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Logistics Review

Cumulative Outstanding Reading

Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.

Read Tom McCormick’s overview paper on SFM http://people.

commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

Read chapters 1 - 4 from Fujishige book.

Matroid properties http:

//www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf

Read lecture 14 slides on lattice theory at our web page (http://j.
ee.washington.edu/~bilmes/classes/ee596b_spring_2014/)
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Logistics Review

Announcements, Assignments, and Reminders

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics Review

Class Road Map - IT-I
L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

L9: From Matroid Polytopes to
Polymatroids.

L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, polymatroids
and entropic Venn diagrams, exchange
capacity,

L16: proof that minimum norm point
yields min of submodular function, and
the lattice of minimizers of a submodular
function, Lovasz extension

L17: Lovasz extension, Choquet
Integration, more properties/examples of
Lovasz extension, convex minimization
and SFM.

L18: Lovasz extension examples and
structured convex norms, The Min-Norm
Point Algorithm detailed.

L19: symmetric submodular function
minimization, maximizing monotone
submodular function w. card constraints.

L20: maximizing monotone submodular
function w. other constraints,
non-monotone maximization.

Finals Week: June 9th-13th, 2014.
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Logistics Review

Summary of Concepts

Most violated inequality max {x(A)− f(A) : A ⊆ E}
Matroid by circuits, and the fundamental circuit C(I, e) ⊆ I + e.

Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity

e-containing tight sets

dep function & fundamental circuit of a matroid
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Logistics Review

Summary important definitions so far: tight, dep, & sat

x-tight sets: For x ∈ Pf , D(x) = {A ⊆ E : x(A) = f(A)}.
Polymatroid closure/maximal x-tight set: For x ∈ Pf ,
sat(x) = ∪{A : A ∈ D(x)} = {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf}.
Saturation capacity: for x ∈ Pf , 0 ≤ ĉ(x; e) =
min {f(A)− x(A)|∀A 3 e} = max {α : α ∈ R, x+ α1e ∈ Pf}
Recall: sat(x) = {e : ĉ(x; e) = 0} and
E \ sat(x) = {e : ĉ(x; e) > 0}.
e-containing x-tight sets: For x ∈ Pf ,
D(x, e) = {A : e ∈ A ⊆ E, x(A) = f(A)} ⊆ D(x).
Minimal e-containing x-tight set/polymatroidal fundamental
circuit/: For x ∈ Pf ,

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014 F6/37 (pg.6/144)



Logistics Review

dep and sat in a lattice

Given some
x ∈ Pf ,

The picture on the
right summarizes
the relationships
between the
lattices and
sublattices.

Note,⋂
e dep(x, e) =

dep(x).

sat(x)

dep(x , e)

all of 2 E
 (or at least all of the lattice)

lattice of x-tight sets

lattice of x-tight

 sets containing e

dry(x )

sat(x,e)

=dry(x , e)

=dep(x )
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM

Support of vector

The support of a vector x ∈ Pf is defined as the elements with
non-zero entries.

That is

supp(x) = {e ∈ E : x(e) 6= 0} (15.1)

Example
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM

Tightness of supp at polymatroidal extreme point

Now, sat(x) is tight, and corresponds to the largest member of the
distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.

supp(x) is not necessarily tight for an arbitrary x.
When x is an extremal point, however, supp(x) is tight, meaning
x(supp(x)) = f(supp(x)). Why?

1 Extremal points are defined as a system of equalities of the form
x(Ei) = f(Ei) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in
class. Hence, any ei ∈ supp(x) has x(ei) = f(ei|Ei−1) > 0.

2 Now, for 1 ≤ i ≤ k, if ei /∈ supp(x), x(Ek) = x(Ek − ei)
3 Also, for 1 ≤ i ≤ k, if ei /∈ supp(x), then x(ei) =

0 = f(ei|Ei−1) ≥ f(ei|Ek − ei) = f(Ek|Ek − ei) ≥ 0 since
monotone submodular, hence we have f(Ek) = f(Ek − ei).

4 Thus, x(Ek − ei) = f(Ek − ei) and Ek − ei is also tight.
5 We can keep removing elements /∈ supp(x) and we’re left with
f(Ek ∩ supp(x)) = x(Ek ∩ supp(x)) for any k.

6 Hence supp(x) is tight when x is extremal.

Since supp(x) is tight, we immediately have that sat(x) ⊇ supp(x).
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM

supp vs. sat equality

For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.

Suppose x ∈ Pf has x(X) > 0 but x(V \X) = 0 and so x(Y ) = 0.

Suppose supp(x) = X, and say x is tight at X (x(X) = f(X)).

sat(x) = ∪{A : x(A) = f(A)} and since
x(X ∪ Y ) = x(X) = f(X) = f(X ∪ Y ), here, sat(x) ⊇ X ∪ Y .
Hence, sat(x) ⊃ supp(x).

In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal at extreme points
(e.g., think of “hyperrectangular” polymatroids).
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For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.
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In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal at extreme points
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Summary of supp, sat, and dep

For x ∈ Pf , supp(x) = {e : x(e) 6= 0} ⊆ sat(x)

For x ∈ Pf , sat(x) (span, closure) is the maximal saturated (x-tight)
set w.r.t. x. I.e., sat(x) = {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf}. That is,

cl(x)
def
= sat(x) ,

⋃
{A : A ∈ D(x)} (15.29)

=
⋃
{A : A ⊆ E, x(A) = f(A)} (15.30)

= {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf} (15.31)

For e ∈ sat(x), we have dep(x, e) ⊆ sat(x) (fundamental circuit) is the
minimal (common) saturated (x-tight) set w.r.t. x containing e. I.e.,

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
(15.32)
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Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM

supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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Point x is extreme and x({e2, e3}) = f(e2, e3) (why?).

But x({e1, e2, e3}) = x({e2, e3}) < f(e1, e2, e3) = f(e1) + f(e2, e3).
Thus, supp(x) = sat(x) = {e2, e3}.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014 F12/37 (pg.31/144)



Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM

supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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Point x is extreme and x({e2, e3}) = f(e2, e3) (why?).

But x({e1, e2, e3}) = x({e2, e3}) < f(e1, e2, e3) = f(e1) + f(e2, e3).
Thus, supp(x) = sat(x) = {e2, e3}.
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supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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Note that considering a submodular function on clustered ground
set E = {e1, e23} where f ′(e1) = f(e1), f

′(e23) = f(e2, e3) leads to
a rectangle (no dependence between {e1} and {e2, e3}).
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supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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We also have sat(x) = {e3, e2}. So dep(x, e1) is not defined,
dep(x, e2) = {e3}, and dep(x, e3) = ∅.
sat(y) = {e1, e2, e3}. So dep(y, e1) = ∅, dep(y, e2) = e3, and
dep(y, e3) = ∅.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014 F12/37 (pg.34/144)



Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM

supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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We also have sat(x) = {e3, e2}. So dep(x, e1) is not defined,
dep(x, e2) = {e3}, and dep(x, e3) = ∅.
sat(y) = {e1, e2, e3}. So dep(y, e1) = ∅, dep(y, e2) = e3, and
dep(y, e3) = ∅.
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supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.

a b c d

f(e1)

f(e2)

f(e
1 ,e

2 ) f(e
1 ,e

2 )

f(e
1 ,e

2 )

f(e
1 ,e

2 )

f(e1)

f(e2)

f(e1)

f(e2)

f(e1)

f(e2)

Case A: perfect independence/irredunancy.

Case B: perfect dependence/redundancy. Since slope is -45°, we
must have f(e1) = f(e2) = f(e1, e2). Entropy case: deterministic
bijection between random variables e1 and e2.

Case C: f(e2) < f(e1) = f(e1, e2). Entropy case: random variable
e2 a deterministic function of e1 which has higher entropy.

Case D: f(e1) < f(e2) = f(e1, e2). Entropy case: random variable
e1 a deterministic function of e2 which has higher entropy.
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supp, sat, and polymatroid dependence in 2D
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supp, sat, and polymatroid dependence in 2D
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e2 a deterministic function of e1 which has higher entropy.
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supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.
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Case A: perfect independence/irredunancy.

Case B: perfect dependence/redundancy. Since slope is -45°, we
must have f(e1) = f(e2) = f(e1, e2). Entropy case: deterministic
bijection between random variables e1 and e2.

Case C: f(e2) < f(e1) = f(e1, e2). Entropy case: random variable
e2 a deterministic function of e1 which has higher entropy.

Case D: f(e1) < f(e2) = f(e1, e2). Entropy case: random variable
e1 a deterministic function of e2 which has higher entropy.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014 F13/37 (pg.39/144)



Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM

supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.
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Case A: perfect independence/irredunancy.

Case B: perfect dependence/redundancy. Since slope is -45°, we
must have f(e1) = f(e2) = f(e1, e2). Entropy case: deterministic
bijection between random variables e1 and e2.

Case C: f(e2) < f(e1) = f(e1, e2). Entropy case: random variable
e2 a deterministic function of e1 which has higher entropy.

Case D: f(e1) < f(e2) = f(e1, e2). Entropy case: random variable
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supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.

a

f(e1)
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2 )
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In each case, we see points x where supp(x) ⊆ sat(x).

Example: Case B or C, let x = (f(e1), 0) so supp(x) = {e1} but
since x({e1, e2}) = x({e1}) = f(e1) = f(e1, e2) we have
sat(x) = {e1, e2}.
Similar for case D with x = (0, f(e2)).
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supp, sat, and dependence in 2D

General case, f(e1, e2) < f(e1) + f(e2), f(e1) < f(e1, e2), and
f(e2) < f(e1, e2).

f(e1)

f(e2) f(e
1 ,e

2 )

Entropy case: We have a random variable Z and two separate
deterministic functions e1 = h1(Z) and e2 = h2(Z) such that the
entropy H(e1, e2) = H(Z), but each deterministic function gives a
different “view” of Z, each contains more than half the information,
and the two are redundant w.r.t. each other
(H(e1) +H(e2) > H(Z)).
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2D polymatroids and Information Venn Diagrams
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2D polymatroids and Information Venn Diagrams

Consider symmeterized
combinatorial mutual
information function:

If (e1, e2)

= f(e1) + f(e2)− f(e1, e2)

Consider area of green triangle:

1

2

(
f(e2)− f(e2|e1)

)(
f(e1)− f(e1|e2)

)
=

1

2
(f(e1) + f(e2)− f(e1, e2))2

=
1

2
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supp, sat, and perfect dependence in 3D

Ex: polymatroid with perfect independence between e2 and e3, so
f(e2, e3) = f(e2) + f(e3), but perfect dependence between
A = {e2, e3} and B = {e1}, so f(e1, e2, e3) = f(e2, e3)
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Ex: polymatroid with perfect independence between e2 and e3, so
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Entropy case: xor V-structure Bayesian network e1 = h(e2, e3)
where h is the xor function (e2 → e1 ← e3), and e2, e3 are both
independent binary with unity entropy.

Q: Why does the polytope have a symmetry? Notice independence
(square) for any pair.
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For any permutation σ of {1, 2, 3}, considering {eσ1 , eσ2} vs. {eσ3}:

eσ3 is a deterministic
function of {eσ1 , eσ2}

f (eσ1)

f (eσ2 , eσ3)
f (e

σ
1 , e

σ
2 , e

σ
3 )
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Ex: polymatroid with perfect independence between e2 and e3, so
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Note also, that for some of the extreme points, multiple orders
generate them.

Consider extreme point x = (x1, x2, x3) = (1, 1, 0). Then we get
this either with orders (e1, e2, e3), or (e2, e1, e3). This is true since
f(eσe |{eσ1 , eσ2}) = 0 for all permutations σ of {1, 2, 3}.
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generate them.
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perfect dependence in 3D, entropy, and Bayesian networks

The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.

Consider three binary random variables X1, X2, X3 ∈ {0, 1} that
factor w.r.t., the V-structure X1 → X3 ← X2, where
X3 = X1 ⊕X2, where ⊕ is the X-OR operator, and where X1⊥⊥X2.

Consequently, Xi⊥⊥Xj for any i 6= j.

Moreover, for any permutation σ of {1, 2, 3}, we have the
relationship Xσ1 = Xσ2 ⊕Xσ3 .

The entropy function f(A) = H(XA) is a submodular function that
will have the symmetric 3D polytope of the previous example.
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supp, sat, extremal x, perfect dependence

In general, for extremal x, sat(x) ⊇ supp(x).

Now, for any e ∈ E \ supp(x), we clearly have
x(supp(x) + e) = x(supp(x)) since x(e) = 0.
On the other hand, for ei ∈ sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ei) = f(supp(x)). Proof:

sat(x) is tight, as is supp(x), and hence
f(sat(x)) = x(sat(x)) = x(supp(x)) = f(supp(x)).
Therefore, f(sat(x)| supp(x)) = 0.
But by the above, and monotonicity, we have for
e ∈ sat(x) \ supp(x), that
0 = f(sat(x)| supp(x)) ≥ f(e| supp(x)) ≥ 0.
Hence f(e| supp(x)) = 0,

and moreover
f(e+ supp(x)) = x(e+ supp(x)) = x(supp(x)) = f(supp(x)).

Thus, for any extremal x, with sat(x) ⊃ supp(x), we see that for
e ∈ sat(x) \ supp(x), we have supp(x) + e is also tight.
Note also, for any A ⊆ sat(x) \ supp(x), we have
f(A| supp(x)) = 0.
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x(supp(x) + e) = x(supp(x)) since x(e) = 0.
On the other hand, for ei ∈ sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ei) = f(supp(x)). Proof:

sat(x) is tight, as is supp(x), and hence
f(sat(x)) = x(sat(x)) = x(supp(x)) = f(supp(x)).
Therefore, f(sat(x)| supp(x)) = 0.
But by the above, and monotonicity, we have for
e ∈ sat(x) \ supp(x), that
0 = f(sat(x)| supp(x)) ≥ f(e| supp(x)) ≥ 0.
Hence f(e| supp(x)) = 0, and moreover
f(e+ supp(x)) = x(e+ supp(x)) = x(supp(x)) = f(supp(x)).

Thus, for any extremal x, with sat(x) ⊃ supp(x), we see that for
e ∈ sat(x) \ supp(x), we have supp(x) + e is also tight.
Note also, for any A ⊆ sat(x) \ supp(x), we have
f(A| supp(x)) = 0.
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supp, sat, perfect dependence

Note that all of these results hold when f is monotone
non-decreasing submodular (e.g., for a polymatroid function).

For modular functions, and extremal x, sat(x) = supp(x).

For general x ∈ Pf (not nec. extremal), sat(x) and supp(x) might
have an arbitrary relationship (but we want to strengthen this
relationship further, and we will do so below).

For the most part, we are interested in these quantities when x is
extremal as we will see.
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supp and sat, example under limited curvature

Strict monotone f polymatroids, where f(e|E \ e) > 0, ∀e.
Example: f(A) =

√
|A|, where all m! vertices of Bf are unique.
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In such cases, taking any extremal point x ∈ Pf based on prefix
order E = (e1, . . . ), where supp(x) ⊂ E, we have that
sat(x) = supp(x) since the largest tight set corresponds to
x(Ei) = f(Ei) for some i, and while any e ∈ E \ Ei is such that
x(Ei + e) = x(Ei), there is no such e with f(Ei + e) = f(Ei).
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Another revealing theorem
Theorem 15.5.1

Let f be a polymatroid function and suppose that E can be partitioned
into (E1, E2, . . . , Ek) such that f(A) =

∑k
i=1 f(A ∩ Ei) for all A ⊆ E,

and k is maximum. Then the base polytope
Bf = {x ∈ Pf : x(E) = f(E)} (the E-tight subset of Pf ) has dimension
|E| − k.

Thus, “independence” between disjoint A and B (leading to a
rectangular projection of the polymatroid polytope) reduces the
dimension of the base polytope, as expected.

Thus, any point x ∈ Bf is a convex combination of at most
|E| − k + 1 vertices of Bf .

And if f does not have such independence, dimension of Bf is
|E| − 1 and any point x ∈ Bf is a convex combination of at most
|E| vertices of Bf .
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Another revealing theorem
Theorem 15.5.1

Let f be a polymatroid function and suppose that E can be partitioned
into (E1, E2, . . . , Ek) such that f(A) =

∑k
i=1 f(A ∩ Ei) for all A ⊆ E,

and k is maximum. Then the base polytope
Bf = {x ∈ Pf : x(E) = f(E)} (the E-tight subset of Pf ) has dimension
|E| − k.

Example f with independence between A = {e2, e3} and B = {e1},
i.e., e1⊥⊥{e2, e3}, with Bf marked in green.
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Base polytope existence

Given polymatroid function f , the base polytope
Bf =

{
x ∈ RE+ : x(A) ≤ f(A) ∀A ⊆ E, and x(E) = f(E)

}
always

exists.

Consider any order of E and generate a vector x by this order (i.e.,
x(e1) = f({e1}), x(e2) = f({e1, e2})− f({e1}), and so on).

From past lectures, we now know that:

(1) x ∈ Pf

(2) x is an extreme point in Pf

(3) Since x is generated using an ordering of all of E, we have that
x(E) = f(E).

Thus x ∈ Bf , and Bf is never empty.

Moreover, in this case, x is a vertex of Bf since it is extremal.
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Base polytope property

Now, for any A ⊆ E, we can generate a particular point in Bf

That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|,
and where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with
k = |A|.
Note there are k!(n− k)! < n! such orderings.

Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).
Then, we have generated a point x (a vertex, no less) in Bf such
that x(A) = f(A).

Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
6= ∅ (15.2)

In words, Bf intersects all “multi-axis congruent” hyperplanes
within RE of the form

{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.
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Bf dominates Pf
In fact, every x ∈ Pf is dominated by x ≤ y ∈ Bf .

Theorem 15.5.2

If x ∈ Pf and T is tight for x (meaning x(T ) = f(T )), then there exists
y ∈ Bf with x ≤ y and y(e) = x(e) for e ∈ T .

Proof.

We construct the y algorithmically: initially set y ← x.

y ∈ Pf , T is tight for y so y(T ) = f(T ).

Recall saturation capacity: for y ∈ Pf , ĉ(y; e) =
min {f(A)− y(A)|∀A 3 e} = max {α : α ∈ R, y + α1e ∈ Pf}
Consider following algorithm:

1 T ′ ← T ;
2 for e ∈ E \ T do
3 y ← y + c(y; e)1e ; T ′ ← T ′ ∪ {e}; ĉ(y; e)

e1

e2

x

. . .
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In fact, every x ∈ Pf is dominated by x ≤ y ∈ Bf .

Theorem 15.5.2

If x ∈ Pf and T is tight for x (meaning x(T ) = f(T )), then there exists
y ∈ Bf with x ≤ y and y(e) = x(e) for e ∈ T .

Proof.

We construct the y algorithmically: initially set y ← x.

y ∈ Pf , T is tight for y so y(T ) = f(T ).

Recall saturation capacity: for y ∈ Pf , ĉ(y; e) =
min {f(A)− y(A)|∀A 3 e} = max {α : α ∈ R, y + α1e ∈ Pf}
Consider following algorithm:

1 T ′ ← T ;
2 for e ∈ E \ T do
3 y ← y + c(y; e)1e ; T ′ ← T ′ ∪ {e}; ĉ(y; e)

e1

e2

x

. . .
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Bf dominates Pf
In fact, every x ∈ Pf is dominated by x ≤ y ∈ Bf .

Theorem 15.5.2

If x ∈ Pf and T is tight for x (meaning x(T ) = f(T )), then there exists
y ∈ Bf with x ≤ y and y(e) = x(e) for e ∈ T .

Proof.

We construct the y algorithmically: initially set y ← x.

y ∈ Pf , T is tight for y so y(T ) = f(T ).

Recall saturation capacity: for y ∈ Pf , ĉ(y; e) =
min {f(A)− y(A)|∀A 3 e} = max {α : α ∈ R, y + α1e ∈ Pf}
Consider following algorithm:

1 T ′ ← T ;
2 for e ∈ E \ T do
3 y ← y + c(y; e)1e ; T ′ ← T ′ ∪ {e}; ĉ(y; e)

e1

e2

x

. . .
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Bf dominates Pf
In fact, every x ∈ Pf is dominated by x ≤ y ∈ Bf .

Theorem 15.5.2

If x ∈ Pf and T is tight for x (meaning x(T ) = f(T )), then there exists
y ∈ Bf with x ≤ y and y(e) = x(e) for e ∈ T .

Proof.

We construct the y algorithmically: initially set y ← x.

y ∈ Pf , T is tight for y so y(T ) = f(T ).

Recall saturation capacity: for y ∈ Pf , ĉ(y; e) =
min {f(A)− y(A)|∀A 3 e} = max {α : α ∈ R, y + α1e ∈ Pf}

Consider following algorithm:

1 T ′ ← T ;
2 for e ∈ E \ T do
3 y ← y + c(y; e)1e ; T ′ ← T ′ ∪ {e}; ĉ(y; e)

e1

e2

x

. . .
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Bf dominates Pf
In fact, every x ∈ Pf is dominated by x ≤ y ∈ Bf .

Theorem 15.5.2

If x ∈ Pf and T is tight for x (meaning x(T ) = f(T )), then there exists
y ∈ Bf with x ≤ y and y(e) = x(e) for e ∈ T .

Proof.

We construct the y algorithmically: initially set y ← x.

y ∈ Pf , T is tight for y so y(T ) = f(T ).

Recall saturation capacity: for y ∈ Pf , ĉ(y; e) =
min {f(A)− y(A)|∀A 3 e} = max {α : α ∈ R, y + α1e ∈ Pf}
Consider following algorithm:

1 T ′ ← T ;
2 for e ∈ E \ T do
3 y ← y + c(y; e)1e ; T ′ ← T ′ ∪ {e}; ĉ(y; e)

e1

e2

x
. . .
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Bf dominates Pf
. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′)

= y(e) + f(T ′ + e)− y(T ′ + e)

.

We set y(e)← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e).

Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 3 e be a set that achieves c(y; e) = f(Se)− y(Se).
At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪⋃e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Bf dominates Pf
. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e)← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e).

Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 3 e be a set that achieves c(y; e) = f(Se)− y(Se).
At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪⋃e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Bf dominates Pf
. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e)← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e).

Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 3 e be a set that achieves c(y; e) = f(Se)− y(Se).
At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪⋃e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Bf dominates Pf
. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e)← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e). Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 3 e be a set that achieves c(y; e) = f(Se)− y(Se).
At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪⋃e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Bf dominates Pf
. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e)← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e). Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 3 e be a set that achieves c(y; e) = f(Se)− y(Se).
At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪⋃e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Bf dominates Pf
. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e)← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e). Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 3 e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪⋃e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Bf dominates Pf
. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e)← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e). Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 3 e be a set that achieves c(y; e) = f(Se)− y(Se).
At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪⋃e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Bf dominates Pf
. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e)← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e). Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 3 e be a set that achieves c(y; e) = f(Se)− y(Se).
At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪⋃e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Bf dominates Pf
. . . proof of Thm. 15.5.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ — for
e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e), or
y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e)← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e). Hence,
after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h. version of
ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se 3 e be a set that achieves c(y; e) = f(Se)− y(Se).
At iteration e, let y′(e) (resp. y(e)) be new (resp. old) entry for e, then

y′(Se) = y(Se \ {e}) + y′(e) (15.3)

= y(Se \ {e}) + [y(e) + f(Se)− y(Se)] = f(Se)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪⋃e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Polytope example 1
Observe: Pf (at two views):
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Is this a polymatroidal polytope?
No, “Bf” doesn’t intersect sets of the form {x : x(e) = f(e)} for
e ∈ E.
This was generated using function g(0) = 0, g(1) = 3, g(2) = 4,
and g(3) = 5.5. Then f(S) = g(|S|) is not submodular since (e.g.)
f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
f({e1, e2, e3}) + f({e1}) = 5.5 + 3 = 8.5.
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Polytope example 1
Observe: Pf (at two views):
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Is this a polymatroidal polytope?

No, “Bf” doesn’t intersect sets of the form {x : x(e) = f(e)} for
e ∈ E.
This was generated using function g(0) = 0, g(1) = 3, g(2) = 4,
and g(3) = 5.5. Then f(S) = g(|S|) is not submodular since (e.g.)
f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
f({e1, e2, e3}) + f({e1}) = 5.5 + 3 = 8.5.
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Polytope example 1
Observe: Pf (at two views):
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Is this a polymatroidal polytope?
No, “Bf” doesn’t intersect sets of the form {x : x(e) = f(e)} for
e ∈ E.

This was generated using function g(0) = 0, g(1) = 3, g(2) = 4,
and g(3) = 5.5. Then f(S) = g(|S|) is not submodular since (e.g.)
f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
f({e1, e2, e3}) + f({e1}) = 5.5 + 3 = 8.5.
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Polytope example 1
Observe: Pf (at two views):

0

1

2

3

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3
0

0.5
1

1.5
2

2.5
3

0

0.5

1

1.5

2

2.5

3

Is this a polymatroidal polytope?
No, “Bf” doesn’t intersect sets of the form {x : x(e) = f(e)} for
e ∈ E.
This was generated using function g(0) = 0, g(1) = 3, g(2) = 4,
and g(3) = 5.5. Then f(S) = g(|S|) is not submodular since (e.g.)
f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
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Polytope example 2
Observe: Pf (at two views):
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Is this a polymatroidal polytope?

No, “Bf” (which would be a single point in this case) doesn’t
intersect sets of the form {x : x(e) = f(e)} for e ∈ E.

This was generated using function g(0) = 0, g(1) = 1, g(2) = 1.8,
and g(3) = 3. Then f(S) = g(|S|) is not submodular since (e.g.)
f({e1, e3}) + f({e1, e2}) = 1.8 + 1.8 = 3.6 but
f({e1, e2, e3}) + f({e1}) = 3 + 1 = 4.
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Polytope example 2
Observe: Pf (at two views):
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Is this a polymatroidal polytope?

No, “Bf” (which would be a single point in this case) doesn’t
intersect sets of the form {x : x(e) = f(e)} for e ∈ E.

This was generated using function g(0) = 0, g(1) = 1, g(2) = 1.8,
and g(3) = 3. Then f(S) = g(|S|) is not submodular since (e.g.)
f({e1, e3}) + f({e1, e2}) = 1.8 + 1.8 = 3.6 but
f({e1, e2, e3}) + f({e1}) = 3 + 1 = 4.
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Polytope example 2
Observe: Pf (at two views):
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Is this a polymatroidal polytope?

No, “Bf” (which would be a single point in this case) doesn’t
intersect sets of the form {x : x(e) = f(e)} for e ∈ E.

This was generated using function g(0) = 0, g(1) = 1, g(2) = 1.8,
and g(3) = 3. Then f(S) = g(|S|) is not submodular since (e.g.)
f({e1, e3}) + f({e1, e2}) = 1.8 + 1.8 = 3.6 but
f({e1, e2, e3}) + f({e1}) = 3 + 1 = 4.
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Polytope example 2
Observe: Pf (at two views):
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Is this a polymatroidal polytope?

No, “Bf” (which would be a single point in this case) doesn’t
intersect sets of the form {x : x(e) = f(e)} for e ∈ E.

This was generated using function g(0) = 0, g(1) = 1, g(2) = 1.8,
and g(3) = 3. Then f(S) = g(|S|) is not submodular since (e.g.)
f({e1, e3}) + f({e1, e2}) = 1.8 + 1.8 = 3.6 but
f({e1, e2, e3}) + f({e1}) = 3 + 1 = 4.
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Review

The next slide is review from lecture 13.
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Saturation Capacity

The max is achieved when

α = ĉ(x; e)
def
= min {f(A)− x(A), ∀A ⊇ {e}} (15.22)

ĉ(x; e) is known as the saturation capacity associated with x ∈ Pf
and e.

Thus we have for x ∈ Pf ,

ĉ(x; e)
def
= min {f(A)− x(A),∀A 3 e} (15.23)

= max {α : α ∈ R, x+ α1e ∈ Pf} (15.24)

We immediately see that for e ∈ E \ sat(x), we have that
ĉ(x; e) > 0.

Also, for e ∈ sat(x), we have that ĉ(x; e) = 0.

Note that any α with 0 ≤ α ≤ ĉ(x; e) we have x+ α1e ∈ Pf .

We also see that computing ĉ(x; e) is a form of submodular function
minimization.
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Matroids and Exchange

Recall, matroids have a number of “exchange” properties.

Also, recall that given a matroid M = (E, I), if I ∈ I is
independent, and e ∈ span(I), and e′ ∈ C(I, e) where C(I, e) is the
fundamental circuit created when adding e to I, then we have:

I + e− e′ ∈ I (15.4)

Note, this holds for any e′ ∈ C(I, e).
Since dep(x, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?

Yes, and it is called the “exchange capacity”
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Matroids and Exchange

Recall, matroids have a number of “exchange” properties.

Also, recall that given a matroid M = (E, I), if I ∈ I is
independent, and e ∈ span(I), and e′ ∈ C(I, e) where C(I, e) is the
fundamental circuit created when adding e to I, then we have:

I + e− e′ ∈ I (15.4)

Note, this holds for any e′ ∈ C(I, e).
Since dep(x, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?

Yes, and it is called the “exchange capacity”
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Matroids and Exchange

Recall, matroids have a number of “exchange” properties.

Also, recall that given a matroid M = (E, I), if I ∈ I is
independent, and e ∈ span(I), and e′ ∈ C(I, e) where C(I, e) is the
fundamental circuit created when adding e to I, then we have:

I + e− e′ ∈ I (15.4)

Note, this holds for any e′ ∈ C(I, e).

Since dep(x, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?

Yes, and it is called the “exchange capacity”
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Matroids and Exchange

Recall, matroids have a number of “exchange” properties.

Also, recall that given a matroid M = (E, I), if I ∈ I is
independent, and e ∈ span(I), and e′ ∈ C(I, e) where C(I, e) is the
fundamental circuit created when adding e to I, then we have:

I + e− e′ ∈ I (15.4)

Note, this holds for any e′ ∈ C(I, e).
Since dep(x, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?

Yes, and it is called the “exchange capacity”
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Matroids and Exchange

Recall, matroids have a number of “exchange” properties.

Also, recall that given a matroid M = (E, I), if I ∈ I is
independent, and e ∈ span(I), and e′ ∈ C(I, e) where C(I, e) is the
fundamental circuit created when adding e to I, then we have:

I + e− e′ ∈ I (15.4)

Note, this holds for any e′ ∈ C(I, e).
Since dep(x, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?

Yes, and it is called the “exchange capacity”
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Matroids and Exchange

Recall, matroids have a number of “exchange” properties.

Also, recall that given a matroid M = (E, I), if I ∈ I is
independent, and e ∈ span(I), and e′ ∈ C(I, e) where C(I, e) is the
fundamental circuit created when adding e to I, then we have:

I + e− e′ ∈ I (15.4)

Note, this holds for any e′ ∈ C(I, e).
Since dep(x, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?

Yes, and it is called the “exchange capacity”
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Exchange Capacity

Consider x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}

Thus, for any α > 0, we have x+ α1a /∈ Pf for either a = e or a = e′,
since dep(x, e) ⊆ sat(x).
Examples:

e’

e

e’

e

x

x

How much can we move in positive e direction if we simultaneously
move in negative e′ direction?
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Exchange Capacity

Consider x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}
Thus, for any α > 0, we have x+ α1a /∈ Pf for either a = e or a = e′,
since dep(x, e) ⊆ sat(x).

Examples:

e’

e

e’

e

x

x

How much can we move in positive e direction if we simultaneously
move in negative e′ direction?
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Exchange Capacity

Consider x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}
Thus, for any α > 0, we have x+ α1a /∈ Pf for either a = e or a = e′,
since dep(x, e) ⊆ sat(x).
Examples:

e’

e

e’

e

x

x

How much can we move in positive e direction if we simultaneously
move in negative e′ direction?

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 15 - May 19th, 2014 F32/37 (pg.125/144)



Supp Examples More on Bf Exchange Capacity Min-Norm Point and SFM

Exchange Capacity

Consider x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}
Thus, for any α > 0, we have x+ α1a /∈ Pf for either a = e or a = e′,
since dep(x, e) ⊆ sat(x).
Examples:

e’

e

e’

e

x

x

How much can we move in positive e direction if we simultaneously
move in negative e′ direction?
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Exchange Capacity

x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}, consider

max {α : α ∈ R, x+ α(1e − 1e′) ∈ Pf} (15.5)

Identical to:

max {α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A),∀A} (15.6)

If both e, e′ ∈ A (or neither), then α(1e − 1e′)(A) = 0 for any α, so
to make this meaningful, we take A : e′ /∈ A 3 e.

thus identical to

max
{
α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A),∀A 3 e, e′ /∈ A

}
(15.7)

Which is identical to:

max
{
α : α ∈ R, α(1e − 1e′))(A) ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.8)
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Exchange Capacity

x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}, consider

max {α : α ∈ R, x+ α(1e − 1e′) ∈ Pf} (15.5)

Identical to:

max {α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A} (15.6)

If both e, e′ ∈ A (or neither), then α(1e − 1e′)(A) = 0 for any α, so
to make this meaningful, we take A : e′ /∈ A 3 e.

thus identical to

max
{
α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A),∀A 3 e, e′ /∈ A

}
(15.7)

Which is identical to:

max
{
α : α ∈ R, α(1e − 1e′))(A) ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.8)
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Exchange Capacity

x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}, consider

max {α : α ∈ R, x+ α(1e − 1e′) ∈ Pf} (15.5)

Identical to:

max {α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A} (15.6)

If both e, e′ ∈ A (or neither), then α(1e − 1e′)(A) = 0 for any α, so
to make this meaningful, we take A : e′ /∈ A 3 e.

thus identical to

max
{
α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A),∀A 3 e, e′ /∈ A

}
(15.7)

Which is identical to:

max
{
α : α ∈ R, α(1e − 1e′))(A) ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.8)
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Exchange Capacity

x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}, consider

max {α : α ∈ R, x+ α(1e − 1e′) ∈ Pf} (15.5)

Identical to:

max {α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A} (15.6)

If both e, e′ ∈ A (or neither), then α(1e − 1e′)(A) = 0 for any α, so
to make this meaningful, we take A : e′ /∈ A 3 e.

thus identical to

max
{
α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A 3 e, e′ /∈ A

}
(15.7)

Which is identical to:

max
{
α : α ∈ R, α(1e − 1e′))(A) ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.8)
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Exchange Capacity

x ∈ Pf , e ∈ sat(x) and e′ ∈ dep(x, e) \ {e}, consider

max {α : α ∈ R, x+ α(1e − 1e′) ∈ Pf} (15.5)

Identical to:

max {α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A} (15.6)

If both e, e′ ∈ A (or neither), then α(1e − 1e′)(A) = 0 for any α, so
to make this meaningful, we take A : e′ /∈ A 3 e.

thus identical to

max
{
α : α ∈ R, (x+ α(1e − 1e′))(A) ≤ f(A), ∀A 3 e, e′ /∈ A

}
(15.7)

Which is identical to:

max
{
α : α ∈ R, α(1e − 1e′))(A) ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.8)
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Exchange Capacity

In such case, we get 1e′(A) = 0, thus above identical to

max
{
α : α ∈ R, α1e(A) ≤ f(A)− x(A),∀A ⊇ {e}, e′ /∈ A

}
(15.9)

Restating, we’ve got

max
{
α : α ∈ R, α ≤ f(A)− x(A),∀A ⊇ {e}, e′ /∈ A

}
(15.10)

This max is achieved when

α = ĉ(x; e, e′)
def
= min

{
f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.11)

ĉ(x; e, e′) is known as the exchange capacity associated with x ∈ Pf
and e.

For any α with 0 ≤ α ≤ ĉ(x; e, e′), we have that x+ α(1e − 1e′) ∈ Pf .

As we will see, if e and e′ are successive in an order that generates
extreme point x, then we get a “neighbor” extreme point via
x′ = x+ ĉ(x; e, e′)(1e − 1e′).

Note that Eqn. (15.11) is a form of SFM.
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Exchange Capacity

In such case, we get 1e′(A) = 0, thus above identical to

max
{
α : α ∈ R, α1e(A) ≤ f(A)− x(A),∀A ⊇ {e}, e′ /∈ A

}
(15.9)

Restating, we’ve got

max
{
α : α ∈ R, α ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.10)

This max is achieved when

α = ĉ(x; e, e′)
def
= min

{
f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.11)

ĉ(x; e, e′) is known as the exchange capacity associated with x ∈ Pf
and e.

For any α with 0 ≤ α ≤ ĉ(x; e, e′), we have that x+ α(1e − 1e′) ∈ Pf .

As we will see, if e and e′ are successive in an order that generates
extreme point x, then we get a “neighbor” extreme point via
x′ = x+ ĉ(x; e, e′)(1e − 1e′).

Note that Eqn. (15.11) is a form of SFM.
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Exchange Capacity

In such case, we get 1e′(A) = 0, thus above identical to

max
{
α : α ∈ R, α1e(A) ≤ f(A)− x(A),∀A ⊇ {e}, e′ /∈ A

}
(15.9)

Restating, we’ve got

max
{
α : α ∈ R, α ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.10)

This max is achieved when

α = ĉ(x; e, e′)
def
= min

{
f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.11)

ĉ(x; e, e′) is known as the exchange capacity associated with x ∈ Pf
and e.

For any α with 0 ≤ α ≤ ĉ(x; e, e′), we have that x+ α(1e − 1e′) ∈ Pf .

As we will see, if e and e′ are successive in an order that generates
extreme point x, then we get a “neighbor” extreme point via
x′ = x+ ĉ(x; e, e′)(1e − 1e′).

Note that Eqn. (15.11) is a form of SFM.
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Exchange Capacity

In such case, we get 1e′(A) = 0, thus above identical to

max
{
α : α ∈ R, α1e(A) ≤ f(A)− x(A),∀A ⊇ {e}, e′ /∈ A

}
(15.9)

Restating, we’ve got

max
{
α : α ∈ R, α ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.10)

This max is achieved when

α = ĉ(x; e, e′)
def
= min

{
f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.11)

ĉ(x; e, e′) is known as the exchange capacity associated with x ∈ Pf
and e.

For any α with 0 ≤ α ≤ ĉ(x; e, e′), we have that x+ α(1e − 1e′) ∈ Pf .

As we will see, if e and e′ are successive in an order that generates
extreme point x, then we get a “neighbor” extreme point via
x′ = x+ ĉ(x; e, e′)(1e − 1e′).

Note that Eqn. (15.11) is a form of SFM.
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Exchange Capacity

In such case, we get 1e′(A) = 0, thus above identical to

max
{
α : α ∈ R, α1e(A) ≤ f(A)− x(A),∀A ⊇ {e}, e′ /∈ A

}
(15.9)

Restating, we’ve got

max
{
α : α ∈ R, α ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.10)

This max is achieved when

α = ĉ(x; e, e′)
def
= min

{
f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.11)

ĉ(x; e, e′) is known as the exchange capacity associated with x ∈ Pf
and e.

For any α with 0 ≤ α ≤ ĉ(x; e, e′), we have that x+ α(1e − 1e′) ∈ Pf .

As we will see, if e and e′ are successive in an order that generates
extreme point x, then we get a “neighbor” extreme point via
x′ = x+ ĉ(x; e, e′)(1e − 1e′).

Note that Eqn. (15.11) is a form of SFM.
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Exchange Capacity

In such case, we get 1e′(A) = 0, thus above identical to

max
{
α : α ∈ R, α1e(A) ≤ f(A)− x(A),∀A ⊇ {e}, e′ /∈ A

}
(15.9)

Restating, we’ve got

max
{
α : α ∈ R, α ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.10)

This max is achieved when

α = ĉ(x; e, e′)
def
= min

{
f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.11)

ĉ(x; e, e′) is known as the exchange capacity associated with x ∈ Pf
and e.

For any α with 0 ≤ α ≤ ĉ(x; e, e′), we have that x+ α(1e − 1e′) ∈ Pf .

As we will see, if e and e′ are successive in an order that generates
extreme point x, then we get a “neighbor” extreme point via
x′ = x+ ĉ(x; e, e′)(1e − 1e′).

Note that Eqn. (15.11) is a form of SFM.
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Exchange Capacity

In such case, we get 1e′(A) = 0, thus above identical to

max
{
α : α ∈ R, α1e(A) ≤ f(A)− x(A),∀A ⊇ {e}, e′ /∈ A

}
(15.9)

Restating, we’ve got

max
{
α : α ∈ R, α ≤ f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.10)

This max is achieved when

α = ĉ(x; e, e′)
def
= min

{
f(A)− x(A), ∀A ⊇ {e}, e′ /∈ A

}
(15.11)

ĉ(x; e, e′) is known as the exchange capacity associated with x ∈ Pf
and e.

For any α with 0 ≤ α ≤ ĉ(x; e, e′), we have that x+ α(1e − 1e′) ∈ Pf .

As we will see, if e and e′ are successive in an order that generates
extreme point x, then we get a “neighbor” extreme point via
x′ = x+ ĉ(x; e, e′)(1e − 1e′).

Note that Eqn. (15.11) is a form of SFM.
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 15.7.1

Let f be a submodular function defined on subsets of E. For any
x ∈ RE , we have:

rank(x) = max (y(E) : y ≤ x, y ∈ Pf ) = min (x(A) + f(E \A) : A ⊆ E)
(15.5)

Essentially the same theorem as Theorem ??. Taking x = 0 we get:

Corollary 15.7.2

Let f be a submodular function defined on subsets of E. x ∈ RE , we
have:

rank(0) = max (y(E) : y ≤ 0, y ∈ Pf ) = min (f(A) : A ⊆ E) (15.6)
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Min-Norm Point: Definition

Restating what we saw before, we have:

max {y(E)|y ∈ Pf , y ≤ 0} = min {f(X)|X ⊆ V } (15.12)

Consider the optimization:

minimize ‖x‖22 (15.13a)

subject to x ∈ Bf (15.13b)

where Bf is the base polytope of submodular f , and
‖x‖22 =

∑
e∈E x(e)

2 is the squared 2-norm. Let x∗ be the optimal
solution.

Note, x∗ is the unique optimal solution since we have a strictly
convex objective over a set of convex constraints.

x∗ is called the minimum norm point of the base polytope.
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Min-Norm Point: Definition
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x∗ is called the minimum norm point of the base polytope.
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Min-Norm Point: Definition
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Consider the optimization:
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where Bf is the base polytope of submodular f , and
‖x‖22 =

∑
e∈E x(e)

2 is the squared 2-norm. Let x∗ be the optimal
solution.

Note, x∗ is the unique optimal solution since we have a strictly
convex objective over a set of convex constraints.

x∗ is called the minimum norm point of the base polytope.
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Min-Norm Point: Definition

Restating what we saw before, we have:

max {y(E)|y ∈ Pf , y ≤ 0} = min {f(X)|X ⊆ V } (15.12)

Consider the optimization:

minimize ‖x‖22 (15.13a)

subject to x ∈ Bf (15.13b)

where Bf is the base polytope of submodular f , and
‖x‖22 =

∑
e∈E x(e)

2 is the squared 2-norm. Let x∗ be the optimal
solution.

Note, x∗ is the unique optimal solution since we have a strictly
convex objective over a set of convex constraints.

x∗ is called the minimum norm point of the base polytope.
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Min-Norm Point: Examples

Pf Pf Pf

Pf

Pf

Pf
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