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Logistics Review

Cumulative Outstanding Reading

Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.

Read Tom McCormick’s overview paper on SFM http://people.

commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

Read chapters 1 - 4 from Fujishige book.

Matroid properties http:
//www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf

Read lecture 14 slides on lattice theory at our web page (http://j.
ee.washington.edu/~bilmes/classes/ee596b_spring_2014/)
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Logistics Review

Announcements, Assignments, and Reminders

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics Review

Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

L9: From Matroid Polytopes to
Polymatroids.

L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, exchange
capacity, minimum norm point algorithm
and the lattice of minimizers of a
submodular function, Lovasz extension

L16:

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Logistics Review

Summary of Concepts

Most violated inequality max {x(A)− f(A) : A ⊆ E}
Matroid by circuits, and the fundamental circuit C(I, e) ⊆ I + e.

Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity

e-containing tight sets

dep function & fundamental circuit of a matroid
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Logistics Review

Summary important definitions so far: tight, dep, & sat

x-tight sets: For x ∈ Pf , D(x) = {A ⊆ E : x(A) = f(A)}.
Polymatroid closure/maximal x-tight set: For x ∈ Pf ,
sat(x) = ∪{A : A ∈ D(x)} = {e : e ∈ E, ∀α > 0, x+ α1e /∈ Pf}.
Saturation capacity: for x ∈ Pf , 0 ≤ ĉ(x; e) =
min {f(A)− x(A)|∀A ' e} = max {α : α ∈ R, x+ α1e ∈ Pf}
Recall: sat(x) = {e : ĉ(x; e) = 0} and
E \ sat(x) = {e : ĉ(x; e) > 0}.
e-containing x-tight sets: For x ∈ Pf ,
D(x, e) = {A : e ∈ A ⊆ E, x(A) = f(A)} ⊆ D(x).

Minimal e-containing x-tight set/polymatroidal fundamental
circuit/: For x ∈ Pf ,

dep(x, e) =

{⋂
{A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
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Logistics Review

dep and sat in a lattice

Given some
x ∈ Pf ,

The picture on the
right summarizes
the relationships
between the
lattices and
sublattices.

Note,⋂
e dep(x, e) =

dep(x).

sat(x)

dep(x , e)

all of 2 E
 (or at least all of the lattice)

lattice of x-tight sets

lattice of x-tight

 sets containing e

dry(x )

sat(x,e)

=dry(x , e)

=dep(x )

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014 F7/65 (pg.7/259)



Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Support of vector

The support of a vector x ∈ Pf is defined as the elements with
non-zero entries.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Support of vector

The support of a vector x ∈ Pf is defined as the elements with
non-zero entries.

That is

supp(x) = {e ∈ E : x(e) *= 0} (15.1)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Support of vector

The support of a vector x ∈ Pf is defined as the elements with
non-zero entries.

That is

supp(x) = {e ∈ E : x(e) *= 0} (15.1)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Tightness of supp at polymatroidal extreme point

Now, sat(x) is tight, and corresponds to the largest member of the
distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.

supp(x) is not necessarily tight for an arbitrary x.
When x is an extremal point, however, supp(x) is tight, meaning
x(supp(x)) = f(supp(x)). Why?

1 Extremal points are defined as a system of equalities of the form
x(Ei) = f(Ei) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in
class. Hence, any ei ∈ supp(x) has x(ei) = f(ei|Ei−1) > 0.

2 Now, for 1 ≤ i ≤ k, if ei /∈ supp(x), x(Ek) = x(Ek − ei)
3 Also, for 1 ≤ i ≤ k, if ei /∈ supp(x), then x(ei) =

0 = f(ei|Ei−1) ≥ f(ei|Ek − ei) = f(Ek|Ek − ei) ≥ 0 since
monotone submodular, hence we have f(Ek) = f(Ek − ei).

4 Thus, x(Ek − ei) = f(Ek − ei) and Ek − ei is also tight.
5 We can keep removing elements /∈ supp(x) and we’re left with

f(Ek ∩ supp(x)) = x(Ek ∩ supp(x)) for any k.
6 Hence supp(x) is tight when x is extremal.

Since supp(x) is tight, we immediately have that sat(x) ⊇ supp(x).
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp vs. sat equality

For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.

Suppose x ∈ Pf has x(X) > 0 but x(V \X) = 0 and so x(Y ) = 0.

Then supp(x) = X, and say x is tight at X (x(X) = f(X)).

sat(x) = ∪{A : x(A) = f(A)} and since
x(X ∪ Y ) = x(X) = f(X) = f(X ∪ Y ), here, sat(x) ⊇ X ∪ Y .

In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal at extreme points
(e.g., think of “hyperrectangular” polymatroids).
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In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal at extreme points
(e.g., think of “hyperrectangular” polymatroids).
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp vs. sat equality

For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.

Suppose x ∈ Pf has x(X) > 0 but x(V \X) = 0 and so x(Y ) = 0.

Then supp(x) = X, and say x is tight at X (x(X) = f(X)).

sat(x) = ∪{A : x(A) = f(A)} and since
x(X ∪ Y ) = x(X) = f(X) = f(X ∪ Y ), here, sat(x) ⊇ X ∪ Y .

In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal at extreme points
(e.g., think of “hyperrectangular” polymatroids).
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supp vs. sat equality

For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.

Suppose x ∈ Pf has x(X) > 0 but x(V \X) = 0 and so x(Y ) = 0.

Then supp(x) = X, and say x is tight at X (x(X) = f(X)).

sat(x) = ∪{A : x(A) = f(A)} and since
x(X ∪ Y ) = x(X) = f(X) = f(X ∪ Y ), here, sat(x) ⊇ X ∪ Y .

In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal at extreme points
(e.g., think of “hyperrectangular” polymatroids).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014 F10/65 (pg.25/259)



Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp vs. sat equality

For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.

Suppose x ∈ Pf has x(X) > 0 but x(V \X) = 0 and so x(Y ) = 0.

Then supp(x) = X, and say x is tight at X (x(X) = f(X)).

sat(x) = ∪{A : x(A) = f(A)} and since
x(X ∪ Y ) = x(X) = f(X) = f(X ∪ Y ), here, sat(x) ⊇ X ∪ Y .

In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal at extreme points
(e.g., think of “hyperrectangular” polymatroids).
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp vs. sat equality

For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.

Suppose x ∈ Pf has x(X) > 0 but x(V \X) = 0 and so x(Y ) = 0.

Then supp(x) = X, and say x is tight at X (x(X) = f(X)).

sat(x) = ∪{A : x(A) = f(A)} and since
x(X ∪ Y ) = x(X) = f(X) = f(X ∪ Y ), here, sat(x) ⊇ X ∪ Y .

In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal at extreme points
(e.g., think of “hyperrectangular” polymatroids).
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp vs. sat equality

For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.

Suppose x ∈ Pf has x(X) > 0 but x(V \X) = 0 and so x(Y ) = 0.

Then supp(x) = X, and say x is tight at X (x(X) = f(X)).

sat(x) = ∪{A : x(A) = f(A)} and since
x(X ∪ Y ) = x(X) = f(X) = f(X ∪ Y ), here, sat(x) ⊇ X ∪ Y .

In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal at extreme points
(e.g., think of “hyperrectangular” polymatroids).
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Summary of supp, sat, and dep

For x ∈ Pf , supp(x) = {e : x(e) *= 0} ⊆ sat(x)

For x ∈ Pf , sat(x) (span, closure) is the maximal saturated (x-tight)
set w.r.t. x. I.e., sat(x) = {e : e ∈ E, ∀α > 0, x+ α1e /∈ Pf}. That is,

cl(x)
def
= sat(x) !

⋃
{A : A ∈ D(x)} (15.29)

=
⋃

{A : A ⊆ E, x(A) = f(A)} (15.30)

= {e : e ∈ E, ∀α > 0, x+ α1e /∈ Pf} (15.31)

For e ∈ sat(x), we have dep(x, e) ⊆ sat(x) (fundamental circuit) is the
minimal (common) saturated (x-tight) set w.r.t. x containing e. I.e.,

dep(x, e) =

{⋂
{A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
(15.32)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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Point x is extreme and x({e2, e3}) = f(e2, e3) (why?).
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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Point x is extreme and x({e2, e3}) = f(e2, e3) (why?).

But x({e1, e2, e3}) = x({e2, e3}) < f(e1, e2, e3) = f(e1) + f(e2, e3).
Thus, supp(x) = sat(x) = {e2, e3}.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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Note that considering a submodular function on clustered ground
set E = {e1, e23} where f ′(e1) = f(e1), f

′(e23) = f(e2, e3) leads to
a rectangle (no dependence between {e1} and {e2, e3}).
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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We also have sat(x) = {e3, e2}. So dep(x, e1) is not defined,
dep(x, e2) = {e3}, and dep(x, e3) = ∅.
sat(y) = {e1, e2, e3}. So dep(y, e1) = ∅, dep(y, e2) = e3, and
dep(y, e3) = ∅.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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We also have sat(x) = {e3, e2}. So dep(x, e1) is not defined,
dep(x, e2) = {e3}, and dep(x, e3) = ∅.
sat(y) = {e1, e2, e3}. So dep(y, e1) = ∅, dep(y, e2) = e3, and
dep(y, e3) = ∅.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.

# $ % &
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.

#

f(e1)

f(e2)

f(e
1 ,e

2 )

Case A: perfect independence/irredunancy.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.

#

f(e1)

f(e2)

f(e
1 ,e

2 )

$

f(e
1 ,e

2 )
f(e1)

f(e2)

Case A: perfect independence/irredunancy.

Case B: perfect dependence/redundancy. Since slope is -45°, we
must have f(e1) = f(e2) = f(e1, e2). Entropy case: deterministic
bijection between random variables e1 and e2.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.

#

f(e1)

f(e2)

f(e
1 ,e

2 )

$

f(e
1 ,e

2 )

f(e1)

f(e2)

%

f(e
1 ,e

2 )

f(e1)

f(e2)

Case A: perfect independence/irredunancy.

Case B: perfect dependence/redundancy. Since slope is -45°, we
must have f(e1) = f(e2) = f(e1, e2). Entropy case: deterministic
bijection between random variables e1 and e2.

Case C: f(e2) < f(e1) = f(e1, e2). Entropy case: random variable
e2 a deterministic function of e1 which has higher entropy.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.

#

f(e1)
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%
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Case A: perfect independence/irredunancy.

Case B: perfect dependence/redundancy. Since slope is -45°, we
must have f(e1) = f(e2) = f(e1, e2). Entropy case: deterministic
bijection between random variables e1 and e2.

Case C: f(e2) < f(e1) = f(e1, e2). Entropy case: random variable
e2 a deterministic function of e1 which has higher entropy.

Case D: f(e1) < f(e2) = f(e1, e2). Entropy case: random variable
e1 a deterministic function of e2 which has higher entropy.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.

#
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In each case, we see points x where supp(x) ⊆ sat(x).

Example: Case B or C, let x = (f(e1), 0) so supp(x) = {e1} but
since x({e1, e2}) = x({e1}) = f(e1) = f(e1, e2) we have
sat(x) = {e1, e2}.
Similar for case D with x = (0, f(e2)).
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, and dependence in 2D

General case, f(e1, e2) < f(e1) + f(e2), f(e1) < f(e1, e2), and
f(e2) < f(e1, e2).

f(e1)

f(e2) f(e
1 ,e

2 )

Entropy case: We have a random variable Z and two separate
deterministic functions e1 = h1(Z) and e2 = h2(Z) such that the
entropy H(e1, e2) = H(Z), but each deterministic function gives a
different “view” of Z, each contains more than half the information,
and the two are redundant w.r.t. each other
(H(e1) +H(e2) > H(Z)).
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

2D polymatroids and Information Venn Diagrams
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

2D polymatroids and Information Venn Diagrams

Consider symmeterized
combinatorial mutual
information function:

If (e1, e2)

= f(e1) + f(e2)− f(e1, e2)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

2D polymatroids and Information Venn Diagrams

Consider symmeterized
combinatorial mutual
information function:

If (e1, e2)

= f(e1) + f(e2)− f(e1, e2)

Consider area of green triangle:

1
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, and perfect dependence in 3D
Ex: polymatroid with perfect independence between e2 and e3, so
f(e2, e3) = f(e2) + f(e3), but perfect dependence between
A = {e2, e3} and B = {e1}, so f(e1, e2, e3) = f(e2, e3)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, and perfect dependence in 3D
Ex: polymatroid with perfect independence between e2 and e3, so
f(e2, e3) = f(e2) + f(e3), but perfect dependence between
A = {e2, e3} and B = {e1}, so f(e1, e2, e3) = f(e2, e3)
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Entropy case: xor V-structure Bayesian network e1 = h(e2, e3)
where h is the xor function (e2 → e1 ← e3), and e2, e3 are both
independent binary with unity entropy.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, and perfect dependence in 3D
Ex: polymatroid with perfect independence between e2 and e3, so
f(e2, e3) = f(e2) + f(e3), but perfect dependence between
A = {e2, e3} and B = {e1}, so f(e1, e2, e3) = f(e2, e3)
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Entropy case: xor V-structure Bayesian network e1 = h(e2, e3)
where h is the xor function (e2 → e1 ← e3), and e2, e3 are both
independent binary with unity entropy.

Q: Why does the polytope have a symmetry? Notice independence
(square) for any pair.
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For any permutation σ of {1, 2, 3}, considering {eσ1 , eσ2} vs. {eσ3}:

eσ3 is a deterministic
function of {eσ1 , eσ2}

f (eσ1)

f (eσ2 , eσ3)
f (e

σ
1 , e

σ
2 , e

σ
3 )
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Note also, that for some of the extreme points, multiple orders
generate them.
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Note also, that for some of the extreme points, multiple orders
generate them.

Consider extreme point x = (x1, x2, x3) = (1, 1, 0). Then we get
this either with orders (e1, e2, e3), or (e2, e1, e3). This is true since
f(eσe |{eσ1 , eσ2}) = 0 for all permutations σ of {1, 2, 3}.
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perfect dependence in 3D, entropy, and Bayesian networks

The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.

Consider three binary random variables X1, X2, X3 ∈ {0, 1} that
factor w.r.t., the V-structure X1 → X3 ← X2, where
X3 = X1 ⊕X2, where ⊕ is the X-OR operator, and where X1⊥⊥X2.

Consequently, Xi⊥⊥Xj for any i &= j.

Moreover, for any permutation σ of {1, 2, 3}, we have the
relationship Xσ1 = Xσ2 ⊕Xσ3 .

The entropy function f(A) = H(XA) is a submodular function that
will have the symmetric 3D polytope of the previous example.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

supp, sat, extremal x, perfect dependence

In general, for extremal x, sat(x) ⊇ supp(x).

Now, for any e ∈ E \ supp(x), we clearly have
x(supp(x) + e) = x(supp(x)) since x(e) = 0.
On the other hand, for ei ∈ sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ei) = f(supp(x)). Proof:

sat(x) is tight, as is supp(x), and hence
f(sat(x)) = x(sat(x)) = x(supp(x)) = f(supp(x)).
Therefore, f(sat(x)| supp(x)) = 0.
But by the above, and monotonicity, we have for
e ∈ sat(x) \ supp(x), that
0 = f(sat(x)| supp(x)) ≥ f(e| supp(x)) ≥ 0.
Hence f(e| supp(x)) = 0,

and moreover
f(e+ supp(x)) = x(e+ supp(x)) = x(supp(x)) = f(supp(x)).

Thus, for any extremal x, with sat(x) ⊃ supp(x), we see that for
e ∈ sat(x) \ supp(x), we have supp(x) + e is also tight.
Note also, for any A ⊆ sat(x) \ supp(x), we have
f(A| supp(x)) = 0.
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supp, sat, perfect dependence

Note that all of these results hold when f is monotone
non-decreasing submodular (e.g., for a polymatroid function).

For modular functions, and extremal x, sat(x) = supp(x).

For general x ∈ Pf (not nec. extremal), sat(x) and supp(x) might
have an arbitrary relationship (but we want to strengthen this
relationship further, and we will do so below).

For the most part, we are interested in these quantities when x is
extremal as we will see.
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supp and sat, example under limited curvature

Strict monotone f polymatroids, where f(e|E \ e) > 0, ∀e.
Example: f(A) =

√
|A|, where all m! vertices of Bf are unique.

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

e1
e2

e3

0

1

2

0

1

2

0

0.5

1

1.5

2

e2e1

e3
In such cases, taking any extremal point x ∈ Pf based on prefix
order E = (e1, . . . ), where supp(x) ⊂ E, we have that
sat(x) = supp(x) since the largest tight set corresponds to
x(Ei) = f(Ei) for some i, and while any e ∈ E \ Ei is such that
x(Ei + e) = x(Ei), there is no such e with f(Ei + e) = f(Ei).
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Another revealing theorem
Theorem 15.5.1

Let f be a polymatroid function and suppose that E can be partitioned
into (E1, E2, . . . , Ek) such that f(A) =

∑k
i=1 f(A ∩ Ei) for all A ⊆ E,

and k is maximum. Then the base polytope
Bf = {x ∈ Pf : x(E) = f(E)} (the E-tight subset of Pf ) has dimension
|E|− k.

Thus, “independence” between disjoint A and B (leading to a
rectangular projection of the polymatroid polytope) reduces the
dimension of the base polytope, as expected.

Thus, any point x ∈ Bf is a convex combination of at most
|E|− k + 1 vertices of Bf .

And if f does not have such independence, dimension of Bf is
|E|− 1 and any point x ∈ Bf is a convex combination of at most
|E| vertices of Bf .
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Another revealing theorem
Theorem 15.5.1

Let f be a polymatroid function and suppose that E can be partitioned
into (E1, E2, . . . , Ek) such that f(A) =

∑k
i=1 f(A ∩ Ei) for all A ⊆ E,

and k is maximum. Then the base polytope
Bf = {x ∈ Pf : x(E) = f(E)} (the E-tight subset of Pf ) has dimension
|E|− k.

Thus, “independence” between disjoint A and B (leading to a
rectangular projection of the polymatroid polytope) reduces the
dimension of the base polytope, as expected.

Thus, any point x ∈ Bf is a convex combination of at most
|E|− k + 1 vertices of Bf .

And if f does not have such independence, dimension of Bf is
|E|− 1 and any point x ∈ Bf is a convex combination of at most
|E| vertices of Bf .
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Another revealing theorem
Theorem 15.5.1

Let f be a polymatroid function and suppose that E can be partitioned
into (E1, E2, . . . , Ek) such that f(A) =

∑k
i=1 f(A ∩ Ei) for all A ⊆ E,

and k is maximum. Then the base polytope
Bf = {x ∈ Pf : x(E) = f(E)} (the E-tight subset of Pf ) has dimension
|E|− k.

Thus, “independence” between disjoint A and B (leading to a
rectangular projection of the polymatroid polytope) reduces the
dimension of the base polytope, as expected.

Thus, any point x ∈ Bf is a convex combination of at most
|E|− k + 1 vertices of Bf .

And if f does not have such independence, dimension of Bf is
|E|− 1 and any point x ∈ Bf is a convex combination of at most
|E| vertices of Bf .
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Another revealing theorem
Theorem 15.5.1

Let f be a polymatroid function and suppose that E can be partitioned
into (E1, E2, . . . , Ek) such that f(A) =

∑k
i=1 f(A ∩ Ei) for all A ⊆ E,

and k is maximum. Then the base polytope
Bf = {x ∈ Pf : x(E) = f(E)} (the E-tight subset of Pf ) has dimension
|E|− k.

Thus, “independence” between disjoint A and B (leading to a
rectangular projection of the polymatroid polytope) reduces the
dimension of the base polytope, as expected.

Thus, any point x ∈ Bf is a convex combination of at most
|E|− k + 1 vertices of Bf .

And if f does not have such independence, dimension of Bf is
|E|− 1 and any point x ∈ Bf is a convex combination of at most
|E| vertices of Bf .
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Another revealing theorem
Theorem 15.5.1

Let f be a polymatroid function and suppose that E can be partitioned
into (E1, E2, . . . , Ek) such that f(A) =

∑k
i=1 f(A ∩ Ei) for all A ⊆ E,

and k is maximum. Then the base polytope
Bf = {x ∈ Pf : x(E) = f(E)} (the E-tight subset of Pf ) has dimension
|E|− k.

Example f with independence between A = {e2, e3} and B = {e1},
i.e., e1⊥⊥{e2, e3}, with Bf marked in green.
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Base polytope existence

Given polymatroid function f , the base polytope
Bf =

{
x ∈ RE

+ : x(A) ≤ f(A) ∀A ⊆ E, and x(E) = f(E)
}
always

exists.

Consider any order of E and generate a vector x by this order (i.e.,
x(e1) = f({e1}), x(e2) = f({e1, e2})− f({e1}), and so on).

From past lectures, we now know that:

(1) x ∈ Pf

(2) x is an extreme point in Pf

(3) Since x is generated using an ordering of all of E, we have that
x(E) = f(E).

Thus x ∈ Bf , and Bf is never empty.

Moreover, in this case, x is a vertex of Bf since it is extremal.
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Base polytope existence

Given polymatroid function f , the base polytope
Bf =

{
x ∈ RE

+ : x(A) ≤ f(A) ∀A ⊆ E, and x(E) = f(E)
}
always

exists.

Consider any order of E and generate a vector x by this order (i.e.,
x(e1) = f({e1}), x(e2) = f({e1, e2})− f({e1}), and so on).

From past lectures, we now know that:

(1) x ∈ Pf

(2) x is an extreme point in Pf

(3) Since x is generated using an ordering of all of E, we have that
x(E) = f(E).

Thus x ∈ Bf , and Bf is never empty.

Moreover, in this case, x is a vertex of Bf since it is extremal.
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Base polytope existence

Given polymatroid function f , the base polytope
Bf =

{
x ∈ RE

+ : x(A) ≤ f(A) ∀A ⊆ E, and x(E) = f(E)
}
always

exists.

Consider any order of E and generate a vector x by this order (i.e.,
x(e1) = f({e1}), x(e2) = f({e1, e2})− f({e1}), and so on).

From past lectures, we now know that:

(1) x ∈ Pf

(2) x is an extreme point in Pf

(3) Since x is generated using an ordering of all of E, we have that
x(E) = f(E).

Thus x ∈ Bf , and Bf is never empty.

Moreover, in this case, x is a vertex of Bf since it is extremal.
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Base polytope existence

Given polymatroid function f , the base polytope
Bf =

{
x ∈ RE

+ : x(A) ≤ f(A) ∀A ⊆ E, and x(E) = f(E)
}
always

exists.

Consider any order of E and generate a vector x by this order (i.e.,
x(e1) = f({e1}), x(e2) = f({e1, e2})− f({e1}), and so on).

From past lectures, we now know that:

(1) x ∈ Pf

(2) x is an extreme point in Pf

(3) Since x is generated using an ordering of all of E, we have that
x(E) = f(E).

Thus x ∈ Bf , and Bf is never empty.

Moreover, in this case, x is a vertex of Bf since it is extremal.
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Base polytope existence

Given polymatroid function f , the base polytope
Bf =

{
x ∈ RE

+ : x(A) ≤ f(A) ∀A ⊆ E, and x(E) = f(E)
}
always

exists.

Consider any order of E and generate a vector x by this order (i.e.,
x(e1) = f({e1}), x(e2) = f({e1, e2})− f({e1}), and so on).

From past lectures, we now know that:

(1) x ∈ Pf

(2) x is an extreme point in Pf

(3) Since x is generated using an ordering of all of E, we have that
x(E) = f(E).

Thus x ∈ Bf , and Bf is never empty.

Moreover, in this case, x is a vertex of Bf since it is extremal.
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Base polytope existence

Given polymatroid function f , the base polytope
Bf =

{
x ∈ RE

+ : x(A) ≤ f(A) ∀A ⊆ E, and x(E) = f(E)
}
always

exists.

Consider any order of E and generate a vector x by this order (i.e.,
x(e1) = f({e1}), x(e2) = f({e1, e2})− f({e1}), and so on).

From past lectures, we now know that:

(1) x ∈ Pf

(2) x is an extreme point in Pf

(3) Since x is generated using an ordering of all of E, we have that
x(E) = f(E).

Thus x ∈ Bf , and Bf is never empty.

Moreover, in this case, x is a vertex of Bf since it is extremal.
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Base polytope existence

Given polymatroid function f , the base polytope
Bf =

{
x ∈ RE

+ : x(A) ≤ f(A) ∀A ⊆ E, and x(E) = f(E)
}
always

exists.

Consider any order of E and generate a vector x by this order (i.e.,
x(e1) = f({e1}), x(e2) = f({e1, e2})− f({e1}), and so on).

From past lectures, we now know that:

(1) x ∈ Pf

(2) x is an extreme point in Pf

(3) Since x is generated using an ordering of all of E, we have that
x(E) = f(E).

Thus x ∈ Bf , and Bf is never empty.

Moreover, in this case, x is a vertex of Bf since it is extremal.
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Base polytope existence

Given polymatroid function f , the base polytope
Bf =

{
x ∈ RE

+ : x(A) ≤ f(A) ∀A ⊆ E, and x(E) = f(E)
}
always

exists.

Consider any order of E and generate a vector x by this order (i.e.,
x(e1) = f({e1}), x(e2) = f({e1, e2})− f({e1}), and so on).

From past lectures, we now know that:

(1) x ∈ Pf

(2) x is an extreme point in Pf

(3) Since x is generated using an ordering of all of E, we have that
x(E) = f(E).

Thus x ∈ Bf , and Bf is never empty.

Moreover, in this case, x is a vertex of Bf since it is extremal.
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Base polytope property

Now, for any A ⊆ E, we can generate a particular point in Bf

That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|,
and where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with
k = |A|.
Note there are k!(n− k)! < n! such orderings.

Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).

Then, we have generated a point x (a vertex, no less) in Bf such
that x(A) = f(A).

Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
&= ∅ (15.2)

In words, Bf intersects all “multi-axis congruent” hyperplanes
within RE of the form

{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.
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Base polytope property

Now, for any A ⊆ E, we can generate a particular point in Bf

That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|,
and where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with
k = |A|.

Note there are k!(n− k)! < n! such orderings.

Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).

Then, we have generated a point x (a vertex, no less) in Bf such
that x(A) = f(A).

Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
&= ∅ (15.2)

In words, Bf intersects all “multi-axis congruent” hyperplanes
within RE of the form

{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.
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Base polytope property

Now, for any A ⊆ E, we can generate a particular point in Bf

That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|,
and where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with
k = |A|.
Note there are k!(n− k)! < n! such orderings.

Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).

Then, we have generated a point x (a vertex, no less) in Bf such
that x(A) = f(A).

Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
&= ∅ (15.2)

In words, Bf intersects all “multi-axis congruent” hyperplanes
within RE of the form

{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.
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Base polytope property

Now, for any A ⊆ E, we can generate a particular point in Bf

That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|,
and where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with
k = |A|.
Note there are k!(n− k)! < n! such orderings.

Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).

Then, we have generated a point x (a vertex, no less) in Bf such
that x(A) = f(A).

Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
&= ∅ (15.2)

In words, Bf intersects all “multi-axis congruent” hyperplanes
within RE of the form

{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.
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Base polytope property

Now, for any A ⊆ E, we can generate a particular point in Bf

That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|,
and where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with
k = |A|.
Note there are k!(n− k)! < n! such orderings.

Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).

Then, we have generated a point x (a vertex, no less) in Bf such
that x(A) = f(A).

Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
&= ∅ (15.2)

In words, Bf intersects all “multi-axis congruent” hyperplanes
within RE of the form

{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.
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Base polytope property

Now, for any A ⊆ E, we can generate a particular point in Bf

That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|,
and where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with
k = |A|.
Note there are k!(n− k)! < n! such orderings.

Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).

Then, we have generated a point x (a vertex, no less) in Bf such
that x(A) = f(A).

Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
&= ∅ (15.2)

In words, Bf intersects all “multi-axis congruent” hyperplanes
within RE of the form

{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014 F24/65 (pg.91/259)



Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Base polytope property

Now, for any A ⊆ E, we can generate a particular point in Bf

That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|,
and where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with
k = |A|.
Note there are k!(n− k)! < n! such orderings.

Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).

Then, we have generated a point x (a vertex, no less) in Bf such
that x(A) = f(A).

Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
&= ∅ (15.2)

In words, Bf intersects all “multi-axis congruent” hyperplanes
within RE of the form

{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.
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Bf dominates Pf

In fact, every x ∈ Pf is dominated by x ≤ y ∈ Bf .

Theorem 15.5.2

If x ∈ Pf and T is tight for x (meaning x(T ) = f(T )), then there exists
y ∈ Bf with x ≤ y and y(e) = x(e) for e ∈ T .

Proof.

We construct the y algorithmically: initially set y ← x.

y ∈ Pf , T is tight for y so y(T ) = f(T ).

Recall saturation capacity: for y ∈ Pf , ĉ(y; e) =
min {f(A)− y(A)|∀A 1 e} = max {α : α ∈ R, y + α1e ∈ Pf}
Consider following algorithm:

1 T ′ ← T ;
2 for e ∈ E \ T do
3 y ← y + c(y; e)1e ; T ′ ← T ′ ∪ {e};

. . .
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If x ∈ Pf and T is tight for x (meaning x(T ) = f(T )), then there exists
y ∈ Bf with x ≤ y and y(e) = x(e) for e ∈ T .

Proof.

We construct the y algorithmically: initially set y ← x.
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Recall saturation capacity: for y ∈ Pf , ĉ(y; e) =
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Bf dominates Pf

In fact, every x ∈ Pf is dominated by x ≤ y ∈ Bf .

Theorem 15.5.2

If x ∈ Pf and T is tight for x (meaning x(T ) = f(T )), then there exists
y ∈ Bf with x ≤ y and y(e) = x(e) for e ∈ T .

Proof.

We construct the y algorithmically: initially set y ← x.

y ∈ Pf , T is tight for y so y(T ) = f(T ).

Recall saturation capacity: for y ∈ Pf , ĉ(y; e) =
min {f(A)− y(A)|∀A 1 e} = max {α : α ∈ R, y + α1e ∈ Pf}
Consider following algorithm:

1 T ′ ← T ;
2 for e ∈ E \ T do
3 y ← y + c(y; e)1e ; T ′ ← T ′ ∪ {e};
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Bf dominates Pf

In fact, every x ∈ Pf is dominated by x ≤ y ∈ Bf .

Theorem 15.5.2

If x ∈ Pf and T is tight for x (meaning x(T ) = f(T )), then there exists
y ∈ Bf with x ≤ y and y(e) = x(e) for e ∈ T .

Proof.

We construct the y algorithmically: initially set y ← x.

y ∈ Pf , T is tight for y so y(T ) = f(T ).

Recall saturation capacity: for y ∈ Pf , ĉ(y; e) =
min {f(A)− y(A)|∀A 1 e} = max {α : α ∈ R, y + α1e ∈ Pf}

Consider following algorithm:

1 T ′ ← T ;
2 for e ∈ E \ T do
3 y ← y + c(y; e)1e ; T ′ ← T ′ ∪ {e};
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Bf dominates Pf

In fact, every x ∈ Pf is dominated by x ≤ y ∈ Bf .

Theorem 15.5.2

If x ∈ Pf and T is tight for x (meaning x(T ) = f(T )), then there exists
y ∈ Bf with x ≤ y and y(e) = x(e) for e ∈ T .

Proof.

We construct the y algorithmically: initially set y ← x.

y ∈ Pf , T is tight for y so y(T ) = f(T ).

Recall saturation capacity: for y ∈ Pf , ĉ(y; e) =
min {f(A)− y(A)|∀A 1 e} = max {α : α ∈ R, y + α1e ∈ Pf}
Consider following algorithm:

1 T ′ ← T ;
2 for e ∈ E \ T do
3 y ← y + c(y; e)1e ; T ′ ← T ′ ∪ {e}; ĉ(y; e)

e1

e2

x
. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Bf dominates Pf

. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′)

= y(e) + f(T ′ + e)− y(T ′ + e)

.

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e).

Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 1 e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Bf dominates Pf

. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e).

Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 1 e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Bf dominates Pf

. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e).

Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 1 e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Bf dominates Pf

. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e). Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 1 e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Bf dominates Pf

. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e). Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 1 e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Bf dominates Pf

. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e). Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 1 e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Bf dominates Pf

. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e). Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 1 e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Bf dominates Pf

. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e). Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 1 e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Bf dominates Pf

. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e). Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 1 e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Polytope example 1
Observe: Pf (at two views):
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Polytope example 1
Observe: Pf (at two views):
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Is this a polymatroidal polytope?
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Polytope example 1
Observe: Pf (at two views):
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Is this a polymatroidal polytope?
No, “Bf” doesn’t intersect sets of the form {x : x(e) = f(e)} for
e ∈ E.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Polytope example 1
Observe: Pf (at two views):
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Is this a polymatroidal polytope?
No, “Bf” doesn’t intersect sets of the form {x : x(e) = f(e)} for
e ∈ E.
This was generated using function g(0) = 0, g(1) = 3, g(2) = 4,
and g(3) = 5.5. Then f(S) = g(|S|) is not submodular since (e.g.)
f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Polytope example 2
Observe: Pf (at two views):
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Polytope example 2
Observe: Pf (at two views):
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Is this a polymatroidal polytope?
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Polytope example 2
Observe: Pf (at two views):
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Is this a polymatroidal polytope?

No, “Bf” (which would be a single point in this case) doesn’t
intersect sets of the form {x : x(e) = f(e)} for e ∈ E.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Polytope example 2
Observe: Pf (at two views):
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Is this a polymatroidal polytope?

No, “Bf” (which would be a single point in this case) doesn’t
intersect sets of the form {x : x(e) = f(e)} for e ∈ E.

This was generated using function g(0) = 0, g(1) = 1, g(2) = 1.8,
and g(3) = 3. Then f(S) = g(|S|) is not submodular since (e.g.)
f({e1, e3}) + f({e1, e2}) = 1.8 + 1.8 = 3.6 but
f({e1, e2, e3}) + f({e1}) = 3 + 1 = 4.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Review

The next slide is review from lecture 13.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Saturation Capacity

The max is achieved when

α = ĉ(x; e)
def
= min {f(A)− x(A), ∀A ⊇ {e}} (15.22)

ĉ(x; e) is known as the saturation capacity associated with x ∈ Pf

and e.

Thus we have for x ∈ Pf ,

ĉ(x; e)
def
= min {f(A)− x(A), ∀A 1 e} (15.23)

= max {α : α ∈ R, x+ α1e ∈ Pf} (15.24)

We immediately see that for e ∈ E \ sat(x), we have that
ĉ(x; e) > 0.

Also, for e ∈ sat(x), we have that ĉ(x; e) = 0.

Note that any α with 0 ≤ α ≤ ĉ(x; e) we have x+ α1e ∈ Pf .

We also see that computing ĉ(x; e) is a form of submodular function
minimization.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Matroids and Exchange

Recall, matroids have a number of “exchange” properties.

Also, recall that given a matroid M = (E, I), if I ∈ I is
independent, and e ∈ span(I), and e′ ∈ C(I, e) where C(I, e) is the
fundamental circuit created when adding e to I, then we have:

I + e− e′ ∈ I (15.4)

Note, this holds for any e′ ∈ C(I, e).

Since dep(x, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?

Yes, and it is called the “exchange capacity”
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Matroids and Exchange

Recall, matroids have a number of “exchange” properties.

Also, recall that given a matroid M = (E, I), if I ∈ I is
independent, and e ∈ span(I), and e′ ∈ C(I, e) where C(I, e) is the
fundamental circuit created when adding e to I, then we have:

I + e− e′ ∈ I (15.4)

Note, this holds for any e′ ∈ C(I, e).

Since dep(x, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?

Yes, and it is called the “exchange capacity”
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Matroids and Exchange

Recall, matroids have a number of “exchange” properties.

Also, recall that given a matroid M = (E, I), if I ∈ I is
independent, and e ∈ span(I), and e′ ∈ C(I, e) where C(I, e) is the
fundamental circuit created when adding e to I, then we have:

I + e− e′ ∈ I (15.4)

Note, this holds for any e′ ∈ C(I, e).

Since dep(x, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?

Yes, and it is called the “exchange capacity”
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Matroids and Exchange

Recall, matroids have a number of “exchange” properties.

Also, recall that given a matroid M = (E, I), if I ∈ I is
independent, and e ∈ span(I), and e′ ∈ C(I, e) where C(I, e) is the
fundamental circuit created when adding e to I, then we have:

I + e− e′ ∈ I (15.4)

Note, this holds for any e′ ∈ C(I, e).

Since dep(x, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?

Yes, and it is called the “exchange capacity”
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Note, this holds for any e′ ∈ C(I, e).

Since dep(x, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?

Yes, and it is called the “exchange capacity”
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Matroids and Exchange

Recall, matroids have a number of “exchange” properties.

Also, recall that given a matroid M = (E, I), if I ∈ I is
independent, and e ∈ span(I), and e′ ∈ C(I, e) where C(I, e) is the
fundamental circuit created when adding e to I, then we have:

I + e− e′ ∈ I (15.4)

Note, this holds for any e′ ∈ C(I, e).

Since dep(x, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?

Yes, and it is called the “exchange capacity”
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Exchange Capacity

Consider x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}

Thus, for any α > 0, we have x+ α1a /∈ Pf for either a = e or a = e′,
since dep(x, e) ⊆ sat(x).

Examples:

How much can we move in positive e direction if we simultaneously
move in negative e′ direction?
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Consider x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}
Thus, for any α > 0, we have x+ α1a /∈ Pf for either a = e or a = e′,
since dep(x, e) ⊆ sat(x).
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Exchange Capacity

Consider x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}
Thus, for any α > 0, we have x+ α1a /∈ Pf for either a = e or a = e′,
since dep(x, e) ⊆ sat(x).

Examples:
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x
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How much can we move in positive e direction if we simultaneously
move in negative e′ direction?
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Exchange Capacity

Consider x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}
Thus, for any α > 0, we have x+ α1a /∈ Pf for either a = e or a = e′,
since dep(x, e) ⊆ sat(x).

Examples:

e’

e

e’

e

x

x

How much can we move in positive e direction if we simultaneously
move in negative e′ direction?
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Exchange Capacity

x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}, consider
max {α : α ∈ R, x+ α(1e − 1e′) ∈ Pf} (15.5)

Identical to:

max {α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A} (15.6)

If both e, e′ ∈ A (or neither), then α(1e − 1e′)(A) = 0 for any α, so
to make this meaningful, we take A : e′ /∈ A 1 e.

thus identical to

max
{
α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A 1 e, e′ /∈ A

}

(15.7)

Which is identical to:

max
{
α : α ∈ R,α(1e − 1e′))(A) ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}

(15.8)
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Exchange Capacity

x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}, consider
max {α : α ∈ R, x+ α(1e − 1e′) ∈ Pf} (15.5)

Identical to:

max {α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A} (15.6)

If both e, e′ ∈ A (or neither), then α(1e − 1e′)(A) = 0 for any α, so
to make this meaningful, we take A : e′ /∈ A 1 e.
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{
α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A 1 e, e′ /∈ A

}

(15.7)

Which is identical to:

max
{
α : α ∈ R,α(1e − 1e′))(A) ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}

(15.8)
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Exchange Capacity

x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}, consider
max {α : α ∈ R, x+ α(1e − 1e′) ∈ Pf} (15.5)

Identical to:

max {α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A} (15.6)

If both e, e′ ∈ A (or neither), then α(1e − 1e′)(A) = 0 for any α, so
to make this meaningful, we take A : e′ /∈ A 1 e.

thus identical to

max
{
α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A 1 e, e′ /∈ A

}

(15.7)

Which is identical to:

max
{
α : α ∈ R,α(1e − 1e′))(A) ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}

(15.8)
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Exchange Capacity

x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}, consider
max {α : α ∈ R, x+ α(1e − 1e′) ∈ Pf} (15.5)

Identical to:

max {α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A} (15.6)

If both e, e′ ∈ A (or neither), then α(1e − 1e′)(A) = 0 for any α, so
to make this meaningful, we take A : e′ /∈ A 1 e.

thus identical to

max
{
α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A 1 e, e′ /∈ A

}

(15.7)

Which is identical to:

max
{
α : α ∈ R,α(1e − 1e′))(A) ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}

(15.8)
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Exchange Capacity

x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}, consider
max {α : α ∈ R, x+ α(1e − 1e′) ∈ Pf} (15.5)

Identical to:

max {α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A} (15.6)

If both e, e′ ∈ A (or neither), then α(1e − 1e′)(A) = 0 for any α, so
to make this meaningful, we take A : e′ /∈ A 1 e.

thus identical to

max
{
α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A 1 e, e′ /∈ A

}

(15.7)

Which is identical to:

max
{
α : α ∈ R,α(1e − 1e′))(A) ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}

(15.8)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Exchange Capacity

In such case, we get 1e′(A) = 0, thus above identical to

max
{
α : α ∈ R,α1e(A) ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.9)

Restating, we’ve got

max
{
α : α ∈ R,α ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.10)

This max is achieved when

α = ĉ(x; e, e′)
def
= min

{
f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.11)

ĉ(x; e, e′) is known as the exchange capacity associated with x ∈ Pf

and e.

For any α with 0 ≤ α ≤ ĉ(x; e, e′), we have that x+ α(1e − 1e′) ∈ Pf .

As we will see, if e and e′ are successive in an order that generates
extreme point x, then we get a “neighbor” extreme point via
x′ = x+ ĉ(x; e, e′)(1e − 1e′).

Note that Eqn. (15.11) is a form of SFM.
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Exchange Capacity

In such case, we get 1e′(A) = 0, thus above identical to
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Restating, we’ve got
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ĉ(x; e, e′) is known as the exchange capacity associated with x ∈ Pf

and e.

For any α with 0 ≤ α ≤ ĉ(x; e, e′), we have that x+ α(1e − 1e′) ∈ Pf .

As we will see, if e and e′ are successive in an order that generates
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Exchange Capacity

In such case, we get 1e′(A) = 0, thus above identical to
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}
(15.9)
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For any α with 0 ≤ α ≤ ĉ(x; e, e′), we have that x+ α(1e − 1e′) ∈ Pf .
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Exchange Capacity

In such case, we get 1e′(A) = 0, thus above identical to

max
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In such case, we get 1e′(A) = 0, thus above identical to
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}
(15.9)

Restating, we’ve got
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def
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{
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ĉ(x; e, e′) is known as the exchange capacity associated with x ∈ Pf

and e.
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Exchange Capacity

In such case, we get 1e′(A) = 0, thus above identical to

max
{
α : α ∈ R,α1e(A) ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.9)

Restating, we’ve got

max
{
α : α ∈ R,α ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.10)

This max is achieved when

α = ĉ(x; e, e′)
def
= min

{
f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.11)

ĉ(x; e, e′) is known as the exchange capacity associated with x ∈ Pf

and e.

For any α with 0 ≤ α ≤ ĉ(x; e, e′), we have that x+ α(1e − 1e′) ∈ Pf .

As we will see, if e and e′ are successive in an order that generates
extreme point x, then we get a “neighbor” extreme point via
x′ = x+ ĉ(x; e, e′)(1e − 1e′).

Note that Eqn. (15.11) is a form of SFM.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

A polymatroid function’s polyhedron is a polymatroid.

Theorem 15.7.1

Let f be a submodular function defined on subsets of E. For any
x ∈ RE , we have:

rank(x) = max (y(E) : y ≤ x, y ∈ Pf ) = min (x(A) + f(E \A) : A ⊆ E)
(15.5)

If we take x to be zero, we get:

Corollary 15.7.2

Let f be a submodular function defined on subsets of E. x ∈ RE , we
have:

rank(0) = max (y(E) : y ≤ 0, y ∈ Pf ) = min (f(A) : A ⊆ E) (15.6)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point: Definition

Restating what we saw before, we have:

max {y(E)|y ∈ Pf , y ≤ 0} = min {f(X)|X ⊆ V } (15.12)

Consider the optimization:

minimize ‖x‖22 (15.13a)

subject to x ∈ Bf (15.13b)

where Bf is the base polytope of submodular f , and
‖x‖22 =

∑
e∈E x(e)2 is the squared 2-norm. Let x∗ be the optimal

solution.

Note, x∗ is the unique optimal solution since we have a strictly
convex objective over a set of convex constraints.

x∗ is called the minimum norm point of the base polytope.
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Min-Norm Point: Definition

Restating what we saw before, we have:

max {y(E)|y ∈ Pf , y ≤ 0} = min {f(X)|X ⊆ V } (15.12)

Consider the optimization:

minimize ‖x‖22 (15.13a)

subject to x ∈ Bf (15.13b)

where Bf is the base polytope of submodular f , and
‖x‖22 =

∑
e∈E x(e)2 is the squared 2-norm. Let x∗ be the optimal

solution.

Note, x∗ is the unique optimal solution since we have a strictly
convex objective over a set of convex constraints.

x∗ is called the minimum norm point of the base polytope.
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Min-Norm Point: Definition

Restating what we saw before, we have:

max {y(E)|y ∈ Pf , y ≤ 0} = min {f(X)|X ⊆ V } (15.12)

Consider the optimization:

minimize ‖x‖22 (15.13a)

subject to x ∈ Bf (15.13b)

where Bf is the base polytope of submodular f , and
‖x‖22 =

∑
e∈E x(e)2 is the squared 2-norm. Let x∗ be the optimal

solution.

Note, x∗ is the unique optimal solution since we have a strictly
convex objective over a set of convex constraints.

x∗ is called the minimum norm point of the base polytope.
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Min-Norm Point: Definition

Restating what we saw before, we have:

max {y(E)|y ∈ Pf , y ≤ 0} = min {f(X)|X ⊆ V } (15.12)

Consider the optimization:

minimize ‖x‖22 (15.13a)

subject to x ∈ Bf (15.13b)

where Bf is the base polytope of submodular f , and
‖x‖22 =

∑
e∈E x(e)2 is the squared 2-norm. Let x∗ be the optimal

solution.

Note, x∗ is the unique optimal solution since we have a strictly
convex objective over a set of convex constraints.

x∗ is called the minimum norm point of the base polytope.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point: Examples

Pf Pf Pf

Pf

Pf

Pf
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and Submodular Function Minimization

Given optimal solution x∗ to the above, consider the quantities

y∗ = x∗ ∧ 0 = (min(x∗(e), 0)|e ∈ E) (15.14)

A− = {e : x∗(e) < 0} (15.15)

A0 = {e : x∗(e) ≤ 0} (15.16)

It turns out, these quantities will solve the submodular function
minimization problem, as we now show.

The proof is nice since it uses the tools we’ve been recently
developing.
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Min-Norm Point and Submodular Function Minimization

Given optimal solution x∗ to the above, consider the quantities

y∗ = x∗ ∧ 0 = (min(x∗(e), 0)|e ∈ E) (15.14)

A− = {e : x∗(e) < 0} (15.15)

A0 = {e : x∗(e) ≤ 0} (15.16)

It turns out, these quantities will solve the submodular function
minimization problem, as we now show.

The proof is nice since it uses the tools we’ve been recently
developing.
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Min-Norm Point and Submodular Function Minimization

Given optimal solution x∗ to the above, consider the quantities

y∗ = x∗ ∧ 0 = (min(x∗(e), 0)|e ∈ E) (15.14)

A− = {e : x∗(e) < 0} (15.15)

A0 = {e : x∗(e) ≤ 0} (15.16)

It turns out, these quantities will solve the submodular function
minimization problem, as we now show.

The proof is nice since it uses the tools we’ve been recently
developing.
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Min-Norm Point and SFM

Theorem 15.7.1

Let y∗, A−, and A0 be as given. Then y∗ is a maximizer of the l.h.s. of
Eqn. (15.12). Moreover, A− is the unique minimal minimizer of f and
A0 is the unique maximal minimizer of f .

Proof.

First note, since x∗ ∈ Bf , we have x∗(E) = f(E), meaning
sat(x∗) = E. Thus, we can consider any e ∈ E within dep(x∗, e).

Consider any pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−. Then
x∗(e) < 0, and ∃α > 0 s.t. x∗ + α1e − α1e′ ∈ Pf .

We have x∗(E) = f(E) and x∗ is minimum in l2 sense. We have
(x∗ + α1e − α1e′) ∈ Pf , and in fact

(x∗ + α1e − α1e′)(E) = x∗(E) + α− α = f(E) (15.17)

so x∗ + α1e − α1e′ ∈ Bf also.

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

Theorem 15.7.1

Let y∗, A−, and A0 be as given. Then y∗ is a maximizer of the l.h.s. of
Eqn. (15.12). Moreover, A− is the unique minimal minimizer of f and
A0 is the unique maximal minimizer of f .

Proof.

First note, since x∗ ∈ Bf , we have x∗(E) = f(E), meaning
sat(x∗) = E. Thus, we can consider any e ∈ E within dep(x∗, e).

Consider any pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−. Then
x∗(e) < 0, and ∃α > 0 s.t. x∗ + α1e − α1e′ ∈ Pf .

We have x∗(E) = f(E) and x∗ is minimum in l2 sense. We have
(x∗ + α1e − α1e′) ∈ Pf , and in fact

(x∗ + α1e − α1e′)(E) = x∗(E) + α− α = f(E) (15.17)

so x∗ + α1e − α1e′ ∈ Bf also.

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

Theorem 15.7.1

Let y∗, A−, and A0 be as given. Then y∗ is a maximizer of the l.h.s. of
Eqn. (15.12). Moreover, A− is the unique minimal minimizer of f and
A0 is the unique maximal minimizer of f .

Proof.

First note, since x∗ ∈ Bf , we have x∗(E) = f(E), meaning
sat(x∗) = E. Thus, we can consider any e ∈ E within dep(x∗, e).

Consider any pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−. Then
x∗(e) < 0, and ∃α > 0 s.t. x∗ + α1e − α1e′ ∈ Pf .

We have x∗(E) = f(E) and x∗ is minimum in l2 sense. We have
(x∗ + α1e − α1e′) ∈ Pf , and in fact

(x∗ + α1e − α1e′)(E) = x∗(E) + α− α = f(E) (15.17)

so x∗ + α1e − α1e′ ∈ Bf also.
. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Then (x∗ + α1e − α1e′)(E)
= x∗(E \ {e, e′}) + (x∗(e) + α)︸ ︷︷ ︸

x∗
new(e)

+(x∗(e′)− α)︸ ︷︷ ︸
x∗
new(e

′)

= f(E).

Minimality of x∗ ∈ Bf in l2 sense requires that, with such an α > 0,(
x∗(e)

)2
+
(
x∗(e′)

)2
<

(
x∗new(e)

)2
+
(
x∗new(e

′)
)2

Given that e ∈ A−, x
∗(e) < 0. Thus, if x∗(e′) > 0, we could have

(x∗(e) + α)2 + (x∗(e′)− α)2 < (x∗(e))2 + (x∗(e′))2, contradicting
the optimality of x∗.

If x∗(e′) = 0, we would have (x∗(e) + α)2 + (α)2 < (x∗(e))2, for
any 0 < α < |x∗(e)|, again contradicting the optimality of x∗.

Thus, we must have x∗(e′) < 0 (strict negativity).

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Then (x∗ + α1e − α1e′)(E)
= x∗(E \ {e, e′}) + (x∗(e) + α)︸ ︷︷ ︸

x∗
new(e)

+(x∗(e′)− α)︸ ︷︷ ︸
x∗
new(e

′)

= f(E).

Minimality of x∗ ∈ Bf in l2 sense requires that, with such an α > 0,(
x∗(e)

)2
+
(
x∗(e′)

)2
<

(
x∗new(e)

)2
+
(
x∗new(e

′)
)2

Given that e ∈ A−, x
∗(e) < 0. Thus, if x∗(e′) > 0, we could have

(x∗(e) + α)2 + (x∗(e′)− α)2 < (x∗(e))2 + (x∗(e′))2, contradicting
the optimality of x∗.

If x∗(e′) = 0, we would have (x∗(e) + α)2 + (α)2 < (x∗(e))2, for
any 0 < α < |x∗(e)|, again contradicting the optimality of x∗.

Thus, we must have x∗(e′) < 0 (strict negativity).

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Then (x∗ + α1e − α1e′)(E)
= x∗(E \ {e, e′}) + (x∗(e) + α)︸ ︷︷ ︸

x∗
new(e)

+(x∗(e′)− α)︸ ︷︷ ︸
x∗
new(e

′)

= f(E).

Minimality of x∗ ∈ Bf in l2 sense requires that, with such an α > 0,(
x∗(e)

)2
+
(
x∗(e′)

)2
<

(
x∗new(e)

)2
+
(
x∗new(e

′)
)2

Given that e ∈ A−, x
∗(e) < 0. Thus, if x∗(e′) > 0, we could have

(x∗(e) + α)2 + (x∗(e′)− α)2 < (x∗(e))2 + (x∗(e′))2, contradicting
the optimality of x∗.

If x∗(e′) = 0, we would have (x∗(e) + α)2 + (α)2 < (x∗(e))2, for
any 0 < α < |x∗(e)|, again contradicting the optimality of x∗.

Thus, we must have x∗(e′) < 0 (strict negativity).

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Then (x∗ + α1e − α1e′)(E)
= x∗(E \ {e, e′}) + (x∗(e) + α)︸ ︷︷ ︸

x∗
new(e)

+(x∗(e′)− α)︸ ︷︷ ︸
x∗
new(e

′)

= f(E).

Minimality of x∗ ∈ Bf in l2 sense requires that, with such an α > 0,(
x∗(e)

)2
+
(
x∗(e′)

)2
<

(
x∗new(e)

)2
+
(
x∗new(e

′)
)2

Given that e ∈ A−, x
∗(e) < 0. Thus, if x∗(e′) > 0, we could have

(x∗(e) + α)2 + (x∗(e′)− α)2 < (x∗(e))2 + (x∗(e′))2, contradicting
the optimality of x∗.

If x∗(e′) = 0, we would have (x∗(e) + α)2 + (α)2 < (x∗(e))2, for
any 0 < α < |x∗(e)|, again contradicting the optimality of x∗.

Thus, we must have x∗(e′) < 0 (strict negativity).

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Then (x∗ + α1e − α1e′)(E)
= x∗(E \ {e, e′}) + (x∗(e) + α)︸ ︷︷ ︸

x∗
new(e)

+(x∗(e′)− α)︸ ︷︷ ︸
x∗
new(e

′)

= f(E).

Minimality of x∗ ∈ Bf in l2 sense requires that, with such an α > 0,(
x∗(e)

)2
+
(
x∗(e′)

)2
<

(
x∗new(e)

)2
+
(
x∗new(e

′)
)2

Given that e ∈ A−, x
∗(e) < 0. Thus, if x∗(e′) > 0, we could have

(x∗(e) + α)2 + (x∗(e′)− α)2 < (x∗(e))2 + (x∗(e′))2, contradicting
the optimality of x∗.

If x∗(e′) = 0, we would have (x∗(e) + α)2 + (α)2 < (x∗(e))2, for
any 0 < α < |x∗(e)|, again contradicting the optimality of x∗.

Thus, we must have x∗(e′) < 0 (strict negativity).

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Thus, for a pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−, we have
x(e′) < 0 and hence e′ ∈ A−.

Hence, ∀e ∈ A−, we have dep(x∗, e) ⊆ A−.

A very similar argument can show that, ∀e ∈ A0, we have
dep(x∗, e) ⊆ A0.

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Thus, for a pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−, we have
x(e′) < 0 and hence e′ ∈ A−.

Hence, ∀e ∈ A−, we have dep(x∗, e) ⊆ A−.

A very similar argument can show that, ∀e ∈ A0, we have
dep(x∗, e) ⊆ A0.

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Thus, for a pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−, we have
x(e′) < 0 and hence e′ ∈ A−.

Hence, ∀e ∈ A−, we have dep(x∗, e) ⊆ A−.

A very similar argument can show that, ∀e ∈ A0, we have
dep(x∗, e) ⊆ A0.

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Therefore, we have ∪e∈A− dep(x∗, e) = A− and
∪e∈A0 dep(x

∗, e) = A0

Ie., {dep(x∗, e)}e∈A−
is cover for A−, as is {dep(x∗, e)}e∈A0

for A0.

dep(x∗, e) is minimal tight set containing e, meaning
x∗(dep(x∗, e)) = f(dep(x∗, e)), and since tight sets are closed
under union, we have that A− and A0 are also tight, meaning:

x∗(A−) = f(A−) (15.18)

x∗(A0) = f(A0) (15.19)

x∗(A−) = x∗(A0) = y∗(E) (15.20)

and therefore, all together we have

f(A−) = f(A0) = x∗(A−) = x∗(A0) = y∗(E) (15.21)

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Therefore, we have ∪e∈A− dep(x∗, e) = A− and
∪e∈A0 dep(x

∗, e) = A0

Ie., {dep(x∗, e)}e∈A−
is cover for A−, as is {dep(x∗, e)}e∈A0

for A0.

dep(x∗, e) is minimal tight set containing e, meaning
x∗(dep(x∗, e)) = f(dep(x∗, e)), and since tight sets are closed
under union, we have that A− and A0 are also tight, meaning:

x∗(A−) = f(A−) (15.18)

x∗(A0) = f(A0) (15.19)

x∗(A−) = x∗(A0) = y∗(E) (15.20)

and therefore, all together we have

f(A−) = f(A0) = x∗(A−) = x∗(A0) = y∗(E) (15.21)

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Therefore, we have ∪e∈A− dep(x∗, e) = A− and
∪e∈A0 dep(x

∗, e) = A0

Ie., {dep(x∗, e)}e∈A−
is cover for A−, as is {dep(x∗, e)}e∈A0

for A0.

dep(x∗, e) is minimal tight set containing e, meaning
x∗(dep(x∗, e)) = f(dep(x∗, e)), and since tight sets are closed
under union, we have that A− and A0 are also tight, meaning:

x∗(A−) = f(A−) (15.18)

x∗(A0) = f(A0) (15.19)

x∗(A−) = x∗(A0) = y∗(E) (15.20)

and therefore, all together we have

f(A−) = f(A0) = x∗(A−) = x∗(A0) = y∗(E) (15.21)

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Therefore, we have ∪e∈A− dep(x∗, e) = A− and
∪e∈A0 dep(x

∗, e) = A0

Ie., {dep(x∗, e)}e∈A−
is cover for A−, as is {dep(x∗, e)}e∈A0

for A0.

dep(x∗, e) is minimal tight set containing e, meaning
x∗(dep(x∗, e)) = f(dep(x∗, e)), and since tight sets are closed
under union, we have that A− and A0 are also tight, meaning:

x∗(A−) = f(A−) (15.18)

x∗(A0) = f(A0) (15.19)

x∗(A−) = x∗(A0) = y∗(E) (15.20)

and therefore, all together we have

f(A−) = f(A0) = x∗(A−) = x∗(A0) = y∗(E) (15.21)

. . .
Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014 F42/65 (pg.162/259)



Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Therefore, we have ∪e∈A− dep(x∗, e) = A− and
∪e∈A0 dep(x

∗, e) = A0

Ie., {dep(x∗, e)}e∈A−
is cover for A−, as is {dep(x∗, e)}e∈A0

for A0.

dep(x∗, e) is minimal tight set containing e, meaning
x∗(dep(x∗, e)) = f(dep(x∗, e)), and since tight sets are closed
under union, we have that A− and A0 are also tight, meaning:

x∗(A−) = f(A−) (15.18)

x∗(A0) = f(A0) (15.19)

x∗(A−) = x∗(A0) = y∗(E) (15.20)

and therefore, all together we have

f(A−) = f(A0) = x∗(A−) = x∗(A0) = y∗(E) (15.21)

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Therefore, we have ∪e∈A− dep(x∗, e) = A− and
∪e∈A0 dep(x

∗, e) = A0

Ie., {dep(x∗, e)}e∈A−
is cover for A−, as is {dep(x∗, e)}e∈A0

for A0.

dep(x∗, e) is minimal tight set containing e, meaning
x∗(dep(x∗, e)) = f(dep(x∗, e)), and since tight sets are closed
under union, we have that A− and A0 are also tight, meaning:

x∗(A−) = f(A−) (15.18)

x∗(A0) = f(A0) (15.19)

x∗(A−) = x∗(A0) = y∗(E) (15.20)

and therefore, all together we have

f(A−) = f(A0) = x∗(A−) = x∗(A0) = y∗(E) (15.21)

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Therefore, we have ∪e∈A− dep(x∗, e) = A− and
∪e∈A0 dep(x

∗, e) = A0

Ie., {dep(x∗, e)}e∈A−
is cover for A−, as is {dep(x∗, e)}e∈A0

for A0.

dep(x∗, e) is minimal tight set containing e, meaning
x∗(dep(x∗, e)) = f(dep(x∗, e)), and since tight sets are closed
under union, we have that A− and A0 are also tight, meaning:

x∗(A−) = f(A−) (15.18)

x∗(A0) = f(A0) (15.19)

x∗(A−) = x∗(A0) = y∗(E) (15.20)

and therefore, all together we have

f(A−) = f(A0) = x∗(A−) = x∗(A0) = y∗(E) (15.21)

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Therefore, we have ∪e∈A− dep(x∗, e) = A− and
∪e∈A0 dep(x

∗, e) = A0

Ie., {dep(x∗, e)}e∈A−
is cover for A−, as is {dep(x∗, e)}e∈A0

for A0.

dep(x∗, e) is minimal tight set containing e, meaning
x∗(dep(x∗, e)) = f(dep(x∗, e)), and since tight sets are closed
under union, we have that A− and A0 are also tight, meaning:

x∗(A−) = f(A−) (15.18)

x∗(A0) = f(A0) (15.19)

x∗(A−) = x∗(A0) = y∗(E) (15.20)

and therefore, all together we have

f(A−) = f(A0) = x∗(A−) = x∗(A0) = y∗(E) (15.21)

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Now, y∗ is feasible for the l.h.s. of Eqn. (15.12).

This follows since,
we have y∗ = x∗ ∧ 0 ≤ 0, and since x∗ ∈ Bf ⊂ Pf , and y∗ ≤ x∗ and
Pf is down-closed, we have that y∗ ∈ Pf .

Also, for any y ∈ Pf with y ≤ 0 and for any X ⊆ E, we have
y(E) ≤ y(X) ≤ f(X).

Hence, we have found a feasible for l.h.s. of Eqn. (15.12), y∗ ≤ 0,
y∗ ∈ Pf , so y∗(E) ≤ f(X) for all X.

So y∗(E) ≤ min {f(X)|X ⊆ V }.
Considering Eqn. (15.18), we have found sets A− and A0 with
tightness in Eqn. (15.12), meaning y∗(E) = f(A−) = f(A0).

Hence, y∗ is a maximizer of l.h.s. of Eqn. (15.12), and A− and A0

are minimizers of f .

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Now, y∗ is feasible for the l.h.s. of Eqn. (15.12). This follows since,
we have y∗ = x∗ ∧ 0 ≤ 0, and since x∗ ∈ Bf ⊂ Pf , and y∗ ≤ x∗ and
Pf is down-closed, we have that y∗ ∈ Pf .

Also, for any y ∈ Pf with y ≤ 0 and for any X ⊆ E, we have
y(E) ≤ y(X) ≤ f(X).

Hence, we have found a feasible for l.h.s. of Eqn. (15.12), y∗ ≤ 0,
y∗ ∈ Pf , so y∗(E) ≤ f(X) for all X.

So y∗(E) ≤ min {f(X)|X ⊆ V }.
Considering Eqn. (15.18), we have found sets A− and A0 with
tightness in Eqn. (15.12), meaning y∗(E) = f(A−) = f(A0).

Hence, y∗ is a maximizer of l.h.s. of Eqn. (15.12), and A− and A0

are minimizers of f .

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Now, y∗ is feasible for the l.h.s. of Eqn. (15.12). This follows since,
we have y∗ = x∗ ∧ 0 ≤ 0, and since x∗ ∈ Bf ⊂ Pf , and y∗ ≤ x∗ and
Pf is down-closed, we have that y∗ ∈ Pf .

Also, for any y ∈ Pf with y ≤ 0 and for any X ⊆ E, we have
y(E) ≤ y(X) ≤ f(X).

Hence, we have found a feasible for l.h.s. of Eqn. (15.12), y∗ ≤ 0,
y∗ ∈ Pf , so y∗(E) ≤ f(X) for all X.

So y∗(E) ≤ min {f(X)|X ⊆ V }.
Considering Eqn. (15.18), we have found sets A− and A0 with
tightness in Eqn. (15.12), meaning y∗(E) = f(A−) = f(A0).

Hence, y∗ is a maximizer of l.h.s. of Eqn. (15.12), and A− and A0

are minimizers of f .

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Now, y∗ is feasible for the l.h.s. of Eqn. (15.12). This follows since,
we have y∗ = x∗ ∧ 0 ≤ 0, and since x∗ ∈ Bf ⊂ Pf , and y∗ ≤ x∗ and
Pf is down-closed, we have that y∗ ∈ Pf .

Also, for any y ∈ Pf with y ≤ 0 and for any X ⊆ E, we have
y(E) ≤ y(X) ≤ f(X).

Hence, we have found a feasible for l.h.s. of Eqn. (15.12), y∗ ≤ 0,
y∗ ∈ Pf , so y∗(E) ≤ f(X) for all X.

So y∗(E) ≤ min {f(X)|X ⊆ V }.
Considering Eqn. (15.18), we have found sets A− and A0 with
tightness in Eqn. (15.12), meaning y∗(E) = f(A−) = f(A0).

Hence, y∗ is a maximizer of l.h.s. of Eqn. (15.12), and A− and A0

are minimizers of f .

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 15.7.1 cont.

Now, for any X ⊂ A−, we have

f(X) ≥ x∗(X) > x∗(A−) = f(A−) (15.22)

And for any X ⊃ A0, we have

f(X) ≥ x∗(X) > x∗(A0) = f(A0) (15.23)

Hence, A− must be the unique minimal minimizer of f , and A0 is
the unique maximal minimizer of f .
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Min-Norm Point and SFM

So, if we have a procedure to compute the min-norm point
computation, we can solve SFM.

Nice thing about previous proof is that it uses both expressions for
dep for different purposes.

This was discovered by Fujishige (in fact the proof above is an
expanded version of the one found in the book).

An algorithm (by F. Wolfe) can find this min-norm point, essentially
an active-set procedure for quadratic programming. It uses
Edmonds’s greedy algorithm to make it efficient.

This is currently the best practical algorithm for general purpose
submodular function minimization.

But its underlying lower-bound complexity is unknown, although in
practice its estimated empirical complexity runs anywhere from
O(n3) to O(n4.5) or so (see Jegelka, Lin, Bilmes (NIPS 2011)).
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Min-norm point and other minimizers of f

Recall, that the set of minimizers of f forms a lattice.

In fact, with x∗ the min-norm point, and A− and A0 as defined
above, we have the following theorem:

Theorem 15.7.2

Let A ⊆ E be any minimizer of submodular f , and let x∗ be the
minimum-norm point. Then A has the form:

A = A− ∪
⋃

a∈Am

dep(x∗, a) (15.24)

for some set Am ⊆ A0 \A−.
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Min-norm point and other minimizers of f

proof of Thm. 15.7.2.

If A is a minimizer, then A− ⊆ A ⊆ A0, and f(A) = y∗(E) is the
minimum valuation of f .

But x∗ ∈ Pf , so x∗(A) ≤ f(A) and f(A) = x∗(A−) ≤ x∗(A) (or
alternatively, just note that x∗(A0 \A) = 0).

Hence, x∗(A) = x∗(A−) = f(A) so that A is also a tight set for x∗.

For any a ∈ A, A is a tight set containing a, and dep(x∗, a) is the
minimal tight containing a.

Hence, for any a ∈ A, dep(x∗, a) ⊆ A.

This means that
⋃

a∈A dep(x∗, a) = A.

Since A− ⊆ A ⊆ A0, then ∃Am ⊆ A \A− such that
A = A− ∪

⋃
a∈Am

dep(x∗, a).
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On a unique minimizer f

Note that if f(e|A) > 0, ∀A ⊆ E and e ∈ E \A, then we have
A− = A0 (there is one unique minimizer).

On the other hand, if A− = A0, it does not imply f(e|A) > 0 for all
A ⊆ E \ {e}.
If A− = A0 then certainly f(e|A0) > 0 for e ∈ E \A0 and
−f(e|A0 \ {e}) > 0 for all e ∈ A0.
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Multiple Polytopes associated with f

PfP+
f

Bf

P+
f = Pf ∩

{
x ∈ RE : x ≥ 0

}
(15.5)

Pf =
{
x ∈ RE : x(S) ≤ f(S), ∀S ⊆ E

}
(15.6)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(15.7)
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Polymatroidal polyhedron and greedy

Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem ??)

Theorem 15.8.1

If f : 2E → R+ is given, and P is a polytope in RE
+ of the form

P =
{
x ∈ RE

+ : x(A) ≤ f(A), ∀A ⊆ E
}
, then the greedy solution to the

problem max(wx : x ∈ P ) is ∀w optimum iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).
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Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (15.25a)
subject to x ∈ Pf (15.25b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large.

Hence, assume w ∈ RE
+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem ??, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE
+,

maximize wᵀx (15.26a)
subject to x ∈ Bf (15.26b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .
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Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (15.25a)
subject to x ∈ Pf (15.25b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large.

Hence, assume w ∈ RE
+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem ??, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE
+,

maximize wᵀx (15.26a)
subject to x ∈ Bf (15.26b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .
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Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (15.25a)
subject to x ∈ Pf (15.25b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE

+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem ??, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE
+,

maximize wᵀx (15.26a)
subject to x ∈ Bf (15.26b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .
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Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (15.25a)
subject to x ∈ Pf (15.25b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE

+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem ??, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE
+,

maximize wᵀx (15.26a)
subject to x ∈ Bf (15.26b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .
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Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (15.25a)
subject to x ∈ Pf (15.25b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE

+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem ??, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE
+,

maximize wᵀx (15.26a)
subject to x ∈ Bf (15.26b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .
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Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (15.25a)
subject to x ∈ Pf (15.25b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE

+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem ??, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE
+,

maximize wᵀx (15.26a)
subject to x ∈ Bf (15.26b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .
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Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (15.25a)
subject to x ∈ Pf (15.25b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE

+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem ??, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE
+,

maximize wᵀx (15.26a)
subject to x ∈ Bf (15.26b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .
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A continuous extension of f

Consider again optimization problem. Given w ∈ RE ,

maximize wᵀx (15.27a)
subject to x ∈ Pf (15.27b)

We may consider this optimization problem a function f̃ : RE → R
of w ∈ RE , defined as:

f̃(w) = max(wx : x ∈ Pf ) (15.28)

Hence, for any w, from the above theorem, we can compute the
value of this function using the greedy algorithm (after of course
checking for w ∈ RE

+).
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A continuous extension of f

Consider again optimization problem. Given w ∈ RE ,

maximize wᵀx (15.27a)
subject to x ∈ Pf (15.27b)

We may consider this optimization problem a function f̃ : RE → R
of w ∈ RE , defined as:

f̃(w) = max(wx : x ∈ Pf ) (15.28)

Hence, for any w, from the above theorem, we can compute the
value of this function using the greedy algorithm (after of course
checking for w ∈ RE

+).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014 F52/65 (pg.206/259)
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A continuous extension of f

Consider again optimization problem. Given w ∈ RE ,

maximize wᵀx (15.27a)
subject to x ∈ Pf (15.27b)

We may consider this optimization problem a function f̃ : RE → R
of w ∈ RE , defined as:

f̃(w) = max(wx : x ∈ Pf ) (15.28)

Hence, for any w, from the above theorem, we can compute the
value of this function using the greedy algorithm (after of course
checking for w ∈ RE

+).
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A continuous extension of f

That is, given a submodular function f , a w ∈ RE , and defining
Ei = {e1, e2, . . . , ei} and where we choose the element order
(e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), we have

f̃(w)

= max(wx : x ∈ Pf ) (15.29)

=
m∑

i=1

w(ei)f(ei|Ei−1) (15.30)

=
m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (15.31)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.32)

We say that ∅ " E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain
based on w.
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A continuous extension of f

That is, given a submodular function f , a w ∈ RE , and defining
Ei = {e1, e2, . . . , ei} and where we choose the element order
(e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), we have

f̃(w) = max(wx : x ∈ Pf ) (15.29)

=
m∑

i=1

w(ei)f(ei|Ei−1) (15.30)

=
m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (15.31)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.32)

We say that ∅ " E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain
based on w.
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A continuous extension of f

That is, given a submodular function f , a w ∈ RE , and defining
Ei = {e1, e2, . . . , ei} and where we choose the element order
(e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), we have

f̃(w) = max(wx : x ∈ Pf ) (15.29)

=

m∑

i=1

w(ei)f(ei|Ei−1) (15.30)

=
m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (15.31)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.32)

We say that ∅ " E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain
based on w.
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A continuous extension of f

That is, given a submodular function f , a w ∈ RE , and defining
Ei = {e1, e2, . . . , ei} and where we choose the element order
(e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), we have

f̃(w) = max(wx : x ∈ Pf ) (15.29)

=

m∑

i=1

w(ei)f(ei|Ei−1) (15.30)

=
m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (15.31)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.32)

We say that ∅ " E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain
based on w.
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A continuous extension of f

That is, given a submodular function f , a w ∈ RE , and defining
Ei = {e1, e2, . . . , ei} and where we choose the element order
(e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), we have

f̃(w) = max(wx : x ∈ Pf ) (15.29)

=

m∑

i=1

w(ei)f(ei|Ei−1) (15.30)

=
m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (15.31)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.32)

We say that ∅ " E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain
based on w.
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A continuous extension of f

That is, given a submodular function f , a w ∈ RE , and defining
Ei = {e1, e2, . . . , ei} and where we choose the element order
(e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em), we have

f̃(w) = max(wx : x ∈ Pf ) (15.29)

=

m∑

i=1

w(ei)f(ei|Ei−1) (15.30)

=
m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (15.31)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.32)

We say that ∅ " E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain
based on w.
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A continuous extension of f

Definition of the continuous extension, once again, for reference:

f̃(w) = max(wx : x ∈ Pf ) (15.33)

Therefore, if f is a submodular function, we can write

f̃(w)

= w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.34)

=

m∑

i=1

λif(Ei) (15.35)

where λm = w(em) and otherwise λi = w(ei)− w(ei+1), where the
elements are sorted according to w as before.

From convex analysis, we know f̃(w) = max(wx : x ∈ P ) is always
convex in w for any set P ⊆ RE , since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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A continuous extension of f

Definition of the continuous extension, once again, for reference:

f̃(w) = max(wx : x ∈ Pf ) (15.33)

Therefore, if f is a submodular function, we can write

f̃(w)

= w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.34)

=

m∑

i=1

λif(Ei) (15.35)

where λm = w(em) and otherwise λi = w(ei)− w(ei+1), where the
elements are sorted according to w as before.

From convex analysis, we know f̃(w) = max(wx : x ∈ P ) is always
convex in w for any set P ⊆ RE , since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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A continuous extension of f

Definition of the continuous extension, once again, for reference:

f̃(w) = max(wx : x ∈ Pf ) (15.33)

Therefore, if f is a submodular function, we can write

f̃(w) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.34)

=

m∑

i=1

λif(Ei) (15.35)

where λm = w(em) and otherwise λi = w(ei)− w(ei+1), where the
elements are sorted according to w as before.

From convex analysis, we know f̃(w) = max(wx : x ∈ P ) is always
convex in w for any set P ⊆ RE , since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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A continuous extension of f

Definition of the continuous extension, once again, for reference:

f̃(w) = max(wx : x ∈ Pf ) (15.33)

Therefore, if f is a submodular function, we can write

f̃(w) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.34)

=

m∑

i=1

λif(Ei) (15.35)

where λm = w(em) and otherwise λi = w(ei)− w(ei+1), where the
elements are sorted according to w as before.

From convex analysis, we know f̃(w) = max(wx : x ∈ P ) is always
convex in w for any set P ⊆ RE , since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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A continuous extension of f

Definition of the continuous extension, once again, for reference:

f̃(w) = max(wx : x ∈ Pf ) (15.33)

Therefore, if f is a submodular function, we can write

f̃(w) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.34)

=

m∑

i=1

λif(Ei) (15.35)

where λm = w(em) and otherwise λi = w(ei)− w(ei+1), where the
elements are sorted according to w as before.

From convex analysis, we know f̃(w) = max(wx : x ∈ P ) is always
convex in w for any set P ⊆ RE , since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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A continuous extension of f

Definition of the continuous extension, once again, for reference:

f̃(w) = max(wx : x ∈ Pf ) (15.33)

Therefore, if f is a submodular function, we can write

f̃(w) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.34)

=

m∑

i=1

λif(Ei) (15.35)

where λm = w(em) and otherwise λi = w(ei)− w(ei+1), where the
elements are sorted according to w as before.

From convex analysis, we know f̃(w) = max(wx : x ∈ P ) is always
convex in w for any set P ⊆ RE , since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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An extension of f

Recall, for any such w ∈ RE , we have





w1

w2

...
wn




=

(
w1 − w2

)
︸ ︷︷ ︸

λ1





1
0
...
0




+
(
w2 − w3

)
︸ ︷︷ ︸

λ2





1
1
0
...
0




+

· · ·+
(
wn−1 − wn

)
︸ ︷︷ ︸

λm−1





1
1
...
1
0




+
(
wm

)
︸ ︷︷ ︸
λm





1
1
...
1
1




(15.36)

If we take w in decreasing order, then each coefficient of the vectors
is non-negative (except possibly the last one, λm = wm).
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An extension of f

Recall, for any such w ∈ RE , we have





w1

w2

...
wn




=

(
w1 − w2

)
︸ ︷︷ ︸

λ1





1
0
...
0




+
(
w2 − w3

)
︸ ︷︷ ︸

λ2





1
1
0
...
0




+

· · ·+
(
wn−1 − wn

)
︸ ︷︷ ︸

λm−1





1
1
...
1
0




+
(
wm

)
︸ ︷︷ ︸
λm





1
1
...
1
1




(15.36)

If we take w in decreasing order, then each coefficient of the vectors
is non-negative (except possibly the last one, λm = wm).
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An extension of f
Define sets Ei based on this decreasing order of w as follows, for
i = 0, . . . , n

Ei
def
= {e1, e2, . . . , ei} (15.37)

Note that

1E0 =





0
0
...
0




,1E1 =





1
0
0
...
0




, . . . ,1E!

=





1




$×1

...
1
0






(n− $)×0
...
0





, etc.

Hence, from the previous and current slide, we have
w =

∑m
i=1 λi1Ei
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An extension of f
Define sets Ei based on this decreasing order of w as follows, for
i = 0, . . . , n

Ei
def
= {e1, e2, . . . , ei} (15.37)

Note that

1E0 =





0
0
...
0




,1E1 =





1
0
0
...
0




, . . . ,1E!

=





1




$×1

...
1
0






(n− $)×0
...
0





, etc.

Hence, from the previous and current slide, we have
w =

∑m
i=1 λi1Ei
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

An extension of f
Define sets Ei based on this decreasing order of w as follows, for
i = 0, . . . , n

Ei
def
= {e1, e2, . . . , ei} (15.37)

Note that

1E0 =





0
0
...
0




,1E1 =





1
0
0
...
0




, . . . ,1E!

=





1




$×1

...
1
0






(n− $)×0
...
0





, etc.

Hence, from the previous and current slide, we have
w =

∑m
i=1 λi1Ei
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

From f̃ back to f , even when f is not submodular

From the continuous f̃ , we can recover f(A) for any A ⊆ V .

Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (15.38)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̃(w)

=

m∑

i=1

λif(Ei) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +
m−1∑

i=1

(1A(i)− 1A(i+ 1))f(Ei) (15.39)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (15.40)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

From f̃ back to f , even when f is not submodular

From the continuous f̃ , we can recover f(A) for any A ⊆ V .
Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.

Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (15.38)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̃(w)

=

m∑

i=1

λif(Ei) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +
m−1∑

i=1

(1A(i)− 1A(i+ 1))f(Ei) (15.39)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (15.40)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

From f̃ back to f , even when f is not submodular

From the continuous f̃ , we can recover f(A) for any A ⊆ V .
Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).

This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (15.38)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̃(w)

=

m∑

i=1

λif(Ei) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +
m−1∑

i=1

(1A(i)− 1A(i+ 1))f(Ei) (15.39)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (15.40)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

From f̃ back to f , even when f is not submodular

From the continuous f̃ , we can recover f(A) for any A ⊆ V .
Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (15.38)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.

For any f : 2E → R, w = 1A, since E|A| =
{
e1, e2, . . . , e|A|

}
= A:

f̃(w)

=

m∑

i=1

λif(Ei) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +
m−1∑

i=1

(1A(i)− 1A(i+ 1))f(Ei) (15.39)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (15.40)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

From f̃ back to f , even when f is not submodular

From the continuous f̃ , we can recover f(A) for any A ⊆ V .
Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (15.38)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̃(w)

=

m∑

i=1

λif(Ei) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +
m−1∑

i=1

(1A(i)− 1A(i+ 1))f(Ei) (15.39)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (15.40)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

From f̃ back to f , even when f is not submodular

From the continuous f̃ , we can recover f(A) for any A ⊆ V .
Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (15.38)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̃(w) =

m∑

i=1

λif(Ei)

= w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +
m−1∑

i=1

(1A(i)− 1A(i+ 1))f(Ei) (15.39)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (15.40)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

From f̃ back to f , even when f is not submodular

From the continuous f̃ , we can recover f(A) for any A ⊆ V .
Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (15.38)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̃(w) =

m∑

i=1

λif(Ei) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +
m−1∑

i=1

(1A(i)− 1A(i+ 1))f(Ei) (15.39)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (15.40)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

From f̃ back to f , even when f is not submodular

From the continuous f̃ , we can recover f(A) for any A ⊆ V .
Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (15.38)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̃(w) =

m∑

i=1

λif(Ei) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +

m−1∑

i=1

(1A(i)− 1A(i+ 1))f(Ei) (15.39)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (15.40)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

From f̃ back to f , even when f is not submodular

From the continuous f̃ , we can recover f(A) for any A ⊆ V .
Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (15.38)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̃(w) =

m∑

i=1

λif(Ei) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +

m−1∑

i=1

(1A(i)− 1A(i+ 1))f(Ei) (15.39)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|)

= f(A) (15.40)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

From f̃ back to f , even when f is not submodular

From the continuous f̃ , we can recover f(A) for any A ⊆ V .
Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (15.38)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̃(w) =

m∑

i=1

λif(Ei) = w(em)f(Em) +

m−1∑

i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +

m−1∑

i=1

(1A(i)− 1A(i+ 1))f(Ei) (15.39)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (15.40)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

From f̃ back to f

We can view f̃ : [0, 1]E → R defined on the hypercube, with f
defined as f̃ evaluated on the hypercube extreme points (vertices).

To summarize, with f̃(A) =
∑m

i=1 λif(Ei), we have

f̃(1A) = f(A), (15.41)

. . . and when f is submodular, we also have have

f̃(1A) = max {1Ax : x ∈ Pf}. (15.42)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

From f̃ back to f

We can view f̃ : [0, 1]E → R defined on the hypercube, with f
defined as f̃ evaluated on the hypercube extreme points (vertices).

To summarize, with f̃(A) =
∑m

i=1 λif(Ei), we have

f̃(1A) = f(A), (15.41)

. . . and when f is submodular, we also have have

f̃(1A) = max {1Ax : x ∈ Pf}. (15.42)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

From f̃ back to f

We can view f̃ : [0, 1]E → R defined on the hypercube, with f
defined as f̃ evaluated on the hypercube extreme points (vertices).

To summarize, with f̃(A) =
∑m

i=1 λif(Ei), we have

f̃(1A) = f(A), (15.41)

. . . and when f is submodular, we also have have

f̃(1A) = max {1Ax : x ∈ Pf}. (15.42)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

An extension of f

Thus, for any f : 2E → R, even non-submodular f , we can define an
extension in this way, with

f̃(w) =

m∑

i=1

λif(Ei) (15.43)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending
order of w as in w(e1) ≥ w(e2) ≥ · · · ≥ w(em), and where

for i ∈ {1, . . . ,m}, λi =

{
w(ei)− w(ei+1) if i < m

w(em) if i = m
(15.44)

so that w =
∑m

i=1 λi1Ei

Note that w =
∑m

i=1 λi1Ei is an interpolation of certain vertices of
the hypercube, and that f̃(w) =

∑m
i=1 λif(Ei) is the corresponding

interpolation of the values of f at sets corresponding to each
hypercube vertex.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

An extension of f

Thus, for any f : 2E → R, even non-submodular f , we can define an
extension in this way, with

f̃(w) =

m∑

i=1

λif(Ei) (15.43)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending
order of w as in w(e1) ≥ w(e2) ≥ · · · ≥ w(em), and where

for i ∈ {1, . . . ,m}, λi =

{
w(ei)− w(ei+1) if i < m

w(em) if i = m
(15.44)

so that w =
∑m

i=1 λi1Ei

Note that w =
∑m

i=1 λi1Ei is an interpolation of certain vertices of
the hypercube, and that f̃(w) =

∑m
i=1 λif(Ei) is the corresponding

interpolation of the values of f at sets corresponding to each
hypercube vertex.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Weighted gains vs. weighted functions

Again sorting E descending in w, the extension summarized:

f̃(w) =

m∑

i=1

w(ei)f(ei|Ei−1) (15.45)

=

m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (15.46)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.47)

=
m∑

i=1

λif(Ei) (15.48)

So f̃(w) seen either as sum of weighted gain evaluatiosn (Eqn. (15.45),
or as sum of weighted function evaluations (Eqn. (15.48)).
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Weighted gains vs. weighted functions

Again sorting E descending in w, the extension summarized:

f̃(w) =

m∑

i=1

w(ei)f(ei|Ei−1) (15.45)

=

m∑

i=1

w(ei)(f(Ei)− f(Ei−1)) (15.46)

= w(em)f(Em) +
m−1∑

i=1

(w(ei)− w(ei+1))f(Ei) (15.47)

=
m∑

i=1

λif(Ei) (15.48)

So f̃(w) seen either as sum of weighted gain evaluatiosn (Eqn. (15.45),
or as sum of weighted function evaluations (Eqn. (15.48)).
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

The Lovász extension of f : 2E → R

Lovász showed that if a function f̃(w) defined as in Eqn. (15.43) is
convex, then f must be submodular.

This continuous extension f̃ of f , in any case (f being submodular
or not), is called the Lovász extension of f .

Note, also possible to define this when f(∅) &= 0 (but doesn’t really
add any generality).
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

The Lovász extension of f : 2E → R

Lovász showed that if a function f̃(w) defined as in Eqn. (15.43) is
convex, then f must be submodular.

This continuous extension f̃ of f , in any case (f being submodular
or not), is called the Lovász extension of f .

Note, also possible to define this when f(∅) &= 0 (but doesn’t really
add any generality).
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

The Lovász extension of f : 2E → R

Lovász showed that if a function f̃(w) defined as in Eqn. (15.43) is
convex, then f must be submodular.

This continuous extension f̃ of f , in any case (f being submodular
or not), is called the Lovász extension of f .

Note, also possible to define this when f(∅) &= 0 (but doesn’t really
add any generality).
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Lovász Extension, Submodularity and Convexity

Theorem 15.8.1

A function f : 2E → R is submodular iff its Lovász extension f̃ of f is
convex.

Proof.

We’ve already seen that if f is submodular, its extension can be
written via Eqn.(15.43) due to the greedy algorithm, and therefore is
also equivalent to f̃(w) = max {wx : x ∈ Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̃(w) =
∑

i λif(Ei) of
some function f : 2E → R is a convex function.

We note that, based on the extension definition, in particular the
definition of the {λi}i, we have that f̃(αw) = αf̃(w) for any
α ∈ R+. I.e., f is a positively homogeneous convex function.

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Lovász Extension, Submodularity and Convexity

Theorem 15.8.1

A function f : 2E → R is submodular iff its Lovász extension f̃ of f is
convex.

Proof.

We’ve already seen that if f is submodular, its extension can be
written via Eqn.(15.43) due to the greedy algorithm, and therefore is
also equivalent to f̃(w) = max {wx : x ∈ Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̃(w) =
∑

i λif(Ei) of
some function f : 2E → R is a convex function.

We note that, based on the extension definition, in particular the
definition of the {λi}i, we have that f̃(αw) = αf̃(w) for any
α ∈ R+. I.e., f is a positively homogeneous convex function.

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Lovász Extension, Submodularity and Convexity

Theorem 15.8.1

A function f : 2E → R is submodular iff its Lovász extension f̃ of f is
convex.

Proof.

We’ve already seen that if f is submodular, its extension can be
written via Eqn.(15.43) due to the greedy algorithm, and therefore is
also equivalent to f̃(w) = max {wx : x ∈ Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̃(w) =
∑

i λif(Ei) of
some function f : 2E → R is a convex function.

We note that, based on the extension definition, in particular the
definition of the {λi}i, we have that f̃(αw) = αf̃(w) for any
α ∈ R+. I.e., f is a positively homogeneous convex function.

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 15.8.1 cont.

Earlier, we saw that f̃(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that

f̃(1A + 1B) = f̃(1A∪B + 1A∩B) (15.49)

= f(A ∪B) + f(A ∩B). (15.50)

Let C = A ∩B, order E based on decreasing w = 1A + 1B so that

w = (w(e1), w(e2), . . . , w(em)) (15.51)

= (2, 2, . . . , 2︸ ︷︷ ︸
i∈C

, 1, 1, . . . , 1︸ ︷︷ ︸
i∈A'B

, 0, 0, . . . , 0︸ ︷︷ ︸
i∈E\(A∪B)

) (15.52)

Then, considering f̃(w) =
∑

i λif(Ei), we have λ|C| = 1,
λ|A∪B| = 1, and λi = 0 for i /∈ {|C|, |A ∪B|}.
But then E|C| = A ∩B and E|A∪B| = A ∪B. Therefore,

f̃(w) = f(A ∩B) + f(A ∪B).

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 15.8.1 cont.

Earlier, we saw that f̃(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that

f̃(1A + 1B) = f̃(1A∪B + 1A∩B) (15.49)

= f(A ∪B) + f(A ∩B). (15.50)

Let C = A ∩B, order E based on decreasing w = 1A + 1B so that

w = (w(e1), w(e2), . . . , w(em)) (15.51)

= (2, 2, . . . , 2︸ ︷︷ ︸
i∈C

, 1, 1, . . . , 1︸ ︷︷ ︸
i∈A'B

, 0, 0, . . . , 0︸ ︷︷ ︸
i∈E\(A∪B)

) (15.52)

Then, considering f̃(w) =
∑

i λif(Ei), we have λ|C| = 1,
λ|A∪B| = 1, and λi = 0 for i /∈ {|C|, |A ∪B|}.
But then E|C| = A ∩B and E|A∪B| = A ∪B. Therefore,

f̃(w) = f(A ∩B) + f(A ∪B).

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 15.8.1 cont.

Earlier, we saw that f̃(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that

f̃(1A + 1B) = f̃(1A∪B + 1A∩B) (15.49)

= f(A ∪B) + f(A ∩B). (15.50)

Let C = A ∩B, order E based on decreasing w = 1A + 1B so that

w = (w(e1), w(e2), . . . , w(em)) (15.51)

= (2, 2, . . . , 2︸ ︷︷ ︸
i∈C

, 1, 1, . . . , 1︸ ︷︷ ︸
i∈A'B

, 0, 0, . . . , 0︸ ︷︷ ︸
i∈E\(A∪B)

) (15.52)

Then, considering f̃(w) =
∑

i λif(Ei), we have λ|C| = 1,
λ|A∪B| = 1, and λi = 0 for i /∈ {|C|, |A ∪B|}.
But then E|C| = A ∩B and E|A∪B| = A ∪B. Therefore,

f̃(w) = f(A ∩B) + f(A ∪B).

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 15.8.1 cont.

Earlier, we saw that f̃(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that

f̃(1A + 1B) = f̃(1A∪B + 1A∩B) (15.49)

= f(A ∪B) + f(A ∩B). (15.50)

Let C = A ∩B, order E based on decreasing w = 1A + 1B so that

w = (w(e1), w(e2), . . . , w(em)) (15.51)

= (2, 2, . . . , 2︸ ︷︷ ︸
i∈C

, 1, 1, . . . , 1︸ ︷︷ ︸
i∈A'B

, 0, 0, . . . , 0︸ ︷︷ ︸
i∈E\(A∪B)

) (15.52)

Then, considering f̃(w) =
∑

i λif(Ei), we have λ|C| = 1,
λ|A∪B| = 1, and λi = 0 for i /∈ {|C|, |A ∪B|}.

But then E|C| = A ∩B and E|A∪B| = A ∪B. Therefore,

f̃(w) = f(A ∩B) + f(A ∪B).

. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 15.8.1 cont.

Earlier, we saw that f̃(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that

f̃(1A + 1B) = f̃(1A∪B + 1A∩B) (15.49)

= f(A ∪B) + f(A ∩B). (15.50)

Let C = A ∩B, order E based on decreasing w = 1A + 1B so that

w = (w(e1), w(e2), . . . , w(em)) (15.51)

= (2, 2, . . . , 2︸ ︷︷ ︸
i∈C

, 1, 1, . . . , 1︸ ︷︷ ︸
i∈A'B

, 0, 0, . . . , 0︸ ︷︷ ︸
i∈E\(A∪B)

) (15.52)

Then, considering f̃(w) =
∑

i λif(Ei), we have λ|C| = 1,
λ|A∪B| = 1, and λi = 0 for i /∈ {|C|, |A ∪B|}.
But then E|C| = A ∩B and E|A∪B| = A ∪B. Therefore,

f̃(w) = f(A ∩B) + f(A ∪B).
. . .
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 15.8.1 cont.

Also, since f̃ is convex (by assumption) and positively
homogeneous, we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)]

= 0.5[f̃(1A + 1B)] (15.53)

= f̃(0.51A + 0.51B) (15.54)

≤ 0.5f̃(1A) + 0.5f̃(1B) (15.55)

= 0.5(f(A) + f(B))

(15.56)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (15.57)

so f must be submodular.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 15.8.1 cont.

Also, since f̃ is convex (by assumption) and positively
homogeneous, we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̃(1A + 1B)] (15.53)

= f̃(0.51A + 0.51B) (15.54)

≤ 0.5f̃(1A) + 0.5f̃(1B) (15.55)

= 0.5(f(A) + f(B))

(15.56)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (15.57)

so f must be submodular.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 15.8.1 cont.

Also, since f̃ is convex (by assumption) and positively
homogeneous, we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̃(1A + 1B)] (15.53)

= f̃(0.51A + 0.51B) (15.54)

≤ 0.5f̃(1A) + 0.5f̃(1B) (15.55)

= 0.5(f(A) + f(B))

(15.56)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (15.57)

so f must be submodular.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 15.8.1 cont.

Also, since f̃ is convex (by assumption) and positively
homogeneous, we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̃(1A + 1B)] (15.53)

= f̃(0.51A + 0.51B) (15.54)

≤ 0.5f̃(1A) + 0.5f̃(1B) (15.55)

= 0.5(f(A) + f(B))

(15.56)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (15.57)

so f must be submodular.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014 F64/65 (pg.256/259)



Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 15.8.1 cont.

Also, since f̃ is convex (by assumption) and positively
homogeneous, we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̃(1A + 1B)] (15.53)

= f̃(0.51A + 0.51B) (15.54)

≤ 0.5f̃(1A) + 0.5f̃(1B) (15.55)

= 0.5(f(A) + f(B)) (15.56)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (15.57)

so f must be submodular.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 15.8.1 cont.

Also, since f̃ is convex (by assumption) and positively
homogeneous, we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̃(1A + 1B)] (15.53)

= f̃(0.51A + 0.51B) (15.54)

≤ 0.5f̃(1A) + 0.5f̃(1B) (15.55)

= 0.5(f(A) + f(B)) (15.56)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (15.57)

so f must be submodular.
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM Lovász extension

Edmonds - Submodularity - 1969
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