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Cumulative Outstanding Reading

e Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.

@ Read Tom McCormick’s overview paper on SFM http://people.
commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

@ Read chapters 1 - 4 from Fujishige book.

@ Matroid properties http:
//www-math.mit.edu/~goemans/18433509/matroid-notes.pdf
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Announcements, Assignments, and Reminders

@ Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-

@ L1 (3/31): Motivation, Applications, & @ L11: More properties of polymatroids,

Basic Definitions SFM special cases
@ L2: (4/2): Applications, Basic @ L12: polymatroid properties, extreme
Definitions, Properties points polymatroids,

@ L3: More examples and properties (e.g., @ L13: sat, dep, supp, exchange capacity,
closure properties), and examples, examples

spanning trees o L14:

@ L4: proofs of equivalent definitions, @ L15:
independence, start matroids o L16:

@ Lb5: melatroids, basic definitions and o L1i7:
examples . o Li8:

@ L6: More on matroids, System of o L10:
Distinct Reps, Transversals, Transversal :

@ L20:

Matroid, Matroid and representation

@ L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

@ L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

@ L9: From Matroid Polytopes to
Polymatroids.

@ L10: Polymatroids and Submodularity

Finals Week: June 9th-13th, 2014.
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Tight sets D(y) are closed, and max tight set sat(y)
Recall the definition of the set of tight sets at y € Pf+:

D(y) = {A: ACE, y(A) = f(A)} (13.18)

Theorem 13.2.1

For any y € P;, with f a polymatroid function, then D(y) is closed
under union and intersection.

We have already proven this as part of Theorem 7?7 []

Also recall the definition of sat(y), the maximal set of tight elements
relative to y € Rf.

sat(y) € | J{T : T € D(y)} (13.19)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 13 - May 14th, 2014 F5/57 (pg.5/256)



Review
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Fundamental circuits in matroids

Let I € Z(M), and e € E, then I U {e} contains at most one circuit in
M.

@ Suppose, to the contrary, that there are two distinct circuits C1, Co
such that C1 UCy C T U {e}.

@ Then e € C1 N Cy, and by (C2), there is a circuit C3 of M s.t.
C3 C (01U02)\{€} clI

@ This contradicts the independence of I.

In general, let C(I,e) be the unique circuit associated with I U {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Matroid Partition Problem

Theorem 13.2.1

Let M; be a collection of k matroids as described. Then, a set S C E
can be partitioned into k subsets I;,i =1...k where I; € Z; is
independent in matroid i, if and only if, for all A C S

k
A< Y (4 (13.1)

where r; is the rank function of M;.

@ Now, if all matroids are the same M; = M for all 4, we get condition
|A| < kr(A) VACE (13.2)

@ But considering vector of all ones 1 € RZ, this is the same as

Z14] = T1(4) < r(4) VAC (13.3)
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Polymatroidal polyhedron and greedy

@ Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem ?7?)

Theorem 13.2.1

If f:2F R, is given, and P is a polytope in Rf of the form

P ={z eRY :2(A) < f(A),VA C E}, then the greedy solution to the
problem max(wzx : x € P) is Yw optimum iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).
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Base Polytope in 3D

Py ={z e R¥ : 2(S) < f(S),VS C E} (13.5)
By =P;n{z e R¥ : 2(E) = f(E)} (13.6)
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Polymatroid extreme points

Theorem 13.2.1

For a given ordering E = (eq,...,ey) of E and a given E; = (e, ..., €;)
and = generated by E; using the greedy procedure (x(e;) = f(ei|Ei-1)),
then x is an extreme point of Py

o We already saw that « € Py (Theorem 7).

@ To show that x is an extreme point of Py, note that it is the unique
solution of the following system of equations

z(Ej) = f(E;) for 1 <j<i<m (13.9)
z(e) =0foreec E\ E; (13.10)

There are i < m equations and ¢ < m unknowns, and simple
Gaussian elimination gives us back the z constructed via the Greedy

algorithm!!
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Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 13.2.2

If z_is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} C B C U(A: z(A) = f(A)) = sat(x),
then x Is generated using greedy by some ordering of B.

o Note, sat(z) =cl(x) = U(A: x(A) = f(A)) is also called the
closure of = (recall that sets A such that z(A) = f(A) are called
tight, and such sets are closed under union and intersection, as seen
in Lecture 8, Theorem 77)

@ Thus, cl(x) is a tight set.
@ Also, supp(z) ={e € E: z(e) # 0} is called the support of z.

@ For arbitrary x, supp(x) is not necessarily tight, but for an extreme
point, supp(x) is.
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INNRRRRY AR

Polymatroid with labeled edge lengths

@ Recall f(e|A) =
f(A+e) = f(A)

@ Notice how
submodularity,
f(e|B) < f(e|A) for
A C B, defines the
shape of the polytope.

@ In fact, we have
strictness here
f(e|B) < f(e|A) for
ACB.

@ Also, consider how the
greedy algorithm
proceeds along the
edges of the polytope.

(‘sl'a)

(‘sl°a)
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Minimizers of a Submodular Function form a lattice

Theorem 13.2.2

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of
minimizers of f. Let A, B € M. Then AUB € M and AN B € M.

Proof.

Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(A) = f(B) < f(AU B).
By submodularity, we have

f(A) + f(B) =z f(AUB) + f(AN B) (13.8)

Hence, we must have f(A) = f(B) = f(AUB) = f(AN B). O

Thus, the minimizers of a submodular function form a lattice, and there
is a maximal and a minimal minimizer of every submodular function.
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The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation
function).

@ For some x € P, we have defined: 4(‘(&)-,\’/4’) —i

Vi) sat(e) | J{A: A e D@} (13.8)

=|J{4: ACE,x(4) = f(4)} (13.9)
={e:e€c EVa>0,z+al. ¢ Ps}  (13.10)

@ Hence, sat(z) is the maximal (zero-valued) minimizer of the
submodular function f,(A) = f(A) — z(A).

e Eq. (??) says that sat consists of any point x that is Py saturated
(any additional positive movement, in that dimension, leaves Pf).
We'll revisit this in a few slides.

@ First, we see how sat generalizes matroid closure.
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Closure/Sat
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The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 1; € P, and

D(1;) = {A: 1;(A) = r(A)} (13.1)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 13 - May 14th, 2014 F15/57 (pg.15/256)



Closure/Sat
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The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and
D(1;)={A:1;(A) =r(4)} (13.1)
and

sat(1y)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 13 - May 14th, 2014 F15/57 (pg.16/256)



Closure/Sat
[ERNRARNRN

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and
D(1;)={A:1;(A) =r(4)} (13.1)
and

sat(1y) = J{4: AC E, A€ D(1)} (13.2)
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Closure/Sat
[NRNRANNRN

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and

D(1;) = {A:1;(A) =r(A)} (13.1)
and

sat(1;) = J{4: AC E, A€ D(1,)} (13.2)

=J{A: ACE,1;(4) =r(A)} (13.3)
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Closure/Sat
[NRNRANNRN

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and

D(1;) = {A:1;(A) =r(A)} (13.1)
and

sat(1;) = J{4: AC E, A€ D(1,)} (13.2)

=J{A: ACE,1;(4) =r(A)} (13.3)

=|J{A: ACE |InAl=r(A)} (13.4)
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Closure/Sat
[ERNRARNRN

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and

D(1;) = {A:1;(A) =r(A)} (13.1)
and

sat(1;) = J{4: AC E, A€ D(1,)} (13.2)

=J{A: ACE 1,(4) =r(A)} (13.3)

=J{A:ACE|InA =rA)} (13.4)

e Notice that 1;(A) = [INA| < |I].
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Closure/Sat
[NRNRANNRN

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and

D(1;) = {A:1;(A) =r(A)} (13.1)
and

sat(1;) = J{4: AC E, A€ D(1,)} (13.2)

=J{A: ACE 1,(4) =r(A)} (13.3)

= J{A:ACE I (13.4)

e Notice that 1;(A) = |[I N A| < |1].

@ Intuitively, consider an A D I € 7 that do®ss € rank,
meaning 7(A) =r(I). If r(A) = |INA|=r(INA), asin
Eqn. (13.4), then A is in I's span, so should get sat(1;) = span([).

o
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Closure/Sat
[ERNRARNRN

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and

D(1;) = {A:1;(A) =r(A)} (13.1)
and

sat(1;) = J{4: AC E, A€ D(1,)} (13.2)

=J{A: ACE 1,(4) =r(A)} (13.3)

=J{A:ACE|InA =rA)} (13.4)

e Notice that 1;(A) = [INA| < |I].
@ Intuitively, consider an A D I € 7 that doesn’t increase rank,
meaning 7(A) =r(I). If r(A) =|INA|=r(INA), asin
Eqn. (13.4), then A is in I's span, so should get sat(1;) = span(I).
@ We formalize this next.
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Closure/Sat
[LNANRRRNR!

The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid sat : RY — 2% is the same as closure.)

For I € T, we have sat(1;) = span(]) (13.5)
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Closure/Sat
[LNANRRRNR!

The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid sat : RY — 2% is the same as closure.)
For I € T, we have sat(1;) = span(]) (13.5)

@ For 1;(I) =|I| =7r(I),so I € D(1y) and I C sat(1). Also,
I C span([).
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Closure/Sat
[LNANRRRNR!

The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid sat : RY — 2% is the same as closure.)

For I € T, we have sat(1;) = span(]) (13.5)

@ For 1;(I)=|I|=r(I),so I € D(1;) and I C sat(1;). Also,
I C span([).
@ Consider some b € span(/) \ /.
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Closure/Sat
[LNANRRRNR!

The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid sat : RY — 2% is the same as closure.)

For I € Z, we have sat(1;) = span(]) (13.5)

@ For 1;(I) =|I|=7r(I),so I € D(1y) and I C sat(1). Also,
I C span(J).
o Consider some b € span([) \ /.
@ Then I U {b} € D(11) since 1;(I U {b}) = |I| = r(I U {b}) = r(I).
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Closure/Sat
[LNANRRRNR!

The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid sat : RY — 2% is the same as closure.)

For I € Z, we have sat(1;) = span(]) (13.5)

@ For1;(I)=|I|=r(I),so I € D(1y) and I C sat(1y). Also,
I C span(J).
o Consider some b € span(I) \ 1.
@ Then TU{b} € D(1y) since 1;(IU{b}) = |I| = r(IU{b}) = r(I).
@ Thus, b € sat(1y).
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Closure/Sat
[LNANRRRNR!

The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid sat : RY — 2% is the same as closure.)

For I € T, we have sat(1;) = span(]) (13.5)

@ For 1;(I) =|I|=7r(I),so I € D(1y) and I C sat(1). Also,

I C span(J).

Consider some b € span(]) \ 1.

Then T U {b} € D(11) since 1;(1 U {b}) = |I| = r(I U {b}) = r(I).
Thus, b € sat(1y).

Therefore, sat(1;) 2 span(]) .
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Closure/Sat
[NLRNRRRNR!

The sat function = Polymatroid Closure

... proof continued.

@ Now, consider b € sat(1) \ I.
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Closure/Sat
[NLRNRRRNR!

The sat function = Polymatroid Closure

... proof continued.

@ Now, consider b € sat(17) \ I.
@ Choose any A € D(17) with b € A, thusbe A\ I.

Ol
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Closure/Sat
[NLRNRRRNR!

The sat function = Polymatroid Closure

... proof continued.

@ Now, consider b € sat(17) \ I.
@ Choose any A € D(17) with b € A, thusbe A\ .
@ Then 1(A) = |ANI| =r(4).

Ol
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Closure/Sat
[NLRNRRRNR!

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.

Choose any A € D(1;) withb € A, thusbe A\ I.
Then 1(A) = [ANI| =r(A).

Now r(A) = |[ANI| < |I| =r().

Ol
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Closure/Sat
[NLRNRRRNR!

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.

Choose any A € D(1;) with b€ A, thusbe A\ I.
Then 1(A) = |[ANI| =r(A).

Now r(A) = [ANI| < |I] =r(I).

Also, r(ANI)=|ANI|since ANIcZ.

Ol
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Closure/Sat
[NLRNRRRNR!

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.
Choose any A € D(1;) with b€ A, thusbe A\ I.

Then 1(A) = [ANI| =r(A).

Now r(A) = |[ANI| < |I| =r().

Also, r(ANI)=|ANI|since ANI e

Hence, r(ANT) =r(A) = r((AD 1) O(A\ 1)) meaning
(A\I) Cspan(ANIT) Cspan([).

—
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Closure/Sat
[NLRNRRRNR!

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(17) \ I.

Choose any A € D(1;) withb € A, thusbe A\ I.

Then 1(A) = |ANI| =r(A4).

Now r(A) = |ANI| < |I| =r(I).

Also, r(ANI)=|ANI|since ANT € T.

Hence, r(ANI)=r(A) =r((ANI)U(A\ I)) meaning
(A\I) Cspan(ANT) C span(]).

@ Sincebe A\ I, we get b € span([).

Ol
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Closure/Sat
[NLRNRRRNR!

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.

Choose any A € D(1;) with b€ A, thusbe A\ I.

Then 1(A) = |ANI| =r(A).

Now r(A) = |[ANI| < |I| =r().

Also, r(ANI)=|ANI|since ANT € T.

Hence, r(ANI)=r(A) =r((ANI)U(A\ I)) meaning
(A\I) Cspan(ANI) C span(]).

@ Sincebe A\ I, we get b € span([).

@ Thus, sat(1;) C span([]) .

Ol
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Closure/Sat
[NLRNRRRNR!

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.

Choose any A € D(1;) with b€ A, thusbe A\ I.

Then 1(A) = |ANI| =r(A).

Now r(A) = |[ANI| < |I| =r().

Also, r(ANI)=|ANI|since ANT € T.

Hence, r(ANI)=r(A) =r((ANI)U(A\ I)) meaning
(A\I) Cspan(ANI) C span(]).

@ Sincebe A\ I, we get b € span([).

@ Thus, sat(1;) C span([]) .

@ Hence [sat(1y) = span(l)

Ol
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Closure/Sat
[NNLANRRNR]

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C C E with C' ¢ Z, and
consider 1¢.
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Closure/Sat
[NNLNRRRNR!

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?

4 C=(4)
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Closure/Sat
[NNLANRRNR]

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1¢ € P.7 No, it might not be a vertex, or even a
member, of P,.
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Closure/Sat
[NNLANRRNR]

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?7 No, it might not be a vertex, or even a

member, of P,.
@ span(-) operates on more than just independent sets, so span(C) is

perfectly sensible.
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Closure/Sat
[NNLNRRRNR!

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?7 No, it might not be a vertex, or even a
member, of P,.

@ span(-) operates on more than just independent sets, so span(C) is
perfectly sensible.

@ Note span(C) = span(B) where Z 5 B € B(C) is a base of C.
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Closure/Sat
[NNLNRRRNR!

The sat function = Polymatroid Closure

Now, consider a matroid (£, ) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?7 No, it might not be a vertex, or even a
member, of P,.

span(-) operates on more than just independent sets, so span(C) is
perfectly sensible.

Note span(C) = span(B) where Z 5 B € B(C) is a base of C.
Then we have 15 < 1¢ < 1g,a5(c), and that 15 € P.. We can then
make the definition:

sat(1¢) = sat(1p) for B € B(C) (13.6)

In which case, we also get sat(1¢) = span(C) (in general, could
define sat(y) = sat(P-basis(y))).

At poletp ws Foe?
v vn (—-‘7&;J<_j\
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Closure/Sat
[NNLANRRNR]

The sat function = Polymatroid Closure

Now, consider a matroid (£, ) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?7 No, it might not be a vertex, or even a
member, of P,.

span(-) operates on more than just independent sets, so span(C) is
perfectly sensible.

Note span(C) = span(B) where Z 5 B € B(C) is a base of C.
Then we have 1 < 1o < Lspan(c). and that 15 € P.. We can then
make the definition:

sat(1¢) = sat(1p) for B € B(C) (13.6)

In which case, we also get sat(1¢) = span(C) (in general, could
define sat(y) = sat(P-basis(y))).
However, consider the following form

sat(le) = J{A: AC E,|[ANC| =r(A)} (13.7)
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Closure/Sat
[NNLNRRRNR!

The sat function = Polymatroid Closure

Now, consider a matroid (£, ) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?7 No, it might not be a vertex, or even a
member, of P,.

span(-) operates on more than just independent sets, so span(C) is
perfectly sensible.

Note span(C) = span(B) where Z 5 B € B(C) is a base of C.
Then we have 1 < 1o < Lspan(c). and that 15 € P.. We can then
make the definition:

sat(1¢) = sat(1p) for B € B(C) (13.6)

In which case, we also get sat(1¢) = span(C) (in general, could
define sat(y) = sat(P-basis(y))).
However, consider the following form

sat(lo) = J{4: ACE,|[AnC|=r(4)} (13.7)

Exercise: is span(C') = sat(1¢)? Prove or disprove it.
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Closure/Sat
[NNAR NRRNR|

The sat function, span, and submodular function

minimization

@ Thus, for a matroid, sat(1) is exactly the closure (or span) of I in
the matroid. l.e., for matroid (E, ), we have span(l) = sat(1p).
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Closure/Sat
[NNAR NRRNR|

The sat function, span, and submodular function

minimization

@ Thus, for a matroid, sat(1) is exactly the closure (or span) of I in
the matroid. l.e., for matroid (E, ), we have span(I) = sat(1p).

@ Recall, for z € Py and polymatroidal f, sat(x) is the maximal (by
inclusion) minimizer of f(A) — z(A), and thus in a matroid, span(/)
is the maximal minimizer of the submodular function formed by
r(A) — 17(A).
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Closure/Sat
[NNAR NRRNR!

The sat function, span, and submodular function

minimization

@ Thus, for a matroid, sat(1) is exactly the closure (or span) of I in
the matroid. l.e., for matroid (E, ), we have span(I) = sat(1p).

@ Recall, for z € Py and polymatroidal f, sat(x) is the maximal (by
inclusion) minimizer of f(A) — x(A), and thus in a matroid, span(I)
is the maximal minimizer of the submodular function formed by
r(A) —1;(A).

@ Submodular function minimization can solve “span” queries in a
matroid or “sat” queries in a polymatroid.
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Closure/Sat
[NNANR RRNR!

sat, as tight polymatroidal elements

@ We are given an x € P]T for submodular function f.
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Closure/Sat
[NNANR RRNR!

sat, as tight polymatroidal elements

o We are given an x € ij for submodular function f.

@ Recall that for such an z, sat(x) is defined as

sat(z) = | J{A: 2(4) = f(A)} (13.8)
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Closure/Sat
[NNANR RRER

sat, as tight polymatroidal elements

o We are given an x € ij for submodular function f.

@ Recall that for such an z, sat(x) is defined as
sat(z) = | J{A: 2(4) = f(A)} (13.8)

@ We also have stated that sat(z) can be defined as:

sat(x) = {e Va > 0,2+ al, ¢ P;r} (13.9)
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Closure/Sat
[NNANR RRNR!

sat, as tight polymatroidal elements

o We are given an x € ij for submodular function f.

@ Recall that for such an z, sat(x) is defined as
sat(e) = | {4+ a(4) = £(4)) (138)
@ We also have stated that sat(x) can be defined as:
sat(z) = {e Ya>0,z+al. ¢ PJT} (13.9)

@ We next show more formally that these are the same.
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) & {e Va >0,z + al, ¢ ij} (13.10)
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Vo> 0,2+ ale ¢ Pf} (13.10)
={e:Va>0,34s.t. (z+al:)(A) > f(A)} (13.11)

1
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Vo> 0,2+ ale ¢ Pf} (13.10)

={e:Va>0,3Ast. (z+al.)(A) > f(A)} (13.11)
={e:Ya>0,3A>est. (v+al.)(A) > f(A)} (13.12)
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Vo> 0,2+ ale ¢ Pf} (13.10)
={e:Va> 0,34 st (z+al.)(A) > f(A)} (13.11)
={e:Va>0,dA3est. (z+al.)(4) > f(A)} (13.12)
@ this last bit follows since 1.(4) =1 <= e € A.
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Vo> 0,2+ ale ¢ Pf} (13.10)

={e:Va> 0,34 st (z+al.)(A) > f(A)} (13.11)
={e:Va>0,d43est. (z+al.)(A) > f(A)} (13.12)

e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (13.13)

« ] (&) =

0 el 7
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Ya > 0,2+ al, ¢ Pf} (13.10)
={e:Va> 0,34 st (z+al.)(A) > f(A)} (13.11)
={e:Va>0,d43est. (z+al.)(A) > f(A)} (13.12)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (13.13)
@ given that x € Pf+, meaning xz(A) < f(A) for all A, we must have

sat(x)
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Ya > 0,2+ al, ¢ Pf} (13.10)
={e:Va> 0,34 st (z+al.)(A) > f(A)} (13.11)
={e:Va>0,d43est. (z+al.)(A) > f(A)} (13.12)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (13.13)
e given that = € P}, meaning z(A) < f(A) for all A, we must have

sat(z) = {e:Va>0,3A>est z(A) = f(A)} (13.14)
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e :Ya > 0,2+ al, ¢ P;} (13.10)
={e:Va> 0,34 st (z+al.)(A) > f(A)} (13.11)
={e:Va>0,d43est. (z+al.)(A) > f(A)} (13.12)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (13.13)
e given that » € P}, meaning z(A) < f(A) for all A, we must have

)= f(A)} (13.14)
A)} (13.15)

sat(z) = {e:Va>0,3A>est =

(A
={e:JdA>est z(A) = f(
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Ya > 0,2+ al, ¢ Pf} (13.10)
={e:Va> 0,34 st (z+al.)(A) > f(A)} (13.11)
={e:Va>0,d43est. (z+al.)(A) > f(A)} (13.12)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (13.13)
e given that » € P}, meaning z(A) < f(A) for all A, we must have

sat(z) = {e:Va>0,3A > est z(A) = f(A)} (13.14)

={e:dA>est z(4) = f(A)} (13.15)
@ So now, if A is any set such that z(A) = f(A), then we clearly have
(13.16)
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Ya > 0,2+ al, ¢ Pf} (13.10)
={e:Va> 0,34 st (z+al.)(A) > f(A)} (13.11)
={e:Va>0,d43est. (z+al.)(A) > f(A)} (13.12)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (13.13)
e given that » € P}, meaning z(A) < f(A) for all A, we must have

sat(z) = {e:Va>0,3A > est z(A) = f(A)} (13.14)

={e:dA>est z(4) = f(A)} (13.15)
@ So now, if A is any set such that z(A4) = f(A), then we clearly have
Ve € A, e € sat(z), (13.16)
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.

sat(z) % {e Ya > 0,2+ al, ¢ Pf} (13.10)
={e:Va> 0,34 st (z+al.)(A) > f(A)} (13.11)
={e:Va>0,3A3est. (z+al.)(A) > f(A)} (13.12)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (13.13)

e given that » € P}, meaning z(A) < f(A) for all A, we must have
sat(z) = {e:Va>0,3A > e st z(A) = f(A)} (13.14)
={e:dA>est z(A)=f(A)} (13.15)
@ So now, if A is any set such that z(A4) = f(A), then we clearly have
Ve € A, e € sat(z), and therefore that sat(z) 2 A (13.16)
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Closure/Sat
[NNANNRY AR

sat, as tight polymatroidal elements

@ ...and therefore, with sat as defined in Eq. (?7?),

sat(z) 2 | J{A: z(4) = f(A)} (13.17)
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Closure/Sat
[NNANNRY AR

sat, as tight polymatroidal elements

@ ...and therefore, with sat as defined in Eq. (?7?),

sat(z) 2 | J{A: a( f(A)} (13.17)
@ On the other hand, for any e € sat(x) defined as in Eq. (13.15),
since e is itself a member of a tight set, there is a set A 3 e such

that z(A) = f(A), giving

sat(z) C | J{A: z(4) = f(A)} (13.18)
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Closure/Sat
[NNANNRY AR}

sat, as tight polymatroidal elements

@ ...and therefore, with sat as defined in Eq. (?7?),
sat(z) 2 (J{A: z(A) = f(A)} (13.17)

@ On the other hand, for any e € sat(x) defined as in Eq. (13.15),
since e is itself a member of a tight set, there is a set A 3 e such
that (A) = f(A), giving

sat(z) C | J{A: z(4) = f(A)} (13.18)

@ Therefore, the two definitions of sat are identical.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 13 - May 14th, 2014 F22/57 (pg.67/256)



Closure/Sat
[NNANRRRR NI

Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
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Closure/Sat
[NNANRRRR NI

Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
@ For x € Py, and e € F, consider finding

max {a: o € R,z +al. € Py} (13.19)
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Closure/Sat
[NNANRRRR NI

Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
@ For x € Py, and e € F, consider finding

max {a:a € R,z +al. € Py} (13.19)
@ This is identical to:
max{a: (r+al.)(4) < f(A),VA D {e}} (13.20)

since any B C FE such that e ¢ B does not change in a 1,
adjustment, meaning (z + al.)(B) = z(B).

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 13 - May 14th, 2014 F23/57 (pg.70/256)



Closure/Sat
[NNANRRRR NI

Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
@ For x € Py, and e € F, consider finding

max {a:a € R,z +al. € Py} (13.19)
@ This is identical to:
max{a: (v +ale)(A4) < f(A),VA D {e}} (13.20)

since any B C FE such that e ¢ B does not change in a 1,
adjustment, meaning (z + al.)(B) = z(B).
@ Again, this is identical to:

max{a: z(A)+a < f(A),YA D {e}} (13.21)
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Closure/Sat
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Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
@ For x € Py, and e € F, consider finding

max {a:a € R,z +al. € Py} (13.19)
@ This is identical to:
max{a: (v + al.)(A) < f(A),VA D {e}} (13.20)

since any B C FE such that e ¢ B does not change in a 1,
adjustment, meaning (z + al.)(B) = z(B).
@ Again, this is identical to:

max{a:z(A)+a < f(A),YA D {e}} (13.21)
or

max {a : a < f(A) — x(A),VA D {e}} (13.22)
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Saturation Capacity

@ The max is achieved when

a = é(zre) © min {f(A) — z(A),VA D {e}} (13.23)
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (13.23)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.
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Closure/Sat
(NNANRRRNT |

Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (13.23)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.

@ Thus we have for x € Py,
é(zre) 2 min {f(A) — 2(A),VA > e} (13.24)
=max{a:a R,z +al, € P} (13.25)
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (13.23)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.

@ Thus we have for x € Py,
é(zre) ¥ min {f(A) — 2(A),VA > e} (13.24)
=max{a:a €R,z+al. € P} (13.25)

@ We immediately see that for e € E \ sat(x), we have that
¢(x;e) > 0.
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (13.23)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.

@ Thus we have for x € Py,
é(zre) ¥ min {f(A) — 2(A),VA > e} (13.24)
=max{a:a €R,z+al. € P} (13.25)

e We immediately see that for e € E \ sat(x), we have that
¢(xye) > 0.
@ Also, for e € sat(z), we have that é¢(z;e) = 0.
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Saturation Capacity

@ The max is achieved when

a = c(ze) © min {f(A) — z(A),VA D {e}} (13.23)

@ ¢(x;e) is known as the saturation capacity associated with x € Py

and e. &3
@ Thus we have for z € Py,

! T By

é(zre) ¥ min {f(A) — 2(A),VA S e} — (13.24)
x e

=max{a:a €R,z+al. € P} (13.25)

e We immediately see that for e € E \ sat(x), we have that
¢(xye) > 0.

@ Also, for e € sat(z), we have that é(z;e) = 0.

e Note that any a with 0 < a < ¢é(x;e) we have z + al. € Py.
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (13.23)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.
@ Thus we have for x € Py,

é(zre) ¥ min {f(A) — 2(A),VA > e} (13.24)
=max{a:a €R,z+al. € P} (13.25)

e We immediately see that for e € E \ sat(x), we have that
¢(xye) > 0.

@ Also, for e € sat(z), we have that é(z;e) = 0.

o Note that any a with 0 < a < ¢é(x;e) we have  + al. € Py.

@ We also see that computing ¢(z;e) is a form of submodular function
minimization.
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Fund. Circuit/Dep
LERNRNANNRRRNE!

Dependence Function

@ Tight sets can be restricted to contain a particular element.
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Fund. Circuit/Dep
LERNRNANNRRRNE!

Dependence Function

@ Tight sets can be restricted to contain a particular element.
@ Given z € Py, and e € sat(z), define
D(z,e)={A:ec ACE z(A) = f(A)} (13.26)
=Dx)N{A: ACFE,ec A} (13.27)
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Fund. Circuit/Dep
LERNRNANNRRRNE!

Dependence Function

@ Tight sets can be restricted to contain a particular element.
o Given x € Py, and e € sat(x), define

D(z,e)={A:ec ACE x(A) = f(A)} (13.26)
=Dx)N{A: ACFE,ec A} (13.27)

@ Thus, D(x,e) C D(z), and D(x,e) is a sublattice of D(x).
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Fund. Circuit/Dep
LERNRNANNRRRNE!

Dependence Function

Tight sets can be restricted to contain a particular element.

o Given x € Py, and e € sat(x), define
D(z,e) ={A:ec ACE x(A) = f(A)} (13.26)
=Dx)N{A: ACFE,ec A} (13.27)

Thus, D(x,e) C D(x), and D(z,e) is a sublattice of D(x).
Therefore, we can define a unique minimal element of D(z, e)
denoted as follows:

N{A:e€ ACE,z(A) = f(A)} ifeesat(z)

0 else

(]

dep(z,e) = {
(13.28)
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Fund. Circuit/Dep
LERNRNANNRRRNE!

Dependence Function

Tight sets can be restricted to contain a particular element.

o Given x € Py, and e € sat(x), define
D(z,e)={A:ec ACE x(A) = f(A)} (13.26)
=Dx)N{A: ACFE,ec A} (13.27)

Thus, D(x,e) C D(x), and D(z,e) is a sublattice of D(x).
Therefore, we can define a unique minimal element of D(z, e)
denoted as follows:

N{A:e€c ACE,z(A) = f(A)} ifecsat(z)
0 else

(]

dep(z,e) = {
(13.28)

@ l.e, dep(z,e) is the minimal element in D(x) that contains e (the
minimal z-tight set containing e).

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 13 - May 14th, 2014 F25/57 (pg.84/256)



Fund. Circuit/Dep
(EANRRRRNRNRRY

dep and sat in a lattice

oo 0- XE(F

@ The picture on the
right summarizes
the relationships
between the
lattices and
sublattices.

@ Note,
(. dep(z,e) =
dep(x).
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dep and sat in a lattice

@ Given x € Py, recall distributive lattice of tight sets

D(z) ={A:z(A) = f(A)}
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dep and sat in a lattice

@ Given x € Py, recall distributive lattice of tight sets
D(z) = {A:x(A) = f(A)}

@ We had that sat(z) = (J{A: A € D(z)} is'the “1" element of this
lattice.
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dep and sat in a lattice

@ Given x € Py, recall distributive lattice of tight sets
D(z) = {A:x(A) = f(A)}

e We had that sat(z) = |J{A: A € D(z)} is the “1" element of this
lattice.

e Consider the “0" element of D(z), i.e., dry(z) e N{A: AeD(x)}
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dep and sat in a lattice

e Given x € Py, recall distributive lattice of tight sets
D(a) = {A: o(4) = f(A)}
e We had that sat(z) = |J{A: A € D(z)} is the “1" element of this
lattice.
e Consider the “0" element of D(z), i.e., dry(z) e N{A: AeD(x)}
@ We can see dry(x) as the elements that are necessary for tightness.
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dep and sat in a lattice

@ Given x € Py, recall distributive lattice of tight sets
D(a) = {A: o(4) = f(A)}
e We had that sat(z) = |J{A: A € D(z)} is the “1" element of this
lattice.
e Consider the “0" element of D(z), i.e., dry(z) = e N{A: AeD(x)}
@ We can see dry(x) as the elements that are necessary for tightness.
e That is, we can equivalently define dry(x) as

dry(z) = {¢': x (A),VAZ €} (13.29)
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dep and sat in a lattice

e Given x € Py, recall distributive lattice of tight sets
D(a) = {A: o(4) = f(A)}
@ We had that sat(z) = (J{A: A € D(z)} is the "1" element of this
lattice.
e Consider the “0" element of D(z), i.e., dry(z) e N{A: AeD(x)}
@ We can see dry(x) as the elements that are necessary for tightness.
@ That is, we can equivalently define dry(a:) as

dry(z) = {¢': = ),VAZ €'} (13.29)

@ This can be read as, for any ¢’ € dry(z), any set that does not
contain €’ is not tight for = (any set A that is missing any element
of dry(x) is not tight).
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dep and sat in a lattice

e o

Given x € Py, recall distributive lattice of tight sets

D(a) = {A: o(4) = f(A)}

We had that sat(z) = |J{A: A € D(z)} is the “1" element of this
lattice.

Consider the “0" element of D(x), i.e., dry(x) e N{A: AeD(x)}
We can see dry(x) as the elements that are necessary for tightness.
That is, we can equivalently define dry(a:) as

dry(z) = {¢': = ),VAZ €'} (13.29)

This can be read as, for any ¢’ € dry(z), any set that does not
contain €’ is not tight for = (any set A that is missing any element
of dry(z) is not tight).

Perhaps, then, a better name for dry is ntight(x), for the necessary
for tightness (but we'll actually use neither name).
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dep and sat in a lattice

e Given x € Py, recall distributive lattice of tight sets
D(a) = {A: o(4) = f(A)}
e We had that sat(z) = |J{A: A € D(z)} is the “1" element of this
lattice.
e Consider the “0" element of D(z), i.e., dry(z) = e N{A: AeD(x)}
@ We can see dry(x) as the elements that are necessary for tightness.
@ That is, we can equivalently define dry(a:) as

dry(z) = {¢': = f(A),VAZ '} (13.29)

@ This can be read as, for any ¢’ € dry(z), any set that does not
contain €’ is not tight for = (any set A that is missing any element
of dry(z) is not tight).

@ Perhaps, then, a better name for dry is ntight(z), for the necessary
for tightness (but we'll actually use neither name).

@ Note that dry need not be the empty set. Exercise: give example.
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An alternate expression for dep = dry

e Now, given = € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e€ A, z(4) = f(4)}

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 13 - May 14th, 2014 F28/57 (pg.94/256)



Fund. Circuit/Dep
(NRENRRRNRNRRR

An alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1” element of this sub-lattice as
sat(z,e) € \J{A: A € D(z,e)}.
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An alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) L LA : A e D(x,e)).

@ Analogously, we can define the “0" element of this sub-lattice as

dry(z,e) = N{A:AeD(z,e)}.
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An alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) L LA : A e D(x,e)).

@ Analogously, we can define the “0" element of this sub-lattice as

dry(z,e) def N{A:AecD(z,e)}.

@ We can see dry(z,e) as the elements that are necessary for
e-containing tightness, with e € sat(x).
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An alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) L LA : A e D(x,e)).

@ Analogously, we can define the “0" element of this sub-lattice as

dry(z,e) def N{A:AecD(z,e)}.

@ We can see dry(z,e) as the elements that are necessary for
e-containing tightness, with e € sat(x).
@ That is, we can view dry(z,e) as

dry(z,e) = {€ ‘@(A) < f(A)VA Z ' @€ A} (13.30)
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alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) L LA : A e D(x,e)).

@ Analogously, we can define the “0" element of this sub-lattice as
dry(z,e) e N{A: AeD(z,e)}.

@ We can see dry(z,e) as the elements that are necessary for
e-containing tightness, with e € sat(x).

e That is, we can view dry(x, e) as

dry(z,e) = {¢ : = f(A)VAZ e ec A} (13.30)

@ This can be read as, for any €’ € dry(z, e), any e-containing set
that does not contain € is-not tight for .
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alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) L LA : A e D(x,e)).

@ Analogously, we can define the “0" element of this sub-lattice as
dry(z,e) e N{A: AeD(z,e)}.

@ We can see dry(z,e) as the elements that are necessary for
e-containing tightness, with e € sat(x).

e That is, we can view dry(x,e) as

dry(z,e) = {¢ : = f(A)VAZ e ec A} (13.30)

@ This can be read as, for any €’ € dry(z, e), any e-containing set
that does not contain €’ is not tight for x.

e But actually;dry(z, e) = dep(z, €), so we have derived another
expression for dep(zx,e) in Eq. (13.30).
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Dependence Function and Fundamental Matroid Circuit

e Now, let (F,Z) = (F,r) be a matroid, and let I € Z giving
1; € P.. We have sat(17) = span(/) = closure(]).
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Dependence Function and Fundamental Matroid Circuit

e Now, let (E,7) = (E,r) be a matroid, and let I € Z giving
17 € P.. We have sat(17) = span(/) = closure(I).

@ Given e € sat(17) \  and then consider an A 5 e with
|[INAl=r(A).
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Dependence Function and Fundamental Matroid Circuit

e Now, let (E,7) = (E,r) be a matroid, and let I € Z giving
17 € P.. We have sat(17) = span(/) = closure(I).

@ Given e € sat(1y) \ I and then consider an A 5 e with
|[INAl=r(A).

@ Then I N A serves as a base for A (i.e., I N A spans A) and any
such A contains a circuit (i.e., we canadde € A\ I to INA w/o
increasing rank).
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Dependence Function and Fundamental Matroid Circuit

e Now, let (E,7) = (E,r) be a matroid, and let I € Z giving
17 € P.. We have sat(17) = span(/) = closure(I).

@ Given e € sat(1y) \ I and then consider an A 5 e with
[INAl=r(A).

@ Then I N A serves as a base for A (i.e., I N A spans A) and any
such A contains a circuit (i.e., we canadd e € A\ I to INA w/o
increasing rank).

e Given e € sat(17) \ I, and consider dep(1y, e), with

dep(l7,e) =(|{A:e€ AC E,1;(4) =r(A)} (13.31)
=({A:e€ ACE,|INA =r(A)} (13.32)
=({A:e€ ACE,r(A)— [INA|=0} (1333)
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Dependence Function and Fundamental Matroid Circuit

e Now, let (E,7) = (E,r) be a matroid, and let I € Z giving
17 € P.. We have sat(17) = span(/) = closure(I).

@ Given e € sat(1y) \ I and then consider an A 5 e with
[INAl=r(A).

@ Then I N A serves as a base for A (i.e., I N A spans A) and any
such A contains a circuit (i.e., we canadd e € A\ I to INA w/o
increasing rank).

e Given e € sat(17) \ /, and consider dep(1y,€), with

dep(17,e) = |{A:e€ AC E,1;(A) =r(A)} (13.31)
=([{A:e€c ACE,|INA|=r(A)} (13.32)
=({A:e€ ACE,r(A) — [INA|=0} (13.33)

o By SFM lattice, 3 a unique minimal A 5 e with'|I N A| = 7(A):
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Dependence Function and Fundamental Matroid Circuit

e Now, let (E,7) = (E,r) be a matroid, and let I € Z giving
17 € P.. We have sat(17) = span(/) = closure(I).

@ Given e € sat(1y) \ I and then consider an A 5 e with
[INAl=r(A).

@ Then I N A serves as a base for A (i.e., I N A spans A) and any
such A contains a circuit (i.e., we canadd e € A\ I to INA w/o
increasing rank).

e Given e € sat(17) \ /, and consider dep(1y,€), with

dep(17,e) = |{A:e€ AC E,1;(A) =r(A)} (13.31)
=({A:e€c ACE,|INA|=r(A)} (13.32)
=({A:e€c ACE,r(A) — [INA|=0} (13.33)

e By SFM lattice, 3 a unique minimal A 5 e with |I N A| = r(A).
@ Thus, dep(1,e) must be a circuit since if it included more than a

circuit, it would not be minimal in this sense.
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Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(17) \ I, then dep(17,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).
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Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(1;) \ I, then dep(1,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

e Now, if e € sat(17) NI with I € Z, we said that C(1,e) was

undefined (since no circuit is created in this case) and so we defined
itas C(I,e) = {e}
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Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(1;) \ I, then dep(1,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

e Now, if e € sat(17) NI with I € Z, we said that C(I,e) was
undefined (since no circuit is created in this case) and so we defined
itas C(I,e) = {e}

@ In this case, for such an e, we have dep(1;,e) = {e} since all such
sets A 5 e with [IN A| = r(A) contain e, but in this case no cycle is
created, i.e., [[NA| > |IN{e}| =r(e) =1.
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Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(1;) \ I, then dep(1,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

e Now, if e € sat(17) NI with I € Z, we said that C(I,e) was
undefined (since no circuit is created in this case) and so we defined
itas C(I,e) = {e}

@ In this case, for such an e, we have dep(1;,e) = {e} since all such
sets A 5 e with [I N A| = r(A) contain e, but in this case no cycle is
created, i.e., [INA| > |[IN{e}| =r(e) = 1.

@ We are thus free to take subsets of I as A, all of which must
contain e, but all of which have rank equal to size.
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Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(1;) \ I, then dep(1,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

e Now, if e € sat(17) NI with I € Z, we said that C(I,e) was
undefined (since no circuit is created in this case) and so we defined
itas C(I,e) = {e}

@ In this case, for such an e, we have dep(1;,e) = {e} since all such
sets A 5 e with [I N A| = r(A) contain e, but in this case no cycle is
created, i.e., [INA| > |[IN{e}| =r(e) = 1.

@ We are thus free to take subsets of I as A, all of which must
contain e, but all of which have rank equal to size.

@ Also note: in general for x € Py and e € sat(x), we have dep(z,e)
is tight by definition.
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Summary of sat, and dep

e For z € Py, sat(x) (span, closure) is the maximal saturated (z-tight)
set w.rt. z. lLe, sat(z) ={e:e € E,Va >0,z 4+ al. ¢ Pr}. Thats,

cl(z) ¥ sat(z 2| J{4: A e D)} (13.34)
=|J{A: ACE,z(4) = f(4)} (13.35)
={e:e€c E,Va>0,z+ al. ¢ Py} (13.36)

o /For e € sat(z), we Have dep(z, e) (fundamental circuit) is the minimal
satufated (z-tight) set w.r.t. « containing e. That is,

dep(z, ) = {Q {A:ec Z;E sat(z)

Q ={':3a>0, stl a+a(l.— 1)< P}

E—

(13337)
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Dependence Function and exchange

@ For e € span(I) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.
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Dependence Function and exchange

e For e € span([l) \ I, we have that I + e ¢ Z. This is a set addition

restriction property. S"YC'(X)
@ Analogously, for e/€ sat(x), any x + al. ¢ P for « > 0. This is a
vector increase restriction property.
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any « + al. ¢ Pr for « > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ ¢ €T for ¢ € C(I,e). l.e.,, C(I,€)
consists of elements that when removed recover independence.
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any « + al. ¢ Pr for « > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ e € Z for e’ € C(I,e). le.,, C(1,¢e)
consists of elements that when removed recover independence.

@ In other words, for e € span(/) \ I, we have that

C(l,e)={a€FE:I+e—acl} (13.38)
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any « + al. ¢ Pr for « > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ e € Z for e’ € C(I,e). le.,, C(1,¢e)
consists of elements that when removed recover independence.

@ In other words, for e € span(f) \ I, we have that

C(l,e)={ac€E:I+e—acTl} (13.38)

@ l.e., an addition of e to I stays within Z only if we simultaneously
remove one of the elements of C'(7, e).
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any « + al. ¢ Pr for « > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ e € Z for e’ € C(I,e). le.,, C(1,¢e)
consists of elements that when removed recover independence.

@ In other words, for e € span(f) \ I, we have that

C(l,e)={ac€E:I+e—acTl} (13.38)

@ l.e., an addition of e to I stays within Z only if we simultaneously
remove one of the elements of C'(7, e).

@ But, analogous to the circuit case, is there an exchange property for
dep(x,e) in the form of vector movement restriction?
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any « + al. ¢ Pr for « > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ e € Z for e’ € C(I,e). le.,, C(1,¢e)
consists of elements that when removed recover independence.

@ In other words, for e € span(f) \ I, we have that

C(l,e)={ac€E:I+e—acTl} (13.38)

@ l.e., an addition of e to I stays within Z only if we simultaneously
remove one of the elements of C'(7, e).

@ But, analogous to the circuit case, is there an exchange property for
dep(z,e) in the form of vector movement restriction?

@ We might expect the vector dep(z, €) property to take the form:
a positive move in the e-direction stays within P, only if we
simultaneously take a negative move in one of the dep(z, e)

directions.
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Dependence Function and exchange in 2D

@ dep(x,e) is set of neg. directions we must move if we want to move in
pos. e direction, starting at = and staying within P.
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Dependence Function and exchange in 2D

@ dep(z,e) is set of neg. directions we must move if we want to move in
pos. e direction, starting at x and staying within P;.
@ Viewable in 2D, we have for A,BC E, AN B = {:

(e)

B

£
_F(xnA)
_HC(XNL)

A

Left: AN dep(z,e) =0, and we
can't move further in (e) direc-
tion, and moving in any negative
a € A direction doesn't change
that. Notice no dependence be-
tween (e) and any element in A.

Prof. Jeff Bilmes

EE596b/Spring 2014 /Submodularity - Lecture 13 - May 14th, 2014

(e)

@)y,

B
(e)-(a)

A

Right: A C dep(z,e), and we
can't move further in the (e) di-
rection, but we can move further
in (e) direction by moving in some
a € A negative direction. Notice
dependence between (e) and ele-
ments in A.
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Dependence Function and exchange in 3D

@ We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.
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Fund. Circuit/Dep

Dependence Function and exchange in 3D

@ We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.

@ In 3D, we have:

V=Vvla

p;./»m"v“'
- 7!1)
£:2

F34/57 (pg.123/256
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Dependence Function and exchange in 3D

@ We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.

@ In 3D, we have:

7

e le, for e € sat(x), a € sat(z), a € dep(z, e), e ¢ dep(z, a),
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Fund. Circuit/Dep

Dependence Function and exchange in 3D

@ We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.

@ In 3D, we have:

7

e le, for e € sat(x), a € sat(z), a € dep(z,e), e ¢ dep(z,a), and
dep(z,e) ={a:a€ E,3a>0:z+a(le—1,) € Pt}  (13.39)
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Dependence Function and exchange in 3D

@ We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.

@ In 3D, we have:

7

e le, for e € sat(x), a € sat(z), a € dep(z,e), e ¢ dep(z,a), and
dep(z,e) ={a:ac E,3a>0:2+a(lc—1,) € Pr}  (13.39)

@ We next show this formally . ..
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z, e) = ntight(z,e) = (13.40)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(x, e) = ntight(w e) = (13.40)
={':: f(A),VAF e e A} (13.41)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z,e) = ntight(w e) = (13.40)
={c:x f(A)VAZ ec A} (13.41)
={¢ .E|a>0, st.a < f(A) —z(A),VAZ e, ec A} (13.42)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z,e) = ntight(w e) = (13.40)
={c:x (A),VAF €, ec A} (13.41)
={¢ .E|a>0, s.t.agf( ) —x(A),VAZF e e A} (13.42)
={¢':3a >0, st. ale(A) < f(A) —z(A),VAF ', ec A} (13.43)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z,e) = ntight(w e) = (13.40)
={c:x (A),VAF €, ec A} (13.41)
={¢ .E|a>0, s.t.agf( ) —x(A),VAZF e e A} (13.42)
={¢':3a >0, st. alc(A) < f(A) —z(A),VAF ', ec A} (13.43)

={:3a >0, st. a(1.(A) —14(A) < f(A) —z(A),VAF ', e c A}
(13.44)

||
v,
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z,e) = ntight(w e) = (13.40)
={c:x (A),VAF €, ec A} (13.41)
={¢ .E|a>0, s.t.agf( ) —x(A),VAZF e e A} (13.42)
={¢':3a >0, st. alc(A) < f(A) —z(A),VAZF ' ,ec A} (13.43)

={¢':3a >0, st. a(1le(A) — 14(A)) < f(A) —z(A),VAF ', e c A}
(13.44)

={¢:Ja >0, st. x(4) + a(1(A) —1.(A)) < f(A),VAF e c A}
(13.45)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z,e) = ntight(w e) = (13.40)
={c:x (A),VAF €, ec A} (13.41)
={¢ .E|a>0, s.t.agf( ) —x(A),VAZF e e A} (13.42)

)

={e':3a >0, st. alc(A) < f(A) —z(A),VAZF ' ,ec A} (13.43
={¢':3a >0, st. a(1.(4) - / (A) —z(A),VAZ e ec A}

= {1 Ja >0, s.t. z(

@ Now, 1.(A) — 1.(A) = 0 if either {e,e'} C A, or{e,e't N A=10.
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z,e) = ntight(w e) = (13.40)
={c:x (A),VAF €, ec A} (13.41)
={¢ .E|a>0, st.a < f(A) —z(A),VAZ e, ec A} (13.42)

={¢':3a >0, st. alc(A) < f(A) —z(A),VAF ', ec A} (13.43)
={¢':3a >0, st. a(1le(4) — 14(A)) < f(A) —z(A),VAF ', e € A}
(13.44)

={¢:3a >0, st. 2(4) + a(1.(A) —1.(A)) < f(A),VAF e c A}
(13.45)

@ Now, 1.(A) — 1.(A) =0 if either {e,e'} C A, or {e,e'} N A=0.

o Alsofif e/ € A but e en
z(A) e(A) — 1o = 2(A) —a < f(A) since x € Py.
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dep and exchange derived

@ thus, we get the same in the above if we remove the constraint
AF e ee A, that is we get

dep(z,e) = {€' : Ja > 0, s.t. 2(A) + a(1(A) — 1 (A)) < f(A),VA}
(13.26)
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dep and exchange derived

@ thus, we get the same in the above if we remove the constraint
AZ e, ee A, that is we get

( ] s

@ This is then identical to

dep(z,e) = {€/ : Ja >0, st. 2+ (1. — 1) € Py} (13.47)

/ /
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dep and exchange derived

@ thus, we get the same in the above if we remove the constraint
AZ e, ee A, that is we get

dep(z,e) = {€ : Ja > 0, s.t. 2(A) + a(1e(A) — 1 (A)) < f(A),VA}
(13.46)

@ This is then identical to
dep(z,e) = {¢' : Ja > 0, s.t. z + (1. — 1) € Py} (13.47)

e Compare with original, the minimal element of D(x, ¢), with
e € sat(x):

N{A:e€ ACE,z(A) = f(A)} ifeesat(z)
0 else

dep(z,e) = {
(13.48)
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Summary of Concepts

@ Most violated inequality max {z(A) — f(A) : AC E}
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Summary of Concepts

@ Most violated inequality max {z(A) — f(4) : AC E}
@ Matroid by circuits, and the fundamental circuit C(I,e) C I +e.
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Summary of Concepts

@ Most violated inequality max {z(A) — f(4) : AC E}
e Matroid by circuits, and the fundamental circuit C(I,e) C I +e.

@ Minimizers of submodular functions form a lattice.
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Summary of Concepts

Most violated inequality max {z(A) — f(A) : A C E}
Matroid by circuits, and the fundamental circuit C'(I,e) C I +e.

Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.
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Summary of Concepts

Most violated inequality max {z(A) — f(A) : A C E}
Matroid by circuits, and the fundamental circuit C'(I,e) C I +e.
Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

z-tight sets, maximal and minimal tight set.
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Summary of Concepts

Most violated inequality max {z(A) — f(A) : A C E}

Matroid by circuits, and the fundamental circuit C'(I,e) C I +e.
Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure
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Summary of Concepts

Most violated inequality max {z(A) — f(A) : A C E}

Matroid by circuits, and the fundamental circuit C'(I,e) C I +e.
Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity
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Summary of Concepts

Most violated inequality max {z(A) — f(A) : A C E}

Matroid by circuits, and the fundamental circuit C'(I,e) C I +e.
Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity

e-containing tight sets
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Summary of Concepts

Most violated inequality max {z(A) — f(A) : A C E}

Matroid by circuits, and the fundamental circuit C'(I,e) C I +e.
Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity

e-containing tight sets

dep function & fundamental circuit of a matroid
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Summary important definitions so far: tight, dep, & sat

o z-tight sets: For v € Py, D(z) = {AC E:x(A) = f(A)}.
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Fund. Circuit/Dep
(NERRARRNRNRRY

Summary important definitions so far: tight, dep, & sat

o z-tight sets: For x € Py, D(x) ={AC E:x(A) = f(A)}.
e Polymatroid. closure/maximal z-tight set: For z € Py,
sat(x) =U{A: AeD(x)} ={e:ec E,Va >0,z + al. ¢ P}
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Summary important definitions so far: tight, dep, & sat

o z-tight sets: For x € Py, D(x) ={AC E:x(A) = f(A)}.
@ Polymatroid closure/maximal z-tight set: For x € Py,

sat(z) =U{A: AeD(x)} ={e:ec E,Va>0,x+al. ¢ Pr}.
e Saturation capacity:-fora.€ Py, 0. < c(z5¢) =

min {f(A) —2(A4)|VA 3 e} =max{a:a e R,z +al. € Pr}
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Summary important definitions so far: tight, dep, & sat

o z-tight sets: For x € Py, D(x) ={AC E:x(A) = f(A)}.
@ Polymatroid closure/maximal z-tight set: For x € Py,
sat(z) =U{A: AeD(x)} ={e:ec E,Va>0,x+al. ¢ Pr}.
@ Saturation capacity: for x € Py, 0 < é(z5e) =
min {f(A) —2(A4)|VA 3 e} =max{a:a e R,z +al. € Pr}
@ Recall: sat(z) = {e: é(z;e) =0} and
E\ sat(z) = {e: ¢(x;e) > 0}.
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Summary important definitions so far: tight, dep, & sat

o z-tight sets: For x € Py, D(x) ={AC E:x(A) = f(A)}.
@ Polymatroid closure/maximal z-tight set: For x € Py,
sat(z) =U{A: AeD(x)} ={e:ec E,Va>0,x+al. ¢ Pr}.
@ Saturation capacity: for x € Py, 0 < é(z5e) =
min {f(A) —2(4)|VA > e} =max{a:a e R,z +al. € Pr}
@ Recall: sat(x) = {e: é(z;e) =0} and
E\ sat(z) = {e: é(x;e) > 0}.
@ e-containing x-tight sets: For x € Py,
D(z,e) ={A:ec AC E,z(A) = f(A)} C D(z).
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Summary important definitions so far: tight, dep, & sat

o z-tight sets: For x € Py, D(x) ={AC E:x(A) = f(A)}.
@ Polymatroid closure/maximal z-tight set: For = € Py,
sat(z) =U{A: AeD(x)} ={e:ec E,Va>0,x+al. ¢ Pr}.
@ Saturation capacity: for x € Py, 0 < é(z5e) =
min {f(A) —2(4)|VA > e} =max{a:a e R,z +al. € Pr}
@ Recall: sat(x) = {e: é(z;e) =0} and
E\ sat(z) = {e: é(x;e) > 0}.
@ e-containing x-tight sets: For x € Py,
D(z,e) ={A:ec AC E,x(A) = f(A)} C D(x).
@ Minimal e-containing z-tight set/polymatroidal fundamental
cireuit/: For z € Py,
{ﬂ fA ce€ ACE z(A) = f(A)} ifecsat(x)

dep(z,e) =
P(,¢) 0 else

= {e’ :Jda>0, st.x+alle— 1) € Pf}
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Support of vector

@ The support of a vector z € Py is defined as the elements with
non-zero entries.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 13 - May 14th, 2014 F39/57 (pg.153/256



Support of vector

@ The support of a vector z € Py is defined as the elements with
non-zero entries.

@ Thatis
supp(z) ={e € E : z(e) # 0} (13.49)
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Support of vector

@ The support of a vector x € Py is defined as the elements with
non-zero entries.

@ Thatis
supp(z) ={e € E : z(e) # 0} (13.49)

@ Example
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Tightness of supp at polymatroidal extreme point

e Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A : x(A) = f(A)} of tight sets.
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Supp
1l

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
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Supp
1l

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.

@ supp(x) is not necessarily tight for an arbitrary x.

@ When z is an extremal point, however, supp(z) is tight, meaning

x(supp(x)) = f(supp(x)). Why?
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Supp
1l

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(Fy;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any ¢; € supp(z) has z(e;) = f(e;|Ei—1) > 0.
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Supp
1l

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(Fy;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(z) has z(e;) = f(e;|Fi—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = 2(Ey — ¢;)
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Supp
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Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(Fy;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(x) has z(e;) = f(e;|Ei—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = z(Ey — ¢;)
© Also, for 1 <i <k, if ¢; ¢ supp(x), then z(e;) =
0= f(ei|Fic1) > f(ei|Ex — e;) = f(Eg|Ey — ;) > 0 since
monotone submodular, hence we have f(Ey) = f(E; — ;).
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Supp
1l

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(Fy;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(z) has z(e;) = f(e;|Fi—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = z(Ey — ¢;)
© Also, for 1 <i <k, if e; ¢ supp(x), then x(e;) =
0= f(ei|Ei71) > f(€1|Ek - 67;) = f(Ek|Ek — 67;) > 0 since
monotone submodular, hence we have f(E}) = f(Fr — €;).
Q Thus, 2(Ey —¢;) = f(Ex —¢;) and Ej, — ¢; is also tight.
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Supp
1l

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(Fy;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(z) has z(e;) = f(e;|Fi—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = z(Ey — ¢;)
© Also, for 1 <i <k, if e; ¢ supp(x), then x(e;) =
0= f(ei|Ei71) > f(€1|Ek - 67;) = f(Ek|Ek — 67;) > 0 since
monotone submodular, hence we have f(E}) = f(Fr — €;).
Q Thus, 2(Ey —¢;) = f(Ex —¢e;) and Ej, — ¢; is also tight.
© We can keep removing elements ¢ supp(x) and we're left with
f(Ex Nsupp(z)) = x(Ex Nsupp(z)) for any k.
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Supp
1l

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(Fy;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(z) has z(e;) = f(e;|Fi—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = z(Ey — ¢;)
© Also, for 1 <i <k, if e; ¢ supp(x), then x(e;) =
0= f(ei|Ei71) > f(€1|Ek - 67;) = f(Ek|Ek — 67;) > 0 since
monotone submodular, hence we have f(E}) = f(Fr — €;).
Q Thus, 2(Ey —¢;) = f(Ex —¢e;) and Ej, — ¢; is also tight.
© We can keep removing elements ¢ supp(z) and we're left with
f(Ex Nsupp(x)) = x(Ex Nsupp(x)) for any k.
@ Hence supp(z) is tight when x is extremal.
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Supp
1l

Tightness of supp at polymatroidal extreme point

o Now, sat(z) is tight, and corresponds to the largest member of the
distributive lattice D(z) = {A: x(A) = f(A)} of tight sets.
@ supp(x) is not necessarily tight for an arbitrary x.
@ When z is an extremal point, however, supp(z) is tight, meaning
z(supp(z)) = f(supp(z)). Why?
@ Extremal points are defined as a system of equalities of the form
x(Fy;) = f(E;) for 1 <i <k < |E|, for some k, as we saw earlier in
class. Hence, any e; € supp(z) has z(e;) = f(e;|Fi—1) > 0.
@ Now, for 1 <i <k, if ¢; ¢ supp(z), z(Ex) = z(Ey — ¢;)
© Also, for 1 <i <k, if e; ¢ supp(x), then x(e;) =
0= f(ei|Ei71) > f(€1|Ek - 67;) = f(Ek|Ek — 67;) > 0 since
monotone submodular, hence we have f(E}) = f(Fr — €;).
Q Thus, 2(Ey —¢;) = f(Ex —¢e;) and Ej, — ¢; is also tight.
© We can keep removing elements ¢ supp(z) and we're left with
f(Ex Nsupp(x)) = x(Ex Nsupp(x)) for any k.
@ Hence supp(z) is tight when z is extremal.
@ Since supp(x) is tight, we immediately have that sat(z) 2O supp(z).
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supp vs. sat equality

@ For x € Py, with x extremal, is supp(z) = sat(z)?
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supp vs. sat equality

e For x € Py, with x extremal, is supp(x) = sat(z)?

@ Consider an example case where disjoint X, Y C E, we have
f(X)=f(Y)= f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.
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supp vs. sat equality

e For x € Py, with x extremal, is supp(x) = sat(z)?

@ Consider an example case where disjoint X,Y C E, we have
f(X)=f(Y)=f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

@ Suppose x € Py has x(X) > 0 but z(V \ X) =0 and so z(Y) = 0.
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supp vs. sat equality

e For x € Py, with x extremal, is supp(x) = sat(z)?

@ Consider an example case where disjoint X,Y C E, we have
f(X)=f(Y)=f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

@ Suppose x € Py has x(X) > 0 but z(V \ X) =0 and so z(Y) = 0.
@ Then supp(z) = X, and say x is tight at X (z(X) = f(X)).
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supp vs. sat equality

e For x € Py, with x extremal, is supp(x) = sat(z)?

@ Consider an example case where disjoint X,Y C E, we have
f(X)=f(Y)=f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

@ Suppose x € Py has x(X) > 0 but z(V \ X) =0 and so z(Y) = 0.

@ Then supp(z) = X, and say z is tight at X (z(X) = f(X)).

@ sat(z) = U{A:2(A) = f(A)} and since
z(XUY)=2(X)=f(X)=f(XUY), here, sat(z) D X UY.
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supp vs. sat equality

e For x € Py, with x extremal, is supp(x) = sat(z)?

@ Consider an example case where disjoint X,Y C E, we have
f(X)=f(Y)=f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

@ Suppose x € Py has x(X) > 0 but z(V \ X) =0 and so z(Y) = 0.

@ Then supp(z) = X, and say z is tight at X (z(X) = f(X)).

e sat(z) = U{A:2(A) = f(A)} and since
r(XUY)=z(X)=f(X)=f(XUY), here, sat(z) 2 X UY.

@ In general, for extremal z, sat(x) O supp(x) (see later).
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supp vs. sat equality

e For x € Py, with x extremal, is supp(x) = sat(z)?

@ Consider an example case where disjoint X,Y C E, we have
f(X)=f(Y)=f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

@ Suppose x € Py has x(X) > 0 but z(V \ X) =0 and so z(Y) = 0.

@ Then supp(z) = X, and say z is tight at X (z(X) = f(X)).

e sat(z) = U{A:2(A) = f(A)} and since
r(XUY)=z(X)=f(X)=f(XUY), here, sat(z) 2 X UY.

@ In general, for extremal z, sat(x) D supp(x) (see later).

@ Also, recall sat(x) is like span/closure but supp(z) is more like
indication. So this is similar to span(A) 2 A.
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supp vs. sat equality

e For x € Py, with x extremal, is supp(x) = sat(z)?

@ Consider an example case where disjoint X,Y C E, we have
f(X)=f(Y)=f(XUY) (meaning “perfect dependence” or full
redundancy, so gains are not strictly positive), f(Y|X) = 0.

@ Suppose x € Py has x(X) > 0 but z(V \ X) =0 and so z(Y) = 0.

@ Then supp(z) = X, and say z is tight at X (z(X) = f(X)).

e sat(z) = U{A:2(A) = f(A)} and since
r(XUY)=z(X)=f(X)=f(XUY), here, sat(z) 2 X UY.

@ In general, for extremal z, sat(x) D supp(x) (see later).

@ Also, recall sat(x) is like span/closure but supp(z) is more like
indication. So this is similar to span(A) D A.

@ For modular functions, they are always equal (e.g., think of
“hyperrectangular” polymatroids).
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Supp
(N1 ]

Summary of supp, sat, and dep

o For x € Py, supp(z) = {e: z(e) # 0} C sat(x)
e For x € Py, sat(x) (span, closure) is the maximal saturated (z-tight)
set wrt. z. lLe, sat(x) ={e:e€ E,Va >0,z +al. ¢ Ps}. Thatis,
cl(x) € sat(z) 2 | J{A: A € D(x)} (13.34)
= J{A: ACE x(A) = f(A)} (13.35)
={e:ec E,Va>0,z+al. ¢ Py} (13.36)

e For e € sat(z), we have dep(z, e) (fundamental circuit) is the minimal
(common) saturated (z-tight) set w.r.t. = containing e. That is,

_JN{A:ec ACE,z(A) = f(A)} ifecsat(x)
dep(z, €) = {@ else
= {e' :Jda >0, st.x+a(le— 1) € Pf} (13.37)
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Examples
[NERRNNR

supp, sat, dep, example with perfect independence

@ Example polymatroid where there is perfect independence between
A = {eg,e3} and B = {e1}, i.e., e;ll{ea, e3}.
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Examples
[NERRNNR

supp, sat, dep, example with perfect independence

@ Example polymatroid where there is perfect independence between
A = {eg,e3} and B = {e1}, i.e., e1ll{ea,e3}.

@ Point z is extreme and z({ez,e3}) =
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Examples

supp, sat, dep, example with perfect independence

@ Example polymatroid where there is perfect independence between
A = {eg,e3} and B = {e1}, i.e., e1ll{ea,e3}.

el
e2

@ Point z is extreme and x({e2, e3}) = f(e2,e3) (why?).

@ But z({e1,e2,e3}) = x({e2,e3}) < f(e1,e2,e3) = f(e1) + f(ez, e3).
Thus, supp(z) = sat(x) = {es, e3}.
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Examples
[NERRNNR

supp, sat, dep, example with perfect independence

@ Example polymatroid where there is perfect independence between
A = {eg,e3} and B = {e1}, i.e., e1ll{ea,e3}.

e3

el e2

e2

@ Note that considering a submodular function on clustered ground

set £ = {e1,ea3} where f'(e1) = f(e1), f'(e23) = f(ea,e3) leads to
a rectangle (no dependence between {el} and {e2,e3}).
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Examples
[NERRNNR

supp, sat, dep, example with perfect independence

@ Example polymatroid where there is perfect independence between
A = {eg,e3} and B = {e1}, i.e., e1ll{ea,e3}.

e3

el e2

e2
@ We also have sat(z) = {es,ea}. So dep(z,e1) is not defined,
dep(z,e2) = {e3}, and dep(zx,e3) = 0.
e sat(y) = {e1,e2,e3}. So dep(y,e1) =0, dep(y, e2) = e3, and
dep(y,e3) = 0.
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Examples
[NERRNNR

supp, sat, dep, example with perfect independence

@ Example polymatroid where there is perfect independence between
A = {eg,e3} and B = {e1}, i.e., e1ll{ea,e3}.

e3

el e2

e2
@ We also have sat(z) = {es,ea}. So dep(z,e1) is not defined,
dep(z,e2) = {e3}, and dep(zx,e3) = 0.
e sat(y) = {e1,e2,e3}. So dep(y,e1) =0, dep(y, e2) = e3, and
dep(y,e3) = 0.
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Examples
(LIRRRAY]

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e; and es.

A B C D

,?@,
f(e2) 'S, f(e) flea) N .
7 s
Q,:@ f(eZ) /} };G
2/ S Y
&
f(eq) f(eq) f(e1) f(e1)
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Examples
(LIRRRAY]

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e1 and es.

A

f(ez) =y

@ Case A: perfect independence.
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Examples
(LIRRRAY]

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e; and es.

A B
%,
f(ez) I ()
%,
‘s,

f(e1) f(es)
@ Case A: perfect independence.
o Case B: perfect dependence. Since slope is -45°, we must have

f(e1) = f(e2) = f(e1,e2). Entropy case: deterministic bijection
between random variables ¢ and es.
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Examples
(LIRRRAY]

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e; and es.

A B C

s,
f(es) '8, f(es)

f(es) f(es) | f(e1)

@ Case A: perfect independence.

o Case B: perfect dependence. Since slope is -45°, we must have
f(e1) = f(e2) = f(e1,e2). Entropy case: deterministic bijection
between random variables e; and es.

e Case C: f(e2) < f(e1) = f(e1,e2). Entropy case: random variable
eo a deterministic function of e; which has higher entropy.
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Examples
(LIRRRAY]

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e; and es.

A B C D
/k
f(e2) Yo, e e,
7 8,
C%/ f(e2) //'@) )%)
o,
f(e1) f(e1) | f(ey) f(e+)

@ Case A: perfect independence.

@ Case B: perfect dependence. Since slope is -45°, we must have
fle1) = f(e2) = f(e1,e2). Entropy case: deterministic bijection
between random variables e; and es.

o Case C: f(e2) < f(e1) = f(e1,e2). Entropy case: random variable
eo a deterministic function of e; which has higher entropy.

e Case D: f(e1) < f(e2) = f(e1,e2). Entropy case: random variable
e1 a deterministic function of eo which has higher entropy.
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Examples
(LIRRRAY]

supp, sat, and polymatroid dependence in 2D

@ Ex: various amounts of “dependence” between e; and es.
A B C D

%
f(e2) "S,  fleo) f(e2)

%,
20 f(ez) &

f(e1) f(e1) | f(e-) f(e1)

@ In each case, we see points x where supp(z) C sat(z).

e Example: Case B or C, let x = (f(e1),0) so supp(x) = {e1} but
since z({e1,e2}) = z({e1}) = f(e1) = f(e1,e2) we have
sat(z) = {e1, e2}.

e Similar for case D with = (0, f(e2)).
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Examples
(NLRRNRY]

supp, sat, and dependence in 2D

o General case, f(e1,e2) < f(e1) + f(e2), f(e1) < f(e1,e2), and
fle2) < fler, e2).

f(ez)
7,
)%/

f(e4)

@ Entropy case: We have a random variable Z and two separate
deterministic functions e; = h1(Z) and ez = ha(Z) such that the
entropy H(e1,es) = H(Z), but each deterministic function gives a
different “view” of Z, each contains more than half the information,
and the two are redundant w.r.t. each other.
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Examples
(RN AR

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between es and ej, so
f(e2,e3) = f(e2) + f(es), but perfect dependence between
A= {62,63} and B = {61}, SO f(el,eg,eg) = f(eg,eg)

1

0.8

0.6

[52]
(0]
0.4

0.2

0
1

0.5

e2 ¢ el
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Examples
(RN AR

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between es and ej, so
f(e2,e3) = f(e2) + f(es), but perfect dependence between
A= {62,63} and B = {61}, SO f(el,eg,eg) = f(eg,eg)

1

0.8

0.6

[52]
(0]
0.4

0.2

0
1

0.5 1
0.5

05 05 5 &
11 e
e2 et et

@ Entropy case: xor V-structure Bayesian network e; = h(eg, e3)
where h is the xor function (e2 — €1 < e3), and eg, e3 are both
independent binary with unity entropy.
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Examples
(RN AR

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between es and ej, so
f(e2,e3) = f(e2) + f(es), but perfect dependence between
A= {62,63} and B = {61}, SO f(el,eg,eg) = f(eg,eg)

1

0.8

0.6

[52]
(0]
0.4

0.2

0
1

0.5 1
0.5

05 05 5 &
11 e
e2 et et

@ Entropy case: xor V-structure Bayesian network e; = h(eg, e3)
where h is the xor function (e2 — €1 < e3), and eg, e3 are both
independent binary with unity entropy.

@ Q: Why does the polytope have a symmetry? Notice independence
(square) for any pair.
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Examples
(RN AR

supp, sat, and perfect dependence in 3D

o Ex: polymatroid with perfect independence between es and ej, so
f(e2,e3) = f(e2) + f(es), but perfect dependence between
A= {62,63} and B = {61}, SO f(el,eg,eg) = f(eg,eg)

1

0.8

0.6

[52]
(0]
0.4

0.2

0

1

0.5 1
0.5

05 05 5 &
11 e
e2 et et

e For any permutation o of {1,2,3}, considering {es,, €s,} vs. {€5s}:

<
f(esy, €53) [%,

€sy IS @ deterministic

function of {e,,, e, }
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Examples
(RN AR

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between es and ej, so
f(e2,e3) = f(e2) + f(es), but perfect dependence between
A= {62,63} and B = {61}, SO f(el,eg,eg) = f(eg,eg)

1

0.8

0.6

[52]
(0]
0.4

0.2

0
1

0.5

e2 ¢ el
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Examples
(RN AR

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between es and ej, so
f(e2,e3) = f(e2) + f(es), but perfect dependence between
A= {62,63} and B = {61}, SO f(el,eg,eg) = f(eg,eg)

1

0.8

0.6

[52]
(0]
0.4

0.2

0
1

05 05 5 &
11 e
e2 et et

@ Note also, that for some of the extreme points, multiple orders
generate them.

0.5
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Examples
(RN AR

supp, sat, and perfect dependence in 3D

@ Ex: polymatroid with perfect independence between es and ej, so
f(e2,e3) = f(e2) + f(es), but perfect dependence between
A= {62,63} and B = {61}, SO f(el,eg,eg) = f(eg,eg)

1

0.8

0.6

[52]
(0]
0.4

0.2

0
1

05 05 5 s 05
11 e 0
e2 et et

@ Note also, that for some of the extreme points, multiple orders
generate them.

e Consider extreme point x = (x1,x2,z3) = (1,1,0). Then we get
this either with orders (e1, ea,e3), or (e2, e1,e3). This is true since
fles.l{€s1s €5, }) = 0 for all permutations o of {1,2,3}.
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Examples
(NRRR AAY]

perfect dependence in 3D, entropy, and Bayesian networks

@ The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.
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Examples
(NRRR AAY]

perfect dependence in 3D, entropy, and Bayesian networks

@ The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.

@ Consider three binary random variables X1, X5, X3 € {0, 1} that
factor w.r.t., the V-structure X7 — X3 < X9, where
X3 = X1 ® Xo, where & is the X-OR operator, and where X7 1L X5.
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Examples
(NRRR AAY]

perfect dependence in 3D, entropy, and Bayesian networks

@ The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.

e Consider three binary random variables X7, X5, X3 € {0, 1} that
factor w.r.t., the V-structure X7 — X3 < X9, where
X3 = X1 ® Xo, where & is the X-OR operator, and where X7 1L X5.

e Consequently, X; 1L X; for any ¢ # j.
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Examples
(NRRR AAY]

perfect dependence in 3D, entropy, and Bayesian networks

@ The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.

e Consider three binary random variables X7, X5, X3 € {0, 1} that
factor w.r.t., the V-structure X7 — X3 < X9, where
X3 = X1 ® Xo, where & is the X-OR operator, and where X7 1L X5.

e Consequently, X; Il X; for any i # j.

@ Moreover, for any permutation o of {1,2,3}, we have the
relationship X5, = X4, © Xo,.
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perfect dependence in 3D, entropy, and Bayesian networks

@ The example in the previous slides can be realized with entropy of
random variables and a Bayesian network.

e Consider three binary random variables X7, X5, X3 € {0, 1} that
factor w.r.t., the V-structure X7 — X3 < X9, where
X3 = X1 ® Xo, where & is the X-OR operator, and where X7 1L X5.

e Consequently, X; Il X; for any i # j.

@ Moreover, for any permutation o of {1,2, 3}, we have the
relationship X, = X4, ® Xos.

@ The entropy function f(A) = H(X4) is a submodular function that
will have the symmetric 3D polytope of the previous example.
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supp, sat, extremal z, perfect dependence

@ In general, for extremal x, sat(x) O supp(z).
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supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
x(supp(x) + e) = x(supp(x)) since x(e) = 0.
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supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).

e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.

@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(z) + ¢;) = f(supp(x)). Indeed:
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supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + €;) = f(supp(x)). Indeed:
e sat(z) is tight, as is supp(z), and hence

f(sat(z)) = x(sat(x)) = x(supp(x)) = f(supp(x)).
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supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + €;) = f(supp(x)). Indeed:
o sat(x) is tight, as is supp(z), and hence

[(sat(z)) = a(sat(z)) = z(supp(x)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
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Examples
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supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + €;) = f(supp(x)). Indeed:
o sat(x) is tight, as is supp(z), and hence
[f(sat(x)) = z(sat(x)) = z(supp(x)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
e But by the above, and monotonicity, we have for
e € sat(x) \ supp(z), that
0 = f(sat(z)|supp(x)) > f(e|supp(x)) > 0.
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Examples
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supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + €;) = f(supp(x)). Indeed:
o sat(x) is tight, as is supp(z), and hence
[f(sat(x)) = z(sat(x)) = z(supp(x)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
e But by the above, and monotonicity, we have for
e € sat(z) \ supp(x), that
0 = f(sat(z)|supp(x)) > f(e|supp(x)) > 0.
e Hence f(e|supp(z)) =0,
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supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + €;) = f(supp(x)). Indeed:
o sat(x) is tight, as is supp(z), and hence
[ (sat(z)) = z(sat(x)) = z(supp(z)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
e But by the above, and monotonicity, we have for
e € sat(z) \ supp(x), that
0 = f(sat(z)|supp(x)) > f(e|supp(x)) > 0.
o Hence f(e|supp(z)) = 0, and moreover
F(e + supp(z)) = (e + supp(x)) = 2(supp(x)) = £ (supp(x)).
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supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + €;) = f(supp(x)). Indeed:
o sat(x) is tight, as is supp(z), and hence
[ (sat(z)) = z(sat(x)) = z(supp(z)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
e But by the above, and monotonicity, we have for
e € sat(z) \ supp(x), that
0 = f(sat(z)|supp(x)) > f(e|supp(x)) > 0.
o Hence f(e|supp(z)) = 0, and moreover
f(e+supp(z)) = z(e + supp(z)) = z(supp(z)) = f(supp(z)).
@ Thus, for any extremal z, with sat(z) D supp(z), we see that for
e € sat(z) \ supp(x), we have supp(z) + e is also tight.
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Examples

supp, sat, extremal z, perfect dependence

@ In general, for extremal z, sat(x) D supp(x).
e Now, for any e € E'\ supp(z), we clearly have
z(supp(z) + e) = z(supp(x)) since x(e) = 0.
@ On the other hand, for e; € sat(x) \ supp(x), we have perfect
dependence, i.e., f(supp(x) + €;) = f(supp(x)). Indeed:
o sat(x) is tight, as is supp(z), and hence
[f(sat(x)) = z(sat(x)) = z(supp(x)) = f(supp(z)).
o Therefore, f(sat(x)|supp(z)) = 0.
e But by the above, and monotonicity, we have for
e € sat(z) \ supp(x), that
0 = f(sat(z)|supp(x)) > f(e|supp(x)) > 0.
o Hence f(e|supp(z)) = 0, and moreover
f(e+supp(z)) = z(e + supp(z)) = z(supp(z)) = f(supp(z)).
@ Thus, for any extremal z, with sat(z) D supp(z), we see that for
e € sat(z) \ supp(z), we have supp(z) + e is also tight.
@ Note also, for any A C sat(x) \ supp(x), we have
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supp, sat, perfect dependence

@ Note that all of these results hold when f is monotone
non-decreasing submodular (e.g., for a polymatroid function).
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Examples
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supp, sat, perfect dependence

@ Note that all of these results hold when f is monotone
non-decreasing submodular (e.g., for a polymatroid function).

@ For modular functions, and extremal z, sat(z) = supp(x).
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supp, sat, perfect dependence

@ Note that all of these results hold when f is monotone
non-decreasing submodular (e.g., for a polymatroid function).

@ For modular functions, and extremal x, sat(x) = supp(x).

@ For general x € Py (not nec. extremal), sat(x) and supp(z) might
have an arbitrary relationship (but we want to strengthen this
relationship further, and we will do so below).
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Examples
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supp, sat, perfect dependence

@ Note that all of these results hold when f is monotone
non-decreasing submodular (e.g., for a polymatroid function).

@ For modular functions, and extremal x, sat(x) = supp(x).

e For general x € Py (not nec. extremal), sat(x) and supp(z) might
have an arbitrary relationship (but we want to strengthen this
relationship further, and we will do so below).

@ For the most part, we are interested in these quantities when z is
extremal as we will see.
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Examples

supp and sat, example under limited curvature

@ Strict monotone f polymatroids, where f(e|E \ e) > 0, Ve.
e Example: f(A) = +/|A|, where all m! vertices of By are unique.

@ In such cases, taking any extremal point x € Py based on prefix
order E = (e1,...), where supp(x) C E, we have that
sat(xz) = supp(x) since the largest tight set corresponds to
x(E;) = f(F;) for some i, and while any e € E'\ E; is such that
z(E; + e) = x(E;), there is no such e with f(E; +e) = f(E;).
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Another revealing theorem

Theorem 13.7.1

Let f be a polymatroid function and suppose that E£ can be partitioned
into (E1, By, ..., Ey) such that f(A) = % f(ANE;) forall AC E,
and k is maximum. Then the base polytope

|Bf| ={z € Py:x(E) = f(E)} (the E-tight subset of Py) has dimension
E| —k.
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Another revealing theorem

Theorem 13.7.1

Let f be a polymatroid function and suppose that E£ can be partitioned
into (E1, By, ..., Ey) such that f(A) = % f(ANE;) forall AC E,
and k is maximum. Then the base polytope

|Bf| ={z € Py:x(E) = f(E)} (the E-tight subset of Py) has dimension
E| —k.

@ Thus, “independence” between disjoint A and B (leading to a
rectangular projection of the polymatroid polytope) reduces the
dimension of the base polytope, as expected.
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Another revealing theorem

Theorem 13.7.1

Let f be a polymatroid function and suppose that E£ can be partitioned
into (E1, By, ..., Ey) such that f(A) = % f(ANE;) forall AC E,
and k is maximum. Then the base polytope

|Bf| ={z € Py:x(E) = f(E)} (the E-tight subset of Py) has dimension
E| —k.

@ Thus, “independence” between disjoint A and B (leading to a
rectangular projection of the polymatroid polytope) reduces the
dimension of the base polytope, as expected.

@ Thus, any point z € By is a convex combination of at most
|E| — k + 1 vertices of By.
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Another revealing theorem

Theorem 13.7.1

Let f be a polymatroid function and suppose that E£ can be partitioned
into (E1, By, ..., Ey) such that f(A) = % f(ANE;) forall AC E,
and k is maximum. Then the base polytope

‘Bf| ={z € Py:x(E) = f(E)} (the E-tight subset of Py) has dimension
E| —k.

@ Thus, “independence” between disjoint A and B (leading to a
rectangular projection of the polymatroid polytope) reduces the
dimension of the base polytope, as expected.

@ Thus, any point z € By is a convex combination of at most
|E| — k + 1 vertices of By.

@ And if f does not have such independence, dimension of By is

|E| — 1 and any point « € By is a convex combination of at most
|E| vertices of By.
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Another revealing theorem

Theorem 13.7.1

Let f be a polymatroid function and suppose that E can be partitioned
into (E1, By, ..., Ey) such that f(A) =Y f(ANE;) forall ACE,
and k is maximum. Then the base polytope

|Bf| ={z € Py:x(E) = f(E)} (the E-tight subset of Ps) has dimension
E|—k.

e Example f with independence between A = {es,e3} and B = {e1},
i.e., erdl{es, e3}, with By marked in green.
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VACE, and z(E) = f(E)} always
exists.
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Moreoan
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VACE, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,

z(e1) = f({er}), w(e2) = f({e1, e2}) — f({e1}), and so on).
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VACE, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,

z(e1) = f({er}), w(e2) = f({e1, e2}) — f({e1}), and so on).

@ From past lectures, we now know that:
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Moreoan
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VACE, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,

z(er) = f({er}), z(e2) = f({e1, e2}) — f({er}), and so on).
@ From past lectures, we now know that:
(].) xr € Pf
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VACE, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,
z(er) = f({er}), z(e2) = f({e1, e2}) — f({er}), and so on).

@ From past lectures, we now know that:
(1) z € Py
(2) z is an extreme point in Py
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VACE, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,
z(er) = f({er}), z(e2) = f({e1, e2}) — f({er}), and so on).
@ From past lectures, we now know that:
(].) X € Pf
(2) z is an extreme point in Py
(3) Since x is generated using an ordering of all of E, we have that

©(E) = f(E).
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VACE, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,
z(er) = f({er}), z(e2) = f({e1, e2}) — f({er}), and so on).
@ From past lectures, we now know that:
(].) X € Pf
(2) z is an extreme point in Py
(3) Since x is generated using an ordering of all of E, we have that

z(E) = f(E).
@ Thus z € By, and By is never empty.
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Base polytope existence

@ Given polymatroid function f, the base polytope
By ={z eRY :2(A) < f(A)VACE, and z(E) = f(E)} always
exists.

o Consider any order of E and generate a vector x by this order (i.e.,
z(er) = f({er}), z(e2) = f({e1, e2}) — f({er}), and so on).
@ From past lectures, we now know that:
(].) X € Pf
(2) z is an extreme point in Py
(3) Since x is generated using an ordering of all of E, we have that

z(E) = f(E).
@ Thus z € By, and By is never empty.

Moreover, in this case, x is a vertex of By since it is extremal.
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Base polytope property

@ Now, for any A C E, we can generate a particular point in By
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Base polytope property

@ Now, for any A C E, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,e2,...,¢;) , so that we have E; = A with
k= |A|.
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Base polytope property

@ Now, for any A C E, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,e2,...,¢;) , so that we have E; = A with
k= |A|.

e Note there are k!(n — k)! < n! such orderings.
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Base polytope property

@ Now, for any A C E, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,e2,...,¢;) , so that we have E; = A with
k= |A|.

e Note there are k!(n — k)! < n! such orderings.
@ Generate z via greedy using this order, Vi, z(e;) = f(e;|Ei—1).
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Base polytope property

@ Now, for any A C E, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,e2,...,¢;) , so that we have E; = A with
k= |A|.

Note there are k!(n — k)! < n! such orderings.

Generate x via greedy using this order, Vi, z(e;) = f(e;|Ei—1).

(]

Then, we have generated a point x (a vertex, no less) in B such
that z(A) = f(A).
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Base polytope property

@ Now, for any A C E, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,e2,...,¢;) , so that we have E; = A with
k= |A|.

e Note there are k!(n — k)! < n! such orderings.
@ Generate z via greedy using this order, Vi, z(e;) = f(e;|Ei—1).

@ Then, we have generated a point x (a vertex, no less) in By such
that z(A) = f(A).
@ Thus, for any A, we have

Brn{z e RF 1 z(A) = f(A)} #0 (13.50)
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Base polytope property

@ Now, for any A C E, we can generate a particular point in By

@ That is, choose the ordering of E = (ey,ea,...,e,) where n = |E|,
and where E; = (e1,e2,...,¢;) , so that we have E; = A with
k= |A|.

e Note there are k!(n — k)! < n! such orderings.
@ Generate z via greedy using this order, Vi, z(e;) = f(e;|Ei—1).

@ Then, we have generated a point x (a vertex, no less) in By such
that z(A) = f(A).
@ Thus, for any A, we have

Brn{z e RF 1 z(A) = f(A)} #0 (13.50)

@ In words, By intersects all “multi-axis congruent” hyperplanes
within RE of the form {z € RF : z(A) = f(A)} for all A C E.
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More on B ¢

By dominates P
@ In fact, every v € P; is dominated by x <y € By.

Theorem 13.7.2

If x € Py and T is tight for x (meaning x(T) = f(T)), then there exists
y € By withax <y and y(e) = z(e) fore € T.
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More on B ¢

By dominates P
@ In fact, every x € P; is dominated by + <y € By.

Theorem 13.7.2

If x € Py and T is tight for x (meaning x(T) = f(T)), then there exists
y € By withax <y and y(e) = z(e) fore € T.

@ We construct the y algorithmically: initially set y < x.
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More on B

By dominates P

@ In fact, every x € P; is dominated by + <y € By.

Theorem 13.7.2

If x € Py and T is tight for x (meaning x(T) = f(T)), then there exists
y € By withax <y and y(e) = z(e) fore € T.

@ We construct the y algorithmically: initially set y < z.
@ y € Py, T is tight for y so y(T') = f(T).
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More on B ¢

By dominates P
@ In fact, every x € P; is dominated by + <y € By.

Theorem 13.7.2

If x € Py and T is tight for x (meaning x(T) = f(T)), then there exists
y € By withax <y and y(e) = z(e) fore € T.

@ We construct the y algorithmically: initially set y < z.
e y € Py, T is tight for y so y(T') = f(T).

@ Recall saturation capacity: for y € Py, ¢(y;e) =
min {f(A) —y(A)VA > e} =max{a:a € R,y +al, € P}
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More on B ¢

By dominates P

@ In fact, every x € P; is dominated by + <y € By.
Theorem 13.7.2

If x € Py and T is tight for x (meaning x(T) = f(T)), then there exists
y € By withax <y and y(e) = z(e) fore € T.

Proof.
@ We construct the y algorithmically: initially set y < z.
e y € Py, T is tight for y so y(T') = f(T).
@ Recall saturation capacity: for y € Py, ¢(y;e) =
min {f(A) — y(A)|VA 3 e} =max{a: a € R,y + al. € Py}

@ Consider following algorithm:
e2
17 T :
2 foreec E\T do
3 Ly%erc(y;e)le;T/eT’U{e}; é(y;e)

X e,
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More on B
[NRRE NN

By dominates P

... proof of Thm. 13;7.2 cont.

@ Each step maintains feasibility: consider one step adding e to 7" —
for e ¢ T', feasibility requires y(T" +e) = y(T") + y(e) < f(T" + e),
or y(e) < f(T" +e) — y(T")
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More on B
[NRRE NN

By dominates P

... proof of Thm. 13;7.2 cont.

@ Each step maintains feasibility: consider one step adding e to 7" —
for e ¢ T, feasibility requires y(T" + e¢) = y(T") + y(e) < f(T' +e),
ory(e) < f(T"+e) —y(T') = y(e) + f(I" +€) —y(T" +e).
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More on B
[NRRE NN

By dominates P

... proof of Thm. 13;7.2 cont.

@ Each step maintains feasibility: consider one step adding e to 7" —
for e ¢ T, feasibility requires y(T" + e¢) = y(T") + y(e) < f(T' +e),
oryle) < f(T"+e) —y(T') = yle) + f(I" + ) —y(T" +e).

o We set y(e) + y(e) +¢(yse) <yle) + f(T" +e) —y(T' +e).
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More on B
[NRRE NN

By dominates P

... proof of Thm. 13;7.2 cont.

@ Each step maintains feasibility: consider one step adding e to 7" —
for e ¢ T, feasibility requires y(T" + e¢) = y(T") + y(e) < f(T' +e),
ory(e) < f(T"+e) —y(T") = yle) + f(T" +e) —y(T" +e).

o We set y(e) « yle) + é(yse) < y(e) + (T + ) — y(T' +e).
Hence, after each step, y € P and ¢(y;e) > 0. (also, consider r.h.
version of ¢(y;e)).
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More on B
[NRRE NN

By dominates P

... proof of Thm. 13;7.2 cont.

@ Each step maintains feasibility: consider one step adding e to 7" —
for e ¢ T, feasibility requires y(T" + e¢) = y(T") + y(e) < f(T' +e),
oryle) < f(T"+e) —y(T') = yle) + f(I" + ) —y(T" +e).

o We set y(e) « yle) + é(yse) < y(e) + (T + ) —y(T' +e).
Hence, after each step, y € P and ¢(y;e) > 0. (also, consider r.h.
version of ¢é(y;e)).

@ Also, only y(e) for e ¢ T changed, final y has y(e) = z(e) for e € T..
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More on B
[NRRE NN

By dominates P

... proof of Thm. 13;7.2 cont.

@ Each step maintains feasibility: consider one step adding e to 7" —
for e ¢ T, feasibility requires y(T" + e¢) = y(T") + y(e) < f(T' +e),
oryle) < f(T"+e) —y(T') = yle) + f(I" + ) —y(T" +e).

o We set y(e) « yle) + é(yse) < y(e) + (T + ) —y(T' +e).
Hence, after each step, y € P and ¢(y;e) > 0. (also, consider r.h.
version of ¢é(y;e)).

@ Also, only y(e) for e ¢ T changed, final y has y(e) = z(e) fore € T..
@ Let S, > e be a set that achieves c¢(y;e) = f(Se) — y(Se).
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More on B
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By dominates P

... proof of Thm. 13;7.2 cont.

Each step maintains feasibility: consider one step adding e to T/ —
for e ¢ T, feasibility requires y(T" + e¢) = y(T") + y(e) < f(T' +e),
ory(e) < f(T'+e) —y(T") =y(e) + f(T" +e) —y(T" +e).

We set y(e) — y(e) + &(i€) < yle) + F(T' +e) — y(T' +e¢).
Hence, after each step, y € P and ¢(y;e) > 0. (also, consider r.h.
version of ¢é(y;e)).

Also, only y(e) for e ¢ T changed, final y has y(e) = z(e) fore € T..
Let Se S e be a set that achieves c(y;e) = f(Se) — y(Se).

At iteration e, let y'(e) (resp. y(e)) be the new (resp. old) entry for
e. We have

y'(Se) = y(Se \ {e}) +¢'(e) = y(Se \ {e}) + [y(e) + f(Se) — y(Se)]
_ £(5) (1351)
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More on B
[NRRE NN

By dominates P

... proof of Thm. 13;7.2 cont.

Each step maintains feasibility: consider one step adding e to T/ —
for e ¢ T, feasibility requires y(T" + e¢) = y(T") + y(e) < f(T' +e),
ory(e) < f(T'+e) —y(T") =y(e) + f(T" +e) —y(T" +e).

We set y(e) — y(e) + &(i€) < yle) + F(T' +e) — y(T' +e¢).
Hence, after each step, y € P and ¢(y;e) > 0. (also, consider r.h.
version of ¢é(y;e)).

Also, only y(e) for e ¢ T changed, final y has y(e) = z(e) fore € T..
Let Se S e be a set that achieves c(y;e) = f(Se) — y(Se).

At iteration e, let y/(e) (resp. y(e)) be the new (resp. old) entry for
e. We have

y/(Se) - y(Se \ {e}) + y,(e) - y(Se \ {6}) + [y(e) + f(Se) - y(Se)]

= f(Se) (13.51)
So, Se is tight for 3/. It remains tight in further iterations since y
doesn’t decrease and it stays within Py.
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More on B
[NRRE NN

By dominates P

... proof of Thm. 13;7.2 cont.

Each step maintains feasibility: consider one step adding e to T/ —
for e ¢ T, feasibility requires y(T" + e¢) = y(T") + y(e) < f(T' +e),
ory(e) < f(T'+e) —y(T") =y(e) + f(T" +e) —y(T" +e).

We set y(e) — y(e) + &(i€) < yle) + F(T' +e) — y(T' +e¢).
Hence, after each step, y € P and ¢(y;e) > 0. (also, consider r.h.
version of ¢é(y;e)).

Also, only y(e) for e ¢ T changed, final y has y(e) = z(e) fore € T..
Let Se S e be a set that achieves c(y;e) = f(Se) — y(Se).

At iteration e, let y/(e) (resp. y(e)) be the new (resp. old) entry for
e. We have

y'(Se) = y(Se \ {e}) +1/(e) = y(Se \ {e}) + [y(e) + f(Se) — y(Se)]

= f(Se) (13.51)
So, Se is tight for 3/. It remains tight in further iterations since y
doesn’t decrease and it stays within Py.
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More on B ¢
A

Polytope example 1
@ UDSse R

d
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More on By
[NRRNY .

Polytope example 1
@ UbSserve. I

d

@ Is this a polymatroidal polytope?
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More on B ¢
A

Polytope example 1

@ Is this a polymatroidal polytope?
o No, “Bf" doesn't intersect sets of the form {z : z(e) = f(e)} for
eec L.
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More on By
[NRRNY .

Polytope example 1

@ Is this a polymatroidal polytope?

o No, “Bf" doesn't intersect sets of the form {z : z(e) = f(e)} for
ec k.

e This was generated using function ¢g(0) =0, g(1) = 3, ¢(2) = 4,
and ¢(3) =5.5. Then f(S) = g(|S|) is not submodular since (e.g.)
f({e1 es}) + f({e1,e2}) =444 =8 but
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More on B ¢
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Polytope example 2

@ UDbserve: f (at TWO VIEWS ).
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More on B ¢
[NNNNNT ]

Polytope example 2

@ UDbserve: f (at TWO VIEWS ).

05
0s el
e2 v
@ Is this a polymatroidal polytope?
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More on B ¢
[NNNNNT ]

Polytope example 2

@ UDbserve: f (at TWO VIEWS ).

0s ~, 0'5e1 e
e2 el
@ Is this a polymatroidal polytope?
@ No, “Bf" (which would be a single point in this case) doesn't
intersect sets of the form {x : z(e) = f(e)} for e € E.
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More on B ¢
[NRRRNY B

Polytope example 2

0.5

0.5

e2
@ Is this a polymatroidal polytope?

@ No, “Bf" (which would be a single point in this case) doesn't
intersect sets of the form {x : z(e) = f(e)} for e € E.

@ This was generated using function ¢(0) =0, g(1) =1, g(2) = 1.8,
and ¢g(3) = 3. Then f(S) = g(|S]) is not submodular since (e.g.)
f({e1,es}) + f({e1,e2}) =1.84 1.8 = 3.6 but
f({er,e2,e3}) + f({er}) =3+1=4.

el
11 e

el
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