

Announcements, Assignments, and Reminders

• Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

Prof. Jeff Bilmes

Logistics

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

F3/38 (pg.3/38)

Logistics		Review
Class Road Map - IT-I		
 L1 (3/31): Motivation, Applications, & Basic Definitions L2: (4/2): Applications, Basic Definitions, Properties L3: More examples and properties (e.g., closure properties), and examples, spanning trees L4: proofs of equivalent definitions, independence, start matroids L5: matroids, basic definitions and examples L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation L7: Dual Matroids, other matroid properties, Combinatorial Geometries L8: Combinatorial Geometries L8: Combinatorial Geometries L9: From Matroid Polytopes to Polymatroids. L10: Polymatroids and Submodularity 	 L11: More properties of polymatroids, SFM special cases L12: polymatroid properties, extreme points polymatroids, L13: sat, dep, supp, exchange capacity, examples L14: Lattice theory: partially ordered sets; lattices; distributive, modular, submodular, and boolean lattices; ideals and join irreducibles. L15: Supp, Base polytope, exchange capacity, minimum norm point algorithm and the lattice of minimizers of a submodular function, Lovasz extension L16: L17: L18: L19: L20: 	
Finals Week: Jun Prof. Jeff Bilmes EE596b/Spring 2014/2	e 9th-13th, 2014. Submodularity - Lecture 13 - May 14th, 2014	F4/38 (pg.4/38)

Tight sets $\mathcal{D}(y)$ are closed, and max tight set $\operatorname{sat}(y)$

Recall the definition of the set of tight sets at $y \in P_f^+$:

$$\mathcal{D}(y) \triangleq \{A : A \subseteq E, \ y(A) = f(A)\}$$
(13.18)

Theorem 13.2.1

For any $y \in P_f^+$, with f a polymatroid function, then $\mathcal{D}(y)$ is closed under union and intersection.

Proof.

We have already proven this as part of Theorem ??

Also recall the definition of sat(y), the maximal set of tight elements relative to $y \in \mathbb{R}^E_+$.

$$\operatorname{sat}(y) \stackrel{\text{def}}{=} \bigcup \{T : T \in \mathcal{D}(y)\}$$
(13.19)

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

F5/38 (pg.5/38)

Review

Logistics

Review

Fundamental circuits in matroids

Lemma 13.2.3

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup \{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C₁, C₂ such that C₁ ∪ C₂ ⊆ I ∪ {e}.
- Then $e \in C_1 \cap C_2$, and by (C2), there is a circuit C_3 of M s.t. $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\} \subseteq I$
- This contradicts the independence of *I*.

In general, let C(I, e) be the unique circuit associated with $I \cup \{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).

Logistics

Matroid Partition Problem

Theorem 13.2.1

Let M_i be a collection of k matroids as described. Then, a set $S \subseteq E$ can be partitioned into k subsets $I_i, i = 1 \dots k$ where $I_i \in \mathcal{I}_i$ is independent in matroid i, if and only if, for all $A \subseteq S$

$$|A| \le \sum_{i=1}^{k} r_i(A) \tag{13.1}$$

Review

F7/38 (pg.7/38)

where r_i is the rank function of M_i .

• Now, if all matroids are the same $M_i = M$ for all i, we get condition

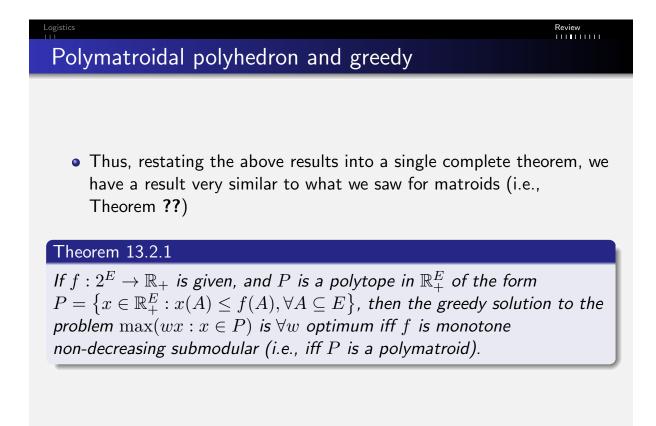
$$|A| \le kr(A) \quad \forall A \subseteq E \tag{13.2}$$

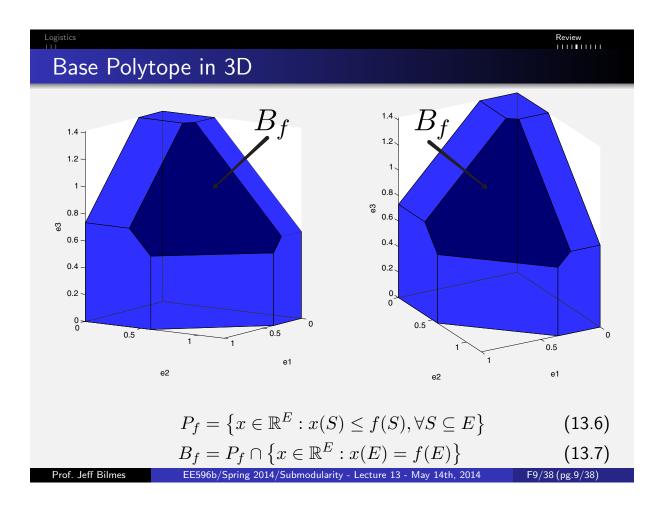
ullet But considering vector of all ones $\mathbf{1}\in\mathbb{R}^E_+$, this is the same as

$$\frac{1}{k}|A| = \frac{1}{k}\mathbf{1}(A) \le r(A) \quad \forall A \subseteq E$$
(13.3)

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014





Logistics

Review ↓↓↓↓↓

Polymatroid extreme points

Theorem 13.2.1

For a given ordering $E = (e_1, \ldots, e_m)$ of E and a given $E_i = (e_1, \ldots, e_i)$ and x generated by E_i using the greedy procedure $(x(e_i) = f(e_i|E_{i-1}))$, then x is an extreme point of P_f

Proof.

- We already saw that $x \in P_f$ (Theorem ??).
- To show that x is an extreme point of P_f , note that it is the unique solution of the following system of equations

$$x(E_j) = f(E_j) \text{ for } 1 \le j \le i \le m \tag{13.10}$$

$$x(e) = 0 \text{ for } e \in E \setminus E_i \tag{13.11}$$

There are $i \leq m$ equations and $i \leq m$ unknowns, and simple Gaussian elimination gives us back the x constructed via the Greedy algorithm!!

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F10/38 (pg.10/38)

Polymatroid extreme points

• Moreover, we have (and will ultimately prove)

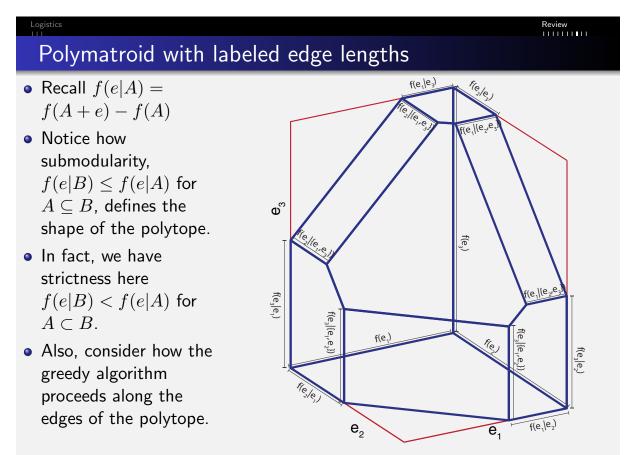
Corollary 13.2.2

If x is an extreme point of P_f and $B \subseteq E$ is given such that $supp(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \cup (A : x(A) = f(A)) = sat(x),$ then x is generated using greedy by some ordering of B.

- Note, sat(x) = cl(x) = ∪(A : x(A) = f(A)) is also called the closure of x (recall that sets A such that x(A) = f(A) are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem ??)
- Thus, cl(x) is a tight set.
- Also, $supp(x) = \{e \in E : x(e) \neq 0\}$ is called the support of x.
- For arbitrary x, supp(x) is not necessarily tight, but for an extreme point, supp(x) is.

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

F11/38 (pg.11/38)



Prof. Jeff Bilmes

Review

Minimizers of a Submodular Function form a lattice

Theorem 13.2.2

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $\overline{A} \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A) = f(B) \le f(A \cap B)$ and $f(A) = f(B) \le f(A \cup B)$. By submodularity, we have

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$
 (13.9)

Hence, we must have $f(A) = f(B) = f(A \cup B) = f(A \cap B)$.

Thus, the minimizers of a submodular function form a lattice, and there is a maximal and a minimal minimizer of every submodular function.

Prof. Jeff Bilm

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

The sat function = Polymatroid Closure

Review

• Matroid closure is generalized by the unique maximal el

- Matroid closure is generalized by the unique maximal element in D(x), also called the polymatroid closure or sat (saturation function).
- For some $x \in P_f$, we have defined:

$$\mathsf{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \left\{ A : A \in \mathcal{D}(x) \right\}$$
(13.9)

$$= \bigcup \{A : A \subseteq E, x(A) = f(A)\}$$
(13.10)

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
(13.11)

- Hence, sat(x) is the maximal (zero-valued) minimizer of the submodular function $f_x(A) \triangleq f(A) x(A)$.
- Eq. (13.11) says that sat consists of any point x that is P_f saturated (any additional positive movement, in that dimension, leaves P_f). We'll revisit this in a few slides.
- First, we see how sat generalizes matroid closure.

The sat function = Polymatroid Closure

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\}$$
(13.1)

and

$$\operatorname{sat}(\mathbf{1}_{I}) = \bigcup \left\{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_{I}) \right\}$$
(13.2)

$$= \bigcup \left\{ A : A \subseteq E, \mathbf{1}_I(A) = r(A) \right\}$$
(13.3)

$$= \bigcup \{A : A \subseteq E, |I \cap A| = r(A)\}$$
(13.4)

- Notice that $\mathbf{1}_I(A) = |I \cap A| \le |I|$.
- Intuitively, consider an $A \supset I \in \mathcal{I}$ that doesn't increase rank, meaning r(A) = r(I). If $r(A) = |I \cap A| = r(I \cap A)$, as in Eqn. (13.4), then A is in I's span, so should get $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$.
- We formalize this next.

Prof. Jeff Bilmes

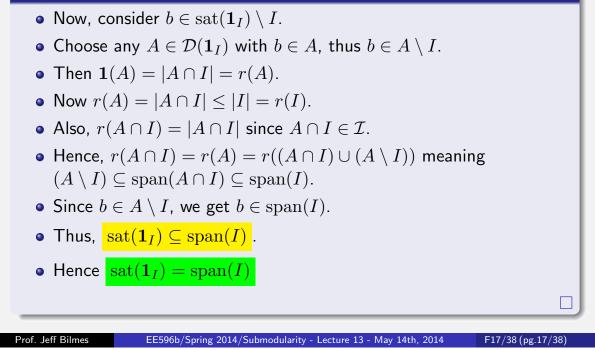
EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

F15/38 (pg.15/38)

The sat function = Polymatroid Closure
Lemma 13.3.1 (Matroid sat :
$$\mathbb{R}^E_+ \to 2^E$$
 is the same as closure.)
For $I \in \mathcal{I}$, we have sat $(\mathbf{1}_I) = \text{span}(I)$ (13.5)
Proof.
• For $\mathbf{1}_I(I) = |I| = r(I)$, so $I \in \mathcal{D}(\mathbf{1}_I)$ and $I \subseteq \text{sat}(\mathbf{1}_I)$. Also,
 $I \subseteq \text{span}(I)$.
• Consider some $b \in \text{span}(I) \setminus I$.
• Then $I \cup \{b\} \in \mathcal{D}(\mathbf{1}_I)$ since $\mathbf{1}_I(I \cup \{b\}) = |I| = r(I \cup \{b\}) = r(I)$.
• Thus, $b \in \text{sat}(\mathbf{1}_I)$.
• Therefore, $\text{sat}(\mathbf{1}_I) \supseteq \text{span}(I)$.
...

The sat function = Polymatroid Closure

... proof continued.



Closure/Sat

Fund. Circuit/Dep

The sat function = Polymatroid Closure

- Now, consider a matroid (E, r) and some C ⊆ E with C ∉ I, and consider 1_C. Is 1_C ∈ P_r? No, it might not be a vertex, or even a member, of P_r.
- span(·) operates on more than just independent sets, so span(C) is perfectly sensible.
- Note $\operatorname{span}(C) = \operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_B \leq \mathbf{1}_C \leq \mathbf{1}_{\operatorname{span}(C)}$, and that $\mathbf{1}_B \in P_r$. We can then make the definition:

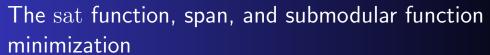
$$\operatorname{sat}(\mathbf{1}_C) \triangleq \operatorname{sat}(\mathbf{1}_B) \text{ for } B \in \mathcal{B}(C)$$
 (13.6)

In which case, we also get $sat(\mathbf{1}_C) = span(C)$ (in general, could define $sat(y) = sat(\mathsf{P}\text{-}\mathsf{basis}(y))$).

• However, consider the following form

$$\operatorname{sat}(\mathbf{1}_C) = \bigcup \left\{ A : A \subseteq E, |A \cap C| = r(A) \right\}$$
(13.7)

Exercise: is $\operatorname{span}(C) = \operatorname{sat}(\mathbf{1}_C)$? Prove or disprove it.



- Thus, for a matroid, $\operatorname{sat}(\mathbf{1}_I)$ is exactly the closure (or span) of I in the matroid. I.e., for matroid (E, r), we have $\operatorname{span}(I) = \operatorname{sat}(\mathbf{1}_B)$.
- Recall, for x ∈ P_f and polymatroidal f, sat(x) is the maximal (by inclusion) minimizer of f(A) x(A), and thus in a matroid, span(I) is the maximal minimizer of the submodular function formed by r(A) 1_I(A).
- Submodular function minimization can solve "span" queries in a matroid or "sat" queries in a polymatroid.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

F19/38 (pg.19/38)

Closure/Sat Sat, as tight polymatroidal elements

- We are given an $x \in P_f^+$ for submodular function f.
- Recall that for such an x, sat(x) is defined as

$$sat(x) = \bigcup \{A : x(A) = f(A)\}$$
 (13.8)

• We also have stated that sat(x) can be defined as:

$$\operatorname{sat}(x) = \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
(13.9)

• We next show more formally that these are the same.

sat, as tight polymatroidal elements

_

• Lets start with one definition and derive the other.

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
(13.10)

$$= \{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \}$$
(13.11)

$$= \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
 (13.12)

• this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$. Continuing, we get $\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$ (13.13)

• given that $x \in P_f^+$, meaning $x(A) \leq f(A)$ for all A, we must have

$$\operatorname{sat}(x) = \{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A) \}$$
(13.14)

$$= \{e : \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
(13.15)

• So now, if A is any set such that x(A) = f(A), then we clearly have $\forall e \in A, e \in \operatorname{sat}(x)$, and therefore that $\operatorname{sat}(x) \supseteq A$ (13.16)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F21/38 (pg.21/

sat, as tight polymatroidal elements

• ... and therefore, with sat as defined in Eq. (??),

$$\operatorname{sat}(x) \supseteq \bigcup \left\{ A : x(A) = f(A) \right\}$$
(13.17)

On the other hand, for any e ∈ sat(x) defined as in Eq. (13.15), since e is itself a member of a tight set, there is a set A ∋ e such that x(A) = f(A), giving

 $\operatorname{sat}(x) \subseteq \bigcup \left\{ A : x(A) = f(A) \right\}$ (13.18)

• Therefore, the two definitions of sat are identical.

Closure/Sat

Saturation Capacity

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_f$, and $e \in E$, consider finding

$$\max\left\{\alpha: \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f\right\}$$
(13.19)

• This is identical to:

$$\max\left\{\alpha: (x+\alpha \mathbf{1}_e)(A) \le f(A), \forall A \supseteq \{e\}\right\}$$
(13.20)

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_e$ adjustment, meaning $(x + \alpha \mathbf{1}_e)(B) = x(B)$.

• Again, this is identical to:

$$\max\left\{\alpha: x(A) + \alpha \le f(A), \forall A \supseteq \{e\}\right\}$$
(13.21)

or

$$\max\left\{\alpha:\alpha\leq f(A)-x(A),\forall A\supseteq\left\{e\right\}\right\}$$
(13.22)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

Closure/Sat Saturation Capacity

The max is achieved when

$$\alpha = \hat{c}(x;e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
(13.23)

- $\hat{c}(x; e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min\left\{f(A) - x(A), \forall A \ni e\right\}$$
(13.24)

$$= \max \left\{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \right\}$$
(13.25)

- We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x;e) > 0.$
- Also, for $e \in \operatorname{sat}(x)$, we have that $\hat{c}(x; e) = 0$.
- Note that any α with $0 \leq \alpha \leq \hat{c}(x; e)$ we have $x + \alpha \mathbf{1}_e \in P_f$.
- We also see that computing $\hat{c}(x; e)$ is a form of submodular function minimization.

F23/38 (pg.23/38)

Fund. Circuit/Dep

Dependence Function

Prof. Jeff Bilmes

F25/38 (pg.25/38)

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_f$, and $e \in \operatorname{sat}(x)$, define

$$\mathcal{D}(x,e) = \{A : e \in A \subseteq E, x(A) = f(A)\}$$
(13.26)

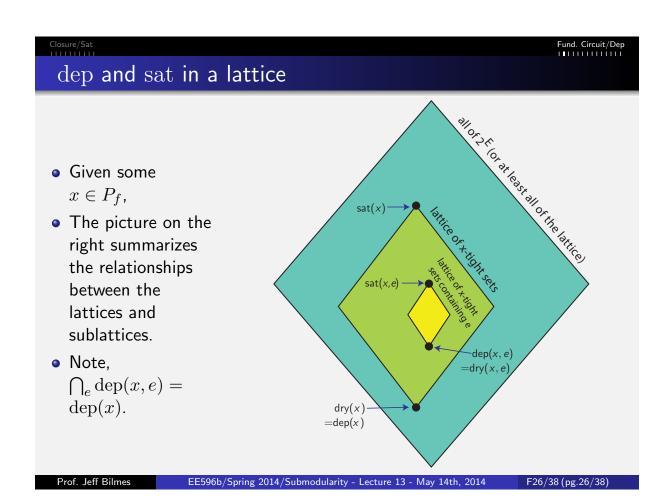
$$= \mathcal{D}(x) \cap \{A : A \subseteq E, e \in A\}$$
(13.27)

- Thus, $\mathcal{D}(x, e) \subseteq \mathcal{D}(x)$, and $\mathcal{D}(x, e)$ is a sublattice of $\mathcal{D}(x)$.
- Therefore, we can define a unique minimal element of $\mathcal{D}(x,e)$ denoted as follows:

$$dep(x,e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$$
(13.28)

• I.e., dep(x, e) is the minimal element in $\mathcal{D}(x)$ that contains e (the minimal x-tight set containing e).

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014



dep and sat in a lattice

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $sat(x) = \bigcup \{A : A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $dry(x) \stackrel{\text{def}}{=} \bigcap \{A : A \in \mathcal{D}(x)\}$
- We can see dry(x) as the elements that are necessary for tightness.
- That is, we can equivalently define dry(x) as

$$dry(x) = \left\{ e' : x(A) < f(A), \forall A \not\ni e' \right\}$$
(13.29)

- This can be read as, for any e' ∈ dry(x), any set that does not contain e' is not tight for x (any set A that is missing any element of dry(x) is not tight).
- Perhaps, then, a better name for dry is ntight(x), for the necessary for tightness (but we'll actually use neither name).
- Note that dry need not be the empty set. Exercise: give example.

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

Closure/Sat

An alternate expression for dep = dry

- Now, given $x \in P_f$, and $e \in sat(x)$, recall distributive sub-lattice of *e*-containing tight sets $\mathcal{D}(x, e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x, e) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x, e)\}.$
- Analogously, we can define the "0" element of this sub-lattice as $dry(x, e) \stackrel{\text{def}}{=} \bigcap \{A : A \in \mathcal{D}(x, e)\}.$
- We can see dry(x, e) as the elements that are necessary for e-containing tightness, with e ∈ sat(x).
- That is, we can view dry(x, e) as

$$\operatorname{dry}(x, e) = \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\}$$
(13.30)

- This can be read as, for any $e' \in dry(x, e)$, any *e*-containing set that does not contain e' is not tight for x.
- But actually, dry(x, e) = dep(x, e), so we have derived another expression for dep(x, e) in Eq. (13.30).

Fund. Circuit/Dep

Dependence Function and Fundamental Matroid Circuit

- Now, let $(E, \mathcal{I}) = (E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_I \in P_r$. We have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I) = \operatorname{closure}(I)$.
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.
- Then I ∩ A serves as a base for A (i.e., I ∩ A spans A) and any such A contains a circuit (i.e., we can add e ∈ A \ I to I ∩ A w/o increasing rank).
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, and consider $\operatorname{dep}(\mathbf{1}_I, e)$, with

$$dep(\mathbf{1}_I, e) = \bigcap \{A : e \in A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
(13.31)

$$= \bigcap \left\{ A : e \in A \subseteq E, |I \cap A| = r(A) \right\}$$
(13.32)

$$= \bigcap \{A : e \in A \subseteq E, r(A) - |I \cap A| = 0\}$$
(13.33)

- By SFM lattice, \exists a unique minimal $A \ni e$ with $|I \cap A| = r(A)$.
- Thus, $dep(\mathbf{1}_I, e)$ must be a circuit since if it included more than a circuit, it would not be minimal in this sense.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

Closure/Sat

Fund. Circuit/Dep

F29/38 (pg.29/38)

Dependence Function and Fundamental Matroid Circuit

- Therefore, when e ∈ sat(1_I) \ I, then dep(1_I, e) = C(I, e) where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if e ∈ sat(1_I) ∩ I with I ∈ I, we said that C(I, e) was undefined (since no circuit is created in this case) and so we defined it as C(I, e) = {e}
- In this case, for such an e, we have dep(1_I, e) = {e} since all such sets A ∋ e with |I ∩ A| = r(A) contain e, but in this case no cycle is created, i.e., |I ∩ A| ≥ |I ∩ {e}| = r(e) = 1.
- We are thus free to take subsets of *I* as *A*, all of which must contain *e*, but all of which have rank equal to size.
- Also note: in general for $x \in P_f$ and $e \in sat(x)$, we have dep(x, e) is tight by definition.

Summary of sat, and dep

• For $x \in P_f$, sat(x) (span, closure) is the maximal saturated (x-tight) set w.r.t. x. I.e., sat $(x) = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$. That is,

$$\mathsf{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \triangleq \bigcup \left\{ A : A \in \mathcal{D}(x) \right\}$$
(13.34)

$$= \bigcup \left\{ A : A \subseteq E, x(A) = f(A) \right\}$$
(13.35)

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
(13.36)

For e ∈ sat(x), we have dep(x, e) (fundamental circuit) is the minimal (common) saturated (x-tight) set w.r.t. x containing e. That is,

$$dep(x,e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in \operatorname{sat}(x) \\ \emptyset & \text{else} \end{cases}$$
$$= \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f\}$$
(13.37)

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F31

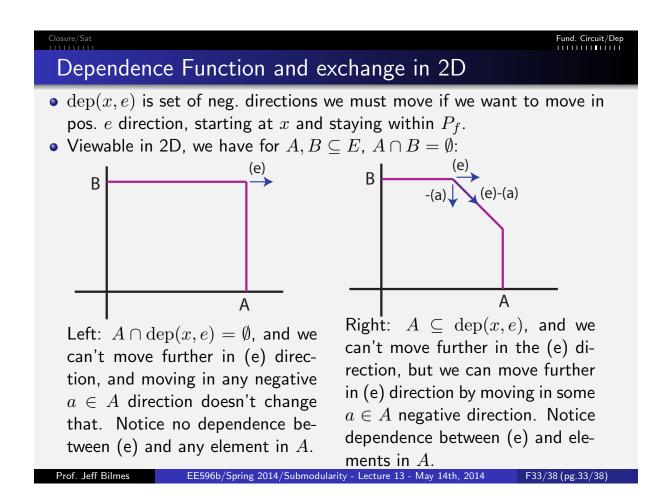
Closure/Sat

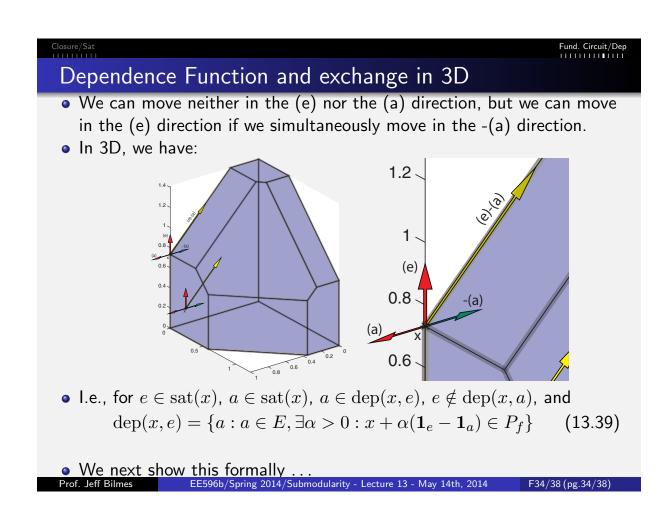
Dependence Function and exchange

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for e ∈ sat(x), any x + α1_e ∉ P_f for α > 0. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \setminus I$, we have that

$$C(I, e) = \{a \in E : I + e - a \in \mathcal{I}\}$$
(13.38)

- I.e., an addition of e to I stays within \mathcal{I} only if we simultaneously remove one of the elements of C(I, e).
- But, analogous to the circuit case, is there an exchange property for dep(x, e) in the form of vector movement restriction?
- We might expect the vector dep(x, e) property to take the form: a positive move in the *e*-direction stays within P_f^+ only if we simultaneously take a negative move in one of the dep(x, e)directions.





dep and exchange derived

 The derivation for dep(x, e) involves turning a strict inequality into a non-strict one with a strict explicit slack variable α:

$$dep(x,e) = \mathsf{ntight}(x,e) =$$
(13.40)

$$= \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\}$$
(13.41)

$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \le f(A) - x(A), \forall A \not\ni e', e \in A \right\}$$
(13.42)

$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_e(A) \le f(A) - x(A), \forall A \not\ni e', e \in A \right\} \quad \textbf{(13.43)}$$
$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A) - x(A), \forall A \not\ni e', e \in A \right\}$$

$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A), \forall A \not\ni e', e \in A \right\}$$
(13.45)

• Now,
$$1_e(A) - \mathbf{1}_{e'}(A) = 0$$
 if either $\{e, e'\} \subseteq A$, or $\{e, e'\} \cap A = \emptyset$.

• Also, if
$$e' \in A$$
 but $e \notin A$, then
 $x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) = x(A) - \alpha \leq f(A)$ since $x \in P_f$.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

F35/38 (pg.35/38)

(13.44)

Closure/Sat

Fund. Circuit/Dep

dep and exchange derived

• thus, we get the same in the above if we remove the constraint $A\not\ni e',e\in A,$ that is we get

$$dep(x,e) = \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A), \forall A\}$$
(13.46)

• This is then identical to

$$\operatorname{dep}(x,e) = \left\{ e' : \exists \alpha > 0, \text{ s.t. } x + \alpha (\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f \right\}$$
(13.47)

• Compare with original, the minimal element of $\mathcal{D}(x, e)$, with $e \in \operatorname{sat}(x)$:

$$dep(x, e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$$

Summary of Concepts

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I + e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- sat function & Closure
- Saturation Capacity

Prof. Jeff Bilmes

- *e*-containing tight sets
- ullet dep function & fundamental circuit of a matroid

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

- x-tight sets: For $x \in P_f$, $\mathcal{D}(x) = \{A \subseteq E : x(A) = f(A)\}.$
- Polymatroid closure/maximal x-tight set: For $x \in P_f$, $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\} = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}.$
- Saturation capacity: for $x \in P_f$, $0 \le \hat{c}(x; e) = \min \{f(A) x(A) | \forall A \ni e\} = \max \{\alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f\}$
- Recall: $sat(x) = \{e : \hat{c}(x; e) = 0\}$ and $E \setminus sat(x) = \{e : \hat{c}(x; e) > 0\}.$
- *e*-containing *x*-tight sets: For $x \in P_f$, $\mathcal{D}(x, e) = \{A : e \in A \subseteq E, x(A) = f(A)\} \subseteq \mathcal{D}(x).$

• Minimal *e*-containing *x*-tight set/polymatroidal fundamental circuit/: For $x \in P_f$, $dep(x, e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$ $= \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f\}$

F37/38 (pg.37/38