Submodular Functions, Optimization, and Applications to Machine Learning
 - Spring Quarter, Lecture 15 http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

May 19th, 2014

Logistics

Cumulative Outstanding Reading

- Good references for today: Schrijver-2003, Oxley-1992/2011, Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.
- Read Tom McCormick's overview paper on SFM http://people. commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
- Read chapters 1-4 from Fujishige book.
- Matroid properties http: //www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf
- Read lecture 14 slides on lattice theory at our web page (http://j. ee.washington.edu/~bilmes/classes/ee596b_spring_2014/)

Announcements, Assignments, and Reminders

- Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

Logistics
 Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, \& Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes,
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity
- L11: More properties of polymatroids, SFM special cases
- L12: polymatroid properties, extreme points polymatroids,
- L13: sat, dep, supp, exchange capacity, examples
- L14: Lattice theory: partially ordered sets; lattices; distributive, modular, submodular, and boolean lattices; ideals and join irreducibles.
- L15: Supp, Base polytope, polymatroids and entropic Venn diagrams, exchange capacity,
- L16: minimum norm point algorithm and the lattice of minimizers of a submodular function, Lovasz extension
- L17:
- L18:
- L19:
- L20:

Summary of Concepts

- Most violated inequality $\max \{x(A)-f(A): A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I+e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- sat function \& Closure
- Saturation Capacity
- e-containing tight sets
- dep function \& fundamental circuit of a matroid

Summary important definitions so far: tight, dep, \& sat

- x-tight sets: For $x \in P_{f}, \mathcal{D}(x)=\{A \subseteq E: x(A)=f(A)\}$.
- Polymatroid closure/maximal x-tight set: For $x \in P_{f}$, $\operatorname{sat}(x)=\cup\{A: A \in \mathcal{D}(x)\}=\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\}$.
- Saturation capacity: for $x \in P_{f}, 0 \leq \hat{c}(x ; e)=$ $\min \{f(A)-x(A) \mid \forall A \ni e\}=\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\}$
- Recall: $\operatorname{sat}(x)=\{e: \hat{c}(x ; e)=0\}$ and $E \backslash \operatorname{sat}(x)=\{e: \hat{c}(x ; e)>0\}$.
- e-containing x-tight sets: For $x \in P_{f}$, $\mathcal{D}(x, e)=\{A: e \in A \subseteq E, x(A)=f(A)\} \subseteq \mathcal{D}(x)$.
- Minimal e-containing x-tight set/polymatroidal fundamental

$$
\begin{aligned}
& \begin{aligned}
&\text { circuit/: For } \left.x \in P_{f}{ }^{\prime}: e \in A \subseteq E, x(A)=f(A)\right\} \text { if } e \in \operatorname{sat}(x) \\
& \operatorname{dep}(x, e)=\left\{\begin{array}{ll}
\text { (}
\end{array}\right) \\
& \emptyset \text { else }
\end{aligned} \\
& =\left\{e^{\prime}: \exists \alpha>0 \text {, s.t. } x+\alpha\left(\mathbf{1}_{e}-\mathbf{1}_{e^{\prime}}\right) \in P_{f}\right\}
\end{aligned}
$$

dep and sat in a lattice

- Given some

$$
x \in P_{f},
$$

- The picture on the right summarizes the relationships between the lattices and sublattices.
- Note,
$\bigcap_{e} \operatorname{dep}(x, e)=$ $\operatorname{dep}(x)$.

Support of vector

- The support of a vector $x \in P_{f}$ is defined as the elements with non-zero entries.
- That is

$$
\begin{equation*}
\operatorname{supp}(x)=\{e \in E: x(e) \neq 0\} \tag{15.1}
\end{equation*}
$$

- Example

Tightness of supp at polymatroidal extreme point

- Now, $\operatorname{sat}(x)$ is tight, and corresponds to the largest member of the distributive lattice $\mathcal{D}(x)=\{A: x(A)=f(A)\}$ of tight sets.
- $\operatorname{supp}(x)$ is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, $\operatorname{supp}(x)$ is tight, meaning $x(\operatorname{supp}(x))=f(\operatorname{supp}(x))$. Why?
(1) Extremal points are defined as a system of equalities of the form $x\left(E_{i}\right)=f\left(E_{i}\right)$ for $1 \leq i \leq k \leq|E|$, for some k, as we saw earlier in class. Hence, any $e_{i} \in \operatorname{supp}(x)$ has $x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)>0$.
(2) Now, for $1 \leq i \leq k$, if $e_{i} \notin \operatorname{supp}(x), x\left(E_{k}\right)=x\left(E_{k}-e_{i}\right)$
(3) Also, for $1 \leq i \leq k$, if $e_{i} \notin \operatorname{supp}(x)$, then $x\left(e_{i}\right)=$ $0=f\left(e_{i} \mid E_{i-1}\right) \geq f\left(e_{i} \mid E_{k}-e_{i}\right)=f\left(E_{k} \mid E_{k}-e_{i}\right) \geq 0$ since monotone submodular, hence we have $f\left(E_{k}\right)=f\left(E_{k}-e_{i}\right)$.
(9) Thus, $x\left(E_{k}-e_{i}\right)=f\left(E_{k}-e_{i}\right)$ and $E_{k}-e_{i}$ is also tight.
(0 We can keep removing elements $\notin \operatorname{supp}(x)$ and we're left with $f\left(E_{k} \cap \operatorname{supp}(x)\right)=x\left(E_{k} \cap \operatorname{supp}(x)\right)$ for any k.
(0) Hence $\operatorname{supp}(x)$ is tight when x is extremal.
- Since $\operatorname{supp}(x)$ is tight, we immediately have that $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.

supp vs. sat equality

- For $x \in P_{f}$, with x extremal, is $\operatorname{supp}(x)=\operatorname{sat}(x)$?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X)=f(Y)=f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), $f(Y \mid X)=0$.
- Suppose $x \in P_{f}$ has $x(X)>0$ but $x(V \backslash X)=0$ and so $x(Y)=0$.
- Suppose $\operatorname{supp}(x)=X$, and say x is tight at $X(x(X)=f(X))$.
- $\operatorname{sat}(x)=\cup\{A: x(A)=f(A)\}$ and since $x(X \cup Y)=x(X)=f(X)=f(X \cup Y)$, here, $\operatorname{sat}(x) \supseteq X \cup Y$. Hence, $\operatorname{sat}(x) \supset \operatorname{supp}(x)$.
- In general, for extremal $x, \operatorname{sat}(x) \supseteq \operatorname{supp}(x)$ (see later).
- Also, recall $\operatorname{sat}(x)$ is like span/closure but $\operatorname{supp}(x)$ is more like indication. So this is similar to $\operatorname{span}(A) \supseteq A$.
- For modular functions, they are always equal at extreme points (e.g., think of "hyperrectangular" polymatroids).

Summary of sat, and dep

- For $x \in P_{f}, \operatorname{sat}(x)$ (span, closure) is the maximal saturated (x-tight) set w.r.t. x. l.e., $\operatorname{sat}(x)=\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\}$. That is,

$$
\begin{align*}
\mathrm{cl}(x) \stackrel{\text { def }}{=} \operatorname{sat}(x) & \triangleq \bigcup\{A: A \in \mathcal{D}(x)\} \tag{15.29}\\
& =\bigcup\{A: A \subseteq E, x(A)=f(A)\} \tag{15.30}\\
& =\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\} \tag{15.31}
\end{align*}
$$

- For $e \in \operatorname{sat}(x)$, we have $\operatorname{dep}(x, e) \subseteq \operatorname{sat}(x)$ (fundamental circuit) is the minimal (common) saturated $(x$-tight) set w.r.t. x containing e. I.e.,

$$
\begin{align*}
\operatorname{dep}(x, e) & = \begin{cases}\bigcap\{A: e \in A \subseteq E, x(A)=f(A)\} & \text { if } e \in \operatorname{sat}(x) \\
\text { else }\end{cases} \\
& =\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } x+\alpha\left(\mathbf{1}_{e}-\mathbf{1}_{e^{\prime}}\right) \in P_{f}\right\} \tag{15.32}
\end{align*}
$$

supp, sat, dep, example with perfect independence

- Example polymatroid where there is perfect independence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, i.e., $e_{1} \Perp\left\{e_{2}, e_{3}\right\}$.

- Point x is extreme and $x\left(\left\{e_{2}, e_{3}\right\}\right)=f\left(e_{2}, e_{3}\right)$ (why?).
- But $x\left(\left\{e_{1}, e_{2}, e_{3}\right\}\right)=x\left(\left\{e_{2}, e_{3}\right\}\right)<f\left(e_{1}, e_{2}, e_{3}\right)=f\left(e_{1}\right)+f\left(e_{2}, e_{3}\right)$.

Thus, $\operatorname{supp}(x)=\operatorname{sat}(x)=\left\{e_{2}, e_{3}\right\}$.

supp, sat, dep, example with perfect independence

- Example polymatroid where there is perfect independence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, i.e., $e_{1} \Perp\left\{e_{2}, e_{3}\right\}$.

- Note that considering a submodular function on clustered ground set $E=\left\{e_{1}, e_{23}\right\}$ where $f^{\prime}\left(e_{1}\right)=f\left(e_{1}\right), f^{\prime}\left(e_{23}\right)=f\left(e_{2}, e_{3}\right)$ leads to a rectangle (no dependence between $\{e 1\}$ and $\{e 2, e 3\}$).

supp, sat, dep, example with perfect independence

- Example polymatroid where there is perfect independence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, i.e., $e_{1} \Perp\left\{e_{2}, e_{3}\right\}$.

e2

- We also have $\operatorname{sat}(x)=\left\{e_{3}, e_{2}\right\}$. So $\operatorname{dep}\left(x, e_{1}\right)$ is not defined, $\operatorname{dep}\left(x, e_{2}\right)=\left\{e_{3}\right\}$, and $\operatorname{dep}\left(x, e_{3}\right)=\emptyset$.
- $\operatorname{sat}(y)=\left\{e_{1}, e_{2}, e_{3}\right\}$. So $\operatorname{dep}\left(y, e_{1}\right)=\emptyset, \operatorname{dep}\left(y, e_{2}\right)=e_{3}$, and $\operatorname{dep}\left(y, e_{3}\right)=\emptyset$.

supp, sat, and polymatroid dependence in 2D

- Ex: various amounts of "dependence" between e_{1} and e_{2}.

D

- Case A: perfect independence/irredunancy.
- Case B: perfect dependence/redundancy. Since slope is -45°, we must have $f\left(e_{1}\right)=f\left(e_{2}\right)=f\left(e_{1}, e_{2}\right)$. Entropy case: deterministic bijection between random variables e_{1} and e_{2}.
- Case C: $f\left(e_{2}\right)<f\left(e_{1}\right)=f\left(e_{1}, e_{2}\right)$. Entropy case: random variable e_{2} a deterministic function of e_{1} which has higher entropy.
- Case D: $f\left(e_{1}\right)<f\left(e_{2}\right)=f\left(e_{1}, e_{2}\right)$. Entropy case: random variable e_{1} a deterministic function of e_{2} which has higher entropy.

$\begin{array}{ccccc}\text { Supp } & \text { Examples } & \text { More on } B_{f} & \text { Exchange Capacity } & \text { Min-Norm Point and SFM }\end{array}$

supp, sat, and polymatroid dependence in 2D

- Ex: various amounts of "dependence" between e_{1} and e_{2}.

- In each case, we see points x where $\operatorname{supp}(x) \subseteq \operatorname{sat}(x)$.
- Example: Case B or C, let $x=\left(f\left(e_{1}\right), 0\right)$ so $\operatorname{supp}(x)=\left\{e_{1}\right\}$ but since $x\left(\left\{e_{1}, e_{2}\right\}\right)=x\left(\left\{e_{1}\right\}\right)=f\left(e_{1}\right)=f\left(e_{1}, e_{2}\right)$ we have $\operatorname{sat}(x)=\left\{e_{1}, e_{2}\right\}$.
- Similar for case D with $x=\left(0, f\left(e_{2}\right)\right)$.

supp, sat, and dependence in 2D

- General case, $f\left(e_{1}, e_{2}\right)<f\left(e_{1}\right)+f\left(e_{2}\right), f\left(e_{1}\right)<f\left(e_{1}, e_{2}\right)$, and $f\left(e_{2}\right)<f\left(e_{1}, e_{2}\right)$.

- Entropy case: We have a random variable Z and two separate deterministic functions $e_{1}=h_{1}(Z)$ and $e_{2}=h_{2}(Z)$ such that the entropy $H\left(e_{1}, e_{2}\right)=H(Z)$, but each deterministic function gives a different "view" of Z, each contains more than half the information, and the two are redundant w.r.t. each other
$\left(H\left(e_{1}\right)+H\left(e_{2}\right)>H(Z)\right)$.

2D polymatroids and Information Venn Diagrams

- Consider symmeterized combinatorial mutual information function:

$$
\begin{aligned}
& I_{f}\left(e_{1}, e_{2}\right) \\
& \quad=f\left(e_{1}\right)+f\left(e_{2}\right)-f\left(e_{1}, e_{2}\right)
\end{aligned}
$$

- Consider area of green triangle:

$$
\begin{aligned}
& \frac{1}{2}\left(f\left(e_{2}\right)-f\left(e_{2} \mid e_{1}\right)\right)\left(f\left(e_{1}\right)-f\left(e_{1} \mid e_{2}\right)\right) \\
& \quad=\frac{1}{2}\left(f\left(e_{1}\right)+f\left(e_{2}\right)-f\left(e_{1}, e_{2}\right)\right)^{2} \\
& \quad=\frac{1}{2}\left(I_{f}\left(e_{1}, e_{2}\right)\right)^{2}
\end{aligned}
$$

supp, sat, and perfect dependence in 3D

- Ex: polymatroid with perfect independence between e_{2} and e_{3}, so $f\left(e_{2}, e_{3}\right)=f\left(e_{2}\right)+f\left(e_{3}\right)$, but perfect dependence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, so $f\left(e_{1}, e_{2}, e_{3}\right)=f\left(e_{2}, e_{3}\right)$

e2

supp, sat, and perfect dependence in 3D

- Ex: polymatroid with perfect independence between e_{2} and e_{3}, so $f\left(e_{2}, e_{3}\right)=f\left(e_{2}\right)+f\left(e_{3}\right)$, but perfect dependence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, so $f\left(e_{1}, e_{2}, e_{3}\right)=f\left(e_{2}, e_{3}\right)$

- For any permutation σ of $\{1,2,3\}$, considering $\left\{e_{\sigma_{1}}, e_{\sigma_{2}}\right\}$ vs. $\left\{e_{\sigma_{3}}\right\}$:
$e_{\sigma_{3}}$ is a deterministic function of $\left\{e_{\sigma_{1}}, e_{\sigma_{2}}\right\}$

supp, sat, and perfect dependence in 3D

- Ex: polymatroid with perfect independence between e_{2} and e_{3}, so $f\left(e_{2}, e_{3}\right)=f\left(e_{2}\right)+f\left(e_{3}\right)$, but perfect dependence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, so $f\left(e_{1}, e_{2}, e_{3}\right)=f\left(e_{2}, e_{3}\right)$

- Note also, that for some of the extreme points, multiple orders generate them.
- Consider extreme point $x=\left(x_{1}, x_{2}, x_{3}\right)=(1,1,0)$. Then we get this either with orders $\left(e_{1}, e_{2}, e_{3}\right)$, or $\left(e_{2}, e_{1}, e_{3}\right)$. This is true since $f\left(e_{\sigma_{e}} \mid\left\{e_{\sigma_{1}}, e_{\sigma_{2}}\right\}\right)=0$ for all permutations σ of $\{1,2,3\}$.
- The example in the previous slides can be realized with entropy of random variables and a Bayesian network.
- Consider three binary random variables $X_{1}, X_{2}, X_{3} \in\{0,1\}$ that factor w.r.t., the V-structure $X_{1} \rightarrow X_{3} \leftarrow X_{2}$, where $X_{3}=X_{1} \oplus X_{2}$, where \oplus is the X-OR operator, and where $X_{1} \Perp X_{2}$.
- Consequently, $X_{i} \Perp X_{j}$ for any $i \neq j$.
- Moreover, for any permutation σ of $\{1,2,3\}$, we have the relationship $X_{\sigma_{1}}=X_{\sigma_{2}} \oplus X_{\sigma_{3}}$.
- The entropy function $f(A)=H\left(X_{A}\right)$ is a submodular function that will have the symmetric 3D polytope of the previous example.

supp, sat, extremal x, perfect dependence

- In general, for extremal $x, \operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \backslash \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x)+e)=x(\operatorname{supp}(x))$ since $x(e)=0$.
- On the other hand, for $e_{i} \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, we have perfect dependence, i.e., $f\left(\operatorname{supp}(x)+e_{i}\right)=f(\operatorname{supp}(x))$. Proof:
- $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence $f(\operatorname{sat}(x))=x(\operatorname{sat}(x))=x(\operatorname{supp}(x))=f(\operatorname{supp}(x))$.
- Therefore, $f(\operatorname{sat}(x) \mid \operatorname{supp}(x))=0$.
- But by the above, and monotonicity, we have for $e \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, that $0=f(\operatorname{sat}(x) \mid \operatorname{supp}(x)) \geq f(e \mid \operatorname{supp}(x)) \geq 0$.
- Hence $f(e \mid \operatorname{supp}(x))=0$, and moreover

$$
f(e+\operatorname{supp}(x))=x(e+\operatorname{supp}(x))=x(\operatorname{supp}(x))=f(\operatorname{supp}(x)) .
$$

- Thus, for any extremal x, with $\operatorname{sat}(x) \supset \operatorname{supp}(x)$, we see that for $e \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, we have $\operatorname{supp}(x)+e$ is also tight.
- Note also, for any $A \subseteq \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, we have $f(A \mid \operatorname{supp}(x))=0$.

supp, sat, perfect dependence

- Note that all of these results hold when f is monotone non-decreasing submodular (e.g., for a polymatroid function).
- For modular functions, and extremal $x, \operatorname{sat}(x)=\operatorname{supp}(x)$.
- For general $x \in P_{f}$ (not nec. extremal), $\operatorname{sat}(x)$ and $\operatorname{supp}(x)$ might have an arbitrary relationship (but we want to strengthen this relationship further, and we will do so below).
- For the most part, we are interested in these quantities when x is extremal as we will see.

supp and sat, example under limited curvature

- Strict monotone f polymatroids, where $f(e \mid E \backslash e)>0, \forall e$.
- Example: $f(A)=\sqrt{|A|}$, where all m ! vertices of B_{f} are unique.

- In such cases, taking any extremal point $x \in P_{f}$ based on prefix order $E=\left(e_{1}, \ldots\right)$, where $\operatorname{supp}(x) \subset E$, we have that $\operatorname{sat}(x)=\operatorname{supp}(x)$ since the largest tight set corresponds to $x\left(E_{i}\right)=f\left(E_{i}\right)$ for some i, and while any $e \in E \backslash E_{i}$ is such that $x\left(E_{i}+e\right)=x\left(E_{i}\right)$, there is no such e with $f\left(E_{i}+e\right)=f\left(E_{i}\right)$.

Another revealing theorem

Theorem 15.5.1

Let f be a polymatroid function and suppose that E can be partitioned into $\left(E_{1}, E_{2}, \ldots, E_{k}\right)$ such that $f(A)=\sum_{i=1}^{k} f\left(A \cap E_{i}\right)$ for all $A \subseteq E$, and k is maximum. Then the base polytope
$B_{f}=\left\{x \in P_{f}: x(E)=f(E)\right\}$ (the E-tight subset of P_{f}) has dimension $|E|-k$.

- Thus, "independence" between disjoint A and B (leading to a rectangular projection of the polymatroid polytope) reduces the dimension of the base polytope, as expected.
- Thus, any point $x \in B_{f}$ is a convex combination of at most $|E|-k+1$ vertices of B_{f}.
- And if f does not have such independence, dimension of B_{f} is $|E|-1$ and any point $x \in B_{f}$ is a convex combination of at most $|E|$ vertices of B_{f}.

Another revealing theorem

Theorem 15.5.1

Let f be a polymatroid function and suppose that E can be partitioned into $\left(E_{1}, E_{2}, \ldots, E_{k}\right)$ such that $f(A)=\sum_{i=1}^{k} f\left(A \cap E_{i}\right)$ for all $A \subseteq E$, and k is maximum. Then the base polytope $B_{f}=\left\{x \in P_{f}: x(E)=f(E)\right\}$ (the E-tight subset of P_{f}) has dimension $|E|-k$.

- Example f with independence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, i.e., $e_{1} \Perp\left\{e_{2}, e_{3}\right\}$, with B_{f} marked in green.

e2

Base polytope existence

- Given polymatroid function f, the base polytope $B_{f}=\left\{x \in \mathbb{R}_{+}^{E}: x(A) \leq f(A) \forall A \subseteq E\right.$, and $\left.x(E)=f(E)\right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x\left(e_{1}\right)=f\left(\left\{e_{1}\right\}\right), x\left(e_{2}\right)=f\left(\left\{e_{1}, e_{2}\right\}\right)-f\left(\left\{e_{1}\right\}\right)$, and so on $)$.
- From past lectures, we now know that:
(1) $x \in P_{f}$
(2) x is an extreme point in P_{f}
(3) Since x is generated using an ordering of all of E, we have that $x(E)=f(E)$.
- Thus $x \in B_{f}$, and B_{f} is never empty.
- Moreover, in this case, x is a vertex of B_{f} since it is extremal.

Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_{f}
- That is, choose the ordering of $E=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ where $n=|E|$, and where $E_{i}=\left(e_{1}, e_{2}, \ldots, e_{i}\right)$, so that we have $E_{k}=A$ with $k=|A|$.
- Note there are $k!(n-k)!<n!$ such orderings.
- Generate x via greedy using this order, $\forall i, x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)$.
- Then, we have generated a point x (a vertex, no less) in B_{f} such that $x(A)=f(A)$.
- Thus, for any A, we have

$$
\begin{equation*}
B_{f} \cap\left\{x \in \mathbb{R}^{E}: x(A)=f(A)\right\} \neq \emptyset \tag{15.2}
\end{equation*}
$$

- In words, B_{f} intersects all "multi-axis congruent" hyperplanes within R^{E} of the form $\left\{x \in \mathbb{R}^{E}: x(A)=f(A)\right\}$ for all $A \subseteq E$.

B_{f} dominates P_{f}

- In fact, every $x \in P_{f}$ is dominated by $x \leq y \in B_{f}$.

Theorem 15.5.2

If $x \in P_{f}$ and T is tight for x (meaning $x(T)=f(T)$), then there exists $y \in B_{f}$ with $x \leq y$ and $y(e)=x(e)$ for $e \in T$.

Proof.

- We construct the y algorithmically: initially set $y \leftarrow x$.
- $y \in P_{f}, T$ is tight for y so $y(T)=f(T)$.
- Recall saturation capacity: for $y \in P_{f}, \hat{c}(y ; e)=$ $\min \{f(A)-y(A) \mid \forall A \ni e\}=\max \left\{\alpha: \alpha \in \mathbb{R}, y+\alpha \mathbf{1}_{e} \in P_{f}\right\}$
- Consider following algorithm:

$$
1 \overline{T^{\prime} \leftarrow T}
$$

2 for $e \in E \backslash T$ do
3

$$
y \leftarrow y+c(y ; e) \mathbf{1}_{e} ; T^{\prime} \leftarrow T^{\prime} \cup\{e\}
$$

B_{f} dominates P_{f}

proof of Thm. 15.5.2 cont.

- Each step maintains feasibility: consider one step adding e to T^{\prime} - for $e \notin T^{\prime}$, feasibility requires $y\left(T^{\prime}+e\right)=y\left(T^{\prime}\right)+y(e) \leq f\left(T^{\prime}+e\right)$, or $y(e) \leq f\left(T^{\prime}+e\right)-y\left(T^{\prime}\right)=y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$.
- We set $y(e) \leftarrow y(e)+\hat{c}(y ; e) \leq y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$. Hence, after each step, $y \in P_{f}$ and $\hat{c}(y ; e) \geq 0$. (also, consider r.h. version of $\hat{c}(y ; e))$.
- Also, only $y(e)$ for $e \notin T$ changed, final y has $y(e)=x(e)$ for $e \in T$.
- Let $S_{e} \ni e$ be a set that achieves $c(y ; e)=f\left(S_{e}\right)-y\left(S_{e}\right)$.
- At iteration e, let $y^{\prime}(e)$ (resp. $\left.y(e)\right)$ be new (resp. old) entry for e, then

$$
\begin{align*}
y^{\prime}\left(S_{e}\right) & =y\left(S_{e} \backslash\{e\}\right)+y^{\prime}(e) \tag{15.3}\\
& =y\left(S_{e} \backslash\{e\}\right)+\left[y(e)+f\left(S_{e}\right)-y\left(S_{e}\right)\right]=f\left(S_{e}\right)
\end{align*}
$$

So, S_{e} is tight for y^{\prime}. It remains tight in further iterations since y doesn't decrease and it stays within P_{f}.

- Also, $E=T \cup \bigcup_{e \notin T} S_{e}$ is also tight, meaning the final y has $y \in B_{f}$.

Polytope example 1

- Observe: P_{f} (at two views):

- Is this a polymatroidal polytope?
- No, " B_{f} " doesn't intersect sets of the form $\{x: x(e)=f(e)\}$ for $e \in E$.
- This was generated using function $g(0)=0, g(1)=3, g(2)=4$, and $g(3)=5.5$. Then $f(S)=g(|S|)$ is not submodular since (e.g.) $f\left(\left\{e_{1}, e_{3}\right\}\right)+f\left(\left\{e_{1}, e_{2}\right\}\right)=4+4=8$ but

- No, " B_{f} " (which would be a single point in this case) doesn't intersect sets of the form $\{x: x(e)=f(e)\}$ for $e \in E$.
- This was generated using function $g(0)=0, g(1)=1, g(2)=1.8$, and $g(3)=3$. Then $f(S)=g(|S|)$ is not submodular since (e.g.)

$$
\begin{aligned}
& f\left(\left\{e_{1}, e_{3}\right\}\right)+f\left(\left\{e_{1}, e_{2}\right\}\right)=1.8+1.8=3.6 \text { but } \\
& f\left(\left\{e_{1}, e_{2}, e_{3}\right\}\right)+f\left(\left\{e_{1}\right\}\right)=3+1=4 .
\end{aligned}
$$

The next slide is review from lecture 13.

Saturation Capacity

- The max is achieved when

$$
\begin{equation*}
\alpha=\hat{c}(x ; e) \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \supseteq\{e\}\} \tag{15.22}
\end{equation*}
$$

- $\hat{c}(x ; e)$ is known as the saturation capacity associated with $x \in P_{f}$ and e.
- Thus we have for $x \in P_{f}$,

$$
\begin{align*}
\hat{c}(x ; e) & \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \ni e\} \tag{15.23}\\
& =\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{15.24}
\end{align*}
$$

- We immediately see that for $e \in E \backslash \operatorname{sat}(x)$, we have that $\hat{c}(x ; e)>0$.
- Also, for $e \in \operatorname{sat}(x)$, we have that $\hat{c}(x ; e)=0$.
- Note that any α with $0 \leq \alpha \leq \hat{c}(x ; e)$ we have $x+\alpha \mathbf{1}_{e} \in P_{f}$.
- We also see that computing $\hat{c}(x ; e)$ is a form of submodular function minimization.

Matroids and Exchange

- Recall, matroids have a number of "exchange" properties.
- Also, recall that given a matroid $\mathcal{M}=(E, \mathcal{I})$, if $I \in \mathcal{I}$ is independent, and $e \in \operatorname{span}(I)$, and $e^{\prime} \in C(I, e)$ where $C(I, e)$ is the fundamental circuit created when adding e to I, then we have:

$$
\begin{equation*}
I+e-e^{\prime} \in \mathcal{I} \tag{15.4}
\end{equation*}
$$

- Note, this holds for any $e^{\prime} \in C(I, e)$.
- Since $\operatorname{dep}(x, e)$ generalizes the fundamental circuit of a matroid to polymatroids, we saw (last lecture) that this a property exists for polymatroids as well.
- As there is saturation capacity for elements that are not saturated, is there is a corresponding concept for degree of polymatroidal exchange?
- Yes, and it is called the "exchange capacity"

- Consider $x \in P_{f}, e \in \operatorname{sat}(x)$ and $e^{\prime} \in \operatorname{dep}(x, e) \backslash\{e\}$
- Thus, for any $\alpha>0$, we have $x+\alpha \mathbf{1}_{a} \notin P_{f}$ for either $a=e$ or $a=e^{\prime}$, since $\operatorname{dep}(x, e) \subseteq \operatorname{sat}(x)$.
- Examples:

- How much can we move in positive e direction if we simultaneously move in negative e^{\prime} direction?

Exchange Capacity

- $x \in P_{f}, e \in \operatorname{sat}(x)$ and $e^{\prime} \in \operatorname{dep}(x, e) \backslash\{e\}$, consider

$$
\begin{equation*}
\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha\left(\mathbf{1}_{e}-\mathbf{1}_{e^{\prime}}\right) \in P_{f}\right\} \tag{15.5}
\end{equation*}
$$

- Identical to:

$$
\begin{equation*}
\max \left\{\alpha: \alpha \in \mathbb{R},\left(x+\alpha\left(\mathbf{1}_{e}-\mathbf{1}_{e^{\prime}}\right)\right)(A) \leq f(A), \forall A\right\} \tag{15.6}
\end{equation*}
$$

- If both $e, e^{\prime} \in A$ (or neither), then $\alpha\left(\mathbf{1}_{e}-\mathbf{1}_{e^{\prime}}\right)(A)=0$ for any α, so to make this meaningful, we take $A: e^{\prime} \notin A \ni e$.
- thus identical to

$$
\begin{equation*}
\max \left\{\alpha: \alpha \in \mathbb{R},\left(x+\alpha\left(\mathbf{1}_{e}-\mathbf{1}_{e^{\prime}}\right)\right)(A) \leq f(A), \forall A \ni e, e^{\prime} \notin A\right\} \tag{15.7}
\end{equation*}
$$

- Which is identical to:

$$
\begin{equation*}
\left.\max \left\{\alpha: \alpha \in \mathbb{R}, \alpha\left(\mathbf{1}_{e}-\mathbf{1}_{e^{\prime}}\right)\right)(A) \leq f(A)-x(A), \forall A \supseteq\{e\}, e^{\prime} \notin A\right\} \tag{15.8}
\end{equation*}
$$

 Exchange Capacity

- In such case, we get $\mathbf{1}_{e^{\prime}}(A)=0$, thus above identical to

$$
\begin{equation*}
\max \left\{\alpha: \alpha \in \mathbb{R}, \alpha \mathbf{1}_{e}(A) \leq f(A)-x(A), \forall A \supseteq\{e\}, e^{\prime} \notin A\right\} \tag{15.9}
\end{equation*}
$$

- Restating, we've got

$$
\begin{equation*}
\max \left\{\alpha: \alpha \in \mathbb{R}, \alpha \leq f(A)-x(A), \forall A \supseteq\{e\}, e^{\prime} \notin A\right\} \tag{15.10}
\end{equation*}
$$

- This max is achieved when

$$
\begin{equation*}
\alpha=\hat{c}\left(x ; e, e^{\prime}\right) \stackrel{\text { def }}{=} \min \left\{f(A)-x(A), \forall A \supseteq\{e\}, e^{\prime} \notin A\right\} \tag{15.11}
\end{equation*}
$$

- $\hat{c}\left(x ; e, e^{\prime}\right)$ is known as the exchange capacity associated with $x \in P_{f}$ and e.
- For any α with $0 \leq \alpha \leq \hat{c}\left(x ; e, e^{\prime}\right)$, we have that $x+\alpha\left(\mathbf{1}_{e}-\mathbf{1}_{e^{\prime}}\right) \in P_{f}$.
- As we will see, if e and e^{\prime} are successive in an order that generates extreme point x, then we get a "neighbor" extreme point via $x^{\prime}=x+\hat{c}\left(x ; e, e^{\prime}\right)\left(\mathbf{1}_{e}-\mathbf{1}_{e^{\prime}}\right)$.
- Note that Eqn. (15.11) is a form of SFM.

A polymatroid function's polyhedron is a polymatroid.

Theorem 15.7.1

Let f be a submodular function defined on subsets of E. For any $x \in \mathbb{R}^{E}$, we have:
$\operatorname{rank}(x)=\max \left(y(E): y \leq x, y \in P_{f}\right)=\min (x(A)+f(E \backslash A): A \subseteq E)$

If we take x to be zero, we get:

Corollary 15.7.2

Let f be a submodular function defined on subsets of $E . x \in \mathbb{R}^{E}$, we have:

$$
\begin{equation*}
\operatorname{rank}(0)=\max \left(y(E): y \leq 0, y \in P_{f}\right)=\min (f(A): A \subseteq E) \tag{15.7}
\end{equation*}
$$

- Restating what we saw before, we have:

$$
\begin{equation*}
\max \left\{y(E) \mid y \in P_{f}, y \leq 0\right\}=\min \{f(X) \mid X \subseteq V\} \tag{15.12}
\end{equation*}
$$

- Consider the optimization:

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{2}^{2} \\
\text { subject to } & x \in B_{f} \tag{15.13b}
\end{array}
$$

where B_{f} is the base polytope of submodular f, and $\|x\|_{2}^{2}=\sum_{e \in E} x(e)^{2}$ is the squared 2-norm. Let x^{*} be the optimal solution.

- Note, x^{*} is the unique optimal solution since we have a strictly convex objective over a set of convex constraints.
- x^{*} is called the minimum norm point of the base polytope.

Min-Norm Point: Examples

