

Logistics	
111	

Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, & Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes,
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity

- L11: More properties of polymatroids, SFM special cases
- L12: polymatroid properties, extreme points polymatroids,
- L13: sat, dep, supp, exchange capacity, examples
- L14: Lattice theory: partially ordered sets; lattices; distributive, modular, submodular, and boolean lattices; ideals and join irreducibles.
- L15: Supp, Base polytope, polymatroids and entropic Venn diagrams, exchange capacity,
- L16: minimum norm point algorithm and the lattice of minimizers of a submodular function, Lovasz extension
- L17:
- L18:
- L19:
- L20:

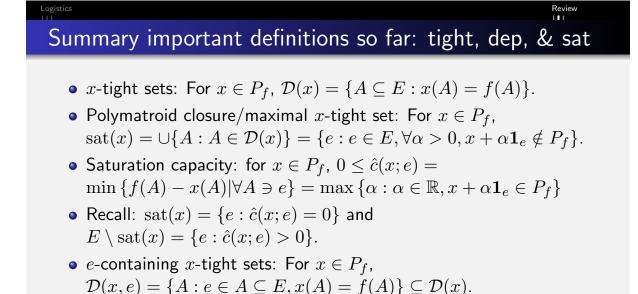
Finals Week: June 9th-13th, 2014.

Summary of Concepts

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I + e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- sat function & Closure
- Saturation Capacity

Prof leff Bilmes

- *e*-containing tight sets
- ullet dep function & fundamental circuit of a matroid

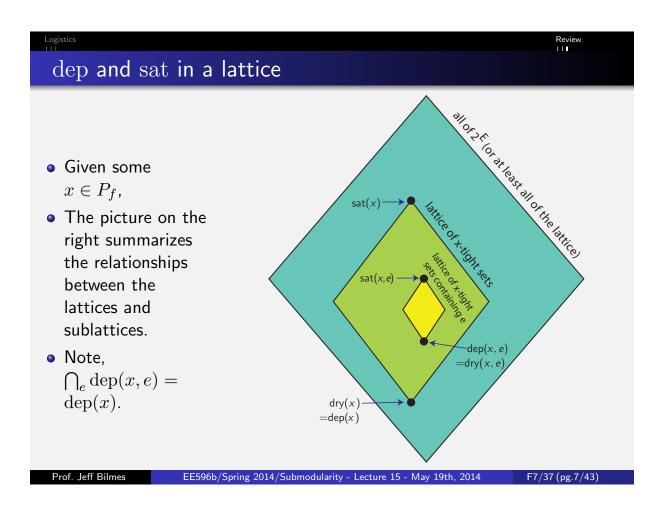


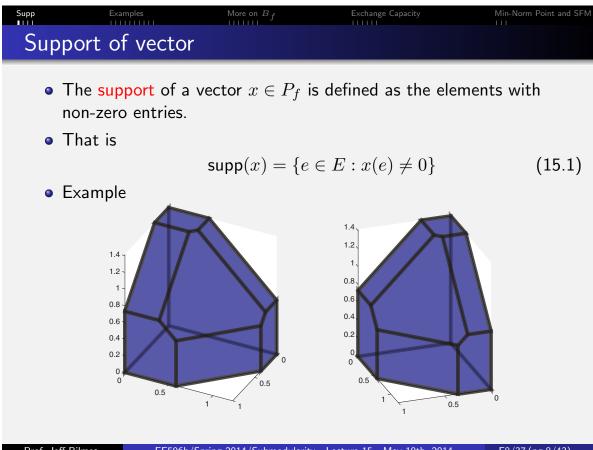
EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014

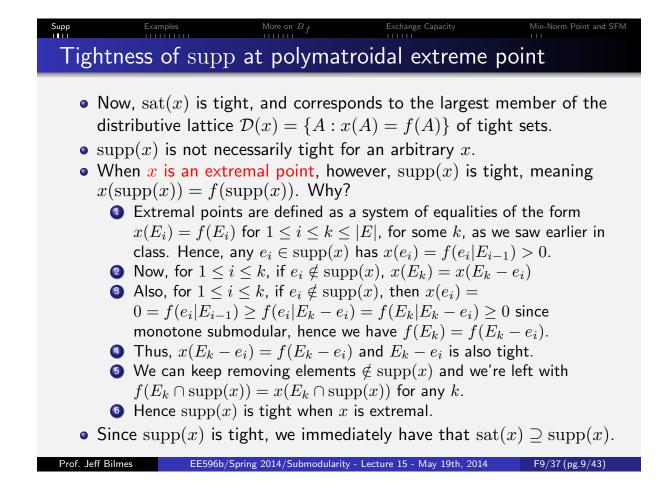
• Minimal *e*-containing *x*-tight set/polymatroidal fundamental circuit/: For $x \in P_f$, $dep(x, e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$ $= \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f\}$

Revie

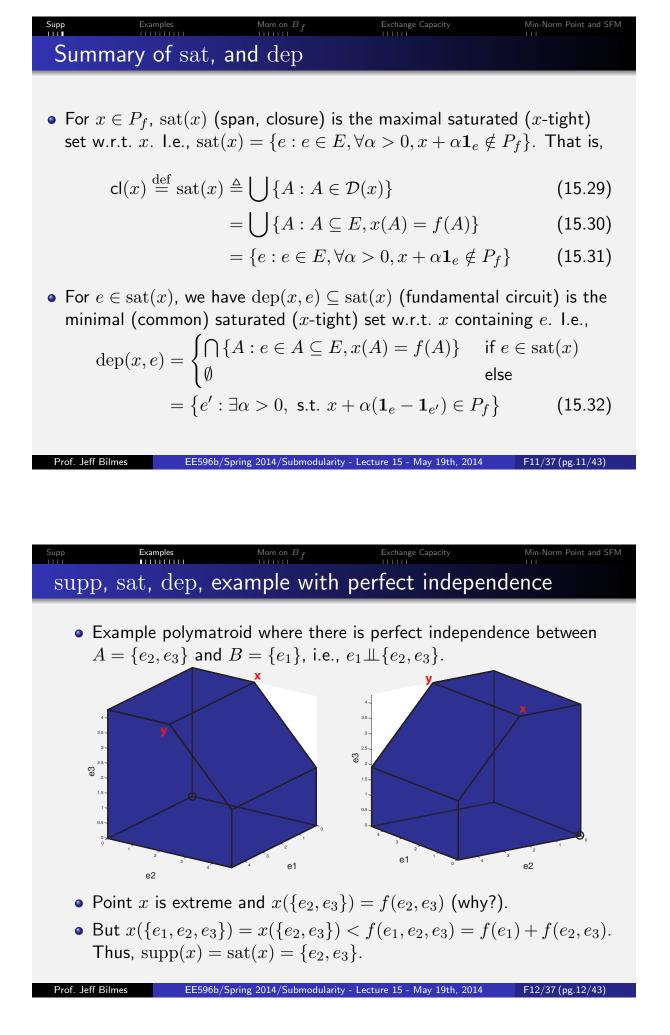
F5/37 (pg.5/43)

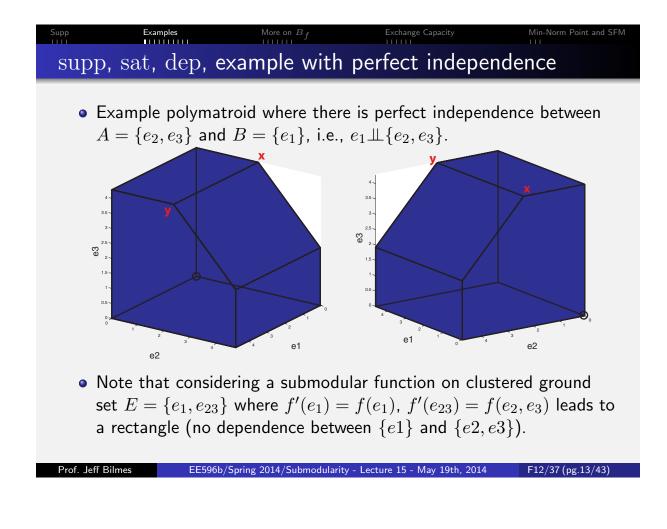


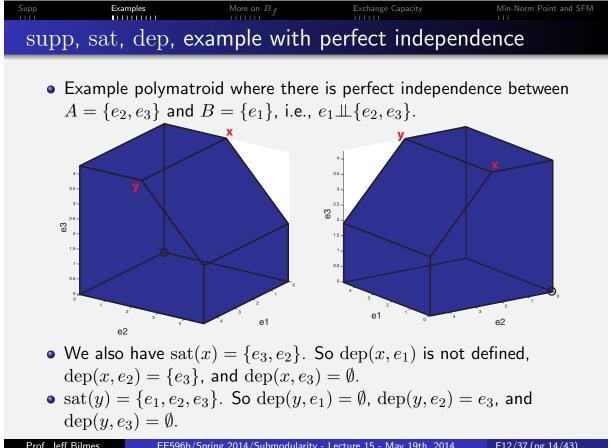


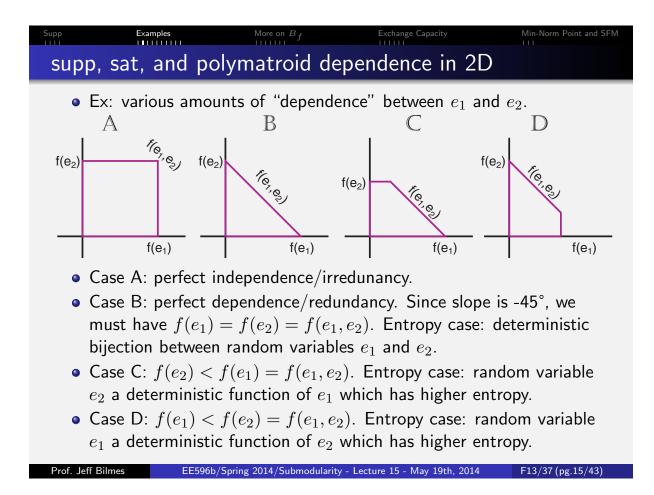


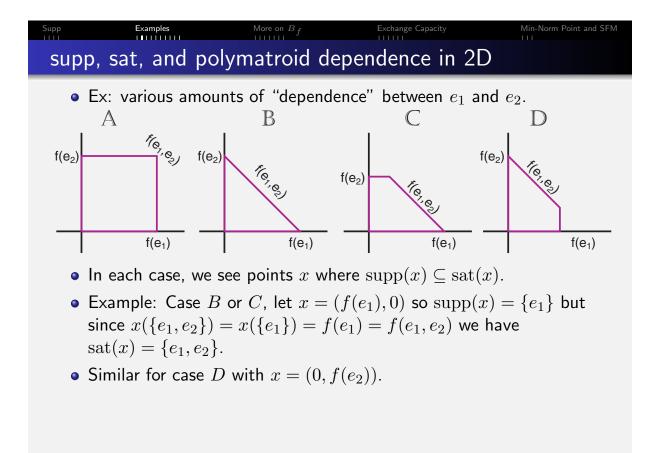
- For $x \in P_f$, with x extremal, is supp(x) = sat(x)?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X) = f(Y) = f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), f(Y|X) = 0.
- Suppose $x \in P_f$ has x(X) > 0 but $x(V \setminus X) = 0$ and so x(Y) = 0.
- Suppose $\operatorname{supp}(x) = X$, and say x is tight at X(x(X) = f(X)).
- $\operatorname{sat}(x) = \bigcup \{A : x(A) = f(A)\}$ and since $x(X \cup Y) = x(X) = f(X) = f(X \cup Y)$, here, $\operatorname{sat}(x) \supseteq X \cup Y$. Hence, $\operatorname{sat}(x) \supset \operatorname{supp}(x)$.
- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$ (see later).
- Also, recall sat(x) is like span/closure but supp(x) is more like indication. So this is similar to span(A) ⊇ A.
- For modular functions, they are always equal at extreme points (e.g., think of "hyperrectangular" polymatroids).

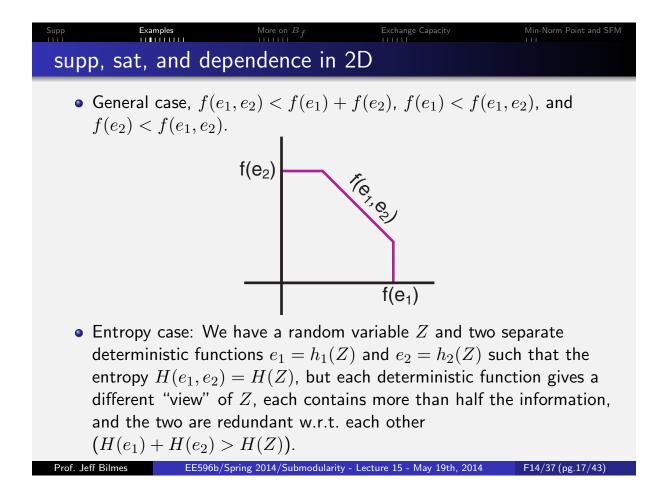


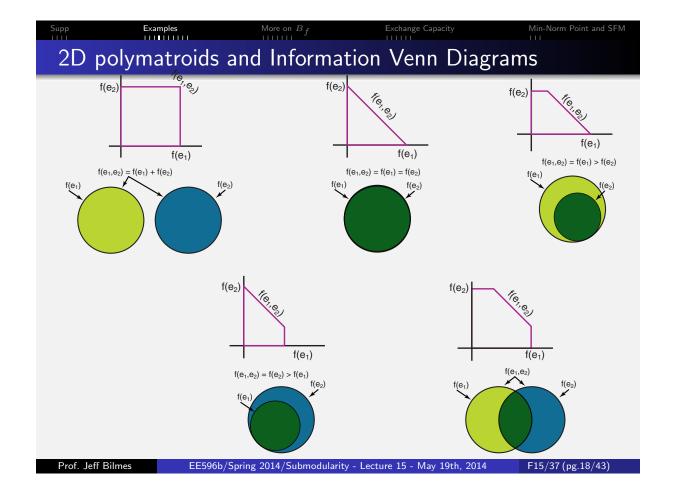


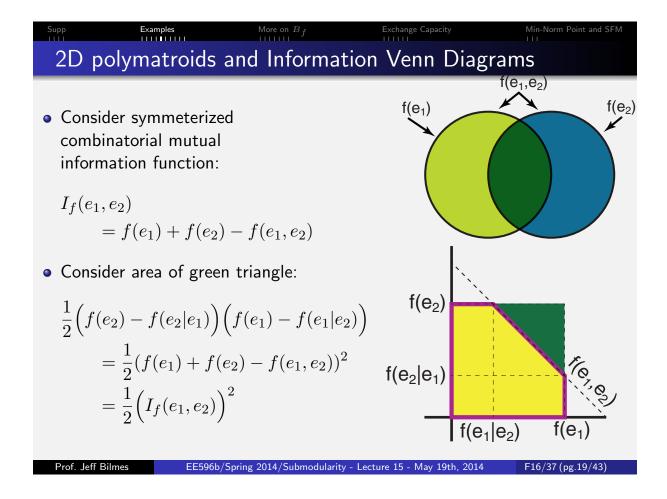


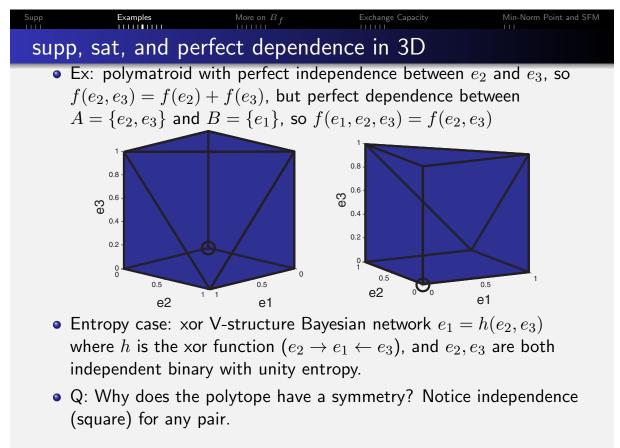


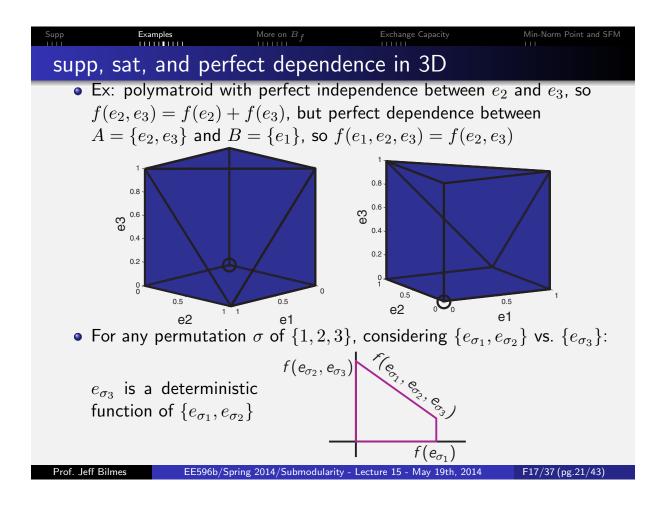


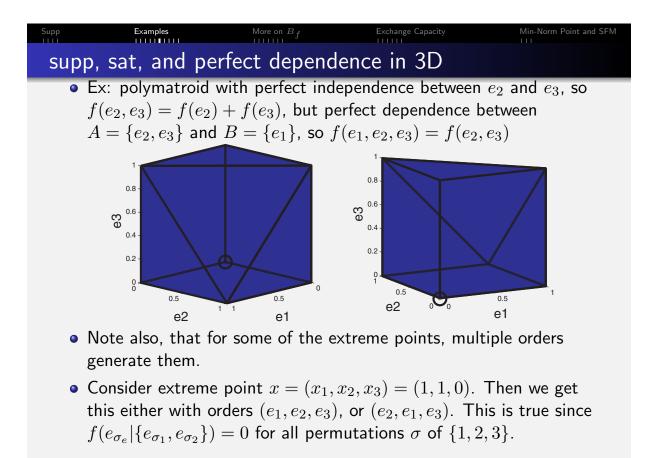


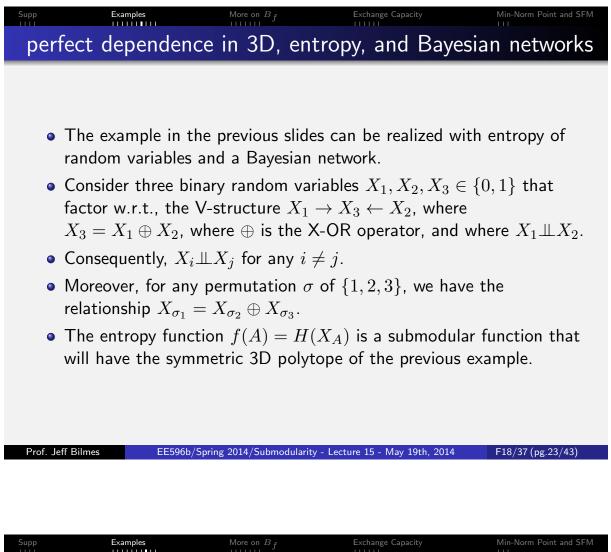


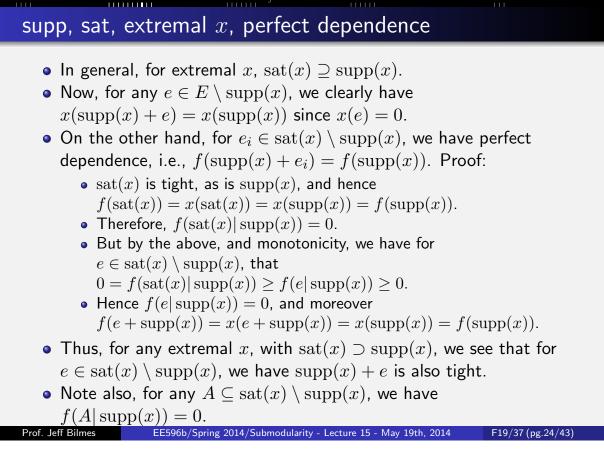


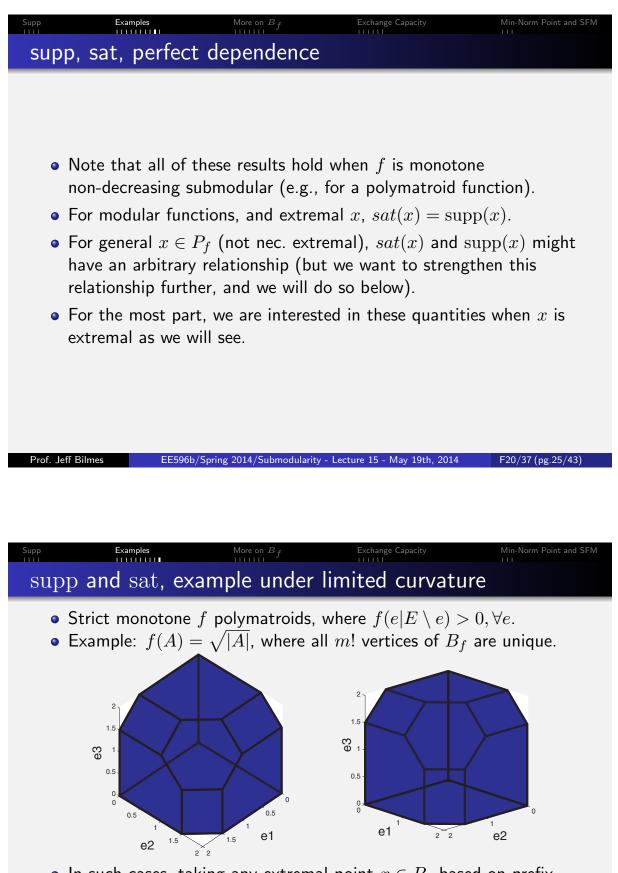




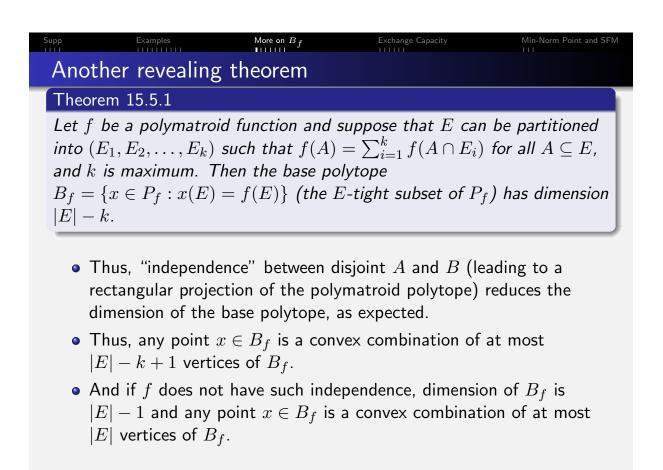




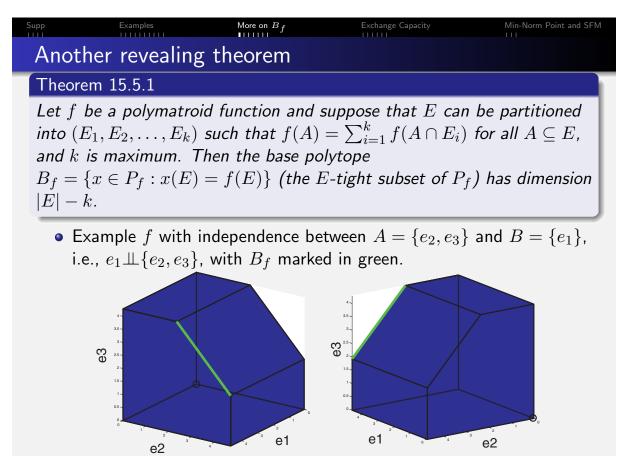




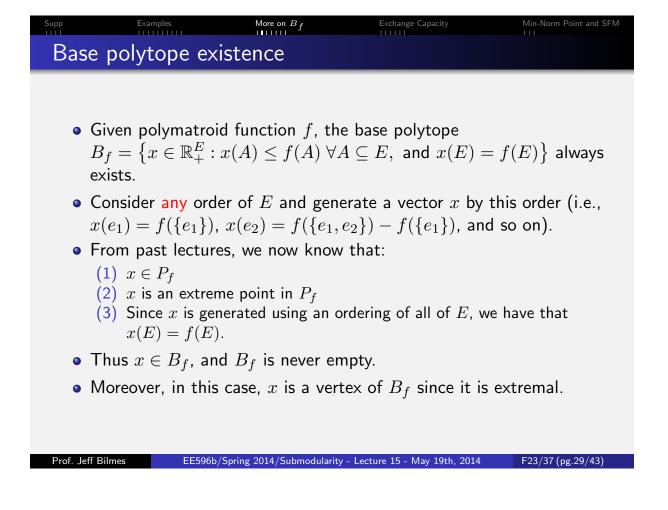
In such cases, taking any extremal point x ∈ P_f based on prefix order E = (e₁,...), where supp(x) ⊂ E, we have that sat(x) = supp(x) since the largest tight set corresponds to x(E_i) = f(E_i) for some i, and while any e ∈ E \ E_i is such that x(E_i + e) = x(E_i), there is no such e with f(E_i + e) = f(E_i).



EE596b/Spring 2014/Submodularity - Lecture 15 -



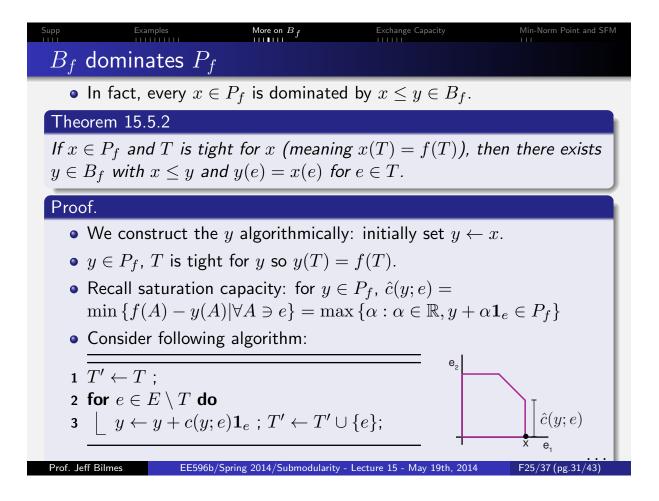
EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014



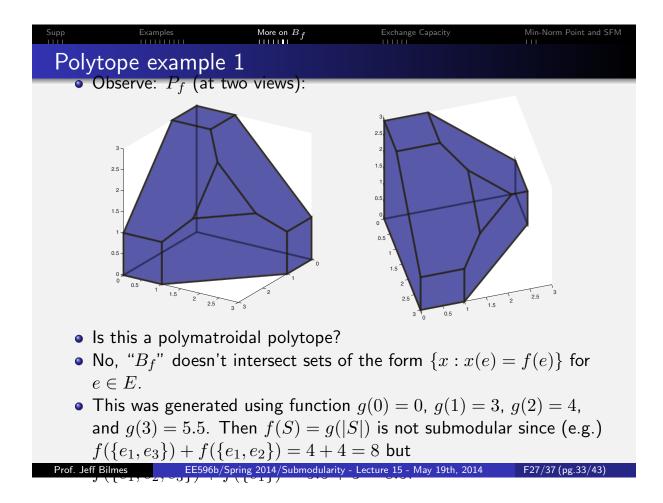
- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \dots, e_n)$ where n = |E|, and where $E_i = (e_1, e_2, \dots, e_i)$, so that we have $E_k = A$ with k = |A|.
- Note there are k!(n-k)! < n! such orderings.
- Generate x via greedy using this order, $\forall i, x(e_i) = f(e_i | E_{i-1})$.
- Then, we have generated a point x (a vertex, no less) in B_f such that x(A) = f(A).
- Thus, for any A, we have

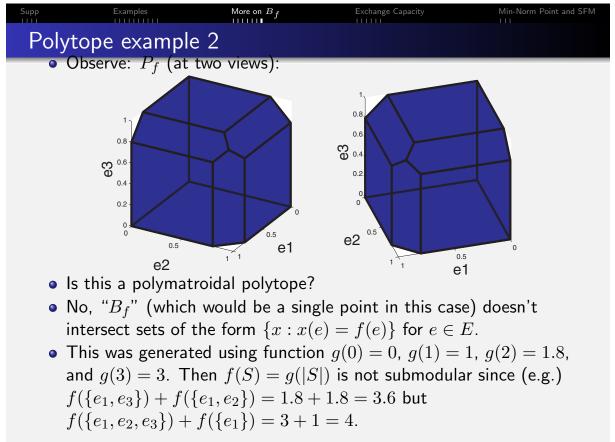
$$B_f \cap \left\{ x \in \mathbb{R}^E : x(A) = f(A) \right\} \neq \emptyset$$
(15.2)

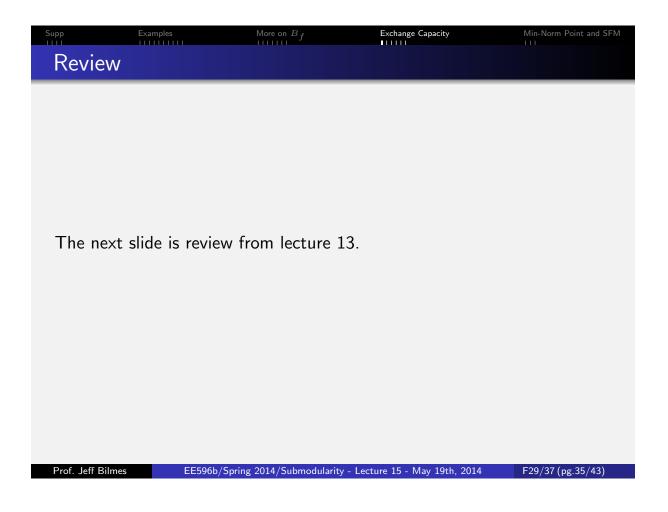
• In words, B_f intersects all "multi-axis congruent" hyperplanes within R^E of the form $\{x \in \mathbb{R}^E : x(A) = f(A)\}$ for all $A \subseteq E$.



Supp Examples More on B _f Exchange Capacity Min-Norm Point and SFM				
B_f dominates P_f				
proof of Thm. 15.5.2 cont.				
• Each step maintains feasibility: consider one step adding e to T' — for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \le f(T' + e)$, or $y(e) \le f(T' + e) - y(T') = y(e) + f(T' + e) - y(T' + e)$.				
• We set $y(e) \leftarrow y(e) + \hat{c}(y;e) \le y(e) + f(T'+e) - y(T'+e)$. Hence, after each step, $y \in P_f$ and $\hat{c}(y;e) \ge 0$. (also, consider r.h. version of $\hat{c}(y;e)$).				
• Also, only $y(e)$ for $e \notin T$ changed, final y has $y(e) = x(e)$ for $e \in T$.				
• Let $S_e \ni e$ be a set that achieves $c(y; e) = f(S_e) - y(S_e)$.				
• At iteration e , let $y'(e)$ (resp. $y(e)$) be new (resp. old) entry for e , then				
$y'(S_e) = y(S_e \setminus \{e\}) + y'(e)$ (15.3)				
$= y(S_e \setminus \{e\}) + [y(e) + f(S_e) - y(S_e)] = f(S_e)$				
So, S_e is tight for y' . It remains tight in further iterations since y				
doesn't decrease and it stays within P_f .				
• Also, $E = T \cup \bigcup_{e \notin T} S_e$ is also tight, meaning the final y has $y \in B_{f}$.				
Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014 F26/37 (pg.32/43)				







Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM Saturation Capacity Image: Capacity Min-Norm Point and SFM

• The max is achieved when

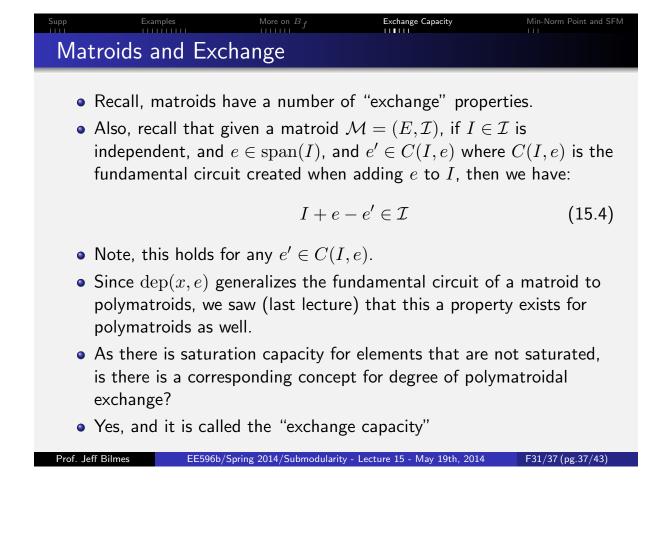
$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
(15.22)

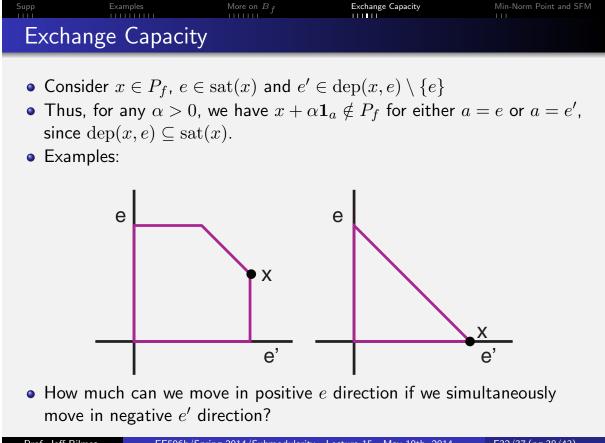
- $\hat{c}(x; e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

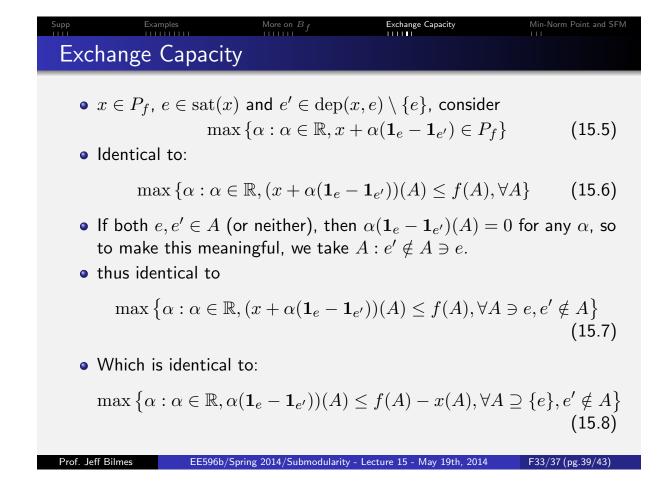
$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min\left\{f(A) - x(A), \forall A \ni e\right\}$$
(15.23)

$$= \max \left\{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \right\}$$
(15.24)

- We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x;e) > 0.$
- Also, for $e \in \operatorname{sat}(x)$, we have that $\hat{c}(x; e) = 0$.
- Note that any α with $0 \leq \alpha \leq \hat{c}(x; e)$ we have $x + \alpha \mathbf{1}_e \in P_f$.
- We also see that computing $\hat{c}(x; e)$ is a form of submodular function minimization.







Supp	Examples	More on B_f	Exchange Capacity	Min-Norm Point and SFM
Exch	ange Capaci [.]	ty		

• In such case, we get $\mathbf{1}_{e'}(A) = 0$, thus above identical to

$$\max\left\{\alpha: \alpha \in \mathbb{R}, \alpha \mathbf{1}_e(A) \le f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\}$$
(15.9)

• Restating, we've got

$$\max\left\{\alpha: \alpha \in \mathbb{R}, \alpha \le f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\}$$
(15.10)

• This max is achieved when

$$\alpha = \hat{c}(x; e, e') \stackrel{\text{def}}{=} \min\left\{f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\} \quad (15.11)$$

- $\hat{c}(x; e, e')$ is known as the exchange capacity associated with $x \in P_f$ and e.
- For any α with $0 \leq \alpha \leq \hat{c}(x; e, e')$, we have that $x + \alpha(\mathbf{1}_e \mathbf{1}_{e'}) \in P_f$.
- As we will see, if e and e' are successive in an order that generates extreme point x, then we get a "neighbor" extreme point via x' = x + ĉ(x; e, e')(1_e 1_{e'}).
- Note that Eqn. (15.11) is a form of SFM.

F35/37 (pg.41/43)

A polymatroid function's polyhedron is a polymatroid.

Theorem 15.7.1

Let f be a submodular function defined on subsets of E. For any $x \in \mathbb{R}^E$, we have:

$$rank(x) = \max\left(y(E) : y \le x, y \in P_f\right) = \min\left(x(A) + f(E \setminus A) : A \subseteq E\right)$$
(15.6)

If we take x to be zero, we get:

Corollary 15.7.2

Let f be a submodular function defined on subsets of E. $x \in \mathbb{R}^{E}$, we have:

$$rank(0) = \max(y(E) : y \le 0, y \in P_f) = \min(f(A) : A \subseteq E)$$
 (15.7)

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM Min-Norm Point: Definition International State International State

• Restating what we saw before, we have:

$$\max\{y(E)|y \in P_f, y \le 0\} = \min\{f(X)|X \subseteq V\}$$
(15.12)

• Consider the optimization:

minimize	$\ x\ _{2}^{2}$	(15.13a)
----------	-----------------	----------

subject to	$x \in B_f$	(15.13b)
------------	-------------	----------

where B_f is the base polytope of submodular f, and $\|x\|_2^2 = \sum_{e \in E} x(e)^2$ is the squared 2-norm. Let x^* be the optimal solution.

- Note, x^* is the unique optimal solution since we have a strictly convex objective over a set of convex constraints.
- x^* is called the minimum norm point of the base polytope.

