Submodular Functions, Optimization, and Applications to Machine Learning

- Spring Quarter, Lecture 13 -
http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

May 14th, 2014

Cumulative Outstanding Reading

- Good references for today: Schrijver-2003, Oxley-1992/2011, Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.
- Read Tom McCormick's overview paper on SFM http://people. commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
- Read chapters 1-4 from Fujishige book.
- Matroid properties http:
//www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf

Announcements, Assignments, and Reminders

- Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, \& Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L11: More properties of polymatroids, SFM special cases
- L12: polymatroid properties, extreme points polymatroids,
- L13: sat, dep, supp, exchange capacity, examples
- L14:
- L15:
- L16:
- L17:
- L18:
- L19:
- L20:
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes,
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity

Tight sets $\mathcal{D}(y)$ are closed, and max tight set sat (y)

Recall the definition of the set of tight sets at $y \in P_{f}^{+}$:

$$
\begin{equation*}
\mathcal{D}(y) \triangleq\{A: A \subseteq E, y(A)=f(A)\} \tag{13.18}
\end{equation*}
$$

Theorem 13.2.1

For any $y \in P_{f}^{+}$, with f a polymatroid function, then $\mathcal{D}(y)$ is closed under union and intersection.

Proof.

We have already proven this as part of Theorem ??
Also recall the definition of $\operatorname{sat}(y)$, the maximal set of tight elements relative to $y \in \mathbb{R}_{+}^{E}$.

$$
\begin{equation*}
\operatorname{sat}(y) \stackrel{\text { def }}{=} \bigcup\{T: T \in \mathcal{D}(y)\} \tag{13.19}
\end{equation*}
$$

Fundamental circuits in matroids

Lemma 13.2.3

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup\{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_{1}, C_{2} such that $C_{1} \cup C_{2} \subseteq I \cup\{e\}$.
- Then $e \in C_{1} \cap C_{2}$, and by (C2), there is a circuit C_{3} of M s.t. $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\} \subseteq I$
- This contradicts the independence of I.

In general, let $C(I, e)$ be the unique circuit associated with $I \cup\{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).

Matroid Partition Problem

Theorem 13.2.1

Let M_{i} be a collection of k matroids as described. Then, a set $S \subseteq E$ can be partitioned into k subsets $I_{i}, i=1 \ldots k$ where $I_{i} \in \mathcal{I}_{i}$ is independent in matroid i, if and only if, for all $A \subseteq S$

$$
\begin{equation*}
|A| \leq \sum_{i=1}^{k} r_{i}(A) \tag{13.1}
\end{equation*}
$$

where r_{i} is the rank function of M_{i}.

- Now, if all matroids are the same $M_{i}=M$ for all i, we get condition

$$
\begin{equation*}
|A| \leq k r(A) \quad \forall A \subseteq E \tag{13.2}
\end{equation*}
$$

- But considering vector of all ones $\mathbf{1} \in \mathbb{R}_{+}^{E}$, this is the same as

$$
\begin{equation*}
\frac{1}{k}|A|=\frac{1}{k} \mathbf{1}(A) \leq r(A) \quad \forall A \subseteq E \tag{13.3}
\end{equation*}
$$

Polymatroidal polyhedron and greedy

- Thus, restating the above results into a single complete theorem, we have a result very similar to what we saw for matroids (i.e., Theorem ??)

Theorem 13.2.1

If $f: 2^{E} \rightarrow \mathbb{R}_{+}$is given, and P is a polytope in \mathbb{R}_{+}^{E} of the form $P=\left\{x \in \mathbb{R}_{+}^{E}: x(A) \leq f(A), \forall A \subseteq E\right\}$, then the greedy solution to the problem $\max (w x: x \in P)$ is $\forall w$ optimum iff f is monotone non-decreasing submodular (i.e., iff P is a polymatroid).

Base Polytope in 3D

e2

e2
e1

$$
\begin{align*}
P_{f} & =\left\{x \in \mathbb{R}^{E}: x(S) \leq f(S), \forall S \subseteq E\right\} \tag{13.5}\\
B_{f} & =P_{f} \cap\left\{x \in \mathbb{R}^{E}: x(E)=f(E)\right\} \tag{13.6}
\end{align*}
$$

Polymatroid extreme points

Theorem 13.2.1

For a given ordering $E=\left(e_{1}, \ldots, e_{m}\right)$ of E and a given $E_{i}=\left(e_{1}, \ldots, e_{i}\right)$ and x generated by E_{i} using the greedy procedure $\left(x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)\right)$, then x is an extreme point of P_{f}

Proof.

- We already saw that $x \in P_{f}$ (Theorem ??).
- To show that x is an extreme point of P_{f}, note that it is the unique solution of the following system of equations

$$
\begin{align*}
x\left(E_{j}\right) & =f\left(E_{j}\right) \text { for } 1 \leq j \leq i \leq m \tag{13.9}\\
x(e) & =0 \text { for } e \in E \backslash E_{i} \tag{13.10}
\end{align*}
$$

There are $i \leq m$ equations and $i \leq m$ unknowns, and simple Gaussian elimination gives us back the x constructed via the Greedy algorithm!!

Polymatroid extreme points

- Moreover, we have (and will ultimately prove)

Corollary 13.2.2

If x is an extreme point of P_{f} and $B \subseteq E$ is given such that $\operatorname{supp}(x)=\{e \in E: x(e) \neq 0\} \subseteq B \subseteq \cup(A: x(A)=f(A))=\operatorname{sat}(x)$, then x is generated using greedy by some ordering of B.

- Note, $\operatorname{sat}(x)=\mathrm{cl}(x)=\cup(A: x(A)=f(A))$ is also called the closure of x (recall that sets A such that $x(A)=f(A)$ are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem ??)
- Thus, $\mathrm{cl}(x)$ is a tight set.
- Also, $\operatorname{supp}(x)=\{e \in E: x(e) \neq 0\}$ is called the support of x.
- For arbitrary $x, \operatorname{supp}(x)$ is not necessarily tight, but for an extreme point, $\operatorname{supp}(x)$ is.

Polymatroid with labeled edge lengths

- Recall $f(e \mid A)=$ $f(A+e)-f(A)$
- Notice how
submodularity,
$f(e \mid B) \leq f(e \mid A)$ for $A \subseteq B$, defines the shape of the polytope.
- In fact, we have strictness here $f(e \mid B)<f(e \mid A)$ for $A \subset B$.
- Also, consider how the greedy algorithm proceeds along the edges of the polytope.

Minimizers of a Submodular Function form a lattice

Theorem 13.2.2

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M}=\operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A)=f(B) \leq f(A \cap B)$ and $f(A)=f(B) \leq f(A \cup B)$.
By submodularity, we have

$$
\begin{equation*}
f(A)+f(B) \geq f(A \cup B)+f(A \cap B) \tag{13.8}
\end{equation*}
$$

Hence, we must have $f(A)=f(B)=f(A \cup B)=f(A \cap B)$.
Thus, the minimizers of a submodular function form a lattice, and there is a maximal and a minimal minimizer of every submodular function.

The sat function $=$ Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_{f}$, we have defined:

$$
\begin{align*}
\mathrm{cl}(x) \stackrel{\text { def }}{=} \operatorname{sat}(x) & \stackrel{\text { def }}{=} \bigcup\{A: A \in \mathcal{D}(x)\} \tag{13.8}\\
& =\bigcup\{A: A \subseteq E, x(A)=f(A)\} \tag{13.9}\\
& =\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\} \tag{13.10}
\end{align*}
$$

- Hence, $\operatorname{sat}(x)$ is the maximal (zero-valued) minimizer of the submodular function $f_{x}(A) \triangleq f(A)-x(A)$.
- Eq. (??) says that sat consists of any point x that is P_{f} saturated (any additional positive movement, in that dimension, leaves P_{f}). We'll revisit this in a few slides.
- First, we see how sat generalizes matroid closure.

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and

$$
\begin{equation*}
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.1}
\end{equation*}
$$

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and

$$
\begin{equation*}
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.1}
\end{equation*}
$$

and

$$
\operatorname{sat}\left(\mathbf{1}_{I}\right)
$$

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and

$$
\begin{equation*}
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{sat}\left(\mathbf{1}_{I}\right)=\bigcup\left\{A: A \subseteq E, A \in \mathcal{D}\left(\mathbf{1}_{I}\right)\right\} \tag{13.2}
\end{equation*}
$$

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and

$$
\begin{equation*}
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.1}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{sat}\left(\mathbf{1}_{I}\right) & =\bigcup\left\{A: A \subseteq E, A \in \mathcal{D}\left(\mathbf{1}_{I}\right)\right\} \tag{13.2}\\
& =\bigcup\left\{A: A \subseteq E, \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.3}
\end{align*}
$$

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and

$$
\begin{equation*}
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.1}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{sat}\left(\mathbf{1}_{I}\right) & =\bigcup\left\{A: A \subseteq E, A \in \mathcal{D}\left(\mathbf{1}_{I}\right)\right\} \tag{13.2}\\
& =\bigcup\left\{A: A \subseteq E, \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.3}\\
& =\bigcup\{A: A \subseteq E,|I \cap A|=r(A)\} \tag{13.4}
\end{align*}
$$

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and

$$
\begin{equation*}
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.1}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{sat}\left(\mathbf{1}_{I}\right) & =\bigcup\left\{A: A \subseteq E, A \in \mathcal{D}\left(\mathbf{1}_{I}\right)\right\} \tag{13.2}\\
& =\bigcup\left\{A: A \subseteq E, \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.3}\\
& =\bigcup\{A: A \subseteq E,|I \cap A|=r(A)\} \tag{13.4}
\end{align*}
$$

- Notice that $\mathbf{1}_{I}(A)=|I \cap A| \leq|I|$.

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and

$$
\begin{equation*}
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.1}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{sat}\left(\mathbf{1}_{I}\right) & =\bigcup\left\{A: A \subseteq E, A \in \mathcal{D}\left(\mathbf{1}_{I}\right)\right\} \\
& =\bigcup\left\{A: A \subseteq E, \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.3}\\
& =\bigcup\{A: A \subseteq E, \mid I \tag{13.4}
\end{align*}
$$

- Notice that $\mathbf{1}_{I}(A)=|I \cap A| \leq|I|$.
- Intuitively, consider an $A \supset I \in \mathcal{I}$ that doesn'土 increace rank, meaning $r(A)=r(I)$. If $r(A)=|I \cap A|=r(I \cap A)$, as in Eqn. (13.4), then A is in I 's span, so should get $\operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)$.

The sat function $=$ Polymatroid Closure

- Consider matroid $(E, \mathcal{I})=(E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_{I} \in P_{r}$ and

$$
\begin{equation*}
\mathcal{D}\left(\mathbf{1}_{I}\right)=\left\{A: \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.1}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{sat}\left(\mathbf{1}_{I}\right) & =\bigcup\left\{A: A \subseteq E, A \in \mathcal{D}\left(\mathbf{1}_{I}\right)\right\} \tag{13.2}\\
& =\bigcup\left\{A: A \subseteq E, \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.3}\\
& =\bigcup\{A: A \subseteq E,|I \cap A|=r(A)\} \tag{13.4}
\end{align*}
$$

- Notice that $\mathbf{1}_{I}(A)=|I \cap A| \leq|I|$.
- Intuitively, consider an $A \supset I \in \mathcal{I}$ that doesn't increase rank, meaning $r(A)=r(I)$. If $r(A)=|I \cap A|=r(I \cap A)$, as in Eqn. (13.4), then A is in I 's span, so should get $\operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)$.
- We formalize this next.

The sat function $=$ Polymatroid Closure

Lemma 13.3.1 (Matroid sat : $\mathbb{R}_{+}^{E} \rightarrow 2^{E}$ is the same as closure.)
For $I \in \mathcal{I}$, we have $\operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)$

The sat function $=$ Polymatroid Closure

Lemma 13.3.1 (Matroid sat: $\mathbb{R}_{+}^{E} \rightarrow 2^{E}$ is the same as closure.)

$$
\text { For } I \in \mathcal{I} \text {, we have } \operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)
$$

Proof.

- For $\mathbf{1}_{I}(I)=|I|=r(I)$, so $I \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ and $I \subseteq \operatorname{sat}\left(\mathbf{1}_{I}\right)$. Also, $I \subseteq \operatorname{span}(I)$.

-/

I is tight for TIT $\sin u I_{T}(I)=T(T)$

The sat function $=$ Polymatroid Closure

Lemma 13.3.1 (Matroid sat : $\mathbb{R}_{+}^{E} \rightarrow 2^{E}$ is the same as closure.)

$$
\text { For } I \in \mathcal{I} \text {, we have } \operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)
$$

Proof.

- For $\mathbf{1}_{I}(I)=|I|=r(I)$, so $I \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ and $I \subseteq \operatorname{sat}\left(\mathbf{1}_{I}\right)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \backslash I$.

The sat function $=$ Polymatroid Closure

Lemma 13.3.1 (Matroid sat : $\mathbb{R}_{+}^{E} \rightarrow 2^{E}$ is the same as closure.)

$$
\begin{equation*}
\text { For } I \in \mathcal{I} \text {, we have } \operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I) \tag{13.5}
\end{equation*}
$$

Proof.

- For $\mathbf{1}_{I}(I)=|I|=r(I)$, so $I \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ and $I \subseteq \operatorname{sat}\left(\mathbf{1}_{I}\right)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \backslash I$.
- Then $I \cup\{b\} \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ since $\mathbf{1}_{I}(I \cup\{b\})=|I|=r(I \cup\{b\})=r(I)$.

The sat function $=$ Polymatroid Closure

Lemma 13.3.1 (Matroid sat : $\mathbb{R}_{+}^{E} \rightarrow 2^{E}$ is the same as closure.)

$$
\begin{equation*}
\text { For } I \in \mathcal{I} \text {, we have } \operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I) \tag{13.5}
\end{equation*}
$$

Proof.

- For $\mathbf{1}_{I}(I)=|I|=r(I)$, so $I \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ and $I \subseteq \operatorname{sat}\left(\mathbf{1}_{I}\right)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \backslash I$.
- Then $I \cup\{b\} \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ since $\mathbf{1}_{I}(I \cup\{b\})=|I|=r(I \cup\{b\})=r(I)$.
- Thus, $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right)$.

The sat function $=$ Polymatroid Closure

Lemma 13.3.1 (Matroid sat : $\mathbb{R}_{+}^{E} \rightarrow 2^{E}$ is the same as closure.)
For $I \in \mathcal{I}$, we have $\operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)$

Proof.

- For $\mathbf{1}_{I}(I)=|I|=r(I)$, so $I \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ and $I \subseteq \operatorname{sat}\left(\mathbf{1}_{I}\right)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \backslash I$.
- Then $I \cup\{b\} \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ since $\mathbf{1}_{I}(I \cup\{b\})=|I|=r(I \cup\{b\})=r(I)$.
- Thus, $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right)$.
- Therefore, $\operatorname{sat}\left(\mathbf{1}_{I}\right) \supseteq \operatorname{span}(I)$.

The sat function $=$ Polymatroid Closure

. . . proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.

The sat function $=$ Polymatroid Closure

. . . proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.

The sat function $=$ Polymatroid Closure

. . . proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.
- Then $\mathbf{1}(A)=|A \cap I|=r(A)$.

The sat function $=$ Polymatroid Closure

. . . proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.
- Then $\mathbf{1}(A)=|A \cap I|=r(A)$.
- Now $r(A)=|A \cap I| \leq|I|=r(I)$.

The sat function $=$ Polymatroid Closure

. . . proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.
- Then $\mathbf{1}(A)=|A \cap I|=r(A)$.
- Now $r(A)=|A \cap I| \leq|I|=r(I)$.
- Also, $r(A \cap I)=|A \cap I|$ since $A \cap I \in \mathcal{I}$.

The sat function $=$ Polymatroid Closure

. . proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.
- Then $\mathbf{1}(A)=|A \cap I|=r(A)$.
- Now $r(A)=|A \cap I| \leq|I|=r(I)$.
- Also, $r(A \cap I)=|A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I)=r(A)=r((A \cap I) \cup(A \backslash I))$ meaning $(A \backslash I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.

The sat function $=$ Polymatroid Closure

. . . proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.
- Then $\mathbf{1}(A)=|A \cap I|=r(A)$.
- Now $r(A)=|A \cap I| \leq|I|=r(I)$.
- Also, $r(A \cap I)=|A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I)=r(A)=r((A \cap I) \cup(A \backslash I))$ meaning $(A \backslash I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.
- Since $b \in A \backslash I$, we get $b \in \operatorname{span}(I)$.

The sat function $=$ Polymatroid Closure

. . . proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.
- Then $\mathbf{1}(A)=|A \cap I|=r(A)$.
- Now $r(A)=|A \cap I| \leq|I|=r(I)$.
- Also, $r(A \cap I)=|A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I)=r(A)=r((A \cap I) \cup(A \backslash I))$ meaning $(A \backslash I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.
- Since $b \in A \backslash I$, we get $b \in \operatorname{span}(I)$.
- Thus, $\operatorname{sat}\left(\mathbf{1}_{I}\right) \subseteq \operatorname{span}(I)$.

The sat function $=$ Polymatroid Closure

. . . proof continued.

- Now, consider $b \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$.
- Choose any $A \in \mathcal{D}\left(\mathbf{1}_{I}\right)$ with $b \in A$, thus $b \in A \backslash I$.
- Then $\mathbf{1}(A)=|A \cap I|=r(A)$.
- Now $r(A)=|A \cap I| \leq|I|=r(I)$.
- Also, $r(A \cap I)=|A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I)=r(A)=r((A \cap I) \cup(A \backslash I))$ meaning $(A \backslash I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.
- Since $b \in A \backslash I$, we get $b \in \operatorname{span}(I)$.
- Thus, $\operatorname{sat}\left(\mathbf{1}_{I}\right) \subseteq \operatorname{span}(I)$.
- Hence $\operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)$

The sat function $=$ Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_{C}$.

The sat function $=$ Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_{C}$. Is $\mathbf{1}_{C} \in P_{r}$?

The sat function $=$ Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_{C}$. Is $\mathbf{1}_{C} \in P_{r}$? No, it might not be a vertex, or even a member, of P_{r}.

The sat function $=$ Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_{C}$. Is $\mathbf{1}_{C} \in P_{r}$? No, it might not be a vertex, or even a member, of P_{r}.
- $\operatorname{span}(\cdot)$ operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.

The sat function $=$ Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_{C}$. Is $\mathbf{1}_{C} \in P_{r}$? No, it might not be a vertex, or even a member, of P_{r}.
- $\operatorname{span}(\cdot)$ operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C)=\operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.

The sat function $=$ Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_{C}$. Is $\mathbf{1}_{C} \in P_{r}$? No, it might not be a vertex, or even a member, of P_{r}.
- $\operatorname{span}(\cdot)$ operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C)=\operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_{B} \leq \mathbf{1}_{C} \leq \mathbf{1}_{\text {span }(C)}$, and that $\mathbf{1}_{B} \in P_{r}$. We can then make the definition:

$$
\begin{equation*}
\operatorname{sat}\left(\mathbf{1}_{C}\right) \triangleq \operatorname{sat}\left(\mathbf{1}_{B}\right) \text { for } B \in \mathcal{B}(C) \tag{13.6}
\end{equation*}
$$

In which case, we also get $\operatorname{sat}\left(\mathbf{1}_{C}\right)=\operatorname{span}(C)$ (in general, could define $\operatorname{sat}(y)=\operatorname{sat}(\mathrm{P}-\operatorname{basis}(y)))$.
Motrin point w weir
(1) $\sqrt{2}$

$$
?-b u s e s .
$$

The sat function $=$ Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_{C}$. Is $\mathbf{1}_{C} \in P_{r}$? No, it might not be a vertex, or even a member, of P_{r}.
- $\operatorname{span}(\cdot)$ operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C)=\operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_{B} \leq \mathbf{1}_{C} \leq \mathbf{1}_{\text {span }(C)}$, and that $\mathbf{1}_{B} \in P_{r}$. We can then make the definition:

$$
\begin{equation*}
\operatorname{sat}\left(\mathbf{1}_{C}\right) \triangleq \operatorname{sat}\left(\mathbf{1}_{B}\right) \text { for } B \in \mathcal{B}(C) \tag{13.6}
\end{equation*}
$$

In which case, we also get $\operatorname{sat}\left(\mathbf{1}_{C}\right)=\operatorname{span}(C)$ (in general, could define $\operatorname{sat}(y)=\operatorname{sat}($ P-basis $(y)))$.

- However, consider the following form

$$
\begin{equation*}
\operatorname{sat}\left(\mathbf{1}_{C}\right)=\bigcup\{A: A \subseteq E,|A \cap C|=r(A)\} \tag{13.7}
\end{equation*}
$$

The sat function $=$ Polymatroid Closure

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_{C}$. Is $\mathbf{1}_{C} \in P_{r}$? No, it might not be a vertex, or even a member, of P_{r}.
- $\operatorname{span}(\cdot)$ operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C)=\operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_{B} \leq \mathbf{1}_{C} \leq \mathbf{1}_{\text {span }(C)}$, and that $\mathbf{1}_{B} \in P_{r}$. We can then make the definition:

$$
\begin{equation*}
\operatorname{sat}\left(\mathbf{1}_{C}\right) \triangleq \operatorname{sat}\left(\mathbf{1}_{B}\right) \text { for } B \in \mathcal{B}(C) \tag{13.6}
\end{equation*}
$$

In which case, we also get $\operatorname{sat}\left(\mathbf{1}_{C}\right)=\operatorname{span}(C)$ (in general, could define $\operatorname{sat}(y)=\operatorname{sat}($ P-basis $(y)))$.

- However, consider the following form

$$
\begin{equation*}
\operatorname{sat}\left(\mathbf{1}_{C}\right)=\bigcup\{A: A \subseteq E,|A \cap C|=r(A)\} \tag{13.7}
\end{equation*}
$$

Exercise: is $\operatorname{span}(C)=\operatorname{sat}\left(\mathbf{1}_{C}\right)$? Prove or disprove it.

The sat function, span, and submodular function minimization

- Thus, for a matroid, $\operatorname{sat}\left(\mathbf{1}_{I}\right)$ is exactly the closure (or span) of I in the matroid. l.e., for matroid (E, r), we have $\operatorname{span}(I)=\operatorname{sat}\left(\mathbf{1}_{B}\right)$.

The sat function, span, and submodular function

 minimization- Thus, for a matroid, $\operatorname{sat}\left(\mathbf{1}_{I}\right)$ is exactly the closure (or span) of I in the matroid. l.e., for matroid (E, r), we have $\operatorname{span}(I)=\operatorname{sat}\left(\mathbf{1}_{B}\right)$.
- Recall, for $x \in P_{f}$ and polymatroidal $f, \operatorname{sat}(x)$ is the maximal (by inclusion) minimizer of $f(A)-x(A)$, and thus in a matroid, $\operatorname{span}(I)$ is the maximal minimizer of the submodular function formed by $r(A)-\mathbf{1}_{I}(A)$.

minimization

- Thus, for a matroid, $\operatorname{sat}\left(\mathbf{1}_{I}\right)$ is exactly the closure (or span) of I in the matroid. l.e., for matroid (E, r), we have $\operatorname{span}(I)=\operatorname{sat}\left(\mathbf{1}_{B}\right)$.
- Recall, for $x \in P_{f}$ and polymatroidal f, $\operatorname{sat}(x)$ is the maximal (by inclusion) minimizer of $f(A)-x(A)$, and thus in a matroid, span (I) is the maximal minimizer of the submodular function formed by $r(A)-\mathbf{1}_{I}(A)$.
- Submodular function minimization can solve "span" queries in a matroid or "sat" queries in a polymatroid.

sat, as tight polymatroidal elements

- We are given an $x \in P_{f}^{+}$for submodular function f.

sat, as tight polymatroidal elements

- We are given an $x \in P_{f}^{+}$for submodular function f.
- Recall that for such an x, $\operatorname{sat}(x)$ is defined as

$$
\begin{equation*}
\operatorname{sat}(x)=\bigcup\{A: x(A)=f(A)\} \tag{13.8}
\end{equation*}
$$

sat, as tight polymatroidal elements

- We are given an $x \in P_{f}^{+}$for submodular function f.
- Recall that for such an $x, \operatorname{sat}(x)$ is defined as

$$
\begin{equation*}
\operatorname{sat}(x)=\bigcup\{A: x(A)=f(A)\} \tag{13.8}
\end{equation*}
$$

- We also have stated that sat (x) can be defined as:

$$
\begin{align*}
& \operatorname{sat}(x)=\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{13.9}\\
& \operatorname{sit}(x)= \\
& \text { \{ } \mathrm{l}_{1} \mathrm{a}_{\mathrm{c}} \text {) }
\end{align*}
$$

sat, as tight polymatroidal elements

- We are given an $x \in P_{f}^{+}$for submodular function f.
- Recall that for such an $x, \operatorname{sat}(x)$ is defined as

$$
\begin{equation*}
\operatorname{sat}(x)=\bigcup\{A: x(A)=f(A)\} \tag{13.8}
\end{equation*}
$$

- We also have stated that sat (x) can be defined as:

$$
\begin{equation*}
\operatorname{sat}(x)=\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{13.9}
\end{equation*}
$$

- We next show more formally that these are the same.

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\operatorname{sat}(x)
$$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{equation*}
\operatorname{sat}(x) \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{13.10}
\end{equation*}
$$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{13.10}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.11}
\end{align*}
$$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{13.10}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.11}\\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.12}
\end{align*}
$$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{13.10}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.11}\\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.12}
\end{align*}
$$

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$.

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{13.10}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.11}\\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.12}
\end{align*}
$$

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$. Continuing, we get

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)+\alpha>f(A)\} \tag{13.13}
\end{equation*}
$$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{13.10}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.11}\\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.12}
\end{align*}
$$

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$. Continuing, we get

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)+\alpha>f(A)\} \tag{13.13}
\end{equation*}
$$

- given that $x \in P_{f}^{+}$, meaning $x(A) \leq f(A)$ for all A, we must have $\operatorname{sat}(x)$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{13.10}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.11}\\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.12}
\end{align*}
$$

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$. Continuing, we get

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)+\alpha>f(A)\} \tag{13.13}
\end{equation*}
$$

- given that $x \in P_{f}^{+}$, meaning $x(A) \leq f(A)$ for all A, we must have

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{13.14}
\end{equation*}
$$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{13.10}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.11}\\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.12}
\end{align*}
$$

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$. Continuing, we get

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)+\alpha>f(A)\} \tag{13.13}
\end{equation*}
$$

- given that $x \in P_{f}^{+}$, meaning $x(A) \leq f(A)$ for all A, we must have

$$
\begin{align*}
\operatorname{sat}(x) & =\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{13.14}\\
& =\{e: \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{13.15}
\end{align*}
$$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{13.10}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.11}\\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.12}
\end{align*}
$$

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$. Continuing, we get

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)+\alpha>f(A)\} \tag{13.13}
\end{equation*}
$$

- given that $x \in P_{f}^{+}$, meaning $x(A) \leq f(A)$ for all A, we must have

$$
\begin{align*}
\operatorname{sat}(x) & =\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{13.14}\\
& =\{e: \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{13.15}
\end{align*}
$$

- So now, if A is any set such that $x(A)=f(A)$, then we clearly have

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{13.10}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.11}\\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.12}
\end{align*}
$$

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$. Continuing, we get

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)+\alpha>f(A)\} \tag{13.13}
\end{equation*}
$$

- given that $x \in P_{f}^{+}$, meaning $x(A) \leq f(A)$ for all A, we must have

$$
\begin{align*}
\operatorname{sat}(x) & =\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{13.14}\\
& =\{e: \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{13.15}
\end{align*}
$$

- So now, if A is any set such that $x(A)=f(A)$, then we clearly have

$$
\begin{equation*}
\forall e \in A, e \in \operatorname{sat}(x) \tag{13.16}
\end{equation*}
$$

sat, as tight polymatroidal elements

- Lets start with one definition and derive the other.

$$
\begin{align*}
\operatorname{sat}(x) & \stackrel{\text { def }}{=}\left\{e: \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}^{+}\right\} \tag{13.10}\\
& =\left\{e: \forall \alpha>0, \exists A \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.11}\\
& =\left\{e: \forall \alpha>0, \exists A \ni e \text { s.t. }\left(x+\alpha \mathbf{1}_{e}\right)(A)>f(A)\right\} \tag{13.12}
\end{align*}
$$

- this last bit follows since $\mathbf{1}_{e}(A)=1 \Longleftrightarrow e \in A$. Continuing, we get

$$
\begin{equation*}
\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)+\alpha>f(A)\} \tag{13.13}
\end{equation*}
$$

- given that $x \in P_{f}^{+}$, meaning $x(A) \leq f(A)$ for all A, we must have

$$
\begin{align*}
\operatorname{sat}(x) & =\{e: \forall \alpha>0, \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{13.14}\\
& =\{e: \exists A \ni e \text { s.t. } x(A)=f(A)\} \tag{13.15}
\end{align*}
$$

- So now, if A is any set such that $x(A)=f(A)$, then we clearly have $\forall e \in A, e \in \operatorname{sat}(x)$, and therefore that $\operatorname{sat}(x) \supseteq A$

sat, as tight polymatroidal elements

- ... and therefore, with sat as defined in Eq. (??),

$$
\begin{equation*}
\operatorname{sat}(x) \supseteq \bigcup\{A: x(A)=f(A)\} \tag{13.17}
\end{equation*}
$$

sat, as tight polymatroidal elements

- ... and therefore, with sat as defined in Eq. (??),

$$
\begin{equation*}
\operatorname{sat}(x) \supseteq \bigcup\{A: x(A)=f(A)\} \tag{13.17}
\end{equation*}
$$

- On the other hand, for any $e \in \operatorname{sat}(x)$ defined as in Eq. (13.15), since e is itself a member of a tight set, there is a set $A \ni e$ such that $x(A)=f(A)$, giving

$$
\begin{equation*}
\operatorname{sat}(x) \subseteq \bigcup\{A: x(A)=f(A)\} \tag{13.18}
\end{equation*}
$$

sat, as tight polymatroidal elements

- ... and therefore, with sat as defined in Eq. (??),

$$
\begin{equation*}
\operatorname{sat}(x) \supseteq \bigcup\{A: x(A)=f(A)\} \tag{13.17}
\end{equation*}
$$

- On the other hand, for any $e \in \operatorname{sat}(x)$ defined as in Eq. (13.15), since e is itself a member of a tight set, there is a set $A \ni e$ such that $x(A)=f(A)$, giving

$$
\begin{equation*}
\operatorname{sat}(x) \subseteq \bigcup\{A: x(A)=f(A)\} \tag{13.18}
\end{equation*}
$$

- Therefore, the two definitions of sat are identical.

Saturation Capacity

- Another useful concept is saturation capacity which we develop next.

Saturation Capacity

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_{f}$, and $e \in E$, consider finding

$$
\begin{equation*}
\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{13.19}
\end{equation*}
$$

Saturation Capacity

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_{f}$, and $e \in E$, consider finding

$$
\begin{equation*}
\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{13.19}
\end{equation*}
$$

- This is identical to:

$$
\begin{equation*}
\max \left\{\alpha:\left(x+\alpha \mathbf{1}_{e}\right)(A) \leq f(A), \forall A \supseteq\{e\}\right\} \tag{13.20}
\end{equation*}
$$

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_{e}$ adjustment, meaning $\left(x+\alpha \mathbf{1}_{e}\right)(B)=x(B)$.

Saturation Capacity

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_{f}$, and $e \in E$, consider finding

$$
\begin{equation*}
\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{13.19}
\end{equation*}
$$

- This is identical to:

$$
\begin{equation*}
\max \left\{\alpha:\left(x+\alpha \mathbf{1}_{e}\right)(A) \leq f(A), \forall A \supseteq\{e\}\right\} \tag{13.20}
\end{equation*}
$$

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_{e}$ adjustment, meaning $\left(x+\alpha \mathbf{1}_{e}\right)(B)=x(B)$.

- Again, this is identical to:

$$
\begin{equation*}
\max \{\alpha: x(A)+\alpha \leq f(A), \forall A \supseteq\{e\}\} \tag{13.21}
\end{equation*}
$$

Saturation Capacity

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_{f}$, and $e \in E$, consider finding

$$
\begin{equation*}
\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{13.19}
\end{equation*}
$$

- This is identical to:

$$
\begin{equation*}
\max \left\{\alpha:\left(x+\alpha \mathbf{1}_{e}\right)(A) \leq f(A), \forall A \supseteq\{e\}\right\} \tag{13.20}
\end{equation*}
$$

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_{e}$ adjustment, meaning $\left(x+\alpha \mathbf{1}_{e}\right)(B)=x(B)$.

- Again, this is identical to:

$$
\begin{equation*}
\max \{\alpha: x(A)+\alpha \leq f(A), \forall A \supseteq\{e\}\} \tag{13.21}
\end{equation*}
$$

or

$$
\begin{equation*}
\max \{\alpha: \alpha \leq f(A)-x(A), \forall A \supseteq\{e\}\} \tag{13.22}
\end{equation*}
$$

Saturation Capacity

- The max is achieved when

$$
\begin{equation*}
\alpha=\hat{c}(x ; e) \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \supseteq\{e\}\} \tag{13.23}
\end{equation*}
$$

Saturation Capacity

- The max is achieved when

$$
\begin{equation*}
\alpha=\hat{c}(x ; e) \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \supseteq\{e\}\} \tag{13.23}
\end{equation*}
$$

- $\hat{c}(x ; e)$ is known as the saturation capacity associated with $x \in P_{f}$ and e.

Saturation Capacity

- The max is achieved when

$$
\begin{equation*}
\alpha=\hat{c}(x ; e) \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \supseteq\{e\}\} \tag{13.23}
\end{equation*}
$$

- $\hat{c}(x ; e)$ is known as the saturation capacity associated with $x \in P_{f}$ and e.
- Thus we have for $x \in P_{f}$,

$$
\begin{align*}
\hat{c}(x ; e) & \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \ni e\} \tag{13.24}\\
& =\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{13.25}
\end{align*}
$$

Saturation Capacity

- The max is achieved when

$$
\begin{equation*}
\alpha=\hat{c}(x ; e) \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \supseteq\{e\}\} \tag{13.23}
\end{equation*}
$$

- $\hat{c}(x ; e)$ is known as the saturation capacity associated with $x \in P_{f}$ and e.
- Thus we have for $x \in P_{f}$,

$$
\begin{align*}
\hat{c}(x ; e) & \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \ni e\} \tag{13.24}\\
& =\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{13.25}
\end{align*}
$$

- We immediately see that for $e \in E \backslash \operatorname{sat}(x)$, we have that $\hat{c}(x ; e)>0$.

Saturation Capacity

- The max is achieved when

$$
\begin{equation*}
\alpha=\hat{c}(x ; e) \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \supseteq\{e\}\} \tag{13.23}
\end{equation*}
$$

- $\hat{c}(x ; e)$ is known as the saturation capacity associated with $x \in P_{f}$ and e.
- Thus we have for $x \in P_{f}$,

$$
\begin{align*}
\hat{c}(x ; e) & \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \ni e\} \tag{13.24}\\
& =\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{13.25}
\end{align*}
$$

- We immediately see that for $e \in E \backslash \operatorname{sat}(x)$, we have that $\hat{c}(x ; e)>0$.
- Also, for $e \in \operatorname{sat}(x)$, we have that $\hat{c}(x ; e)=0$.

Saturation Capacity

- The max is achieved when

$$
\begin{equation*}
\alpha=\hat{c}(x ; e) \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \supseteq\{e\}\} \tag{13.23}
\end{equation*}
$$

- $\hat{c}(x ; e)$ is known as the saturation capacity associated with $x \in P_{f}$ and e.
- Thus we have for $x \in P_{f}$,

$$
\begin{align*}
\hat{c}(x ; e) & \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \ni e\} \tag{13.24}\\
& =\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\}
\end{align*}
$$

- We immediately see that for $e \in E \backslash \operatorname{sat}(x)$, we have that $\hat{c}(x ; e)>0$.
- Also, for $e \in \operatorname{sat}(x)$, we have that $\hat{c}(x ; e)=0$.
- Note that any α with $0 \leq \alpha \leq \hat{c}(x ; e)$ we have $x+\alpha \mathbf{1}_{e} \in P_{f}$.

Saturation Capacity

- The max is achieved when

$$
\begin{equation*}
\alpha=\hat{c}(x ; e) \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \supseteq\{e\}\} \tag{13.23}
\end{equation*}
$$

- $\hat{c}(x ; e)$ is known as the saturation capacity associated with $x \in P_{f}$ and e.
- Thus we have for $x \in P_{f}$,

$$
\begin{align*}
\hat{c}(x ; e) & \stackrel{\text { def }}{=} \min \{f(A)-x(A), \forall A \ni e\} \tag{13.24}\\
& =\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\} \tag{13.25}
\end{align*}
$$

- We immediately see that for $e \in E \backslash \operatorname{sat}(x)$, we have that $\hat{c}(x ; e)>0$.
- Also, for $e \in \operatorname{sat}(x)$, we have that $\hat{c}(x ; e)=0$.
- Note that any α with $0 \leq \alpha \leq \hat{c}(x ; e)$ we have $x+\alpha \mathbf{1}_{e} \in P_{f}$.
- We also see that computing $\hat{c}(x ; e)$ is a form of submodular function minimization.

Dependence Function

- Tight sets can be restricted to contain a particular element.

Dependence Function

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_{f}$, and $e \in \operatorname{sat}(x)$, define

$$
\begin{align*}
\mathcal{D}(x, e) & =\{A: e \in A \subseteq E, x(A)=f(A)\} \tag{13.26}\\
& =\mathcal{D}(x) \cap\{A: A \subseteq E, e \in A\} \tag{13.27}
\end{align*}
$$

Dependence Function

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_{f}$, and $e \in \operatorname{sat}(x)$, define

$$
\begin{align*}
\mathcal{D}(x, e) & =\{A: e \in A \subseteq E, x(A)=f(A)\} \tag{13.26}\\
& =\mathcal{D}(x) \cap\{A: A \subseteq E, e \in A\} \tag{13.27}
\end{align*}
$$

- Thus, $\mathcal{D}(x, e) \subseteq \mathcal{D}(x)$, and $\mathcal{D}(x, e)$ is a sublattice of $\mathcal{D}(x)$.

Dependence Function

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_{f}$, and $e \in \operatorname{sat}(x)$, define

$$
\begin{align*}
\mathcal{D}(x, e) & =\{A: e \in A \subseteq E, x(A)=f(A)\} \tag{13.26}\\
& =\mathcal{D}(x) \cap\{A: A \subseteq E, e \in A\} \tag{13.27}
\end{align*}
$$

- Thus, $\mathcal{D}(x, e) \subseteq \mathcal{D}(x)$, and $\mathcal{D}(x, e)$ is a sublattice of $\mathcal{D}(x)$.
- Therefore, we can define a unique minimal element of $\mathcal{D}(x, e)$ denoted as follows:

$$
\operatorname{dep}(x, e)= \begin{cases}\bigcap\{A: e \in A \subseteq E, x(A)=f(A)\} & \text { if } e \in \operatorname{sat}(x) \tag{13.28}\\ \emptyset & \text { else }\end{cases}
$$

Dependence Function

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_{f}$, and $e \in \operatorname{sat}(x)$, define

$$
\begin{align*}
\mathcal{D}(x, e) & =\{A: e \in A \subseteq E, x(A)=f(A)\} \tag{13.26}\\
& =\mathcal{D}(x) \cap\{A: A \subseteq E, e \in A\} \tag{13.27}
\end{align*}
$$

- Thus, $\mathcal{D}(x, e) \subseteq \mathcal{D}(x)$, and $\mathcal{D}(x, e)$ is a sublattice of $\mathcal{D}(x)$.
- Therefore, we can define a unique minimal element of $\mathcal{D}(x, e)$ denoted as follows:

$$
\operatorname{dep}(x, e)= \begin{cases}\bigcap\{A: e \in A \subseteq E, x(A)=f(A)\} & \text { if } e \in \operatorname{sat}(x) \tag{13.28}\\ \emptyset & \text { else }\end{cases}
$$

- I.e., $\operatorname{dep}(x, e)$ is the minimal element in $\mathcal{D}(x)$ that contains e (the minimal x-tight set containing e).

dep and sat in a lattice

$\operatorname{ofor}, \operatorname{sen} x \in f_{f}$

- The picture on the right summarizes the relationships between the lattices and sublattices.
- Note,
$\bigcap_{e} \operatorname{dep}(x, e)=$ $\operatorname{dep}(x)$.

dep and sat in a lattice

- Given $x \in P_{f}$, recall distributive lattice of tight sets $\mathcal{D}(x)=\{A: x(A)=f(A)\}$

dep and sat in a lattice

- Given $x \in P_{f}$, recall distributive lattice of tight sets $\mathcal{D}(x)=\{A: x(A)=f(A)\}$
- We had that $\operatorname{sat}(x)=\bigcup\{A: A \in \mathcal{D}(x)\}$ is the " 1 " element of this lattice.

dep and sat in a lattice

- Given $x \in P_{f}$, recall distributive lattice of tight sets $\mathcal{D}(x)=\{A: x(A)=f(A)\}$
- We had that $\operatorname{sat}(x)=\bigcup\{A: A \in \mathcal{D}(x)\}$ is the " 1 " element of this lattice.
- Consider the " 0 " element of $\mathcal{D}(x)$, i.e., $\operatorname{dry}(x) \stackrel{\text { def }}{=} \bigcap\{A: A \in \mathcal{D}(x)\}$

dep and sat in a lattice

- Given $x \in P_{f}$, recall distributive lattice of tight sets $\mathcal{D}(x)=\{A: x(A)=f(A)\}$
- We had that $\operatorname{sat}(x)=\bigcup\{A: A \in \mathcal{D}(x)\}$ is the " 1 " element of this lattice.
- Consider the " 0 " element of $\mathcal{D}(x)$, i.e., $\operatorname{dry}(x) \stackrel{\text { def }}{=} \bigcap\{A: A \in \mathcal{D}(x)\}$
- We can see $\operatorname{dry}(x)$ as the elements that are necessary for tightness.

dep and sat in a lattice

- Given $x \in P_{f}$, recall distributive lattice of tight sets $\mathcal{D}(x)=\{A: x(A)=f(A)\}$
- We had that $\operatorname{sat}(x)=\bigcup\{A: A \in \mathcal{D}(x)\}$ is the " 1 " element of this lattice.
- Consider the " 0 " element of $\mathcal{D}(x)$, i.e., $\operatorname{dry}(x) \stackrel{\text { def }}{=} \bigcap\{A: A \in \mathcal{D}(x)\}$
- We can see $\operatorname{dry}(x)$ as the elements that are necessary for tightness.
- That is, we can equivalently define $\operatorname{dry}(x)$ as

$$
\begin{equation*}
\operatorname{dry}(x)=\left\{e^{\prime}: x(A)<f(A), \forall A \not \supset e^{\prime}\right\} \tag{13.29}
\end{equation*}
$$

dep and sat in a lattice

- Given $x \in P_{f}$, recall distributive lattice of tight sets $\mathcal{D}(x)=\{A: x(A)=f(A)\}$
- We had that $\operatorname{sat}(x)=\bigcup\{A: A \in \mathcal{D}(x)\}$ is the " 1 " element of this lattice.
- Consider the " 0 " element of $\mathcal{D}(x)$, i.e., $\operatorname{dry}(x) \stackrel{\text { def }}{=} \bigcap\{A: A \in \mathcal{D}(x)\}$
- We can see $\operatorname{dry}(x)$ as the elements that are necessary for tightness.
- That is, we can equivalently define $\operatorname{dry}(x)$ as

$$
\begin{equation*}
\operatorname{dry}(x)=\left\{e^{\prime}: x(A)<f(A), \forall A \not \supset e^{\prime}\right\} \tag{13.29}
\end{equation*}
$$

- This can be read as, for any $e^{\prime} \in \operatorname{dry}(x)$, any set that does not contain e^{\prime} is not tight for x (any set A that is missing any element of $\operatorname{dry}(x)$ is not tight).

dep and sat in a lattice

- Given $x \in P_{f}$, recall distributive lattice of tight sets $\mathcal{D}(x)=\{A: x(A)=f(A)\}$
- We had that $\operatorname{sat}(x)=\bigcup\{A: A \in \mathcal{D}(x)\}$ is the " 1 " element of this lattice.
- Consider the " 0 " element of $\mathcal{D}(x)$, i.e., $\operatorname{dry}(x) \stackrel{\text { def }}{=} \bigcap\{A: A \in \mathcal{D}(x)\}$
- We can see $\operatorname{dry}(x)$ as the elements that are necessary for tightness.
- That is, we can equivalently define $\operatorname{dry}(x)$ as

$$
\begin{equation*}
\operatorname{dry}(x)=\left\{e^{\prime}: x(A)<f(A), \forall A \not \supset e^{\prime}\right\} \tag{13.29}
\end{equation*}
$$

- This can be read as, for any $e^{\prime} \in \operatorname{dry}(x)$, any set that does not contain e^{\prime} is not tight for x (any set A that is missing any element of $\operatorname{dry}(x)$ is not tight).
- Perhaps, then, a better name for dry is ntight (x), for the necessary for tightness (but we'll actually use neither name).

dep and sat in a lattice

- Given $x \in P_{f}$, recall distributive lattice of tight sets $\mathcal{D}(x)=\{A: x(A)=f(A)\}$
- We had that $\operatorname{sat}(x)=\bigcup\{A: A \in \mathcal{D}(x)\}$ is the " 1 " element of this lattice.
- Consider the " 0 " element of $\mathcal{D}(x)$, i.e., $\operatorname{dry}(x) \stackrel{\text { def }}{=} \bigcap\{A: A \in \mathcal{D}(x)\}$
- We can see $\operatorname{dry}(x)$ as the elements that are necessary for tightness.
- That is, we can equivalently define $\operatorname{dry}(x)$ as

$$
\begin{equation*}
\operatorname{dry}(x)=\left\{e^{\prime}: x(A)<f(A), \forall A \not \supset e^{\prime}\right\} \tag{13.29}
\end{equation*}
$$

- This can be read as, for any $e^{\prime} \in \operatorname{dry}(x)$, any set that does not contain e^{\prime} is not tight for x (any set A that is missing any element of $\operatorname{dry}(x)$ is not tight).
- Perhaps, then, a better name for dry is ntight (x), for the necessary for tightness (but we'll actually use neither name).
- Note that dry need not be the empty set. Exercise: give example.

An alternate expression for dep $=$ dry

- Now, given $x \in P_{f}$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of

An alternate expression for dep = dry

- Now, given $x \in P_{f}$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x, e)=\{A: e \in A, x(A)=f(A)\}$
- We can define the " 1 " element of this sub-lattice as $\operatorname{sat}(x, e) \stackrel{\text { def }}{=} \bigcup\{A: A \in \mathcal{D}(x, e)\}$.

An alternate expression for dep = dry

- Now, given $x \in P_{f}$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x, e)=\{A: e \in A, x(A)=f(A)\}$
- We can define the " 1 " element of this sub-lattice as $\operatorname{sat}(x, e) \stackrel{\text { def }}{=} \bigcup\{A: A \in \mathcal{D}(x, e)\}$.
- Analogously, we can define the " 0 " element of this sub-lattice as $\operatorname{dry}(x, e) \stackrel{\text { def }}{=} \bigcap\{A: A \in \mathcal{D}(x, e)\}$.

An alternate expression for dep = dry

- Now, given $x \in P_{f}$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x, e)=\{A: e \in A, x(A)=f(A)\}$
- We can define the " 1 " element of this sub-lattice as $\operatorname{sat}(x, e) \stackrel{\text { def }}{=} \bigcup\{A: A \in \mathcal{D}(x, e)\}$.
- Analogously, we can define the " 0 " element of this sub-lattice as $\operatorname{dry}(x, e) \stackrel{\text { def }}{=} \bigcap\{A: A \in \mathcal{D}(x, e)\}$.
- We can see dry (x, e) as the elements that are necessary for e-containing tightness, with $e \in \operatorname{sat}(x)$.

An alternate expression for dep = dry

- Now, given $x \in P_{f}$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x, e)=\{A: e \in A, x(A)=f(A)\}$
- We can define the " 1 " element of this sub-lattice as $\operatorname{sat}(x, e) \stackrel{\text { def }}{=} \bigcup\{A: A \in \mathcal{D}(x, e)\}$.
- Analogously, we can define the " 0 " element of this sub-lattice as $\operatorname{dry}(x, e) \stackrel{\text { def }}{=} \bigcap\{A: A \in \mathcal{D}(x, e)\}$.
- We can see $\operatorname{dry}(x, e)$ as the elements that are necessary for e-containing tightness, with $e \in \operatorname{sat}(x)$.
- That is, we can view $\operatorname{dry}(x, e)$ as

$$
\begin{equation*}
\operatorname{dry}(x, e)=\left\{e^{\prime}: x(A)<f(A), \forall A \not \supset e^{\prime}, e \in A\right\} \tag{13.30}
\end{equation*}
$$

An alternate expression for dep = dry

- Now, given $x \in P_{f}$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x, e)=\{A: e \in A, x(A)=f(A)\}$
- We can define the " 1 " element of this sub-lattice as $\operatorname{sat}(x, e) \stackrel{\text { def }}{=} \bigcup\{A: A \in \mathcal{D}(x, e)\}$.
- Analogously, we can define the " 0 " element of this sub-lattice as $\operatorname{dry}(x, e) \stackrel{\text { def }}{=} \bigcap\{A: A \in \mathcal{D}(x, e)\}$.
- We can see $\operatorname{dry}(x, e)$ as the elements that are necessary for e-containing tightness, with $e \in \operatorname{sat}(x)$.
- That is, we can view $\operatorname{dry}(x, e)$ as

$$
\begin{equation*}
\operatorname{dry}(x, e)=\left\{e^{\prime}: x(A)<f(A), \forall A \not \supset e^{\prime}, e \in A\right\} \tag{13.30}
\end{equation*}
$$

- This can be read as, for any $e^{\prime} \in \operatorname{dry}(x, e)$, any e-containing set that does not contain e^{\prime} is not tight for x.

An alternate expression for dep = dry

- Now, given $x \in P_{f}$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x, e)=\{A: e \in A, x(A)=f(A)\}$
- We can define the " 1 " element of this sub-lattice as $\operatorname{sat}(x, e) \stackrel{\text { def }}{=} \bigcup\{A: A \in \mathcal{D}(x, e)\}$.
- Analogously, we can define the " 0 " element of this sub-lattice as $\operatorname{dry}(x, e) \stackrel{\text { def }}{=} \bigcap\{A: A \in \mathcal{D}(x, e)\}$.
- We can see $\operatorname{dry}(x, e)$ as the elements that are necessary for e-containing tightness, with $e \in \operatorname{sat}(x)$.
- That is, we can view $\operatorname{dry}(x, e)$ as

$$
\begin{equation*}
\operatorname{dry}(x, e)=\left\{e^{\prime}: x(A)<f(A), \forall A \not \supset e^{\prime}, e \in A\right\} \tag{13.30}
\end{equation*}
$$

- This can be read as, for any $e^{\prime} \in \operatorname{dry}(x, e)$, any e-containing set that does not contain e^{\prime} is not tight for x.
- But actually, $\operatorname{dry}(x, e)=\operatorname{dep}(x, e)$, so we have derived another expression for $\operatorname{dep}(x, e)$ in Eq. (13.30).

Dependence Function and Fundamental Matroid Circuit

- Now, let $(E, \mathcal{I})=(E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_{I} \in P_{r}$. We have $\operatorname{sat}\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)=\operatorname{closure}(I)$.

Dependence Function and Fundamental Matroid Circuit

- Now, let $(E, \mathcal{I})=(E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_{I} \in P_{r}$. We have sat $\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)=\operatorname{closure}(I)$.
- Given $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$ and then consider an $A \ni e$ with $|I \cap A|=r(A)$.

Dependence Function and Fundamental Matroid Circuit

- Now, let $(E, \mathcal{I})=(E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_{I} \in P_{r}$. We have sat $\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)=\operatorname{closure}(I)$.
- Given $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$ and then consider an $A \ni e$ with $|I \cap A|=r(A)$.
- Then $I \cap A$ serves as a base for A (i.e., $I \cap A$ spans A) and any such A contains a circuit (i.e., we can add $e \in A \backslash I$ to $I \cap A$ w/o increasing rank).

Dependence Function and Fundamental Matroid Circuit

- Now, let $(E, \mathcal{I})=(E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_{I} \in P_{r}$. We have sat $\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)=\operatorname{closure}(I)$.
- Given $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$ and then consider an $A \ni e$ with $|I \cap A|=r(A)$.
- Then $I \cap A$ serves as a base for A (i.e., $I \cap A$ spans A) and any such A contains a circuit (i.e., we can add $e \in A \backslash I$ to $I \cap A$ w/o increasing rank).
- Given $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$, and consider $\operatorname{dep}\left(\mathbf{1}_{I}, e\right)$, with

$$
\begin{align*}
\operatorname{dep}\left(\mathbf{1}_{I}, e\right) & =\bigcap\left\{A: e \in A \subseteq E, \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.31}\\
& =\bigcap\{A: e \in A \subseteq E,|I \cap A|=r(A)\} \tag{13.32}\\
& =\bigcap\{A: e \in A \subseteq E, r(A)-|I \cap A|=0\} \tag{13.33}
\end{align*}
$$

Dependence Function and Fundamental Matroid Circuit

- Now, let $(E, \mathcal{I})=(E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_{I} \in P_{r}$. We have sat $\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)=\operatorname{closure}(I)$.
- Given $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$ and then consider an $A \ni e$ with $|I \cap A|=r(A)$.
- Then $I \cap A$ serves as a base for A (i.e., $I \cap A$ spans A) and any such A contains a circuit (i.e., we can add $e \in A \backslash I$ to $I \cap A$ w/o increasing rank).
- Given $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$, and consider $\operatorname{dep}\left(\mathbf{1}_{I}, e\right)$, with

$$
\begin{align*}
\operatorname{dep}\left(\mathbf{1}_{I}, e\right) & =\bigcap\left\{A: e \in A \subseteq E, \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.31}\\
& =\bigcap\{A: e \in A \subseteq E,|I \cap A|=r(A)\} \tag{13.32}\\
& =\bigcap\{A: e \in A \subseteq E, r(A)-|I \cap A|=0\} \tag{13.33}
\end{align*}
$$

- By SFM lattice, \exists a unique minimal $A \ni e$ with $|I \cap A|=r(A)$.

Dependence Function and Fundamental Matroid Circuit

- Now, let $(E, \mathcal{I})=(E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_{I} \in P_{r}$. We have sat $\left(\mathbf{1}_{I}\right)=\operatorname{span}(I)=\operatorname{closure}(I)$.
- Given $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$ and then consider an $A \ni e$ with $|I \cap A|=r(A)$.
- Then $I \cap A$ serves as a base for A (i.e., $I \cap A$ spans A) and any such A contains a circuit (i.e., we can add $e \in A \backslash I$ to $I \cap A$ w/o increasing rank).
- Given $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$, and consider $\operatorname{dep}\left(\mathbf{1}_{I}, e\right)$, with

$$
\begin{align*}
\operatorname{dep}\left(\mathbf{1}_{I}, e\right) & =\bigcap\left\{A: e \in A \subseteq E, \mathbf{1}_{I}(A)=r(A)\right\} \tag{13.31}\\
& =\bigcap\{A: e \in A \subseteq E,|I \cap A|=r(A)\} \tag{13.32}\\
& =\bigcap\{A: e \in A \subseteq E, r(A)-|I \cap A|=0\} \tag{13.33}
\end{align*}
$$

- By SFM lattice, \exists a unique minimal $A \ni e$ with $|I \cap A|=r(A)$.
- Thus, $\operatorname{dep}\left(\mathbf{1}_{I}, e\right)$ must be a circuit since if it included more than a circuit, it would not be minimal in this sense.

Dependence Function and Fundamental Matroid Circuit

- Therefore, when $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$, then $\operatorname{dep}\left(\mathbf{1}_{I}, e\right)=C(I, e)$ where $C(I, e)$ is the unique circuit contained in $I+e$ in a matroid (the fundamental circuit of e and I that we encountered before).

Dependence Function and Fundamental Matroid Circuit

- Therefore, when $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$, then $\operatorname{dep}\left(\mathbf{1}_{I}, e\right)=C(I, e)$ where $C(I, e)$ is the unique circuit contained in $I+e$ in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \cap I$ with $I \in \mathcal{I}$, we said that $C(I, e)$ was undefined (since no circuit is created in this case) and so we defined it as $C(I, e)=\{e\}$

Dependence Function and Fundamental Matroid Circuit

- Therefore, when $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$, then $\operatorname{dep}\left(\mathbf{1}_{I}, e\right)=C(I, e)$ where $C(I, e)$ is the unique circuit contained in $I+e$ in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \cap I$ with $I \in \mathcal{I}$, we said that $C(I, e)$ was undefined (since no circuit is created in this case) and so we defined it as $C(I, e)=\{e\}$
- In this case, for such an e, we have $\operatorname{dep}\left(\mathbf{1}_{I}, e\right)=\{e\}$ since all such sets $A \ni e$ with $|I \cap A|=r(A)$ contain e, but in this case no cycle is created, i.e., $|I \cap A| \geq|I \cap\{e\}|=r(e)=1$.

Dependence Function and Fundamental Matroid Circuit

- Therefore, when $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$, then $\operatorname{dep}\left(\mathbf{1}_{I}, e\right)=C(I, e)$ where $C(I, e)$ is the unique circuit contained in $I+e$ in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \cap I$ with $I \in \mathcal{I}$, we said that $C(I, e)$ was undefined (since no circuit is created in this case) and so we defined it as $C(I, e)=\{e\}$
- In this case, for such an e, we have $\operatorname{dep}\left(\mathbf{1}_{I}, e\right)=\{e\}$ since all such sets $A \ni e$ with $|I \cap A|=r(A)$ contain e, but in this case no cycle is created, i.e., $|I \cap A| \geq|I \cap\{e\}|=r(e)=1$.
- We are thus free to take subsets of I as A, all of which must contain e, but all of which have rank equal to size.

Dependence Function and Fundamental Matroid Circuit

- Therefore, when $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \backslash I$, then $\operatorname{dep}\left(\mathbf{1}_{I}, e\right)=C(I, e)$ where $C(I, e)$ is the unique circuit contained in $I+e$ in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}\left(\mathbf{1}_{I}\right) \cap I$ with $I \in \mathcal{I}$, we said that $C(I, e)$ was undefined (since no circuit is created in this case) and so we defined it as $C(I, e)=\{e\}$
- In this case, for such an e, we have $\operatorname{dep}\left(\mathbf{1}_{I}, e\right)=\{e\}$ since all such sets $A \ni e$ with $|I \cap A|=r(A)$ contain e, but in this case no cycle is created, i.e., $|I \cap A| \geq|I \cap\{e\}|=r(e)=1$.
- We are thus free to take subsets of I as A, all of which must contain e, but all of which have rank equal to size.
- Also note: in general for $x \in P_{f}$ and $e \in \operatorname{sat}(x)$, we have $\operatorname{dep}(x, e)$ is tight by definition.

Summary of sat, and dep

- For $x \in P_{f}, \operatorname{sat}(x)$ (span, closure) is the maximal saturated (x-tight) set w.r.t. x. I.e., $\operatorname{sat}(x)=\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\}$. That is,

$$
\begin{equation*}
\mathrm{cl}(x) \stackrel{\text { def }}{=} \operatorname{sat}(x) \triangleq \bigcup\{A: A \in \mathcal{D}(x)\} \tag{13.34}
\end{equation*}
$$

$=\bigcup\{A: A \subseteq E, x(A)=f(A)\}$

$$
\begin{equation*}
=\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\} \tag{13.35}
\end{equation*}
$$

- For $e \in \operatorname{sat}(x)$, we have $\operatorname{dep}(x, e)$ (fundamental circuit) is the minimal (common) saturated (x-tight) set w.r.t. x containing e. That is,

$$
\begin{aligned}
& \operatorname{dep}(x, e)= \begin{cases}\bigcap\{A: e \in A \subseteq E, x(A)=f(A)\} & \text { if } e \in \operatorname{sat}(x) \\
\emptyset & \text { else }\end{cases} \\
&=\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } x+\alpha\left(\mathbf{1}_{e}-\mathbf{1}_{e^{\prime}}\right) \in P_{f}\right\}
\end{aligned}
$$

Dependence Function and exchange

- For $e \in \operatorname{span}(I) \backslash I$, we have that $I+e \notin \mathcal{I}$. This is a set addition restriction property.

Dependence Function and exchange

- For $e \in \operatorname{span}(I) \backslash I$, we have that $I+e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x+\alpha \mathbf{1}_{e} \notin P_{f}$ for $\alpha>0$. This is a vector increase restriction property.

Dependence Function and exchange

- For $e \in \operatorname{span}(I) \backslash I$, we have that $I+e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x+\alpha \mathbf{1}_{e} \notin P_{f}$ for $\alpha>0$. This is a vector increase restriction property.
- Recall, we have $C(I, e) \backslash e^{\prime} \in \mathcal{I}$ for $e^{\prime} \in C(I, e)$. I.e., $C(I, e)$ consists of elements that when removed recover independence.

Dependence Function and exchange

- For $e \in \operatorname{span}(I) \backslash I$, we have that $I+e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x+\alpha \mathbf{1}_{e} \notin P_{f}$ for $\alpha>0$. This is a vector increase restriction property.
- Recall, we have $C(I, e) \backslash e^{\prime} \in \mathcal{I}$ for $e^{\prime} \in C(I, e)$. I.e., $C(I, e)$ consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \backslash I$, we have that

$$
\begin{equation*}
C(I, e)=\{a \in E: I+e-a \in \mathcal{I}\} \tag{13.38}
\end{equation*}
$$

Dependence Function and exchange

- For $e \in \operatorname{span}(I) \backslash I$, we have that $I+e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x+\alpha \mathbf{1}_{e} \notin P_{f}$ for $\alpha>0$. This is a vector increase restriction property.
- Recall, we have $C(I, e) \backslash e^{\prime} \in \mathcal{I}$ for $e^{\prime} \in C(I, e)$. I.e., $C(I, e)$ consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \backslash I$, we have that

$$
\begin{equation*}
C(I, e)=\{a \in E: I+e-a \in \mathcal{I}\} \tag{13.38}
\end{equation*}
$$

- I.e., an addition of e to I stays within \mathcal{I} only if we simultaneously remove one of the elements of $C(I, e)$.

Dependence Function and exchange

- For $e \in \operatorname{span}(I) \backslash I$, we have that $I+e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x+\alpha \mathbf{1}_{e} \notin P_{f}$ for $\alpha>0$. This is a vector increase restriction property.
- Recall, we have $C(I, e) \backslash e^{\prime} \in \mathcal{I}$ for $e^{\prime} \in C(I, e)$. I.e., $C(I, e)$ consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \backslash I$, we have that

$$
\begin{equation*}
C(I, e)=\{a \in E: I+e-a \in \mathcal{I}\} \tag{13.38}
\end{equation*}
$$

- I.e., an addition of e to I stays within \mathcal{I} only if we simultaneously remove one of the elements of $C(I, e)$.
- But, analogous to the circuit case, is there an exchange property for $\operatorname{dep}(x, e)$ in the form of vector movement restriction?

Dependence Function and exchange

- For $e \in \operatorname{span}(I) \backslash I$, we have that $I+e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x+\alpha \mathbf{1}_{e} \notin P_{f}$ for $\alpha>0$. This is a vector increase restriction property.
- Recall, we have $C(I, e) \backslash e^{\prime} \in \mathcal{I}$ for $e^{\prime} \in C(I, e)$. I.e., $C(I, e)$ consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \backslash I$, we have that

$$
\begin{equation*}
C(I, e)=\{a \in E: I+e-a \in \mathcal{I}\} \tag{13.38}
\end{equation*}
$$

- I.e., an addition of e to I stays within \mathcal{I} only if we simultaneously remove one of the elements of $C(I, e)$.
- But, analogous to the circuit case, is there an exchange property for $\operatorname{dep}(x, e)$ in the form of vector movement restriction?
- We might expect the vector $\operatorname{dep}(x, e)$ property to take the form: a positive move in the e-direction stays within P_{f}^{+}only if we simultaneously take a negative move in one of the $\operatorname{dep}(x, e)$ directions.

Dependence Function and exchange in 2D

- $\operatorname{dep}(x, e)$ is set of neg. directions we must move if we want to move in pos. e direction, starting at x and staying within P_{f}.

Dependence Function and exchange in 2D

- $\operatorname{dep}(x, e)$ is set of neg. directions we must move if we want to move in pos. e direction, starting at x and staying within P_{f}.
- Viewable in 2D, we have for $A, B \subseteq E, A \cap B=\emptyset$:

Left: $A \cap \operatorname{dep}(x, e)=\emptyset$, and we can't move further in (e) direction, and moving in any negative $a \in A$ direction doesn't change that. Notice no dependence between (e) and any element in A.

Right: $A \subseteq \operatorname{dep}(x, e)$, and we can't move further in the (e) direction, but we can move further in (e) direction by moving in some $a \in A$ negative direction. Notice dependence between (e) and elements in A.

Dependence Function and exchange in 3D

- We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.

Dependence Function and exchange in 3D

- We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.
- In 3D, we have:

$$
\begin{aligned}
& V=V_{1} \mathrm{uv}_{2} \\
& \text { pritition } \\
& \bar{f}: 2^{\{[i,\})} \rightarrow \mathbb{R} \\
& f(A) \\
& =f\left(\begin{array}{l}
\cup v_{*}
\end{array}\right)
\end{aligned}
$$

Dependence Function and exchange in 3D

- We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.
- In 3D, we have:

- I.e., for $e \in \operatorname{sat}(x), a \in \operatorname{sat}(x), a \in \operatorname{dep}(x, e), e \notin \operatorname{dep}(x, a)$,

Dependence Function and exchange in 3D

- We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.
- In 3D, we have:

- I.e., for $e \in \operatorname{sat}(x), a \in \operatorname{sat}(x), a \in \operatorname{dep}(x, e), e \notin \operatorname{dep}(x, a)$, and

$$
\begin{equation*}
\operatorname{dep}(x, e)=\left\{a: a \in E, \exists \alpha>0: x+\alpha\left(\mathbf{1}_{e}-\mathbf{1}_{a}\right) \in P_{f}\right\} \tag{13.39}
\end{equation*}
$$

Dependence Function and exchange in 3D

- We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.
- In 3D, we have:

- I.e., for $e \in \operatorname{sat}(x), a \in \operatorname{sat}(x), a \in \operatorname{dep}(x, e), e \notin \operatorname{dep}(x, a)$, and

$$
\begin{equation*}
\operatorname{dep}(x, e)=\left\{a: a \in E, \exists \alpha>0: x+\alpha\left(\mathbf{1}_{e}-\mathbf{1}_{a}\right) \in P_{f}\right\} \tag{13.39}
\end{equation*}
$$

- We next show this formally...

dep and exchange derived

- The derivation for $\operatorname{dep}(x, e)$ involves turning a strict inequality into a non-strict one with a strict explicit slack variable α :

$$
\begin{equation*}
\operatorname{dep}(x, e)=\operatorname{ntight}(x, e)= \tag{13.40}
\end{equation*}
$$

dep and exchange derived

- The derivation for $\operatorname{dep}(x, e)$ involves turning a strict inequality into a non-strict one with a strict explicit slack variable α :

$$
\begin{align*}
& \operatorname{dep}(x, e)=\operatorname{ntight}(x, e)= \tag{13.40}\\
& \quad=\left\{e^{\prime}: x(A)<f(A), \forall A \not \supset e^{\prime}, e \in A\right\} \tag{13.41}
\end{align*}
$$

dep and exchange derived

- The derivation for $\operatorname{dep}(x, e)$ involves turning a strict inequality into a non-strict one with a strict explicit slack variable α :

$$
\begin{align*}
& \operatorname{dep}(x, e)=\operatorname{ntight}(x, e)= \tag{13.40}\\
& \quad=\left\{e^{\prime}: x(A)<f(A), \forall A \not \supset e^{\prime}, e \in A\right\} \tag{13.41}\\
& =\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } \alpha \leq f(A)-x(A), \forall A \not \supset e^{\prime}, e \in A\right\} \tag{13.42}
\end{align*}
$$

dep and exchange derived

- The derivation for $\operatorname{dep}(x, e)$ involves turning a strict inequality into a non-strict one with a strict explicit slack variable α :

$$
\begin{align*}
& \operatorname{dep}(x, e)=\operatorname{ntight}(x, e)= \tag{13.40}\\
& \quad=\left\{e^{\prime}: x(A)<f(A), \forall A \not \supset e^{\prime}, e \in A\right\} \tag{13.41}\\
& =\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } \alpha \leq f(A)-x(A), \forall A \not \supset e^{\prime}, e \in A\right\} \tag{13.42}\\
& =\left\{e^{\prime}: \exists \alpha>0 \text {, s.t. } \alpha \mathbf{1}_{e}(A) \leq f(A)-x(A), \forall A \not \supset e^{\prime}, e \in A\right\} \tag{13.43}
\end{align*}
$$

dep and exchange derived

- The derivation for $\operatorname{dep}(x, e)$ involves turning a strict inequality into a non-strict one with a strict explicit slack variable α :

$$
\begin{align*}
& \operatorname{dep}(x, e)=\operatorname{ntight}(x, e)= \tag{13.40}\\
& =\left\{e^{\prime}: x(A)<f(A), \forall A \not \supset e^{\prime}, e \in A\right\} \tag{13.41}\\
& =\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } \alpha \leq f(A)-x(A), \forall A \not \supset e^{\prime}, e \in A\right\} \tag{13.42}\\
& =\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } \alpha \mathbf{1}_{e}(A) \leq f(A)-x(A), \forall A \not \supset e^{\prime}, e \in A\right\} \tag{13.43}\\
& =\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } \alpha\left(\mathbf{1}_{e}(A)-\mathbf{1}_{e^{\prime}}(A)\right) \leq f(A)-x(A), \forall A \not \supset e^{\prime}, e \in A\right\}
\end{align*}
$$

dep and exchange derived

- The derivation for $\operatorname{dep}(x, e)$ involves turning a strict inequality into a non-strict one with a strict explicit slack variable α :

$$
\begin{aligned}
& \operatorname{dep}(x, e)=\operatorname{ntight}(x, e)= \\
& =\left\{e^{\prime}: x(A)<f(A), \forall A \not \supset e^{\prime}, e \in A\right\} \\
& =\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } \alpha \leq f(A)-x(A), \forall A \not \supset e^{\prime}, e \in A\right\} \\
& =\left\{e^{\prime}: \exists \alpha>0 \text {, s.t. } \alpha \mathbf{1}_{e}(A) \leq f(A)-x(A), \forall A \not \supset e^{\prime}, e \in A\right\} \\
& =\left\{e^{\prime}: \exists \alpha>0 \text {, s.t. } \alpha\left(\mathbf{1}_{e}(A)-\mathbf{1}_{e^{\prime}}(A)\right) \leq f(A)-x(A), \forall A \not \supset e^{\prime}, e \in A\right\} \\
& =\left\{e^{\prime}: \exists \alpha>0 \text {, s.t. } x(A)+\alpha\left(\mathbf{1}_{e}(A)-\mathbf{1}_{e^{\prime}}(A)\right) \leq f(A), \forall A \not \supset e^{\prime}, e \in A\right\} \\
&
\end{aligned}
$$

dep and exchange derived

- The derivation for $\operatorname{dep}(x, e)$ involves turning a strict inequality into a non-strict one with a strict explicit slack variable α :

$$
\begin{aligned}
& \operatorname{dep}(x, e)=\operatorname{ntight}(x, e)= \\
& =\left\{e^{\prime}: x(A)<f(A), \forall A \not \supset e^{\prime}, e \in A\right\} \\
& =\left\{e^{\prime}: \exists \alpha>0 \text {, s.t. } \alpha \leq f(A)-x(A), \forall A \not \supset e^{\prime}, e \in A\right\} \\
& =\left\{e^{\prime}: \exists \alpha>0 \text {, s.t. } \alpha \mathbf{1}_{e}(A) \leq f(A)-x(A), \forall A \not \supset e^{\prime}, e \in A\right\} \\
& =\left\{e^{\prime}: \exists \alpha>0 \text {, s.t. } \alpha\left(\mathbf{1}_{e}(A)-1 \text { (13.43) }\right)\right. \\
& =\left\{e^{\prime}: \exists \alpha>0 \text {, s.t. } x(A)+\alpha(A)-x(A), \forall A \nexists e^{\prime}, e \in A\right\} \\
&
\end{aligned}
$$

- Now, $1_{e}(A)-\mathbf{1}_{e^{\prime}}(A)=0$ if either $\left\{e, e^{\prime}\right\} \subseteq A$, or $\left\{e, e^{\prime}\right\} \cap A=\emptyset$.

dep and exchange derived

- The derivation for $\operatorname{dep}(x, e)$ involves turning a strict inequality into a non-strict one with a strict explicit slack variable α :

$$
\begin{aligned}
& \operatorname{dep}(x, e)=\operatorname{ntight}(x, e)= \\
& =\left\{e^{\prime}: x(A)<f(A), \forall A \not \supset e^{\prime}, e \in A\right\} \\
& =\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } \alpha \leq f(A)-x(A), \forall A \not \supset e^{\prime}, e \in A\right\} \\
& =\left\{e^{\prime}: \exists \alpha>0 \text {, s.t. } \alpha \mathbf{1}_{e}(A) \leq f(A)-x(A), \forall A \not \supset e^{\prime}, e \in A\right\} \\
& =\left\{e^{\prime}: \exists \alpha>0 \text {, s.t. } \alpha\left(\mathbf{1}_{e}(A)-\mathbf{1}_{e^{\prime}}(A)\right) \leq f(A)-x(A), \forall A \not \supset e^{\prime}, e \in A\right\} \\
& =\left\{e^{\prime}: \exists \alpha>0 \text {, s.t. } x(A)+\alpha\left(\mathbf{1}_{e}(A)-\mathbf{1}_{e^{\prime}}(A)\right) \leq f(A), \forall A \not \supset e^{\prime}, e \in A\right\}
\end{aligned}
$$

- Now, $1_{e}(A)-\mathbf{1}_{e^{\prime}}(A)=0$ if either $\left\{e, e^{\prime}\right\} \subseteq A$, or $\left\{e, e^{\prime}\right\} \cap A=\emptyset$.
- Also, if $e^{\prime} \in A$ but $e \notin A$, then
$x(A)+\alpha\left(\mathbf{1}_{e}(A)-\mathbf{1}_{e^{\prime}}(A)\right)=x(A)-\alpha \leq f(A)$ since $x \in P_{f}$.

dep and exchange derived

- thus, we get the same in the above if we remove the constraint $A \not \supset e^{\prime}, e \in A$, that is we get

$$
\operatorname{dep}(x, e)=\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } x(A)+\alpha\left(\mathbf{1}_{e}(A)-\mathbf{1}_{e^{\prime}}(A)\right) \leq f(A), \forall A\right\}
$$

dep and exchange derived

- thus, we get the same in the above if we remove the constraint $A \not \supset e^{\prime}, e \in A$, that is we get

$$
\operatorname{dep}(x, e)=\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } x(A)+\alpha\left(\mathbf{1}_{e}(A)-\mathbf{1}_{e^{\prime}}(A)\right) \leq f(A), \forall A\right\}
$$

- This is then identical to

$$
\begin{equation*}
\operatorname{dep}(x, e)=\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } x+\alpha\left(\mathbf{1}_{e}-\mathbf{1}_{e^{\prime}}\right) \in P_{f}\right\} \tag{13.47}
\end{equation*}
$$

dep and exchange derived

- thus, we get the same in the above if we remove the constraint $A \not \supset e^{\prime}, e \in A$, that is we get

$$
\begin{equation*}
\operatorname{dep}(x, e)=\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } x(A)+\alpha\left(\mathbf{1}_{e}(A)-\mathbf{1}_{e^{\prime}}(A)\right) \leq f(A), \forall A\right\} \tag{13.46}
\end{equation*}
$$

- This is then identical to

$$
\begin{equation*}
\operatorname{dep}(x, e)=\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } x+\alpha\left(\mathbf{1}_{e}-\mathbf{1}_{e^{\prime}}\right) \in P_{f}\right\} \tag{13.47}
\end{equation*}
$$

- Compare with original, the minimal element of $\mathcal{D}(x, e)$, with $e \in \operatorname{sat}(x)$:

$$
\operatorname{dep}(x, e)= \begin{cases}\bigcap_{\emptyset}\{A: e \in A \subseteq E, x(A)=f(A)\} & \text { if } e \in \operatorname{sat}(x) \tag{13.48}\\ \text { else }\end{cases}
$$

Summary of Concepts

- Most violated inequality $\max \{x(A)-f(A): A \subseteq E\}$

Summary of Concepts

- Most violated inequality $\max \{x(A)-f(A): A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I+e$.

Summary of Concepts

- Most violated inequality $\max \{x(A)-f(A): A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I+e$.
- Minimizers of submodular functions form a lattice.

Summary of Concepts

- Most violated inequality $\max \{x(A)-f(A): A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I+e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.

Summary of Concepts

- Most violated inequality $\max \{x(A)-f(A): A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I+e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.

Summary of Concepts

- Most violated inequality $\max \{x(A)-f(A): A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I+e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- sat function \& Closure

Summary of Concepts

- Most violated inequality $\max \{x(A)-f(A): A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I+e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- sat function \& Closure
- Saturation Capacity

Summary of Concepts

- Most violated inequality $\max \{x(A)-f(A): A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I+e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- sat function \& Closure
- Saturation Capacity
- e-containing tight sets

Summary of Concepts

- Most violated inequality $\max \{x(A)-f(A): A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I+e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- sat function \& Closure
- Saturation Capacity
- e-containing tight sets
- dep function \& fundamental circuit of a matroid

Summary important definitions so far: tight, dep, \& sat

- x-tight sets: For $x \in P_{f}, \mathcal{D}(x)=\{A \subseteq E: x(A)=f(A)\}$.

Summary important definitions so far: tight, dep, \& sat

- x-tight sets: For $x \in P_{f}, \mathcal{D}(x)=\{A \subseteq E: x(A)=f(A)\}$.
- Polymatroid closure/maximal x-tight set: For $x \in P_{f}$,

$$
\operatorname{sat}(x)=\cup\{A: A \in \mathcal{D}(x)\}=\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\}
$$

Summary important definitions so far: tight, dep, \& sat

- x-tight sets: For $x \in P_{f}, \mathcal{D}(x)=\{A \subseteq E: x(A)=f(A)\}$.
- Polymatroid closure/maximal x-tight set: For $x \in P_{f}$, $\operatorname{sat}(x)=\cup\{A: A \in \mathcal{D}(x)\}=\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\}$.
- Saturation capacity: for $x \in P_{f}, 0 \leq \hat{c}(x ; e)=$

$$
\min \{f(A)-x(A) \mid \forall A \ni e\}=\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\}
$$

Summary important definitions so far: tight, dep, \& sat

- x-tight sets: For $x \in P_{f}, \mathcal{D}(x)=\{A \subseteq E: x(A)=f(A)\}$.
- Polymatroid closure/maximal x-tight set: For $x \in P_{f}$, $\operatorname{sat}(x)=\cup\{A: A \in \mathcal{D}(x)\}=\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\}$.
- Saturation capacity: for $x \in P_{f}, 0 \leq \hat{c}(x ; e)=$ $\min \{f(A)-x(A) \mid \forall A \ni e\}=\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\}$
- Recall: $\operatorname{sat}(x)=\{e: \hat{c}(x ; e)=0\}$ and $E \backslash \operatorname{sat}(x)=\{e: \hat{c}(x ; e)>0\}$.

Summary important definitions so far: tight, dep, \& sat

- x-tight sets: For $x \in P_{f}, \mathcal{D}(x)=\{A \subseteq E: x(A)=f(A)\}$.
- Polymatroid closure/maximal x-tight set: For $x \in P_{f}$, $\operatorname{sat}(x)=\cup\{A: A \in \mathcal{D}(x)\}=\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\}$.
- Saturation capacity: for $x \in P_{f}, 0 \leq \hat{c}(x ; e)=$ $\min \{f(A)-x(A) \mid \forall A \ni e\}=\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\}$
- Recall: $\operatorname{sat}(x)=\{e: \hat{c}(x ; e)=0\}$ and

$$
E \backslash \operatorname{sat}(x)=\{e: \hat{c}(x ; e)>0\} .
$$

- e-containing x-tight sets: For $x \in P_{f}$,

$$
\mathcal{D}(x, e)=\{A: e \in A \subseteq E, x(A)=f(A)\} \subseteq \mathcal{D}(x)
$$

Summary important definitions so far: tight, dep, \& sat

- x-tight sets: For $x \in P_{f}, \mathcal{D}(x)=\{A \subseteq E: x(A)=f(A)\}$.
- Polymatroid closure/maximal x-tight set: For $x \in P_{f}$, $\operatorname{sat}(x)=\cup\{A: A \in \mathcal{D}(x)\}=\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\}$.
- Saturation capacity: for $x \in P_{f}, 0 \leq \hat{c}(x ; e)=$ $\min \{f(A)-x(A) \mid \forall A \ni e\}=\max \left\{\alpha: \alpha \in \mathbb{R}, x+\alpha \mathbf{1}_{e} \in P_{f}\right\}$
- Recall: $\operatorname{sat}(x)=\{e: \hat{c}(x ; e)=0\}$ and

$$
E \backslash \operatorname{sat}(x)=\{e: \hat{c}(x ; e)>0\} .
$$

- e-containing x-tight sets: For $x \in P_{f}$,

$$
\mathcal{D}(x, e)=\{A: e \in A \subseteq E, x(A)=f(A)\} \subseteq \mathcal{D}(x)
$$

- Minimal e-containing x-tight set/polymatroidal fundamental circuit/: For $x \in P_{f}$,

$$
\begin{aligned}
\operatorname{dep}(x, e) & = \begin{cases}\bigcap_{\emptyset}\{A: e \in A \subseteq E, x(A)=f(A)\} & \text { if } e \in \operatorname{sat}(x) \\
& =\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } x+\alpha\left(\mathbf{1}_{e}-\mathbf{1}_{e^{\prime}}\right) \in P_{f}\right\}\end{cases}
\end{aligned}
$$

Support of vector

- The support of a vector $x \in P_{f}$ is defined as the elements with non-zero entries.

Support of vector

- The support of a vector $x \in P_{f}$ is defined as the elements with non-zero entries.
- That is

$$
\begin{equation*}
\operatorname{supp}(x)=\{e \in E: x(e) \neq 0\} \tag{13.49}
\end{equation*}
$$

Support of vector

- The support of a vector $x \in P_{f}$ is defined as the elements with non-zero entries.
- That is

$$
\begin{equation*}
\operatorname{supp}(x)=\{e \in E: x(e) \neq 0\} \tag{13.49}
\end{equation*}
$$

- Example

Tightness of supp at polymatroidal extreme point

- Now, $\operatorname{sat}(x)$ is tight, and corresponds to the largest member of the distributive lattice $\mathcal{D}(x)=\{A: x(A)=f(A)\}$ of tight sets.

Tightness of supp at polymatroidal extreme point

- Now, $\operatorname{sat}(x)$ is tight, and corresponds to the largest member of the distributive lattice $\mathcal{D}(x)=\{A: x(A)=f(A)\}$ of tight sets.
- $\operatorname{supp}(x)$ is not necessarily tight for an arbitrary x.

Tightness of supp at polymatroidal extreme point

- Now, $\operatorname{sat}(x)$ is tight, and corresponds to the largest member of the distributive lattice $\mathcal{D}(x)=\{A: x(A)=f(A)\}$ of tight sets.
- $\operatorname{supp}(x)$ is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, $\operatorname{supp}(x)$ is tight, meaning $x(\operatorname{supp}(x))=f(\operatorname{supp}(x))$. Why?

Tightness of supp at polymatroidal extreme point

- Now, $\operatorname{sat}(x)$ is tight, and corresponds to the largest member of the distributive lattice $\mathcal{D}(x)=\{A: x(A)=f(A)\}$ of tight sets.
- $\operatorname{supp}(x)$ is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, $\operatorname{supp}(x)$ is tight, meaning $x(\operatorname{supp}(x))=f(\operatorname{supp}(x))$. Why?
(1) Extremal points are defined as a system of equalities of the form $x\left(E_{i}\right)=f\left(E_{i}\right)$ for $1 \leq i \leq k \leq|E|$, for some k, as we saw earlier in class. Hence, any $e_{i} \in \operatorname{supp}(x)$ has $x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)>0$.

Tightness of supp at polymatroidal extreme point

- Now, $\operatorname{sat}(x)$ is tight, and corresponds to the largest member of the distributive lattice $\mathcal{D}(x)=\{A: x(A)=f(A)\}$ of tight sets.
- $\operatorname{supp}(x)$ is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, $\operatorname{supp}(x)$ is tight, meaning $x(\operatorname{supp}(x))=f(\operatorname{supp}(x))$. Why?
(1) Extremal points are defined as a system of equalities of the form $x\left(E_{i}\right)=f\left(E_{i}\right)$ for $1 \leq i \leq k \leq|E|$, for some k, as we saw earlier in class. Hence, any $e_{i} \in \operatorname{supp}(x)$ has $x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)>0$.
(2) Now, for $1 \leq i \leq k$, if $e_{i} \notin \operatorname{supp}(x), x\left(E_{k}\right)=x\left(E_{k}-e_{i}\right)$

Tightness of supp at polymatroidal extreme point

- Now, $\operatorname{sat}(x)$ is tight, and corresponds to the largest member of the distributive lattice $\mathcal{D}(x)=\{A: x(A)=f(A)\}$ of tight sets.
- $\operatorname{supp}(x)$ is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, $\operatorname{supp}(x)$ is tight, meaning $x(\operatorname{supp}(x))=f(\operatorname{supp}(x))$. Why?
(1) Extremal points are defined as a system of equalities of the form $x\left(E_{i}\right)=f\left(E_{i}\right)$ for $1 \leq i \leq k \leq|E|$, for some k, as we saw earlier in class. Hence, any $e_{i} \in \operatorname{supp}(x)$ has $x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)>0$.
(2) Now, for $1 \leq i \leq k$, if $e_{i} \notin \operatorname{supp}(x), x\left(E_{k}\right)=x\left(E_{k}-e_{i}\right)$
(3) Also, for $1 \leq i \leq k$, if $e_{i} \notin \operatorname{supp}(x)$, then $x\left(e_{i}\right)=$ $0=f\left(e_{i} \mid E_{i-1}\right) \geq f\left(e_{i} \mid E_{k}-e_{i}\right)=f\left(E_{k} \mid E_{k}-e_{i}\right) \geq 0$ since monotone submodular, hence we have $f\left(E_{k}\right)=f\left(E_{k}-e_{i}\right)$.

Tightness of supp at polymatroidal extreme point

- Now, $\operatorname{sat}(x)$ is tight, and corresponds to the largest member of the distributive lattice $\mathcal{D}(x)=\{A: x(A)=f(A)\}$ of tight sets.
- $\operatorname{supp}(x)$ is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, $\operatorname{supp}(x)$ is tight, meaning $x(\operatorname{supp}(x))=f(\operatorname{supp}(x))$. Why?
(1) Extremal points are defined as a system of equalities of the form $x\left(E_{i}\right)=f\left(E_{i}\right)$ for $1 \leq i \leq k \leq|E|$, for some k, as we saw earlier in class. Hence, any $e_{i} \in \operatorname{supp}(x)$ has $x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)>0$.
(2) Now, for $1 \leq i \leq k$, if $e_{i} \notin \operatorname{supp}(x), x\left(E_{k}\right)=x\left(E_{k}-e_{i}\right)$
(3) Also, for $1 \leq i \leq k$, if $e_{i} \notin \operatorname{supp}(x)$, then $x\left(e_{i}\right)=$ $0=f\left(e_{i} \mid E_{i-1}\right) \geq f\left(e_{i} \mid E_{k}-e_{i}\right)=f\left(E_{k} \mid E_{k}-e_{i}\right) \geq 0$ since monotone submodular, hence we have $f\left(E_{k}\right)=f\left(E_{k}-e_{i}\right)$.
(9) Thus, $x\left(E_{k}-e_{i}\right)=f\left(E_{k}-e_{i}\right)$ and $E_{k}-e_{i}$ is also tight.

Tightness of supp at polymatroidal extreme point

- Now, $\operatorname{sat}(x)$ is tight, and corresponds to the largest member of the distributive lattice $\mathcal{D}(x)=\{A: x(A)=f(A)\}$ of tight sets.
- $\operatorname{supp}(x)$ is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, $\operatorname{supp}(x)$ is tight, meaning $x(\operatorname{supp}(x))=f(\operatorname{supp}(x))$. Why?
(1) Extremal points are defined as a system of equalities of the form $x\left(E_{i}\right)=f\left(E_{i}\right)$ for $1 \leq i \leq k \leq|E|$, for some k, as we saw earlier in class. Hence, any $e_{i} \in \operatorname{supp}(x)$ has $x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)>0$.
(2) Now, for $1 \leq i \leq k$, if $e_{i} \notin \operatorname{supp}(x), x\left(E_{k}\right)=x\left(E_{k}-e_{i}\right)$
(3) Also, for $1 \leq i \leq k$, if $e_{i} \notin \operatorname{supp}(x)$, then $x\left(e_{i}\right)=$ $0=f\left(e_{i} \mid E_{i-1}\right) \geq f\left(e_{i} \mid E_{k}-e_{i}\right)=f\left(E_{k} \mid E_{k}-e_{i}\right) \geq 0$ since monotone submodular, hence we have $f\left(E_{k}\right)=f\left(E_{k}-e_{i}\right)$.
(9) Thus, $x\left(E_{k}-e_{i}\right)=f\left(E_{k}-e_{i}\right)$ and $E_{k}-e_{i}$ is also tight.
(6) We can keep removing elements $\notin \operatorname{supp}(x)$ and we're left with $f\left(E_{k} \cap \operatorname{supp}(x)\right)=x\left(E_{k} \cap \operatorname{supp}(x)\right)$ for any k.

Tightness of supp at polymatroidal extreme point

- Now, $\operatorname{sat}(x)$ is tight, and corresponds to the largest member of the distributive lattice $\mathcal{D}(x)=\{A: x(A)=f(A)\}$ of tight sets.
- $\operatorname{supp}(x)$ is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, $\operatorname{supp}(x)$ is tight, meaning $x(\operatorname{supp}(x))=f(\operatorname{supp}(x))$. Why?
(1) Extremal points are defined as a system of equalities of the form $x\left(E_{i}\right)=f\left(E_{i}\right)$ for $1 \leq i \leq k \leq|E|$, for some k, as we saw earlier in class. Hence, any $e_{i} \in \operatorname{supp}(x)$ has $x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)>0$.
(2) Now, for $1 \leq i \leq k$, if $e_{i} \notin \operatorname{supp}(x), x\left(E_{k}\right)=x\left(E_{k}-e_{i}\right)$
(3) Also, for $1 \leq i \leq k$, if $e_{i} \notin \operatorname{supp}(x)$, then $x\left(e_{i}\right)=$ $0=f\left(e_{i} \mid E_{i-1}\right) \geq f\left(e_{i} \mid E_{k}-e_{i}\right)=f\left(E_{k} \mid E_{k}-e_{i}\right) \geq 0$ since monotone submodular, hence we have $f\left(E_{k}\right)=f\left(E_{k}-e_{i}\right)$.
(9) Thus, $x\left(E_{k}-e_{i}\right)=f\left(E_{k}-e_{i}\right)$ and $E_{k}-e_{i}$ is also tight.
(6) We can keep removing elements $\notin \operatorname{supp}(x)$ and we're left with $f\left(E_{k} \cap \operatorname{supp}(x)\right)=x\left(E_{k} \cap \operatorname{supp}(x)\right)$ for any k.
(0) Hence $\operatorname{supp}(x)$ is tight when x is extremal.

Tightness of supp at polymatroidal extreme point

- Now, $\operatorname{sat}(x)$ is tight, and corresponds to the largest member of the distributive lattice $\mathcal{D}(x)=\{A: x(A)=f(A)\}$ of tight sets.
- $\operatorname{supp}(x)$ is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, $\operatorname{supp}(x)$ is tight, meaning $x(\operatorname{supp}(x))=f(\operatorname{supp}(x))$. Why?
(1) Extremal points are defined as a system of equalities of the form $x\left(E_{i}\right)=f\left(E_{i}\right)$ for $1 \leq i \leq k \leq|E|$, for some k, as we saw earlier in class. Hence, any $e_{i} \in \operatorname{supp}(x)$ has $x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)>0$.
(2) Now, for $1 \leq i \leq k$, if $e_{i} \notin \operatorname{supp}(x), x\left(E_{k}\right)=x\left(E_{k}-e_{i}\right)$
(3) Also, for $1 \leq i \leq k$, if $e_{i} \notin \operatorname{supp}(x)$, then $x\left(e_{i}\right)=$ $0=f\left(e_{i} \mid E_{i-1}\right) \geq f\left(e_{i} \mid E_{k}-e_{i}\right)=f\left(E_{k} \mid E_{k}-e_{i}\right) \geq 0$ since monotone submodular, hence we have $f\left(E_{k}\right)=f\left(E_{k}-e_{i}\right)$.
(9) Thus, $x\left(E_{k}-e_{i}\right)=f\left(E_{k}-e_{i}\right)$ and $E_{k}-e_{i}$ is also tight.
(6) We can keep removing elements $\notin \operatorname{supp}(x)$ and we're left with $f\left(E_{k} \cap \operatorname{supp}(x)\right)=x\left(E_{k} \cap \operatorname{supp}(x)\right)$ for any k.
(6) Hence $\operatorname{supp}(x)$ is tight when x is extremal.
- Since $\operatorname{supp}(x)$ is tight, we immediately have that $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.

supp vs. sat equality

- For $x \in P_{f}$, with x extremal, is $\operatorname{supp}(x)=\operatorname{sat}(x)$?

supp vs. sat equality

- For $x \in P_{f}$, with x extremal, is $\operatorname{supp}(x)=\operatorname{sat}(x)$?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X)=f(Y)=f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), $f(Y \mid X)=0$.

supp vs. sat equality

- For $x \in P_{f}$, with x extremal, is $\operatorname{supp}(x)=\operatorname{sat}(x)$?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X)=f(Y)=f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), $f(Y \mid X)=0$.
- Suppose $x \in P_{f}$ has $x(X)>0$ but $x(V \backslash X)=0$ and so $x(Y)=0$.

supp vs. sat equality

- For $x \in P_{f}$, with x extremal, is $\operatorname{supp}(x)=\operatorname{sat}(x)$?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X)=f(Y)=f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), $f(Y \mid X)=0$.
- Suppose $x \in P_{f}$ has $x(X)>0$ but $x(V \backslash X)=0$ and so $x(Y)=0$.
- Then $\operatorname{supp}(x)=X$, and say x is tight at $X(x(X)=f(X))$.

supp vs. sat equality

- For $x \in P_{f}$, with x extremal, is $\operatorname{supp}(x)=\operatorname{sat}(x)$?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X)=f(Y)=f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), $f(Y \mid X)=0$.
- Suppose $x \in P_{f}$ has $x(X)>0$ but $x(V \backslash X)=0$ and so $x(Y)=0$.
- Then $\operatorname{supp}(x)=X$, and say x is tight at $X(x(X)=f(X))$.
- $\operatorname{sat}(x)=\cup\{A: x(A)=f(A)\}$ and since $x(X \cup Y)=x(X)=f(X)=f(X \cup Y)$, here, $\operatorname{sat}(x) \supseteq X \cup Y$.

supp vs. sat equality

- For $x \in P_{f}$, with x extremal, is $\operatorname{supp}(x)=\operatorname{sat}(x)$?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X)=f(Y)=f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), $f(Y \mid X)=0$.
- Suppose $x \in P_{f}$ has $x(X)>0$ but $x(V \backslash X)=0$ and so $x(Y)=0$.
- Then $\operatorname{supp}(x)=X$, and say x is tight at $X(x(X)=f(X))$.
- $\operatorname{sat}(x)=\cup\{A: x(A)=f(A)\}$ and since $x(X \cup Y)=x(X)=f(X)=f(X \cup Y)$, here, $\operatorname{sat}(x) \supseteq X \cup Y$.
- In general, for extremal $x, \operatorname{sat}(x) \supseteq \operatorname{supp}(x)$ (see later).

supp vs. sat equality

- For $x \in P_{f}$, with x extremal, is $\operatorname{supp}(x)=\operatorname{sat}(x)$?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X)=f(Y)=f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), $f(Y \mid X)=0$.
- Suppose $x \in P_{f}$ has $x(X)>0$ but $x(V \backslash X)=0$ and so $x(Y)=0$.
- Then $\operatorname{supp}(x)=X$, and say x is tight at $X(x(X)=f(X))$.
- $\operatorname{sat}(x)=\cup\{A: x(A)=f(A)\}$ and since $x(X \cup Y)=x(X)=f(X)=f(X \cup Y)$, here, $\operatorname{sat}(x) \supseteq X \cup Y$.
- In general, for extremal $x, \operatorname{sat}(x) \supseteq \operatorname{supp}(x)$ (see later).
- Also, recall $\operatorname{sat}(x)$ is like span/closure but $\operatorname{supp}(x)$ is more like indication. So this is similar to $\operatorname{span}(A) \supseteq A$.

supp vs. sat equality

- For $x \in P_{f}$, with x extremal, is $\operatorname{supp}(x)=\operatorname{sat}(x)$?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X)=f(Y)=f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), $f(Y \mid X)=0$.
- Suppose $x \in P_{f}$ has $x(X)>0$ but $x(V \backslash X)=0$ and so $x(Y)=0$.
- Then $\operatorname{supp}(x)=X$, and say x is tight at $X(x(X)=f(X))$.
- $\operatorname{sat}(x)=\cup\{A: x(A)=f(A)\}$ and since $x(X \cup Y)=x(X)=f(X)=f(X \cup Y)$, here, $\operatorname{sat}(x) \supseteq X \cup Y$.
- In general, for extremal $x, \operatorname{sat}(x) \supseteq \operatorname{supp}(x)$ (see later).
- Also, recall $\operatorname{sat}(x)$ is like $\operatorname{span} /$ closure but $\operatorname{supp}(x)$ is more like indication. So this is similar to $\operatorname{span}(A) \supseteq A$.
- For modular functions, they are always equal (e.g., think of "hyperrectangular" polymatroids).

Summary of supp, sat, and dep

- For $x \in P_{f}, \operatorname{supp}(x)=\{e: x(e) \neq 0\} \subseteq \operatorname{sat}(x)$
- For $x \in P_{f}, \operatorname{sat}(x)$ (span, closure) is the maximal saturated (x-tight) set w.r.t. x. I.e., $\operatorname{sat}(x)=\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\}$. That is,

$$
\begin{align*}
\mathrm{cl}(x) \stackrel{\text { def }}{=} \operatorname{sat}(x) & \triangleq \bigcup\{A: A \in \mathcal{D}(x)\} \tag{13.34}\\
& =\bigcup\{A: A \subseteq E, x(A)=f(A)\} \tag{13.35}\\
& =\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\} \tag{13.36}
\end{align*}
$$

- For $e \in \operatorname{sat}(x)$, we have $\operatorname{dep}(x, e)$ (fundamental circuit) is the minimal (common) saturated (x-tight) set w.r.t. x containing e. That is,

$$
\begin{align*}
\operatorname{dep}(x, e) & = \begin{cases}\bigcap\{A: e \in A \subseteq E, x(A)=f(A)\} & \text { if } e \in \operatorname{sat}(x) \\
\emptyset & \text { else }\end{cases} \\
& =\left\{e^{\prime}: \exists \alpha>0, \text { s.t. } x+\alpha\left(\mathbf{1}_{e}-\mathbf{1}_{e^{\prime}}\right) \in P_{f}\right\} \tag{13.37}
\end{align*}
$$

supp, sat, dep, example with perfect independence

- Example polymatroid where there is perfect independence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, i.e., $e_{1} \Perp\left\{e_{2}, e_{3}\right\}$.

e2

supp, sat, dep, example with perfect independence

- Example polymatroid where there is perfect independence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, i.e., $e_{1} \Perp\left\{e_{2}, e_{3}\right\}$.

e2
- Point x is extreme and $x\left(\left\{e_{2}, e_{3}\right\}\right)=f\left(e_{2}, e_{3}\right)$ (why?).

supp, sat, dep, example with perfect independence

- Example polymatroid where there is perfect independence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, i.e., $e_{1} \Perp\left\{e_{2}, e_{3}\right\}$.

- Point x is extreme and $x\left(\left\{e_{2}, e_{3}\right\}\right)=f\left(e_{2}, e_{3}\right)$ (why?).
- But $x\left(\left\{e_{1}, e_{2}, e_{3}\right\}\right)=x\left(\left\{e_{2}, e_{3}\right\}\right)<f\left(e_{1}, e_{2}, e_{3}\right)=f\left(e_{1}\right)+f\left(e_{2}, e_{3}\right)$. Thus, $\operatorname{supp}(x)=\operatorname{sat}(x)=\left\{e_{2}, e_{3}\right\}$.

supp, sat, dep, example with perfect independence

- Example polymatroid where there is perfect independence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, i.e., $e_{1} \Perp\left\{e_{2}, e_{3}\right\}$.

- Note that considering a submodular function on clustered ground set $E=\left\{e_{1}, e_{23}\right\}$ where $f^{\prime}\left(e_{1}\right)=f\left(e_{1}\right), f^{\prime}\left(e_{23}\right)=f\left(e_{2}, e_{3}\right)$ leads to a rectangle (no dependence between $\{e 1\}$ and $\{e 2, e 3\}$).

supp, sat, dep, example with perfect independence

- Example polymatroid where there is perfect independence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, i.e., $e_{1} \Perp\left\{e_{2}, e_{3}\right\}$.

- We also have $\operatorname{sat}(x)=\left\{e_{3}, e_{2}\right\}$. So $\operatorname{dep}\left(x, e_{1}\right)$ is not defined, $\operatorname{dep}\left(x, e_{2}\right)=\left\{e_{3}\right\}$, and $\operatorname{dep}\left(x, e_{3}\right)=\emptyset$.
- $\operatorname{sat}(y)=\left\{e_{1}, e_{2}, e_{3}\right\}$. So $\operatorname{dep}\left(y, e_{1}\right)=\emptyset, \operatorname{dep}\left(y, e_{2}\right)=e_{3}$, and $\operatorname{dep}\left(y, e_{3}\right)=\emptyset$.

supp, sat, dep, example with perfect independence

- Example polymatroid where there is perfect independence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, i.e., $e_{1} \Perp\left\{e_{2}, e_{3}\right\}$.

- We also have $\operatorname{sat}(x)=\left\{e_{3}, e_{2}\right\}$. So $\operatorname{dep}\left(x, e_{1}\right)$ is not defined, $\operatorname{dep}\left(x, e_{2}\right)=\left\{e_{3}\right\}$, and $\operatorname{dep}\left(x, e_{3}\right)=\emptyset$.
- $\operatorname{sat}(y)=\left\{e_{1}, e_{2}, e_{3}\right\}$. So $\operatorname{dep}\left(y, e_{1}\right)=\emptyset, \operatorname{dep}\left(y, e_{2}\right)=e_{3}$, and $\operatorname{dep}\left(y, e_{3}\right)=\emptyset$.

supp, sat, and polymatroid dependence in 2D

- Ex: various amounts of "dependence" between e_{1} and e_{2}.

supp, sat, and polymatroid dependence in 2D

- Ex: various amounts of "dependence" between e_{1} and e_{2}. A

- Case A: perfect independence.

supp, sat, and polymatroid dependence in 2D

- Ex: various amounts of "dependence" between e_{1} and e_{2}.

- Case A: perfect independence.
- Case B: perfect dependence. Since slope is -45°, we must have $f\left(e_{1}\right)=f\left(e_{2}\right)=f\left(e_{1}, e_{2}\right)$. Entropy case: deterministic bijection between random variables e_{1} and e_{2}.

supp, sat, and polymatroid dependence in 2D

- Ex: various amounts of "dependence" between e_{1} and e_{2}.

- Case A: perfect independence.
- Case B: perfect dependence. Since slope is -45°, we must have $f\left(e_{1}\right)=f\left(e_{2}\right)=f\left(e_{1}, e_{2}\right)$. Entropy case: deterministic bijection between random variables e_{1} and e_{2}.
- Case C: $f\left(e_{2}\right)<f\left(e_{1}\right)=f\left(e_{1}, e_{2}\right)$. Entropy case: random variable e_{2} a deterministic function of e_{1} which has higher entropy.

supp, sat, and polymatroid dependence in 2D

- Ex: various amounts of "dependence" between e_{1} and e_{2}.

- Case A: perfect independence.
- Case B : perfect dependence. Since slope is -45°, we must have $f\left(e_{1}\right)=f\left(e_{2}\right)=f\left(e_{1}, e_{2}\right)$. Entropy case: deterministic bijection between random variables e_{1} and e_{2}.
- Case C: $f\left(e_{2}\right)<f\left(e_{1}\right)=f\left(e_{1}, e_{2}\right)$. Entropy case: random variable e_{2} a deterministic function of e_{1} which has higher entropy.
- Case D: $f\left(e_{1}\right)<f\left(e_{2}\right)=f\left(e_{1}, e_{2}\right)$. Entropy case: random variable e_{1} a deterministic function of e_{2} which has higher entropy.

supp, sat, and polymatroid dependence in 2D

- Ex: various amounts of "dependence" between e_{1} and e_{2}.

- In each case, we see points x where $\operatorname{supp}(x) \subseteq \operatorname{sat}(x)$.
- Example: Case B or C, let $x=\left(f\left(e_{1}\right), 0\right)$ so $\operatorname{supp}(x)=\left\{e_{1}\right\}$ but since $x\left(\left\{e_{1}, e_{2}\right\}\right)=x\left(\left\{e_{1}\right\}\right)=f\left(e_{1}\right)=f\left(e_{1}, e_{2}\right)$ we have $\operatorname{sat}(x)=\left\{e_{1}, e_{2}\right\}$.
- Similar for case D with $x=\left(0, f\left(e_{2}\right)\right)$.

supp, sat, and dependence in 2D

- General case, $f\left(e_{1}, e_{2}\right)<f\left(e_{1}\right)+f\left(e_{2}\right), f\left(e_{1}\right)<f\left(e_{1}, e_{2}\right)$, and $f\left(e_{2}\right)<f\left(e_{1}, e_{2}\right)$.

- Entropy case: We have a random variable Z and two separate deterministic functions $e_{1}=h_{1}(Z)$ and $e_{2}=h_{2}(Z)$ such that the entropy $H\left(e_{1}, e_{2}\right)=H(Z)$, but each deterministic function gives a different "view" of Z, each contains more than half the information, and the two are redundant w.r.t. each other.

supp, sat, and perfect dependence in 3D

- Ex: polymatroid with perfect independence between e_{2} and e_{3}, so $f\left(e_{2}, e_{3}\right)=f\left(e_{2}\right)+f\left(e_{3}\right)$, but perfect dependence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, so $f\left(e_{1}, e_{2}, e_{3}\right)=f\left(e_{2}, e_{3}\right)$

supp, sat, and perfect dependence in 3D

- Ex: polymatroid with perfect independence between e_{2} and e_{3}, so $f\left(e_{2}, e_{3}\right)=f\left(e_{2}\right)+f\left(e_{3}\right)$, but perfect dependence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, so $f\left(e_{1}, e_{2}, e_{3}\right)=f\left(e_{2}, e_{3}\right)$

- Entropy case: xor V-structure Bayesian network $e_{1}=h\left(e_{2}, e_{3}\right)$ where h is the xor function ($e_{2} \rightarrow e_{1} \leftarrow e_{3}$), and e_{2}, e_{3} are both independent binary with unity entropy.

supp, sat, and perfect dependence in 3D

- Ex: polymatroid with perfect independence between e_{2} and e_{3}, so $f\left(e_{2}, e_{3}\right)=f\left(e_{2}\right)+f\left(e_{3}\right)$, but perfect dependence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, so $f\left(e_{1}, e_{2}, e_{3}\right)=f\left(e_{2}, e_{3}\right)$

- Entropy case: xor V-structure Bayesian network $e_{1}=h\left(e_{2}, e_{3}\right)$ where h is the xor function ($e_{2} \rightarrow e_{1} \leftarrow e_{3}$), and e_{2}, e_{3} are both independent binary with unity entropy.
- Q: Why does the polytope have a symmetry? Notice independence (square) for any pair.

supp, sat, and perfect dependence in 3D

- Ex: polymatroid with perfect independence between e_{2} and e_{3}, so $f\left(e_{2}, e_{3}\right)=f\left(e_{2}\right)+f\left(e_{3}\right)$, but perfect dependence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, so $f\left(e_{1}, e_{2}, e_{3}\right)=f\left(e_{2}, e_{3}\right)$

- For any permutation σ of $\{1,2,3\}$, considering $\left\{e_{\sigma_{1}}, e_{\sigma_{2}}\right\}$ vs. $\left\{e_{\sigma_{3}}\right\}$:

supp, sat, and perfect dependence in 3D

- Ex: polymatroid with perfect independence between e_{2} and e_{3}, so $f\left(e_{2}, e_{3}\right)=f\left(e_{2}\right)+f\left(e_{3}\right)$, but perfect dependence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, so $f\left(e_{1}, e_{2}, e_{3}\right)=f\left(e_{2}, e_{3}\right)$

supp, sat, and perfect dependence in 3D

- Ex: polymatroid with perfect independence between e_{2} and e_{3}, so $f\left(e_{2}, e_{3}\right)=f\left(e_{2}\right)+f\left(e_{3}\right)$, but perfect dependence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, so $f\left(e_{1}, e_{2}, e_{3}\right)=f\left(e_{2}, e_{3}\right)$

- Note also, that for some of the extreme points, multiple orders generate them.

supp, sat, and perfect dependence in 3D

- Ex: polymatroid with perfect independence between e_{2} and e_{3}, so $f\left(e_{2}, e_{3}\right)=f\left(e_{2}\right)+f\left(e_{3}\right)$, but perfect dependence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, so $f\left(e_{1}, e_{2}, e_{3}\right)=f\left(e_{2}, e_{3}\right)$

- Note also, that for some of the extreme points, multiple orders generate them.
- Consider extreme point $x=\left(x_{1}, x_{2}, x_{3}\right)=(1,1,0)$. Then we get this either with orders $\left(e_{1}, e_{2}, e_{3}\right)$, or $\left(e_{2}, e_{1}, e_{3}\right)$. This is true since $f\left(e_{\sigma_{e}} \mid\left\{e_{\sigma_{1}}, e_{\sigma_{2}}\right\}\right)=0$ for all permutations σ of $\{1,2,3\}$.

perfect dependence in 3D, entropy, and Bayesian networks

- The example in the previous slides can be realized with entropy of random variables and a Bayesian network.

perfect dependence in 3D, entropy, and Bayesian networks

- The example in the previous slides can be realized with entropy of random variables and a Bayesian network.
- Consider three binary random variables $X_{1}, X_{2}, X_{3} \in\{0,1\}$ that factor w.r.t., the V-structure $X_{1} \rightarrow X_{3} \leftarrow X_{2}$, where $X_{3}=X_{1} \oplus X_{2}$, where \oplus is the X -OR operator, and where $X_{1} \Perp X_{2}$.

perfect dependence in 3D, entropy, and Bayesian networks

- The example in the previous slides can be realized with entropy of random variables and a Bayesian network.
- Consider three binary random variables $X_{1}, X_{2}, X_{3} \in\{0,1\}$ that factor w.r.t., the V-structure $X_{1} \rightarrow X_{3} \leftarrow X_{2}$, where $X_{3}=X_{1} \oplus X_{2}$, where \oplus is the X -OR operator, and where $X_{1} \Perp X_{2}$.
- Consequently, $X_{i} \Perp X_{j}$ for any $i \neq j$.

perfect dependence in 3D, entropy, and Bayesian networks

- The example in the previous slides can be realized with entropy of random variables and a Bayesian network.
- Consider three binary random variables $X_{1}, X_{2}, X_{3} \in\{0,1\}$ that factor w.r.t., the V-structure $X_{1} \rightarrow X_{3} \leftarrow X_{2}$, where $X_{3}=X_{1} \oplus X_{2}$, where \oplus is the X -OR operator, and where $X_{1} \Perp X_{2}$.
- Consequently, $X_{i} \Perp X_{j}$ for any $i \neq j$.
- Moreover, for any permutation σ of $\{1,2,3\}$, we have the relationship $X_{\sigma_{1}}=X_{\sigma_{2}} \oplus X_{\sigma_{3}}$.

perfect dependence in 3D, entropy, and Bayesian networks

- The example in the previous slides can be realized with entropy of random variables and a Bayesian network.
- Consider three binary random variables $X_{1}, X_{2}, X_{3} \in\{0,1\}$ that factor w.r.t., the V-structure $X_{1} \rightarrow X_{3} \leftarrow X_{2}$, where $X_{3}=X_{1} \oplus X_{2}$, where \oplus is the X -OR operator, and where $X_{1} \Perp X_{2}$.
- Consequently, $X_{i} \Perp X_{j}$ for any $i \neq j$.
- Moreover, for any permutation σ of $\{1,2,3\}$, we have the relationship $X_{\sigma_{1}}=X_{\sigma_{2}} \oplus X_{\sigma_{3}}$.
- The entropy function $f(A)=H\left(X_{A}\right)$ is a submodular function that will have the symmetric 3D polytope of the previous example.

supp, sat, extremal x, perfect dependence

- In general, for extremal $x, \operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.

supp, sat, extremal x, perfect dependence

- In general, for extremal $x, \operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \backslash \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x)+e)=x(\operatorname{supp}(x))$ since $x(e)=0$.

supp, sat, extremal x, perfect dependence

- In general, for extremal $x, \operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \backslash \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x)+e)=x(\operatorname{supp}(x))$ since $x(e)=0$.
- On the other hand, for $e_{i} \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, we have perfect dependence, i.e., $f\left(\operatorname{supp}(x)+e_{i}\right)=f(\operatorname{supp}(x))$. Indeed:

supp, sat, extremal x, perfect dependence

- In general, for extremal $x, \operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \backslash \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x)+e)=x(\operatorname{supp}(x))$ since $x(e)=0$.
- On the other hand, for $e_{i} \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, we have perfect dependence, i.e., $f\left(\operatorname{supp}(x)+e_{i}\right)=f(\operatorname{supp}(x))$. Indeed:
- $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence

$$
f(\operatorname{sat}(x))=x(\operatorname{sat}(x))=x(\operatorname{supp}(x))=f(\operatorname{supp}(x)) .
$$

supp, sat, extremal x, perfect dependence

- In general, for extremal $x, \operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \backslash \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x)+e)=x(\operatorname{supp}(x))$ since $x(e)=0$.
- On the other hand, for $e_{i} \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, we have perfect dependence, i.e., $f\left(\operatorname{supp}(x)+e_{i}\right)=f(\operatorname{supp}(x))$. Indeed:
- $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence

$$
f(\operatorname{sat}(x))=x(\operatorname{sat}(x))=x(\operatorname{supp}(x))=f(\operatorname{supp}(x)) .
$$

- Therefore, $f(\operatorname{sat}(x) \mid \operatorname{supp}(x))=0$.

supp, sat, extremal x, perfect dependence

- In general, for extremal $x, \operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \backslash \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x)+e)=x(\operatorname{supp}(x))$ since $x(e)=0$.
- On the other hand, for $e_{i} \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, we have perfect dependence, i.e., $f\left(\operatorname{supp}(x)+e_{i}\right)=f(\operatorname{supp}(x))$. Indeed:
- $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence

$$
f(\operatorname{sat}(x))=x(\operatorname{sat}(x))=x(\operatorname{supp}(x))=f(\operatorname{supp}(x)) .
$$

- Therefore, $f(\operatorname{sat}(x) \mid \operatorname{supp}(x))=0$.
- But by the above, and monotonicity, we have for

$$
\begin{aligned}
& e \in \operatorname{sat}(x) \backslash \operatorname{supp}(x), \text { that } \\
& 0=f(\operatorname{sat}(x) \mid \operatorname{supp}(x)) \geq f(e \mid \operatorname{supp}(x)) \geq 0 .
\end{aligned}
$$

supp, sat, extremal x, perfect dependence

- In general, for extremal $x, \operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \backslash \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x)+e)=x(\operatorname{supp}(x))$ since $x(e)=0$.
- On the other hand, for $e_{i} \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, we have perfect dependence, i.e., $f\left(\operatorname{supp}(x)+e_{i}\right)=f(\operatorname{supp}(x))$. Indeed:
- $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence

$$
f(\operatorname{sat}(x))=x(\operatorname{sat}(x))=x(\operatorname{supp}(x))=f(\operatorname{supp}(x)) .
$$

- Therefore, $f(\operatorname{sat}(x) \mid \operatorname{supp}(x))=0$.
- But by the above, and monotonicity, we have for $e \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, that $0=f(\operatorname{sat}(x) \mid \operatorname{supp}(x)) \geq f(e \mid \operatorname{supp}(x)) \geq 0$.
- Hence $f(e \mid \operatorname{supp}(x))=0$,

supp, sat, extremal x, perfect dependence

- In general, for extremal $x, \operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \backslash \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x)+e)=x(\operatorname{supp}(x))$ since $x(e)=0$.
- On the other hand, for $e_{i} \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, we have perfect dependence, i.e., $f\left(\operatorname{supp}(x)+e_{i}\right)=f(\operatorname{supp}(x))$. Indeed:
- $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence

$$
f(\operatorname{sat}(x))=x(\operatorname{sat}(x))=x(\operatorname{supp}(x))=f(\operatorname{supp}(x)) .
$$

- Therefore, $f(\operatorname{sat}(x) \mid \operatorname{supp}(x))=0$.
- But by the above, and monotonicity, we have for $e \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, that $0=f(\operatorname{sat}(x) \mid \operatorname{supp}(x)) \geq f(e \mid \operatorname{supp}(x)) \geq 0$.
- Hence $f(e \mid \operatorname{supp}(x))=0$, and moreover

$$
f(e+\operatorname{supp}(x))=x(e+\operatorname{supp}(x))=x(\operatorname{supp}(x))=f(\operatorname{supp}(x)) .
$$

supp, sat, extremal x, perfect dependence

- In general, for extremal $x, \operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \backslash \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x)+e)=x(\operatorname{supp}(x))$ since $x(e)=0$.
- On the other hand, for $e_{i} \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, we have perfect dependence, i.e., $f\left(\operatorname{supp}(x)+e_{i}\right)=f(\operatorname{supp}(x))$. Indeed:
- $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence

$$
f(\operatorname{sat}(x))=x(\operatorname{sat}(x))=x(\operatorname{supp}(x))=f(\operatorname{supp}(x)) .
$$

- Therefore, $f(\operatorname{sat}(x) \mid \operatorname{supp}(x))=0$.
- But by the above, and monotonicity, we have for $e \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, that $0=f(\operatorname{sat}(x) \mid \operatorname{supp}(x)) \geq f(e \mid \operatorname{supp}(x)) \geq 0$.
- Hence $f(e \mid \operatorname{supp}(x))=0$, and moreover

$$
f(e+\operatorname{supp}(x))=x(e+\operatorname{supp}(x))=x(\operatorname{supp}(x))=f(\operatorname{supp}(x)) .
$$

- Thus, for any extremal x, with $\operatorname{sat}(x) \supset \operatorname{supp}(x)$, we see that for $e \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, we have $\operatorname{supp}(x)+e$ is also tight.

supp, sat, extremal x, perfect dependence

- In general, for extremal $x, \operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \backslash \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x)+e)=x(\operatorname{supp}(x))$ since $x(e)=0$.
- On the other hand, for $e_{i} \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, we have perfect dependence, i.e., $f\left(\operatorname{supp}(x)+e_{i}\right)=f(\operatorname{supp}(x))$. Indeed:
- $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence

$$
f(\operatorname{sat}(x))=x(\operatorname{sat}(x))=x(\operatorname{supp}(x))=f(\operatorname{supp}(x)) .
$$

- Therefore, $f(\operatorname{sat}(x) \mid \operatorname{supp}(x))=0$.
- But by the above, and monotonicity, we have for $e \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, that $0=f(\operatorname{sat}(x) \mid \operatorname{supp}(x)) \geq f(e \mid \operatorname{supp}(x)) \geq 0$.
- Hence $f(e \mid \operatorname{supp}(x))=0$, and moreover

$$
f(e+\operatorname{supp}(x))=x(e+\operatorname{supp}(x))=x(\operatorname{supp}(x))=f(\operatorname{supp}(x)) .
$$

- Thus, for any extremal x, with $\operatorname{sat}(x) \supset \operatorname{supp}(x)$, we see that for $e \in \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, we have $\operatorname{supp}(x)+e$ is also tight.
- Note also, for any $A \subseteq \operatorname{sat}(x) \backslash \operatorname{supp}(x)$, we have $f(A \mid \operatorname{supp}(x))=0$.

supp, sat, perfect dependence

- Note that all of these results hold when f is monotone non-decreasing submodular (e.g., for a polymatroid function).

supp, sat, perfect dependence

- Note that all of these results hold when f is monotone non-decreasing submodular (e.g., for a polymatroid function).
- For modular functions, and extremal $x, \operatorname{sat}(x)=\operatorname{supp}(x)$.

supp, sat, perfect dependence

- Note that all of these results hold when f is monotone non-decreasing submodular (e.g., for a polymatroid function).
- For modular functions, and extremal $x, \operatorname{sat}(x)=\operatorname{supp}(x)$.
- For general $x \in P_{f}$ (not nec. extremal), $\operatorname{sat}(x)$ and $\operatorname{supp}(x)$ might have an arbitrary relationship (but we want to strengthen this relationship further, and we will do so below).

supp, sat, perfect dependence

- Note that all of these results hold when f is monotone non-decreasing submodular (e.g., for a polymatroid function).
- For modular functions, and extremal $x, \operatorname{sat}(x)=\operatorname{supp}(x)$.
- For general $x \in P_{f}$ (not nec. extremal), $\operatorname{sat}(x)$ and $\operatorname{supp}(x)$ might have an arbitrary relationship (but we want to strengthen this relationship further, and we will do so below).
- For the most part, we are interested in these quantities when x is extremal as we will see.

supp and sat, example under limited curvature

- Strict monotone f polymatroids, where $f(e \mid E \backslash e)>0, \forall e$.
- Example: $f(A)=\sqrt{|A|}$, where all m ! vertices of B_{f} are unique.

- In such cases, taking any extremal point $x \in P_{f}$ based on prefix order $E=\left(e_{1}, \ldots\right)$, where $\operatorname{supp}(x) \subset E$, we have that $\operatorname{sat}(x)=\operatorname{supp}(x)$ since the largest tight set corresponds to $x\left(E_{i}\right)=f\left(E_{i}\right)$ for some i, and while any $e \in E \backslash E_{i}$ is such that $x\left(E_{i}+e\right)=x\left(E_{i}\right)$, there is no such e with $f\left(E_{i}+e\right)=f\left(E_{i}\right)$.

Another revealing theorem

Theorem 13.7.1

Let f be a polymatroid function and suppose that E can be partitioned into $\left(E_{1}, E_{2}, \ldots, E_{k}\right)$ such that $f(A)=\sum_{i=1}^{k} f\left(A \cap E_{i}\right)$ for all $A \subseteq E$, and k is maximum. Then the base polytope $B_{f}=\left\{x \in P_{f}: x(E)=f(E)\right\}$ (the E-tight subset of P_{f}) has dimension $|E|-k$.

Another revealing theorem

Theorem 13.7.1

Let f be a polymatroid function and suppose that E can be partitioned into $\left(E_{1}, E_{2}, \ldots, E_{k}\right)$ such that $f(A)=\sum_{i=1}^{k} f\left(A \cap E_{i}\right)$ for all $A \subseteq E$, and k is maximum. Then the base polytope $B_{f}=\left\{x \in P_{f}: x(E)=f(E)\right\}$ (the E-tight subset of P_{f}) has dimension $|E|-k$.

- Thus, "independence" between disjoint A and B (leading to a rectangular projection of the polymatroid polytope) reduces the dimension of the base polytope, as expected.

Another revealing theorem

Theorem 13.7.1

Let f be a polymatroid function and suppose that E can be partitioned into $\left(E_{1}, E_{2}, \ldots, E_{k}\right)$ such that $f(A)=\sum_{i=1}^{k} f\left(A \cap E_{i}\right)$ for all $A \subseteq E$, and k is maximum. Then the base polytope $B_{f}=\left\{x \in P_{f}: x(E)=f(E)\right\}$ (the E-tight subset of P_{f}) has dimension $|E|-k$.

- Thus, "independence" between disjoint A and B (leading to a rectangular projection of the polymatroid polytope) reduces the dimension of the base polytope, as expected.
- Thus, any point $x \in B_{f}$ is a convex combination of at most $|E|-k+1$ vertices of B_{f}.

Another revealing theorem

Theorem 13.7.1

Let f be a polymatroid function and suppose that E can be partitioned into $\left(E_{1}, E_{2}, \ldots, E_{k}\right)$ such that $f(A)=\sum_{i=1}^{k} f\left(A \cap E_{i}\right)$ for all $A \subseteq E$, and k is maximum. Then the base polytope $B_{f}=\left\{x \in P_{f}: x(E)=f(E)\right\}$ (the E-tight subset of P_{f}) has dimension $|E|-k$.

- Thus, "independence" between disjoint A and B (leading to a rectangular projection of the polymatroid polytope) reduces the dimension of the base polytope, as expected.
- Thus, any point $x \in B_{f}$ is a convex combination of at most $|E|-k+1$ vertices of B_{f}.
- And if f does not have such independence, dimension of B_{f} is $|E|-1$ and any point $x \in B_{f}$ is a convex combination of at most $|E|$ vertices of B_{f}.

Another revealing theorem

Theorem 13.7.1

Let f be a polymatroid function and suppose that E can be partitioned into $\left(E_{1}, E_{2}, \ldots, E_{k}\right)$ such that $f(A)=\sum_{i=1}^{k} f\left(A \cap E_{i}\right)$ for all $A \subseteq E$, and k is maximum. Then the base polytope $B_{f}=\left\{x \in P_{f}: x(E)=f(E)\right\}$ (the E-tight subset of P_{f}) has dimension $|E|-k$.

- Example f with independence between $A=\left\{e_{2}, e_{3}\right\}$ and $B=\left\{e_{1}\right\}$, i.e., $e_{1} \Perp\left\{e_{2}, e_{3}\right\}$, with B_{f} marked in green.

Base polytope existence

- Given polymatroid function f, the base polytope $B_{f}=\left\{x \in \mathbb{R}_{+}^{E}: x(A) \leq f(A) \forall A \subseteq E\right.$, and $\left.x(E)=f(E)\right\}$ always exists.

Base polytope existence

- Given polymatroid function f, the base polytope $B_{f}=\left\{x \in \mathbb{R}_{+}^{E}: x(A) \leq f(A) \forall A \subseteq E\right.$, and $\left.x(E)=f(E)\right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x\left(e_{1}\right)=f\left(\left\{e_{1}\right\}\right), x\left(e_{2}\right)=f\left(\left\{e_{1}, e_{2}\right\}\right)-f\left(\left\{e_{1}\right\}\right)$, and so on $)$.

Base polytope existence

- Given polymatroid function f, the base polytope $B_{f}=\left\{x \in \mathbb{R}_{+}^{E}: x(A) \leq f(A) \forall A \subseteq E\right.$, and $\left.x(E)=f(E)\right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x\left(e_{1}\right)=f\left(\left\{e_{1}\right\}\right), x\left(e_{2}\right)=f\left(\left\{e_{1}, e_{2}\right\}\right)-f\left(\left\{e_{1}\right\}\right)$, and so on $)$.
- From past lectures, we now know that:

Base polytope existence

- Given polymatroid function f, the base polytope $B_{f}=\left\{x \in \mathbb{R}_{+}^{E}: x(A) \leq f(A) \forall A \subseteq E\right.$, and $\left.x(E)=f(E)\right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x\left(e_{1}\right)=f\left(\left\{e_{1}\right\}\right), x\left(e_{2}\right)=f\left(\left\{e_{1}, e_{2}\right\}\right)-f\left(\left\{e_{1}\right\}\right)$, and so on $)$.
- From past lectures, we now know that:
(1) $x \in P_{f}$

Base polytope existence

- Given polymatroid function f, the base polytope $B_{f}=\left\{x \in \mathbb{R}_{+}^{E}: x(A) \leq f(A) \forall A \subseteq E\right.$, and $\left.x(E)=f(E)\right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x\left(e_{1}\right)=f\left(\left\{e_{1}\right\}\right), x\left(e_{2}\right)=f\left(\left\{e_{1}, e_{2}\right\}\right)-f\left(\left\{e_{1}\right\}\right)$, and so on $)$.
- From past lectures, we now know that:
(1) $x \in P_{f}$
(2) x is an extreme point in P_{f}

Base polytope existence

- Given polymatroid function f, the base polytope $B_{f}=\left\{x \in \mathbb{R}_{+}^{E}: x(A) \leq f(A) \forall A \subseteq E\right.$, and $\left.x(E)=f(E)\right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x\left(e_{1}\right)=f\left(\left\{e_{1}\right\}\right), x\left(e_{2}\right)=f\left(\left\{e_{1}, e_{2}\right\}\right)-f\left(\left\{e_{1}\right\}\right)$, and so on $)$.
- From past lectures, we now know that:
(1) $x \in P_{f}$
(2) x is an extreme point in P_{f}
(3) Since x is generated using an ordering of all of E, we have that $x(E)=f(E)$.

Base polytope existence

- Given polymatroid function f, the base polytope $B_{f}=\left\{x \in \mathbb{R}_{+}^{E}: x(A) \leq f(A) \forall A \subseteq E\right.$, and $\left.x(E)=f(E)\right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x\left(e_{1}\right)=f\left(\left\{e_{1}\right\}\right), x\left(e_{2}\right)=f\left(\left\{e_{1}, e_{2}\right\}\right)-f\left(\left\{e_{1}\right\}\right)$, and so on $)$.
- From past lectures, we now know that:
(1) $x \in P_{f}$
(2) x is an extreme point in P_{f}
(3) Since x is generated using an ordering of all of E, we have that $x(E)=f(E)$.
- Thus $x \in B_{f}$, and B_{f} is never empty.

Base polytope existence

- Given polymatroid function f, the base polytope $B_{f}=\left\{x \in \mathbb{R}_{+}^{E}: x(A) \leq f(A) \forall A \subseteq E\right.$, and $\left.x(E)=f(E)\right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x\left(e_{1}\right)=f\left(\left\{e_{1}\right\}\right), x\left(e_{2}\right)=f\left(\left\{e_{1}, e_{2}\right\}\right)-f\left(\left\{e_{1}\right\}\right)$, and so on $)$.
- From past lectures, we now know that:
(1) $x \in P_{f}$
(2) x is an extreme point in P_{f}
(3) Since x is generated using an ordering of all of E, we have that $x(E)=f(E)$.
- Thus $x \in B_{f}$, and B_{f} is never empty.
- Moreover, in this case, x is a vertex of B_{f} since it is extremal.

Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_{f}

Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_{f}
- That is, choose the ordering of $E=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ where $n=|E|$, and where $E_{i}=\left(e_{1}, e_{2}, \ldots, e_{i}\right)$, so that we have $E_{k}=A$ with $k=|A|$.

Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_{f}
- That is, choose the ordering of $E=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ where $n=|E|$, and where $E_{i}=\left(e_{1}, e_{2}, \ldots, e_{i}\right)$, so that we have $E_{k}=A$ with $k=|A|$.
- Note there are $k!(n-k)!<n!$ such orderings.

Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_{f}
- That is, choose the ordering of $E=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ where $n=|E|$, and where $E_{i}=\left(e_{1}, e_{2}, \ldots, e_{i}\right)$, so that we have $E_{k}=A$ with $k=|A|$.
- Note there are $k!(n-k)!<n!$ such orderings.
- Generate x via greedy using this order, $\forall i, x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)$.

Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_{f}
- That is, choose the ordering of $E=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ where $n=|E|$, and where $E_{i}=\left(e_{1}, e_{2}, \ldots, e_{i}\right)$, so that we have $E_{k}=A$ with $k=|A|$.
- Note there are $k!(n-k)!<n$! such orderings.
- Generate x via greedy using this order, $\forall i, x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)$.
- Then, we have generated a point x (a vertex, no less) in B_{f} such that $x(A)=f(A)$.

Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_{f}
- That is, choose the ordering of $E=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ where $n=|E|$, and where $E_{i}=\left(e_{1}, e_{2}, \ldots, e_{i}\right)$, so that we have $E_{k}=A$ with $k=|A|$.
- Note there are $k!(n-k)!<n$! such orderings.
- Generate x via greedy using this order, $\forall i, x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)$.
- Then, we have generated a point x (a vertex, no less) in B_{f} such that $x(A)=f(A)$.
- Thus, for any A, we have

$$
\begin{equation*}
B_{f} \cap\left\{x \in \mathbb{R}^{E}: x(A)=f(A)\right\} \neq \emptyset \tag{13.50}
\end{equation*}
$$

Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_{f}
- That is, choose the ordering of $E=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ where $n=|E|$, and where $E_{i}=\left(e_{1}, e_{2}, \ldots, e_{i}\right)$, so that we have $E_{k}=A$ with $k=|A|$.
- Note there are $k!(n-k)!<n$! such orderings.
- Generate x via greedy using this order, $\forall i, x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)$.
- Then, we have generated a point x (a vertex, no less) in B_{f} such that $x(A)=f(A)$.
- Thus, for any A, we have

$$
\begin{equation*}
B_{f} \cap\left\{x \in \mathbb{R}^{E}: x(A)=f(A)\right\} \neq \emptyset \tag{13.50}
\end{equation*}
$$

- In words, B_{f} intersects all "multi-axis congruent" hyperplanes within R^{E} of the form $\left\{x \in \mathbb{R}^{E}: x(A)=f(A)\right\}$ for all $A \subseteq E$.

B_{f} dominates P_{f}

- In fact, every $x \in P_{f}$ is dominated by $x \leq y \in B_{f}$.

Theorem 13.7.2

If $x \in P_{f}$ and T is tight for x (meaning $x(T)=f(T)$), then there exists $y \in B_{f}$ with $x \leq y$ and $y(e)=x(e)$ for $e \in T$.

Proof.

B_{f} dominates P_{f}

- In fact, every $x \in P_{f}$ is dominated by $x \leq y \in B_{f}$.

Theorem 13.7.2

If $x \in P_{f}$ and T is tight for x (meaning $x(T)=f(T)$), then there exists $y \in B_{f}$ with $x \leq y$ and $y(e)=x(e)$ for $e \in T$.

Proof.

- We construct the y algorithmically: initially set $y \leftarrow x$.

B_{f} dominates P_{f}

- In fact, every $x \in P_{f}$ is dominated by $x \leq y \in B_{f}$.

Theorem 13.7.2

If $x \in P_{f}$ and T is tight for x (meaning $x(T)=f(T)$), then there exists $y \in B_{f}$ with $x \leq y$ and $y(e)=x(e)$ for $e \in T$.

Proof.

- We construct the y algorithmically: initially set $y \leftarrow x$.
- $y \in P_{f}, T$ is tight for y so $y(T)=f(T)$.

B_{f} dominates P_{f}

- In fact, every $x \in P_{f}$ is dominated by $x \leq y \in B_{f}$.

Theorem 13.7.2

If $x \in P_{f}$ and T is tight for x (meaning $x(T)=f(T)$), then there exists $y \in B_{f}$ with $x \leq y$ and $y(e)=x(e)$ for $e \in T$.

Proof.

- We construct the y algorithmically: initially set $y \leftarrow x$.
- $y \in P_{f}, T$ is tight for y so $y(T)=f(T)$.
- Recall saturation capacity: for $y \in P_{f}, \hat{c}(y ; e)=$ $\min \{f(A)-y(A) \mid \forall A \ni e\}=\max \left\{\alpha: \alpha \in \mathbb{R}, y+\alpha \mathbf{1}_{e} \in P_{f}\right\}$

B_{f} dominates P_{f}

- In fact, every $x \in P_{f}$ is dominated by $x \leq y \in B_{f}$.

Theorem 13.7.2

If $x \in P_{f}$ and T is tight for x (meaning $x(T)=f(T)$), then there exists $y \in B_{f}$ with $x \leq y$ and $y(e)=x(e)$ for $e \in T$.

Proof.

- We construct the y algorithmically: initially set $y \leftarrow x$.
- $y \in P_{f}, T$ is tight for y so $y(T)=f(T)$.
- Recall saturation capacity: for $y \in P_{f}, \hat{c}(y ; e)=$ $\min \{f(A)-y(A) \mid \forall A \ni e\}=\max \left\{\alpha: \alpha \in \mathbb{R}, y+\alpha \mathbf{1}_{e} \in P_{f}\right\}$
- Consider following algorithm:
$1 T^{\prime} \leftarrow T$;
2 for $e \in E \backslash T$ do
3

$$
y \leftarrow y+c(y ; e) \mathbf{1}_{e} ; T^{\prime} \leftarrow T^{\prime} \cup\{e\}
$$

B_{f} dominates P_{f}

... proof of Thm. 13.7.2 cont.

- Each step maintains feasibility: consider one step adding e to T^{\prime} for $e \notin T^{\prime}$, feasibility requires $y\left(T^{\prime}+e\right)=y\left(T^{\prime}\right)+y(e) \leq f\left(T^{\prime}+e\right)$, or $y(e) \leq f\left(T^{\prime}+e\right)-y\left(T^{\prime}\right)$

B_{f} dominates P_{f}

... proof of Thm. 13.7.2 cont.

- Each step maintains feasibility: consider one step adding e to T^{\prime} for $e \notin T^{\prime}$, feasibility requires $y\left(T^{\prime}+e\right)=y\left(T^{\prime}\right)+y(e) \leq f\left(T^{\prime}+e\right)$, or $y(e) \leq f\left(T^{\prime}+e\right)-y\left(T^{\prime}\right)=y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$.

B_{f} dominates P_{f}

... proof of Thm. 13.7.2 cont.

- Each step maintains feasibility: consider one step adding e to T^{\prime} for $e \notin T^{\prime}$, feasibility requires $y\left(T^{\prime}+e\right)=y\left(T^{\prime}\right)+y(e) \leq f\left(T^{\prime}+e\right)$, or $y(e) \leq f\left(T^{\prime}+e\right)-y\left(T^{\prime}\right)=y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$.
- We set $y(e) \leftarrow y(e)+\hat{c}(y ; e) \leq y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$.

B_{f} dominates P_{f}

... proof of Thm. 13.7.2 cont.

- Each step maintains feasibility: consider one step adding e to T^{\prime} for $e \notin T^{\prime}$, feasibility requires $y\left(T^{\prime}+e\right)=y\left(T^{\prime}\right)+y(e) \leq f\left(T^{\prime}+e\right)$, or $y(e) \leq f\left(T^{\prime}+e\right)-y\left(T^{\prime}\right)=y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$.
- We set $y(e) \leftarrow y(e)+\hat{c}(y ; e) \leq y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$. Hence, after each step, $y \in P_{f}$ and $\hat{c}(y ; e) \geq 0$. (also, consider r.h. version of $\hat{c}(y ; e))$.

B_{f} dominates P_{f}

... proof of Thm. 13.7.2 cont.

- Each step maintains feasibility: consider one step adding e to T^{\prime} for $e \notin T^{\prime}$, feasibility requires $y\left(T^{\prime}+e\right)=y\left(T^{\prime}\right)+y(e) \leq f\left(T^{\prime}+e\right)$, or $y(e) \leq f\left(T^{\prime}+e\right)-y\left(T^{\prime}\right)=y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$.
- We set $y(e) \leftarrow y(e)+\hat{c}(y ; e) \leq y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$. Hence, after each step, $y \in P_{f}$ and $\hat{c}(y ; e) \geq 0$. (also, consider r.h. version of $\hat{c}(y ; e)$).
- Also, only $y(e)$ for $e \notin T$ changed, final y has $y(e)=x(e)$ for $e \in T$.

B_{f} dominates P_{f}

... proof of Thm. 13.7.2 cont.

- Each step maintains feasibility: consider one step adding e to T^{\prime} for $e \notin T^{\prime}$, feasibility requires $y\left(T^{\prime}+e\right)=y\left(T^{\prime}\right)+y(e) \leq f\left(T^{\prime}+e\right)$, or $y(e) \leq f\left(T^{\prime}+e\right)-y\left(T^{\prime}\right)=y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$.
- We set $y(e) \leftarrow y(e)+\hat{c}(y ; e) \leq y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$. Hence, after each step, $y \in P_{f}$ and $\hat{c}(y ; e) \geq 0$. (also, consider r.h. version of $\hat{c}(y ; e))$.
- Also, only $y(e)$ for $e \notin T$ changed, final y has $y(e)=x(e)$ for $e \in T$.
- Let $S_{e} \ni e$ be a set that achieves $c(y ; e)=f\left(S_{e}\right)-y\left(S_{e}\right)$.

B_{f} dominates P_{f}

proof of Thm. 13.7.2 cont.

- Each step maintains feasibility: consider one step adding e to T^{\prime} for $e \notin T^{\prime}$, feasibility requires $y\left(T^{\prime}+e\right)=y\left(T^{\prime}\right)+y(e) \leq f\left(T^{\prime}+e\right)$, or $y(e) \leq f\left(T^{\prime}+e\right)-y\left(T^{\prime}\right)=y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$.
- We set $y(e) \leftarrow y(e)+\hat{c}(y ; e) \leq y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$. Hence, after each step, $y \in P_{f}$ and $\hat{c}(y ; e) \geq 0$. (also, consider r.h. version of $\hat{c}(y ; e))$.
- Also, only $y(e)$ for $e \notin T$ changed, final y has $y(e)=x(e)$ for $e \in T$.
- Let $S_{e} \ni e$ be a set that achieves $c(y ; e)=f\left(S_{e}\right)-y\left(S_{e}\right)$.
- At iteration e, let $y^{\prime}(e)$ (resp. $\left.y(e)\right)$ be the new (resp. old) entry for e. We have

$$
\begin{aligned}
y^{\prime}\left(S_{e}\right) & =y\left(S_{e} \backslash\{e\}\right)+y^{\prime}(e)=y\left(S_{e} \backslash\{e\}\right)+\left[y(e)+f\left(S_{e}\right)-y\left(S_{e}\right)\right] \\
& =f\left(S_{e}\right)
\end{aligned}
$$

B_{f} dominates P_{f}

proof of Thm. 13.7.2 cont.

- Each step maintains feasibility: consider one step adding e to T^{\prime} for $e \notin T^{\prime}$, feasibility requires $y\left(T^{\prime}+e\right)=y\left(T^{\prime}\right)+y(e) \leq f\left(T^{\prime}+e\right)$, or $y(e) \leq f\left(T^{\prime}+e\right)-y\left(T^{\prime}\right)=y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$.
- We set $y(e) \leftarrow y(e)+\hat{c}(y ; e) \leq y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$. Hence, after each step, $y \in P_{f}$ and $\hat{c}(y ; e) \geq 0$. (also, consider r.h. version of $\hat{c}(y ; e))$.
- Also, only $y(e)$ for $e \notin T$ changed, final y has $y(e)=x(e)$ for $e \in T$.
- Let $S_{e} \ni e$ be a set that achieves $c(y ; e)=f\left(S_{e}\right)-y\left(S_{e}\right)$.
- At iteration e, let $y^{\prime}(e)$ (resp. $\left.y(e)\right)$ be the new (resp. old) entry for e. We have

$$
\begin{align*}
y^{\prime}\left(S_{e}\right) & =y\left(S_{e} \backslash\{e\}\right)+y^{\prime}(e)=y\left(S_{e} \backslash\{e\}\right)+\left[y(e)+f\left(S_{e}\right)-y\left(S_{e}\right)\right] \\
& =f\left(S_{e}\right) \tag{13.51}
\end{align*}
$$

So, S_{e} is tight for y^{\prime}. It remains tight in further iterations since y doesn't decrease and it stays within P_{f}.

B_{f} dominates P_{f}

proof of Thm. 13.7.2 cont.

- Each step maintains feasibility: consider one step adding e to T^{\prime} for $e \notin T^{\prime}$, feasibility requires $y\left(T^{\prime}+e\right)=y\left(T^{\prime}\right)+y(e) \leq f\left(T^{\prime}+e\right)$, or $y(e) \leq f\left(T^{\prime}+e\right)-y\left(T^{\prime}\right)=y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$.
- We set $y(e) \leftarrow y(e)+\hat{c}(y ; e) \leq y(e)+f\left(T^{\prime}+e\right)-y\left(T^{\prime}+e\right)$. Hence, after each step, $y \in P_{f}$ and $\hat{c}(y ; e) \geq 0$. (also, consider r.h. version of $\hat{c}(y ; e))$.
- Also, only $y(e)$ for $e \notin T$ changed, final y has $y(e)=x(e)$ for $e \in T$.
- Let $S_{e} \ni e$ be a set that achieves $c(y ; e)=f\left(S_{e}\right)-y\left(S_{e}\right)$.
- At iteration e, let $y^{\prime}(e)$ (resp. $\left.y(e)\right)$ be the new (resp. old) entry for e. We have

$$
\begin{align*}
y^{\prime}\left(S_{e}\right) & =y\left(S_{e} \backslash\{e\}\right)+y^{\prime}(e)=y\left(S_{e} \backslash\{e\}\right)+\left[y(e)+f\left(S_{e}\right)-y\left(S_{e}\right)\right] \\
& =f\left(S_{e}\right) \tag{13.51}
\end{align*}
$$

So, S_{e} is tight for y^{\prime}. It remains tight in further iterations since y doesn't decrease and it stays within P_{f}.

Polytope example 1

- Observe: P_{f} (at two views):

Polytope example 1

- Observe: P_{f} (at two views):

- Is this a polymatroidal polytope?

Polytope example 1

- Observe: P_{f} (at two views):

- Is this a polymatroidal polytope?
- No, " B_{f} " doesn't intersect sets of the form $\{x: x(e)=f(e)\}$ for $e \in E$.

Polytope example 1

- Observe: P_{f} (at two views):

- Is this a polymatroidal polytope?
- No, " B_{f} " doesn't intersect sets of the form $\{x: x(e)=f(e)\}$ for $e \in E$.
- This was generated using function $g(0)=0, g(1)=3, g(2)=4$, and $g(3)=5.5$. Then $f(S)=g(|S|)$ is not submodular since (e.g.) $f\left(\left\{e_{1}, e_{3}\right\}\right)+f\left(\left\{e_{1}, e_{2}\right\}\right)=4+4=8$ but

Polytope example 2

- Observe: P_{f} (at two views):

Polytope example 2

- Observe: P_{f} (at two views):

- Is this a polymatroidal polytope?

Polytope example 2

- Observe: P_{f} (at two views):

e2

- Is this a polymatroidal polytope?
- No, " B_{f} " (which would be a single point in this case) doesn't intersect sets of the form $\{x: x(e)=f(e)\}$ for $e \in E$.

Polytope example 2

- Observe: P_{f} (at two views):

e2

- Is this a polymatroidal polytope?
- No, " B_{f} " (which would be a single point in this case) doesn't intersect sets of the form $\{x: x(e)=f(e)\}$ for $e \in E$.
- This was generated using function $g(0)=0, g(1)=1, g(2)=1.8$, and $g(3)=3$. Then $f(S)=g(|S|)$ is not submodular since (e.g.) $f\left(\left\{e_{1}, e_{3}\right\}\right)+f\left(\left\{e_{1}, e_{2}\right\}\right)=1.8+1.8=3.6$ but $f\left(\left\{e_{1}, e_{2}, e_{3}\right\}\right)+f\left(\left\{e_{1}\right\}\right)=3+1=4$.

