via
f(A) = f̃(1A) corresponds to why SFM is possible in polynomial
time (which was first shown by Grötschel, Lovász, and Schrijver in
1988 as part of their Ellipsoid method.
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f(A) = f̃(1A) corresponds to why SFM is possible in polynomial
time (which was first shown by Grötschel, Lovász, and Schrijver in
1988 as part of their Ellipsoid method.
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Lovász extension, and polynomial time SFM
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This was answered in the early 1980s via the help of the Lovász
extension.

The convexity of the Lovász extension, the ease of minimizing
convex functions, and the fact that we can recover f from f̃ via
f(A) = f̃(1A) corresponds to why SFM is possible in polynomial
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Minimizing f̃ vs. minimizing f

In fact, we have:

Theorem 16.6.2

Let f be submodular and f̃ be its Lovász extension. Then
min {f(A)|A ⊆ E} = minw∈{0,1}E f̃(w) = minw∈[0,1]E f̃(w).

Proof.

First, since f̃(1A) = f(A), ∀A ⊆ V , we clearly have
min {f(A)|A ⊆ V } = minw∈{0,1}E f̃(w) ≥ minw∈[0,1]E f̃(w).

Next, consider any w ∈ [0, 1]E , sort elements E = {e1, . . . , em} as
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), define Ei = {e1, . . . , ei}, and define
λm = w(em) and λi = w(ei)− w(ei+1) for i ∈ {1, . . . ,m− 1}.
Then, as we have seen, w =

∑
i λi1Ei and λi ≥ 0.

Also,
∑

i λi = w(e1) ≤ 1.

. . .
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Minimizing f̃ vs. minimizing f

In fact, we have:
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Let f be submodular and f̃ be its Lovász extension. Then
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∑
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∑

i λi = w(e1) ≤ 1.
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Minimizing f̃ vs. minimizing f

In fact, we have:

Theorem 16.6.2

Let f be submodular and f̃ be its Lovász extension. Then
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∑
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Minimizing f̃ vs. minimizing f

In fact, we have:

Theorem 16.6.2

Let f be submodular and f̃ be its Lovász extension. Then
min {f(A)|A ⊆ E} = minw∈{0,1}E f̃(w) = minw∈[0,1]E f̃(w).

Proof.
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w(e1) ≥ w(e2) ≥ · · · ≥ w(em), define Ei = {e1, . . . , ei}, and define
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Minimizing f̃ vs. minimizing f

In fact, we have:

Theorem 16.6.2

Let f be submodular and f̃ be its Lovász extension. Then
min {f(A)|A ⊆ E} = minw∈{0,1}E f̃(w) = minw∈[0,1]E f̃(w).

Proof.

First, since f̃(1A) = f(A), ∀A ⊆ V , we clearly have
min {f(A)|A ⊆ V } = minw∈{0,1}E f̃(w) ≥ minw∈[0,1]E f̃(w).

Next, consider any w ∈ [0, 1]E , sort elements E = {e1, . . . , em} as
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), define Ei = {e1, . . . , ei}, and define
λm = w(em) and λi = w(ei)− w(ei+1) for i ∈ {1, . . . ,m− 1}.
Then, as we have seen, w =

∑
i λi1Ei and λi ≥ 0.

Also,
∑

i λi = w(e1) ≤ 1.
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Minimizing f̃ vs. minimizing f

. . . cont. proof of Thm. 16.6.2.

Note that since f(∅) = 0, min {f(A)|A ⊆ E} ≤ 0.

Then we have

f̃(w) =

∫ 1

0
f({w ≥ α})dα =

m∑

i=1

λif(Ei) (16.82)

≥
m∑

i=1

λi min
A⊆E

f(A) (16.83)

≥ min
A⊆E

f(A) (16.84)

Thus, min {f(A)|A ⊆ E} = minw∈[0,1]E f̃(w).
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Minimizing f̃ vs. minimizing f

. . . cont. proof of Thm. 16.6.2.

Note that since f(∅) = 0, min {f(A)|A ⊆ E} ≤ 0.

Then we have

f̃(w) =

∫ 1

0
f({w ≥ α})dα =
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λif(Ei) (16.82)

≥
m∑
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λi min
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f(A) (16.83)

≥ min
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f(A) (16.84)

Thus, min {f(A)|A ⊆ E} = minw∈[0,1]E f̃(w).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 16 - May 21st, 2014 F59/61 (pg.229/245)



Min-Norm Point and SFM Lovász extension Choquet Integration Lovász extn., defs/props

Minimizing f̃ vs. minimizing f

. . . cont. proof of Thm. 16.6.2.

Note that since f(∅) = 0, min {f(A)|A ⊆ E} ≤ 0.

Then we have

f̃(w) =

∫ 1

0
f({w ≥ α})dα =

m∑

i=1

λif(Ei) (16.82)

≥
m∑

i=1

λi min
A⊆E

f(A) (16.83)

≥ min
A⊆E

f(A) (16.84)

Thus, min {f(A)|A ⊆ E} = minw∈[0,1]E f̃(w).
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Other minimizers based on min of f̃

Let w∗ ∈ argmin
{
f̃(w)|w ∈ [0, 1]E

}
and let

A∗ ∈ argmin {f(A)|A ⊆ V }.

Previous theorem states that f̃(w∗) = f(A∗).

Let λ∗
i be the function weights and E∗

i be the sets associated with
w∗. From previous theorem, we have

f̃(w∗) =
∑

i

λ∗
i f(E

∗
i ) = f(A∗) = min {f(A)|A ⊆ E} (16.85)

and that f(A∗) ≤ f(E∗
i ), ∀i, and that f(A∗) ≤ 0, and

∑
i λi ≤ 1.

Thus, since w∗ ∈ [0, 1]E , each 0 ≤ λ∗
i ≤ 1, we have for all i such

that λ∗
i > 0,

f(E∗
i ) = f(A∗) (16.86)

meaning such E∗
i are also minimizers of f , and

∑
i λi = 1.

Hence w∗ is in convex hull of incidence vectors of minimizers of f .
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Other minimizers based on min of f̃

Let w∗ ∈ argmin
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Other minimizers based on min of f̃

Let w∗ ∈ argmin
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f̃(w)|w ∈ [0, 1]E

}
and let

A∗ ∈ argmin {f(A)|A ⊆ V }.
Previous theorem states that f̃(w∗) = f(A∗).

Let λ∗
i be the function weights and E∗

i be the sets associated with
w∗. From previous theorem, we have
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λ∗
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and that f(A∗) ≤ f(E∗
i ), ∀i, and that f(A∗) ≤ 0,
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that λ∗
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meaning such E∗
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}
and let
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i be the sets associated with
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Other minimizers based on min of f̃

Let w∗ ∈ argmin
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f̃(w)|w ∈ [0, 1]E

}
and let

A∗ ∈ argmin {f(A)|A ⊆ V }.
Previous theorem states that f̃(w∗) = f(A∗).

Let λ∗
i be the function weights and E∗

i be the sets associated with
w∗. From previous theorem, we have

f̃(w∗) =
∑

i

λ∗
i f(E

∗
i ) = f(A∗) = min {f(A)|A ⊆ E} (16.85)

and that f(A∗) ≤ f(E∗
i ), ∀i, and that f(A∗) ≤ 0, and

∑
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Thus, since w∗ ∈ [0, 1]E , each 0 ≤ λ∗
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meaning such E∗
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A bit more on level sets being minimizers

f is normalized f(∅) = 0, so minimizer is ≤ 0.

We know that f(E∗
i ) ≥ f(A∗) for all i, and f(A∗) =

∑
i λif(E

∗
i ).

If f(A∗) = 0, then we must have f(E∗
i ) = 0 for any i such that

λi > 0. Otherwise, assume f(A∗) < 0.

Suppose there exists an i such that f(E∗
i ) > f(A∗).

Then we have

f(A∗) =
∑

i

λif(E
∗
i ) >

∑

i

λif(A
∗) = f(A∗)

∑

i

λi (16.87)

and since f(A∗) < 0, this means that
∑

i λi > 1 which is a
contradiction.

Hence, must have f(E∗
i ) = f(A∗) for all i.

Hence,
∑

i λi = 1 since f(A∗) =
∑

i λif(A
∗).
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A bit more on level sets being minimizers
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We know that f(E∗
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and since f(A∗) < 0, this means that
∑

i λi > 1 which is a
contradiction.
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Hence,
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i λif(A
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A bit more on level sets being minimizers

f is normalized f(∅) = 0, so minimizer is ≤ 0.

We know that f(E∗
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and since f(A∗) < 0, this means that
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Hence,
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i λif(A
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A bit more on level sets being minimizers

f is normalized f(∅) = 0, so minimizer is ≤ 0.

We know that f(E∗
i ) ≥ f(A∗) for all i, and f(A∗) =

∑
i λif(E

∗
i ).

If f(A∗) = 0, then we must have f(E∗
i ) = 0 for any i such that

λi > 0. Otherwise, assume f(A∗) < 0.

Suppose there exists an i such that f(E∗
i ) > f(A∗).

Then we have

f(A∗) =
∑

i

λif(E
∗
i ) >

∑

i

λif(A
∗) = f(A∗)

∑

i

λi (16.87)
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contradiction.

Hence, must have f(E∗
i ) = f(A∗) for all i.

Hence,
∑

i λi = 1 since f(A∗) =
∑

i λif(A
∗).
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