Submodular Functions, Optimization, and Applications to Machine Learning — Spring Quarter, Lecture 15 http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

May 19th, 2014

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014

F1/37 (pg.1/144)

Cumulative Outstanding Reading

- Good references for today: Schrijver-2003, Oxley-1992/2011, Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.
- Read Tom McCormick's overview paper on SFM http://people. commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
- Read chapters 1 4 from Fujishige book.
- Matroid properties http: //www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf
- Read lecture 14 slides on lattice theory at our web page (http://j. ee.washington.edu/~bilmes/classes/ee596b_spring_2014/)

Logistics

Review

• Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

Logistics

Review

Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, & Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes,
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity

- L11: More properties of polymatroids, SFM special cases
- L12: polymatroid properties, extreme points polymatroids,
- L13: sat, dep, supp, exchange capacity, examples
- L14: Lattice theory: partially ordered sets; lattices; distributive, modular, submodular, and boolean lattices; ideals and join irreducibles.
- L15: Supp, Base polytope, polymatroids and entropic Venn diagrams, exchange capacity,
- L16: proof that minimum norm point yields min of submodular function, and the lattice of minimizers of a submodular function, Lovasz extension
- L17: Lovasz extension, Choquet Integration, more properties/examples of Lovasz extension, convex minimization and SFM.
- L18: Lovasz extension examples and structured convex norms, The Min-Norm Point Algorithm detailed.
- L19: symmetric submodular function minimization, maximizing monotone submodular function w. card constraints.
- L20: maximizing monotone submodular function w. other constraints, non-monotone maximization.

Finals Week: June 9th-13th, 2014.

Summary of Concepts

Logistics

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I + e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- sat function & Closure
- Saturation Capacity
- *e*-containing tight sets
- ullet dep function & fundamental circuit of a matroid

Review

Summary important definitions so far: tight, dep, & sat

- x-tight sets: For $x \in P_f$, $\mathcal{D}(x) = \{A \subseteq E : x(A) = f(A)\}.$
- Polymatroid closure/maximal x-tight set: For $x \in P_f$, $\operatorname{sat}(x) = \cup \{A : A \in \mathcal{D}(x)\} = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}.$
- Saturation capacity: for $x \in P_f$, $0 \le \hat{c}(x; e) = \min \{f(A) x(A) | \forall A \ni e\} = \max \{\alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f\}$

• Recall:
$$sat(x) = \{e : \hat{c}(x; e) = 0\}$$
 and $E \setminus sat(x) = \{e : \hat{c}(x; e) > 0\}.$

- e-containing x-tight sets: For $x \in P_f$, $\mathcal{D}(x, e) = \{A : e \in A \subseteq E, x(A) = f(A)\} \subseteq \mathcal{D}(x).$
- Minimal *e*-containing *x*-tight set/polymatroidal fundamental circuit/: For $x \in P_f$, $dep(x, e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$ $= \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f\}$

Logistics

Review

Review

dep and sat in a lattice

- Given some $x \in P_f$,
- The picture on the right summarizes the relationships between the lattices and sublattices.
- Note, $\bigcap_{e} \operatorname{dep}(x, e) = \operatorname{dep}(x).$

Supp	Examples		Exchange Capacity	Min-Norm Point and SFM
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Support	of vector			

• The support of a vector $x \in P_f$ is defined as the elements with non-zero entries.

Supp	Examples	Exchange Capacity	Min-Norm Point and SFM
Support	of vector		

- The support of a vector $x \in P_f$ is defined as the elements with non-zero entries.
- That is

$$supp(x) = \{e \in E : x(e) \neq 0\}$$
 (15.1)

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM Support of vector 11111 11111 11111 11111 11111

- The support of a vector x ∈ P_f is defined as the elements with non-zero entries.
- That is

$$supp(x) = \{e \in E : x(e) \neq 0\}$$
 (15.1)

 Supp
 Examples
 More on B_f
 Exchange Capacity
 Min-Norm Point and SFM

 Tightness of supp at polymatroidal extreme point

Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.

SuppExamplesMore on B_f Exchange CapacityMin-Norm Point and SFMTightness of supp at polymatroidal extreme point

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.

SuppExamplesMore on B_f Exchange CapacityMin-Norm Point and SFMTightness of supp at polymatroidal extreme point

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM Tightness of supp at polymatroidal extreme point

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice $\mathcal{D}(x) = \{A : x(A) = f(A)\}$ of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?
 - Extremal points are defined as a system of equalities of the form x(E_i) = f(E_i) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in class. Hence, any e_i ∈ supp(x) has x(e_i) = f(e_i|E_{i-1}) > 0.

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?
 - Extremal points are defined as a system of equalities of the form x(E_i) = f(E_i) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in class. Hence, any e_i ∈ supp(x) has x(e_i) = f(e_i|E_{i-1}) > 0.
 - 2 Now, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, $x(E_k) = x(E_k e_i)$

Sudd

Examples

Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.

Min-Norm Point and SFM

- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?
 - Extremal points are defined as a system of equalities of the form x(E_i) = f(E_i) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in class. Hence, any e_i ∈ supp(x) has x(e_i) = f(e_i|E_{i-1}) > 0.
 - 2 Now, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, $x(E_k) = x(E_k e_i)$
 - 3 Also, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, then $x(e_i) = 0 = f(e_i|E_{i-1}) \ge f(e_i|E_k e_i) = f(E_k|E_k e_i) \ge 0$ since monotone submodular, hence we have $f(E_k) = f(E_k e_i)$.

Sudd

Examples

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?
 - Extremal points are defined as a system of equalities of the form x(E_i) = f(E_i) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in class. Hence, any e_i ∈ supp(x) has x(e_i) = f(e_i|E_{i-1}) > 0.
 - 2 Now, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, $x(E_k) = x(E_k e_i)$
 - 3 Also, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, then $x(e_i) = 0 = f(e_i | E_{i-1}) \ge f(e_i | E_k e_i) = f(E_k | E_k e_i) \ge 0$ since monotone submodular, hence we have $f(E_k) = f(E_k e_i)$.
 - Thus, $x(E_k e_i) = f(E_k e_i)$ and $E_k e_i$ is also tight.

Sudd

Examples

F9/37 (pg.17/144)

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?
 - Extremal points are defined as a system of equalities of the form x(E_i) = f(E_i) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in class. Hence, any e_i ∈ supp(x) has x(e_i) = f(e_i|E_{i-1}) > 0.
 - 2 Now, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, $x(E_k) = x(E_k e_i)$
 - 3 Also, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, then $x(e_i) = 0 = f(e_i|E_{i-1}) \ge f(e_i|E_k e_i) = f(E_k|E_k e_i) \ge 0$ since monotone submodular, hence we have $f(E_k) = f(E_k e_i)$.
 - Thus, $x(E_k e_i) = f(E_k e_i)$ and $E_k e_i$ is also tight.
 - **③** We can keep removing elements \notin supp(x) and we're left with $f(E_k \cap \text{supp}(x)) = x(E_k \cap \text{supp}(x))$ for any k.

Sudd

Examples

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?
 - Extremal points are defined as a system of equalities of the form x(E_i) = f(E_i) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in class. Hence, any e_i ∈ supp(x) has x(e_i) = f(e_i|E_{i-1}) > 0.
 - 2 Now, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, $x(E_k) = x(E_k e_i)$
 - 3 Also, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, then $x(e_i) = 0 = f(e_i|E_{i-1}) \ge f(e_i|E_k e_i) = f(E_k|E_k e_i) \ge 0$ since monotone submodular, hence we have $f(E_k) = f(E_k e_i)$.
 - Thus, $x(E_k e_i) = f(E_k e_i)$ and $E_k e_i$ is also tight.
 - **③** We can keep removing elements \notin supp(x) and we're left with $f(E_k \cap \text{supp}(x)) = x(E_k \cap \text{supp}(x))$ for any k.
 - Hence supp(x) is tight when x is extremal.

Sudd

Examples

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?
 - Extremal points are defined as a system of equalities of the form x(E_i) = f(E_i) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in class. Hence, any e_i ∈ supp(x) has x(e_i) = f(e_i|E_{i-1}) > 0.
 - 2 Now, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, $x(E_k) = x(E_k e_i)$
 - 3 Also, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, then $x(e_i) = 0 = f(e_i | E_{i-1}) \ge f(e_i | E_k e_i) = f(E_k | E_k e_i) \ge 0$ since monotone submodular, hence we have $f(E_k) = f(E_k e_i)$.
 - Thus, $x(E_k e_i) = f(E_k e_i)$ and $E_k e_i$ is also tight.
 - **③** We can keep removing elements \notin supp(x) and we're left with $f(E_k \cap \text{supp}(x)) = x(E_k \cap \text{supp}(x))$ for any k.
 - Hence supp(x) is tight when x is extremal.

• Since supp(x) is tight, we immediately have that $sat(x) \supseteq supp(x)$.

Sudd

Examples

Supp	Examples		Exchange Capacity	Min-Norm Point and SFM
1101		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
supp vs	. sat <mark>equalit</mark>	у		

• For $x \in P_f$, with x extremal, is supp(x) = sat(x)?

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM supp vs. sat equality

- For $x \in P_f$, with x extremal, is supp(x) = sat(x)?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X) = f(Y) = f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), f(Y|X) = 0.

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM supp vs. sat equality

- For $x \in P_f$, with x extremal, is supp(x) = sat(x)?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X) = f(Y) = f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), f(Y|X) = 0.
- Suppose $x \in P_f$ has x(X) > 0 but $x(V \setminus X) = 0$ and so x(Y) = 0.

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM Supp vs. sat equality

- For $x \in P_f$, with x extremal, is supp(x) = sat(x)?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X) = f(Y) = f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), f(Y|X) = 0.
- Suppose $x \in P_f$ has x(X) > 0 but $x(V \setminus X) = 0$ and so x(Y) = 0.
- Suppose $\operatorname{supp}(x) = X$, and say x is tight at X(x(X) = f(X)).

Sudd

- For $x \in P_f$, with x extremal, is supp(x) = sat(x)?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X) = f(Y) = f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), f(Y|X) = 0.

- Suppose $x \in P_f$ has x(X) > 0 but $x(V \setminus X) = 0$ and so x(Y) = 0.
- Suppose $\operatorname{supp}(x) = X$, and say x is tight at X (x(X) = f(X)).
- $\operatorname{sat}(x) = \bigcup \{A : x(A) = f(A)\}$ and since $x(X \cup Y) = x(X) = f(X) = f(X \cup Y)$, here, $sat(x) \supseteq X \cup Y$. Hence, $\operatorname{sat}(x) \supset \operatorname{supp}(x)$.

Sudd

- For $x \in P_f$, with x extremal, is supp(x) = sat(x)?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X) = f(Y) = f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), f(Y|X) = 0.

Exchange Capacity

- Suppose $x \in P_f$ has x(X) > 0 but $x(V \setminus X) = 0$ and so x(Y) = 0.
- Suppose $\operatorname{supp}(x) = X$, and say x is tight at X (x(X) = f(X)).
- $\operatorname{sat}(x) = \bigcup \{A : x(A) = f(A)\}$ and since $x(X \cup Y) = x(X) = f(X) = f(X \cup Y)$, here, $sat(x) \supseteq X \cup Y$. Hence, $\operatorname{sat}(x) \supset \operatorname{supp}(x)$.
- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$ (see later).

Sudd

- For $x \in P_f$, with x extremal, is supp(x) = sat(x)?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X) = f(Y) = f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), f(Y|X) = 0.

Exchange Capacity

- Suppose $x \in P_f$ has x(X) > 0 but $x(V \setminus X) = 0$ and so x(Y) = 0.
- Suppose $\operatorname{supp}(x) = X$, and say x is tight at X (x(X) = f(X)).
- $\operatorname{sat}(x) = \bigcup \{A : x(A) = f(A)\}$ and since $x(X \cup Y) = x(X) = f(X) = f(X \cup Y)$, here, $sat(x) \supseteq X \cup Y$. Hence, $\operatorname{sat}(x) \supset \operatorname{supp}(x)$.
- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$ (see later).
- Also, recall sat(x) is like span/closure but supp(x) is more like indication. So this is similar to $\operatorname{span}(A) \supseteq A$.

Sudd

- For $x \in P_f$, with x extremal, is supp(x) = sat(x)?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X) = f(Y) = f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), f(Y|X) = 0.

Exchange Capacity

- Suppose $x \in P_f$ has x(X) > 0 but $x(V \setminus X) = 0$ and so x(Y) = 0.
- Suppose $\operatorname{supp}(x) = X$, and say x is tight at X (x(X) = f(X)).
- $\operatorname{sat}(x) = \bigcup \{A : x(A) = f(A)\}$ and since $x(X \cup Y) = x(X) = f(X) = f(X \cup Y)$, here, $sat(x) \supseteq X \cup Y$. Hence, $\operatorname{sat}(x) \supset \operatorname{supp}(x)$.
- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$ (see later).
- Also, recall sat(x) is like span/closure but supp(x) is more like indication. So this is similar to $\operatorname{span}(A) \supseteq A$.
- For modular functions, they are always equal at extreme points (e.g., think of "hyperrectangular" polymatroids).

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM Summary of supp, sat, and dep

- For $x \in P_f$, $\operatorname{supp}(x) = \{e : x(e) \neq 0\} \subseteq \operatorname{sat}(x)$
- For $x \in P_f$, sat(x) (span, closure) is the maximal saturated (x-tight) set w.r.t. x. I.e., sat $(x) = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$. That is,

$$\mathsf{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \triangleq \bigcup \{A : A \in \mathcal{D}(x)\}$$

$$= \bigcup \{A : A \subset E \ x(A) = f(A)\}$$
(15.29)
(15.30)

$$= \bigcup \{A : A \subseteq E, x(A) = f(A)\}$$
(15.30)

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
(15.31)

• For $e \in \operatorname{sat}(x)$, we have $\operatorname{dep}(x, e) \subseteq \operatorname{sat}(x)$ (fundamental circuit) is the minimal (common) saturated (x-tight) set w.r.t. x containing e. I.e., $\operatorname{dep}(x, e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in \operatorname{sat}(x) \\ \emptyset & \text{else} \end{cases}$ $= \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f\}$ (15.32)

• Point x is extreme and $x(\{e_2, e_3\}) = f(e_2, e_3)$ (why?).

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM supp, sat, dep, example with perfect independence

• Example polymatroid where there is perfect independence between $A = \{e_2, e_3\}$ and $B = \{e_1\}$, i.e., $e_1 \perp \{e_2, e_3\}$.

• Point x is extreme and $x(\{e_2, e_3\}) = f(e_2, e_3)$ (why?).

• But $x(\{e_1, e_2, e_3\}) = x(\{e_2, e_3\}) < f(e_1, e_2, e_3) = f(e_1) + f(e_2, e_3)$. Thus, $supp(x) = sat(x) = \{e_2, e_3\}$.

• Note that considering a submodular function on clustered ground set $E = \{e_1, e_{23}\}$ where $f'(e_1) = f(e_1)$, $f'(e_{23}) = f(e_2, e_3)$ leads to a rectangle (no dependence between $\{e1\}$ and $\{e2, e3\}$).

We also have sat(x) = {e₃, e₂}. So dep(x, e₁) is not defined, dep(x, e₂) = {e₃}, and dep(x, e₃) = Ø.
sat(y) = {e₁, e₂, e₃}. So dep(y, e₁) = Ø, dep(y, e₂) = e₃, and

• $sat(y) = \{e_1, e_2, e_3\}$. So $dep(y, e_1) = \emptyset$, $dep dep(y, e_3) = \emptyset$.

Prof. Jeff Bilmes

We also have sat(x) = {e₃, e₂}. So dep(x, e₁) is not defined, dep(x, e₂) = {e₃}, and dep(x, e₃) = Ø.
sat(u) = {e₁ e₂ e₂}. So dep(u e₁) = Ø dep(u e₂) = e₂ and

• sat $(y) = \{e_1, e_2, e_3\}$. So dep $(y, e_1) = \emptyset$, dep $(y, e_2) = e_3$, and dep $(y, e_3) = \emptyset$.

• Case A: perfect independence/irredunancy.

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM supp, sat, and polymatroid dependence in 2D 11

• Ex: various amounts of "dependence" between e_1 and e_2 .

- Case A: perfect independence/irredunancy.
- Case B: perfect dependence/redundancy. Since slope is -45°, we must have $f(e_1) = f(e_2) = f(e_1, e_2)$. Entropy case: deterministic bijection between random variables e_1 and e_2 .

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM supp, sat, and polymatroid dependence in 2D

• Ex: various amounts of "dependence" between e_1 and e_2 .

- Case A: perfect independence/irredunancy.
- Case B: perfect dependence/redundancy. Since slope is -45°, we must have $f(e_1) = f(e_2) = f(e_1, e_2)$. Entropy case: deterministic bijection between random variables e_1 and e_2 .
- Case C: $f(e_2) < f(e_1) = f(e_1, e_2)$. Entropy case: random variable e_2 a deterministic function of e_1 which has higher entropy.

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM supp, sat, and polymatroid dependence in 2D

- Case A: perfect independence/irredunancy.
- Case B: perfect dependence/redundancy. Since slope is -45°, we must have $f(e_1) = f(e_2) = f(e_1, e_2)$. Entropy case: deterministic bijection between random variables e_1 and e_2 .
- Case C: $f(e_2) < f(e_1) = f(e_1, e_2)$. Entropy case: random variable e_2 a deterministic function of e_1 which has higher entropy.
- Case D: $f(e_1) < f(e_2) = f(e_1, e_2)$. Entropy case: random variable e_1 a deterministic function of e_2 which has higher entropy.

Min-Norm Point and SFM Sudd Examples Exchange Capacity supp, sat, and polymatroid dependence in 2D

 $f(e_2)$

• In each case, we see points x where $supp(x) \subseteq sat(x)$.

- Example: Case B or C, let $x = (f(e_1), 0)$ so $supp(x) = \{e_1\}$ but since $x(\{e_1, e_2\}) = x(\{e_1\}) = f(e_1) = f(e_1, e_2)$ we have $\operatorname{sat}(x) = \{e_1, e_2\}.$
- Similar for case D with $x = (0, f(e_2))$.

• General case, $f(e_1, e_2) < f(e_1) + f(e_2)$, $f(e_1) < f(e_1, e_2)$, and $f(e_2) < f(e_1, e_2)$.

• Entropy case: We have a random variable Z and two separate deterministic functions $e_1 = h_1(Z)$ and $e_2 = h_2(Z)$ such that the entropy $H(e_1, e_2) = H(Z)$, but each deterministic function gives a different "view" of Z, each contains more than half the information, and the two are redundant w.r.t. each other $(H(e_1) + H(e_2) > H(Z))$.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014

F14/37 (pg.42/144)

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014

F15/37 (pg.43/144)

F16/37 (pg.44/144)

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM supp, sat, and perfect dependence in 3D

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM supp, sat, and perfect dependence in 3D

• Entropy case: xor V-structure Bayesian network $e_1 = h(e_2, e_3)$ where h is the xor function $(e_2 \rightarrow e_1 \leftarrow e_3)$, and e_2, e_3 are both independent binary with unity entropy.

- Entropy case: xor V-structure Bayesian network $e_1 = h(e_2, e_3)$ where h is the xor function $(e_2 \rightarrow e_1 \leftarrow e_3)$, and e_2, e_3 are both independent binary with unity entropy.
- Q: Why does the polytope have a symmetry? Notice independence (square) for any pair.

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM supp, sat, and perfect dependence in 3D

• Note also, that for some of the extreme points, multiple orders generate them.

- Note also, that for some of the extreme points, multiple orders generate them.
- Consider extreme point $x = (x_1, x_2, x_3) = (1, 1, 0)$. Then we get this either with orders (e_1, e_2, e_3) , or (e_2, e_1, e_3) . This is true since $f(e_{\sigma_e}|\{e_{\sigma_1}, e_{\sigma_2}\}) = 0$ for all permutations σ of $\{1, 2, 3\}$.

• The example in the previous slides can be realized with entropy of random variables and a Bayesian network.

- The example in the previous slides can be realized with entropy of random variables and a Bayesian network.
- Consider three binary random variables $X_1, X_2, X_3 \in \{0, 1\}$ that factor w.r.t., the V-structure $X_1 \rightarrow X_3 \leftarrow X_2$, where $X_3 = X_1 \oplus X_2$, where \oplus is the X-OR operator, and where $X_1 \perp \!\!\perp X_2$.

- The example in the previous slides can be realized with entropy of random variables and a Bayesian network.
- Consider three binary random variables $X_1, X_2, X_3 \in \{0, 1\}$ that factor w.r.t., the V-structure $X_1 \rightarrow X_3 \leftarrow X_2$, where $X_3 = X_1 \oplus X_2$, where \oplus is the X-OR operator, and where $X_1 \perp\!\!\perp X_2$.
- Consequently, $X_i \perp \!\!\!\perp X_j$ for any $i \neq j$.

- The example in the previous slides can be realized with entropy of random variables and a Bayesian network.
- Consider three binary random variables $X_1, X_2, X_3 \in \{0, 1\}$ that factor w.r.t., the V-structure $X_1 \rightarrow X_3 \leftarrow X_2$, where $X_3 = X_1 \oplus X_2$, where \oplus is the X-OR operator, and where $X_1 \perp\!\!\perp X_2$.
- Consequently, $X_i \perp \!\!\!\perp X_j$ for any $i \neq j$.
- Moreover, for any permutation σ of $\{1, 2, 3\}$, we have the relationship $X_{\sigma_1} = X_{\sigma_2} \oplus X_{\sigma_3}$.

- The example in the previous slides can be realized with entropy of random variables and a Bayesian network.
- Consider three binary random variables $X_1, X_2, X_3 \in \{0, 1\}$ that factor w.r.t., the V-structure $X_1 \rightarrow X_3 \leftarrow X_2$, where $X_3 = X_1 \oplus X_2$, where \oplus is the X-OR operator, and where $X_1 \perp\!\!\perp X_2$.
- Consequently, $X_i \perp \!\!\!\perp X_j$ for any $i \neq j$.
- Moreover, for any permutation σ of $\{1, 2, 3\}$, we have the relationship $X_{\sigma_1} = X_{\sigma_2} \oplus X_{\sigma_3}$.
- The entropy function $f(A) = H(X_A)$ is a submodular function that will have the symmetric 3D polytope of the previous example.

• In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.

- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.

- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
- On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Proof:

- In general, for extremal x, $sat(x) \supseteq supp(x)$.
- Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
- On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Proof:
 - $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence $f(\operatorname{sat}(x)) = x(\operatorname{sat}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$

- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
- On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Proof:
 - $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence $f(\operatorname{sat}(x)) = x(\operatorname{sat}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
 - Therefore, $f(\operatorname{sat}(x)|\operatorname{supp}(x)) = 0$.

- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
- On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Proof:
 - $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence $f(\operatorname{sat}(x)) = x(\operatorname{sat}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
 - Therefore, $f(\operatorname{sat}(x)|\operatorname{supp}(x)) = 0$.
 - But by the above, and monotonicity, we have for $e \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, that $0 = f(\operatorname{sat}(x)|\operatorname{supp}(x)) \ge f(e|\operatorname{supp}(x)) \ge 0$.

- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
- On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Proof:
 - $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence $f(\operatorname{sat}(x)) = x(\operatorname{sat}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
 - Therefore, $f(\operatorname{sat}(x)|\operatorname{supp}(x)) = 0$.
 - But by the above, and monotonicity, we have for
 - $e \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, that
 - $0 = f(\operatorname{sat}(x)|\operatorname{supp}(x)) \ge f(e|\operatorname{supp}(x)) \ge 0.$
 - Hence $f(e|\operatorname{supp}(x)) = 0$,

- In general, for extremal x, $sat(x) \supseteq supp(x)$.
- Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
- On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Proof:
 - $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence $f(\operatorname{sat}(x)) = x(\operatorname{sat}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
 - Therefore, $f(\operatorname{sat}(x)|\operatorname{supp}(x)) = 0$.
 - But by the above, and monotonicity, we have for $e \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, that
 - $0 = f(\operatorname{sat}(x) | \operatorname{supp}(x)) \ge f(e|\operatorname{supp}(x)) \ge 0.$
 - Hence $f(e|\operatorname{supp}(x)) = 0$, and moreover

 $f(e + \operatorname{supp}(x)) = x(e + \operatorname{supp}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$

- In general, for extremal x, $sat(x) \supseteq supp(x)$.
- Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
- On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Proof:
 - $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence $f(\operatorname{sat}(x)) = x(\operatorname{sat}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
 - Therefore, $f(\operatorname{sat}(x)|\operatorname{supp}(x)) = 0$.
 - But by the above, and monotonicity, we have for
 - $e \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, that
 - $0 = f(\operatorname{sat}(x)|\operatorname{supp}(x)) \ge f(e|\operatorname{supp}(x)) \ge 0.$
 - Hence $f(e|\operatorname{supp}(x)) = 0$, and moreover $f(e + \operatorname{supp}(x)) = x(e + \operatorname{supp}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
- Thus, for any extremal x, with $sat(x) \supset supp(x)$, we see that for $e \in sat(x) \setminus supp(x)$, we have supp(x) + e is also tight.

- In general, for extremal x, $sat(x) \supseteq supp(x)$.
- Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
- On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Proof:
 - $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence $f(\operatorname{sat}(x)) = x(\operatorname{sat}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
 - Therefore, $f(\operatorname{sat}(x)|\operatorname{supp}(x)) = 0$.
 - But by the above, and monotonicity, we have for
 - $e \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, that
 - $0 = f(\operatorname{sat}(x)|\operatorname{supp}(x)) \ge f(e|\operatorname{supp}(x)) \ge 0.$
 - Hence $f(e|\operatorname{supp}(x)) = 0$, and moreover $f(e + \operatorname{supp}(x)) = x(e + \operatorname{supp}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
- Thus, for any extremal x, with $sat(x) \supset supp(x)$, we see that for $e \in sat(x) \setminus supp(x)$, we have supp(x) + e is also tight.
- Note also, for any $A \subseteq \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have

 $f(A|\operatorname{supp}(x)) = 0.$

Prof. Jeff Bilmes

• Note that all of these results hold when *f* is monotone non-decreasing submodular (e.g., for a polymatroid function).

- Note that all of these results hold when *f* is monotone non-decreasing submodular (e.g., for a polymatroid function).
- For modular functions, and extremal x, sat(x) = supp(x).

- Note that all of these results hold when f is monotone non-decreasing submodular (e.g., for a polymatroid function).
- For modular functions, and extremal x, sat(x) = supp(x).
- For general $x \in P_f$ (not nec. extremal), sat(x) and supp(x) might have an arbitrary relationship (but we want to strengthen this relationship further, and we will do so below).

- Note that all of these results hold when f is monotone non-decreasing submodular (e.g., for a polymatroid function).
- For modular functions, and extremal x, sat(x) = supp(x).
- For general $x \in P_f$ (not nec. extremal), sat(x) and supp(x) might have an arbitrary relationship (but we want to strengthen this relationship further, and we will do so below).
- For the most part, we are interested in these quantities when x is extremal as we will see.

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM Supp and sat, example under limited curvature

- Strict monotone f polymatroids, where $f(e|E \setminus e) > 0, \forall e$.
- Example: $f(A) = \sqrt{|A|}$, where all m! vertices of B_f are unique.

• In such cases, taking any extremal point $x \in P_f$ based on prefix order $E = (e_1, ...)$, where $\operatorname{supp}(x) \subset E$, we have that $\operatorname{sat}(x) = \operatorname{supp}(x)$ since the largest tight set corresponds to $x(E_i) = f(E_i)$ for some i, and while any $e \in E \setminus E_i$ is such that $x(E_i + e) = x(E_i)$, there is no such e with $f(E_i + e) = f(E_i)$. Prof. Jeff Bilmes EES96b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014 F21/37 (pg.72/144)
Supp	Examples	More on B_f	Exchange Capacity	Min-Norm Point and SFM
Anot	her revealin	g theorem		
Theore	em 15.5.1			
Let f	be a polymatro	oid function and	suppose that E car	be partitioned
into (1	E_1, E_2, \ldots, E_k) such that $f(A)$	$=\sum_{i=1}^{k} f(A \cap E_i)$	for all $A \subseteq E$,
and k	is maximum.	Then the base po	olytope	
$B_f =$	$\{x \in P_f : x(E)\}$	$) = f(E) \}$ (the I	E-tight subset of P_j	f) has dimension
E -	k.			

• Thus, "independence" between disjoint A and B (leading to a rectangular projection of the polymatroid polytope) reduces the dimension of the base polytope, as expected.

Supply Examples More on B_f Exchange Capacity Min-Norm Point and SEM Another revealing theorem Theorem 15.5.1 Let f be a polymatroid function and suppose that E can be partitioned into (E_1, E_2, \ldots, E_k) such that $f(A) = \sum_{i=1}^k f(A \cap E_i)$ for all $A \subseteq E$, and k is maximum. Then the base polytope $B_f = \{x \in P_f : x(E) = f(E)\}$ (the E-tight subset of P_f) has dimension |E| - k.

- Thus, "independence" between disjoint A and B (leading to a rectangular projection of the polymatroid polytope) reduces the dimension of the base polytope, as expected.
- Thus, any point $x \in B_f$ is a convex combination of at most |E| k + 1 vertices of B_f .

Supply Examples More on B_f Exchange Capacity Min-Norm Point and SEM Another revealing theorem Theorem 15.5.1 Let f be a polymatroid function and suppose that E can be partitioned into (E_1, E_2, \ldots, E_k) such that $f(A) = \sum_{i=1}^k f(A \cap E_i)$ for all $A \subseteq E$, and k is maximum. Then the base polytope $B_f = \{x \in P_f : x(E) = f(E)\}$ (the E-tight subset of P_f) has dimension |E| - k.

- Thus, "independence" between disjoint A and B (leading to a rectangular projection of the polymatroid polytope) reduces the dimension of the base polytope, as expected.
- Thus, any point $x \in B_f$ is a convex combination of at most |E| k + 1 vertices of B_f .
- And if f does not have such independence, dimension of B_f is |E| 1 and any point $x \in B_f$ is a convex combination of at most |E| vertices of B_f .

• Example f with independence between $A = \{e_2, e_3\}$ and $B = \{e_1\}$, i.e., $e_1 \perp \{e_2, e_3\}$, with B_f marked in green.

EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014

Supp	Examples	More on B_{f}	Exchange Capacity	Min-Norm Point and SFM
1111	111111111			
Base	polytope ex	istence		

• Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.

Supp	Examples	More on B_{f}	Exchange Capacity	Min-Norm Point and SFM
		1 1 1 1 1 1		
Base	Base polytope existence			

- Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x(e_1)=f(\{e_1\}),\ x(e_2)=f(\{e_1,e_2\})-f(\{e_1\}),$ and so on).

Supp	Examples	More on B_{f}	Exchange Capacity	Min-Norm Point and SFM
1111				
Base	Base polytope existence			

- Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x(e_1)=f(\{e_1\}),\ x(e_2)=f(\{e_1,e_2\})-f(\{e_1\}),$ and so on).
- From past lectures, we now know that:

	Examples	More on B_{f}	Exchange Capacity	Min-Norm Point and SFM
1111		1 1 1 1 1 1		
Base	polytope ex	istence		

- Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x(e_1)=f(\{e_1\}),\ x(e_2)=f(\{e_1,e_2\})-f(\{e_1\}),$ and so on).
- From past lectures, we now know that:

(1)
$$x \in P_f$$

- Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x(e_1)=f(\{e_1\}),\ x(e_2)=f(\{e_1,e_2\})-f(\{e_1\}),$ and so on).
- From past lectures, we now know that:

(1)
$$x \in P_f$$

(2) x is an extreme point in P_f

- Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x(e_1)=f(\{e_1\}),\ x(e_2)=f(\{e_1,e_2\})-f(\{e_1\}),$ and so on).
- From past lectures, we now know that:

- Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x(e_1)=f(\{e_1\}),\ x(e_2)=f(\{e_1,e_2\})-f(\{e_1\}),$ and so on).
- From past lectures, we now know that:

1)
$$x \in P_f$$

- (2) x is an extreme point in P_f
- (3) Since x is generated using an ordering of all of E, we have that x(E) = f(E).
- Thus $x \in B_f$, and B_f is never empty.

- Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x(e_1)=f(\{e_1\}),\ x(e_2)=f(\{e_1,e_2\})-f(\{e_1\})$, and so on).
- From past lectures, we now know that:

1)
$$x \in P_f$$

- (2) x is an extreme point in P_f
- (3) Since x is generated using an ordering of all of E, we have that x(E) = f(E).
- Thus $x \in B_f$, and B_f is never empty.
- Moreover, in this case, x is a vertex of B_f since it is extremal.

	Examples	More on B_{f}	Exchange Capacity	Min-Norm Point and SFM
1111	111111111			
Base	polytope pr	operty		

• Now, for any $A \subseteq E$, we can generate a particular point in B_f

Supp	Examples	More on B_{f}	Exchange Capacity	Min-Norm Point and SFM
1111	111111111			
Base	polytope pr	operty		

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where n = |E|, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with k = |A|.

Supp	Examples	More on B_{f}	Exchange Capacity	Min-Norm Point and SFM
1111	111111111			
Base p	olytope pr	operty		

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where n = |E|, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with k = |A|.
- Note there are k!(n-k)! < n! such orderings.

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM Base polytope property Intervention Intervention Intervention

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where n = |E|, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with k = |A|.
- Note there are k!(n-k)! < n! such orderings.
- Generate x via greedy using this order, $\forall i, x(e_i) = f(e_i | E_{i-1})$.

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where n = |E|, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with k = |A|.
- Note there are k!(n-k)! < n! such orderings.
- Generate x via greedy using this order, $\forall i, x(e_i) = f(e_i | E_{i-1})$.
- Then, we have generated a point x (a vertex, no less) in B_f such that x(A) = f(A).

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM Base polytope property Interview Interview Interview Interview

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where n = |E|, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with k = |A|.
- Note there are k!(n-k)! < n! such orderings.
- Generate x via greedy using this order, $\forall i, x(e_i) = f(e_i | E_{i-1})$.
- Then, we have generated a point x (a vertex, no less) in B_f such that x(A) = f(A).
- Thus, for any A, we have

$$B_f \cap \left\{ x \in \mathbb{R}^E : x(A) = f(A) \right\} \neq \emptyset$$
(15.2)

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where n = |E|, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with k = |A|.
- Note there are k!(n-k)! < n! such orderings.
- Generate x via greedy using this order, $\forall i, x(e_i) = f(e_i | E_{i-1})$.
- Then, we have generated a point x (a vertex, no less) in B_f such that x(A) = f(A).
- Thus, for any A, we have

$$B_f \cap \left\{ x \in \mathbb{R}^E : x(A) = f(A) \right\} \neq \emptyset$$
(15.2)

• In words, B_f intersects all "multi-axis congruent" hyperplanes within R^E of the form $\{x \in \mathbb{R}^E : x(A) = f(A)\}$ for all $A \subseteq E$.

	Examples	More on B f	Exchange Capacity	Min-Norm Point and SFM
		111		
$B_f\;d$	lominates P_f			

• In fact, every $x \in P_f$ is dominated by $x \leq y \in B_f$.

Theorem 15.5.2

If $x \in P_f$ and T is tight for x (meaning x(T) = f(T)), then there exists $y \in B_f$ with $x \leq y$ and y(e) = x(e) for $e \in T$.

Proof.

• In fact, every $x \in P_f$ is dominated by $x \leq y \in B_f$.

Theorem 15.5.2

If $x \in P_f$ and T is tight for x (meaning x(T) = f(T)), then there exists $y \in B_f$ with $x \leq y$ and y(e) = x(e) for $e \in T$.

Proof.

• We construct the y algorithmically: initially set $y \leftarrow x$.

$\frac{Supp}{B_f} \xrightarrow{\text{Examples}} P_f$

• In fact, every $x \in P_f$ is dominated by $x \leq y \in B_f$.

Theorem 15.5.2

If $x \in P_f$ and T is tight for x (meaning x(T) = f(T)), then there exists $y \in B_f$ with $x \leq y$ and y(e) = x(e) for $e \in T$.

Proof.

- We construct the y algorithmically: initially set $y \leftarrow x$.
- $y \in P_f$, T is tight for y so y(T) = f(T).

$\frac{\text{Supp}}{B_f} \xrightarrow{\text{Examples}} P_f$

• In fact, every $x \in P_f$ is dominated by $x \leq y \in B_f$.

Theorem 15.5.2

If $x \in P_f$ and T is tight for x (meaning x(T) = f(T)), then there exists $y \in B_f$ with $x \leq y$ and y(e) = x(e) for $e \in T$.

Proof.

- We construct the y algorithmically: initially set $y \leftarrow x$.
- $y \in P_f$, T is tight for y so y(T) = f(T).
- Recall saturation capacity: for $y \in P_f$, $\hat{c}(y; e) = \min \{f(A) y(A) | \forall A \ni e\} = \max \{\alpha : \alpha \in \mathbb{R}, y + \alpha \mathbf{1}_e \in P_f\}$

• In fact, every $x \in P_f$ is dominated by $x \leq y \in B_f$.

Theorem 15.5.2

If $x \in P_f$ and T is tight for x (meaning x(T) = f(T)), then there exists $y \in B_f$ with $x \leq y$ and y(e) = x(e) for $e \in T$.

Proof.

- We construct the y algorithmically: initially set $y \leftarrow x$.
- $y \in P_f$, T is tight for y so y(T) = f(T).
- Recall saturation capacity: for $y \in P_f$, $\hat{c}(y; e) = \min \{f(A) y(A) | \forall A \ni e\} = \max \{\alpha : \alpha \in \mathbb{R}, y + \alpha \mathbf{1}_e \in P_f\}$
- Consider following algorithm:

1 $T' \leftarrow T$;

2 for
$$e \in E \setminus T$$
 do

$$\mathbf{3} \quad \bigsqcup{} \quad y \leftarrow y + c(y; e) \mathbf{1}_e \text{ ; } T' \leftarrow T' \cup \{e\};$$

S	upp Examples	More on B _f	Exchange Capacity	Min-Norm Point and SFM
	B_f dominates P_f			
	proof of Thm. 15.5.2	cont.		
	• Each step maintains for $e \notin T'$, feasibility required $y(e) \leq f(T'+e) - y(e)$	easibility: cor lires $y(T' + \epsilon_{(T')})$	nsider one step addi $y(T') + y(e) \le y(T') + y(e) \le y(T')$	ng e to T' — for $f(T' + e)$, or

Supp	Examples	More on B_f	Exchange Capacity	Min-Norm Point and SFM
B_{f}	dominates P_f			
· · · F	proof of Thm. 15.5	5.2 cont.		
• E e y	ach step maintain: $\notin T'$, feasibility re $(e) \leq f(T'+e) -$	s feasibility: con equires $y(T' + e$ y(T') = y(e) +	sider one step addi) = $y(T') + y(e) \le f(T'+e) - y(T'-e)$	ng e to T' — for $f(T' + e)$, or $+ e$).

Supp 1111	Examples	More on B_f	Exchange Capacity	Min-Norm Point and SFM
B_f d	ominates P_j	¢		
pro	of of Thm. 15.	5.2 cont.		
• Eac	h step maintain	s feasibility: con	sider one step addi	ng e to T' — for
$e \notin$	T^{\prime} , feasibility r	equires $y(T' + e)$	$) = y(T') + y(e) \le$	f(T'+e), or
y(e)	$) \le f(T'+e) -$	-y(T') = y(e) +	f(T'+e) - y(T' -	+ e).

 $\bullet \ \ \text{We set} \ y(e) \leftarrow y(e) + \hat{c}(y;e) \leq y(e) + f(T'+e) - y(T'+e).$

Supp	Examples	More on B_f	Exchange Capacity	Min-Norm Point and SFM
B_f d	ominates P_f	e -		
prc	of of Thm. 15.	5.2 cont.		

- Each step maintains feasibility: consider one step adding e to T' for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \le f(T' + e)$, or $y(e) \le f(T' + e) y(T') = y(e) + f(T' + e) y(T' + e)$.
- We set $y(e) \leftarrow y(e) + \hat{c}(y;e) \le y(e) + f(T'+e) y(T'+e)$. Hence, after each step, $y \in P_f$ and $\hat{c}(y;e) \ge 0$. (also, consider r.h. version of $\hat{c}(y;e)$).

Supp	Examples	More on B_f	Exchange Capacity	Min-Norm Point and SFM
\overline{B}_f d	ominates P_f	f		
pro	of of Thm 15	5.2 cont		

- Each step maintains feasibility: consider one step adding e to T' for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \leq f(T' + e)$, or $y(e) \leq f(T' + e) y(T') = y(e) + f(T' + e) y(T' + e)$.
- We set $y(e) \leftarrow y(e) + \hat{c}(y;e) \le y(e) + f(T'+e) y(T'+e)$. Hence, after each step, $y \in P_f$ and $\hat{c}(y;e) \ge 0$. (also, consider r.h. version of $\hat{c}(y;e)$).
- Also, only y(e) for $e \notin T$ changed, final y has y(e) = x(e) for $e \in T$.

Supp	Examples	More on B_f	Exchange Capacity	Min-Norm Point and SFM
B_f d	ominates P_f	e		
pro	of of Thm 15	5.2 cont		

- Each step maintains feasibility: consider one step adding e to T' for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \leq f(T' + e)$, or $y(e) \leq f(T' + e) y(T') = y(e) + f(T' + e) y(T' + e)$.
- We set $y(e) \leftarrow y(e) + \hat{c}(y;e) \le y(e) + f(T'+e) y(T'+e)$. Hence, after each step, $y \in P_f$ and $\hat{c}(y;e) \ge 0$. (also, consider r.h. version of $\hat{c}(y;e)$).
- Also, only y(e) for $e \notin T$ changed, final y has y(e) = x(e) for $e \in T$.
- Let $S_e \ni e$ be a set that achieves $c(y; e) = f(S_e) y(S_e)$.

Supp	Examples	More on B_f	Exchange Capacity	Min-Norm Point and SFM
$B_f \; d$	ominates P_f			
	of of These 1E			

- Each step maintains feasibility: consider one step adding e to T' for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \leq f(T' + e)$, or $y(e) \leq f(T' + e) y(T') = y(e) + f(T' + e) y(T' + e)$.
- We set $y(e) \leftarrow y(e) + \hat{c}(y;e) \le y(e) + f(T'+e) y(T'+e)$. Hence, after each step, $y \in P_f$ and $\hat{c}(y;e) \ge 0$. (also, consider r.h. version of $\hat{c}(y;e)$).
- Also, only y(e) for $e \notin T$ changed, final y has y(e) = x(e) for $e \in T$.
- Let $S_e \ni e$ be a set that achieves $c(y; e) = f(S_e) y(S_e)$.
- At iteration e, let y'(e) (resp. y(e)) be new (resp. old) entry for e, then $y'(S_e) = y(S_e \setminus \{e\}) + y'(e)$ (15.3) $= y(S_e \setminus \{e\}) + [y(e) + f(S_e) - y(S_e)] = f(S_e)$

Supp	Examples	More on B_f	Exchange Capacity	Min-Norm Point and SFM
\overline{B}_{f} d	ominates P_f			
		- 0		

- Each step maintains feasibility: consider one step adding e to T' for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \leq f(T' + e)$, or $y(e) \leq f(T' + e) y(T') = y(e) + f(T' + e) y(T' + e)$.
- We set $y(e) \leftarrow y(e) + \hat{c}(y;e) \le y(e) + f(T'+e) y(T'+e)$. Hence, after each step, $y \in P_f$ and $\hat{c}(y;e) \ge 0$. (also, consider r.h. version of $\hat{c}(y;e)$).
- Also, only y(e) for $e \notin T$ changed, final y has y(e) = x(e) for $e \in T$.
- Let $S_e \ni e$ be a set that achieves $c(y; e) = f(S_e) y(S_e)$.

I NM. 15.5.2 CONL

• At iteration e, let y'(e) (resp. y(e)) be new (resp. old) entry for e, then $y'(S_e) = y(S_e \setminus \{e\}) + y'(e)$ (15.3) $= y(S_e \setminus \{e\}) + [y(e) + f(S_e) - y(S_e)] = f(S_e)$

So, S_e is tight for $y^\prime.$ It remains tight in further iterations since y doesn't decrease and it stays within $P_f.$

Supp	Examples	More on B_f	Exchange Capacity	Min-Norm Point and SFM
$B_f \; d$	ominates P_f			
	of of These 1E			

- Each step maintains feasibility: consider one step adding e to T' for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \le f(T' + e)$, or $y(e) \le f(T' + e) y(T') = y(e) + f(T' + e) y(T' + e)$.
- We set $y(e) \leftarrow y(e) + \hat{c}(y;e) \le y(e) + f(T'+e) y(T'+e)$. Hence, after each step, $y \in P_f$ and $\hat{c}(y;e) \ge 0$. (also, consider r.h. version of $\hat{c}(y;e)$).
- Also, only y(e) for $e \notin T$ changed, final y has y(e) = x(e) for $e \in T$.
- Let $S_e \ni e$ be a set that achieves $c(y; e) = f(S_e) y(S_e)$.

• At iteration e, let y'(e) (resp. y(e)) be new (resp. old) entry for e, then $y'(S_e) = y(S_e \setminus \{e\}) + y'(e)$ (15.3) $= y(S_e \setminus \{e\}) + [y(e) + f(S_e) - y(S_e)] = f(S_e)$

So, S_e is tight for $y^\prime.$ It remains tight in further iterations since y doesn't decrease and it stays within $P_f.$

• Also, $E = T \cup \bigcup_{e \notin T} S_e$ is also tight, meaning the final y has $y \in B_f$. Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014 F26/37 (pg.106/144)

• Is this a polymatroidal polytope?

- Is this a polymatroidal polytope?
- No, " B_f " doesn't intersect sets of the form $\{x: x(e) = f(e)\}$ for $e \in E$.

- Is this a polymatroidal polytope?
- No, " B_f doesn't intersect sets of the form $\{x: x(e) = f(e)\}$ for $e \in E.$

0.5

• This was generated using function g(0) = 0, g(1) = 3, g(2) = 4, and g(3) = 5.5. Then f(S) = g(|S|) is not submodular since (e.g.) $f(\{e_1, e_3\}) + f(\{e_1, e_2\}) = 4 + 4 = 8$ but

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014

F28/37 (pg.111/144)

• Is this a polymatroidal polytope?

• Is this a polymatroidal polytope?

• No, " B_f " (which would be a single point in this case) doesn't intersect sets of the form $\{x : x(e) = f(e)\}$ for $e \in E$.

• Is this a polymatroidal polytope?

- No, " B_f " (which would be a single point in this case) doesn't intersect sets of the form $\{x : x(e) = f(e)\}$ for $e \in E$.
- This was generated using function g(0) = 0, g(1) = 1, g(2) = 1.8, and g(3) = 3. Then f(S) = g(|S|) is not submodular since (e.g.) $f(\{e_1, e_3\}) + f(\{e_1, e_2\}) = 1.8 + 1.8 = 3.6$ but $f(\{e_1, e_2, e_3\}) + f(\{e_1\}) = 3 + 1 = 4$.

Supp	Examples	More on B_f	Exchange Capacity	Min-Norm Point and SFM
Review				

The next slide is review from lecture 13.

Supp	Examples		Exchange Capacity	Min-Norm Point and SFM
1111			101111	
Satura	ation Capac	ity		

• The max is achieved when

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min\left\{f(A) - x(A), \forall A \supseteq \{e\}\right\}$$
(15.22)

• $\hat{c}(x; e)$ is known as the saturation capacity associated with $x \in P_f$ and e.

Supp	Examples		Exchange Capacity	Min-Norm Point and SFM
Matroio	ds and Excl	nange		

• Recall, matroids have a number of "exchange" properties.

Supp	Examples		Exchange Capacity	Min-Norm Point and SFM
1111	111111111		11011	
Matr	oids and Exe	change		

- Recall, matroids have a number of "exchange" properties.
- Also, recall that given a matroid $\mathcal{M} = (E, \mathcal{I})$, if $I \in \mathcal{I}$ is independent, and $e \in \operatorname{span}(I)$, and $e' \in C(I, e)$ where C(I, e) is the fundamental circuit created when adding e to I, then we have:

$$I + e - e' \in \mathcal{I} \tag{15.4}$$

Supp	Examples		Exchange Capacity	Min-Norm Point and SFM
1111				
Matr	oids and Exe	change		

- Recall, matroids have a number of "exchange" properties.
- Also, recall that given a matroid $\mathcal{M} = (E, \mathcal{I})$, if $I \in \mathcal{I}$ is independent, and $e \in \operatorname{span}(I)$, and $e' \in C(I, e)$ where C(I, e) is the fundamental circuit created when adding e to I, then we have:

$$I + e - e' \in \mathcal{I} \tag{15.4}$$

• Note, this holds for any $e' \in C(I, e)$.

- Recall, matroids have a number of "exchange" properties.
- Also, recall that given a matroid $\mathcal{M} = (E, \mathcal{I})$, if $I \in \mathcal{I}$ is independent, and $e \in \operatorname{span}(I)$, and $e' \in C(I, e)$ where C(I, e) is the fundamental circuit created when adding e to I, then we have:

$$I + e - e' \in \mathcal{I} \tag{15.4}$$

- Note, this holds for any $e' \in C(I, e)$.
- Since dep(x, e) generalizes the fundamental circuit of a matroid to polymatroids, we saw (last lecture) that this a property exists for polymatroids as well.

- Recall, matroids have a number of "exchange" properties.
- Also, recall that given a matroid $\mathcal{M} = (E, \mathcal{I})$, if $I \in \mathcal{I}$ is independent, and $e \in \operatorname{span}(I)$, and $e' \in C(I, e)$ where C(I, e) is the fundamental circuit created when adding e to I, then we have:

$$I + e - e' \in \mathcal{I} \tag{15.4}$$

- Note, this holds for any $e' \in C(I, e)$.
- Since dep(x, e) generalizes the fundamental circuit of a matroid to polymatroids, we saw (last lecture) that this a property exists for polymatroids as well.
- As there is saturation capacity for elements that are not saturated, is there is a corresponding concept for degree of polymatroidal exchange?

- Recall, matroids have a number of "exchange" properties.
- Also, recall that given a matroid $\mathcal{M} = (E, \mathcal{I})$, if $I \in \mathcal{I}$ is independent, and $e \in \operatorname{span}(I)$, and $e' \in C(I, e)$ where C(I, e) is the fundamental circuit created when adding e to I, then we have:

$$I + e - e' \in \mathcal{I} \tag{15.4}$$

- Note, this holds for any $e' \in C(I, e)$.
- Since dep(x, e) generalizes the fundamental circuit of a matroid to polymatroids, we saw (last lecture) that this a property exists for polymatroids as well.
- As there is saturation capacity for elements that are not saturated, is there is a corresponding concept for degree of polymatroidal exchange?
- Yes, and it is called the "exchange capacity"

Supp	Examples		Exchange Capacity	Min-Norm Point and SFM
Exch	ange Capaci	ty		

• Consider $x \in P_f$, $e \in \operatorname{sat}(x)$ and $e' \in \operatorname{dep}(x, e) \setminus \{e\}$

Supp	Examples	More on B_f	Exchange Capacity	Min-Norm Point and SFM
Exch	ange Capaci	ty		

- Consider $x \in P_f$, $e \in \operatorname{sat}(x)$ and $e' \in \operatorname{dep}(x, e) \setminus \{e\}$
- Thus, for any $\alpha > 0$, we have $x + \alpha \mathbf{1}_a \notin P_f$ for either a = e or a = e', since $dep(x, e) \subseteq sat(x)$.

Supp	Examples	More on B_f	Exchange Capacity	Min-Norm Point and SFM
Exch	ange Capaci	ty		

- Consider $x \in P_f$, $e \in \operatorname{sat}(x)$ and $e' \in \operatorname{dep}(x, e) \setminus \{e\}$
- Thus, for any $\alpha > 0$, we have $x + \alpha \mathbf{1}_a \notin P_f$ for either a = e or a = e', since $dep(x, e) \subseteq sat(x)$.
- Examples:

Supp	Examples	More on B_f	Exchange Capacity	Min-Norm Point and SFM
Exch	ange Capaci	ty		

- Consider $x \in P_f$, $e \in \operatorname{sat}(x)$ and $e' \in \operatorname{dep}(x, e) \setminus \{e\}$
- Thus, for any $\alpha > 0$, we have $x + \alpha \mathbf{1}_a \notin P_f$ for either a = e or a = e', since $dep(x, e) \subseteq sat(x)$.
- Examples:

• How much can we move in positive *e* direction if we simultaneously move in negative *e'* direction?

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014

Supp	Examples		Exchange Capacity	Min-Norm Point and SFM
			1111	
Exch	ange Capaci	ty		

• $x \in P_f$, $e \in \operatorname{sat}(x)$ and $e' \in \operatorname{dep}(x, e) \setminus \{e\}$, consider $\max \{ \alpha : \alpha \in \mathbb{R}, x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f \}$ (15.5)

Supp	Examples		Exchange Capacity	Min-Norm Point and SFM
Exch	ange Capaci	ty		

•
$$x \in P_f$$
, $e \in \operatorname{sat}(x)$ and $e' \in \operatorname{dep}(x, e) \setminus \{e\}$, consider

$$\max \{ \alpha : \alpha \in \mathbb{R}, x + \alpha (\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f \}$$
(15.5)

• Identical to:

 $\max\left\{\alpha: \alpha \in \mathbb{R}, (x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}))(A) \le f(A), \forall A\right\}$ (15.6)

	Examples		Exchange Capacity	Min-Norm Point and SFM
1111	111111111			
Exch	ange Capaci	ty		

- $x \in P_f$, $e \in \operatorname{sat}(x)$ and $e' \in \operatorname{dep}(x, e) \setminus \{e\}$, consider $\max \{ \alpha : \alpha \in \mathbb{R}, x + \alpha (\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f \}$ (15.5)
- Identical to:

$$\max\left\{\alpha: \alpha \in \mathbb{R}, (x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}))(A) \le f(A), \forall A\right\}$$
(15.6)

• If both $e, e' \in A$ (or neither), then $\alpha(\mathbf{1}_e - \mathbf{1}_{e'})(A) = 0$ for any α , so to make this meaningful, we take $A : e' \notin A \ni e$.

Supp	Examples		Exchange Capacity	Min-Norm Point and SFM
Exch	ange Capaci	ty		

- $x \in P_f$, $e \in \operatorname{sat}(x)$ and $e' \in \operatorname{dep}(x, e) \setminus \{e\}$, consider $\max \{ \alpha : \alpha \in \mathbb{R}, x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f \}$ (15.5)
- Identical to:

 $\max\left\{\alpha: \alpha \in \mathbb{R}, (x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}))(A) \le f(A), \forall A\right\}$ (15.6)

- If both $e, e' \in A$ (or neither), then $\alpha(\mathbf{1}_e \mathbf{1}_{e'})(A) = 0$ for any α , so to make this meaningful, we take $A : e' \notin A \ni e$.
- thus identical to

 $\max\left\{\alpha: \alpha \in \mathbb{R}, (x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}))(A) \le f(A), \forall A \ni e, e' \notin A\right\}$ (15.7)

	Examples		Exchange Capacity	Min-Norm Point and SFM
1111				
Exch	ange Capacit	ty		

- $x \in P_f$, $e \in \operatorname{sat}(x)$ and $e' \in \operatorname{dep}(x, e) \setminus \{e\}$, consider $\max \{ \alpha : \alpha \in \mathbb{R}, x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f \}$ (15.5)
- Identical to:

 $\max\left\{\alpha: \alpha \in \mathbb{R}, (x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}))(A) \le f(A), \forall A\right\}$ (15.6)

- If both $e, e' \in A$ (or neither), then $\alpha(\mathbf{1}_e \mathbf{1}_{e'})(A) = 0$ for any α , so to make this meaningful, we take $A : e' \notin A \ni e$.
- thus identical to

$$\max\left\{\alpha: \alpha \in \mathbb{R}, (x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}))(A) \le f(A), \forall A \ni e, e' \notin A\right\}$$
(15.7)

• Which is identical to:

 $\max\left\{\alpha: \alpha \in \mathbb{R}, \alpha(\mathbf{1}_e - \mathbf{1}_{e'})\right)(A) \le f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\}$ (15.8)

	Examples		Exchange Capacity	Min-Norm Point and SFM
1111	111111111		11111	
Excha	ange Capaci [.]	ty		

• In such case, we get $\mathbf{1}_{e'}(A) = 0$, thus above identical to

 $\max\left\{\alpha:\alpha\in\mathbb{R},\alpha\mathbf{1}_{e}(A)\leq f(A)-x(A),\forall A\supseteq\{e\},e'\notin A\right\} (15.9)$

- In such case, we get $\mathbf{1}_{e'}(A) = 0$, thus above identical to $\max \left\{ \alpha : \alpha \in \mathbb{R}, \alpha \mathbf{1}_e(A) \leq f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A \right\}$
- Restating, we've got

 $\max\left\{\alpha: \alpha \in \mathbb{R}, \alpha \le f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\}$ (15.10)

- In such case, we get $\mathbf{1}_{e'}(A) = 0$, thus above identical to $\max \left\{ \alpha : \alpha \in \mathbb{R}, \alpha \mathbf{1}_{e}(A) \leq f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A \right\}$
- Restating, we've got

$$\max\left\{\alpha: \alpha \in \mathbb{R}, \alpha \le f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\}$$
(15.10)

• This max is achieved when

 $\alpha = \hat{c}(x; e, e') \stackrel{\text{def}}{=} \min\left\{f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\}$ (15.11)

- In such case, we get 1_{e'}(A) = 0, thus above identical to max {α : α ∈ ℝ, α1_e(A) ≤ f(A) − x(A), ∀A ⊇ {e}, e' ∉ A}
- Restating, we've got

 $\max\left\{\alpha: \alpha \in \mathbb{R}, \alpha \le f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\}$ (15.10)

This max is achieved when

 $\alpha = \hat{c}(x; e, e') \stackrel{\text{def}}{=} \min\left\{f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\}$ (15.11)

• $\hat{c}(x; e, e')$ is known as the exchange capacity associated with $x \in P_f$ and e.

• In such case, we get $\mathbf{1}_{e'}(A) = 0$, thus above identical to

 $\max\left\{\alpha: \alpha \in \mathbb{R}, \alpha \mathbf{1}_{e}(A) \leq f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\}$ (15.9)

Restating, we've got

 $\max\left\{\alpha: \alpha \in \mathbb{R}, \alpha \le f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\}$ (15.10)

This max is achieved when

$$\alpha = \hat{c}(x; e, e') \stackrel{\text{def}}{=} \min\left\{f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\}$$
(15.11)

- $\hat{c}(x; e, e')$ is known as the exchange capacity associated with $x \in P_f$ and e.
- For any α with $0 \le \alpha \le \hat{c}(x; e, e')$, we have that $x + \alpha(\mathbf{1}_e \mathbf{1}_{e'}) \in P_f$.

- In such case, we get $\mathbf{1}_{e'}(A) = 0$, thus above identical to $\max \left\{ \alpha : \alpha \in \mathbb{R}, \alpha \mathbf{1}_e(A) \leq f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A \right\}$
- Restating, we've got

 $\max\left\{\alpha: \alpha \in \mathbb{R}, \alpha \le f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\}$ (15.10)

This max is achieved when

$$\alpha = \hat{c}(x; e, e') \stackrel{\text{def}}{=} \min\left\{f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\}$$
(15.11)

- $\hat{c}(x; e, e')$ is known as the exchange capacity associated with $x \in P_f$ and e.
- For any α with $0 \le \alpha \le \hat{c}(x; e, e')$, we have that $x + \alpha(\mathbf{1}_e \mathbf{1}_{e'}) \in P_f$.
- As we will see, if e and e' are successive in an order that generates extreme point x, then we get a "neighbor" extreme point via x' = x + ĉ(x; e, e')(1_e 1_{e'}).

- In such case, we get $\mathbf{1}_{e'}(A) = 0$, thus above identical to $\max \left\{ \alpha : \alpha \in \mathbb{R}, \alpha \mathbf{1}_e(A) \leq f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A \right\}$
- Restating, we've got

 $\max\left\{\alpha: \alpha \in \mathbb{R}, \alpha \le f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\}$ (15.10)

• This max is achieved when

$$\alpha = \hat{c}(x; e, e') \stackrel{\text{def}}{=} \min\left\{f(A) - x(A), \forall A \supseteq \{e\}, e' \notin A\right\}$$
(15.11)

- $\hat{c}(x; e, e')$ is known as the exchange capacity associated with $x \in P_f$ and e.
- For any α with $0 \le \alpha \le \hat{c}(x; e, e')$, we have that $x + \alpha(\mathbf{1}_e \mathbf{1}_{e'}) \in P_f$.
- As we will see, if e and e' are successive in an order that generates extreme point x, then we get a "neighbor" extreme point via x' = x + ĉ(x; e, e')(1_e 1_{e'}).
- Note that Eqn. (15.11) is a form of SFM.

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM A polymatroid function's polyhedron is a polymatroid.

Theorem 15.7.1

Let f be a submodular function defined on subsets of E. For any $x \in \mathbb{R}^E$, we have:

$$rank(x) = \max\left(y(E) : y \le x, y \in \mathbf{P}_f\right) = \min\left(x(A) + f(E \setminus A) : A \subseteq E\right)$$
(15.5)

Essentially the same theorem as Theorem ??. Taking x = 0 we get:

Corollary 15.7.2

Let f be a submodular function defined on subsets of E. $x \in \mathbb{R}^{E}$, we have:

$$rank(0) = \max(y(E) : y \le 0, y \in P_f) = \min(f(A) : A \subseteq E)$$
 (15.6)

Supp	Examples		Exchange Capacity	Min-Norm Point and SFM
1111				
Min-	Norm Point:	Definition		

• Restating what we saw before, we have:

 $\max\{y(E)|y \in P_f, y \le 0\} = \min\{f(X)|X \subseteq V\}$ (15.12)

Supp Examples More on B_f Exchange Capacity Min-Norm Point and SFM Min-Norm Point: Definition Image: Capacity Image: Capacity Image: Capacity

• Restating what we saw before, we have:

 $\max\{y(E)|y \in P_f, y \le 0\} = \min\{f(X)|X \subseteq V\}$ (15.12)

• Consider the optimization:

minimize	$\ x\ _{2}^{2}$	(15.13a)
subject to	$x \in B_f$	(15.13b)

where B_f is the base polytope of submodular f, and $\|x\|_2^2=\sum_{e\in E}x(e)^2$ is the squared 2-norm. Let x^* be the optimal solution.

• Restating what we saw before, we have:

 $\max\{y(E)|y \in P_f, y \le 0\} = \min\{f(X)|X \subseteq V\}$ (15.12)

• Consider the optimization:

minimize
$$\|x\|_2^2$$
(15.13a)subject to $x \in B_f$ (15.13b)

where B_f is the base polytope of submodular f, and $\|x\|_2^2 = \sum_{e \in E} x(e)^2$ is the squared 2-norm. Let x^* be the optimal solution.

• Note, x^* is the unique optimal solution since we have a strictly convex objective over a set of convex constraints.

• Restating what we saw before, we have:

 $\max\{y(E)|y \in P_f, y \le 0\} = \min\{f(X)|X \subseteq V\}$ (15.12)

• Consider the optimization:

minimize
$$||x||_2^2$$
(15.13a)subject to $x \in B_f$ (15.13b)

where B_f is the base polytope of submodular f, and $\|x\|_2^2 = \sum_{e \in E} x(e)^2$ is the squared 2-norm. Let x^* be the optimal solution.

- Note, x^* is the unique optimal solution since we have a strictly convex objective over a set of convex constraints.
- x^* is called the minimum norm point of the base polytope.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014

F37/37 (pg.144/144)