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(NN}

Cumulative Outstanding Reading

e Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.

@ Read Tom McCormick's overview paper on SFM http://people.
commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

@ Read chapters 1 - 4 from Fujishige book.
@ Matroid properties http:
//www-math.mit.edu/~goemans/18433509/matroid-notes.pdf

@ Read lecture 14 slides on lattice theory at our web page (http://j.
ee.washington.edu/~bilmes/classes/ee596b_spring_2014/)
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Announcements, Assignments, and Reminders

@ Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-I

@ L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

@ L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

@ L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation
L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

@ L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

@ L9: From Matroid Polytopes to
Polymatroids.

@ L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, polymatroids
and entropic Venn diagrams, exchange
capacity,

L16: proof that minimum norm point
yields min of submodular function, and
the lattice of minimizers of a submodular
function, Lovasz extension

L17: Lovasz extension, Choquet
Integration, more properties/examples of
Lovasz extension, convex minimization
and SFM.

L18: Lovasz extension examples and
structured convex norms, The Min-Norm
Point Algorithm detailed.

L19: symmetric submodular function
minimization, maximizing monotone
submodular function w. card constraints.
L20: maximizing monotone submodular
function w. other constraints,
non-monotone maximization.

Finals Week: June 9th-13th, 2014.

Prof. Jeff Bilmes

EE596b/Spring 2014 /Submodularity - Lecture 1

May 10th, 2014



Review
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Summary of Concepts

Most violated inequality max {z(A) — f(A) : A C E}

Matroid by circuits, and the fundamental circuit C'(I,e) C I +e.
Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity

e-containing tight sets

dep function & fundamental circuit of a matroid
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Review
i

Summary important definitions so far: tight, dep, & sat

o z-tight sets: For x € Py, D(x) ={AC E:x(A) = f(A)}.
@ Polymatroid closure/maximal z-tight set: For x € Py,
sat(z) =U{A: AeD(x)} ={e:ec E,Va>0,x+al. ¢ Pr}.
@ Saturation capacity: for x € Py, 0 < é(z5e) =
min {f(A) —2(4)|VA 3 e} =max{a:a e R,z +al. € Pr}
@ Recall: sat(x) = {e: é(z;e) =0} and
E\ sat(z) = {e: é(x;e) > 0}.
@ e-containing x-tight sets: For x € Py,
D(z,e) ={A:ec AC E,x(A) = f(A)} C D(z).
@ Minimal e-containing z-tight set/polymatroidal fundamental
circuit/: For z € Py,
{m {A:ec ACE, 2(A) = f(A)} ife e sat(z)

dep(z,e) =
p(.¢) 0 else

={:3a>0, st. z+a(le— 1) € Py}
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Review

dep and sat in a lattice

@ Given some
x € Pf,

@ The picture on the
right summarizes
the relationships
between the
lattices and
sublattices.

o Note,
. dep(z,e) =
dep(x).
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Supp
{NAN]

Support of vector

@ The support of a vector x € Py is defined as the elements with
non-zero entries.
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Supp
{NAN]

Support of vector

@ The support of a vector x € Py is defined as the elements with
non-zero entries.

e Thatis
supp(z) = {e € E: z(e) # 0} (15.1)
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Supp
{NAN]

Support of vector

@ The support of a vector x € Py is defined as the elements with
non-zero entries.

@ That is
supp(z) = {e € E: z(e) # 0} (15.1)
@ Example
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Tightness of supp at polymatroidal extreme point

e Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
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Supp
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Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
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Supp
(LN

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary z.

@ When z is an extremal point, however, supp(z) is tight, meaning
x(supp(x)) = f(supp(x)). Why?
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Supp
(LN

Tightness of supp at polymatroidal extreme point

e Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary z.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(Fy;) = f(E;) for 1 <i <k <|E|, for some k, as we saw earlier in
class. Hence, any e; € supp(x) has z(e;) = f(e;|Ei—1) > 0.
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Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary z.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(F;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(z) has z(e;) = f(e;|Fi—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = 2(Ey — ¢;)
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Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary z.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(F;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(x) has z(e;) = f(e;|E;i—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = z(Ey — ¢;)
© Also, for 1 <i <k, if ¢; ¢ supp(x), then z(e;) =
0= f(ei|Fiz1) > f(ei|Ex — e;) = f(Eg|Ey — ;) > 0 since
monotone submodular, hence we have f(Ey) = f(E; — ;).
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Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary z.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(F;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(z) has z(e;) = f(e;|Fi—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = z(Ey — ¢;)
© Also, for 1 <i <k, if ¢; ¢ supp(x), then x(e;) =
0= f(ei|Ei71) > f(€1|Ek - 67;) = f(Ek|Ek — 67;) > 0 since
monotone submodular, hence we have f(Ey) = f(Fr — €;).
Q Thus, ©(Ey —¢;) = f(Ex — ¢;) and Ej, — ¢; is also tight.
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Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary z.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(F;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(x) has z(e;) = f(e;|E;i—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = z(Ey — ¢;)
© Also, for 1 <i <k, if ¢; ¢ supp(x), then x(e;) =
0= f(ei|Ei71) > f(€1|Ek - 67;) = f(Ek|Ek — 67;) > 0 since
monotone submodular, hence we have f(Ey) = f(Fr — €;).
Q Thus, 2(Ey —¢;) = f(Ex —¢;) and Ej, — ¢; is also tight.
© We can keep removing elements ¢ supp(x) and we're left with
f(Ex Nsupp(x)) = x(Ey, Nsupp(z)) for any k.
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Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary z.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(F;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(z) has z(e;) = f(e;|Fi—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = z(Ey — ¢;)
© Also, for 1 <i <k, if ¢; ¢ supp(x), then x(e;) =
0= f(ei|Ei71) > f(€1|Ek - 67;) = f(Ek|Ek — 67;) > 0 since
monotone submodular, hence we have f(Ey) = f(Fr — €;).
Q Thus, 2(Ey —¢;) = f(Ex —¢;) and Ej, — ¢; is also tight.
© We can keep removing elements ¢ supp(z) and we're left with
f(Ex Nsupp(z)) = x(Ex Nsupp(x)) for any k.
@ Hence supp(x) is tight when x is extremal.
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Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary z.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(F;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(z) has z(e;) = f(e;|Fi—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = z(Ey — ¢;)
© Also, for 1 <i <k, if ¢; ¢ supp(x), then x(e;) =
0= f(ei|Ei71) > f(€1|Ek - 67;) = f(Ek|Ek — 67;) > 0 since
monotone submodular, hence we have f(Ey) = f(Fr — €;).
Q Thus, 2(Ey —¢;) = f(Ex —¢;) and Ej, — ¢; is also tight.
© We can keep removing elements ¢ supp(z) and we're left with
f(Ex Nsupp(z)) = x(Ex Nsupp(x)) for any k.
@ Hence supp(z) is tight when x is extremal.

@ Since supp(x) is tight, we immediately have that sat(z) 2O supp(z).
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supp vs. sat equality

@ For x € Py, with  extremal, is supp(z) = sat(z)?
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Supp
(WL

supp vs. sat equality

e For x € Py, with  extremal, is supp(x) = sat(z)?

@ Consider an example case where disjoint X, Y C F, we have
f(X)=f(Y)=f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.
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Supp
(WL

supp vs. sat equality

e For x € Py, with  extremal, is supp(x) = sat(z)?

o Consider an example case where disjoint X, Y C E, we have
f(X)=f(Y)= f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

@ Suppose x € P¢ has x(X) > 0 but z(V \ X) =0 and so z(Y) = 0.
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Supp
(WL

supp vs. sat equality

e For x € Py, with  extremal, is supp(x) = sat(z)?

o Consider an example case where disjoint X, Y C E, we have
f(X)=f(Y)= f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

@ Suppose x € Py has x(X) > 0 but z(V \ X) =0 and so z(Y) = 0.
@ Suppose supp(z) = X, and say z is tight at X (z(X) = f(X)).
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Supp
(WL

supp vs. sat equality

e For x € Py, with  extremal, is supp(x) = sat(z)?

o Consider an example case where disjoint X, Y C E, we have
f(X)=f(Y)=f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

@ Suppose x € Py has x(X) > 0 but z(V \ X) =0 and so z(Y) = 0.

@ Suppose supp(z) = X, and say z is tight at X (z(X) = f(X)).

@ sat(z) = U{A:2(A) = f(A)} and since
z(XUY)=a(X)=f(X)=f(XUY), here, sat(z) D X UY.
Hence, sat(z) D supp(x).
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Supp
(WL

supp vs. sat equality

e For x € Py, with  extremal, is supp(x) = sat(z)?

o Consider an example case where disjoint X, Y C E, we have
f(X)=f(Y)= f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

@ Suppose x € Py has x(X) > 0 but z(V \ X) =0 and so z(Y) = 0.

@ Suppose supp(z) = X, and say z is tight at X (z(X) = f(X)).

o sat(z) = U{A:xz(A) = f(A)} and since
z(XUY)=2(X)=f(X)=f(XUY), here, sat(z) D X UY.
Hence, sat(x) D supp(x).

@ In general, for extremal z, sat(x) O supp(x) (see later).
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Supp
(WL

supp vs. sat equality

For x € Py, with x extremal, is supp(z) = sat(x)?

Consider an example case where disjoint X,Y C E, we have
f(X)=f(Y)= f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

Suppose = € Py has 2(X) > 0 but 2(V \ X) =0 and so z(Y') = 0.
Suppose supp(z) = X, and say « is tight at X (z(X) = f(X)).
sat(z) = U{A: z(A) = f(A)} and since
z(XUY)=2(X)=f(X)=f(XUY), here, sat(z) D X UY.
Hence, sat(x) D supp(x).

In general, for extremal x, sat(z) O supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) D A.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014 F10/37 (pg.27/144)



Supp
(WL

supp vs. sat equality

For x € Py, with x extremal, is supp(z) = sat(x)?

Consider an example case where disjoint X,Y C E, we have
f(X)=f(Y)= f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

Suppose = € Py has 2(X) > 0 but 2(V \ X) =0 and so z(Y') = 0.
Suppose supp(z) = X, and say « is tight at X (z(X) = f(X)).
sat(z) = U{A: z(A) = f(A)} and since
z(XUY)=2(X)=f(X)=f(XUY), here, sat(z) D X UY.
Hence, sat(x) D supp(x).

In general, for extremal x, sat(z) O supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(z) is more like
indication. So this is similar to span(A) D A.

For modular functions, they are always equal at extreme points
(e.g., think of “hyperrectangular” polymatroids).
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Supp
(AN ]

Summary of supp, sat, and dep

o For x € Py, supp(z) = {e: z(e) # 0} C sat(x)
e For x € Py, sat(x) (span, closure) is the maximal saturated (z-tight)
set wrt. z. lLe, sat(x) ={e:e€ E,Va >0,z +al. ¢ Ps}. Thatis,

cl(x) € sat(z) 2 | J{A: A € D(x)} (15.29)

—J{A: AC E.2(A) = f(A)) (15.30)
={e:ec E,Va >0,z +al. ¢ Py} (15.31)

@ For e € sat(z), we have dep(z,e) C sat(z) (fundamental circuit) is the
minimal (common) saturated (z-tight) set w.r.t. = containing e. l.e.,

_JN{A:ec ACE,z(A) = f(A)} ifecsat(x)
dep(z, €) = {@ else
={:3a>0, st.z+a(l.— 1) € Py} (15.32)
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Examples
[ ARRRRRRNN}

supp, sat, dep, example with perfect independence

@ Example polymatroid where there is perfect independence between
A= {62,63} and B = {61}, i.e., Clﬂ_{ez,(ﬁg}.
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Examples
[ ARRRRRRNN}

supp, sat, dep, example with perfect independence

@ Example polymatroid where there is perfect independence between
A= {62,63} and B = {61}, i.e., €1J_|_{€2,€3}.

el
e2

@ Point x is extreme and z({ez2, e3}) = f(e2, e3) (why?).
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Examples

supp, sat, dep, example with perfect independence

@ Example polymatroid where there is perfect independence between
A= {62,63} and B = {61}, i.e., €1J_|_{€2,€3}.

el

e2
e Point z is extreme and z({e2,e3}) = f(e2,e3) (why?).

@ But z({e1,e2,e3}) = x({ea,e3}) < f(e1,ea,e3) = fe1) + f(ea, e3).
Thus, supp(x) = sat(x) = {e2, e3}.
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Examples
[ ARRRRRRNN}

supp, sat, dep, example with perfect independence

e Example polymatroid where there is perfect independence between
A= {62,63} and B = {6’1}, i.e., €1J_|_{€2,63}.

e3

el e2

e2

@ Note that considering a submodular function on clustered ground

set £ = {e1,ea3} where f'(e1) = f(e1), f/(e23) = f(ea,e3) leads to
a rectangle (no dependence between {el} and {e2,e3}).
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Examples
[ ARRRRRRNN}

supp, sat, dep, example with perfect independence

@ Example polymatroid where there is perfect independence between
A = {eg,e3} and B = {e1}, i.e., e;ll{es,e3}.

e3

el e2

e2
@ We also have sat(x) = {es,ea}. So dep(z,e;) is not defined,
dep(z,es) = {es}, and dep(z, e3) = 0.
e sat(y) = {e1,e2,e3}. So dep(y,e1) =0, dep(y,e2) = e3, and
dep(y, e3) = 0.
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Examples
[ ARRRRRRNN}

supp, sat, dep, example with perfect independence

@ Example polymatroid where there is perfect independence between
A = {eg,e3} and B = {e1}, i.e., e;ll{es,e3}.

e3

el e2

e2
@ We also have sat(x) = {es,ea}. So dep(z,e;) is not defined,
dep(z,es) = {es}, and dep(z, e3) = 0.
e sat(y) = {e1,e2,e3}. So dep(y,e1) =0, dep(y,e2) = e3, and
dep(y, e3) = 0.
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Examples
[N EANNARET!

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e and es.

A B C D
7e
f(ez) ]’@ej f(e2) flea) N_ .
5, fled |\ Qe
Y ¢ S
S
f(e1) f(e1) f(e1) f(e1)

Prof. Jeff Bilmes
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Examples
[N EANNARET!

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e; and es.
%
s,

Y]

f(ez)

f(e)

e Case A: perfect independence/irredunancy.
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Examples
[N EANNARET!

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e and es.

A B
7,
f(e2) ', fer) .
78
S

f(eq) f(es)
o Case A: perfect independence/irredunancy.
e Case B: perfect dependence/redundancy. Since slope is -45°, we

must have f(e1) = f(e2) = f(e1, ea). Entropy case: deterministic
bijection between random variables e; and es.
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Examples
[N EANNARET!

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e and es.

A B C
%,
f(e2) e, fleo) .
cE flea)
~ &
o,
f(e1) f(e1) | f(es)

o Case A: perfect independence/irredunancy.

e Case B: perfect dependence/redundancy. Since slope is -45°, we
must have f(e1) = f(e2) = f(e1, ea). Entropy case: deterministic
bijection between random variables e; and es.

e Case C: f(ea2) < f(e1) = f(e1,e2). Entropy case: random variable
eo a deterministic function of e; which has higher entropy.
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Examples
[N EANNARET!

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e1 and es.

A B C D
78
f(ez) ]’%/ f(ez) ? f(e2) %
Q 2
/,%/ f(ez) ,;@} g,
S
f(e1) f(e1) | f(er) f(e1)

e Case A: perfect independence/irredunancy.

o Case B: perfect dependence/redundancy. Since slope is -45°, we
must have f(e1) = f(ez) = f(e1,e2). Entropy case: deterministic
bijection between random variables e; and es.

o Case C: f(e2) < f(e1) = f(e1,e2). Entropy case: random variable
eo a deterministic function of e; which has higher entropy.

e Case D: f(e1) < f(e2) = f(e1,e2). Entropy case: random variable
e1 a deterministic function of es which has higher entropy.
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Examples
[N EANNARET!

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e; and es.

A B C D

f(ez) e, f(eo) f(ez)
‘ e % &,
%o f(ez) &,

f(e1) f(e1) | f(es) f(e1)

@ In each case, we see points = where supp(z) C sat(z).

e Example: Case B or C, let x = (f(e1),0) so supp(x) = {e1} but
since z({e1,e2}) = z({e1}) = f(e1) = f(e1,e2) we have
sat(x) = {e1, ea}.

e Similar for case D with = (0, f(e2)).
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Examples
[NLRNNAREY!

supp, sat, and dependence in 2D

o General case, f(e1,e2) < f(e1) + f(e2), f(e1) < f(e1,e2), and
fle2) < f(er, e2).

f(e2)
%,
)%/

f(e1)

o Entropy case: We have a random variable Z and two separate
deterministic functions e; = h1(Z) and ez = ha(Z) such that the
entropy H(e1,e2) = H(Z), but each deterministic function gives a
different “view” of Z, each contains more than half the information,
and the two are redundant w.r.t. each other
(H(e1) + H(e2) > H(Z)).
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Examples
[ARN ARRANN}

2D polymatroids and Information Venn Diagrams

f
fer) ) f(er.e2) = f(er) > f(ez)
f(er,e2) = f(eq) + f(ez) f(e1,e2) =f(e1) =f(ez) f(eq)
e SN fteo ften fteo N fteo
N % N 'a ’

flerez) = f(ez) > f(e1)
f(ez)

flen)
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Examples
[ARNR RRRNN}

2D polymatroids and Information Venn Diagrams

o Consider symmeterized
combinatorial mutual
information function:

Iy(e1, e2)

= f(e1) + fle2) — f(e1, e2)
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Examples
[ARNR RRRNN}

2D polymatroids and Information Venn Diagrams

o Consider symmeterized
combinatorial mutual
information function:

Ir(e1, e2)

= f(e1) + f(e2) — f(e1, e2)

o Consider area of green triangle:

3 (#e2) = Flealen)) (o) = Seates)

(fer) + fle2) — fle1,e2))?
2
(If(el,eg))

N = DN —
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Examples
[ARENN RRNN}

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between e and e3, so
f(ea,e3) = f(ea) + f(es), but perfect dependence between
A= {62,63} and B = {61}, SO f(€1,€2,€3) = f(€2,63)

1

1

0.8
0.8

%6
06

(2] [}
o 0.4
04

0.2
0.2

0
1

0
0 05 1

92 o A 0.5
el
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Examples
[ARENN RRNN}

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between e and e3, so
f(ea,e3) = f(ea) + f(es), but perfect dependence between
A ={ez,e3} and B = {e1}, so f(e1,e2,e3) = f(e2,e3)

1

1

0.8
0.8

%6
06

(2] [}
<] 0.4
04

0.2
0.2

0
0 1
0

0.5
0.5 0.5

e2 t el e2 o el

e Entropy case: xor V-structure Bayesian network e; = h(esg, e3)
where h is the xor function (e — e1 < e3), and eg, e3 are both
independent binary with unity entropy.

05
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Examples
[ARENN RRNN}

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between e and e3, so
f(ea,e3) = f(ea) + f(es), but perfect dependence between
A ={ez,e3} and B = {e1}, so f(e1,e2,e3) = f(e2,e3)

1

1

0.8
0.8

%6
06

(2] [}
<] 0.4
04

0.2
0.2

0
0 1
0

0.5
0.5 0.5

e2 t el e2 o el

e Entropy case: xor V-structure Bayesian network e; = h(esg, e3)
where h is the xor function (e — e1 < e3), and eg, e3 are both
independent binary with unity entropy.

05

@ Q: Why does the polytope have a symmetry? Notice independence
(square) for any pair.
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Examples
[ARENN RRNN}

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between es and eg, so
f(ea,e3) = f(e2) + f(es), but perfect dependence between
A = {eg,e3} and B = {e1}, so f(e1,ea,e3) = f(ea,e3)

1

1

0.8
0.8

o 0F
o 08 2
<] 0.4
04

0.2
0.2

0
0 1
0 05 1
0.5

05 05 5 3
11 e o
e2 el et

e For any permutation o of {1,2,3}, considering {es,, €o,} Vs. {€0s}:
Ve,
f(effza 603) /%1
€y 1S a deterministic
function of {es,, €0, }
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Examples
[ARENN RRNN}

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between e and e3, so
f(ea,e3) = f(ea) + f(es), but perfect dependence between
A= {62,63} and B = {61}, SO f(€1,€2,€3) = f(€2,63)

1

1

0.8
0.8

%6
06

(2] [}
o 0.4
04

0.2
0.2

0
1

0
0 05 1

92 o A 0.5
el
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Examples
[ARENN RRNN}

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between e and e3, so
f(ea,e3) = f(ea) + f(es), but perfect dependence between
A ={ea,e3} and B = {e1}, so f(e1,e2,e3) = f(ea,e3)

1

1

0.8
0.8

%6
06

(2] [}
<] 0.4
04

0.2
0.2
0
0 1
0 0.5

0.5 0.5 0.5

e2 t el e2 o el

@ Note also, that for some of the extreme points, multiple orders
generate them.
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Examples
[ARENN RRNN}

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between e and e3, so
f(ea,e3) = f(ea) + f(es), but perfect dependence between
A ={ea,e3} and B = {e1}, so f(e1,e2,e3) = f(ea,e3)

1

1

0.8
0.8

%6
06

(2] [}
] 0.4
04

0.2
0.2

0
0 1
0

0.5

0.5 0.5 0.5

e2 t el e2 o el

@ Note also, that for some of the extreme points, multiple orders
generate them.

e Consider extreme point x = (x1,x2,z3) = (1,1,0). Then we get
this either with orders (e1, ea,e3), or (e2, e1,e3). This is true since
fles.l{€sys €5, }) = 0 for all permutations o of {1,2,3}.
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Examples
[NNANNE RN

perfect dependence in 3D, entropy, and Bayesian networks

@ The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.
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Examples
[NNANNE RN

perfect dependence in 3D, entropy, and Bayesian networks

@ The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.

@ Consider three binary random variables X1, X5, X3 € {0, 1} that

factor w.r.t., the V-structure X7 — X3 < X9, where
X3 = X1 ® Xy, where & is the X-OR operator, and where X7 1L X5.
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Examples
[NNANNE RN

perfect dependence in 3D, entropy, and Bayesian networks

@ The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.

e Consider three binary random variables X7, X5, X3 € {0, 1} that
factor w.r.t., the V-structure X7 — X3 < X9, where
X3 = X1 ® Xo, where & is the X-OR operator, and where X7 1L X5.

e Consequently, X; 1L X; for any @ # j.
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Examples
[NNANNE RN

perfect dependence in 3D, entropy, and Bayesian networks

@ The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.

e Consider three binary random variables X7, X5, X3 € {0, 1} that
factor w.r.t., the V-structure X7 — X3 < X9, where
X3 = X1 ® Xo, where & is the X-OR operator, and where X7 1L X5.

e Consequently, X; I X; for any i # j.

@ Moreover, for any permutation o of {1,2,3}, we have the
relationship X, = X5, © Xo,.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014 F18/37 (pg.56/144)



Examples
[NNANNE RN

perfect dependence in 3D, entropy, and Bayesian networks

@ The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.

e Consider three binary random variables X7, X5, X3 € {0, 1} that
factor w.r.t., the V-structure X7 — X3 < X9, where
X3 = X1 ® Xo, where & is the X-OR operator, and where X7 1L X5.

e Consequently, X; I X; for any i # j.

@ Moreover, for any permutation o of {1,2, 3}, we have the
relationship X, = X4, ® Xos.

@ The entropy function f(A) = H(X4) is a submodular function that
will have the symmetric 3D polytope of the previous example.
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Examples
[NNANNRY BN

supp, sat, extremal z, perfect dependence

@ In general, for extremal x, sat(x) D supp(z).
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Examples
[NNANNRY BN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
x(supp(x) + e) = xz(supp(x)) since x(e) = 0.
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Examples
[NNANNRY BN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).

e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.

@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(z) + ¢;) = f(supp(x)). Proof:
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Examples
[NNANNRY BN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ;) = f(supp(x)). Proof:
e sat(z) is tight, as is supp(z), and hence

f(sat(x)) = x(sat(x)) = x(supp(x)) = f(supp(x)).
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Examples
[NNANNRY BN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ;) = f(supp(x)). Proof:
o sat(x) is tight, as is supp(z), and hence

[f(sat(z)) = a(sat(z)) = z(supp(z)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
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Examples
[NNANNRY BN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ;) = f(supp(x)). Proof:
o sat(x) is tight, as is supp(z), and hence
[f(sat(x)) = z(sat(x)) = z(supp(x)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
e But by the above, and monotonicity, we have for
e € sat(x) \ supp(z), that
0 = f(sat(x)| supp(x)) > f(e|supp()) > 0.
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Examples
[NNANNRY BN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ;) = f(supp(x)). Proof:
o sat(x) is tight, as is supp(z), and hence
[f(sat(x)) = z(sat(x)) = z(supp(x)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
e But by the above, and monotonicity, we have for
e € sat(z) \ supp(x), that
0 = f(sat(z)|supp(x)) > f(e|supp(x)) > 0.
e Hence f(e|supp(z)) =0,
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Examples
[NNANNRY BN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ;) = f(supp(x)). Proof:
o sat(x) is tight, as is supp(z), and hence
[ (sat(z)) = z(sat(x)) = z(supp(z)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
e But by the above, and monotonicity, we have for
e € sat(z) \ supp(x), that
0 = f(sat(z)|supp(x)) > f(e|supp(x)) > 0.
o Hence f(e|supp(z)) = 0, and moreover
F(e + supp(z)) = (e + supp(x)) = 2(supp(x)) = £ (supp(x)).
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Examples
[NNANNRY BN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ;) = f(supp(x)). Proof:
o sat(x) is tight, as is supp(z), and hence
[ (sat(z)) = z(sat(x)) = z(supp(z)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
e But by the above, and monotonicity, we have for
e € sat(z) \ supp(x), that
0 = f(sat(z)|supp(x)) > f(e|supp(x)) > 0.
o Hence f(e|supp(z)) = 0, and moreover
f(e+supp(z)) = (e + supp(z)) = z(supp(z)) = f(supp()).
@ Thus, for any extremal z, with sat(z) D supp(z), we see that for
e € sat(z) \ supp(x), we have supp(z) + e is also tight.
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Examples
[NNANNRY BN

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ;) = f(supp(x)). Proof:
o sat(x) is tight, as is supp(z), and hence
[f(sat(x)) = z(sat(x)) = z(supp(x)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
e But by the above, and monotonicity, we have for
e € sat(z) \ supp(x), that
0 = f(sat(z)|supp(x)) > f(e|supp(x)) > 0.
o Hence f(e|supp(z)) = 0, and moreover
f(e+supp(z)) = (e + supp(z)) = z(supp(z)) = f(supp()).
@ Thus, for any extremal z, with sat(z) D supp(z), we see that for
e € sat(z) \ supp(z), we have supp(z) + e is also tight.
@ Note also, for any A C sat(x) \ supp(x), we have
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Examples
[NNANNARR NI

supp, sat, perfect dependence

@ Note that all of these results hold when f is monotone
non-decreasing submodular (e.g., for a polymatroid function).
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Examples
[NNANNARR NI

supp, sat, perfect dependence

@ Note that all of these results hold when f is monotone
non-decreasing submodular (e.g., for a polymatroid function).

@ For modular functions, and extremal z, sat(z) = supp(x).
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Examples
[NNANNARR NI

supp, sat, perfect dependence

@ Note that all of these results hold when f is monotone
non-decreasing submodular (e.g., for a polymatroid function).

@ For modular functions, and extremal z, sat(x) = supp(x).

@ For general x € Py (not nec. extremal), sat(x) and supp(z) might
have an arbitrary relationship (but we want to strengthen this
relationship further, and we will do so below).
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Examples
[NNANNARR NI

supp, sat, perfect dependence

@ Note that all of these results hold when f is monotone
non-decreasing submodular (e.g., for a polymatroid function).

@ For modular functions, and extremal z, sat(x) = supp(x).

o For general x € Py (not nec. extremal), sat(x) and supp(z) might
have an arbitrary relationship (but we want to strengthen this
relationship further, and we will do so below).

@ For the most part, we are interested in these quantities when z is
extremal as we will see.
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Examples

supp and sat, example under limited curvature

@ Strict monotone f polymatroids, where f(e|E \ e) > 0, Ve.
e Example: f(A) = +/|A|, where all m! vertices of By are unique.

@ In such cases, taking any extremal point x € P; based on prefix
order E = (e1,...), where supp(x) C E, we have that
sat(x) = supp(z) since the largest tight set corresponds to
z(E;) = f(E;) for some i, and while any e € E'\ E; is such that
z(E; + e) = z(E;), there is no such e with f(E; +¢e) = f(E;).
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More on B ¢
[NNNANN

Another revealing theorem

Theorem 15.5.1

Let f be a polymatroid function and suppose that E£ can be partitioned
into (E1, By, ..., Ey) such that f(A) = % f(ANE;) forall AC E,
and k is maximum. Then the base polytope

‘Bf| ={x € Py:x(E) = f(E)} (the E-tight subset of Py) has dimension
E| —k.
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More on B ¢
[NNNANN

Another revealing theorem

Theorem 15.5.1

Let f be a polymatroid function and suppose that E£ can be partitioned
into (E1, By, ..., Ey) such that f(A) = % f(ANE;) forall AC E,
and k is maximum. Then the base polytope

‘Bf| ={x € Py:x(E) = f(E)} (the E-tight subset of Py) has dimension
E| —k.

@ Thus, “independence” between disjoint A and B (leading to a
rectangular projection of the polymatroid polytope) reduces the
dimension of the base polytope, as expected.
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More on B ¢
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Another revealing theorem

Theorem 15.5.1

Let f be a polymatroid function and suppose that E£ can be partitioned
into (E1, By, ..., Ey) such that f(A) = % f(ANE;) forall AC E,
and k is maximum. Then the base polytope

‘Bf| ={x € Py:x(E) = f(E)} (the E-tight subset of Py) has dimension
E| —k.

@ Thus, “independence” between disjoint A and B (leading to a
rectangular projection of the polymatroid polytope) reduces the
dimension of the base polytope, as expected.

@ Thus, any point z € By is a convex combination of at most
|E| — k + 1 vertices of By.
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Another revealing theorem

Theorem 15.5.1

Let f be a polymatroid function and suppose that E£ can be partitioned
into (E1, By, ..., Ey) such that f(A) = % f(ANE;) forall AC E,
and k is maximum. Then the base polytope

‘Bf| ={x € Py:x(E) = f(E)} (the E-tight subset of Py) has dimension
E| —k.

@ Thus, “independence” between disjoint A and B (leading to a
rectangular projection of the polymatroid polytope) reduces the
dimension of the base polytope, as expected.

@ Thus, any point z € By is a convex combination of at most
|E| — k + 1 vertices of By.

@ And if f does not have such independence, dimension of By is
|E| — 1 and any point « € By is a convex combination of at most
|E| vertices of By.
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More on B ¢
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Another revealing theorem

Theorem 15.5.1

Let f be a polymatroid function and suppose that E£ can be partitioned
into (E1, By, ..., Ey) such that f(A) = % f(ANE;) forall AC E,
and k is maximum. Then the base polytope

|Bf| ={x € Py:x(E) = f(E)} (the E-tight subset of Py) has dimension
E| —k.

e Example f with independence between A = {es,e3} and B = {e1},
i.e., el {ea, e3}, with By marked in green.
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More on B ¢
(LERRRN

Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VAC E, and z(E) = f(E)} always
exists.
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More on B ¢
(LERRRN

Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VAC E, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,

z(e1) = f({er}), w(e2) = f({e1, e2}) — f({e1}), and so on).
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More on B ¢
(LERRRN

Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VAC E, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,

z(e1) = f({er}), w(e2) = f({e1, e2}) — f({e1}), and so on).

@ From past lectures, we now know that:
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More on B ¢
(LERRRN

Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VAC E, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,

z(er) = f({er}), z(e2) = f({e1, e2}) — f({er}), and so on).
@ From past lectures, we now know that:
(].) T € Pf

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014 F23/37 (pg.81/144)



More on B ¢
(LERRRN

Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VAC E, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,
z(er) = f({er}), z(e2) = f({e1, e2}) — f({er}), and so on).

@ From past lectures, we now know that:
(1) z € Py
(2) z is an extreme point in Py
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More on B ¢
(LERRRN

Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VAC E, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,
z(er) = f({er}), z(e2) = f({e1, e2}) — f({er}), and so on).
@ From past lectures, we now know that:
(].) xr € Pf
(2) z is an extreme point in Py
(3) Since x is generated using an ordering of all of E, we have that

z(E) = f(E).
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More on B ¢
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VAC E, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,
z(er) = f({er}), z(e2) = f({e1, e2}) — f({er}), and so on).
@ From past lectures, we now know that:
(].) xr € Pf
(2) z is an extreme point in Py
(3) Since x is generated using an ordering of all of E, we have that

z(E) = f(E).
@ Thus z € By, and By is never empty.
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More on B ¢
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VAC E, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,
z(er) = f({er}), z(e2) = f({e1, e2}) — f({er}), and so on).
@ From past lectures, we now know that:
(].) xr € Pf
(2) z is an extreme point in Py
(3) Since x is generated using an ordering of all of E, we have that

z(E) = f(E).
@ Thus z € By, and By is never empty.

Moreover, in this case, x is a vertex of By since it is extremal.
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More on B ¢
(RERRRN

Base polytope property

@ Now, for any A C F, we can generate a particular point in By
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More on B ¢
(RERRRN

Base polytope property

@ Now, for any A C F, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,ea,...,¢;) , so that we have E; = A with
k= |A|.
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More on B ¢
(RERRRN

Base polytope property

@ Now, for any A C F, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,ea,...,¢;) , so that we have E; = A with
k= |A|.

e Note there are k!(n — k)! < n! such orderings.
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More on B ¢
(RERRRN

Base polytope property

@ Now, for any A C F, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,ea,...,¢;) , so that we have E; = A with
k= |A|.

e Note there are k!(n — k)! < n! such orderings.
e Generate z via greedy using this order, Vi, z(e;) = f(e;|Ei—1).
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More on B ¢
(RERRRN

Base polytope property

@ Now, for any A C F, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,ea,...,¢;) , so that we have E; = A with
k= |A|.

Note there are k!(n — k)! < n! such orderings.

Generate x via greedy using this order, Vi, z(e;) = f(e;|Ei—1).

(]

Then, we have generated a point  (a vertex, no less) in B such
that z(A) = f(A).
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More on B ¢
(RERRRN

Base polytope property

@ Now, for any A C F, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,ea,...,¢;) , so that we have E; = A with
k= |A|.

e Note there are k!(n — k)! < n! such orderings.
e Generate z via greedy using this order, Vi, z(e;) = f(e;|Ei—1).

@ Then, we have generated a point x (a vertex, no less) in By such
that z(A) = f(A).
@ Thus, for any A, we have

Brn{z e RF 1 z(A) = f(A)} #0 (15.2)
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More on B ¢
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Base polytope property

@ Now, for any A C F, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,ea,...,¢;) , so that we have E; = A with
k= |A|.

e Note there are k!(n — k)! < n! such orderings.
e Generate z via greedy using this order, Vi, z(e;) = f(e;|Ei—1).

@ Then, we have generated a point x (a vertex, no less) in By such
that z(A) = f(A).
@ Thus, for any A, we have

Brn{z e RF 1 z(A) = f(A)} #0 (15.2)

@ In words, By intersects all “multi-axis congruent” hyperplanes
within R¥ of the form {z € RF : z(A) = f(A)} for all A C E.
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More on Bf

By dominates P
@ In fact, every v € P; is dominated by x <y € By.

Theorem 15.5.2

If x € Py and T is tight for x (meaning x(T) = f(T)), then there exists
y € By withx <y and y(e) = z(e) fore € T.
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More on Bf

By dominates P
@ In fact, every x € P; is dominated by x <y € By.

Theorem 15.5.2

If x € Py and T is tight for x (meaning x(T) = f(T)), then there exists
y € By withx <y and y(e) = z(e) fore € T.

@ We construct the y algorithmically: initially set y < x.
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More on Bf

By dominates P

@ In fact, every x € P; is dominated by x <y € By.

Theorem 15.5.2

If x € Py and T is tight for x (meaning x(T) = f(T)), then there exists
y € By withx <y and y(e) = z(e) fore € T.

@ We construct the y algorithmically: initially set y < z.
@ y € Py, T is tight for y so y(T') = f(T).
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More on Bf

By dominates P
@ In fact, every x € P; is dominated by x <y € By.

Theorem 15.5.2

If x € Py and T is tight for x (meaning x(T) = f(T)), then there exists
y € By withx <y and y(e) = z(e) fore € T.

@ We construct the y algorithmically: initially set y < z.
e y € Py, T is tight for y so y(T') = f(T).

@ Recall saturation capacity: for y € Py, ¢(y;e) =
min {f(A) —y(A)VA > e} =max{a:a € R,y +al, € P}
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More on Bf

By dominates P

@ In fact, every x € P; is dominated by x <y € By.
Theorem 15.5.2

If x € Py and T is tight for x (meaning x(T) = f(T)), then there exists
y € By withx <y and y(e) = z(e) fore € T.

Proof.
@ We construct the y algorithmically: initially set y < z.
e y € Py, T is tight for y so y(T') = f(T).
@ Recall saturation capacity: for y € Py, ¢(y;e) =
min {f(A4) — y(A)|VA 3 e} =max{a: a € R,y + al. € Py}

@ Consider following algorithm:
e2
17+ T:
2 foreec E\T do
3 Ly%erc(y;e)le;T/eT’U{e}; é(y;e)

X e,
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Moreoan
(NERY AR

By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" 4+ ¢€) = y(T") + y(e) < f(T" + ), or
yle) < F(T" +e) —y(T")

—
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" +e) = y(T") + y(e) < f(T" +e), or
y(e) < f(T'+e) —y(T) =yle) + f(T' +e) —y(T' +e).

—
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" +e) = y(T") + y(e) < f(T" +e), or
y(e) < f(T'+e) —y(T') =yle) + f(T'+e) —y(T' +e).

o We set y(e)  y(e) + &(yi €) < y(e) + F(T' +€) — y(I' + ).
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" +e) = y(T") + y(e) < f(T" +e), or
y(e) < f(T'+e) —y(T') =yle) + f(T'+e) —y(T' +e).

o We set y(e) « y(e) + é(y;e) <yle)+ f(T" +e) —y(T' + e). Hence,

after each step, y € Py and ¢(y;e) > 0. (also, consider r.h. version of
é(y; e)).
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" +e) = y(T") + y(e) < f(T" +e), or
y(e) < f(T'+e) —y(T') =yle) + f(T'+e) —y(T' +e).

o We set y(e) « y(e) + é(y;e) <yle)+ f(T" +e) —y(T' + e). Hence,

after each step, y € Py and ¢(y;e) > 0. (also, consider r.h. version of
é(yse)).
@ Also, only y(e) for e ¢ T' changed, final y has y(e) = z(e) for e € T..
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" +e) = y(T") + y(e) < f(T" +e), or
y(e) < f(T'+e) —y(T') =yle) + f(T'+e) —y(T' +e).

o We set y(e) « y(e) + é(y;e) <yle)+ f(T" +e) —y(T' + e). Hence,

after each step, y € Py and ¢(y;e) > 0. (also, consider r.h. version of
é(yse)).
@ Also, only y(e) for e ¢ T changed, final y has y(e) = z(e) for e € T.
@ Let Sc o e be a set that achieves c(y;e) = f(Se) — y(Se).
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" +e) = y(T") + y(e) < f(T" +e), or
y(e) < f(T'+e) —y(T') =yle) + f(T'+e) —y(T' +e).

o We set y(e) « y(e) + é(y;e) <yle)+ f(T" +e) —y(T' + e). Hence,

after each step, y € Py and ¢(y;e) > 0. (also, consider r.h. version of
éy;e))-
@ Also, only y(e) for e ¢ T changed, final y has y(e) = z(e) for e € T.
o Let S. > e be a set that achieves c(y;e) = f(Se) — y(Se).
@ At iteration e, let y'(e) (resp. y(e)) be new (resp. old) entry for e, then
y'(Se) = y(Se \ {e}) +¥'(e) (15.3)
= y(Se \ {6}) + [y(e) + f(SE) - y(SeH = f(Se)
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" +e) = y(T") + y(e) < f(T" +e), or
y(e) < f(T'+e) —y(T') =yle) + f(T'+e) —y(T' +e).

o We set y(e) « y(e) + é(y;e) <yle)+ f(T" +e) —y(T' + e). Hence,

after each step, y € Py and ¢(y;e) > 0. (also, consider r.h. version of
éy;e))-
@ Also, only y(e) for e ¢ T changed, final y has y(e) = z(e) for e € T.
o Let S. > e be a set that achieves c(y;e) = f(Se) — y(Se).
o At iteration e, let 3/(e) (resp. y(e)) be new (resp. old) entry for e, then
y'(Se) = y(Se \ {e}) +¥'(e) (15.3)
= y(Se \ {6}) + [y(e) + f(Se) - y(se)} = f(Se)

So, S, is tight for /. It remains tight in further iterations since y
doesn’t decrease and it stays within P.
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By dominates P

... proof of Thm. 15;5.2 cont.

@ Each step maintains feasibility: consider one step adding e¢ to T — for
e ¢ T', feasibility requires y(T" +e) = y(T") + y(e) < f(T" +e), or
y(e) < f(T'+e) —y(T') =yle) + f(T'+e) —y(T' +e).

o We set y(e) « y(e) + é(y;e) <yle)+ f(T" +e) —y(T' + e). Hence,

after each step, y € Py and ¢(y;e) > 0. (also, consider r.h. version of
éy;e))-
@ Also, only y(e) for e ¢ T changed, final y has y(e) = z(e) for e € T.
o Let S. > e be a set that achieves c(y;e) = f(Se) — y(Se).
o At iteration e, let 3/(e) (resp. y(e)) be new (resp. old) entry for e, then
y'(Se) = y(Se \ {e}) +¥'(e) (15.3)
= y(Se \ {6}) + [y(e) + f(Se) - y(se)} = f(Se)

So, S, is tight for /. It remains tight in further iterations since y
doesn’t decrease and it stays within P.

o Also, E=TU chT Se is also tight, meaning the final y has y € By.
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Polytope example 1
@ vUbSserve:
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@ Is this a polymatroidal polytope?
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Polytope example 1

@ Is this a polymatroidal polytope?
o No, “Bf" doesn't intersect sets of the form {z : z(e) = f(e)} for
ec E.
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Polytope example 1

@ Is this a polymatroidal polytope?

o No, “Bf" doesn't intersect sets of the form {z : z(e) = f(e)} for
ec k.

@ This was generated using function g(0) =0, g(1) =3, g(2) =4,
and ¢(3) = 5.5. Then f(S) = ¢(|S|) is not submodular since (e.g.)
f(e1 es}) + f({e1,e2}) =444 =8 but
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Polytope example 2

@ UDbserve:
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Polytope example 2

@ UDbserve:

0.5
05

e2
@ Is this a polymatroidal polytope?

el

11
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More on B ¢
[RERERN |

Polytope example 2

@ UDbserve:

o 1 | e1 0.5
62 1 ! el
@ Is this a polymatroidal polytope?
e No, “Bf" (which would be a single point in this case) doesn't

intersect sets of the form {x : z(e) = f(e)} for e € E.
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More on B ¢
[RERERN |

Polytope example 2

0.5

05

= el
e2 ! el

@ Is this a polymatroidal polytope?

e No, “Bf" (which would be a single point in this case) doesn't
intersect sets of the form {x : z(e) = f(e)} for e € E.

e This was generated using function g(0) =0, g(1) =1, ¢g(2) = 1.8,
and g(3) = 3. Then f(S) = ¢(]S]) is not submodular since (e.g.)
f({er,es}) + f({e1,e2}) = 1.8+ 1.8 = 3.6 but
f({e1,e2,e3}) + f({er}) =3+1=4.
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Exchange Capacity
[NRRRN

Review

The next slide is review from lecture 13.
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Exchange Capacity
(NN

Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (15.22)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.
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Exchange Capacity
(NR AR

Matroids and Exchange

@ Recall, matroids have a number of “exchange” properties.
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Exchange Capacity
(NR AR

Matroids and Exchange

@ Recall, matroids have a number of “exchange” properties.

@ Also, recall that given a matroid M = (E,Z),if [ € T is
independent, and e € span(I), and ¢’ € C(I,e) where C(I,¢) is the
fundamental circuit created when adding e to I, then we have:

I+e—¢eZ (15.4)
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Exchange Capacity
(NR AR

Matroids and Exchange

@ Recall, matroids have a number of “exchange” properties.

@ Also, recall that given a matroid M = (E,Z),if [ € T is
independent, and e € span(I), and ¢’ € C(I,e) where C(I,¢) is the
fundamental circuit created when adding e to I, then we have:

I+e—€ €T (15.4)

@ Note, this holds for any ¢/ € C(I,¢).
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Exchange Capacity
(NR AR

Matroids and Exchange

@ Recall, matroids have a number of “exchange” properties.

@ Also, recall that given a matroid M = (E,Z),if [ € T is
independent, and e € span(I), and ¢’ € C(I,e) where C(I,¢) is the
fundamental circuit created when adding e to I, then we have:

I+e—€ €T (15.4)

e Note, this holds for any ¢’ € C(I,¢).

@ Since dep(z, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.
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Exchange Capacity
(NR AR

Matroids and Exchange

@ Recall, matroids have a number of “exchange” properties.

@ Also, recall that given a matroid M = (E,Z),if [ € T is
independent, and e € span(I), and ¢’ € C(I,e) where C(I,¢) is the
fundamental circuit created when adding e to I, then we have:

I+e—€ €T (15.4)

o Note, this holds for any ¢’ € C(I,e).

@ Since dep(z, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

@ As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?
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Exchange Capacity
(NR AR

Matroids and Exchange

@ Recall, matroids have a number of “exchange” properties.

@ Also, recall that given a matroid M = (E,Z),if [ € T is
independent, and e € span(I), and ¢’ € C(I,e) where C(I,¢) is the
fundamental circuit created when adding e to I, then we have:

I+e—€ €T (15.4)

e Note, this holds for any ¢’ € C(I,¢).

@ Since dep(z, e) generalizes the fundamental circuit of a matroid to
polymatroids, we saw (last lecture) that this a property exists for
polymatroids as well.

@ As there is saturation capacity for elements that are not saturated,
is there is a corresponding concept for degree of polymatroidal
exchange?

@ Yes, and it is called the “exchange capacity”

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 15 - May 19th, 2014 F31/37 (pg.122/144



Exchange Capacity
(NNE RN

Exchange Capacity

e Consider z € Py, e € sat(x) and €’ € dep(z,e) \ {e}
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Exchange Capacity
(NNE RN

Exchange Capacity

o Consider z € Py, e € sat(x) and €’ € dep(z,e) \ {e}
@ Thus, for any a > 0, we have = + al, ¢ Py for either a =e ora = e,
since dep(z, e) C sat(z).
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Exchange Capacity
(NNE RN

Exchange Capacity

o Consider z € Py, e € sat(x) and €’ € dep(z,e) \ {e}

@ Thus, for any a > 0, we have = + al, ¢ Py for either a =e or a = e,
since dep(z, e) C sat(z).

@ Examples:
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Exchange Capacity
(NNE RN

Exchange Capacity

o Consider z € Py, e € sat(x) and €’ € dep(z,e) \ {e}

@ Thus, for any a > 0, we have = + al, ¢ Py for either a =e or a = e,
since dep(z, e) C sat(z).

@ Examples:

X

e e

@ How much can we move in positive e direction if we simultaneously
move in negative ¢’ direction?
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Exchange Capacity
(NERT N

Exchange Capacity

@ x € Py, e csat(x) and € € dep(z,e) \ {e}, consider
max{a:a € R,z +a(l.—1y) € Py} (15.5)
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Exchange Capacity
(NERT N

Exchange Capacity

® x € Py, e €sat(x) and €’ € dep(z,e) \ {e}, consider
max{a:a Rz +a(l.— 1) € Py} (15.5)
@ Identical to:

max{a:a €R,(z+ a(le — 1)) (A) < f(A),VA} (15.6)
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Exchange Capacity
(NERT N

Exchange Capacity

® x € Py, e €sat(x) and €’ € dep(z,e) \ {e}, consider
max{a:a Rz +a(l.— 1) € Py} (15.5)
@ ldentical to:

max{a:a €R, (z+ a(le — 1)) (A) < f(A),VA} (15.6)

e If both e,¢’ € A (or neither), then a(1. — 1./)(A) = 0 for any «, so
to make this meaningful, we take A: ¢’ ¢ A >e.
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Exchange Capacity
(NERT N

Exchange Capacity

® x € Py, e €sat(x) and €’ € dep(z,e) \ {e}, consider
max{a:a Rz +a(l.— 1) € Py} (15.5)
@ ldentical to:

max{a:a €R, (z+ a(le — 1)) (A) < f(A),VA} (15.6)

o If both e,¢’ € A (or neither), then a(1. — 1./)(A) = 0 for any «, so
to make this meaningful, we take A: ¢’ ¢ A >e.
@ thus identical to

max{a:a €R, (z+a(le—1))(A) < f(A),VA2 e e ¢ A}
(15.7)
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Exchange Capacity
(NERT N

Exchange Capacity

® x € Py, e €sat(x) and €’ € dep(z,e) \ {e}, consider
max{a:a Rz +a(l.— 1) € Py} (15.5)
@ ldentical to:

max{a:a €R, (z+ a(le — 1)) (A) < f(A),VA} (15.6)

o If both e,¢’ € A (or neither), then a(1. — 1./)(A) = 0 for any «, so
to make this meaningful, we take A: ¢’ ¢ A >e.
@ thus identical to

max{a:a €R, (z+a(le—1))(A) < f(A),VA2 e, e ¢ A}
(15.7)

@ Which is identical to:

max {a: o € R,a(l, — 1))(A) < f(A) — z(A),VA D {e}, € ¢ A}
(15.8)
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Exchange Capacity
(NNARY}

Exchange Capacity

@ In such case, we get 1./(A) = 0, thus above identical to

max {a: o € R,al(A4) < f(A) —2(A),VA D {e},¢' ¢ A} (15.9)
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Exchange Capacity
(NNARY}

Exchange Capacity

@ In such case, we get 1./(A) = 0, thus above identical to
max {o: o € R,al(A) < f(A) —z(A),VA D {e},¢' ¢ A} (15.9)
@ Restating, we've got

max {o: o € Ra < f(A) —x(A),VA D {e},e' ¢ A} (15.10)
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Exchange Capacity
(NNARY}

Exchange Capacity

@ In such case, we get 1./(A) = 0, thus above identical to
max {o: o € R,al(A) < f(A) —z(A),VA D {e},¢' ¢ A} (15.9)
@ Restating, we've got
max{a:a € R a< f(A) —x(A),VAD {e}, e ¢ A}  (15.10)
@ This max is achieved when

a=é(x;e,e) :C min { f(A (A),VAD {e}, ¢ ¢ A} (15.11)
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Exchange Capacity
(NNARY}

Exchange Capacity

@ In such case, we get 1./(A) = 0, thus above identical to
max {o: o € R,al(A) < f(A) —z(A),VA D {e},¢' ¢ A} (15.9)
@ Restating, we've got
max{a:a € R a< f(A) —x(A),VAD {e}, e ¢ A}  (15.10)
@ This max is achieved when
a=é(zie,e)  min {f(A) — 2(A),VA D {e},¢' ¢ A} (15.11)

@ ¢(x;e,€) is known as the exchange capacity associated with z € Py
and e.
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Exchange Capacity
(NNARY}

Exchange Capacity

@ In such case, we get 1./(A) = 0, thus above identical to
max {o: o € R,al(A) < f(A) —z(A),VA D {e},¢' ¢ A} (15.9)
@ Restating, we've got
max{a:a € R a< f(A) —x(A),VAD {e}, e ¢ A}  (15.10)
@ This max is achieved when
a=é(zie,e)  min {f(A) — 2(A),VA D {e},¢' ¢ A} (15.11)

o ¢(x;e,€) is known as the exchange capacity associated with « € Py
and e.
@ For any av with 0 < av < ¢é(x;e,€’), we have that  + a(1. — 1) € Py,
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Exchange Capacity
(NNARY}

Exchange Capacity

@ In such case, we get 1./(A) = 0, thus above identical to
max {o: o € R,al(A) < f(A) —z(A),VA D {e},¢' ¢ A} (15.9)
@ Restating, we've got
max{a:a € R a< f(A) —x(A),VAD {e}, e ¢ A}  (15.10)
@ This max is achieved when
a=é(zie,e)  min {f(A) — 2(A),VA D {e},¢' ¢ A} (15.11)

o ¢(x;e,€) is known as the exchange capacity associated with « € Py
and e.

e For any o with 0 < a < é(x;e,€’), we have that z + a1, — 1) € Py.

o As we will see, if e and ¢’ are successive in an order that generates
extreme point x, then we get a “neighbor” extreme point via
¥ =xz+é(xye e)(le — 1o).
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Exchange Capacity
(NNARY}

Exchange Capacity

@ In such case, we get 1./(A) = 0, thus above identical to
max {o: o € R,al(A) < f(A) —z(A),VA D {e},¢' ¢ A} (15.9)
@ Restating, we've got
max{a:a € R a< f(A) —x(A),VAD {e}, e ¢ A}  (15.10)
@ This max is achieved when
a=é(zie,e)  min {f(A) — 2(A),VA D {e},¢' ¢ A} (15.11)

o ¢(x;e,€) is known as the exchange capacity associated with « € Py
and e.

e For any o with 0 < a < é(x;e,€’), we have that z + a1, — 1) € Py.

@ As we will see, if e and ¢’ are successive in an order that generates
extreme point x, then we get a “neighbor” extreme point via
¥ =x+é(rye,e)(le — o).

e Note that Eqn. (15.11) is a form of SFM.
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Min-Norm Point and SFM
[N

A polymatroid function's polyhedron is a polymatroid.

Theorem 15.7.1

Let f be a submodular function defined on subsets of E. For any
x € RE, we have:

rank(z) = max (y(E) : y < z,y € Py) =min (x(A) + f(E\A): ACE)
(15.5)

Essentially the same theorem as Theorem ?7. Taking x = 0 we get:

Corollary 15.7.2

Let f be a submodular function defined on subsets of E. x € RE, we
have:

rank(0) = max (y(F) : y <0,y € Py) =min(f(A): ACE) (15.6)
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Min-Norm Point and SFM
i

Min-Norm Point: Definition

@ Restating what we saw before, we have:

max {y(E)|y € P,y <0} =min{f(X)|X CV} (15.12)
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Min-Norm Point and SFM
i

Min-Norm Point: Definition

@ Restating what we saw before, we have:

max {y(E)|y € Pr,y <0} =min {f(X)|X CV} (15.12)

@ Consider the optimization:
minimize |23 (15.13a)
subject to x € By (15.13b)

where By is the base polytope of submodular f, and
2|3 = > cp z(e)? is the squared 2-norm. Let 2* be the optimal
solution.
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Min-Norm Point and SFM
i

Min-Norm Point: Definition

@ Restating what we saw before, we have:

max {y(E)|y € Pr,y <0} =min {f(X)|X CV} (15.12)

o Consider the optimization:
minimize 2|3 (15.13a)

subject to x € By (15.13b)

where By is the base polytope of submodular f, and
|z||3 = > cp (e)? is the squared 2-norm. Let 2* be the optimal
solution.

@ Note, z* is the unique optimal solution since we have a strictly
convex objective over a set of convex constraints.
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Min-Norm Point and SFM
i

Min-Norm Point: Definition

@ Restating what we saw before, we have:

max {y(E)|y € Pr,y <0} =min {f(X)|X CV} (15.12)

o Consider the optimization:
minimize 2|3 (15.13a)

subject to x € By (15.13b)

where By is the base polytope of submodular f, and
|z||3 = > cp (e)? is the squared 2-norm. Let 2* be the optimal
solution.

@ Note, z* is the unique optimal solution since we have a strictly
convex objective over a set of convex constraints.

@ z* is called the minimum norm point of the base polytope.
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Min-Norm Point and SFM
(Nl ]

Min-Norm Point: Examples
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