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Logistics Review

Cumulative Outstanding Reading

Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969,
Choquet-1955, Grabisch/Marichal/Mesiar/Pap “Aggregation
Functions”, Lovász-1983, Bach-2011.

Read Tom McCormick’s overview paper on SFM http://people.

commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

Read chapters 1 - 4 from Fujishige book.

Matroid properties http:

//www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf

Read lecture 14 slides on lattice theory at our web page (http://j.
ee.washington.edu/~bilmes/classes/ee596b_spring_2014/)
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Logistics Review

Announcements, Assignments, and Reminders

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics Review

Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

L9: From Matroid Polytopes to
Polymatroids.

L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, polymatroids
and entropic Venn diagrams, exchange
capacity,

L16: minimum norm point algorithm and
the lattice of minimizers of a submodular
function, Lovasz extension

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Logistics Review

Summary of supp, sat, and dep

For x ∈ Pf , supp(x) = {e : x(e) 6= 0} ⊆ sat(x)

For x ∈ Pf , sat(x) (span, closure) is the maximal saturated (x-tight)
set w.r.t. x. I.e., sat(x) = {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf}. That is,

cl(x)
def
= sat(x) ,

⋃
{A : A ∈ D(x)} (16.29)

=
⋃
{A : A ⊆ E, x(A) = f(A)} (16.30)

= {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf} (16.31)

For e ∈ sat(x), we have dep(x, e) ⊆ sat(x) (fundamental circuit) is the
minimal (common) saturated (x-tight) set w.r.t. x containing e. I.e.,

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
(16.32)
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Logistics Review

A polymatroid function’s polyhedron is a polymatroid.

Theorem 16.2.1

Let f be a submodular function defined on subsets of E. For any
x ∈ RE , we have:

rank(x) = max (y(E) : y ≤ x, y ∈ Pf ) = min (x(A) + f(E \A) : A ⊆ E)
(16.5)

If we take x to be zero, we get:

Corollary 16.2.2

Let f be a submodular function defined on subsets of E. x ∈ RE , we
have:

rank(0) = max (y(E) : y ≤ 0, y ∈ Pf ) = min (f(A) : A ⊆ E) (16.6)
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Logistics Review

Multiple Polytopes associated with f

PfP+
f

Bf

P+
f = Pf ∩

{
x ∈ RE : x ≥ 0

}
(16.5)

Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(16.6)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(16.7)
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Logistics Review

Min-Norm Point: Definition

Restating what we saw before, we have:

max {y(E)|y ∈ Pf , y ≤ 0} = min {f(X)|X ⊆ V } (16.12)

Consider the optimization:

minimize ‖x‖22 (16.13a)

subject to x ∈ Bf (16.13b)

where Bf is the base polytope of submodular f , and
‖x‖22 =

∑
e∈E x(e)

2 is the squared 2-norm. Let x∗ be the optimal
solution.

Note, x∗ is the unique optimal solution since we have a strictly
convex objective over a set of convex constraints.

x∗ is called the minimum norm point of the base polytope.
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Logistics Review

Min-Norm Point: Examples

Pf Pf Pf

Pf

Pf

Pf
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Min-Norm Point and SFM Lovász extension

Min-Norm Point and Submodular Function Minimization

Given optimal solution x∗ to the above, consider the quantities

y∗ = x∗ ∧ 0 = (min(x∗(e), 0)|e ∈ E) (16.1)

A− = {e : x∗(e) < 0} (16.2)

A0 = {e : x∗(e) ≤ 0} (16.3)

Thus, we immediately have that:

A− ⊆ A0 (16.4)

and that

x∗(A−) = x∗(A0) = y∗(A−) = y∗(A0) (16.5)

It turns out, these quantities will solve the submodular function
minimization problem, as we now show.

The proof is nice since it uses the tools we’ve been recently
developing.
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Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

Theorem 16.3.1

Let y∗, A−, and A0 be as given. Then y∗ is a maximizer of the l.h.s. of
Eqn. (15.12). Moreover, A− is the unique minimal minimizer of f and
A0 is the unique maximal minimizer of f .

Proof.

First note, since x∗ ∈ Bf , we have x∗(E) = f(E), meaning
sat(x∗) = E. Thus, we can consider any e ∈ E within dep(x∗, e).

Consider any pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−. Then
x∗(e) < 0, and ∃α > 0 s.t. x∗ + α1e − α1e′ ∈ Pf .

We have x∗(E) = f(E) and x∗ is minimum in l2 sense. We have
(x∗ + α1e − α1e′) ∈ Pf , and in fact

(x∗ + α1e − α1e′)(E) = x∗(E) + α− α = f(E) (16.6)

so x∗ + α1e − α1e′ ∈ Bf also.

. . .
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Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 16.3.1 cont.

Then (x∗ + α1e − α1e′)(E)
= x∗(E \ {e, e′}) + (x∗(e) + α)︸ ︷︷ ︸

x∗new(e)

+(x∗(e′)− α)︸ ︷︷ ︸
x∗new(e

′)

= f(E).

Minimality of x∗ ∈ Bf in l2 sense requires that, with such an α > 0,(
x∗(e)

)2
+
(
x∗(e′)

)2
<
(
x∗new(e)

)2
+
(
x∗new(e

′)
)2

Given that e ∈ A−, x∗(e) < 0. Thus, if x∗(e′) > 0, we could have
(x∗(e) + α)2 + (x∗(e′)− α)2 < (x∗(e))2 + (x∗(e′))2, contradicting
the optimality of x∗.

If x∗(e′) = 0, we would have (x∗(e)+α)2 +(α)2 < (x∗(e))2, for any
0 < α < |x∗(e)| (Exercise:), again contradicting the optimality of x∗.

Thus, we must have x∗(e′) < 0 (strict negativity).

. . .
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Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 16.3.1 cont.

Thus, for a pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−, we have
x(e′) < 0 and hence e′ ∈ A−.

Hence, ∀e ∈ A−, we have dep(x∗, e) ⊆ A−.

A very similar argument can show that, ∀e ∈ A0, we have
dep(x∗, e) ⊆ A0.

. . .
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Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 16.3.1 cont.

Therefore, we have ∪e∈A− dep(x∗, e) = A− and
∪e∈A0 dep(x

∗, e) = A0

Ie., {dep(x∗, e)}e∈A− is cover for A−, as is {dep(x∗, e)}e∈A0
for A0.

dep(x∗, e) is minimal tight set containing e, meaning
x∗(dep(x∗, e)) = f(dep(x∗, e)), and since tight sets are closed
under union, we have that A− and A0 are also tight, meaning:

x∗(A−) = f(A−) (16.7)

x∗(A0) = f(A0) (16.8)

x∗(A−) = x∗(A0) = y∗(E) = y∗(A0) + y∗(E \A0)︸ ︷︷ ︸
=0

(16.9)

and therefore, all together we have

f(A−) = f(A0) = x∗(A−) = x∗(A0) = y∗(E) (16.10)
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Now, y∗ is feasible for the l.h.s. of Eqn. (15.12).

This follows since,
we have y∗ = x∗ ∧ 0 ≤ 0, and since x∗ ∈ Bf ⊂ Pf , and y∗ ≤ x∗ and
Pf is down-closed, we have that y∗ ∈ Pf .

Also, for any y ∈ Pf with y ≤ 0 and for any X ⊆ E, we have
y(E) ≤ y(X) ≤ f(X).

Hence, we have found a feasible for l.h.s. of Eqn. (15.12), y∗ ≤ 0,
y∗ ∈ Pf , so y∗(E) ≤ f(X) for all X.

So y∗(E) ≤ min {f(X)|X ⊆ V }.
Considering Eqn. (16.7), we have found sets A− and A0 with
tightness in Eqn. (15.12), meaning y∗(E) = f(A−) = f(A0).

Hence, y∗ is a maximizer of l.h.s. of Eqn. (15.12), and A− and A0

are minimizers of f .

. . .
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Now, for any X ⊂ A−, we have

f(X) ≥ x∗(X) > x∗(A−) = f(A−) (16.11)

And for any X ⊃ A0, we have

f(X) ≥ x∗(X) > x∗(A0) = f(A0) (16.12)

Hence, A− must be the unique minimal minimizer of f , and A0 is
the unique maximal minimizer of f .
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Min-Norm Point and SFM

So, if we have a procedure to compute the min-norm point
computation, we can solve SFM.

Nice thing about previous proof is that it uses both expressions for
dep for different purposes.

This was discovered by Fujishige (in fact the proof above is an
expanded version of the one found in the book).

An algorithm (by F. Wolfe) can find this min-norm point, essentially
an active-set procedure for quadratic programming. It uses
Edmonds’s greedy algorithm to make it efficient.

This is currently the best practical algorithm for general purpose
submodular function minimization.

But its underlying lower-bound complexity is unknown, although in
practice its estimated empirical complexity runs anywhere from
O(n3) to O(n4.5) or so (see Jegelka, Lin, Bilmes (NIPS 2011)).
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Min-Norm Point and SFM Lovász extension

Min-norm point and other minimizers of f

Recall, that the set of minimizers of f forms a lattice.

In fact, with x∗ the min-norm point, and A− and A0 as defined
above, we have the following theorem:

Theorem 16.3.2

Let A ⊆ E be any minimizer of submodular f , and let x∗ be the
minimum-norm point. Then A has the form:

A = A− ∪
⋃

a∈Am

dep(x∗, a) (16.13)

for some set Am ⊆ A0 \A−.
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Min-norm point and other minimizers of f

proof of Thm. 16.3.2.

If A is a minimizer, then A− ⊆ A ⊆ A0, and f(A) = y∗(E) is the
minimum valuation of f .

But x∗ ∈ Pf , so x∗(A) ≤ f(A) and f(A) = x∗(A−) ≤ x∗(A) (or
alternatively, just note that x∗(A0 \A) = 0).

Hence, x∗(A) = x∗(A−) = f(A) so that A is also a tight set for x∗.

For any a ∈ A, A is a tight set containing a, and dep(x∗, a) is the
minimal tight containing a.

Hence, for any a ∈ A, dep(x∗, a) ⊆ A.

This means that
⋃

a∈A dep(x∗, a) = A.

Since A− ⊆ A ⊆ A0, then ∃Am ⊆ A \A− such that

A =
⋃

a∈A−

dep(x∗, a) ∪
⋃

a∈Am

dep(x∗, a) = A− ∪
⋃

a∈Am

dep(x∗, a)
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But x∗ ∈ Pf , so x∗(A) ≤ f(A) and f(A) = x∗(A−) ≤ x∗(A) (or
alternatively, just note that x∗(A0 \A) = 0).

Hence, x∗(A) = x∗(A−) = f(A) so that A is also a tight set for x∗.

For any a ∈ A, A is a tight set containing a, and dep(x∗, a) is the
minimal tight containing a.

Hence, for any a ∈ A, dep(x∗, a) ⊆ A.

This means that
⋃

a∈A dep(x∗, a) = A.

Since A− ⊆ A ⊆ A0, then ∃Am ⊆ A \A− such that

A =
⋃

a∈A−

dep(x∗, a) ∪
⋃

a∈Am

dep(x∗, a) = A− ∪
⋃

a∈Am

dep(x∗, a)
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Min-Norm Point and SFM Lovász extension

On a unique minimizer f

Note that if f(e|A) > 0, ∀A ⊆ E and e ∈ E \A, then we have
A− = A0 (there is one unique minimizer).

On the other hand, if A− = A0, it does not imply f(e|A) > 0 for all
A ⊆ E \ {e}.
If A− = A0 then certainly f(e|A0) > 0 for e ∈ E \A0 and
−f(e|A0 \ {e}) > 0 for all e ∈ A0.
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Min-Norm Point and SFM Lovász extension

Review

The next slide comes from lecture 12.
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Min-Norm Point and SFM Lovász extension

Polymatroidal polyhedron and greedy

Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem ??)

Theorem 16.4.1

If f : 2E → R+ is given, and P is a polytope in RE
+ of the form

P =
{
x ∈ RE

+ : x(A) ≤ f(A),∀A ⊆ E
}

, then the greedy solution to the
problem max(wx : x ∈ P ) is ∀w optimum iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).
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Min-Norm Point and SFM Lovász extension

Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (16.14a)
subject to x ∈ Pf (16.14b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large.

Hence, assume w ∈ RE
+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem 15.5.2, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE
+,

maximize wᵀx (16.15a)
subject to x ∈ Bf (16.15b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .
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Min-Norm Point and SFM Lovász extension

A continuous extension of f

Consider again optimization problem. Given w ∈ RE ,

maximize wᵀx (16.16a)
subject to x ∈ Pf (16.16b)

We may consider this optimization problem a function f̃ : RE → R
of w ∈ RE , defined as:

f̃(w) = max(wx : x ∈ Pf ) (16.17)

Hence, for any w, from the above theorem, we can compute the
value of this function using the greedy algorithm (after of course
checking for w ∈ RE

+).
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A continuous extension of f

Consider again optimization problem. Given w ∈ RE ,

maximize wᵀx (16.16a)
subject to x ∈ Pf (16.16b)

We may consider this optimization problem a function f̃ : RE → R
of w ∈ RE , defined as:

f̃(w) = max(wx : x ∈ Pf ) (16.17)

Hence, for any w, from the above theorem, we can compute the
value of this function using the greedy algorithm (after of course
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A continuous extension of submodular f

That is, given a submodular function f , a w ∈ RE , and defining
Ei = {e1, e2, . . . , ei} and where we choose the element order
(e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), we have

f̃(w)

= max(wx : x ∈ Pf ) (16.18)

=
m∑
i=1

w(ei)f(ei|Ei−1) (16.19)

=
m∑
i=1

w(ei)(f(Ei)− f(Ei−1)) (16.20)

= w(em)f(Em) +
m−1∑
i=1

(w(ei)− w(ei+1))f(Ei) (16.21)

We say that ∅ , E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain
based on w.
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A continuous extension of f

Definition of the continuous extension, once again, for reference:

f̃(w) = max(wx : x ∈ Pf ) (16.22)

Therefore, if f is a submodular function, we can write

f̃(w)

= w(em)f(Em) +

m−1∑
i=1

(w(ei)− w(ei+1))f(Ei) (16.23)

=

m∑
i=1

λif(Ei) (16.24)

where λm = w(em) and otherwise λi = w(ei)− w(ei+1), where the
elements are sorted according to w as before.

From convex analysis, we know f̃(w) = max(wx : x ∈ P ) is always
convex in w for any set P ⊆ RE , since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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where λm = w(em) and otherwise λi = w(ei)− w(ei+1), where the
elements are sorted according to w as before.

From convex analysis, we know f̃(w) = max(wx : x ∈ P ) is always
convex in w for any set P ⊆ RE , since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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Min-Norm Point and SFM Lovász extension

An extension of f

Recall, for any such w ∈ RE , we have


w1

w2

...
wn

 =
(
w1 − w2

)︸ ︷︷ ︸
λ1


1
0
...
0

+
(
w2 − w3

)︸ ︷︷ ︸
λ2


1
1
0
...
0

+

· · ·+
(
wn−1 − wn

)︸ ︷︷ ︸
λm−1


1
1
...
1
0

+
(
wm
)︸ ︷︷ ︸

λm


1
1
...
1
1

 (16.25)

If we take w in decreasing order, then each coefficient of the vectors
is non-negative (except possibly the last one, λm = wm).
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Min-Norm Point and SFM Lovász extension

An extension of f
Define sets Ei based on this decreasing order of w as follows, for
i = 0, . . . , n

Ei
def
= {e1, e2, . . . , ei} (16.26)

Note that

1E0 =


0
0
...
0

 ,1E1 =


1
0
0
...
0

 , . . . ,1E`
=



1
`×

1
...
1
0
(n− `)×0

...
0


, etc.

Hence, from the previous and current slide, we have
w =

∑m
i=1 λi1Ei
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Min-Norm Point and SFM Lovász extension

From f̃ back to f , even when f is not submodular

From the continuous f̃ , we can recover f(A) for any A ⊆ V .

Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (16.27)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̃(w)

=

m∑
i=1

λif(Ei) = w(em)f(Em) +

m−1∑
i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +

m−1∑
i=1

(1A(i)− 1A(i+ 1))f(Ei) (16.28)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (16.29)
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Min-Norm Point and SFM Lovász extension

From f̃ back to f

We can view f̃ : [0, 1]E → R defined on the hypercube, with f
defined as f̃ evaluated on the hypercube extreme points (vertices).

To summarize, with f̃(A) =
∑m

i=1 λif(Ei), we have

f̃(1A) = f(A), (16.30)

. . . and when f is submodular, we also have have

f̃(1A) = max {1Ax : x ∈ Pf} (16.31)

= max {1Ax : x(B) ≤ f(B),∀B ⊆ E} (16.32)

(16.33)
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defined as f̃ evaluated on the hypercube extreme points (vertices).

To summarize, with f̃(A) =
∑m

i=1 λif(Ei), we have

f̃(1A) = f(A), (16.30)

. . . and when f is submodular, we also have have

f̃(1A) = max {1Ax : x ∈ Pf} (16.31)

= max {1Ax : x(B) ≤ f(B),∀B ⊆ E} (16.32)

(16.33)
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An extension of an arbitrary f : 2V → R

Thus, for any f : 2E → R, even non-submodular f , we can define an
extension, having f̃(1A) = f(A), ∀A, in this way where

f̃(w) =

m∑
i=1

λif(Ei) (16.34)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending
order of w as in w(e1) ≥ w(e2) ≥ · · · ≥ w(em), and where

for i ∈ {1, . . . ,m}, λi =

{
w(ei)− w(ei+1) if i < m

w(em) if i = m
(16.35)

so that w =
∑m

i=1 λi1Ei .

w =
∑m

i=1 λi1Ei is an interpolation of certain hypercube vertices.

f̃(w) =
∑m

i=1 λif(Ei) is the associated interpolation of the values
of f at sets corresponding to each hypercube vertex.
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An extension of an arbitrary f : 2V → R

Thus, for any f : 2E → R, even non-submodular f , we can define an
extension, having f̃(1A) = f(A), ∀A, in this way where

f̃(w) =

m∑
i=1

λif(Ei) (16.34)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending
order of w as in w(e1) ≥ w(e2) ≥ · · · ≥ w(em), and where

for i ∈ {1, . . . ,m}, λi =

{
w(ei)− w(ei+1) if i < m

w(em) if i = m
(16.35)

so that w =
∑m

i=1 λi1Ei .

w =
∑m

i=1 λi1Ei is an interpolation of certain hypercube vertices.

f̃(w) =
∑m

i=1 λif(Ei) is the associated interpolation of the values
of f at sets corresponding to each hypercube vertex.
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Weighted gains vs. weighted functions

Again sorting E descending in w, the extension summarized:

f̃(w) =

m∑
i=1

w(ei)f(ei|Ei−1) (16.36)

=

m∑
i=1

w(ei)(f(Ei)− f(Ei−1)) (16.37)

= w(em)f(Em) +

m−1∑
i=1

(w(ei)− w(ei+1))f(Ei) (16.38)

=

m∑
i=1

λif(Ei) (16.39)

So f̃(w) seen either as sum of weighted gain evaluatiosn (Eqn. (16.36),
or as sum of weighted function evaluations (Eqn. (16.39)).
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Weighted gains vs. weighted functions

Again sorting E descending in w, the extension summarized:
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So f̃(w) seen either as sum of weighted gain evaluatiosn (Eqn. (16.36),
or as sum of weighted function evaluations (Eqn. (16.39)).
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Min-Norm Point and SFM Lovász extension

The Lovász extension of f : 2E → R

Lovász showed that if a function f̃(w) defined as in Eqn. (16.34) is
convex, then f must be submodular.

This continuous extension f̃ of f , in any case (f being submodular
or not), is called the Lovász extension of f .

Note, also possible to define this when f(∅) 6= 0 (but doesn’t really
add any generality).
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The Lovász extension of f : 2E → R

Lovász showed that if a function f̃(w) defined as in Eqn. (16.34) is
convex, then f must be submodular.

This continuous extension f̃ of f , in any case (f being submodular
or not), is called the Lovász extension of f .

Note, also possible to define this when f(∅) 6= 0 (but doesn’t really
add any generality).
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The Lovász extension of f : 2E → R

Lovász showed that if a function f̃(w) defined as in Eqn. (16.34) is
convex, then f must be submodular.

This continuous extension f̃ of f , in any case (f being submodular
or not), is called the Lovász extension of f .

Note, also possible to define this when f(∅) 6= 0 (but doesn’t really
add any generality).
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Lovász Extension, Submodularity and Convexity

Theorem 16.4.1

A function f : 2E → R is submodular iff its Lovász extension f̃ of f is
convex.

Proof.

We’ve already seen that if f is submodular, its extension can be
written via Eqn.(16.34) due to the greedy algorithm, and therefore is
also equivalent to f̃(w) = max {wx : x ∈ Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̃(w) =
∑

i λif(Ei) of
some function f : 2E → R is a convex function.

We note that, based on the extension definition, in particular the
definition of the {λi}i, we have that f̃(αw) = αf̃(w) for any
α ∈ R+. I.e., f is a positively homogeneous convex function.

. . .
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Lovász Extension, Submodularity and Convexity

Theorem 16.4.1

A function f : 2E → R is submodular iff its Lovász extension f̃ of f is
convex.

Proof.

We’ve already seen that if f is submodular, its extension can be
written via Eqn.(16.34) due to the greedy algorithm, and therefore is
also equivalent to f̃(w) = max {wx : x ∈ Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̃(w) =
∑

i λif(Ei) of
some function f : 2E → R is a convex function.

We note that, based on the extension definition, in particular the
definition of the {λi}i, we have that f̃(αw) = αf̃(w) for any
α ∈ R+. I.e., f is a positively homogeneous convex function.

. . .
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Lovász Extension, Submodularity and Convexity

Theorem 16.4.1

A function f : 2E → R is submodular iff its Lovász extension f̃ of f is
convex.

Proof.

We’ve already seen that if f is submodular, its extension can be
written via Eqn.(16.34) due to the greedy algorithm, and therefore is
also equivalent to f̃(w) = max {wx : x ∈ Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̃(w) =
∑

i λif(Ei) of
some function f : 2E → R is a convex function.

We note that, based on the extension definition, in particular the
definition of the {λi}i, we have that f̃(αw) = αf̃(w) for any
α ∈ R+. I.e., f is a positively homogeneous convex function.

. . .
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Min-Norm Point and SFM Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Earlier, we saw that f̃(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that

f̃(1A + 1B) = f̃(1A∪B + 1A∩B) (16.40)

= f(A ∪B) + f(A ∩B). (16.41)

Let C = A ∩B, order E based on decreasing w = 1A + 1B so that

w = (w(e1), w(e2), . . . , w(em)) (16.42)

= (2, 2, . . . , 2︸ ︷︷ ︸
i∈C

, 1, 1, . . . , 1︸ ︷︷ ︸
i∈A4B

, 0, 0, . . . , 0︸ ︷︷ ︸
i∈E\(A∪B)

) (16.43)

Then, considering f̃(w) =
∑

i λif(Ei), we have λ|C| = 1,
λ|A∪B| = 1, and λi = 0 for i /∈ {|C|, |A ∪B|}.
But then E|C| = A ∩B and E|A∪B| = A ∪B. Therefore,

f̃(w) = f̃(1A + 1B) = f(A ∩B) + f(A ∪B).

. . .
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Earlier, we saw that f̃(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Earlier, we saw that f̃(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that
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Lovász Extension, Submodularity and Convexity
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Earlier, we saw that f̃(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that

f̃(1A + 1B) = f̃(1A∪B + 1A∩B) (16.40)

= f(A ∪B) + f(A ∩B). (16.41)
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Earlier, we saw that f̃(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that

f̃(1A + 1B) = f̃(1A∪B + 1A∩B) (16.40)

= f(A ∪B) + f(A ∩B). (16.41)

Let C = A ∩B, order E based on decreasing w = 1A + 1B so that
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i∈A4B

, 0, 0, . . . , 0︸ ︷︷ ︸
i∈E\(A∪B)

) (16.43)

Then, considering f̃(w) =
∑

i λif(Ei), we have λ|C| = 1,
λ|A∪B| = 1, and λi = 0 for i /∈ {|C|, |A ∪B|}.
But then E|C| = A ∩B and E|A∪B| = A ∪B. Therefore,

f̃(w) = f̃(1A + 1B) = f(A ∩B) + f(A ∪B).
. . .
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 16.4.1 cont.

Also, since f̃ is convex (by assumption) and positively
homogeneous, we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)]

= 0.5[f̃(1A + 1B)] (16.44)

= f̃(0.51A + 0.51B) (16.45)

≤ 0.5f̃(1A) + 0.5f̃(1B) (16.46)

= 0.5(f(A) + f(B))

(16.47)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (16.48)

so f must be submodular.
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. . . proof of Thm. 16.4.1 cont.
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Thus, we have shown that for any A,B ⊆ E,
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so f must be submodular.
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. . . proof of Thm. 16.4.1 cont.
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. . . proof of Thm. 16.4.1 cont.

Also, since f̃ is convex (by assumption) and positively
homogeneous, we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̃(1A + 1B)] (16.44)

= f̃(0.51A + 0.51B) (16.45)

≤ 0.5f̃(1A) + 0.5f̃(1B) (16.46)

= 0.5(f(A) + f(B)) (16.47)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (16.48)

so f must be submodular.
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Edmonds - Submodularity - 1969
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Lovász - Submodularity - 1983
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