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Logistics Review

Cumulative Outstanding Reading

Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.

Read Tom McCormick’s overview paper on SFM http://people.

commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

Read chapters 1 - 4 from Fujishige book.

Matroid properties http:
//www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf
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Logistics Review

Announcements, Assignments, and Reminders

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics Review

Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

L9: From Matroid Polytopes to
Polymatroids.

L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14:

L15:

L16:

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Logistics Review

Tight sets D(y) are closed, and max tight set sat(y)

Recall the definition of the set of tight sets at y ∈ P+
f :

D(y) ! {A : A ⊆ E, y(A) = f(A)} (13.18)

Theorem 13.2.1

For any y ∈ P+
f , with f a polymatroid function, then D(y) is closed

under union and intersection.

Proof.

We have already proven this as part of Theorem ??

Also recall the definition of sat(y), the maximal set of tight elements
relative to y ∈ RE

+.

sat(y)
def
=

⋃
{T : T ∈ D(y)} (13.19)
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Logistics Review

Fundamental circuits in matroids

Lemma 13.2.3

Let I ∈ I(M), and e ∈ E, then I ∪ {e} contains at most one circuit in
M .

Proof.

Suppose, to the contrary, that there are two distinct circuits C1, C2

such that C1 ∪ C2 ⊆ I ∪ {e}.
Then e ∈ C1 ∩ C2, and by (C2), there is a circuit C3 of M s.t.
C3 ⊆ (C1 ∪ C2) \ {e} ⊆ I

This contradicts the independence of I.

In general, let C(I, e) be the unique circuit associated with I ∪ {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Logistics Review

Matroid Partition Problem

Theorem 13.2.1

Let Mi be a collection of k matroids as described. Then, a set S ⊆ E
can be partitioned into k subsets Ii, i = 1 . . . k where Ii ∈ Ii is
independent in matroid i, if and only if, for all A ⊆ S

|A| ≤
k∑

i=1

ri(A) (13.1)

where ri is the rank function of Mi.

Now, if all matroids are the same Mi = M for all i, we get condition

|A| ≤ kr(A) ∀A ⊆ E (13.2)

But considering vector of all ones 1 ∈ RE
+, this is the same as

1

k
|A| = 1

k
1(A) ≤ r(A) ∀A ⊆ E (13.3)
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Logistics Review

Polymatroidal polyhedron and greedy

Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem ??)

Theorem 13.2.1

If f : 2E → R+ is given, and P is a polytope in RE
+ of the form

P =
{
x ∈ RE

+ : x(A) ≤ f(A), ∀A ⊆ E
}
, then the greedy solution to the

problem max(wx : x ∈ P ) is ∀w optimum iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).
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Logistics Review

Base Polytope in 3D
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Pf =
{
x ∈ RE : x(S) ≤ f(S), ∀S ⊆ E

}
(13.5)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(13.6)
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Logistics Review

Polymatroid extreme points

Theorem 13.2.1

For a given ordering E = (e1, . . . , em) of E and a given Ei = (e1, . . . , ei)
and x generated by Ei using the greedy procedure (x(ei) = f(ei|Ei−1)),
then x is an extreme point of Pf

Proof.

We already saw that x ∈ Pf (Theorem ??).

To show that x is an extreme point of Pf , note that it is the unique
solution of the following system of equations

x(Ej) = f(Ej) for 1 ≤ j ≤ i ≤ m (13.9)

x(e) = 0 for e ∈ E \ Ei (13.10)

There are i ≤ m equations and i ≤ m unknowns, and simple
Gaussian elimination gives us back the x constructed via the Greedy
algorithm!!
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Logistics Review

Polymatroid extreme points
Moreover, we have (and will ultimately prove)

Corollary 13.2.2

If x is an extreme point of Pf and B ⊆ E is given such that
supp(x) = {e ∈ E : x(e) (= 0} ⊆ B ⊆ ∪(A : x(A) = f(A)) = sat(x),
then x is generated using greedy by some ordering of B.

Note, sat(x) = cl(x) = ∪(A : x(A) = f(A)) is also called the
closure of x (recall that sets A such that x(A) = f(A) are called
tight, and such sets are closed under union and intersection, as seen
in Lecture 8, Theorem ??)

Thus, cl(x) is a tight set.

Also, supp(x) = {e ∈ E : x(e) (= 0} is called the support of x.

For arbitrary x, supp(x) is not necessarily tight, but for an extreme
point, supp(x) is.
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Logistics Review

Polymatroid with labeled edge lengths

Recall f(e|A) =
f(A+ e)− f(A)

Notice how
submodularity,
f(e|B) ≤ f(e|A) for
A ⊆ B, defines the
shape of the polytope.

In fact, we have
strictness here
f(e|B) < f(e|A) for
A ⊂ B.

Also, consider how the
greedy algorithm
proceeds along the
edges of the polytope.
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Logistics Review

Minimizers of a Submodular Function form a lattice

Theorem 13.2.2

For arbitrary submodular f , the minimizers are closed under union and
intersection. That is, let M = argminX⊆E f(X) be the set of
minimizers of f . Let A,B ∈ M. Then A ∪B ∈ M and A ∩B ∈ M.

Proof.

Since A and B are minimizers, we have f(A) = f(B) ≤ f(A ∩B) and
f(A) = f(B) ≤ f(A ∪B).
By submodularity, we have

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (13.8)

Hence, we must have f(A) = f(B) = f(A ∪B) = f(A ∩B).

Thus, the minimizers of a submodular function form a lattice, and there
is a maximal and a minimal minimizer of every submodular function.
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Logistics Review

The sat function = Polymatroid Closure

Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation
function).

For some x ∈ Pf , we have defined:

cl(x)
def
= sat(x)

def
=

⋃
{A : A ∈ D(x)} (13.8)

=
⋃

{A : A ⊆ E, x(A) = f(A)} (13.9)

= {e : e ∈ E, ∀α > 0, x+ α1e /∈ Pf} (13.10)

Hence, sat(x) is the maximal (zero-valued) minimizer of the
submodular function fx(A) ! f(A)− x(A).

Eq. (??) says that sat consists of any point x that is Pf saturated
(any additional positive movement, in that dimension, leaves Pf ).
We’ll revisit this in a few slides.

First, we see how sat generalizes matroid closure.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F14/57 (pg.14/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

The sat function = Polymatroid Closure

Consider matroid (E, I) = (E, r), some I ∈ I. Then 1I ∈ Pr and

D(1I) = {A : 1I(A) = r(A)} (13.1)

and

sat(1I)

=
⋃

{A : A ⊆ E,A ∈ D(1I)} (13.2)

=
⋃

{A : A ⊆ E,1I(A) = r(A)} (13.3)

=
⋃

{A : A ⊆ E, |I ∩A| = r(A)} (13.4)

Notice that 1I(A) = |I ∩A| ≤ |I|.
Intuitively, consider an A ⊃ I ∈ I that doesn’t increase rank,
meaning r(A) = r(I). If r(A) = |I ∩A| = r(I ∩A), as in
Eqn. (13.4), then A is in I’s span, so should get sat(1I) = span(I).

We formalize this next.
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Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid sat : RE
+ → 2E is the same as closure.)

For I ∈ I, we have sat(1I) = span(I) (13.5)

Proof.

For 1I(I) = |I| = r(I), so I ∈ D(1I) and I ⊆ sat(1I). Also,
I ⊆ span(I).

Consider some b ∈ span(I) \ I.
Then I ∪ {b} ∈ D(1I) since 1I(I ∪ {b}) = |I| = r(I ∪ {b}) = r(I).

Thus, b ∈ sat(1I).

Therefore, sat(1I) ⊇ span(I) .

. . .
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Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

The sat function = Polymatroid Closure

. . . proof continued.

Now, consider b ∈ sat(1I) \ I.

Choose any A ∈ D(1I) with b ∈ A, thus b ∈ A \ I.
Then 1(A) = |A ∩ I| = r(A).

Now r(A) = |A ∩ I| ≤ |I| = r(I).

Also, r(A ∩ I) = |A ∩ I| since A ∩ I ∈ I.
Hence, r(A ∩ I) = r(A) = r((A ∩ I) ∪ (A \ I)) meaning
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Since b ∈ A \ I, we get b ∈ span(I).

Thus, sat(1I) ⊆ span(I) .

Hence sat(1I) = span(I)
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The sat function = Polymatroid Closure

Now, consider a matroid (E, r) and some C ⊆ E with C /∈ I, and
consider 1C .

Is 1C ∈ Pr? No, it might not be a vertex, or even a
member, of Pr.
span(·) operates on more than just independent sets, so span(C) is
perfectly sensible.
Note span(C) = span(B) where I . B ∈ B(C) is a base of C.
Then we have 1B ≤ 1C ≤ 1span(C), and that 1B ∈ Pr. We can then
make the definition:

sat(1C) ! sat(1B) for B ∈ B(C) (13.6)

In which case, we also get sat(1C) = span(C) (in general, could
define sat(y) = sat(P-basis(y))).
However, consider the following form

sat(1C) =
⋃

{A : A ⊆ E, |A ∩ C| = r(A)} (13.7)

Exercise: is span(C) = sat(1C)? Prove or disprove it.
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The sat function, span, and submodular function
minimization

Thus, for a matroid, sat(1I) is exactly the closure (or span) of I in
the matroid. I.e., for matroid (E, r), we have span(I) = sat(1B).

Recall, for x ∈ Pf and polymatroidal f , sat(x) is the maximal (by
inclusion) minimizer of f(A)− x(A), and thus in a matroid, span(I)
is the maximal minimizer of the submodular function formed by
r(A)− 1I(A).

Submodular function minimization can solve “span” queries in a
matroid or “sat” queries in a polymatroid.
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sat, as tight polymatroidal elements

We are given an x ∈ P+
f for submodular function f .

Recall that for such an x, sat(x) is defined as

sat(x) =
⋃

{A : x(A) = f(A)} (13.8)

We also have stated that sat(x) can be defined as:

sat(x) =
{
e : ∀α > 0, x+ α1e /∈ P+

f

}
(13.9)

We next show more formally that these are the same.
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sat, as tight polymatroidal elements

Lets start with one definition and derive the other.

sat(x)

def
=

{
e : ∀α > 0, x+ α1e /∈ P+

f

}
(13.10)

= {e : ∀α > 0, ∃A s.t. (x+ α1e)(A) > f(A)} (13.11)

= {e : ∀α > 0, ∃A . e s.t. (x+ α1e)(A) > f(A)} (13.12)

this last bit follows since 1e(A) = 1 ⇐⇒ e ∈ A.

Continuing, we get

sat(x) = {e : ∀α > 0, ∃A . e s.t. x(A) + α > f(A)} (13.13)

given that x ∈ P+
f , meaning x(A) ≤ f(A) for all A, we must have

sat(x)

= {e : ∀α > 0, ∃A . e s.t. x(A) = f(A)} (13.14)

= {e : ∃A . e s.t. x(A) = f(A)} (13.15)

So now, if A is any set such that x(A) = f(A), then we clearly have

∀e ∈ A, e ∈ sat(x), and therefore that sat(x) ⊇ A

(13.16)
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sat, as tight polymatroidal elements

. . . and therefore, with sat as defined in Eq. (??),

sat(x) ⊇
⋃

{A : x(A) = f(A)} (13.17)

On the other hand, for any e ∈ sat(x) defined as in Eq. (13.15),
since e is itself a member of a tight set, there is a set A . e such
that x(A) = f(A), giving

sat(x) ⊆
⋃

{A : x(A) = f(A)} (13.18)

Therefore, the two definitions of sat are identical.
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Saturation Capacity

Another useful concept is saturation capacity which we develop next.

For x ∈ Pf , and e ∈ E, consider finding

max {α : α ∈ R, x+ α1e ∈ Pf} (13.19)

This is identical to:

max {α : (x+ α1e)(A) ≤ f(A), ∀A ⊇ {e}} (13.20)

since any B ⊆ E such that e /∈ B does not change in a 1e
adjustment, meaning (x+ α1e)(B) = x(B).

Again, this is identical to:

max {α : x(A) + α ≤ f(A), ∀A ⊇ {e}} (13.21)

or

max {α : α ≤ f(A)− x(A), ∀A ⊇ {e}} (13.22)
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Saturation Capacity

The max is achieved when

α = ĉ(x; e)
def
= min {f(A)− x(A), ∀A ⊇ {e}} (13.23)

ĉ(x; e) is known as the saturation capacity associated with x ∈ Pf

and e.

Thus we have for x ∈ Pf ,

ĉ(x; e)
def
= min {f(A)− x(A), ∀A . e} (13.24)

= max {α : α ∈ R, x+ α1e ∈ Pf} (13.25)

We immediately see that for e ∈ E \ sat(x), we have that
ĉ(x; e) > 0.

Also, for e ∈ sat(x), we have that ĉ(x; e) = 0.

Note that any α with 0 ≤ α ≤ ĉ(x; e) we have x+ α1e ∈ Pf .

We also see that computing ĉ(x; e) is a form of submodular function
minimization.
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ĉ(x; e)
def
= min {f(A)− x(A), ∀A . e} (13.24)

= max {α : α ∈ R, x+ α1e ∈ Pf} (13.25)

We immediately see that for e ∈ E \ sat(x), we have that
ĉ(x; e) > 0.
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Dependence Function

Tight sets can be restricted to contain a particular element.

Given x ∈ Pf , and e ∈ sat(x), define

D(x, e) = {A : e ∈ A ⊆ E, x(A) = f(A)} (13.26)

= D(x) ∩ {A : A ⊆ E, e ∈ A} (13.27)

Thus, D(x, e) ⊆ D(x), and D(x, e) is a sublattice of D(x).

Therefore, we can define a unique minimal element of D(x, e)
denoted as follows:

dep(x, e) =

{⋂
{A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

(13.28)

I.e., dep(x, e) is the minimal element in D(x) that contains e (the
minimal x-tight set containing e).
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dep and sat in a lattice

The picture on the
right summarizes
the relationships
between the
lattices and
sublattices.

Note,⋂
e dep(x, e) =

dep(x).

sat(x)

dep(x , e)

all of 2 E
 (or at least all of the lattice)

lattice of x-tight sets

lattice of x-tight

 sets containing e

dry(x )

sat(x,e)

=dry(x , e)

=dep(x )
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dep and sat in a lattice

Given x ∈ Pf , recall distributive lattice of tight sets
D(x) = {A : x(A) = f(A)}

We had that sat(x) =
⋃
{A : A ∈ D(x)} is the “1” element of this

lattice.

Consider the “0” element of D(x), i.e., dry(x)
def
=

⋂
{A : A ∈ D(x)}

We can see dry(x) as the elements that are necessary for tightness.

That is, we can equivalently define dry(x) as

dry(x) =
{
e′ : x(A) < f(A), ∀A #$ e′

}
(13.29)

This can be read as, for any e′ ∈ dry(x), any set that does not
contain e′ is not tight for x (any set A that is missing any element
of dry(x) is not tight).

Perhaps, then, a better name for dry is ntight(x), for the necessary
for tightness (but we’ll actually use neither name).

Note that dry need not be the empty set. Exercise: give example.
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An alternate expression for dep = dry

Now, given x ∈ Pf , and e ∈ sat(x), recall distributive sub-lattice of
e-containing tight sets D(x, e) = {A : e ∈ A, x(A) = f(A)}

We can define the “1” element of this sub-lattice as
sat(x, e)

def
=

⋃
{A : A ∈ D(x, e)}.

Analogously, we can define the “0” element of this sub-lattice as

dry(x, e)
def
=

⋂
{A : A ∈ D(x, e)}.

We can see dry(x, e) as the elements that are necessary for
e-containing tightness, with e ∈ sat(x).

That is, we can view dry(x, e) as

dry(x, e) =
{
e′ : x(A) < f(A), ∀A #$ e′, e ∈ A

}
(13.30)

This can be read as, for any e′ ∈ dry(x, e), any e-containing set
that does not contain e′ is not tight for x.

But actually, dry(x, e) = dep(x, e), so we have derived another
expression for dep(x, e) in Eq. (13.30).
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Dependence Function and Fundamental Matroid Circuit

Now, let (E, I) = (E, r) be a matroid, and let I ∈ I giving
1I ∈ Pr. We have sat(1I) = span(I) = closure(I).

Given e ∈ sat(1I) \ I and then consider an A $ e with
|I ∩A| = r(A).
Then I ∩A serves as a base for A (i.e., I ∩A spans A) and any
such A contains a circuit (i.e., we can add e ∈ A \ I to I ∩A w/o
increasing rank).
Given e ∈ sat(1I) \ I, and consider dep(1I , e), with

dep(1I , e) =
⋂

{A : e ∈ A ⊆ E,1I(A) = r(A)} (13.31)

=
⋂

{A : e ∈ A ⊆ E, |I ∩A| = r(A)} (13.32)

=
⋂

{A : e ∈ A ⊆ E, r(A)− |I ∩A| = 0} (13.33)

By SFM lattice, ∃ a unique minimal A $ e with |I ∩A| = r(A).
Thus, dep(1I , e) must be a circuit since if it included more than a
circuit, it would not be minimal in this sense.
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Dependence Function and Fundamental Matroid Circuit

Therefore, when e ∈ sat(1I) \ I, then dep(1I , e) = C(I, e) where
C(I, e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

Now, if e ∈ sat(1I) ∩ I with I ∈ I, we said that C(I, e) was
undefined (since no circuit is created in this case) and so we defined
it as C(I, e) = {e}
In this case, for such an e, we have dep(1I , e) = {e} since all such
sets A $ e with |I ∩A| = r(A) contain e, but in this case no cycle is
created, i.e., |I ∩A| ≥ |I ∩ {e}| = r(e) = 1.

We are thus free to take subsets of I as A, all of which must
contain e, but all of which have rank equal to size.

Also note: in general for x ∈ Pf and e ∈ sat(x), we have dep(x, e)
is tight by definition.
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Summary of sat, and dep

For x ∈ Pf , sat(x) (span, closure) is the maximal saturated (x-tight)
set w.r.t. x. I.e., sat(x) = {e : e ∈ E, ∀α > 0, x+ α1e /∈ Pf}. That is,

cl(x)
def
= sat(x) !

⋃
{A : A ∈ D(x)} (13.34)

=
⋃

{A : A ⊆ E, x(A) = f(A)} (13.35)

= {e : e ∈ E, ∀α > 0, x+ α1e /∈ Pf} (13.36)

For e ∈ sat(x), we have dep(x, e) (fundamental circuit) is the minimal
(common) saturated (x-tight) set w.r.t. x containing e. That is,

dep(x, e) =

{⋂
{A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
(13.37)
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Dependence Function and exchange

For e ∈ span(I) \ I, we have that I + e /∈ I. This is a set addition
restriction property.

Analogously, for e ∈ sat(x), any x+ α1e /∈ Pf for α > 0. This is a
vector increase restriction property.
Recall, we have C(I, e) \ e′ ∈ I for e′ ∈ C(I, e). I.e., C(I, e)
consists of elements that when removed recover independence.
In other words, for e ∈ span(I) \ I, we have that

C(I, e) = {a ∈ E : I + e− a ∈ I} (13.38)

I.e., an addition of e to I stays within I only if we simultaneously
remove one of the elements of C(I, e).
But, analogous to the circuit case, is there an exchange property for
dep(x, e) in the form of vector movement restriction?
We might expect the vector dep(x, e) property to take the form:
a positive move in the e-direction stays within P+

f only if we
simultaneously take a negative move in one of the dep(x, e)
directions.
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Dependence Function and exchange in 2D

dep(x, e) is set of neg. directions we must move if we want to move in
pos. e direction, starting at x and staying within Pf .

Viewable in 2D, we have for A,B ⊆ E, A ∩B = ∅:

Left: A ∩ dep(x, e) = ∅, and we
can’t move further in (e) direc-
tion, and moving in any negative
a ∈ A direction doesn’t change
that. Notice no dependence be-
tween (e) and any element in A.

Right: A ⊆ dep(x, e), and we
can’t move further in the (e) di-
rection, but we can move further
in (e) direction by moving in some
a ∈ A negative direction. Notice
dependence between (e) and ele-
ments in A.
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in (e) direction by moving in some
a ∈ A negative direction. Notice
dependence between (e) and ele-
ments in A.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F33/57 (pg.121/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

Dependence Function and exchange in 3D
We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.
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I.e., for e ∈ sat(x), a ∈ sat(x), a ∈ dep(x, e), e /∈ dep(x, a),
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I.e., for e ∈ sat(x), a ∈ sat(x), a ∈ dep(x, e), e /∈ dep(x, a), and

dep(x, e) = {a : a ∈ E, ∃α > 0 : x+ α(1e − 1a) ∈ Pf} (13.39)
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Dependence Function and exchange in 3D
We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.

In 3D, we have:
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I.e., for e ∈ sat(x), a ∈ sat(x), a ∈ dep(x, e), e /∈ dep(x, a), and

dep(x, e) = {a : a ∈ E, ∃α > 0 : x+ α(1e − 1a) ∈ Pf} (13.39)

We next show this formally . . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F34/57 (pg.126/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

dep and exchange derived

The derivation for dep(x, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable α:

dep(x, e) = ntight(x, e) = (13.40)

=
{
e′ : x(A) < f(A), ∀A #$ e′, e ∈ A

}
(13.41)

=
{
e′ : ∃α > 0, s.t. α ≤ f(A)− x(A), ∀A #$ e′, e ∈ A

}
(13.42)

=
{
e′ : ∃α > 0, s.t. α1e(A) ≤ f(A)− x(A), ∀A #$ e′, e ∈ A

}
(13.43)

=
{
e′ : ∃α > 0, s.t. α(1e(A)− 1e′(A)) ≤ f(A)− x(A), ∀A #$ e′, e ∈ A

}

(13.44)

=
{
e′ : ∃α > 0, s.t. x(A) + α(1e(A)− 1e′(A)) ≤ f(A), ∀A #$ e′, e ∈ A

}

(13.45)

Now, 1e(A)− 1e′(A) = 0 if either {e, e′} ⊆ A, or {e, e′} ∩A = ∅.
Also, if e′ ∈ A but e /∈ A, then
x(A) + α(1e(A)− 1e′(A)) = x(A)− α ≤ f(A) since x ∈ Pf .
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dep and exchange derived
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dep and exchange derived
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dep and exchange derived
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=
{
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dep and exchange derived

The derivation for dep(x, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable α:

dep(x, e) = ntight(x, e) = (13.40)

=
{
e′ : x(A) < f(A), ∀A #$ e′, e ∈ A

}
(13.41)

=
{
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dep and exchange derived

thus, we get the same in the above if we remove the constraint
A #$ e′, e ∈ A, that is we get

dep(x, e) =
{
e′ : ∃α > 0, s.t. x(A) + α(1e(A)− 1e′(A)) ≤ f(A), ∀A

}

(13.46)

This is then identical to

dep(x, e) =
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
(13.47)

Compare with original, the minimal element of D(x, e), with
e ∈ sat(x):

dep(x, e) =

{⋂
{A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

(13.48)
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dep and exchange derived
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dep and exchange derived

thus, we get the same in the above if we remove the constraint
A #$ e′, e ∈ A, that is we get

dep(x, e) =
{
e′ : ∃α > 0, s.t. x(A) + α(1e(A)− 1e′(A)) ≤ f(A), ∀A

}

(13.46)

This is then identical to

dep(x, e) =
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
(13.47)

Compare with original, the minimal element of D(x, e), with
e ∈ sat(x):

dep(x, e) =

{⋂
{A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else
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Summary of Concepts

Most violated inequality max {x(A)− f(A) : A ⊆ E}

Matroid by circuits, and the fundamental circuit C(I, e) ⊆ I + e.

Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity

e-containing tight sets

dep function & fundamental circuit of a matroid
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Summary of Concepts

Most violated inequality max {x(A)− f(A) : A ⊆ E}
Matroid by circuits, and the fundamental circuit C(I, e) ⊆ I + e.
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Summary of Concepts

Most violated inequality max {x(A)− f(A) : A ⊆ E}
Matroid by circuits, and the fundamental circuit C(I, e) ⊆ I + e.

Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity

e-containing tight sets
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Summary of Concepts

Most violated inequality max {x(A)− f(A) : A ⊆ E}
Matroid by circuits, and the fundamental circuit C(I, e) ⊆ I + e.

Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity

e-containing tight sets
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Summary important definitions so far: tight, dep, & sat

x-tight sets: For x ∈ Pf , D(x) = {A ⊆ E : x(A) = f(A)}.

Polymatroid closure/maximal x-tight set: For x ∈ Pf ,
sat(x) = ∪{A : A ∈ D(x)} = {e : e ∈ E, ∀α > 0, x+ α1e /∈ Pf}.
Saturation capacity: for x ∈ Pf , 0 ≤ ĉ(x; e) =
min {f(A)− x(A)|∀A $ e} = max {α : α ∈ R, x+ α1e ∈ Pf}
Recall: sat(x) = {e : ĉ(x; e) = 0} and
E \ sat(x) = {e : ĉ(x; e) > 0}.
e-containing x-tight sets: For x ∈ Pf ,
D(x, e) = {A : e ∈ A ⊆ E, x(A) = f(A)} ⊆ D(x).

Minimal e-containing x-tight set/polymatroidal fundamental
circuit/: For x ∈ Pf ,

dep(x, e) =

{⋂
{A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
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Summary important definitions so far: tight, dep, & sat

x-tight sets: For x ∈ Pf , D(x) = {A ⊆ E : x(A) = f(A)}.
Polymatroid closure/maximal x-tight set: For x ∈ Pf ,
sat(x) = ∪{A : A ∈ D(x)} = {e : e ∈ E, ∀α > 0, x+ α1e /∈ Pf}.
Saturation capacity: for x ∈ Pf , 0 ≤ ĉ(x; e) =
min {f(A)− x(A)|∀A $ e} = max {α : α ∈ R, x+ α1e ∈ Pf}
Recall: sat(x) = {e : ĉ(x; e) = 0} and
E \ sat(x) = {e : ĉ(x; e) > 0}.

e-containing x-tight sets: For x ∈ Pf ,
D(x, e) = {A : e ∈ A ⊆ E, x(A) = f(A)} ⊆ D(x).

Minimal e-containing x-tight set/polymatroidal fundamental
circuit/: For x ∈ Pf ,

dep(x, e) =

{⋂
{A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F38/57 (pg.150/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

Summary important definitions so far: tight, dep, & sat

x-tight sets: For x ∈ Pf , D(x) = {A ⊆ E : x(A) = f(A)}.
Polymatroid closure/maximal x-tight set: For x ∈ Pf ,
sat(x) = ∪{A : A ∈ D(x)} = {e : e ∈ E, ∀α > 0, x+ α1e /∈ Pf}.
Saturation capacity: for x ∈ Pf , 0 ≤ ĉ(x; e) =
min {f(A)− x(A)|∀A $ e} = max {α : α ∈ R, x+ α1e ∈ Pf}
Recall: sat(x) = {e : ĉ(x; e) = 0} and
E \ sat(x) = {e : ĉ(x; e) > 0}.
e-containing x-tight sets: For x ∈ Pf ,
D(x, e) = {A : e ∈ A ⊆ E, x(A) = f(A)} ⊆ D(x).

Minimal e-containing x-tight set/polymatroidal fundamental
circuit/: For x ∈ Pf ,

dep(x, e) =

{⋂
{A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
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Summary important definitions so far: tight, dep, & sat

x-tight sets: For x ∈ Pf , D(x) = {A ⊆ E : x(A) = f(A)}.
Polymatroid closure/maximal x-tight set: For x ∈ Pf ,
sat(x) = ∪{A : A ∈ D(x)} = {e : e ∈ E, ∀α > 0, x+ α1e /∈ Pf}.
Saturation capacity: for x ∈ Pf , 0 ≤ ĉ(x; e) =
min {f(A)− x(A)|∀A $ e} = max {α : α ∈ R, x+ α1e ∈ Pf}
Recall: sat(x) = {e : ĉ(x; e) = 0} and
E \ sat(x) = {e : ĉ(x; e) > 0}.
e-containing x-tight sets: For x ∈ Pf ,
D(x, e) = {A : e ∈ A ⊆ E, x(A) = f(A)} ⊆ D(x).

Minimal e-containing x-tight set/polymatroidal fundamental
circuit/: For x ∈ Pf ,

dep(x, e) =

{⋂
{A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
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Support of vector

The support of a vector x ∈ Pf is defined as the elements with
non-zero entries.
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Support of vector

The support of a vector x ∈ Pf is defined as the elements with
non-zero entries.

That is

supp(x) = {e ∈ E : x(e) #= 0} (13.49)
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Support of vector

The support of a vector x ∈ Pf is defined as the elements with
non-zero entries.

That is

supp(x) = {e ∈ E : x(e) #= 0} (13.49)
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Tightness of supp at polymatroidal extreme point

Now, sat(x) is tight, and corresponds to the largest member of the
distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.

supp(x) is not necessarily tight for an arbitrary x.
When x is an extremal point, however, supp(x) is tight, meaning
x(supp(x)) = f(supp(x)). Why?

1 Extremal points are defined as a system of equalities of the form
x(Ei) = f(Ei) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in
class. Hence, any ei ∈ supp(x) has x(ei) = f(ei|Ei−1) > 0.

2 Now, for 1 ≤ i ≤ k, if ei /∈ supp(x), x(Ek) = x(Ek − ei)
3 Also, for 1 ≤ i ≤ k, if ei /∈ supp(x), then x(ei) =

0 = f(ei|Ei−1) ≥ f(ei|Ek − ei) = f(Ek|Ek − ei) ≥ 0 since
monotone submodular, hence we have f(Ek) = f(Ek − ei).

4 Thus, x(Ek − ei) = f(Ek − ei) and Ek − ei is also tight.
5 We can keep removing elements /∈ supp(x) and we’re left with

f(Ek ∩ supp(x)) = x(Ek ∩ supp(x)) for any k.
6 Hence supp(x) is tight when x is extremal.

Since supp(x) is tight, we immediately have that sat(x) ⊇ supp(x).
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Tightness of supp at polymatroidal extreme point

Now, sat(x) is tight, and corresponds to the largest member of the
distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.

supp(x) is not necessarily tight for an arbitrary x.

When x is an extremal point, however, supp(x) is tight, meaning
x(supp(x)) = f(supp(x)). Why?

1 Extremal points are defined as a system of equalities of the form
x(Ei) = f(Ei) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in
class. Hence, any ei ∈ supp(x) has x(ei) = f(ei|Ei−1) > 0.

2 Now, for 1 ≤ i ≤ k, if ei /∈ supp(x), x(Ek) = x(Ek − ei)
3 Also, for 1 ≤ i ≤ k, if ei /∈ supp(x), then x(ei) =

0 = f(ei|Ei−1) ≥ f(ei|Ek − ei) = f(Ek|Ek − ei) ≥ 0 since
monotone submodular, hence we have f(Ek) = f(Ek − ei).

4 Thus, x(Ek − ei) = f(Ek − ei) and Ek − ei is also tight.
5 We can keep removing elements /∈ supp(x) and we’re left with

f(Ek ∩ supp(x)) = x(Ek ∩ supp(x)) for any k.
6 Hence supp(x) is tight when x is extremal.

Since supp(x) is tight, we immediately have that sat(x) ⊇ supp(x).
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Tightness of supp at polymatroidal extreme point

Now, sat(x) is tight, and corresponds to the largest member of the
distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.

supp(x) is not necessarily tight for an arbitrary x.
When x is an extremal point, however, supp(x) is tight, meaning
x(supp(x)) = f(supp(x)). Why?

1 Extremal points are defined as a system of equalities of the form
x(Ei) = f(Ei) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in
class. Hence, any ei ∈ supp(x) has x(ei) = f(ei|Ei−1) > 0.

2 Now, for 1 ≤ i ≤ k, if ei /∈ supp(x), x(Ek) = x(Ek − ei)
3 Also, for 1 ≤ i ≤ k, if ei /∈ supp(x), then x(ei) =

0 = f(ei|Ei−1) ≥ f(ei|Ek − ei) = f(Ek|Ek − ei) ≥ 0 since
monotone submodular, hence we have f(Ek) = f(Ek − ei).

4 Thus, x(Ek − ei) = f(Ek − ei) and Ek − ei is also tight.
5 We can keep removing elements /∈ supp(x) and we’re left with

f(Ek ∩ supp(x)) = x(Ek ∩ supp(x)) for any k.
6 Hence supp(x) is tight when x is extremal.

Since supp(x) is tight, we immediately have that sat(x) ⊇ supp(x).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F40/57 (pg.158/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

Tightness of supp at polymatroidal extreme point

Now, sat(x) is tight, and corresponds to the largest member of the
distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.

supp(x) is not necessarily tight for an arbitrary x.
When x is an extremal point, however, supp(x) is tight, meaning
x(supp(x)) = f(supp(x)). Why?

1 Extremal points are defined as a system of equalities of the form
x(Ei) = f(Ei) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in
class. Hence, any ei ∈ supp(x) has x(ei) = f(ei|Ei−1) > 0.

2 Now, for 1 ≤ i ≤ k, if ei /∈ supp(x), x(Ek) = x(Ek − ei)
3 Also, for 1 ≤ i ≤ k, if ei /∈ supp(x), then x(ei) =

0 = f(ei|Ei−1) ≥ f(ei|Ek − ei) = f(Ek|Ek − ei) ≥ 0 since
monotone submodular, hence we have f(Ek) = f(Ek − ei).

4 Thus, x(Ek − ei) = f(Ek − ei) and Ek − ei is also tight.
5 We can keep removing elements /∈ supp(x) and we’re left with

f(Ek ∩ supp(x)) = x(Ek ∩ supp(x)) for any k.
6 Hence supp(x) is tight when x is extremal.

Since supp(x) is tight, we immediately have that sat(x) ⊇ supp(x).
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Tightness of supp at polymatroidal extreme point

Now, sat(x) is tight, and corresponds to the largest member of the
distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.

supp(x) is not necessarily tight for an arbitrary x.
When x is an extremal point, however, supp(x) is tight, meaning
x(supp(x)) = f(supp(x)). Why?

1 Extremal points are defined as a system of equalities of the form
x(Ei) = f(Ei) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in
class. Hence, any ei ∈ supp(x) has x(ei) = f(ei|Ei−1) > 0.

2 Now, for 1 ≤ i ≤ k, if ei /∈ supp(x), x(Ek) = x(Ek − ei)

3 Also, for 1 ≤ i ≤ k, if ei /∈ supp(x), then x(ei) =
0 = f(ei|Ei−1) ≥ f(ei|Ek − ei) = f(Ek|Ek − ei) ≥ 0 since
monotone submodular, hence we have f(Ek) = f(Ek − ei).

4 Thus, x(Ek − ei) = f(Ek − ei) and Ek − ei is also tight.
5 We can keep removing elements /∈ supp(x) and we’re left with

f(Ek ∩ supp(x)) = x(Ek ∩ supp(x)) for any k.
6 Hence supp(x) is tight when x is extremal.

Since supp(x) is tight, we immediately have that sat(x) ⊇ supp(x).
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Tightness of supp at polymatroidal extreme point

Now, sat(x) is tight, and corresponds to the largest member of the
distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.

supp(x) is not necessarily tight for an arbitrary x.
When x is an extremal point, however, supp(x) is tight, meaning
x(supp(x)) = f(supp(x)). Why?

1 Extremal points are defined as a system of equalities of the form
x(Ei) = f(Ei) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in
class. Hence, any ei ∈ supp(x) has x(ei) = f(ei|Ei−1) > 0.

2 Now, for 1 ≤ i ≤ k, if ei /∈ supp(x), x(Ek) = x(Ek − ei)
3 Also, for 1 ≤ i ≤ k, if ei /∈ supp(x), then x(ei) =

0 = f(ei|Ei−1) ≥ f(ei|Ek − ei) = f(Ek|Ek − ei) ≥ 0 since
monotone submodular, hence we have f(Ek) = f(Ek − ei).

4 Thus, x(Ek − ei) = f(Ek − ei) and Ek − ei is also tight.
5 We can keep removing elements /∈ supp(x) and we’re left with

f(Ek ∩ supp(x)) = x(Ek ∩ supp(x)) for any k.
6 Hence supp(x) is tight when x is extremal.

Since supp(x) is tight, we immediately have that sat(x) ⊇ supp(x).
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Tightness of supp at polymatroidal extreme point

Now, sat(x) is tight, and corresponds to the largest member of the
distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.

supp(x) is not necessarily tight for an arbitrary x.
When x is an extremal point, however, supp(x) is tight, meaning
x(supp(x)) = f(supp(x)). Why?

1 Extremal points are defined as a system of equalities of the form
x(Ei) = f(Ei) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in
class. Hence, any ei ∈ supp(x) has x(ei) = f(ei|Ei−1) > 0.

2 Now, for 1 ≤ i ≤ k, if ei /∈ supp(x), x(Ek) = x(Ek − ei)
3 Also, for 1 ≤ i ≤ k, if ei /∈ supp(x), then x(ei) =

0 = f(ei|Ei−1) ≥ f(ei|Ek − ei) = f(Ek|Ek − ei) ≥ 0 since
monotone submodular, hence we have f(Ek) = f(Ek − ei).

4 Thus, x(Ek − ei) = f(Ek − ei) and Ek − ei is also tight.

5 We can keep removing elements /∈ supp(x) and we’re left with
f(Ek ∩ supp(x)) = x(Ek ∩ supp(x)) for any k.

6 Hence supp(x) is tight when x is extremal.

Since supp(x) is tight, we immediately have that sat(x) ⊇ supp(x).
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Tightness of supp at polymatroidal extreme point

Now, sat(x) is tight, and corresponds to the largest member of the
distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.

supp(x) is not necessarily tight for an arbitrary x.
When x is an extremal point, however, supp(x) is tight, meaning
x(supp(x)) = f(supp(x)). Why?

1 Extremal points are defined as a system of equalities of the form
x(Ei) = f(Ei) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in
class. Hence, any ei ∈ supp(x) has x(ei) = f(ei|Ei−1) > 0.

2 Now, for 1 ≤ i ≤ k, if ei /∈ supp(x), x(Ek) = x(Ek − ei)
3 Also, for 1 ≤ i ≤ k, if ei /∈ supp(x), then x(ei) =

0 = f(ei|Ei−1) ≥ f(ei|Ek − ei) = f(Ek|Ek − ei) ≥ 0 since
monotone submodular, hence we have f(Ek) = f(Ek − ei).

4 Thus, x(Ek − ei) = f(Ek − ei) and Ek − ei is also tight.
5 We can keep removing elements /∈ supp(x) and we’re left with

f(Ek ∩ supp(x)) = x(Ek ∩ supp(x)) for any k.

6 Hence supp(x) is tight when x is extremal.

Since supp(x) is tight, we immediately have that sat(x) ⊇ supp(x).
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Tightness of supp at polymatroidal extreme point

Now, sat(x) is tight, and corresponds to the largest member of the
distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.

supp(x) is not necessarily tight for an arbitrary x.
When x is an extremal point, however, supp(x) is tight, meaning
x(supp(x)) = f(supp(x)). Why?

1 Extremal points are defined as a system of equalities of the form
x(Ei) = f(Ei) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in
class. Hence, any ei ∈ supp(x) has x(ei) = f(ei|Ei−1) > 0.

2 Now, for 1 ≤ i ≤ k, if ei /∈ supp(x), x(Ek) = x(Ek − ei)
3 Also, for 1 ≤ i ≤ k, if ei /∈ supp(x), then x(ei) =

0 = f(ei|Ei−1) ≥ f(ei|Ek − ei) = f(Ek|Ek − ei) ≥ 0 since
monotone submodular, hence we have f(Ek) = f(Ek − ei).

4 Thus, x(Ek − ei) = f(Ek − ei) and Ek − ei is also tight.
5 We can keep removing elements /∈ supp(x) and we’re left with

f(Ek ∩ supp(x)) = x(Ek ∩ supp(x)) for any k.
6 Hence supp(x) is tight when x is extremal.

Since supp(x) is tight, we immediately have that sat(x) ⊇ supp(x).
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Tightness of supp at polymatroidal extreme point

Now, sat(x) is tight, and corresponds to the largest member of the
distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.

supp(x) is not necessarily tight for an arbitrary x.
When x is an extremal point, however, supp(x) is tight, meaning
x(supp(x)) = f(supp(x)). Why?

1 Extremal points are defined as a system of equalities of the form
x(Ei) = f(Ei) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in
class. Hence, any ei ∈ supp(x) has x(ei) = f(ei|Ei−1) > 0.

2 Now, for 1 ≤ i ≤ k, if ei /∈ supp(x), x(Ek) = x(Ek − ei)
3 Also, for 1 ≤ i ≤ k, if ei /∈ supp(x), then x(ei) =

0 = f(ei|Ei−1) ≥ f(ei|Ek − ei) = f(Ek|Ek − ei) ≥ 0 since
monotone submodular, hence we have f(Ek) = f(Ek − ei).

4 Thus, x(Ek − ei) = f(Ek − ei) and Ek − ei is also tight.
5 We can keep removing elements /∈ supp(x) and we’re left with

f(Ek ∩ supp(x)) = x(Ek ∩ supp(x)) for any k.
6 Hence supp(x) is tight when x is extremal.

Since supp(x) is tight, we immediately have that sat(x) ⊇ supp(x).
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supp vs. sat equality

For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.

Suppose x ∈ Pf has x(X) > 0 but x(V \X) = 0 and so x(Y ) = 0.

Then supp(x) = X, and say x is tight at X (x(X) = f(X)).

sat(x) = ∪{A : x(A) = f(A)} and since
x(X ∪ Y ) = x(X) = f(X) = f(X ∪ Y ), here, sat(x) ⊇ X ∪ Y .

In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal (e.g., think of
“hyperrectangular” polymatroids).
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supp vs. sat equality

For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.

Suppose x ∈ Pf has x(X) > 0 but x(V \X) = 0 and so x(Y ) = 0.

Then supp(x) = X, and say x is tight at X (x(X) = f(X)).

sat(x) = ∪{A : x(A) = f(A)} and since
x(X ∪ Y ) = x(X) = f(X) = f(X ∪ Y ), here, sat(x) ⊇ X ∪ Y .

In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal (e.g., think of
“hyperrectangular” polymatroids).
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supp vs. sat equality

For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.

Suppose x ∈ Pf has x(X) > 0 but x(V \X) = 0 and so x(Y ) = 0.

Then supp(x) = X, and say x is tight at X (x(X) = f(X)).

sat(x) = ∪{A : x(A) = f(A)} and since
x(X ∪ Y ) = x(X) = f(X) = f(X ∪ Y ), here, sat(x) ⊇ X ∪ Y .

In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal (e.g., think of
“hyperrectangular” polymatroids).
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supp vs. sat equality

For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.

Suppose x ∈ Pf has x(X) > 0 but x(V \X) = 0 and so x(Y ) = 0.

Then supp(x) = X, and say x is tight at X (x(X) = f(X)).

sat(x) = ∪{A : x(A) = f(A)} and since
x(X ∪ Y ) = x(X) = f(X) = f(X ∪ Y ), here, sat(x) ⊇ X ∪ Y .

In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal (e.g., think of
“hyperrectangular” polymatroids).
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supp vs. sat equality

For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.

Suppose x ∈ Pf has x(X) > 0 but x(V \X) = 0 and so x(Y ) = 0.

Then supp(x) = X, and say x is tight at X (x(X) = f(X)).

sat(x) = ∪{A : x(A) = f(A)} and since
x(X ∪ Y ) = x(X) = f(X) = f(X ∪ Y ), here, sat(x) ⊇ X ∪ Y .

In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal (e.g., think of
“hyperrectangular” polymatroids).
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supp vs. sat equality

For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.

Suppose x ∈ Pf has x(X) > 0 but x(V \X) = 0 and so x(Y ) = 0.

Then supp(x) = X, and say x is tight at X (x(X) = f(X)).

sat(x) = ∪{A : x(A) = f(A)} and since
x(X ∪ Y ) = x(X) = f(X) = f(X ∪ Y ), here, sat(x) ⊇ X ∪ Y .

In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal (e.g., think of
“hyperrectangular” polymatroids).
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supp vs. sat equality

For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.

Suppose x ∈ Pf has x(X) > 0 but x(V \X) = 0 and so x(Y ) = 0.

Then supp(x) = X, and say x is tight at X (x(X) = f(X)).

sat(x) = ∪{A : x(A) = f(A)} and since
x(X ∪ Y ) = x(X) = f(X) = f(X ∪ Y ), here, sat(x) ⊇ X ∪ Y .

In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal (e.g., think of
“hyperrectangular” polymatroids).
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supp vs. sat equality

For x ∈ Pf , with x extremal, is supp(x) = sat(x)?

Consider an example case where disjoint X,Y ⊆ E, we have
f(X) = f(Y ) = f(X ∪ Y ) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y |X) = 0.

Suppose x ∈ Pf has x(X) > 0 but x(V \X) = 0 and so x(Y ) = 0.

Then supp(x) = X, and say x is tight at X (x(X) = f(X)).

sat(x) = ∪{A : x(A) = f(A)} and since
x(X ∪ Y ) = x(X) = f(X) = f(X ∪ Y ), here, sat(x) ⊇ X ∪ Y .

In general, for extremal x, sat(x) ⊇ supp(x) (see later).

Also, recall sat(x) is like span/closure but supp(x) is more like
indication. So this is similar to span(A) ⊇ A.

For modular functions, they are always equal (e.g., think of
“hyperrectangular” polymatroids).
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Summary of supp, sat, and dep

For x ∈ Pf , supp(x) = {e : x(e) #= 0} ⊆ sat(x)

For x ∈ Pf , sat(x) (span, closure) is the maximal saturated (x-tight)
set w.r.t. x. I.e., sat(x) = {e : e ∈ E, ∀α > 0, x+ α1e /∈ Pf}. That is,

cl(x)
def
= sat(x) !

⋃
{A : A ∈ D(x)} (13.34)

=
⋃

{A : A ⊆ E, x(A) = f(A)} (13.35)

= {e : e ∈ E, ∀α > 0, x+ α1e /∈ Pf} (13.36)

For e ∈ sat(x), we have dep(x, e) (fundamental circuit) is the minimal
(common) saturated (x-tight) set w.r.t. x containing e. That is,

dep(x, e) =

{⋂
{A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
(13.37)
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supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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Point x is extreme and x({e2, e3}) = f(e2, e3) (why?).
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supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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Point x is extreme and x({e2, e3}) = f(e2, e3) (why?).

But x({e1, e2, e3}) = x({e2, e3}) < f(e1, e2, e3) = f(e1) + f(e2, e3).
Thus, supp(x) = sat(x) = {e2, e3}.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F43/57 (pg.177/256)
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supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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Note that considering a submodular function on clustered ground
set E = {e1, e23} where f ′(e1) = f(e1), f

′(e23) = f(e2, e3) leads to
a rectangle (no dependence between {e1} and {e2, e3}).
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supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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We also have sat(x) = {e3, e2}. So dep(x, e1) is not defined,
dep(x, e2) = {e3}, and dep(x, e3) = ∅.
sat(y) = {e1, e2, e3}. So dep(y, e1) = ∅, dep(y, e2) = e3, and
dep(y, e3) = ∅.
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supp, sat, dep, example with perfect independence

Example polymatroid where there is perfect independence between
A = {e2, e3} and B = {e1}, i.e., e1⊥⊥{e2, e3}.
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We also have sat(x) = {e3, e2}. So dep(x, e1) is not defined,
dep(x, e2) = {e3}, and dep(x, e3) = ∅.
sat(y) = {e1, e2, e3}. So dep(y, e1) = ∅, dep(y, e2) = e3, and
dep(y, e3) = ∅.
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supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.

# $ % &

f(e1)

f(e2)

f(e
1 ,e

2 ) f(e
1 ,e

2 )

f(e
1 ,e

2 )

f(e
1 ,e

2 )

f(e1)

f(e2)

f(e1)

f(e2)

f(e1)

f(e2)

Case A: perfect independence.

Case B: perfect dependence. Since slope is -45°, we must have
f(e1) = f(e2) = f(e1, e2). Entropy case: deterministic bijection
between random variables e1 and e2.

Case C: f(e2) < f(e1) = f(e1, e2). Entropy case: random variable
e2 a deterministic function of e1 which has higher entropy.

Case D: f(e1) < f(e2) = f(e1, e2). Entropy case: random variable
e1 a deterministic function of e2 which has higher entropy.
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supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.

#

f(e1)

f(e2)

f(e
1 ,e

2 )

Case A: perfect independence.

Case B: perfect dependence. Since slope is -45°, we must have
f(e1) = f(e2) = f(e1, e2). Entropy case: deterministic bijection
between random variables e1 and e2.

Case C: f(e2) < f(e1) = f(e1, e2). Entropy case: random variable
e2 a deterministic function of e1 which has higher entropy.

Case D: f(e1) < f(e2) = f(e1, e2). Entropy case: random variable
e1 a deterministic function of e2 which has higher entropy.
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supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.

#

f(e1)

f(e2)

f(e
1 ,e

2 )

$

f(e
1 ,e

2 )
f(e1)

f(e2)

Case A: perfect independence.

Case B: perfect dependence. Since slope is -45°, we must have
f(e1) = f(e2) = f(e1, e2). Entropy case: deterministic bijection
between random variables e1 and e2.

Case C: f(e2) < f(e1) = f(e1, e2). Entropy case: random variable
e2 a deterministic function of e1 which has higher entropy.

Case D: f(e1) < f(e2) = f(e1, e2). Entropy case: random variable
e1 a deterministic function of e2 which has higher entropy.
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supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.

#

f(e1)

f(e2)

f(e
1 ,e

2 )

$

f(e
1 ,e

2 )

f(e1)

f(e2)

%

f(e
1 ,e

2 )

f(e1)

f(e2)

Case A: perfect independence.

Case B: perfect dependence. Since slope is -45°, we must have
f(e1) = f(e2) = f(e1, e2). Entropy case: deterministic bijection
between random variables e1 and e2.

Case C: f(e2) < f(e1) = f(e1, e2). Entropy case: random variable
e2 a deterministic function of e1 which has higher entropy.

Case D: f(e1) < f(e2) = f(e1, e2). Entropy case: random variable
e1 a deterministic function of e2 which has higher entropy.
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supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.

#

f(e1)

f(e2)

f(e
1 ,e

2 )

$

f(e
1 ,e
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f(e1)

f(e2)

%

f(e
1 ,e

2 )

f(e1)

f(e2)

&

f(e
1 ,e

2 )

f(e1)

f(e2)

Case A: perfect independence.

Case B: perfect dependence. Since slope is -45°, we must have
f(e1) = f(e2) = f(e1, e2). Entropy case: deterministic bijection
between random variables e1 and e2.

Case C: f(e2) < f(e1) = f(e1, e2). Entropy case: random variable
e2 a deterministic function of e1 which has higher entropy.

Case D: f(e1) < f(e2) = f(e1, e2). Entropy case: random variable
e1 a deterministic function of e2 which has higher entropy.
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supp, sat, and polymatroid dependence in 2D

Ex: various amounts of “dependence” between e1 and e2.
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In each case, we see points x where supp(x) ⊆ sat(x).

Example: Case B or C, let x = (f(e1), 0) so supp(x) = {e1} but
since x({e1, e2}) = x({e1}) = f(e1) = f(e1, e2) we have
sat(x) = {e1, e2}.
Similar for case D with x = (0, f(e2)).
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supp, sat, and dependence in 2D

General case, f(e1, e2) < f(e1) + f(e2), f(e1) < f(e1, e2), and
f(e2) < f(e1, e2).

f(e1)

f(e2) f(e
1 ,e

2 )

Entropy case: We have a random variable Z and two separate
deterministic functions e1 = h1(Z) and e2 = h2(Z) such that the
entropy H(e1, e2) = H(Z), but each deterministic function gives a
different “view” of Z, each contains more than half the information,
and the two are redundant w.r.t. each other.
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supp, sat, and perfect dependence in 3D
Ex: polymatroid with perfect independence between e2 and e3, so
f(e2, e3) = f(e2) + f(e3), but perfect dependence between
A = {e2, e3} and B = {e1}, so f(e1, e2, e3) = f(e2, e3)
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Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

supp, sat, and perfect dependence in 3D
Ex: polymatroid with perfect independence between e2 and e3, so
f(e2, e3) = f(e2) + f(e3), but perfect dependence between
A = {e2, e3} and B = {e1}, so f(e1, e2, e3) = f(e2, e3)
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Entropy case: xor V-structure Bayesian network e1 = h(e2, e3)
where h is the xor function (e2 → e1 ← e3), and e2, e3 are both
independent binary with unity entropy.
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supp, sat, and perfect dependence in 3D
Ex: polymatroid with perfect independence between e2 and e3, so
f(e2, e3) = f(e2) + f(e3), but perfect dependence between
A = {e2, e3} and B = {e1}, so f(e1, e2, e3) = f(e2, e3)
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Entropy case: xor V-structure Bayesian network e1 = h(e2, e3)
where h is the xor function (e2 → e1 ← e3), and e2, e3 are both
independent binary with unity entropy.

Q: Why does the polytope have a symmetry? Notice independence
(square) for any pair.
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supp, sat, and perfect dependence in 3D
Ex: polymatroid with perfect independence between e2 and e3, so
f(e2, e3) = f(e2) + f(e3), but perfect dependence between
A = {e2, e3} and B = {e1}, so f(e1, e2, e3) = f(e2, e3)
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For any permutation σ of {1, 2, 3}, considering {eσ1 , eσ2} vs. {eσ3}:

eσ3 is a deterministic
function of {eσ1 , eσ2}

f (eσ1)

f (eσ2 , eσ3)
f (e

σ
1 , e

σ
2 , e

σ
3 )
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supp, sat, and perfect dependence in 3D
Ex: polymatroid with perfect independence between e2 and e3, so
f(e2, e3) = f(e2) + f(e3), but perfect dependence between
A = {e2, e3} and B = {e1}, so f(e1, e2, e3) = f(e2, e3)
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Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

supp, sat, and perfect dependence in 3D
Ex: polymatroid with perfect independence between e2 and e3, so
f(e2, e3) = f(e2) + f(e3), but perfect dependence between
A = {e2, e3} and B = {e1}, so f(e1, e2, e3) = f(e2, e3)
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Note also, that for some of the extreme points, multiple orders
generate them.
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supp, sat, and perfect dependence in 3D
Ex: polymatroid with perfect independence between e2 and e3, so
f(e2, e3) = f(e2) + f(e3), but perfect dependence between
A = {e2, e3} and B = {e1}, so f(e1, e2, e3) = f(e2, e3)
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Note also, that for some of the extreme points, multiple orders
generate them.

Consider extreme point x = (x1, x2, x3) = (1, 1, 0). Then we get
this either with orders (e1, e2, e3), or (e2, e1, e3). This is true since
f(eσe |{eσ1 , eσ2}) = 0 for all permutations σ of {1, 2, 3}.
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perfect dependence in 3D, entropy, and Bayesian networks

The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.

Consider three binary random variables X1, X2, X3 ∈ {0, 1} that
factor w.r.t., the V-structure X1 → X3 ← X2, where
X3 = X1 ⊕X2, where ⊕ is the X-OR operator, and where X1⊥⊥X2.

Consequently, Xi⊥⊥Xj for any i #= j.

Moreover, for any permutation σ of {1, 2, 3}, we have the
relationship Xσ1 = Xσ2 ⊕Xσ3 .

The entropy function f(A) = H(XA) is a submodular function that
will have the symmetric 3D polytope of the previous example.
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supp, sat, extremal x, perfect dependence

In general, for extremal x, sat(x) ⊇ supp(x).

Now, for any e ∈ E \ supp(x), we clearly have
x(supp(x) + e) = x(supp(x)) since x(e) = 0.
On the other hand, for ei ∈ sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ei) = f(supp(x)). Indeed:

sat(x) is tight, as is supp(x), and hence
f(sat(x)) = x(sat(x)) = x(supp(x)) = f(supp(x)).
Therefore, f(sat(x)| supp(x)) = 0.
But by the above, and monotonicity, we have for
e ∈ sat(x) \ supp(x), that
0 = f(sat(x)| supp(x)) ≥ f(e| supp(x)) ≥ 0.
Hence f(e| supp(x)) = 0,

and moreover
f(e+ supp(x)) = x(e+ supp(x)) = x(supp(x)) = f(supp(x)).

Thus, for any extremal x, with sat(x) ⊃ supp(x), we see that for
e ∈ sat(x) \ supp(x), we have supp(x) + e is also tight.
Note also, for any A ⊆ sat(x) \ supp(x), we have
f(A| supp(x)) = 0.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F48/57 (pg.200/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

supp, sat, extremal x, perfect dependence

In general, for extremal x, sat(x) ⊇ supp(x).
Now, for any e ∈ E \ supp(x), we clearly have
x(supp(x) + e) = x(supp(x)) since x(e) = 0.

On the other hand, for ei ∈ sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ei) = f(supp(x)). Indeed:

sat(x) is tight, as is supp(x), and hence
f(sat(x)) = x(sat(x)) = x(supp(x)) = f(supp(x)).
Therefore, f(sat(x)| supp(x)) = 0.
But by the above, and monotonicity, we have for
e ∈ sat(x) \ supp(x), that
0 = f(sat(x)| supp(x)) ≥ f(e| supp(x)) ≥ 0.
Hence f(e| supp(x)) = 0,

and moreover
f(e+ supp(x)) = x(e+ supp(x)) = x(supp(x)) = f(supp(x)).

Thus, for any extremal x, with sat(x) ⊃ supp(x), we see that for
e ∈ sat(x) \ supp(x), we have supp(x) + e is also tight.
Note also, for any A ⊆ sat(x) \ supp(x), we have
f(A| supp(x)) = 0.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F48/57 (pg.201/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

supp, sat, extremal x, perfect dependence

In general, for extremal x, sat(x) ⊇ supp(x).
Now, for any e ∈ E \ supp(x), we clearly have
x(supp(x) + e) = x(supp(x)) since x(e) = 0.
On the other hand, for ei ∈ sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ei) = f(supp(x)). Indeed:

sat(x) is tight, as is supp(x), and hence
f(sat(x)) = x(sat(x)) = x(supp(x)) = f(supp(x)).
Therefore, f(sat(x)| supp(x)) = 0.
But by the above, and monotonicity, we have for
e ∈ sat(x) \ supp(x), that
0 = f(sat(x)| supp(x)) ≥ f(e| supp(x)) ≥ 0.
Hence f(e| supp(x)) = 0,

and moreover
f(e+ supp(x)) = x(e+ supp(x)) = x(supp(x)) = f(supp(x)).

Thus, for any extremal x, with sat(x) ⊃ supp(x), we see that for
e ∈ sat(x) \ supp(x), we have supp(x) + e is also tight.
Note also, for any A ⊆ sat(x) \ supp(x), we have
f(A| supp(x)) = 0.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F48/57 (pg.202/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

supp, sat, extremal x, perfect dependence

In general, for extremal x, sat(x) ⊇ supp(x).
Now, for any e ∈ E \ supp(x), we clearly have
x(supp(x) + e) = x(supp(x)) since x(e) = 0.
On the other hand, for ei ∈ sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ei) = f(supp(x)). Indeed:

sat(x) is tight, as is supp(x), and hence
f(sat(x)) = x(sat(x)) = x(supp(x)) = f(supp(x)).

Therefore, f(sat(x)| supp(x)) = 0.
But by the above, and monotonicity, we have for
e ∈ sat(x) \ supp(x), that
0 = f(sat(x)| supp(x)) ≥ f(e| supp(x)) ≥ 0.
Hence f(e| supp(x)) = 0,

and moreover
f(e+ supp(x)) = x(e+ supp(x)) = x(supp(x)) = f(supp(x)).

Thus, for any extremal x, with sat(x) ⊃ supp(x), we see that for
e ∈ sat(x) \ supp(x), we have supp(x) + e is also tight.
Note also, for any A ⊆ sat(x) \ supp(x), we have
f(A| supp(x)) = 0.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F48/57 (pg.203/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

supp, sat, extremal x, perfect dependence

In general, for extremal x, sat(x) ⊇ supp(x).
Now, for any e ∈ E \ supp(x), we clearly have
x(supp(x) + e) = x(supp(x)) since x(e) = 0.
On the other hand, for ei ∈ sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ei) = f(supp(x)). Indeed:

sat(x) is tight, as is supp(x), and hence
f(sat(x)) = x(sat(x)) = x(supp(x)) = f(supp(x)).
Therefore, f(sat(x)| supp(x)) = 0.

But by the above, and monotonicity, we have for
e ∈ sat(x) \ supp(x), that
0 = f(sat(x)| supp(x)) ≥ f(e| supp(x)) ≥ 0.
Hence f(e| supp(x)) = 0,

and moreover
f(e+ supp(x)) = x(e+ supp(x)) = x(supp(x)) = f(supp(x)).

Thus, for any extremal x, with sat(x) ⊃ supp(x), we see that for
e ∈ sat(x) \ supp(x), we have supp(x) + e is also tight.
Note also, for any A ⊆ sat(x) \ supp(x), we have
f(A| supp(x)) = 0.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F48/57 (pg.204/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

supp, sat, extremal x, perfect dependence

In general, for extremal x, sat(x) ⊇ supp(x).
Now, for any e ∈ E \ supp(x), we clearly have
x(supp(x) + e) = x(supp(x)) since x(e) = 0.
On the other hand, for ei ∈ sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ei) = f(supp(x)). Indeed:

sat(x) is tight, as is supp(x), and hence
f(sat(x)) = x(sat(x)) = x(supp(x)) = f(supp(x)).
Therefore, f(sat(x)| supp(x)) = 0.
But by the above, and monotonicity, we have for
e ∈ sat(x) \ supp(x), that
0 = f(sat(x)| supp(x)) ≥ f(e| supp(x)) ≥ 0.

Hence f(e| supp(x)) = 0,

and moreover
f(e+ supp(x)) = x(e+ supp(x)) = x(supp(x)) = f(supp(x)).

Thus, for any extremal x, with sat(x) ⊃ supp(x), we see that for
e ∈ sat(x) \ supp(x), we have supp(x) + e is also tight.
Note also, for any A ⊆ sat(x) \ supp(x), we have
f(A| supp(x)) = 0.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F48/57 (pg.205/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

supp, sat, extremal x, perfect dependence

In general, for extremal x, sat(x) ⊇ supp(x).
Now, for any e ∈ E \ supp(x), we clearly have
x(supp(x) + e) = x(supp(x)) since x(e) = 0.
On the other hand, for ei ∈ sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ei) = f(supp(x)). Indeed:

sat(x) is tight, as is supp(x), and hence
f(sat(x)) = x(sat(x)) = x(supp(x)) = f(supp(x)).
Therefore, f(sat(x)| supp(x)) = 0.
But by the above, and monotonicity, we have for
e ∈ sat(x) \ supp(x), that
0 = f(sat(x)| supp(x)) ≥ f(e| supp(x)) ≥ 0.
Hence f(e| supp(x)) = 0,

and moreover
f(e+ supp(x)) = x(e+ supp(x)) = x(supp(x)) = f(supp(x)).

Thus, for any extremal x, with sat(x) ⊃ supp(x), we see that for
e ∈ sat(x) \ supp(x), we have supp(x) + e is also tight.
Note also, for any A ⊆ sat(x) \ supp(x), we have
f(A| supp(x)) = 0.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F48/57 (pg.206/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

supp, sat, extremal x, perfect dependence

In general, for extremal x, sat(x) ⊇ supp(x).
Now, for any e ∈ E \ supp(x), we clearly have
x(supp(x) + e) = x(supp(x)) since x(e) = 0.
On the other hand, for ei ∈ sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ei) = f(supp(x)). Indeed:

sat(x) is tight, as is supp(x), and hence
f(sat(x)) = x(sat(x)) = x(supp(x)) = f(supp(x)).
Therefore, f(sat(x)| supp(x)) = 0.
But by the above, and monotonicity, we have for
e ∈ sat(x) \ supp(x), that
0 = f(sat(x)| supp(x)) ≥ f(e| supp(x)) ≥ 0.
Hence f(e| supp(x)) = 0, and moreover
f(e+ supp(x)) = x(e+ supp(x)) = x(supp(x)) = f(supp(x)).

Thus, for any extremal x, with sat(x) ⊃ supp(x), we see that for
e ∈ sat(x) \ supp(x), we have supp(x) + e is also tight.
Note also, for any A ⊆ sat(x) \ supp(x), we have
f(A| supp(x)) = 0.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F48/57 (pg.207/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

supp, sat, extremal x, perfect dependence

In general, for extremal x, sat(x) ⊇ supp(x).
Now, for any e ∈ E \ supp(x), we clearly have
x(supp(x) + e) = x(supp(x)) since x(e) = 0.
On the other hand, for ei ∈ sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ei) = f(supp(x)). Indeed:

sat(x) is tight, as is supp(x), and hence
f(sat(x)) = x(sat(x)) = x(supp(x)) = f(supp(x)).
Therefore, f(sat(x)| supp(x)) = 0.
But by the above, and monotonicity, we have for
e ∈ sat(x) \ supp(x), that
0 = f(sat(x)| supp(x)) ≥ f(e| supp(x)) ≥ 0.
Hence f(e| supp(x)) = 0, and moreover
f(e+ supp(x)) = x(e+ supp(x)) = x(supp(x)) = f(supp(x)).

Thus, for any extremal x, with sat(x) ⊃ supp(x), we see that for
e ∈ sat(x) \ supp(x), we have supp(x) + e is also tight.

Note also, for any A ⊆ sat(x) \ supp(x), we have
f(A| supp(x)) = 0.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F48/57 (pg.208/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

supp, sat, extremal x, perfect dependence

In general, for extremal x, sat(x) ⊇ supp(x).
Now, for any e ∈ E \ supp(x), we clearly have
x(supp(x) + e) = x(supp(x)) since x(e) = 0.
On the other hand, for ei ∈ sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + ei) = f(supp(x)). Indeed:

sat(x) is tight, as is supp(x), and hence
f(sat(x)) = x(sat(x)) = x(supp(x)) = f(supp(x)).
Therefore, f(sat(x)| supp(x)) = 0.
But by the above, and monotonicity, we have for
e ∈ sat(x) \ supp(x), that
0 = f(sat(x)| supp(x)) ≥ f(e| supp(x)) ≥ 0.
Hence f(e| supp(x)) = 0, and moreover
f(e+ supp(x)) = x(e+ supp(x)) = x(supp(x)) = f(supp(x)).

Thus, for any extremal x, with sat(x) ⊃ supp(x), we see that for
e ∈ sat(x) \ supp(x), we have supp(x) + e is also tight.
Note also, for any A ⊆ sat(x) \ supp(x), we have
f(A| supp(x)) = 0.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F48/57 (pg.209/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

supp, sat, perfect dependence

Note that all of these results hold when f is monotone
non-decreasing submodular (e.g., for a polymatroid function).

For modular functions, and extremal x, sat(x) = supp(x).

For general x ∈ Pf (not nec. extremal), sat(x) and supp(x) might
have an arbitrary relationship (but we want to strengthen this
relationship further, and we will do so below).

For the most part, we are interested in these quantities when x is
extremal as we will see.
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supp and sat, example under limited curvature

Strict monotone f polymatroids, where f(e|E \ e) > 0, ∀e.
Example: f(A) =

√
|A|, where all m! vertices of Bf are unique.

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

e1
e2

e3

0

1

2

0

1

2

0

0.5

1

1.5

2

e2e1

e3
In such cases, taking any extremal point x ∈ Pf based on prefix
order E = (e1, . . . ), where supp(x) ⊂ E, we have that
sat(x) = supp(x) since the largest tight set corresponds to
x(Ei) = f(Ei) for some i, and while any e ∈ E \ Ei is such that
x(Ei + e) = x(Ei), there is no such e with f(Ei + e) = f(Ei).
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Another revealing theorem
Theorem 13.7.1

Let f be a polymatroid function and suppose that E can be partitioned
into (E1, E2, . . . , Ek) such that f(A) =

∑k
i=1 f(A ∩ Ei) for all A ⊆ E,

and k is maximum. Then the base polytope
Bf = {x ∈ Pf : x(E) = f(E)} (the E-tight subset of Pf ) has dimension
|E|− k.

Thus, “independence” between disjoint A and B (leading to a
rectangular projection of the polymatroid polytope) reduces the
dimension of the base polytope, as expected.

Thus, any point x ∈ Bf is a convex combination of at most
|E|− k + 1 vertices of Bf .

And if f does not have such independence, dimension of Bf is
|E|− 1 and any point x ∈ Bf is a convex combination of at most
|E| vertices of Bf .
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|E| vertices of Bf .
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Example f with independence between A = {e2, e3} and B = {e1},
i.e., e1⊥⊥{e2, e3}, with Bf marked in green.
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Base polytope existence

Given polymatroid function f , the base polytope
Bf =

{
x ∈ RE

+ : x(A) ≤ f(A) ∀A ⊆ E, and x(E) = f(E)
}
always

exists.

Consider any order of E and generate a vector x by this order (i.e.,
x(e1) = f({e1}), x(e2) = f({e1, e2})− f({e1}), and so on).

From past lectures, we now know that:

(1) x ∈ Pf

(2) x is an extreme point in Pf

(3) Since x is generated using an ordering of all of E, we have that
x(E) = f(E).

Thus x ∈ Bf , and Bf is never empty.

Moreover, in this case, x is a vertex of Bf since it is extremal.
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Base polytope property

Now, for any A ⊆ E, we can generate a particular point in Bf

That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|,
and where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with
k = |A|.
Note there are k!(n− k)! < n! such orderings.

Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).

Then, we have generated a point x (a vertex, no less) in Bf such
that x(A) = f(A).

Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
#= ∅ (13.50)

In words, Bf intersects all “multi-axis congruent” hyperplanes
within RE of the form

{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F53/57 (pg.228/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

Base polytope property

Now, for any A ⊆ E, we can generate a particular point in Bf

That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|,
and where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with
k = |A|.

Note there are k!(n− k)! < n! such orderings.

Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).

Then, we have generated a point x (a vertex, no less) in Bf such
that x(A) = f(A).

Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
#= ∅ (13.50)

In words, Bf intersects all “multi-axis congruent” hyperplanes
within RE of the form

{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F53/57 (pg.229/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

Base polytope property

Now, for any A ⊆ E, we can generate a particular point in Bf

That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|,
and where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with
k = |A|.
Note there are k!(n− k)! < n! such orderings.

Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).

Then, we have generated a point x (a vertex, no less) in Bf such
that x(A) = f(A).

Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
#= ∅ (13.50)

In words, Bf intersects all “multi-axis congruent” hyperplanes
within RE of the form

{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F53/57 (pg.230/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

Base polytope property

Now, for any A ⊆ E, we can generate a particular point in Bf

That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|,
and where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with
k = |A|.
Note there are k!(n− k)! < n! such orderings.

Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).

Then, we have generated a point x (a vertex, no less) in Bf such
that x(A) = f(A).

Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
#= ∅ (13.50)

In words, Bf intersects all “multi-axis congruent” hyperplanes
within RE of the form

{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F53/57 (pg.231/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

Base polytope property

Now, for any A ⊆ E, we can generate a particular point in Bf

That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|,
and where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with
k = |A|.
Note there are k!(n− k)! < n! such orderings.

Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).

Then, we have generated a point x (a vertex, no less) in Bf such
that x(A) = f(A).

Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
#= ∅ (13.50)

In words, Bf intersects all “multi-axis congruent” hyperplanes
within RE of the form

{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F53/57 (pg.232/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

Base polytope property

Now, for any A ⊆ E, we can generate a particular point in Bf

That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|,
and where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with
k = |A|.
Note there are k!(n− k)! < n! such orderings.

Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).

Then, we have generated a point x (a vertex, no less) in Bf such
that x(A) = f(A).

Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
#= ∅ (13.50)

In words, Bf intersects all “multi-axis congruent” hyperplanes
within RE of the form

{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F53/57 (pg.233/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

Base polytope property

Now, for any A ⊆ E, we can generate a particular point in Bf

That is, choose the ordering of E = (e1, e2, . . . , en) where n = |E|,
and where Ei = (e1, e2, . . . , ei) , so that we have Ek = A with
k = |A|.
Note there are k!(n− k)! < n! such orderings.

Generate x via greedy using this order, ∀i, x(ei) = f(ei|Ei−1).

Then, we have generated a point x (a vertex, no less) in Bf such
that x(A) = f(A).

Thus, for any A, we have

Bf ∩
{
x ∈ RE : x(A) = f(A)

}
#= ∅ (13.50)

In words, Bf intersects all “multi-axis congruent” hyperplanes
within RE of the form

{
x ∈ RE : x(A) = f(A)

}
for all A ⊆ E.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F53/57 (pg.234/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

Bf dominates Pf

In fact, every x ∈ Pf is dominated by x ≤ y ∈ Bf .

Theorem 13.7.2

If x ∈ Pf and T is tight for x (meaning x(T ) = f(T )), then there exists
y ∈ Bf with x ≤ y and y(e) = x(e) for e ∈ T .

Proof.

We construct the y algorithmically: initially set y ← x.

y ∈ Pf , T is tight for y so y(T ) = f(T ).

Recall saturation capacity: for y ∈ Pf , ĉ(y; e) =
min {f(A)− y(A)|∀A $ e} = max {α : α ∈ R, y + α1e ∈ Pf}
Consider following algorithm:

1 T ′ ← T ;
2 for e ∈ E \ T do
3 y ← y + c(y; e)1e ; T ′ ← T ′ ∪ {e};

. . .
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min {f(A)− y(A)|∀A $ e} = max {α : α ∈ R, y + α1e ∈ Pf}
Consider following algorithm:

1 T ′ ← T ;
2 for e ∈ E \ T do
3 y ← y + c(y; e)1e ; T ′ ← T ′ ∪ {e};

. . .
Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F54/57 (pg.237/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

Bf dominates Pf

In fact, every x ∈ Pf is dominated by x ≤ y ∈ Bf .

Theorem 13.7.2

If x ∈ Pf and T is tight for x (meaning x(T ) = f(T )), then there exists
y ∈ Bf with x ≤ y and y(e) = x(e) for e ∈ T .

Proof.

We construct the y algorithmically: initially set y ← x.

y ∈ Pf , T is tight for y so y(T ) = f(T ).

Recall saturation capacity: for y ∈ Pf , ĉ(y; e) =
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x
. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F54/57 (pg.239/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

Bf dominates Pf

. . . proof of Thm. 13.7.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ —
for e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e),
or y(e) ≤ f(T ′ + e)− y(T ′)

= y(e) + f(T ′ + e)− y(T ′ + e)

.

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e).

Hence, after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h.
version of ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se $ e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be the new (resp. old) entry for
e. We have

y′(Se) = y(Se \ {e}) + y′(e) = y(Se \ {e}) + [y(e) + f(Se)− y(Se)]

= f(Se) (13.51)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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version of ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se $ e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be the new (resp. old) entry for
e. We have

y′(Se) = y(Se \ {e}) + y′(e) = y(Se \ {e}) + [y(e) + f(Se)− y(Se)]

= f(Se) (13.51)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Bf dominates Pf

. . . proof of Thm. 13.7.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ —
for e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e),
or y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e).
Hence, after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h.
version of ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se $ e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be the new (resp. old) entry for
e. We have

y′(Se) = y(Se \ {e}) + y′(e) = y(Se \ {e}) + [y(e) + f(Se)− y(Se)]

= f(Se) (13.51)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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. . . proof of Thm. 13.7.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ —
for e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e),
or y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e).
Hence, after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h.
version of ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se $ e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be the new (resp. old) entry for
e. We have

y′(Se) = y(Se \ {e}) + y′(e) = y(Se \ {e}) + [y(e) + f(Se)− y(Se)]

= f(Se) (13.51)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Bf dominates Pf

. . . proof of Thm. 13.7.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ —
for e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e),
or y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e).
Hence, after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h.
version of ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se $ e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be the new (resp. old) entry for
e. We have

y′(Se) = y(Se \ {e}) + y′(e) = y(Se \ {e}) + [y(e) + f(Se)− y(Se)]

= f(Se) (13.51)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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. . . proof of Thm. 13.7.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ —
for e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e),
or y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e).
Hence, after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h.
version of ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se $ e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be the new (resp. old) entry for
e. We have

y′(Se) = y(Se \ {e}) + y′(e) = y(Se \ {e}) + [y(e) + f(Se)− y(Se)]

= f(Se) (13.51)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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. . . proof of Thm. 13.7.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ —
for e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e),
or y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e).
Hence, after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h.
version of ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se $ e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be the new (resp. old) entry for
e. We have

y′(Se) = y(Se \ {e}) + y′(e) = y(Se \ {e}) + [y(e) + f(Se)− y(Se)]

= f(Se) (13.51)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .
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Bf dominates Pf

. . . proof of Thm. 13.7.2 cont.

Each step maintains feasibility: consider one step adding e to T ′ —
for e /∈ T ′, feasibility requires y(T ′ + e) = y(T ′) + y(e) ≤ f(T ′ + e),
or y(e) ≤ f(T ′ + e)− y(T ′) = y(e) + f(T ′ + e)− y(T ′ + e).

We set y(e) ← y(e) + ĉ(y; e) ≤ y(e) + f(T ′ + e)− y(T ′ + e).
Hence, after each step, y ∈ Pf and ĉ(y; e) ≥ 0. (also, consider r.h.
version of ĉ(y; e)).

Also, only y(e) for e /∈ T changed, final y has y(e) = x(e) for e ∈ T .

Let Se $ e be a set that achieves c(y; e) = f(Se)− y(Se).

At iteration e, let y′(e) (resp. y(e)) be the new (resp. old) entry for
e. We have

y′(Se) = y(Se \ {e}) + y′(e) = y(Se \ {e}) + [y(e) + f(Se)− y(Se)]

= f(Se) (13.51)

So, Se is tight for y′. It remains tight in further iterations since y
doesn’t decrease and it stays within Pf .

Also, E = T ∪
⋃

e/∈T Se is also tight, meaning the final y has y ∈ Bf .Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F55/57 (pg.248/256)
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Polytope example 1
Observe: Pf (at two views):
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Polytope example 1
Observe: Pf (at two views):
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Is this a polymatroidal polytope?

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F56/57 (pg.250/256)



Closure/Sat Fund. Circuit/Dep Supp Examples More on Bf

Polytope example 1
Observe: Pf (at two views):
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Is this a polymatroidal polytope?
No, “Bf” doesn’t intersect sets of the form {x : x(e) = f(e)} for
e ∈ E.
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Polytope example 1
Observe: Pf (at two views):
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Is this a polymatroidal polytope?
No, “Bf” doesn’t intersect sets of the form {x : x(e) = f(e)} for
e ∈ E.
This was generated using function g(0) = 0, g(1) = 3, g(2) = 4,
and g(3) = 5.5. Then f(S) = g(|S|) is not submodular since (e.g.)
f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
f({e1, e2, e3}) + f({e1}) = 5.5 + 3 = 8.5.Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F56/57 (pg.252/256)
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Polytope example 2
Observe: Pf (at two views):
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Polytope example 2
Observe: Pf (at two views):
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Is this a polymatroidal polytope?
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Polytope example 2
Observe: Pf (at two views):
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Is this a polymatroidal polytope?

No, “Bf” (which would be a single point in this case) doesn’t
intersect sets of the form {x : x(e) = f(e)} for e ∈ E.
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Polytope example 2
Observe: Pf (at two views):
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Is this a polymatroidal polytope?

No, “Bf” (which would be a single point in this case) doesn’t
intersect sets of the form {x : x(e) = f(e)} for e ∈ E.

This was generated using function g(0) = 0, g(1) = 1, g(2) = 1.8,
and g(3) = 3. Then f(S) = g(|S|) is not submodular since (e.g.)
f({e1, e3}) + f({e1, e2}) = 1.8 + 1.8 = 3.6 but
f({e1, e2, e3}) + f({e1}) = 3 + 1 = 4.
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