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Logistics
(NN}

Cumulative Outstanding Reading

e Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.

@ Read Tom McCormick's overview paper on SFM http://people.
commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

@ Read chapters 1 - 4 from Fujishige book.
@ Matroid properties http:
//www-math.mit.edu/~goemans/18433509/matroid-notes.pdf

@ Read lecture 14 slides on lattice theory at our web page (http://j.
ee.washington.edu/~bilmes/classes/ee596b_spring_2014/)
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Logistics
LNl

Announcements, Assignments, and Reminders

@ Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics
(W1

Class Road Map - IT-

@ L1 (3/31): Motivation, Applications, &
Basic Definitions

@ L2: (4/2): Applications, Basic
Definitions, Properties

@ L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

@ L4: proofs of equivalent definitions,
independence, start matroids

@ L5: matroids, basic definitions and
examples

@ L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

@ L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

@ L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

@ L9: From Matroid Polytopes to
Polymatroids.

@ L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, exchange
capacity, minimum norm point algorithm
and the lattice of minimizers of a
submodular function, Lovasz extension
L16:

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.

Prof. Jeff Bilmes
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Review
LA

Summary of Concepts

Most violated inequality max {z(A) — f(A) : A C E}
Matroid by circuits, and the fundamental circuit C'(I,e) C I +e.
Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

°
°
°
°
@ z-tight sets, maximal and minimal tight set.
@ sat function & Closure

@ Saturation Capacity

@ e-containing tight sets

°

dep function & fundamental circuit of a matroid
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Review
i

Summary important definitions so far: tight, dep, & sat

o z-tight sets: For x € Py, D(x) ={AC E:xz(A) = f(A)}.

e Poly Id”closure/maxtal 2-tight set: For 2 € Py,
sat(;: =U{A:AeD(x)}={e:ec E,Va > O,x+@
@ Saturation capacity: for = € Iy, U < C(7; €)=

min {f(A) —2(4)|VA 3 e} =max{a:a e R,z +al. € Pr}
@ Recall: sat(x) = {e: é(x;e) =0} and

E\ sat(z) = {e: é(x;e) > 0}.
@ e-containing x-tight sets: For x € Py,

D(z,e) ={A: eeACEa:(A) f(A)} C D(x).

° Mlnlmal e-containin

mf}x .e€ AC E,z(4) = f(A)} i e € sat(z)
else

={':3a>0, st. z+a(le— 1) € Ps}
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Review
(Nl ]

dep and sat in a lattice

Given some
T € Pf,
€ on the
right summarizes
the relationships
between the
lattices and
sublattices.

o Note,
. dep(z,e) =
dep(x).
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Supp
{NAN]

Support of vector

@ The support of a vector z € Py is defined as the elements with
non-zero entries.
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Supp
{NAN]

Support of vector

@ The support of a vector z € Py is defined as the elements with
non-zero entries.

@ Thatis
supp(z) ={e € E : z(e) # 0} (15.1)
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Supp
{NAN]

Support of vector

@ The support of a vector x € Py is defined as the elements with
non-zero entries.

@ Thatis
supp(z) ={e € E : z(e) # 0} (15.1)
@ Example
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Supp
(LN

Tightness of supp at polymatroidal extreme point

e Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A : x(A) = f(A)} of tight sets.
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Supp
(LN

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
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Supp
(LN

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.

@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(x)) = f(supp(x)). Why?
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Supp
(LN

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(E;) = f(E;) for 1 <i <k <|E|, for some k, as we saw earlier in
class. Hence, any e; € supp(x) has x(e;) = f(e;|Ei—1) > 0.
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Supp
(LN

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(Fy;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(z) has z(e;) = f(e;|Fi—1) > 0.
@ Now, for 1 <i <k, if e; ¢ supp(z), (Ex) = x(Ex — €;)
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Supp
(LN

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.

@ supp(x) is not necessarily tight for an arbitrary x.

@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?

@ Extremal points are defined as a system of equalities of the form
x(Fy;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(z) hasgalene=atled s 1) >0

@ Now, for 1 <i <k, if ¢; ¢ supp(z)Jz(Ex) = z(Ex — €;)

QCIfjo, for 1 <i <k, if e; & supp(zp), them (e 7)>
05 fe|Ei—1) = flei| By —ei) A f(ELlE: — e;) >0 since
hotond submodular, Rence e have
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Supp
(LN

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(Fy;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(z) has z(e;) = f(e;|Fi—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = z(Ey — ¢;)
© Also, for 1 <i <k, if ¢; ¢ supp(x), then x(e;) =
0= f(ei|Ei71) > f(€1|Ek - 67;) = f(Ek|Ek — 67;) > 0 since
monotone submodular, hence we have f(Ey) = f(FEr — €;).
Q Thus, 2(Ey —¢;) = f(Ex — ¢;) and Ej, — ¢; is also tight.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014 F9/65 (pg.17/259)



Supp
(LN

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(Fy;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(x) has z(e;) = f(e;|Ei—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = z(Ey — ¢;)
© Also, for 1 <i <k, if ¢; ¢ supp(x), then x(e;) =
0= f(ei|Ei71) > f(€1|Ek - 67;) = f(Ek|Ek — 67;) > 0 since
monotone submodular, hence we have f(E}) = f(Fr — €;).
Q Thus, 2(Ey —e;) = f(Ex —¢;) and Ej, — ¢; is also tight.
© We can keep removing elements ¢ supp(x) and we're left with
f(Ex Nsupp(z)) = x(Ex Nsupp(x)) for any k.
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Supp
(LN

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(Fy;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(z) has z(e;) = f(e;|Fi—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = z(Ey — ¢;)
© Also, for 1 <i <k, if ¢; ¢ supp(x), then x(e;) =
0= f(ei|Ei71) > f(€1|Ek - 67;) = f(Ek|Ek — 67;) > 0 since
monotone submodular, hence we have f(E}) = f(Fr — €;).
Q Thus, 2(Ey —e;) = f(Ex —¢;) and Ej, — ¢; is also tight.
© We can keep removing elements ¢ supp(z) and we're left with
f(Ex Nsupp(x)) = x(Ex Nsupp(x)) for any k.
@ Hence supp(z) is tight when x is extremal.
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Supp
(LN

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(Fy;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(x) has z(e;) = f(e;|Ei—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = z(Ey — ¢;)
© Also, for 1 <i <k, if ¢; ¢ supp(x), then x(e;) =
0= f(ei|Ei71) > f(€1|Ek - 67;) = f(Ek|Ek — 67;) > 0 since
monotone submodular, hence we have f(E}) = f(Fr — €;).
Q Thus, 2(Ey —e;) = f(Ex —¢;) and Ej, — ¢; is also tight.
© We can keep removing elements ¢ supp(z) and we're left with
f(Ex Nsupp(x)) = x(Ex Nsupp(x)) for any k.
@ Hence supp(z) is tight when x is extremal.

@ Since supp(x) is tight, we immediately have that sat(z) 2 supp(z).
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Supp
(WL

supp vs. sat equality

@ For x € Py, with x extremal, is supp(z) = sat(z)?
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Supp
(WL

supp vs. sat equality

e For x € Py, with x extremal, is supp(x) = sat(z)?

@ Consider an example case where disjoint X, Y C E, we have
f(X)=f(Y)=f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.
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Supp
(WL

supp vs. sat equality

e For x € Py, with x extremal, is supp(x) = sat(z)?

@ Consider an example case where disjoint X,Y C E, we have
f(X)=f(Y)=f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

@ Suppose x € Py has z(X) > 0 but z(V \ X) =0 and so z(Y) = 0.
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Supp
(WL

supp vs. sat equality

e For x € Py, with x extremal, is supp(x) = sat(z)?

@ Consider an example case where disjoint X,Y C E, we have
f(X)=f(Y)=f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

@ Suppose x € Py has x(X) > 0 but z(V \ X) =0 and so z(Y) = 0.
@ Then supp(z) = X, and say x is tight at X (z(X) = f(X)).
——_ﬂ

MJV“, |
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Supp
(WL

supp vs. sat equality

e For x € Py, with x extremal, is supp(x) = sat(z)?

@ Consider an example case where disjoint X,Y C E, we have
f(X)=f(Y)=f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

@ Suppose x € Py has z(X) > 0 but z(V \ X) =0 and so z(Y) = 0.

@ Then supp(z) = X, and say z is tight at X (z(X) = f(X)).

@ sat(z) = U{A:2(A) = f(A)} and since
z(XUY)=z(X)=f(X)=f(XUY), here, sat(z) 2 X UY.

Co Satlx) 2 Svppek)
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Supp
(WL

supp vs. sat equality

e For x € Py, with x extremal, is supp(x) = sat(z)?

@ Consider an example case where disjoint X,Y C E, we have
f(X)=f(Y)=f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

@ Suppose x € Py has z(X) > 0 but z(V \ X) =0 and so z(Y) = 0.

@ Then supp(z) = X, and say z is tight at X (z(X) = f(X)).

e sat(z) = U{A:2(A) = f(A)} and since
r(XUY)=z(X)=f(X)=f(XUY), here, sat(z) 2 X UY.

@ In general, for extremal z, sat(x) O supp(x) (see later).
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Supp
(WL

supp vs. sat equality

e For x € Py, with x extremal, is supp(x) = sat(z)?

@ Consider an example case where disjoint X,Y C E, we have
f(X)=f(Y)=f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

@ Suppose x € Py has z(X) > 0 but z(V \ X) =0 and so z(Y) = 0.

@ Then supp(z) = X, and say z is tight at X (z(X) = f(X)).

e sat(z) = U{A:2(A) = f(A)} and since
r(XUY)=z(X)=f(X)=f(XUY), here, sat(z) 2 X UY.

@ In general, for extremal z, sat(x) O supp(x) (see later).

@ Also, recall sat(x) is like span/closure but supp(z) is more like
indication. So this is similar to span(A4) O A.
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Supp
(WL

supp vs. sat equality

For z € Py, with x extremal, is supp(z) = sat(x)?

Consider an example case where disjoint X,Y C E, we have
f(X)=f(Y)=f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

Suppose = € Py has 2(X) > 0 but 2(V \ X) =0 and so z(Y') = 0.
Then supp(z) = X, and say z is tight at X (z(X) = f(X)).
sat(z) = U{A: z(A) = f(A)} and since
r(XUY)=z(X)=f(X)=f(XUY), here, sat(z) 2 X UY.

In general, for extremal x, sat(z) O supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(z) is more like
indication. So this is similar to span(A) D A.

For modular functions, they are always equal at extreme points
(e.g., think of “hyperrectangular” polymatroids).
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Supp
(AN}

Summary of supp, sat, and dep

e For z € Py, supp(z) = {e: z(e) # 0} C sat(x)
e For x € Py, sat(x) (span, closure) is the maximal saturated (z-tight)
set wrt. z. lLe, sat(x) ={e:e€ E,Va >0,z +al. ¢ Ps}. Thatis,

cl(x) € sat(z) 2 | J{A: A € D(x)} (15.29)

—J{A: AC E.x(A) = f(A)) (15.30)
={e:ec E,Va>0,z+al. ¢ Py} (15.31)

@ For e € sat(z), we have dep(z,e) C sat(z) (fundamental circuit) is the
minimal (common) saturated (z-tight) set w.r.t. = containing e. l.e.,

_JN{A:ec ACE,z(A) = f(A)} ifecsat(x)
dep(z, €) = {@ else
={:3a>0, st.z+a(l.— 1) € Py} (15.32)
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Examples
[ERRRERRNN]

supp, sat, dep, example with perfect independence

@ Example polymairoid where there is perfect independence between
A ={eg, ez} and 2 = {e1}, i.e., erll{es, e3}.
X
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Examples
[ERRRERRNN]

supp, sat, depy example with perfect independence

@ Example polymatinid where there is perfect independence between
A = {eg,e3} and B = {e1}, i.e., egll{ea,e3}.
X y

@ Point z is extreme and z({e2,e3}) = f(e2,e3) (why?).
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Examples

supp, sat, dep, example with perfect independence

@ Example polymatroid where there is perfect independence between
A = {eg,e3} and B = {e1}, i.e., e1ll{ea,e3}.

el
e2

@ Point z is extreme and x({e2, e3}) = f(e2,e3) (why?).

e But z({e1,e2,e3}) = x({e2,e3}) < f(e1,e2,e3) = f(e1) + f(ez, e3).
Thus, supp(z) = sat(x) = {es, es}.
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Examples
[ERRRERRNN]

supp, sat, dep, example with perfect independence

@ Example polymatroid where there is perfect independence between
A = {eg,e3} and B = {e1}, i.e., e1ll{ea,e3}.

X

Y,

e3

el e2

e2

@ Note that considering a submodular function on clustered ground

set £ = {e1, ea3} where f'(e1) = f(e1), f/(e23) = f(ea,e3) leads to
a rectangle (no dependence between {el} and {e2,e3}).
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Examples
[ERRRERRNN]

supp, sat, dep, example with perfect independence

@ Example polymatroid wvhere there is perfect independence between
A ={eg,e3} and B = fei}, ie., egll{es, e3}.

e3

el e2

e2

e We also have sat(z) = {es,ea}. So dep(z,e1) is not defined,

dep(x, 62) = {63}v and dep(w, €3
o sat(y) = {eT, ez, e5}. So dep(yrer) = 0, dep(y, e2) = e3, and
F

dep(y, e3) = 0.
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Examples
[ERRRERRNN]

supp, sat, dep, example with perfect independence

@ Example polymatroid where there is perfect independence between
A = {eg,e3} and B = {e1}, i.e., e1ll{ea,e3}.

e3

el e2

e2
@ We also have sat(z) = {es,ea}. So dep(z,e1) is not defined,
dep(z,e2) = {e3}, and dep(zx,e3) = 0.
e sat(y) = {e1,e2,e3}. So dep(y,e1) =0, dep(y, e2) = e3, and
dep(y,e3) = 0.
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Examples

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e1 and es.

A

B C

D

7,
f(e2) 'S, f(eg) flea) N .
7 7o
S o f(eo) . %
Y s, R4
&
f(eq) f(eq) f(eq) f(eq)
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Examples
(LNRRNARNN]

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e1 and es.

A

f(e2) Sy

f(eq)

e Case A: perfect independence/irredunancy.
V)

‘F{":", = £le) ¢
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Examples
(LNRRNARNN]

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e¢1 and es.

A B
78,
f(e2) ‘0 fe)
%
S

f(e1) f(es)
e Case A: perfect independence/irredunancy.
e Case B: perfect dependence/redundancy. Since slope is -45°, we

must have f(e1) = f(ea) = f(e1,e2). Entropy case: deterministic
bijection between random variables e; and es.
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Examples
(LNRRNARNN]

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e¢1 and es.

A B C
7,
f(ez) ' eI\
/@])0 f(e2) P
</ &,
S
f(e) f(es) | f(e1)

e Case A: perfect independence/irredunancy.

e Case B: perfect dependence/redundancy. Since slope is -45°, we
must have f(e;) = f(ea) = f(e1,e2). Entropy case: deterministic
bijection between random variables e; and es.

e Case C: f(e2) < f(e1) = f(e1,e2). Entropy case: random variable
e2 a deterministic function of e; which has higher entropy.
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Examples
(LNRRNARNN]

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e¢1 and es.

A B C D
/k
f(e2) @”%/ f(ez) f(e2) -
78 &8
7,-%) f(e2) /}@) %/
S
f(e1) f(e1) | f(es) f(er)

e Case A: perfect independence/irredunancy.

o Case B: perfect dependence/redundancy. Since slope is -45°, we
must have f(e1) = f(ea) = f(e1,e2). Entropy case: deterministic
bijection between random variables e; and es.

e Case C: f(e2) < f(e1) = f(e1,e2). Entropy case: random variable
eo a deterministic function of e; which has higher entropy.

e Case D: f(e1) < f(e2) = f(e1,e2). Entropy case: random variable
e1 a deterministic function of eo which has higher entropy.
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Examples
(LNRRNARNN]

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” be Ween 31 and es.

A B Fled= D
f/@ ,F{L.H—-ﬂ(b)
f(e2) e fled) % % = faye)
S &/

o) © gl 1@
@ In each case, we see points = where supp(z) C sat(z).
e Example: Case B or C, let x = (f(e1),0) so supp(x) = {e1} but
since z({e1,e2}) = z({e1}) = f(e1) = f(e1,e2) we have
sat(z) = {e1, e2}.
e Similar for case D with z = (0, f(e2)).
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Examples
(KR RNARNN]

supp, sat, and dependence in 2D

e General case, f(e1,e2) < f(e1) + f(e2),(f(e1) < f(e1,e2), and
flez) < fle, 32)-,{(4,,4,)"7'

f(eo)
T,
)%/

f(er) Flene)

@ Entropy case: We have a random variable Z and two separate
deterministic functions e; = h1(Z) and ez = ha(Z) such that the
entropy H(e1,ez) = H(Z), but each deterministic function gives a
different “view” of Z, each contains more than half the information,
and the two are redundant w.r.t. each other
(H(ex) + Hles) > H(Z)).
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Examples
(NN RNARNN]

2D polymatroids and Information Venn Diagrams

f(e;) f(e1)
flere2) = f(er) + f(ez) fler.e2) = f(er) = f(ez)

f(eq.e2) = f(e1) > f(ez)

e
ffen SN e @ fte2 N ffe2
f(ep) f(e.
N T\
‘s, o,

f(e)

flerez) = f(e2) > f(e1)

flea)
f(er), ~
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Examples
(NERR NARNN]

2D polymatroids and Information Venn Diagrams

o Consider symmeterized
combinatorial mutual
information function:

Ir(e1, e2)

= f(e1) + f(e2) — f(e1, e2)
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Examples
(NERR NARNN]

2D polymatroids and Information Venn Diagrams

o Consider symmeterized
combinatorial mutual
information function:

Iy(e1, e2)

= f(e1) + f(e2) — f(e1, e2)

o Consider area of green triangle:

%(f(@) - f(62|61)) (f(el) — f(61|€2)>

(f(ex) + f(e2) — f(ex, €2))?
(ff(€1»€2))2

N — N =
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Examples

supp, sat, and perfect dependence in 3D
@ Ex: polymatroid with perfect independence between es and ej, so

flea,e3) = f(e2) + f(es), but perfect dependence between
A= {62,63} and B = {61}, SO f(el,eg,eg) = f(62,63)
—_———

1

0.8
0.6
[s2)
(O]
0.4

0.2

0
0

\ 0 1
0.5 0.5 2
e2 n el © et

£(25)e8) =0
£(e,0)~ H‘/;e'/“)
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Examples
(NEARN ARNN]

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between es and ej, so
f(e2,e3) = f(e2) + f(es), but perfect dependence between
A= {62,63} and B = {61}, SO f(el,eg,eg) = f(eg,eg)

1

0.8

0.6

[52]
(0]
0.4

0.2

0

1

0.5

0.5 0.5 e2 o A
e2 1 el el

e Entropy case: xor V-structure Bayesian network e; = h(eg, e3)
where h is the xor function (e2 — €1 < e3), and eg, e3 are both

0.5

independent binary with unity entropy. e . ¢a 5
e
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Examples
(NEARN ARNN]

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between es and ej, so
f(e2,e3) = f(e2) + f(es), but perfect dependence between
A= {62,63} and B = {61}, SO f(el,eg,eg) = f(eg,eg)

1

0.8

0.6

[52]
(0]
0.4

0.2

0
1

0.5 1
0.5

05 05 5 &
11 e
e2 et et

e Entropy case: xor V-structure Bayesian network e; = h(eg, e3)
where h is the xor function (e2 — €1 < e3), and eg, e3 are both
independent binary with unity entropy.

@ Q: Why does the polytope have a symmetry? Notice independence
(square) for any pair.
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Examples
(NEARN ARNN]

supp, sat, and perfect dependence in 3D

o Ex: polymatroid with perfect independence between es and ej, so
f(e2,e3) = f(e2) + f(es), but perfect dependence between
A= {62,63} and = {61}, SO f(el,eg,eg) = f(eg,eg)

0.5 1
05

e2 t el e2 o el

e For any permutation o of {1,2,3}, considering {es,, €s,} vs. {€5s}:
/(‘
f(eoys €03 )N
€sy IS @ deterministic
function of {e,,, €y, } >
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Examples
(NEARN ARNN]

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between es and ej, so
f(e2,e3) = f(e2) + f(es), but perfect dependence between
A= {62,63} and B = {61}, SO f(el,eg,eg) = f(eg,eg)

1

0.8

0.6

[52]
(0]
0.4

0.2

0
1

0.5

e2 ¢ el

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014 F17/65 (pg.50/259)



Examples
(NEARN ARNN]

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between es and ej, so
f(e2,e3) = f(e2) + f(es), but perfect dependence between
A= {62,63} and B = {61}, SO f(el,eg,eg) = f(eg,eg)

1

0.8

0.6

[52]
(0]
0.4

0.2

0
1

05 05 5 &
11 e
e2 et et

@ Note also, that for some of the extreme points, multiple orders
generate them.

0.5
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Examples
(NEARN ARNN]

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between es and ej, so
f(e2,e3) = f(e2) + f(es), but perfect dependence between
A= {62,63} and B = {61}, SO f(el,eg,eg) = f(eg,eg)

1

0.8

0.6

[52]
(0]
0.4

0.2

0
1

0.5

el

0.5 X e2 d
e2 el

@ Note also, that for some of the extreme points, multiple orders
generate them.

e Consider extreme point x = (x1,x2,z3) = (1,1,0). Then we get
this either with orders (e1, ea,e3), or (e2,e1,e3). This is true since
f(es.l{€s1s €5, }) = 0 for all permutations o of {1,2,3}.

T17/65 (pg.52/259)
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Examples
(NNRRNA RNE]

perfect dependence in 3D, entropy, and Bayesian networks

@ The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.
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Examples
(NNRRNA RNE]

perfect dependence in 3D, entropy, and Bayesian networks

@ The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.

@ Consider three binary random variables X1, X5, X3 € {0, 1} that

factor w.r.t., the V-structure X7 — X3 < X9, where
X3 = X1 ® Xo, where & is the X-OR operator, and where X7 1L X5.
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Examples
(NNRRNA RNE]

perfect dependence in 3D, entropy, and Bayesian networks

@ The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.

e Consider three binary random variables X7, X5, X3 € {0, 1} that
factor w.r.t., the V-structure X7 — X3 < X9, where
X3 = X1 ® Xo, where & is the X-OR operator, and where X7 1L X5.

e Consequently, X; 1L X; for any ¢ # j.
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Examples
(NNRRNA RNE]

perfect dependence in 3D, entropy, and Bayesian networks

@ The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.

e Consider three binary random variables X7, X5, X3 € {0, 1} that
factor w.r.t., the V-structure X7 — X3 < X9, where
X3 = X1 ® Xo, where & is the X-OR operator, and where X7 1L X5.

e Consequently, X; Il X; for any i # j.

@ Moreover, for any permutation o of {1,2,3}, we have the
relationship X5, = X4, © Xo,.
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Examples
(NNRRNA RNE]

perfect dependence in 3D, entropy, and Bayesian networks

@ The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.

e Consider three binary random variables X7, X5, X3 € {0, 1} that
factor w.r.t., the V-structure X7 — X3 < X9, where
X3 = X1 ® Xo, where & is the X-OR operator, and where X7 1L X5.

e Consequently, X; Il X; for any i # j.

@ Moreover, for any permutation o of {1,2, 3}, we have the
relationship X, = X4, ® Xos.

@ The entropy function f(A) = H(X4) is a submodular function that
will have the symmetric 3D polytope of the previous example.
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Examples
(NNRRNRY RN

supp, sat, extremal z, perfect dependence

@ In general, for extremal x, sat(x) O supp(z).
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Examples
(NNRRNRY RN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
x(supp(x) + e) = x(supp(x)) since x(e) = 0.
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Examples
(NNRRNRY RN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(z) O supp(x).

e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.

@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(z) + e;) = f(supp(x)). Proof:

/F {;/_(v,/(l’/) =0
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Examples
(NNRRNRY RN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ;) = f(supp(x)). Proof:
e sat(z) is tight, as is supp(z), and hence
f(sat(z)) = x(sat(x)) = x(supp(x)) = f(supp(x)).
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Examples
(NNRRNRY RN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ;) = f(supp(x)). Proof:
o sat(x) is tight, as is supp(z), and hence

[(sat(z)) = a(sat(z)) = z(supp(x)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
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Examples
(NNRRNRY RN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ;) = f(supp(x)). Proof:
o sat(x) is tight, as is supp(z), and hence
[f(sat(x)) = z(sat(x)) = z(supp(x)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
e But by the above, and monotonicity, we have for
e € sat(x) \ supp(z), that
0 = f(sat(z)|supp(x)) > f(e|supp(x)) > 0.
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Examples
(NNRRNRY RN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ;) = f(supp(x)). Proof:
o sat(x) is tight, as is supp(z), and hence
[f(sat(x)) = z(sat(x)) = z(supp(x)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
e But by the above, and monotonicity, we have for
e € sat(z) \ supp(x), that
0 = f(sat(z)|supp(x)) > f(e|supp(x)) > 0.
e Hence f(e|supp(z)) =0,
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Examples
(NNRRNRY RN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ;) = f(supp(x)). Proof:
o sat(x) is tight, as is supp(z), and hence
[ (sat(z)) = z(sat(x)) = z(supp(z)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
e But by the above, and monotonicity, we have for
e € sat(z) \ supp(x), that
0 = f(sat(z)|supp(x)) > f(e|supp(x)) > 0.
o Hence f(e|supp(z)) = 0, and moreover
F(e + supp(z)) = (e + supp(x)) = 2(supp(x)) = £ (supp(x)).
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Examples
(NNRRNRY RN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ;) = f(supp(x)). Proof:
o sat(x) is tight, as is supp(z), and hence
[ (sat(z)) = z(sat(x)) = z(supp(z)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
e But by the above, and monotonicity, we have for
e € sat(z) \ supp(x), that
0 = f(sat(z)|supp(x)) > f(e|supp(x)) > 0.
o Hence f(e|supp(z)) = 0, and moreover
f(e+supp(z)) = z(e + supp(z)) = z(supp(z)) = f(supp(z)).
@ Thus, for any extremal z, with sat(z) D supp(z), we see that for
e € sat(z) \ supp(x), we have supp(z) + e is also tight.
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Examples
(NNRRNRY RN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ;) = f(supp(x)). Proof:
o sat(x) is tight, as is supp(z), and hence
[f(sat(x)) = z(sat(x)) = z(supp(x)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
e But by the above, and monotonicity, we have for
e € sat(z) \ supp(x), that
0 = f(sat(z)|supp(x)) > f(e|supp(x)) > 0.
o Hence f(e|supp(z)) = 0, and moreover
f(e+supp(z)) = z(e + supp(z)) = z(supp(z)) = f(supp(z)).
@ Thus, for any extremal z, with sat(z) D supp(z), we see that for
e € sat(z) \ supp(z), we have supp(z) + e is also tight.
@ Note also, for any A C sat(x) \ supp(x), we have
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Examples
(NNRRNARN NI

supp, sat, perfect dependence

@ Note that all of these results hold when f is monotone
non-decreasing submodular (e.g., for a polymatroid function).

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014 F20/65 (pg.68/259)



Examples
(NNRRNARN NI

supp, sat, perfect dependence

@ Note that all of these results hold when f is monotone
non-decreasing submodular (e.g., for a polymatroid function).

@ For modular functions, and extremal #, sat(x) = supp(x).
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Examples
(NNRRNARN NI

supp, sat, perfect dependence

@ Note that all of these results hold when f is monotone
non-decreasing submodular (e.g., for a polymatroid function).

e For modular functions, and extremal z, sat(z) = supp(z).

o For general x € Py (not nec. extremal), sat(x) and supp(z) might
have an arbitrary relationship (but we want to strengthen this
relationship further, and we will do so below).
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Examples
(NNRRNARN NI

supp, sat, perfect dependence

@ Note that all of these results hold when f is monotone
non-decreasing submodular (e.g., for a polymatroid function).

@ For modular functions, and extremal x, sat(x) = supp(x).

e For general x € Py (not nec. extremal), sat(x) and supp(z) might
have an arbitrary relationship (but we want to strengthen this
relationship further, and we will do so below).

@ For the most part, we are interested in these quantities when z is
extremal as we will see.
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Examples

supp and sat, example under limited curvature

@ Strict monotone f polymatroids, where f(e|E \ e) > 0, Ve.
o Example: f(A) = /|A|, where all m! vertices of By are unique.

2 2

@ In such cases, taking any extremal point € Py based on prefix

order E = , Where supp(z) C E, we have that
satmnce the largest tight set corresponds to
z(F;) = f(F;) for some i, and while any e € E'\ E; is such that
z(E; + e) = z(E;), there is no such e with f(E; +e) = f(E;).
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Moreoan
[ NRRR RN

Another revealing theorem

Theorem 15.5.1

Let f.be a polymatroid function and suppose that E can be partitioned
int (By, By, ..., By) such that f(A) =S¢ f(ANE;) for all AC E,
and k is maximum. Then the base polytope

|Bf| ={z € Py:x(E) = f(E)} (the E-tight subset of Py) has dimension
E| —k.
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Moreoan
[ NRRRR -

Another revealing theorem

Theorem 15.5.1

Let f be a polymatroid function and suppose that E£ can be partitioned
into (E1, By, ..., Ey) such that f(A) = % f(ANE;) forall AC E,
and k is maximum. Then the base polytope

|Bf| ={z € Py:x(E) = f(E)} (the E-tight subset of Py) has dimension
E| —k.

@ Thus, “independence” between disjoint A and B (leading to a
rectangular projection of the polymatroid polytope) reduces the
dimension of the base polytope, as expected.
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Another revealing theorem

Theorem 15.5.1

Let f be a polymatroid function and suppose that E£ can be partitioned
into (Ex, Ey, ..., Ey) such that f(A) = % f(ANE;) forall AC E,
and k is maximum. Then the base polytope

‘Bf| ={z € Py:x(E) = f(E)} (the E-tight subset of Py) has dimension
E|—k.

@ Thus, “independence” between disjoint A and B (leading to a
rectangular projection of the polymatroid polytope) reduces the
dimension of the base polytope, as expected.

@ Thus, any point z € By is a convex combination of at most
|E| — k + 1 vertices of By.
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Another revealing theorem

Theorem 15.5.1

Let f be a polymatroid function and suppose that E£ can be partitioned
into (Ex, Ey, ..., Ey) such that f(A) = % f(ANE;) forall AC E,
and k is maximum. Then the base polytope

‘Bf| ={z € Py:x(E) = f(E)} (the E-tight subset of Py) has dimension
E|—k.

@ Thus, “independence” between disjoint A and B (leading to a
rectangular projection of the polymatroid polytope) reduces the
dimension of the base polytope, as expected.

@ Thus, any point z € By is a convex combination of at most
|E| — k + 1 vertices of By.

@ And if f does not have such independence, dimension of By is

|E| — 1 and any point « € By is a convex combination of at most
|E| vertices of By.
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Another revealing theorem

Theorem 15.5.1

Let f be a polymatroid function and suppose that E can be partitioned
into (E1, By, ..., Ey) such that f(A) =Y f(ANE;) forall ACE,
and k is maximum. Then the base polytope

|Bf| ={z € Py:x(E) = f(E)} (the E-tight subset of Ps) has dimension
E|—k.

e Example f with independence between A = {es,e3} and B = {e1},
i.e., el {ea, e3}, with By marked in greens

e3
o e3

e2 e2
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eR¥ :2(A) < f(A) VAC E, and z(E) = f(E)} always
exists.
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VACE, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,

z(e1) = f({er}), w(e2) = f({e1, e2}) — f({e1}), and so on).
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VACE, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,

z(e1) = f({er}), w(e2) = f({e1, e2}) — f({e1}), and so on).

@ From past lectures, we now know that:
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VACE, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,
z(e1) = f({e1}), z(e2) = f({er, e2}) — f({er}), and so on).

@ From past lectures, we now know that:
(1) z € Py
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VACE, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,
z(er) = f({er}), z(e2) = f({e1, e2}) — f({er}), and so on).

@ From past lectures, we now know that:
(1) z € Py
(2) z is an extreme point in Py
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VACE, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,
z(er) = f({er}), z(e2) = f({e1, e2}) — f({er}), and so on).
@ From past lectures, we now know that:
(].) X € Pf
(2) z is an extreme point in Py
(3) Since x is generated using an ordering of all of E, we have that

z(E) = f(E).
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VACE, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,
z(er) = f({er}), z(e2) = f({e1, e2}) — f({er}), and so on).
@ From past lectures, we now know that:
(].) X € Pf
(2) z is an extreme point in Py
(3) Since x is generated using an ordering of all of E, we have that

z(E) = f(E).
e Thus z € By, and By is never empty.
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VACE, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,
z(er) = f({er}), z(e2) = f({e1, e2}) — f({er}), and so on).
@ From past lectures, we now know that:
(].) X € Pf
(2) z is an extreme point in Py
(3) Since x is generated using an ordering of all of E, we have that

z(E) = f(E).
@ Thus z € By, and By is never empty.

Moreover, in this case, x is a vertex of By since it is extremal.
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Base polytope property

@ Now, for any A C E, we can generate a particular point in By

’)(M—'—‘Wr}
x(b) ££6) A
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Base polytope property

@ Now, for any A C F, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,ea,...,¢;) , so that we have E; = A with
k= |A|.
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Base polytope property

@ Now, for any A C E, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,e2,...,¢;) , so that we have E; = A with
k= |A|.

e Note there are k!(n — k)! < n! such orderings.
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Base polytope property

@ Now, for any A C F, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,e2,...,¢;) , so that we have E; = A with
k= |A|.

e Note there are k!(n — k)! < n! such orderings.
@ Generate z via greedy using this order, Vi, z(e;) = f(e;|Ei—1).
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Base polytope property

@ Now, for any A C E, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,e2,...,¢;) , so that we have E; = A with
k= |A|.

Note there are k!(n — k)! < n! such orderings.

Generate x via greedy using this order, Vi, z(e;) = f(e;|Ei—1).

(]

Then, we have generated a point x (a vertex, no less) in B such
that z(A) = f(A).

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014 F24/65 (pg.90/259)



Moreoan
(NR RRR R

Base polytope property

@ Now, for any A C F, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,e2,...,¢;) , so that we have E; = A with
k= |A|.

e Note there are k!(n — k)! < n! such orderings.
@ Generate z via greedy using this order, Vi, z(e;) = f(e;|Ei—1).

@ Then, we have generated a point x (a vertex, no less) in By such
that z(A4) = f(A4). .
@ Thus, for any A, we have

Brn{z e R¥ 1 z(A) = f(A)} #0 (15.2)

X(E)= #0) L
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Base polytope property

@ Now, for any A C F, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,e2,...,¢;) , so that we have E; = A with
k= |A|.

e Note there are k!(n — k)! < n! such orderings.

e Generate z via greedy using this order, Vi, z(e;) = f(e;|Ei—1).

@ Then, we have generated a point x (a vertex, no less) in By such
that z(A) = f(A).

@ Thus, for any A, we have

Brn{z e RF 1 z(A) = f(A)} #0 (15.2)

e In words, By intersects all_“multi-axis congruent” hyperplanes
within RE of the form {z € R¥ : @(A4) = f(A)} for all AC E.
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More on B ¢

By dominates P
@ In fact, every x € P; is dominated by <y € By.

Theorem 15.5.2

If x € Py and T is tight for x (meaning x(T) = f(T)), then there exists
y € By withax <y and y(e) = z(e) fore € T.
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More on B ¢

By dominates P
@ In fact, every x € P; is dominated by + <y € By.

Theorem 15.5.2

If x € Py and T is tight for x (meaning x(T) = f(T)), then there exists
y € By withax <y and y(e) = z(e) fore € T.

@ We construct the y algorithmically: initially set y < x.
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More on B ¢

By dominates P

@ In fact, every x € P; is dominated by + <y € By.

Theorem 15.5.2

If x € Py and T is tight for x (meaning x(T) = f(T)), then there exists
y € By withax <y and y(e) = z(e) fore € T.

@ We construct the y algorithmically: initially set y < z.
@ y € Py, T is tight for y so y(T') = f(T).
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More on B ¢

By dominates P
@ In fact, every x € P; is dominated by + <y € By.

Theorem 15.5.2

If x € Py and T is tight for x (meaning x(T) = f(T)), then there exists
y € By withax <y and y(e) = z(e) fore € T.

@ We construct the y algorithmically: initially set y < z.
e y € Py, T is tight for y so y(T') = f(T).

@ Recall saturation capacity: for y € Py, ¢(y;e) =
min {f(A) —y(A)VA > e} =max{a:a € R,y +al, € P}
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More on B ¢

By dominates P

@ In fact, every x € P; is dominated by + <y € By.
Theorem 15.5.2

If x € Py and T is tight for x (meaning x(T) = f(T)), then there exists
y € By withax <y and y(e) = z(e) fore € T.

Proof.
@ We construct the y algorithmically: initially set y < z.
e y € Py, T is tight for y so y(T') = f(T).
@ Recall saturation capacity: for y € Py, ¢(y;e) =
min {f(A) — y(A)|VA 3 e} =max{a: a € R,y + al. € Py}

@ Consider following algorithm:
e2
17 T :
2 foreec E\T do
3 Ly%erc(y;e)le;T/eT’U{e}; é(y;e)
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" 4+ ¢e) = y(T") + y(e) < f(T" + ), or
yle) < F(T" +e) —y(T")

-
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" + e) = y(T") + y(e) < f(T" +e€), or
y(e) < f(T'+e) —y(T') =yle) + f(T'+e) —y(T' +e).

-
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" + e) = y(T") + y(e) < f(T" +e€), or
y(e) < f(T'+e) —y(T') =yle) + f(T'+e) —y(T' +e).

o We set y(e)  y(e) + &(yi €) < y(e) + F(T' +e) — y(I' + ).
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" + e) = y(T") + y(e) < f(T" +e€), or
y(e) < f(T'+e) —y(T') =yle) + f(T'+e) —y(T' +e).

o We set y(e) « y(e) + é(y;e) <yle)+ f(T" +e) —y(T' + e). Hence,

after each step, y € Py and ¢(y;e) > 0. (also, consider r.h. version of
é(y; e)).
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" + e) = y(T") + y(e) < f(T" +e€), or
y(e) < f(T'+e) —y(T') =yle) + f(T'+e) —y(T' +e).

o We set y(e) « y(e) + é(y;e) <yle)+ f(T" +e) —y(T' + e). Hence,

after each step, y € Py and ¢(y;e) > 0. (also, consider r.h. version of
é(yse)).
@ Also, only y(e) for e ¢ T" changed, final y has y(e) = z(e) for e € T..
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" + e) = y(T") + y(e) < f(T" +e€), or
y(e) < f(T'+e) —y(T') =yle) + f(T'+e) —y(T' +e).

o We set y(e) « y(e) + é(y;e) <yle)+ f(T" +e) —y(T' + e). Hence,

after each step, y € Py and ¢(y;e) > 0. (also, consider r.h. version of
é(yse)).
@ Also, only y(e) for e ¢ T changed, final y has y(e) = z(e) for e € T.
@ Let S, > e be a set that achieves ¢(y;e) = f(Se) — y(Se).
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" + e) = y(T") + y(e) < f(T" +e€), or
y(e) < f(T'+e) —y(T') =yle) + f(T'+e) —y(T' +e).

o We set y(e) « y(e) + é(y;e) <yle)+ f(T" +e) —y(T' + e). Hence,

after each step, y € Py and ¢(y;e) > 0. (also, consider r.h. version of
é(y;e))-
@ Also, only y(e) for e ¢ T changed, final y has y(e) = z(e) for e € T.
o Let Se 5 e be a set that achieves c(y;e) = f(Se) — y(Se).
@ At iteration e, let y/(e) (resp. y(e)) be new (resp. old) entry for e, then
y'(Se) = y(Se \ {e}) +¥'(e) (15.3)
= y(Se \ {6}) + [y(e) + f(SE) - y(SeH = f(Se)
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" + e) = y(T") + y(e) < f(T" +e€), or
y(e) < f(T'+e) —y(T') =yle) + f(T'+e) —y(T' +e).

o We set y(e) « y(e) + é(y;e) <yle)+ f(T" +e) —y(T' + e). Hence,

after each step, y € Py and ¢(y;e) > 0. (also, consider r.h. version of
é(y;e))-
@ Also, only y(e) for e ¢ T changed, final y has y(e) = z(e) for e € T.
o Let Se 5 e be a set that achieves c(y;e) = f(Se) — y(Se).
o At iteration e, let 3/(e) (resp. y(e)) be new (resp. old) entry for e, then
y'(Se) = y(Se \ {e}) +¥'(e) (15.3)
= y(Se \ {6}) + [y(e) + f(Se) - y(se)] = f(Se)

So, S, is tight for /. It remains tight in further iterations since y
doesn’t decrease and it stays within P.
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" + e) = y(T") + y(e) < f(T" +e€), or
y(e) < f(T'+e) —y(T') =yle) + f(T'+e) —y(T' +e).

o We set y(e) « y(e) + é(y;e) <yle)+ f(T" +e) —y(T' + e). Hence,

after each step, y € Py and ¢(y;e) > 0. (also, consider r.h. version of
é(y;e))-
@ Also, only y(e) for e ¢ T changed, final y has y(e) = z(e) for e € T.
o Let Se 5 e be a set that achieves c(y;e) = f(Se) — y(Se).
o At iteration e, let 3/(e) (resp. y(e)) be new (resp. old) entry for e, then
y'(Se) = y(Se \ {e}) +¥'(e) (15.3)
= y(Se \ {6}) + [y(e) + f(Se) - y(se)} = f(Se)

So, S, is tight for /. It remains tight in further iterations since y
doesn’t decrease and it stays within P.

o Also, E=TU chT Se is also tight, meaning the final y has y € By.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014 F26/65 pg~1067559




More on B ¢
(ALY

Polytope example 1
@ UDSse R

d
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More on B ¢
(ALY

Polytope example 1
@ UbSserve. I

d

@ Is this a polymatroidal polytope?
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More on B ¢
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Polytope example 1

@ Is this a polymatroidal polytope?
o No, “Bf" doesn't intersect sets of the form {z : z(e) = f(e)} for
ec k.
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Polytope example 1

@ Is this a polymatroidal polytope?

o No, “Bf" doesn't intersect sets of the form {z : z(e) = f(e)} for
ec k.

e This was generated using function ¢g(0) =0, g(1) = 3, ¢(2) = 4,
and ¢(3) =5.5. Then f(S) = g(|S|) is not submodular since (e.g.)
f({e1 es}) + f({e1,e2}) =444 =8 but

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014
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[ARNNAT ]

Polytope example 2

@ UDbserve: f (at TWO VIEWS ).

x: )((‘l)=‘lc[‘l)
X: )((-C'Q\,) = ¢4y
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Polytope example 2

@ UDbserve: f (at TWO VIEWS ).

05
0s el
e2 v
@ Is this a polymatroidal polytope?
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More on B ¢
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Polytope example 2

@ UDbserve: f (at TWO VIEWS ).

0s ~, 0'5e1 e
e2 el
@ Is this a polymatroidal polytope?
@ No, “Bf" (which would be a single point in this case) doesn't
intersect sets of the form {x : z(e) = f(e)} for e € E.
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Polytope example 2

0.5

0.5

e2
@ Is this a polymatroidal polytope?

@ No, “Bf" (which would be a single point in this case) doesn't
intersect sets of the form {x : z(e) = f(e)} for e € E.

@ This was generated using function ¢(0) =0, g(1) =1, g(2) = 1.8,
and ¢g(3) = 3. Then f(S) = g(|S]) is not submodular since (e.g.)
f({e1,es}) + f({e1,e2}) =1.84 1.8 = 3.6 but
f({er,e2,e3}) + f({er}) =3+1=4.

el
11 e

el
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Review

The next slide is review from lecture 13.
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Exchange Capacity
(N ERNN]

Saturation Capacity

@ The max is achieved when
a = c(z;e) & min {f(A) — z(A),VA D {e}} (15.22)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.
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Matroids and Exchange

@ Recall, matroids have a number of “exchange” properties.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014 F31/65 (pg.117/259



Exchange Capacity
(NLRNN]

Matroids and Exchange

@ Recall, matroids have a number of “exchange” properties.

@ Also, recall that given a matroid M = (E,Z),if [ € T is
independent, and e € span([), and ¢ € C(I,e) where C(I,e) is the
fundamental circuit created when adding e to I, then we have:

I+e—¢€ €T (15.4)
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Exchange Capacity
(NLRNN]

Matroids and Exchange

@ Recall, matroids have a number of “exchange” properties.

@ Also, recall that given a matroid M = (E,Z),if I € Z is
independent, and e € span(I), and €' € C(I,e) where C(I,¢) is the
fundamental circuit created when adding e to I, then we have:

I+e—¢€ €T (15.4)

e Note, this holds for any ¢’ € C(I,e).
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Exchange Capacity
(NLRNN]

Matroids and Exchange

@ Recall, matroids have a number of “exchange” properties.

@ Also, recall that given a matroid M = (E,Z),if I € Z is
independent, and e € span(I), and €' € C(I,e) where C(I,¢) is the
fundamental circuit created when adding e to I, then we have:

I+e—¢€ €T (15.4)

@ Note, this holds for any ¢’ € C(1,¢).

@ Since dep(x, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.
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Exchange Capacity
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Matroids and Exchange

@ Recall, matroids have a number of “exchange” properties.

@ Also, recall that given a matroid M = (E,Z),if I € Z is
independent, and e € span(I), and €' € C(I,e) where C(I,¢) is the
fundamental circuit created when adding e to I, then we have:

I+e—¢€ €T (15.4)

@ Note, this holds for any ¢’ € C(1,¢).

@ Since dep(x, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

@ As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?
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Exchange Capacity
(NLRNN]

Matroids and Exchange

Recall, matroids have a number of “exchange” properties.

Also, recall that given a matroid M = (E,Z),if [ € T is
independent, and e € span(I), and €' € C(I,e) where C(I,¢) is the
fundamental circuit created when adding e to I, then we have:

I+e—¢€ €T (15.4)

Note, this holds for any ¢’ € C'(I,e).

Since dep(x, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?

Yes, and it is called the “exchange capacity”
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Exchange Capacity

e Consider z € Py, e € sat(x) and €’ € dep(z,e) \ {e}
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Exchange Capacity
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Exchange Capacity

o Consider z € Py, e € sat(x) and €’ € dep(z,e) \ {e}
@ Thus, for any o > 0, we have x + al, ¢ Py for either a = e or a = e,
since dep(z, e) C sat(zx).
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Exchange Capacity
(NNL RN

Exchange Capacity

o Consider z € Py, e € sat(x) and €’ € dep(z,e) \ {e}

@ Thus, for any & > 0, we have x + al, ¢ Py for either a = e or a = e,
since dep(z, e) C sat(z).

@ Examples:

X
e’ e’ 7
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Exchange Capacity
(NNL RN

Exchange Capacity

o Consider z € Py, e € sat(x) and €’ € dep(z,e) \ {e}

@ Thus, for any & > 0, we have x + al, ¢ Py for either a = e or a = e,
since dep(z, e) C sat(z).

@ Examples:

X
e’ e’

@ How much can we move in positive e direction if we simultaneously
move in negative ¢’ direction?
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Exchange Capacity
(NRRR NI

Exchange Capacity

@ x € Py, e €sat(x) and € € dep(z,e) \ {e}, consider
max{a:a € Rz + a(l,— 1) € Py} (15.5)
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Exchange Capacity
(NRRR NI

Exchange Capacity

o xz € Py, e €sat(x) and €’ € dep(z,e) \ {e}, consider
max{a:a R,z +a(l,— 1) € Py} (15.5)

@ ldentical to:

max{a:a €R,(z+a(le—1))(A) < f(A),VA} (15.6)

| I A’)
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Exchange Capacity
(NRRR NI

Exchange Capacity

o xz € Py, e €sat(x) and €’ € dep(z,e) \ {e}, consider
max{a:a R,z +a(l,— 1) € Py} (15.5)
@ |dentical to:

max{a:a €R, (z+ a(le —1))(A) < f(A),VA} (15.6)

e If both e, e’ € A (or neither), then a(1, — 1./)(A) = 0 for any «, so
to make this meaningful, we take A: e’ ¢ A > e.
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Exchange Capacity
(NRRR NI

Exchange Capacity

o xz € Py, e €sat(x) and €’ € dep(z,e) \ {e}, consider
max{a:a R,z +a(l,— 1) € Py} (15.5)

e Identical to:
max{a:a €R, (z+ a(le —1))(A) < f(A),VA} (15.6)

o If both e, e’ € A (or neither), then a(1, — 1./)(A) = 0 for any «, so
to make this meaningful, we take A: e’ ¢ A>e.
@ thus identical to

max {o:a € R, (z+a(l.—1.))(A) < f(A),VAS e, ¢ A}
(15.7)
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Exchange Capacity
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Exchange Capacity

o xz € Py, e €sat(x) and €’ € dep(z,e) \ {e}, consider
max{a:a R,z +a(l,— 1) € Py} (15.5)

e Identical to:
max{a:a €R, (z+ a(le —1))(A) < f(A),VA} (15.6)

o If both e, e’ € A (or neither), then a(1, — 1./)(A) = 0 for any «, so
to make this meaningful, we take A: e’ ¢ A>e.
@ thus identical to

max {o:a € R, (z+ a(le — 1.))(A) < f(A),VAS e’ ¢ A}

(15.7)

@ Which is identical to:
max {a: o € R, a(l, f(A) —z(A),VA D {e}, € ¢ A}
(15.8)
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Exchange Capacity
(NNANR}

Exchange Capacity

@ In such case, we get 1./(A) = 0, thus above identical to

max {a: @ € R,al(A4) < f(A) —2(A),VA D {e},¢' ¢ A} (15.9)

P
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Exchange Capacity
(NNANR}

Exchange Capacity

@ In such case, we get 1./(A) = 0, thus above identical to
max {o: « € R,alc(A) < f(A) —z(A),VA D {e},¢' ¢ A} (15.9)
@ Restating, we've got

max {o: o € R,a < f(A) —x(A),VA D {e},¢' ¢ A} (15.10)
= E—
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Exchange Capacity
(NNANR}

Exchange Capacity

@ In such case, we get 1./(A) = 0, thus above identical to
max {o: « € R,alc(A) < f(A) —z(A),VA D {e},¢' ¢ A} (15.9)
@ Restating, we've got
max {o: o € R,a < f(A) —x(A),VA D {e},¢' ¢ A} (15.10)
@ This max is achieved when

a=é(ze, ) ¥ min {f(A) —x(A),VAD {e},e' ¢ A}  (15.11)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014 F34/65 (pg.134/259



Exchange Capacity
(NNANR}

Exchange Capacity

@ In such case, we get 1./(A) = 0, thus above identical to
max {o: « € R,alc(A) < f(A) —z(A),VA D {e},¢' ¢ A} (15.9)
@ Restating, we've got
max {o: o € R,a < f(A) —x(A),VA D {e},¢' ¢ A} (15.10)
@ This max is achieved when
a=é(x;e,e) Cf hin {f(A) —x(A),VAD {e},e' ¢ A}  (15.11)

@ ¢(x;e,€) is known as the exchange capacity associated with « € Py
and e.
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Exchange Capacity
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Exchange Capacity

@ In such case, we get 1./(A) = 0, thus above identical to
max {o: « € R,alc(A) < f(A) —z(A),VA D {e},¢' ¢ A} (15.9)
@ Restating, we've got
max {o: o € R,a < f(A) —x(A),VA D {e},¢' ¢ A} (15.10)
@ This max is achieved when
a=é(x;e,e) Cf hin {f(A) —x(A),VAD {e},e' ¢ A}  (15.11)

@ ¢é(x;e,¢) is known as the exchange capacity associated with « € Py
and e.
@ For any o with 0 < o < é(x5e,€’), we have that  + a(1. — 1) € Py.

Pa—

J
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Exchange Capacity
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Exchange Capacity

@ In such case, we get 1./(A) = 0, thus above identical to
max {o: « € R,alc(A) < f(A) —z(A),VA D {e},¢' ¢ A} (15.9)
@ Restating, we've got
max {o: o € R,a < f(A) —x(A),VA D {e},¢' ¢ A} (15.10)
@ This max is achieved when
a=é(x;e,e) Cf hin {f(A) —x(A),VAD {e},e' ¢ A}  (15.11)

@ ¢é(x;e,€¢) is known as the exchange capacity associated with « € Py
and e.

e For any o with 0 < a < é(x;e,€’), we have that z + a1, — 1) € Py.

o As we will see, if e and ¢’ are successive in an order that generates
extreme point xz, then we get a “neighbor” extreme point via
¥ =x+é(xye ) (le — o).
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Exchange Capacity
(NNANR}

Exchange Capacity

@ In such case, we get 1./(A) = 0, thus above identical to
max {o: « € R,alc(A) < f(A) —z(A),VA D {e},¢' ¢ A} (15.9)
@ Restating, we've got
max {o: o € R,a < f(A) —x(A),VA D {e},¢' ¢ A} (15.10)
@ This max is achieved when
a=é(x;e,e) Cf hin {f(A) —x(A),VAD {e},e' ¢ A}  (15.11)

@ ¢é(x;e,€¢) is known as the exchange capacity associated with « € Py
and e.

e For any o with 0 < a < é(x;e,€’), we have that z + a1, — 1) € Py.

@ As we will see, if e and ¢’ are successive in an order that generates
extreme point x, then we get a “neighbor” extreme point via
¥ =x+é(xye,e)(1e — 1o).

e Note that Eqn. (15.11) is a form of SFM.
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Min-Norm Point and SFM
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A polymatroid function's polyhedron is a polymatroid.

Theorem 15.7.1

Let f be a submodular function defined on subsets of E. For any
x € RE, we have:

/

rank(z) = max (y(E) : y < z,y € Py) =min (x(A) + f(E\A): ACE)
(15.5)

—_—

>

-
x€e

Let f be a submodular function defined on subsets of E. x € R, we
have:

If we take x to be zero, we get: 9
Corollary 15.7.2

rank(0) = max (y(F) :y <0,y € Py) =min(f(A): ACE) (15.6)
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Min-Norm Point and SFM
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Min-Norm Point: Definition

@ Restating what we saw before, we have:

max {y(E)|y € P,y <0} =min {f(X)|X CV} (15.12)
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Min-Norm Point and SFM
(LERRRRRNRRNAR

Min-Norm Point: Definition

@ Restating what we saw before, we have:

max {y(E)|y € Pr,y <0} =min {f(X)|X CV} (15.122-

@ Consider the optimization: {
minimize |3 = ‘(1 a)

subject to x € By (15.13b)
where By is the base polytope of submodular f, and

2|3 = > cp (e)? is the squared 2-norm. Let 2* be the optimal
solution.
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Min-Norm Point and SFM
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Min-Norm Point: Definition

@ Restating what we saw before, we have:

max {y(E)|y € Pr,y <0} =min {f(X)|X CV} (15.12)

o Consider the optimization:
minimize 2|3 (15.13a)
subject to x € By (15.13b)
where By is the base polytope of submodular f, and

2|3 = > cpz(e)? is the squared 2-norm. Let 2* be the optimal
solution.

@ Note, z* is the unique optimal solution since we have a strictly
convex objective over a set of convex constraints.
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Min-Norm Point and SFM
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Min-Norm Point: Definition

@ Restating what we saw before, we have:

max {y(E)|y € Pr,y <0} =min {f(X)|X CV} (15.12)

o Consider the optimization:
minimize l|2||2 (15.13a)

subject to x € By (15.13b)

where By is the base polytope of submodular f, and
2|3 = > cpz(e)? is the squared 2-norm. Let 2* be the optimal
solution.

@ Note, z* is the unique optimal solution since we have a strictly
convex objective over a set of convex constraints.

@ z* is called the minimum norm point of the base polytope.
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Min-Norm Point: Examples
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Min-Norm Point and SFM
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Min-Norm Point and Submodular Function Minimization

@ Given optimal solution z* to the above, consider the quantities

y* =2" A0 = (min(z*(e),0)|e € E) (15.14)
A_={e:2"(e) <0} (15.15)
Ag={e:z"(e) <0} (15.16)
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Min-Norm Point and SFM
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Min-Norm Point and Submodular Function Minimization

@ Given optimal solution x* to the above, consider the quantities

y* =2" A0 = (min(z*(e),0)|e € E) (15.14)
A_={e:z2"(e) < 0} (15.15)
Ag={e:z"(e) <0} (15.16)

@ It turns out, these quantities will solve the submodular function
minimization problem, as we now show.
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Min-Norm Point and SFM
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Min-Norm Point and Submodular Function Minimization

@ Given optimal solution x* to the above, consider the quantities

y* =2" A0 = (min(z*(e),0)|e € E) (15.14)
A_={e:z"(e) <0} (15.15)
Ag={e:z"(e) <0} (15.16)

@ It turns out, these quantities will solve the submodular function
minimization problem, as we now show.

@ The proof is nice since it uses the tools we've been recently
developing.
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Min-Norm Point and SFM
(RN ERRNARNNR

Min-Norm Point and SFM

Theorem 15.7.1

Let y*, A_, and Ay be as given. Then y* is a maximizer of the I.h.s. of
Eqn. (15.12). Moreover, A_ is the unique minimal minimizer of f and
Ap is the unique maximal minimizer of f.

e First note, since z* € By, we have 2*(E) = f(E), meaning
sat(z*) = E. Thus, we can consider any e € E within dep(z*,e).
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Min-Norm Point and SFM
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Min-Norm Point and SFM

Theorem 15.7.1

Let y*, A_, and Ay be as given. Then y* is a maximizer of the I.h.s. of
Eqn. (15.12). Moreover, A_ is the unique minimal minimizer of f and
Ap is the unique maximal minimizer of f.

e First note, since z* € By, we have 2*(E) = f(E), meaning
sat(z*) = E. Thus, we can consider any e € E within dep(z*, e).

o Consider any pair (e,€’) with ¢/ € dep(z*,e) and e € A_. Then
z*(e) <0, and Ja > 0s.t. 2"+ al. —ale € Py
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Min-Norm Point and SFM

Theorem 15.7.1

Let y*, A_, and Ay be as given. Then y* is a maximizer of the I.h.s. of
Eqn. (15.12). Moreover, A_ is the unique minimal minimizer of f and
Ap is the unique maximal minimizer of f.

e First note, since z* € By, we have 2*(E) = f(E), meaning
sat(z*) = E. Thus, we can consider any e € E within dep(z*, e).

o Consider any pair (e, €’) with ¢’ € dep(z*,e) and e € A_. Then
z*(e) <0, and Ja > 0s.t. 2"+ al. —aly € Py

@ We have z*(E) = f(E) and z* is minimum in 12 sense. We have
(" 4+ ale — aly) € Py, and in fact

(*+ale—aly)(E)=z"(E)+a—a= f(E) (15.17)

so z* +al. — aly € By also.
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Then (z* + al. —al )(E)
—2*(B\ {e,}) + (2" (e) + a) + (#"()) — @) = £(E).

Thou(€) Thon(€)
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Then (z* 4+ al. — aly)(E)
=z*(E\{e,€'}) + (a7(e) + o) + (z7(¢) — o) = f(E).

z:ew(e) I:ew(e/)

@ Minimality of 2* € By in |2 sense requires that, with such an o > 0,

(T*((’))Q + (m*(e’))Q < (:Eﬁew(e))2 + (:1;§ew(e’)>2
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.
@ Then (z* 4+ al, — aly)(E)
=z*(E\{e €}) + (z"(e) + o) + (z"(¢') — @) = f(E).
Then(©) Then(€')

@ Minimality of 2* € By in |2 sense requires that, with such an o > 0,
2 2 2 2
(#7@) + (#°(¢))” < (henl®) + (Trenle))
@ Given that e € A_, 2*(e) < 0. Thus, if *(e’) > 0, we could have

(z*(e) + a)? + (z*(e/) — a)? < (x*(e))? + (z*(€'))?, contradicting
the optimality of x*.
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Then (z* 4+ al. — aly)(E)
= 2*(B\ {e,¢'}) + (z°(€) + a) + (&"(€) — @) = F(E).

z:ew(e) I:ew(e/)

@ Minimality of 2* € By in |2 sense requires that, with such an o > 0,
2 2 2 2
(#©) + (%)) < (wren(®) "+ (henle)

@ Given that e € A_, 2*(e) < 0. Thus, if *(e’) > 0, we could have
(z*(e) + a)? + (z*(e/) — a)? < (z*(e))? + (z*(¢'))?, contradicting
the optimality of x*.

e If z*(¢/) = 0, we would have (z*(e) + a)? + (a)? < (z*(e))?, for
any 0 < a < |z*(e)|, again contradicting the optimality of z*.
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

Then (z* 4+ al, — aly)(E)
=z*(E\{e,e'}) + (a"(e) + o) + (a*(¢) — o) = f(E).
Thew(€) Thew(€')

Minimality of 2™ € By in |12 sense requires that, with such an o > 0,
2 2 2 2

(#©) + (%)) < (wren(®) "+ (henle)

Given that e € A_, 2*(e) < 0. Thus, if *(e’) > 0, we could have

(z*(e) + a)? + (z*(e/) — a)? < (z*(e))? + (z*(¢'))?, contradicting

the optimality of x*.

If z*(e/) = 0, we would have (z*(e) + a)? + (a)? < (*(e))?, for

any 0 < a < |z*(e)|, again contradicting the optimality of x*.

Thus, we must have z*(e’) < 0 (strict negativity).
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Thus, for a pair (e, e') with ¢’ € dep(z*,¢e) and e € A_, we have
xz(e’) < 0 and hence ¢/ € A_.
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Thus, for a pair (e,€’) with ¢’ € dep(z*,e) and e € A_, we have
xz(e’) <0 and hence ¢/ € A_.

@ Hence, Ve € A_, we have dep(z*,e) C A_.
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Thus, for a pair (e,€’) with ¢’ € dep(z*,e) and e € A_, we have
xz(e’) <0 and hence ¢/ € A_.

@ Hence, Ve € A_, we have dep(z*,e) C A_.

@ A very similar argument can show that, Ve € Ay, we have
dep(z*,e) C Ayp.
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Therefore, we have Ucc 4 dep(z*,e) = A_ and
Ueeca, dep(z*,e) = Ag
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Therefore, we have Uecq  dep(z*,e) = A_ and
Ueed, dep(z*,e) = Ap

o le., {dep(z*,e)} 4 is coverfor A_, asis {dep(z*,e)} for Ay.

EEA(]
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Therefore, we have Uecq  dep(z*,e) = A_ and
Ueed, dep(z*,e) = Ap

o le., {dep(z*,e)} .4 is coverfor A_, asis {dep(z*,e)}

@ dep(x*,e) is minimal tight set containing e, meaning
z*(dep(z*,e)) = f(dep(z*, e)), and since tight sets are closed
under union, we have that A_ and Ag are also tight, meaning:

e, for Ag.
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Therefore, we have Uecq  dep(z*,e) = A_ and
Ueed, dep(z*,e) = Ap

o le., {dep(z”,e)} 4 is cover for A_, asis {dep(z*,e)} 4, for Ao.

@ dep(x*,e) is minimal tight set containing e, meaning
x*(dep(z*,e)) = f(dep(x*,e)), and since tight sets are closed
under union, we have that A_ and Aq are also tight, meaning:

2*(A_) = f(A-) (15.18)
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Therefore, we have Uecq  dep(z*,e) = A_ and
Ueed, dep(z*,e) = Ap

o le., {dep(z”,e)} 4 is cover for A_, asis {dep(z*,e)} 4, for Ao.

@ dep(x*,e) is minimal tight set containing e, meaning
x*(dep(z*,e)) = f(dep(x*,e)), and since tight sets are closed
under union, we have that A_ and Aq are also tight, meaning:

2*(A_) = f(A-) (15.18)
z*(Ao) = f(Ao) (15.19)
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Therefore, we have Uecq  dep(z*,e) = A_ and
Ueed, dep(z*,e) = Ap

o le., {dep(z”,e)} 4 is cover for A_, asis {dep(z*,e)} 4, for Ao.

@ dep(x*,e) is minimal tight set containing e, meaning
x*(dep(z*,e)) = f(dep(x*,e)), and since tight sets are closed
under union, we have that A_ and Aq are also tight, meaning:

¥ (A_) = f(AD) (15.18)
z*(Ao) = f(Ao) (15.19)
z*(A-) = 2%(Ao) = y*(E) (15.20)
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... proof of Thm. 15.7.1 cont.

@ Therefore, we have Uecq  dep(z*,e) = A_ and
Ueed, dep(z*,e) = Ap

o le., {dep(z”,e)} 4 is cover for A_, asis {dep(z*,e)} 4, for Ao.

@ dep(x*,e) is minimal tight set containing e, meaning
x*(dep(z*,e)) = f(dep(x*,e)), and since tight sets are closed
under union, we have that A_ and Aq are also tight, meaning:

z*(A-) = f(A-) (15.18)
z*(Ao) = f(Ao) (15.19)
2 (A_) = z*(4g) = y*(E) (15.20)

and therefore, all together we have
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Therefore, we have Uecq  dep(z*,e) = A_ and
Ueed, dep(z*,e) = Ap

o le., {dep(z*,e)} .4 is coverfor A_, asis {dep(z*,e)} for Ay.

ecAyp

@ dep(x*,e) is minimal tight set containing e, meaning
x*(dep(z*,e)) = f(dep(x*,e)), and since tight sets are closed
under union, we have that A_ and Aq are also tight, meaning:

z*(A-) = f(A-) (15.18)
z*(Ao) = f(Ao) (15.19)
¥ (AZ) = 2" (Ao) = y*(F) (15.20)

and therefore, all together we have

F(AD) = f(Ag) = a"(AL) = a*(Ao) =y*(B)  (15.21)
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Now, y* is feasible for the I.h.s. of Eqn. (15.12).
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

o Now, y* is feasible for the I.h.s. of Eqn. (15.12). This follows since,
we have y* = 2* A0 < 0, and since x* € By C Py, and y* < x* and
Py is down-closed, we have that y* € P;.
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

o Now, y* is feasible for the I.h.s. of Eqn. (15.12). This follows since,
we have y* = 2* A0 < 0, and since z* € By C Py, and y* < x* and
P; is down-closed, we have that y* € Py.

@ Also, for any y € Py with y < 0 and for any X C E, we have
y(E) < y(X) < f(X).
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

o Now, y* is feasible for the I.h.s. of Eqn. (15.12). This follows since,
we have y* = 2* A0 < 0, and since z* € By C Py, and y* < x* and
P; is down-closed, we have that y* € Py.

@ Also, for any y € Py with y < 0 and for any X C E, we have
y(E) < y(X) < f(X).

@ Hence, we have found a feasible for I.h.s. of Eqn. (15.12), y* <0,
y* € Py, so y*(E) < f(X) for all X.
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

o Now, y* is feasible for the I.h.s. of Eqn. (15.12). This follows since,
we have y* = 2* A0 < 0, and since z* € By C Py, and y* < x* and
P; is down-closed, we have that y* € Py.

@ Also, for any y € Py with y < 0 and for any X C E, we have
y(E) < y(X) < f(X).

@ Hence, we have found a feasible for I.h.s. of Eqn. (15.12), y* <0,
y* € Py, so y*(E) < f(X) for all X.

e So y*(F) <min{f(X)|X CV}.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014 F43/65 (pg.171/259



Min-Norm Point and SFM
(NRRRRRRT RNAR

Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

Now, y* is feasible for the l.h.s. of Eqn. (15.12). This follows since,
we have y* = 2* A0 < 0, and since z* € By C Py, and y* < x* and
P; is down-closed, we have that y* € Py.

Also, for any y € Py with y < 0 and for any X C F, we have

y(E) <y(X) < f(X).

Hence, we have found a feasible for |.h.s. of Eqn. (15.12), y* <0,
y* € Py, so y*(E) < f(X) for all X.

So y*(E) <min {f(X)|X CV}.

Considering Eqn. (15.18), we have found sets A_ and A with
tightness in Eqn. (15.12), meaning y*(E) = f(A-) = f(Ao).
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

Now, y* is feasible for the l.h.s. of Eqn. (15.12). This follows since,
we have y* = 2* A0 < 0, and since z* € By C Py, and y* < x* and
P; is down-closed, we have that y* € Py.

Also, for any y € Py with y < 0 and for any X C F, we have

y(E) <y(X) < f(X).

Hence, we have found a feasible for |.h.s. of Eqn. (15.12), y* <0,
y* € Py, so y*(E) < f(X) for all X.

So y*(E) <min {f(X)|X CV}.

Considering Eqn. (15.18), we have found sets A_ and A with
tightness in Eqn. (15.12), meaning y*(E) = f(A-) = f(Ao).
Hence, y* is a maximizer of I.h.s. of Eqn. (15.12), and A_ and Ay
are minimizers of f.
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Now, for any X C A_, we have

F(X) > 2*(X) > 2*(A) = f(A-) (15.22)
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Now, for any X C A_, we have

F(X) = 2*(X) > 2*(A_) = f(A-) (15.22)
@ And for any X D Ag, we have

f(X) = 2(X) > 2™(Ao) = f(Ao) (15.23)
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Min-Norm Point and SFM

... proof of Thm. 15.7.1 cont.

@ Now, for any X C A_, we have

F(X) = 2*(X) > 2*(A_) = f(A-) (15.22)
@ And for any X D Ag, we have
F(X) = 2*(X) > 2*(Ao) = f(Ao) (15.23)

@ Hence, A_ must be the unique minimal minimizer of f, and Ag is
the unique maximal minimizer of f.
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Min-Norm Point and SFM

@ So, if we have a procedure to compute the min-norm point
computation, we can solve SFM.
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Min-Norm Point and SFM

@ So, if we have a procedure to compute the min-norm point
computation, we can solve SFM.

@ Nice thing about previous proof is that it uses both expressions for
dep for different purposes.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014 F45/65 (pg.178/259



Min-Norm Point and SFM
(NRRRRRRNRY NN

Min-Norm Point and SFM

@ So, if we have a procedure to compute the min-norm point
computation, we can solve SFM.

@ Nice thing about previous proof is that it uses both expressions for
dep for different purposes.

@ This was discovered by Fujishige (in fact the proof above is an
expanded version of the one found in the book).
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Min-Norm Point and SFM

@ So, if we have a procedure to compute the min-norm point
computation, we can solve SFM.

@ Nice thing about previous proof is that it uses both expressions for
dep for different purposes.

@ This was discovered by Fujishige (in fact the proof above is an
expanded version of the one found in the book).

@ An algorithm (by F. Wolfe) can find this min-norm point, essentially
an active-set procedure for quadratic programming. It uses
Edmonds's greedy algorithm to make it efficient.
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Min-Norm Point and SFM

@ So, if we have a procedure to compute the min-norm point
computation, we can solve SFM.

@ Nice thing about previous proof is that it uses both expressions for
dep for different purposes.

@ This was discovered by Fujishige (in fact the proof above is an
expanded version of the one found in the book).

@ An algorithm (by F. Wolfe) can find this min-norm point, essentially
an active-set procedure for quadratic programming. It uses
Edmonds’s greedy algorithm to make it efficient.

@ This is currently the best practical algorithm for general purpose
submodular function minimization.
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Min-Norm Point and SFM

@ So, if we have a procedure to compute the min-norm point
computation, we can solve SFM.

@ Nice thing about previous proof is that it uses both expressions for
dep for different purposes.

@ This was discovered by Fujishige (in fact the proof above is an
expanded version of the one found in the book).

@ An algorithm (by F. Wolfe) can find this min-norm point, essentially
an active-set procedure for quadratic programming. It uses
Edmonds’s greedy algorithm to make it efficient.

@ This is currently the best practical algorithm for general purpose
submodular function minimization.

@ But its underlying lower-bound complexity is unknown, although in
practice its estimated empirical complexity runs anywhere from
O(n3) to O(n*®) or so (see Jegelka, Lin, Bilmes (NIPS 2011)).
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Min-norm point and other minimizers of f

@ Recall, that the set of minimizers of f forms a lattice.
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Min-norm point and other minimizers of f

@ Recall, that the set of minimizers of f forms a lattice.

@ In fact, with 2* the min-norm point, and A_ and Ag as defined
above, we have the following theorem:
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Min-norm point and other minimizers of f

@ Recall, that the set of minimizers of f forms a lattice.
@ In fact, with z* the min-norm point, and A_ and Ag as defined
above, we have the following theorem:

Theorem 15.7.2

Let A C E be any minimizer of submodular f, and let ©* be the
minimum-norm point. Then A has the form:

A=A_U U dep(z*,a) (15.24)
a€An,

for some set A,, C Ag\ A_.
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Min-norm point and other minimizers of f

proof of Thm. 15.7.2.
@ If Ais a minimizer, then A_ C A C Ay, and f(A) = y*(F) is the
minimum valuation of f.
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Min-norm point and other minimizers of f

proof of Thm. 15.7.2.
o If Ais a minimizer, then A_ C A C Ay, and f(A) = y*(F) is the
minimum valuation of f.
@ But z* € Py, so 2*(A) < f(A) and f(A) = z*(A-) < z*(A) (or
alternatively, just note that 2*(A4p \ A) = 0).
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Min-norm point and other minimizers of f

proof of Thm. 15.7.2.
o If Ais a minimizer, then A_ C A C Ay, and f(A) = y*(F) is the
minimum valuation of f.

@ But z* € Py, so z*(A) < f(A) and f(A) = 2*(A-) < z*(A) (or
alternatively, just note that 2*(A4p \ A) = 0).
@ Hence, z*(A) = 2*(A_) = f(A) so that A is also a tight set for z*.
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Min-norm point and other minimizers of f

proof of Thm. 15.7.2.
o If Ais a minimizer, then A_ C A C Ay, and f(A) = y*(F) is the
minimum valuation of f.

@ But z* € Py, so z*(A) < f(A) and f(A) = 2*(A-) < z*(A) (or
alternatively, just note that 2*(A4p \ A) = 0).
@ Hence, z*(A) = 2*(A_) = f(A) so that A is also a tight set for z*.

@ Forany a € A, A is a tight set containing a, and dep(z*,a) is the
minimal tight containing a.
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Min-norm point and other minimizers of f

proof of Thm. 15.7.2.
o If Ais a minimizer, then A_ C A C Ay, and f(A) = y*(F) is the
minimum valuation of f.

@ But z* € Py, so z*(A) < f(A) and f(A) = 2*(A-) < z*(A) (or
alternatively, just note that 2*(A4p \ A) = 0).
@ Hence, z*(A) = 2*(A_) = f(A) so that A is also a tight set for z*.

@ Forany a € A, A is a tight set containing a, and dep(z*,a) is the
minimal tight containing a.

@ Hence, for any a € A, dep(z*,a) C A.
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Min-norm point and other minimizers of f

o If Ais a minimizer, then A_ C A C Ay, and f(A) = y*(F) is the
minimum valuation of f.

@ But z* € Py, so z*(A) < f(A) and f(A) = 2*(A-) < z*(A) (or
alternatively, just note that x*(Ag \ A) = 0).

@ Hence, z*(A) = 2*(A_) = f(A) so that A is also a tight set for z*.

@ Forany a € A, A is a tight set containing a, and dep(z*,a) is the
minimal tight containing a.

@ Hence, for any a € A, dep(z*,a) C A.
@ This means that (J,. 4 dep(z*,a) = A.
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Min-norm point and other minimizers of f

o If Ais a minimizer, then A_ C A C Ay, and f(A) = y*(F) is the
minimum valuation of f.

@ But z* € Py, so z*(A) < f(A) and f(A) = 2*(A-) < z*(A) (or
alternatively, just note that x*(Ag \ A) = 0).

@ Hence, z*(A) = 2*(A_) = f(A) so that A is also a tight set for z*.

@ Forany a € A, A is a tight set containing a, and dep(z*,a) is the
minimal tight containing a.

@ Hence, for any a € A, dep(z*,a) C A.
e This means that (J,. 4 dep(z*,a) = A.

@ Since A_ C A C Ay, then 3A,, C A\ A_ such that
A=A_U4en, dep(z*, a).
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On a unique minimizer f

e Note that if f(e|]4) >0,VAC E and e € E \ A, then we have
A_ = Ap (there is one unique minimizer).
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On a unique minimizer f

e Note that if f(e|A) >0,VAC E and e € E'\ A, then we have

A_ = Ay (there is one unique minimizer).
@ On the other hand, if A_ = Ay, it does not imply f(e|A) > 0 for all
AC E\{e}.
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On a unique minimizer f

e Note that if f(e|A) >0,VAC E and e € E'\ A, then we have

A_ = Ay (there is one unique minimizer).
@ On the other hand, if A_ = Ay, it does not imply f(e|A) > 0 for all
ACE\{e}.

o If A_ = Ay then certainly f(e|Ag) > 0 fore € E\ Ay and
—f(e|Ap\ {e}) > 0 for all e € Ayp.
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Lovész extension
[NERRENRNRRRNNNT]

Multiple Polytopes associated with f

Pt Py

B \ \‘

Pt =Prn{zeR”:z>0} (15.5)
Py ={z € R": 2(S) < f(5),VS C E} (15.6)
By =Prn{z eR”: 2(E) = ( )} (15.7)
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Lovész extension
(L RNRRRNR RN NRNT]

Polymatroidal polyhedron and greedy

@ Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem ?7?)

Theorem 15.8.1

If f:2F 5 R, is given, and P is a polytope in Rf of the form

P ={zeRY :2(A) < f(A),YA C E}, then the greedy solution to the
problem max(wzx : x € P) is Yw optimum iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).
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Lovész extension
(NLRNRRNNARRNRRNT]

Optimization over Py

e Consider the following optimization. Given w € R¥,

maximize wlx (15.25a)
subject to x € Py (15.25b)
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Lovész extension
(NLRNRRNNARRNRRNT]

Optimization over Py

o Consider the following optimization. Given w € R¥,

maximize wlx (15.25a)
subject to x € Py (15.25b)

@ Since Py is down closed, if 3e € E with w(e) < 0 then the solution
above is unboundedly large.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014



Lovész extension
(NLRNRRNNARRNRRNT]

Optimization over Py

o Consider the following optimization. Given w € R¥,

maximize wlx (15.25a)
subject to x € Py (15.25b)

@ Since Py is down closed, if 3e € E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w € Rf.
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Lovész extension
(NLRNRRNNARRNRRNT]

Optimization over Py

o Consider the following optimization. Given w € R¥,

maximize wlx (15.25a)
subject to x € Py (15.25b)

@ Since Py is down closed, if 3e € E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w € ]Rf.

@ The greedy algorithm will solve this, and the proof almost identical.
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Lovész extension
(NLRNRRNRRRRNY]

Optimization over Py

Consider the following optimization. Given w € R¥,

maximize wlx (15.25a)
subject to x € Py (15.25b)

Since Py is down closed, if e € E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w € ]Rf.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem ?7, any « € Py with x ¢ By is dominated by
x <y € By which can only increase wTx < wTy.
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Lovész extension
(NLRNRRNNARRNRRNT]

Optimization over Py

o Consider the following optimization. Given w € R¥,

maximize wlx (15.25a)
subject to x € Py (15.25b)

@ Since Py is down closed, if 3e € E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w € ]Rf.

@ The greedy algorithm will solve this, and the proof almost identical.

@ Due to Theorem ??, any x € Py with x ¢ By is dominated by
x <y € By which can only increase wTx < wTy.

@ Hence, the problem is equivalent to: given w € R%,

maximize wlx (15.26a)
subject to x € By (15.26b)
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Lovész extension
(NLRNRRNNARRNRRNT]

Optimization over Py

o Consider the following optimization. Given w € R¥,

maximize wlx (15.25a)
subject to x € Py (15.25b)

@ Since Py is down closed, if 3e € E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w € ]Rf.
@ The greedy algorithm will solve this, and the proof almost identical.
@ Due to Theorem ??, any x € Py with x ¢ By is dominated by
x <y € By which can only increase wTx < wTy.
@ Hence, the problem is equivalent to: given w € R%,

maximize wle (15.26a)
subject to x € By (15.26b)

@ Moreover, we can have w € R if we insist on x € By.
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Lovész extension
(NN ERRRNARRNRRNT]

A continuous extension of f

e Consider again optimization problem. Given w € R¥,

maximize wle (15.27a)
subject to x € Py (15.27b)
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Lovész extension
(NN ERRRNARRNRRNT]

A continuous extension of f

o Consider again optimization problem. Given w € R¥,

maximize wlx (15.27a)
subject to x € Py (15.27b)

@ We may consider this optimization problem a function f :RF SR
of w € RE, defined as:

f(w) = max(wzx : z € Py) (15.28)
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Lovész extension
(NRY ARRNRRRNRNY]

A continuous extension of f

o Consider again optimization problem. Given w € R¥,

maximize wlx (15.27a)
subject to x € Py (15.27b)

@ We may consider this optimization problem a function f RF SR
of w € RE, defined as:

f(w) = max(wzx : x € Py) (15.28)
@ Hence, for any w, from the above theorem, we can compute the

value of this function using the greedy algorithm (after of course
checking for w € R¥).
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Lovész extension
(NRRR NRNRARNARNY]

A continuous extension of f

@ That is, given a submodular function f, a w € R¥, and defining
E; ={e1,ea,...,¢e;} and where we choose the element order

(e1,€9,...,e,) based on decreasing w,so that
w(er) > w(ez) > -+ > w(ey), we have
f(w)
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Lovész extension
(NRRY NRRNARRNRRNT]

A continuous extension of f

e That is, given a submodular function f, a w € R¥, and defining
E; ={ey,ea,...,¢e;} and where we choose the element order
(e1,€2,...,en) based on decreasing w,so that
w(er) > w(ez) > -+ > w(ey), we have

f(w) = max(wz : x € Py) (15.29)
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Lovész extension
(NRRY NRRNARRNRRNT]

A continuous extension of f

e That is, given a submodular function f, a w € R¥, and defining
E; ={ey,ea,...,¢e;} and where we choose the element order
(e1,€2,...,en) based on decreasing w,so that
w(er) > w(ez) > -+ > w(ey), we have

f(w) = max(wz : x € Py) (15.29)
= w(es)f(eil Bimy) (15.30)
=1
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Lovész extension
(NRRY NRRNARRNRRNT]

A continuous extension of f

e That is, given a submodular function f, a w € R¥, and defining
E; ={ey,ea,...,¢e;} and where we choose the element order
(e1,€2,...,en) based on decreasing w,so that
w(er) > w(ez) > -+ > w(ey), we have

f(w) = max(wz : x € Py) (15.29)

I
.MS

ﬁ
Il
—

w(e;) f(eilEie1) (15.30)

w(e;)(f(E;) — f(Ei-1)) (15.31)

I
NgE

@
I
—
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Lovész extension
(NRRY NRRNARRNRRNT]

A continuous extension of f

e That is, given a submodular function f, a w € R¥, and defining
E; ={ey,ea,...,¢e;} and where we choose the element order
(e1,€2,...,en) based on decreasing w,so that
w(er) > w(ez) > -+ > w(ey), we have

f(w) = max(wz : x € Py) (15.29)

> wlei) f(eilBiov) (15.30)

=1
= > w(e)(f(Ei) = f(Ei)) (15.31)
=1
m—1
= w(em) f(Em) + Z(w(ei) —w(ei))f(E)  (15.32)
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Lovész extension
(NRRY NRRNARRNRRNT]

A continuous extension of f

e That is, given a submodular function f, a w € R¥, and defining
E; ={ey,ea,...,¢e;} and where we choose the element order
(e1,€2,...,en) based on decreasing w,so that
w(er) > w(ez) > -+ > w(ey), we have

f(w) = max(wx : x € Py) (15.29)
= w(ei)f(ei\Ei_l) (15.30)
i=1
= > w(e)(f(Ei) = f(Ei)) (15.31)
i=1
m—1
= w( )+ w(eir1)) f(E;)  (15.32)
7,:1

A .
@ Wesaythat ) = EyC By C B> C --- C E,, = FE forms a chain
based on w.
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Lovész extension
(RN NN RRNRRNT]

A continuous extension of f

@ Definition of the continuous extension, once again, for reference:

f(w) = max(wz : x € Py) (15.33)
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Lovész extension
(RN NN RRNRRNT]

A continuous extension of f

@ Definition of the continuous extension, once again, for reference:
f(w) = max(wa : x € Py) (15.33)
@ Therefore, if f is a submodular function, we can write

fw)
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Lovész extension
(RN NN RRNRRNT]

A continuous extension of f

@ Definition of the continuous extension, once again, for reference:

f(w) = max(wa : x € Py) (15.33)
@ Therefore, if f is a submodular function, we can write
m—1
flw) = w(em) f(Em) + Z w(ep))f(Ei)  (15.34)
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Lovész extension
(RN NN RRNRRNT]

A continuous extension of f

@ Definition of the continuous extension, once again, for reference:

f(w) = max(wa : x € Py) (15.33)
@ Therefore, if f is a submodular function, we can write
m—1
Fw) = wlen) F(Bn) + 3 (wles) —wleis)) F(Es)  (15.34)
i=1

m

= Z Aif (E3) (15.35)
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Lovész extension
(RN NN RRNRRNT]

A continuous extension of f

@ Definition of the continuous extension, once again, for reference:

f(w) = max(wa : x € Py) (15.33)
@ Therefore, if f is a submodular function, we can write
m—1
Fw) = wlen) F(Bn) + 3 (wles) —wleis)) F(Es)  (15.34)
i=1
= i Aif (E;) (15.35)
i=1

where \,, = w(e,,) and otherwise A\; = w(e;) — w(e;41), where the
elements are sorted according to w as before.
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Lovész extension
(RN NN RRNRRNT]

A continuous extension of f

@ Definition of the continuous extension, once again, for reference:
f(w) = max(wa : x € Py) (15.33)

@ Therefore, if f is a submodular function, we can write

m—1
Fw) = wlem)f(Em)+ Y (wle) —wleirr)) f(B:)  (15.34)
=1
= i Aif (E;) (15.35)
=1

where A, = w(e,,) and otherwise A\; = w(e;) — w(e;+1), where the
elements are sorted according to w as before.

e From convex analysis, we know f(w) = max(wz : x € P) is always
convex in w for any set P C RE since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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Lovész extension
(NRRNNT ANRRRNRRNT]

An extension of f

@ Recall, for any such w € RE, we have

w 1 1
1
w2 0
= (wl — wz) . + (wg — 71)3) 0 +
— : — .
w A1 0 A2 -
n 0
1 1
1 1
vt (Wnr —wy) |8 [ 4 (wm) | (15.36)
\—,_/ \ ;
Am—1 1 Am 1
0 1
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Lovész extension
(NRRNNT ANRRRNRRNT]

An extension of f

@ Recall, for any such w € R¥, we have

w1 1 1
wr 0
| = (w1 — wo) + (w2 — ws) +

w, A1 0 A2 0
1 1

1 1

v (wpmy —wy) |+ (wm) | (15.36)
—_—— ——
Aom 1 1 Mo 1
0 1

@ If we take w in decreasing order, then each coefficient of the vectors
is non-negative (except possibly the last one, Ay, = wyy,).
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Lovész extension
(NRRNRRY NRRRNRRNT]

An extension of f

@ Define sets E; based on this decreasing order of w as follows, for
1=0,....n

E Y e, e2,... e} (15.37)
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Lovész extension
(NRRNRRY NRRRNRRNT]

An extension of f

@ Define sets E; based on this decreasing order of w as follows, for
1=0,...,n

Eid:ef{el,eg,...,ei} (15.37)
@ Note that
1
! X
0 1
0 0 1
g, =| . |.1lp = 01, . .,1g =10 , etc.
0 0 0 S(n—10)x
0
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Lovész extension
(NRRNRRY NRRRNRRNT]

An extension of f

@ Define sets E; based on this decreasing order of w as follows, for
1=0,...,n

Ei d:ef {61,62,...,@} (15.37)
o Note that
1
1 £x
0 1
0 0 1
1g, = : ,1g, = 0 ,...,1Eé: 0 , etc.
0 0 0 $(n—10)x
0

@ Hence, from the previous and current slide, we have
m
w=73" \ilg,
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Lovész extension
(NRRNRRRR ARRNRRNN]

From f back to f, even when f is not submodular

@ From the continuous f, we can recover f(A) for any A C V.
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Lovész extension
(NRRNRRRR ARRNRRNN]

From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany AC V.
@ Take w = 14 for some A C F, so w is vertex of the hypercube.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014 F57/65 (pg.226/259



Lovész extension
(NRRNRRNE ARRRRNY]

From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany AC V.
o Take w = 14 for some A C F, so w is vertex of the hypercube.
@ Order the elements of F in decreasing order of w so that

w(er) > w(ez) > w(eg) > -+ > wlen).
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Lovész extension
(NRRNRRNE ARRRRNY]

From f back to f, even when f is not submodular

From the continuous f, we can recover f(A) for any AC V.

Take w = 14 for some A C F, so w is vertex of the hypercube.

Order the elements of E in decreasing order of w so that

w(er) > w(ez) > wles) > -+ > wlen).

@ This means

w = (w(er),w(ez),...,wley)) =(1,1,1,...,1,0,0,...,0) (15.38)
|A| times m—|A| times

so that 14(i) = 1if ¢ < |A|, and 14(7) = 0 otherwise.
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Lovész extension
(NRRNRRRR ARRNRRNN]

From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany AC V.
o Take w = 14 for some A C F, so w is vertex of the hypercube.
@ Order the elements of E in decreasing order of w so that
w(er) > w(ez) > wlez) > - > wlen).
@ This means

w = (w(er),w(ez),...,wley,)) =(1,1,1,...,1,0,0,...,0) (15.38)

|A|‘tirmes m—|A| times
so that 14(2) =1 if i < |A|, and 14(7) = 0 otherwise.
@ Forany f:2F - R, w =14, since Eq = {61,62,...,6‘/4‘} = A:

f(w)
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Lovész extension
(NRRNRRRR ARRNRRNN]

From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany AC V.
o Take w = 14 for some A C F, so w is vertex of the hypercube.
@ Order the elements of E in decreasing order of w so that
w(er) > w(ez) > wlez) > - > wlen).
@ This means

w = (w(er),w(ez),...,wley,)) =(1,1,1,...,1,0,0,...,0) (15.38)

|A|‘tirmes m—|A| times
so that 14(2) =1 if i < |A|, and 14(7) = 0 otherwise.
e Forany f:2F 5 R, w =14, since By = {61,62,...,6‘A|} = A:

fw) = Z Nif(E;)
i=1
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Lovész extension
(NRRNRRRR ARRNRRNN]

From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany AC V.
o Take w = 14 for some A C F, so w is vertex of the hypercube.
@ Order the elements of E in decreasing order of w so that
w(er) > w(ez) > wlez) > - > wlen).
@ This means

w = (w(er),w(ez),...,wley,)) =(1,1,1,...,1,0,0,...,0) (15.38)

|A|‘tirmes m—|A| times
so that 14(2) =1 if i < |A|, and 14(7) = 0 otherwise.
e Forany f:2F 5 R, w =14, since By = {61,62,.. e‘A|} = A:

Z)‘f ) = wlem)f(Em +Z w( (eit1) f(E:)
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Lovész extension
(NRRNRRRR ARRNRRNN]

From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany AC V.
o Take w = 14 for some A C F, so w is vertex of the hypercube.
@ Order the elements of E in decreasing order of w so that
w(er) > w(ez) > wlez) > - > wlen).
@ This means

w = (w(er),w(ez),...,wley,)) =(1,1,1,...,1,0,0,...,0) (15.38)

|A|‘tirmes m—|A| times
so that 14(2) =1 if i < |A|, and 14(7) = 0 otherwise.
e Forany f:2F 5 R, w =14, since By = {61,62,...,6‘A|} =A:
m—1
Z ANif(Ei) = w(em) f(Em) + Z(w(ei) —w(eit1) f(E;)
i=1
m—1

=1a(m)f(Em) + ‘ (La(i) = 1a(i+ 1)) f(E;) (15.39)
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Lovész extension
(NRRNRRRR ARRNRRNN]

From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany AC V.
o Take w = 14 for some A C F, so w is vertex of the hypercube.
@ Order the elements of E in decreasing order of w so that
w(er) > w(ez) > wlez) > - > wlen).
@ This means

w = (w(er),w(ez),...,wley,)) =(1,1,1,...,1,0,0,...,0) (15.38)

|A|‘tirmes m—|A| times
so that 14(2) =1 if i < |A|, and 14(7) = 0 otherwise.
e Forany f:2F 5 R, w =14, since By = {61,62,...,6‘A|} = A:
m—1

Z Aif (Ei) = w(em) f(Em) + Z(w(ez‘) —w(eiy1) f(Ei)
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Lovész extension
(NRRNRRRR ARRNRRNN]

From f back to f, even when f is not submodular

e From the continuous f, we can recover f(A) forany AC V.
o Take w = 14 for some A C F, so w is vertex of the hypercube.
@ Order the elements of E in decreasing order of w so that
w(er) > w(ez) > wlez) > - > wlen).
@ This means

w = (w(er),w(ez),...,wley,)) =(1,1,1,...,1,0,0,...,0) (15.38)

|A|‘tirmes m—|A| times
so that 14(2) =1 if i < |A|, and 14(7) = 0 otherwise.
e Forany f:2F 5 R, w =14, since By = {61,62,...,6‘A|} = A:
m—1
Z Nif(Ei) = w(em) f(Em) + Y (w(e;) — w(ei) f(Ei)

i=1

m—1

= 1a(m)f (Bw) + ) (1a(i) = 1ai+1))f(E;)  (15.39)
i=1

= (La(|A]) = 1a(|Al + 1) f(Eja) = f(Ela) = f(A) 15-40)
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Lovész extension
(NRRNRRRNE ARNRRNT]

From f back to f

e We can view f: [0,1]¥ — R defined on the hypercube, with f
defined as f evaluated on the hypercube extreme points (vertices).
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Lovész extension
(NRRNRRRNE ARNRRNT]

From f back to f

o We can view f:[0,1]% — R defined on the hypercube, with f
defined as f evaluated on the hypercube extreme points (vertices).

o To summarize, with f(A) = 37", X\, f(E;), we have

f(1a) = f(A), (15.41)
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Lovész extension
(NRRNRRRNE ARNRRNT]

From f back to f

o We can view f:[0,1]% — R defined on the hypercube, with f
defined as f evaluated on the hypercube extreme points (vertices).

o To summarize, with f(A) = S X, f(E;), we have

f(1a) = f(A), (15.41)

@ ...and when f is submodular, we also have have

f(1a) =max {1z :x € Py} (15.42)
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Lovész extension
(NRRNRRRNRY FRRRNN]

An extension of f

@ Thus, for any f: 2E 3y R even non-submodular f, we can define an
extension in this way, with

m

flw) =" Nif(E) (15.43)
=1

with the E; = {e1,...,e;}'s defined based on sorted descending
order of w as in w(ey) > w(ez) > -+ > w(ey), and where

i) —w(e; if 4
forie {1, mh = qule) mwlem) <m0,
w(em) if i =m

so that w = >"", A\ilg,
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Lovész extension
(NRRNRRRNRY FRRRNN]

An extension of f

@ Thus, for any f : 2P — R, even non-submodular f, we can define an
extension in this way, with

Flw) =" Nf(E) (15.43)
i=1
with the E; = {e1,...,e;}'s defined based on sorted descending

order of w as in w(ey) > w(ez) > -+ > w(ey), and where

foric {l,...,m}, = {w(ei) —wlein) im0
w(em) ifi=m
so that w=>"", \ilp,

@ Note that w = 277:1 Ailg, is an interpolation of certain vertices of
the hypercube, and that f(w) = 3_7" | \;f(F;) is the corresponding
interpolation of the values of f at sets corresponding to each
hypercube vertex.
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Lovész extension
(NRRNRRRNARY ARRNT]

Weighted gains vs. weighted functions

@ Again sorting E descending in w, the extension summarized:

m

flw) = Zw(eﬁf(e”Eifl) (15.45)
=S wle)(f(Ep) — f(Ei 1)) (15.46)
=1
m—1
= m m + Z —w ez+1>)f(Ei> (1547)

m

— Z Nf(E) (15.48)
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Lovész extension
(NRRNRRRNARY ARRNT]

Weighted gains vs. weighted functions

@ Again sorting F descending in w, the extension summarized:

flw) = iw@i)ﬂeml) (15.45)
_ f;w(ei)(f(m ~ f(E) (15.46)
= wlem) f(Bm) + m: wle)f(E)  (15.47)
- ijAi F(E)) (15.48)

@ So f(w) seen either as sum of weighted gain evaluatiosn (Eqn. (15.45),
or as sum of weighted function evaluations (Eqn. (15.48)).
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Lovész extension
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The Lovdsz extension of f : 2¥ — R

e Lovész showed that if a function f(w) defined as in Eqn. (15.43) is
convex, then f must be submodular.
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Lovész extension
(NRRNRRNNRRE] FNY]

The Lovdsz extension of f : 2¥ — R

o Lovész showed that if a function f(w) defined as in Eqn. (15.43) is
convex, then f must be submodular.

@ This continuous extension f of f, in any case (f being submodular
or not), is called the Lovédsz extension of f.
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Lovész extension
(NRRNRRNNRRE] FNY]

The Lovdsz extension of f : 2¥ — R

o Lovész showed that if a function f(w) defined as in Eqn. (15.43) is
convex, then f must be submodular.

@ This continuous extension f of f, in any case (f being submodular
or not), is called the Lovész extension of f.

@ Note, also possible to define this when f(()) # 0 (but doesn't really
add any generality).
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Lovész extension
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Lovasz Extension, Submodularity and Convexity

Theorem 15.8.1

A function f : 2F — R is submodular iff its Lovdsz extension f of f is
convex.

Proof.

@ We've already seen that if f is submodular, its extension can be
written via Eqn.(15~.43) due to the greedy algorithm, and therefore is
also equivalent to f(w) = max {wx : x € Pr}, and thus is convex.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014



Lovész extension
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Lovasz Extension, Submodularity and Convexity

Theorem 15.8.1

A function f : 2F — R is submodular iff its Lovdsz extension f of f is
convex.

Proof.

@ We've already seen that if f is submodular, its extension can be
written via Eqn.(15~.43) due to the greedy algorithm, and therefore is
also equivalent to f(w) = max {wx : © € Py}, and thus is convex.

o Conversely, suppose the Lovasz extension f(w) = >, \; f(E;) of
some function f : 2 — R is a convex function.
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Lovész extension
(NRRNRRNNRRNNY A

Lovasz Extension, Submodularity and Convexity

Theorem 15.8.1

A function f : 2F — R is submodular iff its Lovdsz extension f of f is
convex.

@ We've already seen that if f is submodular, its extension can be
written via Eqn.(15~.43) due to the greedy algorithm, and therefore is
also equivalent to f(w) = max {wx : © € Py}, and thus is convex.

o Conversely, suppose the Lovész extension f(w) = Yo Nif(E;) of
some function f : 2 — R is a convex function.

@ We note that, based on the extension definition, in particular the
definition of the {\;},, we have that f(aw) = af(w) for any
a € Ry. le., fisa positively homogeneous convex function.
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Lovész extension
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Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.8.1 cont.

o Earlier, we saw that f(14) = f(A) for all AC E.
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Lovész extension
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Lovasz Extension, Submodularity and Convexity

o Earlier, we saw that f(14) = f(A) forall AC E.
@ Now, given A, B C E, we will show that
f(la+1p) = f(1aup + 1anp) (15.49)
= f(AUB)+ f(AN B). (15.50)
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Lovész extension
(NRRNRRRNARRNNY |

Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.8.1 cont.
o Earlier, we saw that f(14) = f(A) forall AC E.
@ Now, given A, B C FE, we will show that

f(lA—I—IB) :f(lAuB+1AmB) (15.49)
= f(AUB)+ f(AN B). (15.50)
@ Let C = AN B, order E based on decreasing w =14 + 1p so that
w = (w(er),w(ez),...,w(em)) (15.51)
=(2,2,...,2,1,1,...,1,0,0,...,0) (15.52)

ieC i€AAB  i€E\(AUB)
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Lovész extension
(NRRNRRRNARRNNY |

Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.8.1 cont.
o Earlier, we saw that f(14) = f(A) forall AC E.
@ Now, given A, B C FE, we will show that

fa+1p) = f(1aup + 1ans) (15.49)
= f(AUB)+ f(AN B). (15.50)
@ Let C = AN B, order E based on decreasing w = 14 + 1p so that
w = (w(er), w(ea), .., w(em)) (15.51)
=(2,2,...,2,1,1,...,1,0,0,...,0) (15.52)

~—

icC i€AAB  icE\(AUB)

Zi Xif(E;), we have )‘\C\ =1,

e Then, considering f(w) =
i =0fori¢ {|C|,|AU B|}.

/\\AUB\ =1, and A
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Lovész extension
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Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.8.1 cont.

o Earlier, we saw that f(14) = f(A) forall AC E.
@ Now, given A, B C FE, we will show that

f(la+1p) = f(laup + 1anB) (15.49)
= f(AUB)+ f(AN B). (15.50)
@ Let C = AN B, order E based on decreasing w = 14 + 1p so that
w = (w(er), w(ea), .., w(em)) (15.51)
=(2,2,...,2,1,1,...,1,0,0,...,0) (15.52)

~—

ieC i€AAB  i€E\(AUB)

o Then, considering f(w) = 3, \if(E;), we have A =1,

ANaup| =1, and \; = 0 for i & {|C],|AU B|}.
But then Ejc) = AN B and E| 45 = AU B. Therefore,

fw)=f(ANnB)+ f(AUB).




Lovész extension
(NRRNRRRNRRRNRRY ¥

Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.8.1 cont.

e Also, since f is convex (by assumption) and positively
homogeneous, we have for any A, B C F,

0.5[f(ANB) + f(AU B)]

(15.56)

Ol

- — )
Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014 F64/65 (pg.253/259



Lovész extension
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Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.8.1 cont.

@ Also, since f is convex (by assumption) and positively
homogeneous, we have for any A, B C F,
0.5[f(ANB) + f(AUB)] = 0.5[f(14 + 15)] (15.53)
(15.56)
Ol

- — )
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Lovész extension
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Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.8.1 cont.

@ Also, since f is convex (by assumption) and positively
homogeneous, we have for any A, B C F,
0.5[f(ANB) + f(AUB)] = 0.5[f(14 + 15)] (15.53)
= £(0.514 +0.51p) (15.54)
(15.56)
L]

- — )
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Lovész extension
(NRRNRRRNRRRNRRY ¥

Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.8.1 cont.

@ Also, since f is convex (by assumption) and positively
homogeneous, we have for any A, B C F,
0.5[f(ANB) + f(AUB)] = 0.5[f(14 + 15)] (15.53)
= f(0.514 + 0.51p) (15.54)
<0.5f(14)+05f(1g)  (15.55)
(15.56)
L]

- — )
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Lovész extension
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Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.8.1 cont.

@ Also, since f is convex (by assumption) and positively
homogeneous, we have for any A, B C F,
0.5[f(ANB) + f(AUB)] = 0.5[f(14 + 15)] (15.53)
= f(0.514 4 0.515) (15.54)
<0.5f(14)4+05f(15)  (15.55)
=0.5(f(A) + f(B)) (15.56)
L]

- — )
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Lovész extension
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Lovasz Extension, Submodularity and Convexity

... proof of Thm. 15.8.1 cont.

@ Also, since f is convex (by assumption) and positively
homogeneous, we have for any A, B C F,

0.5[f(ANB)+ f(AUB)] = 0.5[f(14 + 15)] (15.53)
= £(0.514 + 0.51p) (15.54)
<0.5f(14)4+05f(15)  (15.55)
= 0.5(f(A) + f(B)) (15.56)

@ Thus, we have shown that for any A, B C F,
f(AUB)+ f(ANB) < f(A) + f(B) (15.57)

so f must be submodular.

Ol

- — )
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Lovész extension
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Edmonds - Submodularity - 1969

SUBMODULAR FUNCTIONS, MATROIDS, AND CERTAIN POLYHEDRA®
Jack Edmonds

National Bureau of Standards, Washington, D.C.,U.S.A.

I.

The viewpoint of the subject of matroids, and related areas of
lattice theory, has always been, in one way or another, abstraction of
algebraic dependence or, equivalently, abstraction of the incidence

relations in geometric representations of algebra. Often one of the
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