Submodular Functions, Optimization, and Applications to Machine Learning — Spring Quarter, Lecture 13 — <u>http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/</u>

Prof. Jeff Bilmes

University of Washington, Seattle Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

May 14th, 2014

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

F1/57 (pg.1/256)

Cumulative Outstanding Reading

- Good references for today: Schrijver-2003, Oxley-1992/2011, Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.
- Read Tom McCormick's overview paper on SFM http://people. commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
- Read chapters 1 4 from Fujishige book.
- Matroid properties http: //www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf

Logistics

Announcements, Assignments, and Reminders

• Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

Logistics

Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, & Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes,
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity
 - Finals Week: June 9th-13th, 2014.

- L11: More properties of polymatroids, SFM special cases
- L12: polymatroid properties, extreme points polymatroids,
- L13: sat, dep, supp, exchange capacity, examples
- L14:
- L15:
- L16:
- L17:
- L18:
- L19:
- L20:

Tight sets $\mathcal{D}(y)$ are closed, and max tight set $\operatorname{sat}(y)$

Recall the definition of the set of tight sets at $y \in P_f^+$:

$$\mathcal{D}(y) \triangleq \{A : A \subseteq E, \ y(A) = f(A)\}$$
(13.18)

Theorem 13.2.1

For any $y \in P_f^+$, with f a polymatroid function, then $\mathcal{D}(y)$ is closed under union and intersection.

Proof.

Logistics

We have already proven this as part of Theorem ??

Also recall the definition of sat(y), the maximal set of tight elements relative to $y \in \mathbb{R}^E_+$.

$$\operatorname{sat}(y) \stackrel{\text{def}}{=} \bigcup \left\{ T : T \in \mathcal{D}(y) \right\}$$
(13.19)

Review

Lemma 13.2.3

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup \{e\}$ contains at most one circuit in M.

Proof.

Logistics

- Suppose, to the contrary, that there are two distinct circuits C₁, C₂ such that C₁ ∪ C₂ ⊆ I ∪ {e}.
- Then $e \in C_1 \cap C_2$, and by (C2), there is a circuit C_3 of M s.t. $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\} \subseteq I$
- This contradicts the independence of *I*.

In general, let C(I, e) be the unique circuit associated with $I \cup \{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).

Prof. Jeff Bilmes

(13.1)

Matroid Partition Problem

Theorem 13.2.1

Let M_i be a collection of k matroids as described. Then, a set $S \subseteq E$ can be partitioned into k subsets $I_i, i = 1 \dots k$ where $I_i \in \mathcal{I}_i$ is independent in matroid i, if and only if, for all $A \subseteq S$

$$|A| \le \sum_{i=1}^{k} r_i(A)$$

where r_i is the rank function of M_i .

• Now, if all matroids are the same $M_i = M$ for all i, we get condition

$$|A| \le kr(A) \quad \forall A \subseteq E \tag{13.2}$$

• But considering vector of all ones $\mathbf{1} \in \mathbb{R}^E_+$, this is the same as

$$\frac{1}{k}|A| = \frac{1}{k}\mathbf{1}(A) \le r(A) \quad \forall A \subseteq E$$
(13.3)

Polymatroidal polyhedron and greedy

 Thus, restating the above results into a single complete theorem, we have a result very similar to what we saw for matroids (i.e., Theorem ??)

Theorem 13.2.1

Logistics

If $f: 2^E \to \mathbb{R}_+$ is given, and P is a polytope in \mathbb{R}^E_+ of the form $P = \{x \in \mathbb{R}^E_+ : x(A) \le f(A), \forall A \subseteq E\}$, then the greedy solution to the problem $\max(wx: x \in P)$ is $\forall w$ optimum iff f is monotone non-decreasing submodular (i.e., iff P is a polymatroid).

Review

Base Polytope in 3D

$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$

$$B_f = P_f \cap \left\{ x \in \mathbb{R}^E : x(E) = f(E) \right\}$$
(13.5)
(13.6)

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

F9/57 (pg.9/256)

Polymatroid extreme points

Theorem 13.2.1

For a given ordering $E = (e_1, \ldots, e_m)$ of E and a given $E_i = (e_1, \ldots, e_i)$ and x generated by E_i using the greedy procedure $(x(e_i) = f(e_i|E_{i-1}))$, then x is an extreme point of P_f

Proof.

- We already saw that $x \in P_f$ (Theorem ??).
- To show that x is an extreme point of P_f , note that it is the unique solution of the following system of equations

$$x(E_j) = f(E_j) \text{ for } 1 \le j \le i \le m \tag{13.9}$$

$$x(e) = 0 \text{ for } e \in E \setminus E_i \tag{13.10}$$

There are $i \leq m$ equations and $i \leq m$ unknowns, and simple Gaussian elimination gives us back the x constructed via the Greedy algorithm!!

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

F10/57 (pg.10/256)

Polymatroid extreme points

Moreover, we have (and will ultimately prove)

Corollary 13.2.2

Logistics

If x is an extreme point of P_f and $B \subseteq E$ is given such that $supp(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \cup (A : x(A) = f(A)) = sat(x),$ then x is generated using greedy by some ordering of B.

- Note, sat(x) = cl(x) = ∪(A : x(A) = f(A)) is also called the closure of x (recall that sets A such that x(A) = f(A) are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem ??)
- Thus, cl(x) is a tight set.
- Also, $supp(x) = \{e \in E : x(e) \neq 0\}$ is called the support of x.
- For arbitrary x, supp(x) is not necessarily tight, but for an extreme point, supp(x) is.

Review

Polymatroid with labeled edge lengths

- Recall f(e|A) = f(A+e) f(A)
- Notice how submodularity, $f(e|B) \leq f(e|A)$ for $A \subseteq B$, defines the shape of the polytope.
- In fact, we have strictness here f(e|B) < f(e|A) for $A \subset B$.
- Also, consider how the greedy algorithm proceeds along the edges of the polytope.

Minimizers of a Submodular Function form a lattice

Theorem 13.2.2

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A) = f(B) \le f(A \cap B)$ and $f(A) = f(B) \le f(A \cup B)$. By submodularity, we have

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$
(13.8)

Hence, we must have $f(A) = f(B) = f(A \cup B) = f(A \cap B)$.

Thus, the minimizers of a submodular function form a lattice, and there is a maximal and a minimal minimizer of every submodular function.

Prof. Jeff Bilmes

The sat function = Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_f$, we have defined:

$$f(A) - x(A) = 0$$

$$cl(x) \stackrel{\text{def}}{=} sat(x) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x)\}$$

$$= \bigcup \{A : A \subseteq E, x(A) = f(A)\}$$

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_{e} \notin P_{e}\}$$

$$(13.9)$$

- Hence, sat(x) is the maximal (zero-valued) minimizer of the submodular function $f_x(A) \triangleq f(A) x(A)$.
- Eq. (??) says that sat consists of any point x that is P_f saturated (any additional positive movement, in that dimension, leaves P_f). We'll revisit this in a few slides.
- First, we see how sat generalizes matroid closure.

Logistics

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\}$$
(13.1)

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f The sat function = Polymatroid Closure

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\}$$
(13.1)

and

 $\operatorname{sat}(\mathbf{1}_I)$

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f The sat function = Polymatroid Closure

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\}$$
(13.1)

$$\operatorname{sat}(\mathbf{1}_I) = \bigcup \left\{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_I) \right\}$$
(13.2)

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\}$$
(13.1)

$$\operatorname{sat}(\mathbf{1}_I) = \bigcup \left\{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_I) \right\}$$
(13.2)

$$= \bigcup \left\{ A : A \subseteq E, \mathbf{1}_{I}(A) = r(A) \right\}$$
(13.3)

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f The sat function = Polymatroid Closure

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\}$$
(13.1)

$$\operatorname{sat}(\mathbf{1}_I) = \bigcup \left\{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_I) \right\}$$
(13.2)

$$= \bigcup \left\{ A : A \subseteq E, \mathbf{1}_I(A) = r(A) \right\}$$
(13.3)

$$= \bigcup \{A : A \subseteq E, |I \cap A| = r(A)\}$$
(13.4)

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f The sat function = Polymatroid Closure

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\}$$
(13.1)

and

$$\operatorname{sat}(\mathbf{1}_I) = \bigcup \left\{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_I) \right\}$$
(13.2)

$$= \bigcup \{A : A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
(13.3)

$$= \bigcup \left\{ A : A \subseteq E, |I \cap A| = r(A) \right\}$$
(13.4)

• Notice that $\mathbf{1}_I(A) = |I \cap A| \le |I|$.

Closure/Sat Fund. Circuit/Dep The sat function = Polymatroid Closure

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\}$$
(13.1)

and

$$\operatorname{sat}(\mathbf{1}_I) = \bigcup \left\{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_I) \right\}$$
(13.2)

$$= \bigcup \{A : A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
(13.3)

$$= \bigcup \{A : A \subseteq E, |I \cap A| = r(A)\}$$
(13.4)

Notice that 1_I(A) = |I ∩ A| ≤ |I|.
Intuitively, consider an A ⊃ I ∈ I that doesn't increase rank, meaning r(A) = r(I). If $r(A) = |I \cap A| = r(I \cap \overline{A})$, as in Eqn. (13.4), then A is in I's span, so should get $sat(\mathbf{1}_I) = span(I)$.

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f The sat function = Polymatroid Closure

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\}$$
(13.1)

$$\operatorname{sat}(\mathbf{1}_I) = \bigcup \left\{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_I) \right\}$$
(13.2)

$$= \bigcup \{A : A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
(13.3)

$$= \bigcup \left\{ A : A \subseteq E, |I \cap A| = r(A) \right\}$$
(13.4)

- Notice that $\mathbf{1}_I(A) = |I \cap A| \le |I|$.
- Intuitively, consider an $A \supset I \in \mathcal{I}$ that doesn't increase rank, meaning r(A) = r(I). If $r(A) = |I \cap A| = r(I \cap A)$, as in Eqn. (13.4), then A is in I's span, so should get $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$.
- We formalize this next.

Lemma 13.3.1 (Matroid
$$\mathrm{sat}:\mathbb{R}^E_+ o 2^E$$
 is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (13.5)

F16/57 (pg.23/256)

Lemma 13.3.1 (Matroid sat :
$$\mathbb{R}^E_+ o 2^E$$
 is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (13.5)

Proof.

- For $\mathbf{1}_I(I) = |I| = r(I)$, so $I \in \mathcal{D}(\mathbf{1}_I)$ and $I \subseteq \operatorname{sat}(\mathbf{1}_I)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \setminus I$.

. . .

Lemma 13.3.1 (Matroid sat :
$$\mathbb{R}^E_+ \to 2^E$$
 is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (13.5)

Proof.

- For $\mathbf{1}_I(I) = |I| = r(I)$, so $I \in \mathcal{D}(\mathbf{1}_I)$ and $I \subseteq \operatorname{sat}(\mathbf{1}_I)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \setminus I$.
- Then $I \cup \{b\} \in \mathcal{D}(\mathbf{1}_I)$ since $\mathbf{1}_I(I \cup \{b\}) = |I| = r(I \cup \{b\}) = r(I)$.

Lemma 13.3.1 (Matroid sat :
$$\mathbb{R}^E_+ o 2^E$$
 is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (13.5)

Proof.

- For $\mathbf{1}_I(I) = |I| = r(I)$, so $I \in \mathcal{D}(\mathbf{1}_I)$ and $I \subseteq \operatorname{sat}(\mathbf{1}_I)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \setminus I$.
- Then $I \cup \{b\} \in \mathcal{D}(\mathbf{1}_I)$ since $\mathbf{1}_I(I \cup \{b\}) = |I| = r(I \cup \{b\}) = r(I)$.

• Thus,
$$b \in \operatorname{sat}(\mathbf{1}_I)$$
.

. . .

Closure/Sat Fund. Gircuit/Dep Supp Examples More on B_f The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid sat :
$$\mathbb{R}^E_+ \to 2^E$$
 is the same as closure.)
For $I \in \mathcal{I}$, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (13.5)

Proof.

- For $\mathbf{1}_I(I) = |I| = r(I)$, so $I \in \mathcal{D}(\mathbf{1}_I)$ and $I \subseteq \operatorname{sat}(\mathbf{1}_I)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \setminus I$.
- Then $I \cup \{b\} \in \mathcal{D}(\mathbf{1}_I)$ since $\mathbf{1}_I(I \cup \{b\}) = |I| = r(I \cup \{b\}) = r(I)$.
- Thus, $b \in \operatorname{sat}(\mathbf{1}_I)$.

• Therefore, $\operatorname{sat}(\mathbf{1}_I) \supseteq \operatorname{span}(I)$.

. . .

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
		1111		
The sat	function = Polv	matroid Clo	osure	

• Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
	1111111111111	1111		
The sat	function = Poly	matroid Clo	sure	

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.
- Then $1(A) = |A \cap I| = r(A)$.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.
- Then $1(A) = |A \cap I| = r(A)$.
- Now $r(A) = |A \cap I| \le |I| = r(I)$.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.
- Then $1(A) = |A \cap I| = r(A)$.
- Now $r(A) = |A \cap I| \le |I| = r(I)$.
- Also, $r(A \cap I) = |A \cap I|$ since $A \cap I \in \mathcal{I}$.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.
- Then $1(A) = |A \cap I| = r(A)$.
- Now $r(A) = |A \cap I| \le |I| = r(I)$.
- Also, $r(A \cap I) = |A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I) = r(A) = r((A \cap I) \cup (A \setminus I))$ meaning $(A \setminus I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I).$

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.

• Then
$$1(A) = |A \cap I| = r(A)$$
.

• Now
$$r(A) = |A \cap I| \le |I| = r(I)$$
.

- Also, $r(A \cap I) = |A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I) = r(A) = r((A \cap I) \cup (A \setminus I))$ meaning $(A \setminus I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.
- Since $b \in A \setminus I$, we get $b \in \operatorname{span}(I)$.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.

• Then
$$\mathbf{1}(A) = |A \cap I| = r(A).$$

• Now
$$r(A) = |A \cap I| \le |I| = r(I)$$
.

- Also, $r(A \cap I) = |A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I) = r(A) = r((A \cap I) \cup (A \setminus I))$ meaning $(A \setminus I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.
- Since $b \in A \setminus I$, we get $b \in \operatorname{span}(I)$.
- Thus, $\operatorname{sat}(\mathbf{1}_I) \subseteq \operatorname{span}(I)$.

... proof continued.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.

• Then
$$\mathbf{1}(A) = |A \cap I| = r(A).$$

• Now
$$r(A) = |A \cap I| \le |I| = r(I)$$
.

- Also, $r(A \cap I) = |A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I) = r(A) = r((A \cap I) \cup (A \setminus I))$ meaning $(A \setminus I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.
- Since $b \in A \setminus I$, we get $b \in \operatorname{span}(I)$.
- Thus, $\operatorname{sat}(\mathbf{1}_I) \subseteq \operatorname{span}(I)$.

• Hence $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
		1111		
The sat	function $=$ Poly	matroid Clo	osure	

• Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$.

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_{f} The sat function = Polymatroid Closure

• Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$?

Now, consider a matroid (E, r) and some C ⊆ E with C ∉ I, and consider 1_C. Is 1_C ∈ P_r? No, it might not be a vertex, or even a member, of P_r.

$\frac{Closure/Sat}{The sat function} = Polymatroid Closure$

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .
- span(·) operates on more than just independent sets, so span(C) is perfectly sensible.

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .
- span(·) operates on more than just independent sets, so span(C) is perfectly sensible.
- Note $\operatorname{span}(C) = \operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .
- span(·) operates on more than just independent sets, so span(C) is perfectly sensible.
- Note $\operatorname{span}(C) = \operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_B \leq \mathbf{1}_C \leq \mathbf{1}_{\operatorname{span}(C)}$, and that $\mathbf{1}_B \in P_r$. We can then make the definition:

$$\operatorname{sat}(\mathbf{1}_C) \triangleq \operatorname{sat}(\mathbf{1}_B) \text{ for } B \in \mathcal{B}(C)$$
 (13.6)

In which case, we also get $sat(\mathbf{1}_C) = span(C)$ (in general, could define sat(y) = sat(P-basis(y))).

- Now, consider a matroid (E, r) and some C ⊆ E with C ∉ I, and consider 1_C. Is 1_C ∈ P_r? No, it might not be a vertex, or even a member, of P_r.
- $\operatorname{span}(\cdot)$ operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C) = \operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_B \leq \mathbf{1}_C \leq \mathbf{1}_{\operatorname{span}(C)}$, and that $\mathbf{1}_B \in P_r$. We can then make the definition:

$$\operatorname{sat}(\mathbf{1}_C) \triangleq \operatorname{sat}(\mathbf{1}_B) \text{ for } B \in \mathcal{B}(C)$$
 (13.6)

In which case, we also get $sat(\mathbf{1}_C) = span(C)$ (in general, could define sat(y) = sat(P-basis(y))).

• However, consider the following form

$$\operatorname{sat}(\mathbf{1}_C) = \bigcup \left\{ A : A \subseteq E, |A \cap C| = r(A) \right\}$$
(13.7)

- Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .
- $\operatorname{span}(\cdot)$ operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C) = \operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_B \leq \mathbf{1}_C \leq \mathbf{1}_{\operatorname{span}(C)}$, and that $\mathbf{1}_B \in P_r$. We can then make the definition:

$$\operatorname{sat}(\mathbf{1}_C) \triangleq \operatorname{sat}(\mathbf{1}_B) \text{ for } B \in \mathcal{B}(C)$$
 (13.6)

In which case, we also get $sat(\mathbf{1}_C) = span(C)$ (in general, could define sat(y) = sat(P-basis(y))).

• However, consider the following form

$$\operatorname{sat}(\mathbf{1}_C) = \bigcup \left\{ A : A \subseteq E, |A \cap C| = r(A) \right\}$$
(13.7)

Exercise: is $\operatorname{span}(C) = \operatorname{sat}(\mathbf{1}_C)$? Prove or disprove it.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

 Thus, for a matroid, sat(1_I) is exactly the closure (or span) of I in the matroid. I.e., for matroid (E, r), we have span(I) = sat(1_B).

- Thus, for a matroid, sat($\mathbf{1}_I$) is exactly the closure (or span) of I in the matroid. I.e., for matroid (E, r), we have span $(I) = sat(\mathbf{1}_B)$.
- Recall, for $x \in P_f$ and polymatroidal f, sat(x) is the maximal (by inclusion) minimizer of f(A) x(A), and thus in a matroid, span(I) is the maximal minimizer of the submodular function formed by $r(A) \mathbf{1}_I(A)$.

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f The sat function, span, and submodular function minimization

- Thus, for a matroid, $\operatorname{sat}(\mathbf{1}_I)$ is exactly the closure (or span) of I in the matroid. I.e., for matroid (E, r), we have $\operatorname{span}(I) = \operatorname{sat}(\mathbf{1}_B)$.
- Recall, for $x \in P_f$ and polymatroidal f, $\operatorname{sat}(x)$ is the maximal (by inclusion) minimizer of f(A) x(A), and thus in a matroid, $\operatorname{span}(I)$ is the maximal minimizer of the submodular function formed by $r(A) \mathbf{1}_I(A)$.
- Submodular function minimization can solve "span" queries in a matroid or "sat" queries in a polymatroid.

• We are given an $x \in P_f^+$ for submodular function f.

- We are given an $x \in P_f^+$ for submodular function f.
- Recall that for such an x, sat(x) is defined as

$$sat(x) = \bigcup \{A : x(A) = f(A)\}$$
 (13.8)

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f sat, as tight polymatroidal elements

- We are given an $x \in P_f^+$ for submodular function f.
- Recall that for such an x, sat(x) is defined as

$$sat(x) = \bigcup \{A : x(A) = f(A)\}$$
 (13.8)

• We also have stated that sat(x) can be defined as:

$$\operatorname{sat}(x) = \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_{e} \notin P_{f}^{+} \right\}$$
(13.9)

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f sat, as tight polymatroidal elements

- We are given an $x \in P_f^+$ for submodular function f.
- Recall that for such an x, sat(x) is defined as

$$sat(x) = \bigcup \{A : x(A) = f(A)\}$$
 (13.8)

• We also have stated that sat(x) can be defined as:

$$\operatorname{sat}(x) = \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
(13.9)

• We next show more formally that these are the same.

Closure/Sat	Fund. Circuit/Dep		More on B_{f}
sat, as tight	polymatroidal	elements	

• Lets start with one definition and derive the other.

 $\operatorname{sat}(x)$

• Lets start with one definition and derive the other.

 $\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$ (13.10)

F21/57 (pg.54/256)

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f sat, as tight polymatroidal elements • Lets start with one definition and derive the other. $sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$ (13.10) $= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$ (13.11)

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f sat, as tight polymatroidal elements

• Lets start with one definition and derive the other.

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
(13.10)

$$= \{e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
(13.11)

$$= \{e: \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\} \quad (13.12)$$

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f sat, as tight polymatroidal elements

• Lets start with one definition and derive the other.

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
(13.10)

$$= \{e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
(13.11)

$$= \{e: \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
(13.12)

• this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$.

sat , as tight polymatroidal elements

Fund. Circuit/Dep

• Lets start with one definition and derive the other.

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
(13.10)

Sudd

$$= \{e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
(13.11)

- $= \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$ (13.12)
- this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$. Continuing, we get

 $\operatorname{sat}(x) = \{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A) \}$ (13.13)

sat , as tight polymatroidal elements

Fund. Circuit/Dep

• Lets start with one definition and derive the other.

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
(13.10)

Supp

$$= \{e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
(13.11)

$$= \{e: \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
 (13.12)

• this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$. Continuing, we get

$$\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$$
(13.13)

 \bullet given that $x\in P_f^+,$ meaning $x(A)\leq f(A)$ for all A, we must have $\operatorname{sat}(x)$

Fund. Circuit/Dep

• Lets start with one definition and derive the other.

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
(13.10)

Sudd

$$= \{e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
(13.11)

- $= \{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \}$ (13.12)
- this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$. Continuing, we get

$$\operatorname{sat}(x) = \{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A) \}$$
(13.13)

• given that $x \in P_f^+$, meaning $x(A) \leq f(A)$ for all A, we must have

$$\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
(13.14)

Fund. Circuit/Dep

• Lets start with one definition and derive the other.

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
(13.10)

Supp

$$= \{e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
(13.11)

More on B_{f}

$$= \{e: \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
 (13.12)

• this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$. Continuing, we get

$$\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$$
(13.13)

• given that $x \in P_f^+$, meaning $x(A) \leq f(A)$ for all A, we must have

$$\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
(13.14)
= $\{e : \exists A \supset e \text{ s.t. } x(A) = f(A)\}$ (13.15)

$$= \{e : \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
(13.15)

Fund. Circuit/Dep

• Lets start with one definition and derive the other.

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
(13.10)

Sudd

$$= \{e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
(13.11)

More on B_{f}

- $= \{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \}$ (13.12)
- this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$. Continuing, we get

$$\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$$
(13.13)

• given that $x \in P_f^+$, meaning $x(A) \leq f(A)$ for all A, we must have

$$\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
(13.14)

$$= \{e : \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
(13.15)

• So now, if A is any set such that x(A) = f(A), then we clearly have (13.16)

Fund. Circuit/Dep

• Lets start with one definition and derive the other.

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
(13.10)

Sudd

$$= \{e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
(13.11)

More on B_{f}

- $= \{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \}$ (13.12)
- this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$. Continuing, we get

$$\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$$
(13.13)

• given that $x \in P_f^+$, meaning $x(A) \leq f(A)$ for all A, we must have

$$\operatorname{sat}(x) = \{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A) \}$$
(13.14)

$$= \{e : \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
(13.15)

• So now, if A is any set such that x(A) = f(A), then we clearly have $\forall e \in A, e \in sat(x),$ (13.16)

Fund. Circuit/Dep

• Lets start with one definition and derive the other.

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
(13.10)

Sudd

$$= \{e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
(13.11)

More on B_{f}

- $= \{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \}$ (13.12)
- this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$. Continuing, we get

$$\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$$
(13.13)

• given that $x \in P_f^+$, meaning $x(A) \leq f(A)$ for all A, we must have

$$\operatorname{sat}(x) = \{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A) \}$$
(13.14)

$$= \{e : \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
(13.15)

• So now, if A is any set such that x(A) = f(A), then we clearly have $\forall e \in A, e \in \operatorname{sat}(x)$, and therefore that $\operatorname{sat}(x) \supseteq A$ (13.16)

 \bullet ... and therefore, with sat as defined in Eq. (??),

$$\operatorname{sat}(x) \supseteq \bigcup \left\{ A : x(A) = f(A) \right\}$$
(13.17)

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f sat, as tight polymatroidal elements

 \bullet ... and therefore, with sat as defined in Eq. (??),

$$\operatorname{sat}(x) \supseteq \bigcup \left\{ A : x(A) = f(A) \right\}$$
(13.17)

On the other hand, for any e ∈ sat(x) defined as in Eq. (13.15), since e is itself a member of a tight set, there is a set A ∋ e such that x(A) = f(A), giving

$$\operatorname{sat}(x) \subseteq \bigcup \left\{ A : x(A) = f(A) \right\}$$
(13.18)

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f sat, as tight polymatroidal elements

 \bullet ... and therefore, with sat as defined in Eq. (??),

$$\operatorname{sat}(x) \supseteq \bigcup \left\{ A : x(A) = f(A) \right\}$$
(13.17)

• On the other hand, for any $e \in \operatorname{sat}(x)$ defined as in Eq. (13.15), since e is itself a member of a tight set, there is a set $A \ni e$ such that x(A) = f(A), giving

$$\operatorname{sat}(x) \subseteq \bigcup \left\{ A : x(A) = f(A) \right\}$$
(13.18)

• Therefore, the two definitions of sat are identical.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
		1111		
Saturation	Capacity			

• Another useful concept is saturation capacity which we develop next.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
		1111		
Saturation	Capacity			

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_f$, and $e \in E$, consider finding

$$\max\left\{\alpha:\alpha\in\mathbb{R}, x+\alpha\mathbf{1}_e\in P_f\right\}$$
(13.19)

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
		1111		
Saturation	Capacity			

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_f$, and $e \in E$, consider finding

$$\max\left\{\alpha:\alpha\in\mathbb{R}, x+\alpha\mathbf{1}_e\in P_f\right\}$$
(13.19)

• This is identical to:

 $\max\left\{\alpha : (x + \alpha \mathbf{1}_e)(A) \le f(A), \forall A \supseteq \{e\}\right\}$ (13.20)

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_e$ adjustment, meaning $(x + \alpha \mathbf{1}_e)(B) = x(B)$.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on B_{f}
Saturation	Capacity			

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_f$, and $e \in E$, consider finding

$$\max\left\{\alpha:\alpha\in\mathbb{R}, x+\alpha\mathbf{1}_e\in P_f\right\}$$
(13.19)

• This is identical to:

$$\max\left\{\alpha: (x + \alpha \mathbf{1}_e)(A) \le f(A), \forall A \supseteq \{e\}\right\}$$
(13.20)

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_e$ adjustment, meaning $(x + \alpha \mathbf{1}_e)(B) = x(B)$.

• Again, this is identical to:

$$\max\left\{\alpha: x(A) + \alpha \le f(A), \forall A \supseteq \{e\}\right\}$$
(13.21)

Closure/Sat	Fund. Circuit/Dep		
		1111	
Saturation	Capacity		

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_f$, and $e \in E$, consider finding

$$\max\left\{\alpha:\alpha\in\mathbb{R}, x+\alpha\mathbf{1}_e\in P_f\right\}$$
(13.19)

• This is identical to:

$$\max\left\{\alpha: (x+\alpha \mathbf{1}_e)(A) \le f(A), \forall A \supseteq \{e\}\right\}$$
(13.20)

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_e$ adjustment, meaning $(x + \alpha \mathbf{1}_e)(B) = x(B)$.

• Again, this is identical to:

$$\max\left\{\alpha: x(A) + \alpha \le f(A), \forall A \supseteq \{e\}\right\}$$
(13.21)

or

$$\max\left\{\alpha:\alpha\leq f(A)-x(A),\forall A\supseteq\left\{e\right\}\right\}$$
(13.22)
Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
		1111		
Saturation	Capacity			

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
(13.23)

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on B_f
Saturation	Capacity			

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
(13.23)

• $\hat{c}(x; e)$ is known as the saturation capacity associated with $x \in P_f$ and e.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
	11111111111111	1111		
Saturation	Capacity			

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
(13.23)

- $\hat{c}(x; e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min \{f(A) - x(A), \forall A \ni e\} \\ = \max \{\alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f\}\$$

(13.24)
(13.25)

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
		1111		
Saturation	Capacity			

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
(13.23)

- $\hat{c}(x; e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min\left\{f(A) - x(A), \forall A \ni e\right\}$$
(13.24)

$$= \max \left\{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \right\}$$
(13.25)

• We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x; e) > 0$.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
		1111		
Saturation	Capacity			

$$\alpha = \hat{c}(x;e) \stackrel{\text{def}}{=} \min\left\{f(A) - x(A), \forall A \supseteq \{e\}\right\}$$
(13.23)

- $\hat{c}(x; e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min\left\{f(A) - x(A), \forall A \ni e\right\}$$
(13.24)

$$= \max \left\{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \right\}$$
(13.25)

- We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x; e) > 0$.
- Also, for $e \in \operatorname{sat}(x)$, we have that $\hat{c}(x; e) = 0$.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
		1111		
Saturation	Capacity			

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
(13.23)

- $\hat{c}(x; e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \ni e \right\}$$

$$= \max \left\{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \right\}$$

$$(13.24)$$

$$(13.25)$$

- We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x; e) > 0$.
- Also, for $e \in \operatorname{sat}(x)$, we have that $\hat{c}(x; e) = 0$.
- Note that any α with $0 \le \alpha \le \hat{c}(x; e)$ we have $x + \alpha \mathbf{1}_e \in P_f$.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on B_f
Saturation	Capacity			

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
(13.23)

- $\hat{c}(x; e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min\left\{f(A) - x(A), \forall A \ni e\right\}$$
(13.24)

$$= \max \left\{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \right\}$$
(13.25)

- We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x; e) > 0$.
- Also, for $e \in \operatorname{sat}(x)$, we have that $\hat{c}(x; e) = 0$.
- Note that any α with $0 \le \alpha \le \hat{c}(x; e)$ we have $x + \alpha \mathbf{1}_e \in P_f$.
- We also see that computing $\hat{c}(x; e)$ is a form of submodular function minimization.

• Tight sets can be restricted to contain a particular element.

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_f$, and $e \in \operatorname{sat}(x)$, define

$$\mathcal{D}(x,e) = \{A : e \in A \subseteq E, x(A) = f(A)\}$$

$$= \mathcal{D}(x) \cap \{A : A \subseteq E, e \in A\}$$
(13.26)
(13.27)

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_f$, and $e \in \operatorname{sat}(x)$, define

$$\mathcal{D}(x,e) = \{A : e \in A \subseteq E, x(A) = f(A)\}$$
(13.26)

$$= \mathcal{D}(x) \cap \{A : A \subseteq E, e \in A\}$$
(13.27)

• Thus, $\mathcal{D}(x,e) \subseteq \mathcal{D}(x)$, and $\mathcal{D}(x,e)$ is a sublattice of $\mathcal{D}(x)$.

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_f$, and $e \in \operatorname{sat}(x)$, define

$$\mathcal{D}(x,e) = \{A : e \in A \subseteq E, x(A) = f(A)\}$$
(13.26)

$$= \mathcal{D}(x) \cap \{A : A \subseteq E, e \in A\}$$
(13.27)

- Thus, $\mathcal{D}(x,e) \subseteq \mathcal{D}(x)$, and $\mathcal{D}(x,e)$ is a sublattice of $\mathcal{D}(x)$.
- Therefore, we can define a unique minimal element of $\mathcal{D}(x,e)$ denoted as follows:

$$dep(x, e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} \\ \emptyset & \text{else} \end{cases}$$
(13.28)

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_f$, and $e \in \operatorname{sat}(x)$, define

$$\mathcal{D}(x,e) = \{A : e \in A \subseteq E, x(A) = f(A)\}$$
(13.26)

$$= \mathcal{D}(x) \cap \{A : A \subseteq E, e \in A\}$$
(13.27)

- Thus, $\mathcal{D}(x,e) \subseteq \mathcal{D}(x)$, and $\mathcal{D}(x,e)$ is a sublattice of $\mathcal{D}(x)$.
- Therefore, we can define a unique minimal element of $\mathcal{D}(x,e)$ denoted as follows:

$$dep(x,e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$$
(13.28)

• I.e., dep(x, e) is the minimal element in $\mathcal{D}(x)$ that contains e (the minimal x-tight set containing e).

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

ofor som XElf

- The picture on the right summarizes the relationships between the lattices and sublattices.
- Note, $\bigcap_{e} \operatorname{dep}(x, e) = \operatorname{dep}(x).$

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
		1111		
dep and sat	in a lattice			

• Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $sat(x) = \bigcup \{A : A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $sat(x) = \bigcup \{A : A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $dry(x) \stackrel{\text{def}}{=} \bigcap \{A : A \in \mathcal{D}(x)\}$

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $sat(x) = \bigcup \{A : A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $dry(x) \stackrel{\text{def}}{=} \bigcap \{A : A \in \mathcal{D}(x)\}$
- We can see dry(x) as the elements that are necessary for tightness.

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $sat(x) = \bigcup \{A : A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $dry(x) \stackrel{\text{def}}{=} \bigcap \{A : A \in \mathcal{D}(x)\}$
- We can see dry(x) as the elements that are necessary for tightness.
- That is, we can equivalently define dry(x) as

$$dry(x) = \left\{ e' : x(A) < f(A), \forall A \not\ni e' \right\}$$
(13.29)

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\mathrm{sat}(x) = \bigcup \left\{A: A \in \mathcal{D}(x)\right\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $dry(x) \stackrel{\text{def}}{=} \bigcap \{A : A \in \mathcal{D}(x)\}$
- We can see dry(x) as the elements that are necessary for tightness.
- That is, we can equivalently define dry(x) as

$$\operatorname{dry}(x) = \left\{ e' : x(A) < f(A), \forall A \not\supseteq e' \right\}$$
(13.29)

This can be read as, for any e' ∈ dry(x), any set that does not contain e' is not tight for x (any set A that is missing any element of dry(x) is not tight).

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\mathrm{sat}(x) = \bigcup \left\{A: A \in \mathcal{D}(x)\right\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $dry(x) \stackrel{\text{def}}{=} \bigcap \{A : A \in \mathcal{D}(x)\}$
- We can see dry(x) as the elements that are necessary for tightness.
- That is, we can equivalently define dry(x) as

$$\operatorname{dry}(x) = \left\{ e' : x(A) < f(A), \forall A \not\supseteq e' \right\}$$
(13.29)

- This can be read as, for any e' ∈ dry(x), any set that does not contain e' is not tight for x (any set A that is missing any element of dry(x) is not tight).
- Perhaps, then, a better name for dry is ntight(x), for the necessary for tightness (but we'll actually use neither name).

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\mathrm{sat}(x) = \bigcup \left\{A: A \in \mathcal{D}(x)\right\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $dry(x) \stackrel{\text{def}}{=} \bigcap \{A : A \in \mathcal{D}(x)\}$
- We can see dry(x) as the elements that are necessary for tightness.
- That is, we can equivalently define dry(x) as

$$\operatorname{dry}(x) = \left\{ e' : x(A) < f(A), \forall A \not\ni e' \right\}$$
(13.29)

- This can be read as, for any e' ∈ dry(x), any set that does not contain e' is not tight for x (any set A that is missing any element of dry(x) is not tight).
- Perhaps, then, a better name for dry is ntight(x), for the necessary for tightness (but we'll actually use neither name).
- Note that dry need not be the empty set. Exercise: give example.

Prof. Jeff Bilmes

F27/57 (pg.93/256)

 Now, given x ∈ P_f, and e ∈ sat(x), recall distributive sub-lattice of e-containing tight sets D(x, e) = {A : e ∈ A, x(A) = f(A)}

- Now, given $x \in P_f$, and $e \in sat(x)$, recall distributive sub-lattice of <u>e-containing tight sets</u> $\mathcal{D}(x, e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x, e) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x, e)\}.$

- Now, given $x \in P_f$, and $e \in sat(x)$, recall distributive sub-lattice of <u>e-containing</u> tight sets $\mathcal{D}(x, e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x, e) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x, e)\}.$
- Analogously, we can define the "0" element of this sub-lattice as $\operatorname{dry}(x,e) \stackrel{\text{def}}{=} \bigcap \{A : A \in \mathcal{D}(x,e)\}.$

- Now, given $x \in P_f$, and $e \in sat(x)$, recall distributive sub-lattice of <u>e-containing</u> tight sets $\mathcal{D}(x, e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x, e) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x, e)\}.$
- Analogously, we can define the "0" element of this sub-lattice as $\operatorname{dry}(x,e) \stackrel{\text{def}}{=} \bigcap \{A : A \in \mathcal{D}(x,e)\}.$
- We can see dry(x, e) as the elements that are necessary for *e*-containing tightness, with $e \in sat(x)$.

- Now, given $x \in P_f$, and $e \in sat(x)$, recall distributive sub-lattice of <u>e-containing tight sets</u> $\mathcal{D}(x, e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x, e) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x, e)\}.$
- Analogously, we can define the "0" element of this sub-lattice as $\operatorname{dry}(x,e) \stackrel{\text{def}}{=} \bigcap \{A : A \in \mathcal{D}(x,e)\}.$
- We can see dry(x, e) as the elements that are necessary for *e*-containing tightness, with $e \in sat(x)$.
- That is, we can view dry(x, e) as

$$\operatorname{dry}(x,e) = \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\}$$
(13.30)

- Now, given $x \in P_f$, and $e \in sat(x)$, recall distributive sub-lattice of <u>e-containing</u> tight sets $\mathcal{D}(x, e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x, e) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x, e)\}.$
- Analogously, we can define the "0" element of this sub-lattice as $\operatorname{dry}(x,e) \stackrel{\text{def}}{=} \bigcap \{A : A \in \mathcal{D}(x,e)\}.$
- We can see dry(x, e) as the elements that are necessary for *e*-containing tightness, with $e \in sat(x)$.
- That is, we can view dry(x, e) as

$$\operatorname{dry}(x, e) = \left\{ e' : x(A) < f(A), \forall A \not\supseteq e', e \in A \right\}$$
(13.30)

• This can be read as, for any $e' \in dry(x, e)$, any *e*-containing set that does not contain e' is not tight for x.

- Now, given $x \in P_f$, and $e \in sat(x)$, recall distributive sub-lattice of <u>e-containing tight sets</u> $\mathcal{D}(x, e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x, e) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x, e)\}.$
- Analogously, we can define the "0" element of this sub-lattice as $\operatorname{dry}(x,e) \stackrel{\text{def}}{=} \bigcap \{A : A \in \mathcal{D}(x,e)\}.$
- We can see dry(x, e) as the elements that are necessary for *e*-containing tightness, with $e \in sat(x)$.
- That is, we can view dry(x, e) as

$$\operatorname{dry}(x, e) = \left\{ e' : x(A) < f(A), \forall A \not\supseteq e', e \in A \right\}$$
(13.30)

- This can be read as, for any e' ∈ dry(x, e), any e-containing set that does not contain e' is not tight for x.
- But actually, dry(x, e) = dep(x, e), so we have derived another expression for dep(x, e) in Eq. (13.30).

Prof. Jeff Bilmes

• Now, let $(E, \mathcal{I}) = (E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_I \in P_r$. We have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I) = \operatorname{closure}(I)$.

- Now, let $(E, \mathcal{I}) = (E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_I \in P_r$. We have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I) = \operatorname{closure}(I)$.
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.

- Now, let $(E, \mathcal{I}) = (E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving
 - $\mathbf{1}_I \in P_r$. We have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I) = \operatorname{closure}(I)$.
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.
- Then $I \cap A$ serves as a base for A (i.e., $I \cap A$ spans A) and any such A contains a circuit (i.e., we can add $e \in A \setminus I$ to $I \cap A$ w/o increasing rank).

- Now, let $(E, \mathcal{I}) = (E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_I \in P_r$. We have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I) = \operatorname{closure}(I)$.
- Given $e \in sat(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.
- Then I ∩ A serves as a base for A (i.e., I ∩ A spans A) and any such A contains a circuit (i.e., we can add e ∈ A \ I to I ∩ A w/o increasing rank).
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, and consider $\operatorname{dep}(\mathbf{1}_I, e)$, with

$$dep(\mathbf{1}_I, e) = \bigcap \left\{ A : e \in A \subseteq E, \mathbf{1}_I(A) = r(A) \right\}$$
(13.31)

$$= \bigcap \left\{ A : e \in A \subseteq E, |I \cap A| = r(A) \right\}$$
(13.32)

$$= \bigcap \{A : e \in A \subseteq E, r(A) - |I \cap A| = 0\}$$
(13.33)

- Now, let $(E, \mathcal{I}) = (E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_I \in P_r$. We have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I) = \operatorname{closure}(I)$.
- Given $e \in sat(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.
- Then I ∩ A serves as a base for A (i.e., I ∩ A spans A) and any such A contains a circuit (i.e., we can add e ∈ A \ I to I ∩ A w/o increasing rank).
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, and consider $\operatorname{dep}(\mathbf{1}_I, e)$, with

$$dep(\mathbf{1}_I, e) = \bigcap \left\{ A : e \in A \subseteq E, \mathbf{1}_I(A) = r(A) \right\}$$
(13.31)

$$= \bigcap \left\{ A : e \in A \subseteq E, |I \cap A| = r(A) \right\}$$
(13.32)

$$= \bigcap \left\{ A : e \in A \subseteq E, r(A) - |I \cap A| = 0 \right\}$$
(13.33)

• By SFM lattice, \exists a unique minimal $A \ni e$ with $|I \cap A| = r(A)$.

- Now, let $(E, \mathcal{I}) = (E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_I \in P_r$. We have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I) = \operatorname{closure}(I)$.
- Given $e \in sat(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.
- Then I ∩ A serves as a base for A (i.e., I ∩ A spans A) and any such A contains a circuit (i.e., we can add e ∈ A \ I to I ∩ A w/o increasing rank).
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, and consider $\operatorname{dep}(\mathbf{1}_I, e)$, with

$$dep(\mathbf{1}_I, e) = \bigcap \{A : e \in A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
(13.31)

$$= \bigcap \left\{ A : e \in A \subseteq E, |I \cap A| = r(A) \right\}$$
(13.32)

$$= \bigcap \{A : e \in A \subseteq E, r(A) - |I \cap A| = 0\}$$
(13.33)

- By SFM lattice, \exists a unique minimal $A \ni e$ with $|I \cap A| = r(A)$.
- Thus, dep(1_I, e) must be a circuit since if it included more than a circuit, it would not be minimal in this sense.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

• Therefore, when $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, then $\operatorname{dep}(\mathbf{1}_I, e) = C(I, e)$ where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).

- Therefore, when e ∈ sat(1_I) \ I, then dep(1_I, e) = C(I, e) where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}(\mathbf{1}_I) \cap I$ with $I \in \mathcal{I}$, we said that C(I, e) was undefined (since no circuit is created in this case) and so we defined it as $C(I, e) = \{e\}$

- Therefore, when e ∈ sat(1_I) \ I, then dep(1_I, e) = C(I, e) where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}(\mathbf{1}_I) \cap I$ with $I \in \mathcal{I}$, we said that C(I, e) was undefined (since no circuit is created in this case) and so we defined it as $C(I, e) = \{e\}$
- In this case, for such an e, we have $dep(\mathbf{1}_I, e) = \{e\}$ since all such sets $A \ni e$ with $|I \cap A| = r(A)$ contain e, but in this case no cycle is created, i.e., $|I \cap A| \ge |I \cap \{e\}| = r(e) = 1$.

- Therefore, when e ∈ sat(1_I) \ I, then dep(1_I, e) = C(I, e) where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}(\mathbf{1}_I) \cap I$ with $I \in \mathcal{I}$, we said that C(I, e) was undefined (since no circuit is created in this case) and so we defined it as $C(I, e) = \{e\}$
- In this case, for such an e, we have $dep(\mathbf{1}_I, e) = \{e\}$ since all such sets $A \ni e$ with $|I \cap A| = r(A)$ contain e, but in this case no cycle is created, i.e., $|I \cap A| \ge |I \cap \{e\}| = r(e) = 1$.
- We are thus free to take subsets of *I* as *A*, all of which must contain *e*, but all of which have rank equal to size.

- Therefore, when e ∈ sat(1_I) \ I, then dep(1_I, e) = C(I, e) where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}(\mathbf{1}_I) \cap I$ with $I \in \mathcal{I}$, we said that C(I, e) was undefined (since no circuit is created in this case) and so we defined it as $C(I, e) = \{e\}$
- In this case, for such an e, we have $dep(\mathbf{1}_I, e) = \{e\}$ since all such sets $A \ni e$ with $|I \cap A| = r(A)$ contain e, but in this case no cycle is created, i.e., $|I \cap A| \ge |I \cap \{e\}| = r(e) = 1$.
- We are thus free to take subsets of *I* as *A*, all of which must contain *e*, but all of which have rank equal to size.
- Also note: in general for $x \in P_f$ and $e \in \operatorname{sat}(x)$, we have $\operatorname{dep}(x, e)$ is tight by definition.

• For $x \in P_f$, sat(x) (span, closure) is the maximal saturated (x-tight) set w.r.t. x. I.e., sat $(x) = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$. That is,

$$\mathsf{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \triangleq \bigcup \left\{ A : A \in \mathcal{D}(x) \right\}$$
(13.34)

$$= \bigcup \{A : A \subseteq E, x(A) = f(A)\}$$
(13.35)

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
(13.36)

• For $e \in \operatorname{sat}(x)$, we have $\operatorname{dep}(x, e)$ (fundamental circuit) is the minimal (common) saturated (x-tight) set w.r.t. x containing e. That is,

$$dep(x, e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in \text{sat}(x) \\ \emptyset & \text{else} \end{cases}$$
$$= \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f\} (13.37)$$

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

F31/57 (pg.112/256)

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
		1111		
Dependence	Function and	exchange		

• For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin I$. This is a set addition restriction property.

Fund. Circuit/Dep Closure/Sat Sudd Examples Dependence Function and exchange

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition • Analogously, for $e \in \operatorname{sat}(x)$, any $x + \alpha \mathbf{1}_e \notin P_f$ for $\alpha > 0$. This is a
- vector increase restriction property.

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin I$. This is a set addition restriction property.
- Analogously, for e ∈ sat(x), any x + α1_e ∉ P_f for α > 0. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin I$. This is a set addition restriction property.
- Analogously, for e ∈ sat(x), any x + α1_e ∉ P_f for α > 0. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \setminus I$, we have that

$$C(I,e) = \{a \in E : I + e - a \in \mathcal{I}\}$$

(13.38)

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f Dependence Function and exchange

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin I$. This is a set addition restriction property.
- Analogously, for e ∈ sat(x), any x + α1_e ∉ P_f for α > 0. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \setminus I$, we have that

$$C(I, e) = \{a \in E : I + e - a \in \mathcal{I}\}$$
(13.38)

• I.e., an addition of e to I stays within \mathcal{I} only if we simultaneously remove one of the elements of C(I, e).

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f Dependence Function and exchange

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for e ∈ sat(x), any x + α1_e ∉ P_f for α > 0. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \setminus I$, we have that

$$C(I, e) = \{a \in E : I + e - a \in \mathcal{I}\}$$
(13.38)

- I.e., an addition of e to I stays within \mathcal{I} only if we simultaneously remove one of the elements of C(I, e).
- But, analogous to the circuit case, is there an exchange property for dep(x, e) in the form of vector movement restriction?

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f Dependence Function and exchange

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x + \alpha \mathbf{1}_e \notin P_f$ for $\alpha > 0$. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \setminus I$, we have that

$$C(I, e) = \{a \in E : I + e - a \in \mathcal{I}\}$$
(13.38)

- I.e., an addition of e to I stays within \mathcal{I} only if we simultaneously remove one of the elements of C(I, e).
- But, analogous to the circuit case, is there an exchange property for dep(x, e) in the form of vector movement restriction?
- We might expect the vector dep(x, e) property to take the form: a positive move in the *e*-direction stays within P_f^+ only if we simultaneously take a negative move in one of the dep(x, e)directions.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
		1111		
Dependence	Function	and exchange in	2D	

• dep(x, e) is set of neg. directions we must move if we want to move in pos. e direction, starting at x and staying within P_f .

Closure/Sat Fund. Circuit/Dep Supp Examples More on B Dependence Function and exchange in 2D 2D

• dep(x, e) is set of neg. directions we must move if we want to move in pos. e direction, starting at x and staying within P_f .

• Viewable in 2D, we have for $A, B \subseteq E, A \cap B = \emptyset$:

Left: $A \cap \operatorname{dep}(x, e) = \emptyset$, and we can't move further in (e) direction, and moving in any negative $a \in A$ direction doesn't change that. Notice no dependence between (e) and any element in A.

Right: $A \subseteq dep(x, e)$, and we can't move further in the (e) direction, but we can move further in (e) direction by moving in some $a \in A$ negative direction. Notice dependence between (e) and elements in A.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
		1111		
Dependence	Function and	d exchange	e in 3D	

• We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.

We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.
In 3D, we have:

Dependence Function and exchange in 3D

- We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.
- In 3D, we have:

• I.e., for $e \in \operatorname{sat}(x)$, $a \in \operatorname{sat}(x)$, $a \in \operatorname{dep}(x, e)$, $e \notin \operatorname{dep}(x, a)$,

Dependence Function and exchange in 3D

- We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.
- In 3D, we have:

• I.e., for $e \in \operatorname{sat}(x)$, $a \in \operatorname{sat}(x)$, $a \in \operatorname{dep}(x, e)$, $e \notin \operatorname{dep}(x, a)$, and $\operatorname{dep}(x, e) = \{a : a \in E, \exists \alpha > 0 : x + \alpha(\mathbf{1}_e - \mathbf{1}_a) \in P_f\}$ (13.39)

Dependence Function and exchange in 3D

- We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.
- In 3D, we have:

• I.e., for $e \in \operatorname{sat}(x)$, $a \in \operatorname{sat}(x)$, $a \in \operatorname{dep}(x, e)$, $e \notin \operatorname{dep}(x, a)$, and $\operatorname{dep}(x, e) = \{a : a \in E, \exists \alpha > 0 : x + \alpha(\mathbf{1}_e - \mathbf{1}_a) \in P_f\}$ (13.39) • We next show this formally ...

 $dep(x,e) = \mathsf{ntight}(x,e) =$ (13.40)

$$dep(x, e) = ntight(x, e) =$$

$$= \{e' : x(A) < f(A), \forall A \not\supseteq e', e \in A\}$$
(13.40)
(13.41)

$$dep(x, e) = \mathsf{ntight}(x, e) =$$
(13.40)

$$= \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\}$$

$$(13.41)$$

$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \le f(A) - x(A), \forall A \not\ni e', e \in A \right\}$$
(13.42)

$$dep(x, e) = \mathsf{ntight}(x, e) =$$
(13.40)

$$= \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\}$$
(13.41)

$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\}$$
(13.42)

$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_{e}(A) \le f(A) - x(A), \forall A \not\ni e', e \in A \right\}$$
(13.43)

$$dep(x, e) = ntight(x, e) = (13.40)$$

$$= \{e' : x(A) < f(A), \forall A \not\supseteq e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \leq f(A) - x(A), \forall A \not\supseteq e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_e(A) \leq f(A) - x(A), \forall A \not\supseteq e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) + \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\supseteq e', e \in A\}$$

$$(13.42)$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) + \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\supseteq e', e \in A\}$$

$$(13.44)$$

$$dep(x,e) = \mathsf{ntight}(x,e) =$$
(13.40)

$$= \left\{ e' : x(A) < f(A), \forall A \not\supseteq e', e \in A \right\}$$
(13.41)

$$= \{e': \exists \alpha > 0, \text{ s.t. } \alpha \le f(A) - x(A), \forall A \not\ni e', e \in A\}$$
(13.42)

$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_e(A) \le f(A) - x(A), \forall A \not\ni e', e \in A \right\}$$
(13.43)

$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A) - x(A), \forall A \not\ni e', e \in A \right\}$$
(13.44)

 $= \left\{ e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A), \forall A \not\ni e', e \in A \right\}$ (13.45)

$$\begin{aligned} \operatorname{dep}(x, e) &= \operatorname{ntight}(x, e) = \\ &= \{e' : x(A) < f(A), \forall A \not\ni e', e \in A\} \end{aligned} \tag{13.40} \\ &= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \leq f(A) - x(A), \forall A \not\ni e', e \in A\} \end{aligned} \tag{13.42} \\ &= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_e(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A\} \end{aligned} \tag{13.43} \\ &= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_e(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A\} \end{aligned} \tag{13.44} \\ &= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A\} \end{aligned}$$

• Now, $1_e(A) - 1_{e'}(A) = 0$ if either $\{e, e'\} \subseteq A$, or $\{e, e'\} \cap A = \emptyset$.

(13.45)

$$dep(x,e) = \mathsf{ntight}(x,e) =$$
(13.40)

$$= \left\{ e' : x(A) < f(A), \forall A \not\supseteq e', e \in A \right\}$$
(13.41)

$$= \{e': \exists \alpha > 0, \text{ s.t. } \alpha \le f(A) - x(A), \forall A \not\ni e', e \in A\}$$
(13.42)

$$= \{e': \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_e(A) \le f(A) - x(A), \forall A \not\ni e', e \in A\} \quad (13.43)$$
$$= \{e': \exists \alpha > 0, \text{ s.t. } \alpha(\mathbf{1}_e(A) = \mathbf{1}_e(A)) \le f(A) - x(A) \; \forall A \not\ni e', e \in A\}$$

$$= \{e': \exists \alpha > 0, \text{ s.t. } \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A) - x(A), \forall A \not\supseteq e', e \in A\}$$
(13.44)

$$= \left\{ e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A), \forall A \not \ni e', e \in A \right\}$$
(13.45)

• Now,
$$1_e(A) - \mathbf{1}_{e'}(A) = 0$$
 if either $\{e, e'\} \subseteq A$, or $\{e, e'\} \cap A = \emptyset$.

• Also, if $e' \in A$ but $e \notin A$, then $x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) = x(A) - \alpha \leq f(A)$ since $x \in P_f$.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

• thus, we get the same in the above if we remove the constraint $A \not\supseteq e', e \in A$, that is we get

$$dep(x,e) = \left\{ e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A), \forall A \right\}$$
(13.46)

• thus, we get the same in the above if we remove the constraint $A \not\supseteq e', e \in A$, that is we get

$$dep(x,e) = \left\{ e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A), \forall A \right\}$$

• This is then identical to

$$dep(x,e) = \left\{ e' : \exists \alpha > 0, \text{ s.t. } x + \alpha (\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f \right\}$$

$$(13.47)$$

• thus, we get the same in the above if we remove the constraint $A \not\supseteq e', e \in A$, that is we get

 $dep(x,e) = \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A), \forall A\}$ (13.46)

• This is then identical to

$$dep(x, e) = \{ e' : \exists \alpha > 0, \text{ s.t. } x + \alpha (\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f \}$$
(13.47)

• Compare with original, the minimal element of $\mathcal{D}(x, e)$, with $e \in \operatorname{sat}(x)$:

$$dep(x,e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$$
(13.48)

• Most violated inequality $\max \{x(A) - f(A) : A \subseteq E\}$

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I + e$.

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I + e$.
- Minimizers of submodular functions form a lattice.

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I + e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I + e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I + e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- sat function & Closure

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I + e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- sat function & Closure
- Saturation Capacity

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I + e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- \bullet sat function & Closure
- Saturation Capacity
- *e*-containing tight sets

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I, e) \subseteq I + e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- sat function & Closure
- Saturation Capacity
- *e*-containing tight sets
- $\bullet \ dep \ function \ \& \ fundamental \ circuit \ of \ a \ matroid$

• *x*-tight sets: For $x \in P_f$, $\mathcal{D}(x) = \{A \subseteq E : x(A) = f(A)\}$.

- *x*-tight sets: For $x \in P_f$, $\mathcal{D}(x) = \{A \subseteq E : x(A) = f(A)\}.$
- Polymatroid closure/maximal x-tight set: For $x \in P_f$, sat $(x) = \bigcup \{A : A \in \mathcal{D}(x)\} = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}.$

- *x*-tight sets: For $x \in P_f$, $\mathcal{D}(x) = \{A \subseteq E : x(A) = f(A)\}.$
- Polymatroid closure/maximal x-tight set: For $x \in P_f$, $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\} = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}.$
- Saturation capacity: for $x \in P_f$, $0 \le \hat{c}(x; e) = \min \{f(A) x(A) | \forall A \ni e\} = \max \{\alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f\}$

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f

- *x*-tight sets: For $x \in P_f$, $\mathcal{D}(x) = \{A \subseteq E : x(A) = f(A)\}.$
- Polymatroid closure/maximal x-tight set: For $x \in P_f$, $\operatorname{sat}(x) = \cup \{A : A \in \mathcal{D}(x)\} = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}.$
- Saturation capacity: for $x \in P_f$, $0 \le \hat{c}(x; e) = \min \{f(A) x(A) | \forall A \ni e\} = \max \{\alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f\}$

• Recall: $\operatorname{sat}(x) = \{e : \hat{c}(x; e) = 0\}$ and $E \setminus \operatorname{sat}(x) = \{e : \hat{c}(x; e) > 0\}.$

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f

- x-tight sets: For $x \in P_f$, $\mathcal{D}(x) = \{A \subseteq E : x(A) = f(A)\}.$
- Polymatroid closure/maximal x-tight set: For $x \in P_f$, $\operatorname{sat}(x) = \cup \{A : A \in \mathcal{D}(x)\} = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}.$
- Saturation capacity: for $x \in P_f$, $0 \le \hat{c}(x; e) = \min \{f(A) x(A) | \forall A \ni e\} = \max \{\alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f\}$

• Recall:
$$sat(x) = \{e : \hat{c}(x; e) = 0\}$$
 and $E \setminus sat(x) = \{e : \hat{c}(x; e) > 0\}.$

• e-containing x-tight sets: For $x \in P_f$, $\mathcal{D}(x, e) = \{A : e \in A \subseteq E, x(A) = f(A)\} \subseteq \mathcal{D}(x).$

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f

- x-tight sets: For $x \in P_f$, $\mathcal{D}(x) = \{A \subseteq E : x(A) = f(A)\}.$
- Polymatroid closure/maximal x-tight set: For $x \in P_f$, $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\} = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}.$
- Saturation capacity: for $x \in P_f$, $0 \le \hat{c}(x; e) = \min \{f(A) x(A) | \forall A \ni e\} = \max \{\alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f\}$

• Recall:
$$sat(x) = \{e : \hat{c}(x; e) = 0\}$$
 and $E \setminus sat(x) = \{e : \hat{c}(x; e) > 0\}.$

- e-containing x-tight sets: For $x \in P_f$, $\mathcal{D}(x, e) = \{A : e \in A \subseteq E, x(A) = f(A)\} \subseteq \mathcal{D}(x).$
- Minimal *e*-containing *x*-tight set/polymatroidal fundamental circuit/: For $x \in P_f$, $dep(x, e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$ $= \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f\}$

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
		I III		
Support of v	ector			

• The support of a vector $x \in P_f$ is defined as the elements with non-zero entries.

- The support of a vector x ∈ P_f is defined as the elements with non-zero entries.
- That is

$$supp(x) = \{e \in E : x(e) \neq 0\}$$
 (13.49)

- The support of a vector x ∈ P_f is defined as the elements with non-zero entries.
- That is

$$supp(x) = \{e \in E : x(e) \neq 0\}$$
 (13.49)

Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice $\mathcal{D}(x) = \{A : x(A) = f(A)\}$ of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?
 - Extremal points are defined as a system of equalities of the form x(E_i) = f(E_i) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in class. Hence, any e_i ∈ supp(x) has x(e_i) = f(e_i|E_{i-1}) > 0.

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?
 - Extremal points are defined as a system of equalities of the form x(E_i) = f(E_i) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in class. Hence, any e_i ∈ supp(x) has x(e_i) = f(e_i|E_{i-1}) > 0.
 - 2 Now, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, $x(E_k) = x(E_k e_i)$

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?
 - Extremal points are defined as a system of equalities of the form x(E_i) = f(E_i) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in class. Hence, any e_i ∈ supp(x) has x(e_i) = f(e_i|E_{i-1}) > 0.
 - 2 Now, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, $x(E_k) = x(E_k e_i)$
 - Solution Solution State S

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?
 - Extremal points are defined as a system of equalities of the form x(E_i) = f(E_i) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in class. Hence, any e_i ∈ supp(x) has x(e_i) = f(e_i|E_{i-1}) > 0.
 - 2 Now, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, $x(E_k) = x(E_k e_i)$
 - 3 Also, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, then $x(e_i) = 0 = f(e_i | E_{i-1}) \ge f(e_i | E_k e_i) = f(E_k | E_k e_i) \ge 0$ since monotone submodular, hence we have $f(E_k) = f(E_k e_i)$.
 - Thus, $x(E_k e_i) = f(E_k e_i)$ and $E_k e_i$ is also tight.

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?
 - Extremal points are defined as a system of equalities of the form x(E_i) = f(E_i) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in class. Hence, any e_i ∈ supp(x) has x(e_i) = f(e_i|E_{i-1}) > 0.
 - 2 Now, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, $x(E_k) = x(E_k e_i)$
 - 3 Also, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, then $x(e_i) = 0 = f(e_i|E_{i-1}) \ge f(e_i|E_k e_i) = f(E_k|E_k e_i) \ge 0$ since monotone submodular, hence we have $f(E_k) = f(E_k e_i)$.
 - Thus, $x(E_k e_i) = f(E_k e_i)$ and $E_k e_i$ is also tight.
 - **③** We can keep removing elements \notin supp(x) and we're left with $f(E_k \cap \text{supp}(x)) = x(E_k \cap \text{supp}(x))$ for any k.

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?
 - Extremal points are defined as a system of equalities of the form x(E_i) = f(E_i) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in class. Hence, any e_i ∈ supp(x) has x(e_i) = f(e_i|E_{i-1}) > 0.
 - 2 Now, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, $x(E_k) = x(E_k e_i)$
 - 3 Also, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, then $x(e_i) = 0 = f(e_i|E_{i-1}) \ge f(e_i|E_k e_i) = f(E_k|E_k e_i) \ge 0$ since monotone submodular, hence we have $f(E_k) = f(E_k e_i)$.
 - Thus, $x(E_k e_i) = f(E_k e_i)$ and $E_k e_i$ is also tight.
 - **③** We can keep removing elements \notin supp(x) and we're left with $f(E_k \cap \text{supp}(x)) = x(E_k \cap \text{supp}(x))$ for any k.
 - Hence supp(x) is tight when x is extremal.

- Now, sat(x) is tight, and corresponds to the largest member of the distributive lattice D(x) = {A : x(A) = f(A)} of tight sets.
- supp(x) is not necessarily tight for an arbitrary x.
- When x is an extremal point, however, supp(x) is tight, meaning x(supp(x)) = f(supp(x)). Why?
 - Extremal points are defined as a system of equalities of the form x(E_i) = f(E_i) for 1 ≤ i ≤ k ≤ |E|, for some k, as we saw earlier in class. Hence, any e_i ∈ supp(x) has x(e_i) = f(e_i|E_{i-1}) > 0.
 - 2 Now, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, $x(E_k) = x(E_k e_i)$
 - 3 Also, for $1 \le i \le k$, if $e_i \notin \operatorname{supp}(x)$, then $x(e_i) = 0 = f(e_i | E_{i-1}) \ge f(e_i | E_k e_i) = f(E_k | E_k e_i) \ge 0$ since monotone submodular, hence we have $f(E_k) = f(E_k e_i)$.
 - Thus, $x(E_k e_i) = f(E_k e_i)$ and $E_k e_i$ is also tight.
 - **③** We can keep removing elements \notin supp(x) and we're left with $f(E_k \cap \text{supp}(x)) = x(E_k \cap \text{supp}(x))$ for any k.
 - Hence supp(x) is tight when x is extremal.

• Since $\operatorname{supp}(x)$ is tight, we immediately have that $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.

F40/57 (pg.165/256)

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	
		1111		
supp vs.	sat equality			

• For $x \in P_f$, with x extremal, is supp(x) = sat(x)?

- For $x \in P_f$, with x extremal, is supp(x) = sat(x)?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X) = f(Y) = f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), f(Y|X) = 0.

- For $x \in P_f$, with x extremal, is supp(x) = sat(x)?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X) = f(Y) = f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), f(Y|X) = 0.
- Suppose $x \in P_f$ has x(X) > 0 but $x(V \setminus X) = 0$ and so x(Y) = 0.

- For $x \in P_f$, with x extremal, is supp(x) = sat(x)?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X) = f(Y) = f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), f(Y|X) = 0.
- Suppose $x \in P_f$ has x(X) > 0 but $x(V \setminus X) = 0$ and so x(Y) = 0.
- Then supp(x) = X, and say x is tight at X(x(X) = f(X)).

- For $x \in P_f$, with x extremal, is supp(x) = sat(x)?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X) = f(Y) = f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), f(Y|X) = 0.
- Suppose $x \in P_f$ has x(X) > 0 but $x(V \setminus X) = 0$ and so x(Y) = 0.
- Then $\operatorname{supp}(x) = X$, and say x is tight at X(x(X) = f(X)).
- $\operatorname{sat}(x) = \bigcup \{A : x(A) = f(A)\}$ and since $x(X \cup Y) = x(X) = f(X) = f(X \cup Y)$, here, $\operatorname{sat}(x) \supseteq X \cup Y$.

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f supp vs. sat equality

- For $x \in P_f$, with x extremal, is supp(x) = sat(x)?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X) = f(Y) = f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), f(Y|X) = 0.
- Suppose $x \in P_f$ has x(X) > 0 but $x(V \setminus X) = 0$ and so x(Y) = 0.
- Then $\operatorname{supp}(x) = X$, and say x is tight at X(x(X) = f(X)).
- $\operatorname{sat}(x) = \bigcup \{A : x(A) = f(A)\}$ and since $x(X \cup Y) = x(X) = f(X) = f(X \cup Y)$, here, $\operatorname{sat}(x) \supseteq X \cup Y$.
- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$ (see later).

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f supp vs. sat equality

- For $x \in P_f$, with x extremal, is supp(x) = sat(x)?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X) = f(Y) = f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), f(Y|X) = 0.
- Suppose $x \in P_f$ has x(X) > 0 but $x(V \setminus X) = 0$ and so x(Y) = 0.
- Then $\operatorname{supp}(x) = X$, and say x is tight at X(x(X) = f(X)).
- $\operatorname{sat}(x) = \bigcup \{A : x(A) = f(A)\}$ and since $x(X \cup Y) = x(X) = f(X) = f(X \cup Y)$, here, $\operatorname{sat}(x) \supseteq X \cup Y$.
- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$ (see later).
- Also, recall sat(x) is like span/closure but supp(x) is more like indication. So this is similar to span(A) ⊇ A.

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f supp vs. sat equality

- For $x \in P_f$, with x extremal, is supp(x) = sat(x)?
- Consider an example case where disjoint $X, Y \subseteq E$, we have $f(X) = f(Y) = f(X \cup Y)$ (meaning "perfect dependence" or full redundancy, so gains are not strictly positive), f(Y|X) = 0.
- Suppose $x \in P_f$ has x(X) > 0 but $x(V \setminus X) = 0$ and so x(Y) = 0.
- Then $\operatorname{supp}(x) = X$, and say x is tight at X(x(X) = f(X)).
- $\operatorname{sat}(x) = \bigcup \{A : x(A) = f(A)\}$ and since $x(X \cup Y) = x(X) = f(X) = f(X \cup Y)$, here, $\operatorname{sat}(x) \supseteq X \cup Y$.
- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$ (see later).
- Also, recall sat(x) is like span/closure but supp(x) is more like indication. So this is similar to span(A) ⊇ A.
- For modular functions, they are always equal (e.g., think of "hyperrectangular" polymatroids).

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f Summary of supp, sat, and dep

• For $x \in P_f$, $\operatorname{supp}(x) = \{e : x(e) \neq 0\} \subseteq \operatorname{sat}(x)$

• For $x \in P_f$, sat(x) (span, closure) is the maximal saturated (x-tight) set w.r.t. x. I.e., sat $(x) = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$. That is,

$$\mathsf{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \triangleq \bigcup \left\{ A : A \in \mathcal{D}(x) \right\}$$
(13.34)

$$= \bigcup \left\{ A : A \subseteq E, x(A) = f(A) \right\}$$
(13.35)

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
(13.36)

• For $e \in \operatorname{sat}(x)$, we have $\operatorname{dep}(x, e)$ (fundamental circuit) is the minimal (common) saturated (x-tight) set w.r.t. x containing e. That is,

$$dep(x, e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in \text{sat}(x) \\ \emptyset & \text{else} \end{cases}$$
$$= \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f\}$$
(13.37)

• Example polymatroid where there is perfect independence between $A = \{e_2, e_3\}$ and $B = \{e_1\}$, i.e., $e_1 \perp \lfloor \{e_2, e_3\}$.

F43/57 (pg.175/256)

• Example polymatroid where there is perfect independence between $A = \{e_2, e_3\}$ and $B = \{e_1\}$, i.e., $e_1 \perp \{e_2, e_3\}$.

• Point x is extreme and $x(\{e_2, e_3\}) = f(e_2, e_3)$ (why?).

• Example polymatroid where there is perfect independence between $A = \{e_2, e_3\}$ and $B = \{e_1\}$, i.e., $e_1 \perp \{e_2, e_3\}$.

• Point x is extreme and $x(\{e_2, e_3\}) = f(e_2, e_3)$ (why?).

• But $x(\{e_1, e_2, e_3\}) = x(\{e_2, e_3\}) < f(e_1, e_2, e_3) = f(e_1) + f(e_2, e_3)$. Thus, $supp(x) = sat(x) = \{e_2, e_3\}$.

• Example polymatroid where there is perfect independence between $A = \{e_2, e_3\}$ and $B = \{e_1\}$, i.e., $e_1 \perp \{e_2, e_3\}$.

• Note that considering a submodular function on clustered ground set $E = \{e_1, e_{23}\}$ where $f'(e_1) = f(e_1)$, $f'(e_{23}) = f(e_2, e_3)$ leads to a rectangle (no dependence between $\{e1\}$ and $\{e2, e3\}$).

• Example polymatroid where there is perfect independence between $A = \{e_2, e_3\}$ and $B = \{e_1\}$, i.e., $e_1 \perp \{e_2, e_3\}$.

We also have sat(x) = {e₃, e₂}. So dep(x, e₁) is not defined, dep(x, e₂) = {e₃}, and dep(x, e₃) = Ø.
 sat(x) = {e₁ e₂ e₃}. So dep(x e₁) = Ø dep(x e₂) = e₁ and

• sat $(y) = \{e_1, e_2, e_3\}$. So dep $(y, e_1) = \emptyset$, dep $(y, e_2) = e_3$, and dep $(y, e_3) = \emptyset$.
Closure/SatFund. Circuit/DepSuppExamplesMore on B_f supp, sat, dep, example with perfect independence

• Example polymatroid where there is perfect independence between $A = \{e_2, e_3\}$ and $B = \{e_1\}$, i.e., $e_1 \perp \{e_2, e_3\}$.

We also have sat(x) = {e₃, e₂}. So dep(x, e₁) is not defined, dep(x, e₂) = {e₃}, and dep(x, e₃) = Ø.
 sat(x) = {e₁ e₂ e₃}. So dep(x e₁) = Ø dep(x e₂) = e₁ and

• sat $(y) = \{e_1, e_2, e_3\}$. So dep $(y, e_1) = \emptyset$, dep $(y, e_2) = e_3$, and dep $(y, e_3) = \emptyset$.

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f supp, sat, and polymatroid dependence in 2D • Ex: various amounts of "dependence" between e_1 and e_2 . A B C D $f(e_2)$ $f(e_2)$ $f(e_2)$ $f(e_2)$ $f(e_2)$ $f(e_2)$ $f(e_2)$ $f(e_3)$

 $f(e_2)$

101.02

 $f(e_1)$

fler, er

 $f(e_1)$

 $f(e_1)$

F44/57 (pg.181/256)

 $f(e_1)$

F(07,02)

• Case A: perfect independence.

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f supp, sat, and polymatroid dependence in 2D • Ex: various amounts of "dependence" between e_1 and e_2 . A B $f(e_2)$ $f(e_2)$ $f(e_2)$ $f(e_2)$ $f(e_2)$ $f(e_2)$ $f(e_2)$

- Case A: perfect independence.
- Case B: perfect dependence. Since slope is -45°, we must have $f(e_1) = f(e_2) = f(e_1, e_2)$. Entropy case: deterministic bijection between random variables e_1 and e_2 .

 $f(e_1)$

 $f(e_1)$

supp, sat, and polymatroid dependence in 2D

• Ex: various amounts of "dependence" between e_1 and e_2 .

Sudd

• Case A: perfect independence.

Fund. Circuit/Dep

- Case B: perfect dependence. Since slope is -45°, we must have $f(e_1) = f(e_2) = f(e_1, e_2)$. Entropy case: deterministic bijection between random variables e_1 and e_2 .
- Case C: $f(e_2) < f(e_1) = f(e_1, e_2)$. Entropy case: random variable e_2 a deterministic function of e_1 which has higher entropy.

Closure/Sat

Closure/Sat Fund. Circuit/Dep Supp Examples More on By supp, sat, and polymatroid dependence in 2D • Ex: various amounts of "dependence" between e_1 and e_2 . A B C D $f(e_2)$ $f(e_2)$

• Case A: perfect independence.

 $f(e_1)$

• Case B: perfect dependence. Since slope is -45°, we must have $f(e_1) = f(e_2) = f(e_1, e_2)$. Entropy case: deterministic bijection between random variables e_1 and e_2 .

 $f(e_1)$

 $f(e_1)$

- Case C: $f(e_2) < f(e_1) = f(e_1, e_2)$. Entropy case: random variable e_2 a deterministic function of e_1 which has higher entropy.
- Case D: $f(e_1) < f(e_2) = f(e_1, e_2)$. Entropy case: random variable e_1 a deterministic function of e_2 which has higher entropy.

 $f(e_1)$

Closure/Sat Fund. Circuit/Dep Supp Examples More or supp, sat, and polymatroid dependence in 2D

• In each case, we see points x where $supp(x) \subseteq sat(x)$.

- Example: Case B or C, let $x = (f(e_1), 0)$ so $supp(x) = \{e_1\}$ but since $x(\{e_1, e_2\}) = x(\{e_1\}) = f(e_1) = f(e_1, e_2)$ we have $sat(x) = \{e_1, e_2\}.$
- Similar for case D with $x = (0, f(e_2))$.

• General case, $f(e_1, e_2) < f(e_1) + f(e_2)$, $f(e_1) < f(e_1, e_2)$, and $f(e_2) < f(e_1, e_2)$.

• Entropy case: We have a random variable Z and two separate deterministic functions $e_1 = h_1(Z)$ and $e_2 = h_2(Z)$ such that the entropy $H(e_1, e_2) = H(Z)$, but each deterministic function gives a different "view" of Z, each contains more than half the information, and the two are redundant w.r.t. each other.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

F45/57 (pg.187/256)

Fund. Circuit/Dep

• Ex: polymatroid with perfect independence between e_2 and e_3 , so

Sudd

Examples

 $f(e_2, e_3) = f(e_2) + f(e_3)$, but perfect dependence between

Fund. Circuit/Dep

• Ex: polymatroid with perfect independence between e_2 and e_3 , so

Sudd

Examples

 $f(e_2, e_3) = f(e_2) + f(e_3)$, but perfect dependence between $A = \{e_2, e_3\}$ and $B = \{e_1\}$, so $f(e_1, e_2, e_3) = f(e_2, e_3)$

• Entropy case: xor V-structure Bayesian network $e_1 = h(e_2, e_3)$ where h is the xor function $(e_2 \rightarrow e_1 \leftarrow e_3)$, and e_2, e_3 are both independent binary with unity entropy.

Closure/Sat

F46/57 (pg.189/256)

Fund. Circuit/Dep

• Ex: polymatroid with perfect independence between e_2 and e_3 , so

 $f(e_2, e_3) = f(e_2) + f(e_3)$, but perfect dependence between

- Entropy case: xor V-structure Bayesian network $e_1 = h(e_2, e_3)$ where h is the xor function $(e_2 \rightarrow e_1 \leftarrow e_3)$, and e_2, e_3 are both independent binary with unity entropy.
- Q: Why does the polytope have a symmetry? Notice independence (square) for any pair.

Closure/Sat

Fund. Circuit/Dep Closure/Sat Sudd Examples supp, sat, and perfect dependence in 3D • Ex: polymatroid with perfect independence between e_2 and e_3 , so $f(e_2, e_3) = f(e_2) + f(e_3)$, but perfect dependence between $A = \{e_2, e_3\}$ and $B = \{e_1\}$, so $f(e_1, e_2, e_3) = f(e_2, e_3)$ 0.8 0.8 0.6 ဗ္ဗ 0.6 60 0.4 0.4 0.2 0.2 -0.5 0.5 0.5 0.5 **D** e2 e1 e2 e1 • For any permutation σ of $\{1, 2, 3\}$, considering $\{e_{\sigma_1}, e_{\sigma_2}\}$ vs. $\{e_{\sigma_3}\}$: $\{1, 2, \sigma_J, f(e_{\sigma_2}, e_{\sigma_3}) \mid f(e_{\sigma_2}, e_{\sigma_3})$ e_{σ_3} is a deterministic function of $\{e_{\sigma_1}, e_{\sigma_2}\}$

Fund. Circuit/Dep

• Ex: polymatroid with perfect independence between e_2 and e_3 , so

Sudd

Examples

 $f(e_2, e_3) = f(e_2) + f(e_3)$, but perfect dependence between

Fund. Circuit/Dep

• Ex: polymatroid with perfect independence between e_2 and e_3 , so

Sudd

Examples

0.5

 $f(e_2, e_3) = f(e_2) + f(e_3)$, but perfect dependence between

0.2

0.5

e2

0.5

0.2 -

0.5

Fund. Circuit/Dep

• Ex: polymatroid with perfect independence between e_2 and e_3 , so

 $f(e_2, e_3) = f(e_2) + f(e_3)$, but perfect dependence between

- Note also, that for some of the extreme points, multiple orders generate them.
- Consider extreme point $x = (x_1, x_2, x_3) = (1, 1, 0)$. Then we get this either with orders (e_1, e_2, e_3) , or (e_2, e_1, e_3) . This is true since $f(e_{\sigma_e}|\{e_{\sigma_1}, e_{\sigma_2}\}) = 0$ for all permutations σ of $\{1, 2, 3\}$.

Closure/Sat

• The example in the previous slides can be realized with entropy of random variables and a Bayesian network.

- The example in the previous slides can be realized with entropy of random variables and a Bayesian network.
- Consider three binary random variables $X_1, X_2, X_3 \in \{0, 1\}$ that factor w.r.t., the V-structure $X_1 \rightarrow X_3 \leftarrow X_2$, where $X_3 = X_1 \oplus X_2$, where \oplus is the X-OR operator, and where $X_1 \perp \!\!\perp X_2$.

- The example in the previous slides can be realized with entropy of random variables and a Bayesian network.
- Consider three binary random variables $X_1, X_2, X_3 \in \{0, 1\}$ that factor w.r.t., the V-structure $X_1 \rightarrow X_3 \leftarrow X_2$, where $X_3 = X_1 \oplus X_2$, where \oplus is the X-OR operator, and where $X_1 \perp\!\!\perp X_2$.
- Consequently, $X_i \perp \!\!\!\perp X_j$ for any $i \neq j$.

- The example in the previous slides can be realized with entropy of random variables and a Bayesian network.
- Consider three binary random variables $X_1, X_2, X_3 \in \{0, 1\}$ that factor w.r.t., the V-structure $X_1 \rightarrow X_3 \leftarrow X_2$, where $X_3 = X_1 \oplus X_2$, where \oplus is the X-OR operator, and where $X_1 \perp\!\!\perp X_2$.
- Consequently, $X_i \perp \!\!\!\perp X_j$ for any $i \neq j$.
- Moreover, for any permutation σ of $\{1, 2, 3\}$, we have the relationship $X_{\sigma_1} = X_{\sigma_2} \oplus X_{\sigma_3}$.

- The example in the previous slides can be realized with entropy of random variables and a Bayesian network.
- Consider three binary random variables $X_1, X_2, X_3 \in \{0, 1\}$ that factor w.r.t., the V-structure $X_1 \rightarrow X_3 \leftarrow X_2$, where $X_3 = X_1 \oplus X_2$, where \oplus is the X-OR operator, and where $X_1 \perp\!\!\perp X_2$.
- Consequently, $X_i \perp \!\!\!\perp X_j$ for any $i \neq j$.
- Moreover, for any permutation σ of $\{1, 2, 3\}$, we have the relationship $X_{\sigma_1} = X_{\sigma_2} \oplus X_{\sigma_3}$.
- The entropy function $f(A) = H(X_A)$ is a submodular function that will have the symmetric 3D polytope of the previous example.

Closure/Sat	Fund. Circuit/De		.pp Exam	ples More on B f
1111111111				
supp,	sat, extremai	x, perfect	aepenaence	

• In general, for extremal x, $sat(x) \supseteq supp(x)$.

supp, sat, extremal x, perfect dependence

- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.

supp, sat, extremal x, perfect dependence

- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
- On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Indeed:

- - In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
 - Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
 - On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Indeed:
 - sat(x) is tight, as is supp(x), and hence $f(\operatorname{sat}(x)) = x(\operatorname{sat}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f supp, sat, extremal x, perfect dependence

- - In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
 - Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
 - On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Indeed:
 - $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence $f(\operatorname{sat}(x)) = x(\operatorname{sat}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
 - Therefore, $f(\operatorname{sat}(x)|\operatorname{supp}(x)) = 0$.

supp, sat, extremal x, perfect dependence

- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
- On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Indeed:
 - $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence $f(\operatorname{sat}(x)) = x(\operatorname{sat}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
 - Therefore, $f(\operatorname{sat}(x)|\operatorname{supp}(x)) = 0$.
 - But by the above, and monotonicity, we have for $e \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, that $0 = f(\operatorname{sat}(x)|\operatorname{supp}(x)) \ge f(e|\operatorname{supp}(x)) \ge 0$.

- In general, for extremal x, $sat(x) \supset supp(x)$.
- Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
- On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Indeed:
 - $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence $f(\operatorname{sat}(x)) = x(\operatorname{sat}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
 - Therefore, $f(\operatorname{sat}(x)|\operatorname{supp}(x)) = 0$.
 - But by the above, and monotonicity, we have for
 - $e \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, that
 - $0 = f(\operatorname{sat}(x)|\operatorname{supp}(x)) \ge f(e|\operatorname{supp}(x)) \ge 0.$
 - Hence $f(e|\operatorname{supp}(x)) = 0$,

- In general, for extremal x, $sat(x) \supset supp(x)$.
- Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
- On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Indeed:
 - $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence $f(\operatorname{sat}(x)) = x(\operatorname{sat}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
 - Therefore, $f(\operatorname{sat}(x)|\operatorname{supp}(x)) = 0$.
 - But by the above, and monotonicity, we have for $e \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, that
 - $0 = f(\operatorname{sat}(x)|\operatorname{supp}(x)) \ge f(e|\operatorname{supp}(x)) \ge 0.$
 - Hence $f(e|\operatorname{supp}(x)) = 0$, and moreover $f(e + \operatorname{supp}(x)) = x(e + \operatorname{supp}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f supp, sat, extremal x, perfect dependence

- In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
- Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
- On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Indeed:
 - $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence $f(\operatorname{sat}(x)) = x(\operatorname{sat}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
 - Therefore, $f(\operatorname{sat}(x)|\operatorname{supp}(x)) = 0.$
 - $\bullet\,$ But by the above, and monotonicity, we have for
 - $e \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, that
 - $0 = f(\operatorname{sat}(x)|\operatorname{supp}(x)) \ge f(e|\operatorname{supp}(x)) \ge 0.$
 - Hence $f(e|\operatorname{supp}(x)) = 0$, and moreover $f(e + \operatorname{supp}(x)) = x(e + \operatorname{supp}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
- Thus, for any extremal x, with $sat(x) \supset supp(x)$, we see that for $e \in sat(x) \setminus supp(x)$, we have supp(x) + e is also tight.

- - In general, for extremal x, $\operatorname{sat}(x) \supseteq \operatorname{supp}(x)$.
 - Now, for any $e \in E \setminus \operatorname{supp}(x)$, we clearly have $x(\operatorname{supp}(x) + e) = x(\operatorname{supp}(x))$ since x(e) = 0.
 - On the other hand, for $e_i \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have perfect dependence, i.e., $f(\operatorname{supp}(x) + e_i) = f(\operatorname{supp}(x))$. Indeed:
 - $\operatorname{sat}(x)$ is tight, as is $\operatorname{supp}(x)$, and hence $f(\operatorname{sat}(x)) = x(\operatorname{sat}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
 - Therefore, $f(\operatorname{sat}(x)|\operatorname{supp}(x)) = 0$.
 - But by the above, and monotonicity, we have for
 - $e \in \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, that
 - $0 = f(\operatorname{sat}(x)|\operatorname{supp}(x)) \ge f(e|\operatorname{supp}(x)) \ge 0.$
 - Hence $f(e|\operatorname{supp}(x)) = 0$, and moreover $f(e + \operatorname{supp}(x)) = x(e + \operatorname{supp}(x)) = x(\operatorname{supp}(x)) = f(\operatorname{supp}(x)).$
 - Thus, for any extremal x, with $sat(x) \supset supp(x)$, we see that for $e \in sat(x) \setminus supp(x)$, we have supp(x) + e is also tight.
 - Note also, for any $A \subseteq \operatorname{sat}(x) \setminus \operatorname{supp}(x)$, we have $f(A|\operatorname{supp}(x)) = 0$.

Prof. Jeff Bilmes

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on B_f
supp, sat,	perfect depen	dence		

• Note that all of these results hold when *f* is monotone non-decreasing submodular (e.g., for a polymatroid function).

- Note that all of these results hold when *f* is monotone non-decreasing submodular (e.g., for a polymatroid function).
- For modular functions, and extremal x, sat(x) = supp(x).

- Note that all of these results hold when f is monotone non-decreasing submodular (e.g., for a polymatroid function).
- For modular functions, and extremal x, sat(x) = supp(x).
- For general $x \in P_f$ (not nec. extremal), sat(x) and supp(x) might have an arbitrary relationship (but we want to strengthen this relationship further, and we will do so below).

- Note that all of these results hold when f is monotone non-decreasing submodular (e.g., for a polymatroid function).
- For modular functions, and extremal x, sat(x) = supp(x).
- For general $x \in P_f$ (not nec. extremal), sat(x) and supp(x) might have an arbitrary relationship (but we want to strengthen this relationship further, and we will do so below).
- For the most part, we are interested in these quantities when x is extremal as we will see.

• Strict monotone f polymatroids, where $f(e|E \setminus e) > 0, \forall e$.

• Example: $f(A) = \sqrt{|A|}$, where all m! vertices of B_f are unique.

• In such cases, taking any extremal point $x \in P_f$ based on prefix order $E = (e_1, ...)$, where $\operatorname{supp}(x) \subset E$, we have that $\operatorname{sat}(x) = \operatorname{supp}(x)$ since the largest tight set corresponds to $x(E_i) = f(E_i)$ for some *i*, and while any $e \in E \setminus E_i$ is such that $x(E_i + e) = x(E_i)$, there is no such *e* with $f(E_i + e) = f(E_i)$.

Prof. Jeff Bilmes

F50/57 (pg.214/256)

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on B_f			
Another	revealing theore	m					
Theorem 1	.3.7.1						
Let f be a polymatroid function and suppose that E can be partitioned							
into (E_1, E_2, \dots, E_k) such that $f(A) = \sum_{i=1}^k f(A \cap E_i)$ for all $A \subseteq E$,							
and k is maximum. Then the base polytope							
$B_f = \{x \in$	$E P_f : x(E) = f(E) \}$	(the E-tight s	subset of P_f) has	s dimension			
E -k.							
Closure/Sat	Fund. Circuit/Dep			More on B_f			
-----------------	----------------------------	-------------------------	-----------------------	---------------------			
		1111		••••••			
Another	revealing theore	m					
Theorem 12	2 7 1						
Theorem 1.	D.1.1						
Let f be a	polymatroid functio	n and suppose	that E can be p	artitioned			
into $(E_1, E$	$_2,\ldots,E_k)$ such that	$f(A) = \sum_{i=1}^{k}$	$f(A \cap E_i)$ for a	$II A \subseteq E,$			
and k is ma	aximum. Then the b	oase polytope					
$B_f = \{x \in$	$P_f: x(E) = f(E) \}$	(the E-tight s	subset of P_f) has	dimension			
E -k.							

• Thus, "independence" between disjoint A and B (leading to a rectangular projection of the polymatroid polytope) reduces the dimension of the base polytope, as expected.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on B_f
Another	revealing theore	m		
Theorem 1	3.7.1			
Let f be a	polymatroid functio	n and suppose	that E can be p	artitioned
into $(E_1, E$	$E_2,\ldots,E_k)$ such that	$t f(A) = \sum_{i=1}^{k}$	$f(A \cap E_i)$ for a	$II A \subseteq E,$
and k is made	aximum. Then the b	ase polytope		
$B_f = \{x \in$	$P_f: x(E) = f(E)\}$	(the E-tight s	subset of P_f) has	dimension
E - k.				

- Thus, "independence" between disjoint A and B (leading to a rectangular projection of the polymatroid polytope) reduces the dimension of the base polytope, as expected.
- Thus, any point $x \in B_f$ is a convex combination of at most |E| k + 1 vertices of B_f .

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on B_{f}
Another	revealing theore	m		
Theorem 1	3.7.1			
Let f be a	polymatroid functio	n and suppose	that E can be p	artitioned
into (E_1, E_1)	$E_2,\ldots,E_k)$ such that	$f(A) = \sum_{i=1}^{\kappa}$	$f(A \cap E_i)$ for a	$II A \subseteq E,$
and k is ma	aximum. Then the b	ase polytope		<i>.</i>
$B_f = \{x \in F \mid h\}$	$P_f: x(E) = f(E)\}$	(the E-tight s	subset of P_f has	<i>idimension</i>
$ L - \kappa$.				

- Thus, "independence" between disjoint A and B (leading to a rectangular projection of the polymatroid polytope) reduces the dimension of the base polytope, as expected.
- Thus, any point $x \in B_f$ is a convex combination of at most |E| k + 1 vertices of B_f .
- And if f does not have such independence, dimension of B_f is |E| 1 and any point $x \in B_f$ is a convex combination of at most |E| vertices of B_f .

• Example f with independence between $A = \{e_2, e_3\}$ and $B = \{e_1\}$, i.e., $e_1 \perp \{e_2, e_3\}$, with B_f marked in green.

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

• Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.

- Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x(e_1)=f(\{e_1\}),\ x(e_2)=f(\{e_1,e_2\})-f(\{e_1\}),$ and so on).

- Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x(e_1)=f(\{e_1\}),\ x(e_2)=f(\{e_1,e_2\})-f(\{e_1\}),$ and so on).
- From past lectures, we now know that:

- Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x(e_1)=f(\{e_1\}),\ x(e_2)=f(\{e_1,e_2\})-f(\{e_1\}),$ and so on).
- From past lectures, we now know that:

(1)
$$x \in P_f$$

- Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x(e_1)=f(\{e_1\}),\ x(e_2)=f(\{e_1,e_2\})-f(\{e_1\}),$ and so on).
- From past lectures, we now know that:

(1)
$$x \in P_f$$

(2) x is an extreme point in P_f

- Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x(e_1)=f(\{e_1\}),\ x(e_2)=f(\{e_1,e_2\})-f(\{e_1\}),$ and so on).
- From past lectures, we now know that:

- Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x(e_1)=f(\{e_1\}),\ x(e_2)=f(\{e_1,e_2\})-f(\{e_1\}),$ and so on).
- From past lectures, we now know that:

1)
$$x \in P_f$$

- (2) x is an extreme point in P_f
- (3) Since x is generated using an ordering of all of E, we have that x(E) = f(E).
- Thus $x \in B_f$, and B_f is never empty.

- Given polymatroid function f, the base polytope $B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$ always exists.
- Consider any order of E and generate a vector x by this order (i.e., $x(e_1)=f(\{e_1\}),\ x(e_2)=f(\{e_1,e_2\})-f(\{e_1\}),$ and so on).
- From past lectures, we now know that:

1)
$$x \in P_f$$

- (2) x is an extreme point in P_f
- (3) Since x is generated using an ordering of all of E, we have that x(E) = f(E).
- Thus $x \in B_f$, and B_f is never empty.
- Moreover, in this case, x is a vertex of B_f since it is extremal.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on B_{f}
		1111		· · · · · · · · · · · · · · · · · · ·
Base polytop	be property			

• Now, for any $A \subseteq E$, we can generate a particular point in B_f

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where n = |E|, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with k = |A|.

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where n = |E|, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with k = |A|.
- Note there are k!(n-k)! < n! such orderings.

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where n = |E|, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with k = |A|.
- Note there are k!(n-k)! < n! such orderings.
- Generate x via greedy using this order, $\forall i, x(e_i) = f(e_i | E_{i-1})$.

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where n = |E|, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with k = |A|.
- Note there are k!(n-k)! < n! such orderings.
- Generate x via greedy using this order, $\forall i, x(e_i) = f(e_i | E_{i-1})$.
- Then, we have generated a point x (a vertex, no less) in B_f such that x(A) = f(A).

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where n = |E|, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with k = |A|.
- Note there are k!(n-k)! < n! such orderings.
- Generate x via greedy using this order, $\forall i, x(e_i) = f(e_i | E_{i-1})$.
- Then, we have generated a point x (a vertex, no less) in B_f such that x(A)=f(A).
- Thus, for any A, we have

$$B_f \cap \left\{ x \in \mathbb{R}^E : x(A) = f(A) \right\} \neq \emptyset$$
(13.50)

Closure/Sat Fund. Circuit/Dep Supp Examples More on B_f Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where n = |E|, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with k = |A|.
- Note there are k!(n-k)! < n! such orderings.
- Generate x via greedy using this order, $\forall i, x(e_i) = f(e_i | E_{i-1})$.
- Then, we have generated a point x (a vertex, no less) in B_f such that x(A) = f(A).
- Thus, for any A, we have

$$B_f \cap \left\{ x \in \mathbb{R}^E : x(A) = f(A) \right\} \neq \emptyset$$
(13.50)

• In words, B_f intersects all "multi-axis congruent" hyperplanes within R^E of the form $\{x \in \mathbb{R}^E : x(A) = f(A)\}$ for all $A \subseteq E$.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on B_{f}
		1111		· · · · · · · · · · · · · · · · · · ·
B_f dominate	es P_f			

Theorem 13.7.2

If $x \in P_f$ and T is tight for x (meaning x(T) = f(T)), then there exists $y \in B_f$ with $x \leq y$ and y(e) = x(e) for $e \in T$.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on B_{f}
B_f domi	nates P_f			

Theorem 13.7.2

If $x \in P_f$ and T is tight for x (meaning x(T) = f(T)), then there exists $y \in B_f$ with $x \leq y$ and y(e) = x(e) for $e \in T$.

Proof.

• We construct the y algorithmically: initially set $y \leftarrow x$.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on B_{f}
B_f domi	nates P_f			

Theorem 13.7.2

If $x \in P_f$ and T is tight for x (meaning x(T) = f(T)), then there exists $y \in B_f$ with $x \leq y$ and y(e) = x(e) for $e \in T$.

- We construct the y algorithmically: initially set $y \leftarrow x$.
- $y \in P_f$, T is tight for y so y(T) = f(T).

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on B_{f}
				· · · · · · · · · · · · · · · · · · ·
B_f domi	nates P_f			

Theorem 13.7.2

If $x \in P_f$ and T is tight for x (meaning x(T) = f(T)), then there exists $y \in B_f$ with $x \leq y$ and y(e) = x(e) for $e \in T$.

- We construct the y algorithmically: initially set $y \leftarrow x$.
- $y \in P_f$, T is tight for y so y(T) = f(T).
- Recall saturation capacity: for $y \in P_f$, $\hat{c}(y; e) = \min \{f(A) y(A) | \forall A \ni e\} = \max \{\alpha : \alpha \in \mathbb{R}, y + \alpha \mathbf{1}_e \in P_f\}$

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on B_{f}
		1111		· · · · · · · · · · · · · · · · · · ·
B_f domin	hates P_f			

Theorem 13.7.2

If $x \in P_f$ and T is tight for x (meaning x(T) = f(T)), then there exists $y \in B_f$ with $x \leq y$ and y(e) = x(e) for $e \in T$.

- We construct the y algorithmically: initially set $y \leftarrow x$.
- $y \in P_f$, T is tight for y so y(T) = f(T).
- Recall saturation capacity: for $y \in P_f$, $\hat{c}(y; e) = \min \{f(A) y(A) | \forall A \ni e\} = \max \{\alpha : \alpha \in \mathbb{R}, y + \alpha \mathbf{1}_e \in P_f\}$
- Consider following algorithm:

1
$$T' \leftarrow T$$
;

2 for
$$e \in E \setminus T$$
 do

$$\mathbf{3} \quad \left[\begin{array}{c} y \leftarrow y + c(y; e) \mathbf{1}_e \text{ ; } T' \leftarrow T' \cup \{e\}; \end{array} \right]$$

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on B_f
B_f domi	nates P_f			
proof of	Thm. 13.7.2 cont.			

• Each step maintains feasibility: consider one step adding e to T' for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \le f(T' + e)$, or $y(e) \le f(T' + e) - y(T')$.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on ${B}_{f}$
B_f dom	inates P_f			
proof o	f Thm. 13.7.2 cont.			

• Each step maintains feasibility: consider one step adding e to T' for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \le f(T' + e)$, or $y(e) \le f(T' + e) - y(T') = y(e) + f(T' + e) - y(T' + e)$.

Closure/Sat	Fund. Circuit/Dep	Supp	Examples	More on B_{f}
		1111		1111111
B_f domi	inates P_f			
proof o	f Thm 1270 cont			

- Each step maintains feasibility: consider one step adding e to T' for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \leq f(T' + e)$, or $y(e) \leq f(T' + e) - y(T') = y(e) + f(T' + e) - y(T' + e)$.
- We set $y(e) \leftarrow y(e) + \hat{c}(y;e) \le y(e) + f(T'+e) y(T'+e).$

- Each step maintains feasibility: consider one step adding e to T' for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \le f(T' + e)$, or $y(e) \le f(T' + e) - y(T') = y(e) + f(T' + e) - y(T' + e)$.
- We set $y(e) \leftarrow y(e) + \hat{c}(y; e) \leq y(e) + f(T' + e) y(T' + e)$. Hence, after each step, $y \in P_f$ and $\hat{c}(y; e) \geq 0$. (also, consider r.h. version of $\hat{c}(y; e)$).

- Each step maintains feasibility: consider one step adding e to T' for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \le f(T' + e)$, or $y(e) \le f(T' + e) - y(T') = y(e) + f(T' + e) - y(T' + e)$.
- We set $y(e) \leftarrow y(e) + \hat{c}(y;e) \leq y(e) + f(T'+e) y(T'+e)$. Hence, after each step, $y \in P_f$ and $\hat{c}(y;e) \geq 0$. (also, consider r.h. version of $\hat{c}(y;e)$).
- Also, only y(e) for $e \notin T$ changed, final y has y(e) = x(e) for $e \in T$.

- Each step maintains feasibility: consider one step adding e to T' for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \leq f(T' + e)$, or $y(e) \leq f(T' + e) - y(T') = y(e) + f(T' + e) - y(T' + e)$.
- We set $y(e) \leftarrow y(e) + \hat{c}(y;e) \le y(e) + f(T'+e) y(T'+e)$. Hence, after each step, $y \in P_f$ and $\hat{c}(y;e) \ge 0$. (also, consider r.h. version of $\hat{c}(y;e)$).
- Also, only y(e) for $e \notin T$ changed, final y has y(e) = x(e) for $e \in T$.
- Let $S_e \ni e$ be a set that achieves $c(y; e) = f(S_e) y(S_e)$.

- Each step maintains feasibility: consider one step adding e to T' for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \le f(T' + e)$, or $y(e) \le f(T' + e) - y(T') = y(e) + f(T' + e) - y(T' + e)$.
- We set $y(e) \leftarrow y(e) + \hat{c}(y;e) \leq y(e) + f(T'+e) y(T'+e)$. Hence, after each step, $y \in P_f$ and $\hat{c}(y;e) \geq 0$. (also, consider r.h. version of $\hat{c}(y;e)$).
- Also, only y(e) for $e \notin T$ changed, final y has y(e) = x(e) for $e \in T$.
- Let $S_e \ni e$ be a set that achieves $c(y; e) = f(S_e) y(S_e)$.
- At iteration e, let y'(e) (resp. y(e)) be the new (resp. old) entry for e. We have $y'(S_e) = y(S_e \setminus \{e\}) + y'(e) = y(S_e \setminus \{e\}) + [y(e) + f(S_e) - y(S_e)]$ $= f(S_e)$ (13.51)

- Each step maintains feasibility: consider one step adding e to T' for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \leq f(T' + e)$, or $y(e) \leq f(T' + e) - y(T') = y(e) + f(T' + e) - y(T' + e)$.
- We set $y(e) \leftarrow y(e) + \hat{c}(y;e) \le y(e) + f(T'+e) y(T'+e)$. Hence, after each step, $y \in P_f$ and $\hat{c}(y;e) \ge 0$. (also, consider r.h. version of $\hat{c}(y;e)$).
- Also, only y(e) for $e \notin T$ changed, final y has y(e) = x(e) for $e \in T$.
- Let $S_e \ni e$ be a set that achieves $c(y; e) = f(S_e) y(S_e)$.
- At iteration e, let y'(e) (resp. y(e)) be the new (resp. old) entry for e. We have

$$y'(S_e) = y(S_e \setminus \{e\}) + y'(e) = y(S_e \setminus \{e\}) + [y(e) + f(S_e) - y(S_e)]$$

= f(S_e) (13.51)

So, S_e is tight for $y^\prime.$ It remains tight in further iterations since y doesn't decrease and it stays within $P_f.$

- Each step maintains feasibility: consider one step adding e to T' for $e \notin T'$, feasibility requires $y(T' + e) = y(T') + y(e) \leq f(T' + e)$, or $y(e) \leq f(T' + e) - y(T') = y(e) + f(T' + e) - y(T' + e)$.
- We set $y(e) \leftarrow y(e) + \hat{c}(y;e) \le y(e) + f(T'+e) y(T'+e)$. Hence, after each step, $y \in P_f$ and $\hat{c}(y;e) \ge 0$. (also, consider r.h. version of $\hat{c}(y;e)$).
- Also, only y(e) for $e \notin T$ changed, final y has y(e) = x(e) for $e \in T$.
- Let $S_e \ni e$ be a set that achieves $c(y; e) = f(S_e) y(S_e)$.
- At iteration e, let y'(e) (resp. y(e)) be the new (resp. old) entry for e. We have

$$y'(S_e) = y(S_e \setminus \{e\}) + y'(e) = y(S_e \setminus \{e\}) + [y(e) + f(S_e) - y(S_e)]$$

= f(S_e) (13.51)

So, S_e is tight for $y^\prime.$ It remains tight in further iterations since y doesn't decrease and it stays within $P_f.$

• Is this a polymatroidal polytope?

- Is this a polymatroidal polytope?
- No, " B_f " doesn't intersect sets of the form $\{x: x(e) = f(e)\}$ for $e \in E$.

- Is this a polymatroidal polytope?
- No, " B_f " doesn't intersect sets of the form $\{x: x(e) = f(e)\}$ for $e \in E$.
- This was generated using function g(0) = 0, g(1) = 3, g(2) = 4, and g(3) = 5.5. Then f(S) = g(|S|) is not submodular since (e.g.) $f(\{e_1, e_3\}) + f(\{e_1, e_2\}) = 4 + 4 = 8$ but

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014

F57/57 (pg.253/256)

• Is this a polymatroidal polytope?

• No, " B_f " (which would be a single point in this case) doesn't intersect sets of the form $\{x : x(e) = f(e)\}$ for $e \in E$.

• Is this a polymatroidal polytope?

- No, " B_f " (which would be a single point in this case) doesn't intersect sets of the form $\{x : x(e) = f(e)\}$ for $e \in E$.
- This was generated using function g(0) = 0, g(1) = 1, g(2) = 1.8, and g(3) = 3. Then f(S) = g(|S|) is not submodular since (e.g.) $f(\{e_1, e_3\}) + f(\{e_1, e_2\}) = 1.8 + 1.8 = 3.6$ but $f(\{e_1, e_2, e_3\}) + f(\{e_1\}) = 3 + 1 = 4$.