Submodular Functions, Optimization, and Applications to Machine Learning

— Spring Quarter, Lecture 13 —

http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

May 14th, 2014

 $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$ = $f(A) + 2f(C) + f(B) - f(A) + f(C) + f(B) - f(A \cap B)$

Cumulative Outstanding Reading

- Good references for today: Schrijver-2003, Oxley-1992/2011,
 Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.
- Read Tom McCormick's overview paper on SFM http://people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
- Read chapters 1 4 from Fujishige book.
- Matroid properties http: //www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf

Announcements, Assignments, and Reminders

 Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, & Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes,
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity

- L11: More properties of polymatroids, SFM special cases
- L12: polymatroid properties, extreme points polymatroids.
- L13: sat, dep, supp, exchange capacity, examples
- L14: Lattice theory: partially ordered sets; lattices; distributive, modular, submodular, and boolean lattices; ideals and join irreducibles.
- L15: Supp, Base polytope, exchange capacity, minimum norm point algorithm and the lattice of minimizers of a submodular function, Lovasz extension
- L16:
 I 17:
- LI1.
- L18:
- L19:
- L20:

Tight sets $\mathcal{D}(y)$ are closed, and max tight set $\operatorname{sat}(y)$

Recall the definition of the set of tight sets at $y \in P_f^+$:

$$\mathcal{D}(y) \triangleq \{A : A \subseteq E, \ y(A) = f(A)\}$$
 (13.18)

Theorem 13.2.1

For any $y \in P_f^+$, with f a polymatroid function, then $\mathcal{D}(y)$ is closed under union and intersection.

Proof.

We have already proven this as part of Theorem ??

Also recall the definition of $\operatorname{sat}(y)$, the maximal set of tight elements relative to $y \in \mathbb{R}^E_+$.

$$\operatorname{sat}(y) \stackrel{\text{def}}{=} \bigcup \left\{ T : T \in \mathcal{D}(y) \right\} \tag{13.19}$$

Fundamental circuits in matroids

Lemma 13.2.3

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup \{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_1, C_2 such that $C_1 \cup C_2 \subseteq I \cup \{e\}$.
- Then $e \in C_1 \cap C_2$, and by (C2), there is a circuit C_3 of M s.t. $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\} \subseteq I$
- This contradicts the independence of *I*.

In general, let C(I,e) be the unique circuit associated with $I \cup \{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).

Matroid Partition Problem

Theorem 13.2.1

Let M_i be a collection of k matroids as described. Then, a set $S \subseteq E$ can be partitioned into k subsets $I_i, i = 1 \dots k$ where $I_i \in \mathcal{I}_i$ is independent in matroid i, if and only if, for all $A \subseteq S$

$$|A| \le \sum_{i=1}^{k} r_i(A) \tag{13.1}$$

where r_i is the rank function of M_i .

ullet Now, if all matroids are the same $M_i=M$ for all i, we get condition

$$|A| \le kr(A) \ \forall A \subseteq E \tag{13.2}$$

ullet But considering vector of all ones $\mathbf{1} \in \mathbb{R}_+^E$, this is the same as

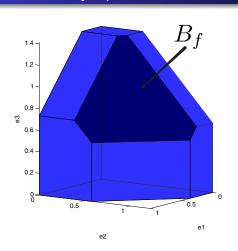
$$\frac{1}{k}|A| = \frac{1}{k}\mathbf{1}(A) \le r(A) \ \forall A \subseteq E$$
 (13.3)

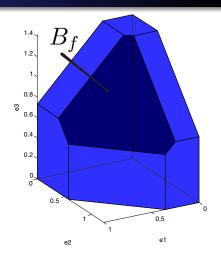
Polymatroidal polyhedron and greedy

 Thus, restating the above results into a single complete theorem, we have a result very similar to what we saw for matroids (i.e., Theorem ??)

Theorem 13.2.1

If $f: 2^E \to \mathbb{R}_+$ is given, and P is a polytope in \mathbb{R}_+^E of the form $P = \left\{ x \in \mathbb{R}_+^E : x(A) \le f(A), \forall A \subseteq E \right\}$, then the greedy solution to the problem $\max(wx: x \in P)$ is $\forall w$ optimum iff f is monotone non-decreasing submodular (i.e., iff P is a polymatroid).





$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$
 (13.5)

$$B_f = P_f \cap \{x \in \mathbb{R}^E : x(E) = f(E)\}$$
 (13.6)

Polymatroid extreme points

Theorem 13.2.1

For a given ordering $E=(e_1,\ldots,e_m)$ of E and a given $E_i=(e_1,\ldots,e_i)$ and x generated by E_i using the greedy procedure $(x(e_i)=f(e_i|E_{i-1}))$, then x is an extreme point of P_f

Proof.

- We already saw that $x \in P_f$ (Theorem ??).
- To show that x is an extreme point of P_f , note that it is the unique solution of the following system of equations

$$x(E_j) = f(E_j) \text{ for } 1 \le j \le i \le m$$
 (13.9)

$$x(e) = 0 \text{ for } e \in E \setminus E_i \tag{13.10}$$

There are $i \leq m$ equations and $i \leq m$ unknowns, and simple Gaussian elimination gives us back the x constructed via the Greedy algorithm!!

Polymatroid extreme points

Moreover, we have (and will ultimately prove)

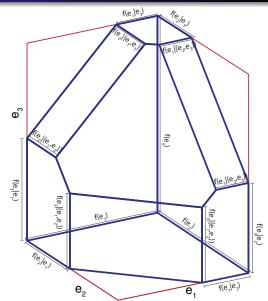
Corollary 13.2.2

If x is an extreme point of P_f and $B \subseteq E$ is given such that $\operatorname{supp}(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \cup (A : x(A) = f(A)) = \operatorname{sat}(x)$, then x is generated using greedy by some ordering of B.

- Note, $\operatorname{sat}(x) = \operatorname{cl}(x) = \cup (A:x(A) = f(A))$ is also called the closure of x (recall that sets A such that x(A) = f(A) are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem $\ref{eq:condition}$?)
- Thus, cl(x) is a tight set.
- Also, $supp(x) = \{e \in E : x(e) \neq 0\}$ is called the support of x.
- For arbitrary x, supp(x) is not necessarily tight, but for an extreme point, supp(x) is.

Polymatroid with labeled edge lengths

- Recall f(e|A) = f(A+e) f(A)
- Notice how submodularity, $f(e|B) \leq f(e|A)$ for $A \subseteq B$, defines the shape of the polytope.
- In fact, we have strictness here $f(e|B) < f(e|A) \text{ for } A \subset B.$
- Also, consider how the greedy algorithm proceeds along the edges of the polytope.



Minimizers of a Submodular Function form a lattice

Theorem 13.2.2

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A) = f(B) \le f(A \cap B)$ and $f(A) = f(B) \le f(A \cup B)$.

By submodularity, we have

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B) \tag{13.8}$$

Hence, we must have
$$f(A) = f(B) = f(A \cup B) = f(A \cap B)$$
.

Thus, the minimizers of a submodular function form a lattice, and there is a maximal and a minimal minimizer of every submodular function.

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_f$, we have defined:

$$\operatorname{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x)\}$$
 (13.8)

$$= \bigcup \left\{ A : A \subseteq E, x(A) = f(A) \right\} \tag{13.9}$$

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
 (13.10)

- Hence, $\operatorname{sat}(x)$ is the maximal (zero-valued) minimizer of the submodular function $f_x(A) \triangleq f(A) x(A)$.
- Eq. (??) says that sat consists of any point x that is P_f saturated (any additional positive movement, in that dimension, leaves P_f). We'll revisit this in a few slides.
- First, we see how sat generalizes matroid closure.

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{ A : \mathbf{1}_I(A) = r(A) \}$$
 (13.1)

• Consider matroid $(E,\mathcal{I})=(E,r)$, some $I\in\mathcal{I}$. Then $\mathbf{1}_I\in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\}$$
(13.1)

$$\operatorname{sat}(\mathbf{1}_I)$$

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\}$$
(13.1)

$$\operatorname{sat}(\mathbf{1}_{I}) = \bigcup \left\{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_{I}) \right\}$$
 (13.2)

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\} \tag{13.1}$$

$$\operatorname{sat}(\mathbf{1}_{I}) = \bigcup \left\{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_{I}) \right\}$$
 (13.2)

$$= \bigcup \{A : A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
 (13.3)

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\} \tag{13.1}$$

$$\operatorname{sat}(\mathbf{1}_{I}) = \bigcup \left\{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_{I}) \right\}$$
 (13.2)

$$= \bigcup \{A : A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
 (13.3)

$$= \bigcup \{A : A \subseteq E, |I \cap A| = r(A)\}$$
 (13.4)

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\} \tag{13.1}$$

and

$$\operatorname{sat}(\mathbf{1}_I) = \bigcup \left\{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_I) \right\}$$
 (13.2)

$$= \bigcup \{A : A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
 (13.3)

$$= \bigcup \left\{ A : A \subseteq E, |I \cap A| = r(A) \right\} \tag{13.4}$$

• Notice that $\mathbf{1}_I(A) = |I \cap A| \leq |I|$.

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\}$$
(13.1)

$$\operatorname{sat}(\mathbf{1}_I) = \bigcup \left\{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_I) \right\}$$
 (13.2)

$$= \bigcup \{A : A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
 (13.3)

$$= \bigcup \left\{ A : A \subseteq E, |I \cap A| = r(A) \right\} \tag{13.4}$$

- Notice that $\mathbf{1}_I(A) = |I \cap A| \le |I|$.
- Intuitively, consider an $A\supset I\in\mathcal{I}$ that doesn't increase rank, meaning r(A)=r(I). If $r(A)=|I\cap A|=r(I\cap A)$, as in Eqn. (13.4), then A is in I's span, so should get $\mathrm{sat}(\mathbf{1}_I)=\mathrm{span}(I)$.

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{A : \mathbf{1}_I(A) = r(A)\}$$
(13.1)

$$\operatorname{sat}(\mathbf{1}_I) = \bigcup \left\{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_I) \right\}$$
 (13.2)

$$= \bigcup \{A : A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
 (13.3)

$$= \bigcup \left\{ A : A \subseteq E, |I \cap A| = r(A) \right\} \tag{13.4}$$

- Notice that $\mathbf{1}_I(A) = |I \cap A| \le |I|$.
- Intuitively, consider an $A\supset I\in\mathcal{I}$ that doesn't increase rank, meaning r(A)=r(I). If $r(A)=|I\cap A|=r(I\cap A)$, as in Eqn. (13.4), then A is in I's span, so should get $\operatorname{sat}(\mathbf{1}_I)=\operatorname{span}(I)$.
- We formalize this next.

(13.5)

The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid $\operatorname{sat}: \mathbb{R}_+^E o 2^E$ is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$

Lemma 13.3.1 (Matroid $\operatorname{sat}: \mathbb{R}_+^E o 2^E$ is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (13.5)

Proof.

• For $\mathbf{1}_I(I) = |I| = r(I)$, so $I \in \mathcal{D}(\mathbf{1}_I)$ and $I \subseteq \operatorname{sat}(\mathbf{1}_I)$. Also, $I \subseteq \operatorname{span}(I)$.

. .

Lemma 13.3.1 (Matroid $\operatorname{sat}: \mathbb{R}_+^E o 2^E$ is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (13.5)

Proof.

- For $\mathbf{1}_I(I) = |I| = r(I)$, so $I \in \mathcal{D}(\mathbf{1}_I)$ and $I \subseteq \operatorname{sat}(\mathbf{1}_I)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \setminus I$.

. .

Lemma 13.3.1 (Matroid sat : $\mathbb{R}^E_+ \to 2^E$ is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (13.5)

Proof.

- For $\mathbf{1}_I(I) = |I| = r(I)$, so $I \in \mathcal{D}(\mathbf{1}_I)$ and $I \subseteq \operatorname{sat}(\mathbf{1}_I)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \setminus I$.
- Then $I \cup \{b\} \in \mathcal{D}(\mathbf{1}_I)$ since $\mathbf{1}_I(I \cup \{b\}) = |I| = r(I \cup \{b\}) = r(I)$.

Lemma 13.3.1 (Matroid $\operatorname{sat}: \mathbb{R}^E_+ \to 2^E$ is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (13.5)

Proof.

- For $\mathbf{1}_I(I) = |I| = r(I)$, so $I \in \mathcal{D}(\mathbf{1}_I)$ and $I \subseteq \operatorname{sat}(\mathbf{1}_I)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \setminus I$.
- Then $I \cup \{b\} \in \mathcal{D}(\mathbf{1}_I)$ since $\mathbf{1}_I(I \cup \{b\}) = |I| = r(I \cup \{b\}) = r(I)$.
- Thus, $b \in \operatorname{sat}(\mathbf{1}_I)$.

.

Lemma 13.3.1 (Matroid $\operatorname{sat}: \mathbb{R}^E_+ \to 2^E$ is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (13.5)

Proof.

- For $\mathbf{1}_I(I) = |I| = r(I)$, so $I \in \mathcal{D}(\mathbf{1}_I)$ and $I \subseteq \operatorname{sat}(\mathbf{1}_I)$. Also, $I \subseteq \operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \setminus I$.
- Then $I \cup \{b\} \in \mathcal{D}(\mathbf{1}_I)$ since $\mathbf{1}_I(I \cup \{b\}) = |I| = r(I \cup \{b\}) = r(I)$.
- Thus, $b \in \operatorname{sat}(\mathbf{1}_I)$.
- Therefore, $\operatorname{sat}(\mathbf{1}_I) \supseteq \operatorname{span}(I)$.

.

... proof continued.

• Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.
- Then $1(A) = |A \cap I| = r(A)$.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.
- Then $1(A) = |A \cap I| = r(A)$.
- Now $r(A) = |A \cap I| \le |I| = r(I)$.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.
- Then $1(A) = |A \cap I| = r(A)$.
- Now $r(A) = |A \cap I| \le |I| = r(I)$.
- Also, $r(A \cap I) = |A \cap I|$ since $A \cap I \in \mathcal{I}$.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.
- Then $1(A) = |A \cap I| = r(A)$.
- $\bullet \ \operatorname{Now} \ r(A) = |A \cap I| \leq |I| = r(I).$
- Also, $r(A \cap I) = |A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I) = r(A) = r((A \cap I) \cup (A \setminus I))$ meaning $(A \setminus I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.
- Then $1(A) = |A \cap I| = r(A)$.
- Now $r(A) = |A \cap I| \le |I| = r(I)$.
- Also, $r(A \cap I) = |A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I) = r(A) = r((A \cap I) \cup (A \setminus I))$ meaning $(A \setminus I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.
- Since $b \in A \setminus I$, we get $b \in \operatorname{span}(I)$.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.
- Then $1(A) = |A \cap I| = r(A)$.
- Now $r(A) = |A \cap I| \le |I| = r(I)$.
- Also, $r(A \cap I) = |A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I) = r(A) = r((A \cap I) \cup (A \setminus I))$ meaning $(A \setminus I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.
- Since $b \in A \setminus I$, we get $b \in \operatorname{span}(I)$.
- Thus, $sat(\mathbf{1}_I) \subseteq span(I)$.

. . . proof continued.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$, thus $b \in A \setminus I$.
- Then $1(A) = |A \cap I| = r(A)$.
- Now $r(A) = |A \cap I| \le |I| = r(I)$.
- Also, $r(A \cap I) = |A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I) = r(A) = r((A \cap I) \cup (A \setminus I))$ meaning $(A \setminus I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.
- Since $b \in A \setminus I$, we get $b \in \operatorname{span}(I)$.
- Thus, $\operatorname{sat}(\mathbf{1}_I) \subseteq \operatorname{span}(I)$.
- Hence $sat(\mathbf{1}_I) = span(I)$

• Now, consider a matroid (E,r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$.

• Now, consider a matroid (E,r) and some $C\subseteq E$ with $C\notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C\in P_r$?

• Now, consider a matroid (E,r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .

- Now, consider a matroid (E,r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .
- $\operatorname{span}(\cdot)$ operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.

- Now, consider a matroid (E,r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .
- $\operatorname{span}(\cdot)$ operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C) = \operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.

- Now, consider a matroid (E,r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .
- $\mathrm{span}(\cdot)$ operates on more than just independent sets, so $\mathrm{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C) = \operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_B \leq \mathbf{1}_C \leq \mathbf{1}_{\mathrm{span}(C)}$, and that $\mathbf{1}_B \in P_r$. We can then make the definition:

$$\operatorname{sat}(\mathbf{1}_C) \triangleq \operatorname{sat}(\mathbf{1}_B) \text{ for } B \in \mathcal{B}(C)$$
 (13.6)

In which case, we also get $sat(\mathbf{1}_C) = span(C)$ (in general, could define sat(y) = sat(P-basis(y))).

- Now, consider a matroid (E,r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .
- $\mathrm{span}(\cdot)$ operates on more than just independent sets, so $\mathrm{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C) = \operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_B \leq \mathbf{1}_C \leq \mathbf{1}_{\mathrm{span}(C)}$, and that $\mathbf{1}_B \in P_r$. We can then make the definition:

$$\operatorname{sat}(\mathbf{1}_C) \triangleq \operatorname{sat}(\mathbf{1}_B) \text{ for } B \in \mathcal{B}(C)$$
 (13.6)

In which case, we also get $sat(\mathbf{1}_C) = span(C)$ (in general, could define sat(y) = sat(P-basis(y))).

• However, consider the following form

$$\operatorname{sat}(\mathbf{1}_C) = \bigcup \left\{ A : A \subseteq E, |A \cap C| = r(A) \right\} \tag{13.7}$$

- Now, consider a matroid (E,r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .
- $\mathrm{span}(\cdot)$ operates on more than just independent sets, so $\mathrm{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C) = \operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_B \leq \mathbf{1}_C \leq \mathbf{1}_{\mathrm{span}(C)}$, and that $\mathbf{1}_B \in P_r$. We can then make the definition:

$$\operatorname{sat}(\mathbf{1}_C) \triangleq \operatorname{sat}(\mathbf{1}_B) \text{ for } B \in \mathcal{B}(C)$$
 (13.6)

In which case, we also get $sat(\mathbf{1}_C) = span(C)$ (in general, could define sat(y) = sat(P-basis(y))).

However, consider the following form

$$\operatorname{sat}(\mathbf{1}_C) = \bigcup \left\{ A : A \subseteq E, |A \cap C| = r(A) \right\}$$
 (13.7)

Exercise: is $\operatorname{span}(C) = \operatorname{sat}(\mathbf{1}_C)$? Prove or disprove it.

The sat function, span, and submodular function minimization

• Thus, for a matroid, $sat(\mathbf{1}_I)$ is exactly the closure (or span) of I in the matroid. I.e., for matroid (E, r), we have $span(I) = sat(\mathbf{1}_B)$.

The sat function, span, and submodular function minimization

- Thus, for a matroid, $\operatorname{sat}(\mathbf{1}_I)$ is exactly the closure (or span) of I in the matroid. I.e., for matroid (E,r), we have $\operatorname{span}(I) = \operatorname{sat}(\mathbf{1}_B)$.
- Recall, for $x \in P_f$ and polymatroidal f, $\operatorname{sat}(x)$ is the maximal (by inclusion) minimizer of f(A) x(A), and thus in a matroid, $\operatorname{span}(I)$ is the maximal minimizer of the submodular function formed by $r(A) \mathbf{1}_I(A)$.

The sat function, span, and submodular function minimization

- Thus, for a matroid, $\operatorname{sat}(\mathbf{1}_I)$ is exactly the closure (or span) of I in the matroid. I.e., for matroid (E,r), we have $\operatorname{span}(I) = \operatorname{sat}(\mathbf{1}_B)$.
- Recall, for $x \in P_f$ and polymatroidal f, $\operatorname{sat}(x)$ is the maximal (by inclusion) minimizer of f(A) x(A), and thus in a matroid, $\operatorname{span}(I)$ is the maximal minimizer of the submodular function formed by $r(A) \mathbf{1}_I(A)$.
- Submodular function minimization can solve "span" queries in a matroid or "sat" queries in a polymatroid.

• We are given an $x \in P_f^+$ for submodular function f.

- We are given an $x \in P_f^+$ for submodular function f.
- Recall that for such an x, sat(x) is defined as

$$sat(x) = \bigcup \{A : x(A) = f(A)\}$$
 (13.8)

- We are given an $x \in P_f^+$ for submodular function f.
- Recall that for such an x, sat(x) is defined as

$$sat(x) = \bigcup \{A : x(A) = f(A)\}$$
 (13.8)

• We also have stated that sat(x) can be defined as:

$$\operatorname{sat}(x) = \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
 (13.9)

- We are given an $x \in P_f^+$ for submodular function f.
- Recall that for such an x, sat(x) is defined as

$$sat(x) = \bigcup \{A : x(A) = f(A)\}$$
 (13.8)

• We also have stated that sat(x) can be defined as:

$$\operatorname{sat}(x) = \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
 (13.9)

• We next show more formally that these are the same.

• Lets start with one definition and derive the other.

 $\operatorname{sat}(x)$

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
 (13.10)

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
 (13.10)

$$= \{e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
 (13.11)

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$
(13.10)

$$= \{0. \forall \alpha > 0, \exists 1 \text{ s.c. } (\alpha + \alpha \mathbf{1}_{\theta})(1) > f(1)\}$$
 (13.11)

=
$$\{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
 (13.12)

Lets start with one definition and derive the other.

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

• this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$.

Lets start with one definition and derive the other.

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$(13.10)$$

• this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$. Continuing, we get

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$$
 (13.13)

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$(13.10)$$

- this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$. Continuing, we get $\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$ (13.13)
- given that $x \in P_f^+$, meaning $x(A) \le f(A)$ for all A, we must have
- $\operatorname{sat}(x)$

Lets start with one definition and derive the other.

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$(13.10)$$

• this last bit follows since $\mathbf{1}_e(A)=1\iff e\in A$. Continuing, we get

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$$
 (13.13)

ullet given that $x\in P_f^+$, meaning $x(A)\leq f(A)$ for all A, we must have

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (13.14)

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$
(13.10)

$$= \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
 (13.12)

• this last bit follows since
$$\mathbf{1}_e(A) = 1 \iff e \in A$$
. Continuing, we get

- $\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$ (13.13)
- given that $x \in P_f^+$, meaning $x(A) \le f(A)$ for all A, we must have

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (13.14)

$$= \{e : \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (13.15)

Lets start with one definition and derive the other.

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$
(13.10)

$$= \{a : \forall a > 0 \exists A \ni a : t \mid (x + a \cdot 1)(A) > f(A)\}$$
 (12.11)

$$= \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
 (13.12)

• this last bit follows since $\mathbf{1}_e(A)=1\iff e\in A$. Continuing, we get

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$$
 (13.13)

 \bullet given that $x \in P_f^+$, meaning $x(A) \leq f(A)$ for all A , we must have

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (13.14)

$$= \{e : \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (13.15)

ullet So now, if A is any set such that x(A)=f(A), then we clearly have

(13.16)

Lets start with one definition and derive the other.

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$
(13.10)

$$= \{e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\} \tag{13.11}$$

$$= \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\} \quad (13.12)$$

• this last bit follows since $\mathbf{1}_e(A)=1\iff e\in A$. Continuing, we get

$$\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$$
 (13.13)

ullet given that $x\in P_f^+$, meaning $x(A)\leq f(A)$ for all A, we must have

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (13.14)

$$= \{e : \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (13.15)

ullet So now, if A is any set such that x(A)=f(A), then we clearly have

$$\forall e \in A, e \in \text{sat}(x), \tag{13.16}$$

Lets start with one definition and derive the other.

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$
(13.10)

$$= \{a : \forall a > 0 \exists A \ni a = f \mid (m + a) \mid (A) > f(A)\}$$
 (12.13)

$$= \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
 (13.12)

• this last bit follows since $\mathbf{1}_e(A)=1\iff e\in A$. Continuing, we get

$$\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$$
 (13.13)

 \bullet given that $x \in P_f^+$, meaning $x(A) \leq f(A)$ for all A, we must have

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (13.14)

$$= \{e : \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (13.15)

ullet So now, if A is any set such that x(A)=f(A), then we clearly have

$$\forall e \in A, e \in \operatorname{sat}(x), \text{ and therefore that } \operatorname{sat}(x) \supseteq A$$
 (13.16)

• ... and therefore, with sat as defined in Eq. (??),

$$\operatorname{sat}(x) \supseteq \bigcup \left\{ A : x(A) = f(A) \right\} \tag{13.17}$$

• ... and therefore, with sat as defined in Eq. (??),

$$\operatorname{sat}(x) \supseteq \bigcup \left\{ A : x(A) = f(A) \right\} \tag{13.17}$$

• On the other hand, for any $e \in \operatorname{sat}(x)$ defined as in Eq. (13.15), since e is itself a member of a tight set, there is a set $A \ni e$ such that x(A) = f(A), giving

$$\operatorname{sat}(x) \subseteq \bigcup \left\{ A : x(A) = f(A) \right\} \tag{13.18}$$

• ... and therefore, with sat as defined in Eq. (??),

$$\operatorname{sat}(x) \supseteq \bigcup \left\{ A : x(A) = f(A) \right\} \tag{13.17}$$

• On the other hand, for any $e \in \operatorname{sat}(x)$ defined as in Eq. (13.15), since e is itself a member of a tight set, there is a set $A \ni e$ such that x(A) = f(A), giving

$$\operatorname{sat}(x) \subseteq \bigcup \left\{ A : x(A) = f(A) \right\} \tag{13.18}$$

• Therefore, the two definitions of sat are identical.

• Another useful concept is saturation capacity which we develop next.

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_f$, and $e \in E$, consider finding

$$\max\left\{\alpha:\alpha\in\mathbb{R},x+\alpha\mathbf{1}_{e}\in P_{f}\right\} \tag{13.19}$$

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_f$, and $e \in E$, consider finding

$$\max\left\{\alpha:\alpha\in\mathbb{R},x+\alpha\mathbf{1}_e\in P_f\right\} \tag{13.19}$$

This is identical to:

$$\max \{ \alpha : (x + \alpha \mathbf{1}_e)(A) \le f(A), \forall A \supseteq \{e\} \}$$
 (13.20)

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_e$ adjustment, meaning $(x + \alpha \mathbf{1}_e)(B) = x(B)$.

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_f$, and $e \in E$, consider finding

$$\max\left\{\alpha:\alpha\in\mathbb{R},x+\alpha\mathbf{1}_e\in P_f\right\} \tag{13.19}$$

This is identical to:

$$\max \{\alpha : (x + \alpha \mathbf{1}_e)(A) \le f(A), \forall A \supseteq \{e\}\}$$
 (13.20)

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_e$ adjustment, meaning $(x + \alpha \mathbf{1}_e)(B) = x(B)$.

Again, this is identical to:

$$\max \{\alpha : x(A) + \alpha \le f(A), \forall A \supseteq \{e\}\}$$
 (13.21)

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_f$, and $e \in E$, consider finding

$$\max \{\alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f\}$$
 (13.19)

This is identical to:

$$\max \{\alpha : (x + \alpha \mathbf{1}_e)(A) \le f(A), \forall A \supseteq \{e\}\}$$
 (13.20)

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_e$ adjustment, meaning $(x + \alpha \mathbf{1}_e)(B) = x(B)$.

Again, this is identical to:

$$\max \{\alpha : x(A) + \alpha \le f(A), \forall A \ge \{e\}\}$$
 (13.21)

or

$$\max \{\alpha : \alpha \le f(A) - x(A), \forall A \supseteq \{e\}\}$$
 (13.22)

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
 (13.23)

The max is achieved when

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
 (13.23)

• $\hat{c}(x;e)$ is known as the saturation capacity associated with $x \in P_f$ and e.

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
 (13.23)

- $\hat{c}(x;e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \ni e \right\}$$
 (13.24)

$$= \max \left\{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \right\}$$
 (13.25)

The max is achieved when

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
 (13.23)

- $\hat{c}(x;e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \ni e \right\}$$
 (13.24)

$$= \max \{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \}$$
 (13.25)

• We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x;e) > 0$.

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
 (13.23)

- $\hat{c}(x;e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \ni e \right\}$$
 (13.24)

$$= \max \left\{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \right\}$$
 (13.25)

- We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x;e) > 0$.
- Also, for $e \in \operatorname{sat}(x)$, we have that $\hat{c}(x;e) = 0$.

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
 (13.23)

- $\hat{c}(x;e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \ni e \right\}$$
 (13.24)

$$= \max \left\{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \right\}$$
 (13.25)

- We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x;e) > 0$.
- Also, for $e \in \operatorname{sat}(x)$, we have that $\hat{c}(x;e) = 0$.
- Note that any α with $0 \le \alpha \le \hat{c}(x; e)$ we have $x + \alpha \mathbf{1}_e \in P_f$.

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
 (13.23)

- $\hat{c}(x;e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \ni e \right\} \tag{13.24}$$

$$= \max \{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \}$$
 (13.25)

- We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x;e) > 0$.
- Also, for $e \in \operatorname{sat}(x)$, we have that $\hat{c}(x;e) = 0$.
- Note that any α with $0 \le \alpha \le \hat{c}(x; e)$ we have $x + \alpha \mathbf{1}_e \in P_f$.
- We also see that computing $\hat{c}(x;e)$ is a form of submodular function minimization.

• Tight sets can be restricted to contain a particular element.

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_f$, and $e \in sat(x)$, define

$$\mathcal{D}(x,e) = \{A : e \in A \subseteq E, x(A) = f(A)\}$$
(13.26)

$$= \mathcal{D}(x) \cap \{A : A \subseteq E, e \in A\}$$
 (13.27)

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_f$, and $e \in \operatorname{sat}(x)$, define

$$\mathcal{D}(x,e) = \{ A : e \in A \subseteq E, x(A) = f(A) \}$$

$$= \mathcal{D}(x) \cap \{ A : A \subseteq E, e \in A \}$$
(13.26)

• Thus, $\mathcal{D}(x,e) \subseteq \mathcal{D}(x)$, and $\mathcal{D}(x,e)$ is a sublattice of $\mathcal{D}(x)$.

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_f$, and $e \in sat(x)$, define

$$\mathcal{D}(x,e) = \{ A : e \in A \subseteq E, x(A) = f(A) \}$$

$$= \mathcal{D}(x) \cap \{ A : A \subseteq E, e \in A \}$$
(13.26)

- Thus, $\mathcal{D}(x,e) \subseteq \mathcal{D}(x)$, and $\mathcal{D}(x,e)$ is a sublattice of $\mathcal{D}(x)$.
- Therefore, we can define a unique minimal element of $\mathcal{D}(x,e)$ denoted as follows:

$$dep(x,e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$$
(13.28)

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_f$, and $e \in sat(x)$, define

$$\mathcal{D}(x,e) = \{ A : e \in A \subseteq E, x(A) = f(A) \}$$

$$= \mathcal{D}(x) \cap \{ A : A \subseteq E, e \in A \}$$
(13.26)

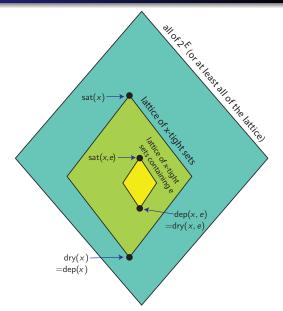
- Thus, $\mathcal{D}(x,e)\subseteq\mathcal{D}(x)$, and $\mathcal{D}(x,e)$ is a sublattice of $\mathcal{D}(x)$.
- Therefore, we can define a unique minimal element of $\mathcal{D}(x,e)$ denoted as follows:

$$\operatorname{dep}(x,e) = \begin{cases} \bigcap \left\{ A : e \in A \subseteq E, x(A) = f(A) \right\} & \text{if } e \in \operatorname{sat}(x) \\ \emptyset & \text{else} \end{cases}$$

$$(13.28)$$

• I.e., dep(x, e) is the minimal element in $\mathcal{D}(x)$ that contains e (the minimal x-tight set containing e).

- Given some $x \in P_f$,
- The picture on the right summarizes the relationships between the lattices and sublattices.
- Note, $\bigcap_{e} \operatorname{dep}(x, e) = \operatorname{dep}(x).$



• Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A: x(A) = f(A)\}$

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\}\$ is the "1" element of this lattice.

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\}\$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $\mathrm{dry}(x) \stackrel{\mathrm{def}}{=} \bigcap \{A : A \in \mathcal{D}(x)\}$

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $\mathrm{dry}(x) \stackrel{\mathrm{def}}{=} \bigcap \{A: A \in \mathcal{D}(x)\}$
- We can see dry(x) as the elements that are necessary for tightness.

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\operatorname{sat}(x) = \bigcup \{A: A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $\mathrm{dry}(x) \stackrel{\mathrm{def}}{=} \bigcap \{A : A \in \mathcal{D}(x)\}$
- ullet We can see $\mathrm{dry}(x)$ as the elements that are necessary for tightness.
- ullet That is, we can equivalently define $\mathrm{dry}(x)$ as

$$dry(x) = \left\{ e' : x(A) < f(A), \forall A \not\ni e' \right\}$$
 (13.29)

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $\mathrm{dry}(x) \stackrel{\mathrm{def}}{=} \bigcap \{A : A \in \mathcal{D}(x)\}$
- ullet We can see $\mathrm{dry}(x)$ as the elements that are necessary for tightness.
- That is, we can equivalently define dry(x) as

$$dry(x) = \left\{ e' : x(A) < f(A), \forall A \not\ni e' \right\}$$
 (13.29)

• This can be read as, for any $e' \in dry(x)$, any set that does not contain e' is not tight for x (any set A that is missing any element of dry(x) is not tight).

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $\mathrm{dry}(x) \stackrel{\mathrm{def}}{=} \bigcap \{A: A \in \mathcal{D}(x)\}$
- ullet We can see $\mathrm{dry}(x)$ as the elements that are necessary for tightness.
- ullet That is, we can equivalently define $\mathrm{dry}(x)$ as

$$dry(x) = \{e' : x(A) < f(A), \forall A \not\ni e'\}$$
 (13.29)

- This can be read as, for any $e' \in dry(x)$, any set that does not contain e' is not tight for x (any set A that is missing any element of dry(x) is not tight).
- Perhaps, then, a better name for dry is ntight(x), for the necessary for tightness (but we'll actually use neither name).

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\operatorname{sat}(x) = \bigcup \{A: A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $\mathrm{dry}(x) \stackrel{\mathrm{def}}{=} \bigcap \{A: A \in \mathcal{D}(x)\}$
- ullet We can see $\mathrm{dry}(x)$ as the elements that are necessary for tightness.
- That is, we can equivalently define dry(x) as

$$dry(x) = \left\{ e' : x(A) < f(A), \forall A \not\ni e' \right\}$$
 (13.29)

- This can be read as, for any $e' \in dry(x)$, any set that does not contain e' is not tight for x (any set A that is missing any element of dry(x) is not tight).
- Perhaps, then, a better name for dry is ntight(x), for the necessary for tightness (but we'll actually use neither name).
- Note that dry need not be the empty set. Exercise: give example.

• Now, given $x \in P_f$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x,e) = \{A : e \in A, x(A) = f(A)\}$

- Now, given $x \in P_f$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x,e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x,e) \stackrel{\text{def}}{=} \bigcup \{A: A \in \mathcal{D}(x,e)\}.$

- Now, given $x \in P_f$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x,e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x,e) \stackrel{\text{def}}{=} \bigcup \{A: A \in \mathcal{D}(x,e)\}.$
- Analogously, we can define the "0" element of this sub-lattice as $\operatorname{dry}(x,e) \stackrel{\text{def}}{=} \bigcap \{A: A \in \mathcal{D}(x,e)\}.$

- Now, given $x \in P_f$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x,e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x,e) \stackrel{\text{def}}{=} \bigcup \{A: A \in \mathcal{D}(x,e)\}.$
- Analogously, we can define the "0" element of this sub-lattice as $\operatorname{dry}(x,e) \stackrel{\text{def}}{=} \bigcap \{A: A \in \mathcal{D}(x,e)\}.$
- We can see dry(x, e) as the elements that are necessary for e-containing tightness, with $e \in sat(x)$.

- Now, given $x \in P_f$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x,e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $sat(x,e) \stackrel{\text{def}}{=} \bigcup \{A: A \in \mathcal{D}(x,e)\}.$
- Analogously, we can define the "0" element of this sub-lattice as $\operatorname{dry}(x,e) \stackrel{\mathrm{def}}{=} \bigcap \{A: A \in \mathcal{D}(x,e)\}.$
- We can see dry(x, e) as the elements that are necessary for e-containing tightness, with $e \in sat(x)$.
- That is, we can view dry(x, e) as

$$dry(x, e) = \{e' : x(A) < f(A), \forall A \not\ni e', e \in A\}$$
 (13.30)

- Now, given $x \in P_f$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x,e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x,e) \stackrel{\text{def}}{=} \bigcup \{A: A \in \mathcal{D}(x,e)\}.$
- Analogously, we can define the "0" element of this sub-lattice as $\operatorname{dry}(x,e) \stackrel{\mathrm{def}}{=} \bigcap \{A: A \in \mathcal{D}(x,e)\}.$
- We can see dry(x, e) as the elements that are necessary for e-containing tightness, with $e \in sat(x)$.
- That is, we can view dry(x, e) as

$$dry(x,e) = \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\}$$
 (13.30)

• This can be read as, for any $e' \in dry(x, e)$, any e-containing set that does not contain e' is not tight for x.

- Now, given $x \in P_f$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x,e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x,e) \stackrel{\text{def}}{=} \bigcup \{A: A \in \mathcal{D}(x,e)\}.$
- Analogously, we can define the "0" element of this sub-lattice as $\operatorname{dry}(x,e) \stackrel{\text{def}}{=} \bigcap \{A: A \in \mathcal{D}(x,e)\}.$
- We can see dry(x, e) as the elements that are necessary for e-containing tightness, with $e \in sat(x)$.
- ullet That is, we can view $\mathrm{dry}(x,e)$ as

$$dry(x, e) = \{e' : x(A) < f(A), \forall A \not\ni e', e \in A\}$$
 (13.30)

- This can be read as, for any $e' \in dry(x, e)$, any e-containing set that does not contain e' is not tight for x.
- But actually, dry(x, e) = dep(x, e), so we have derived another expression for dep(x, e) in Eq. (13.30).

• Now, let $(E, \mathcal{I}) = (E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_I \in P_r$. We have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I) = \operatorname{closure}(I)$.

- Now, let $(E,\mathcal{I})=(E,r)$ be a matroid, and let $I\in\mathcal{I}$ giving $\mathbf{1}_I\in P_r.$ We have $\mathrm{sat}(\mathbf{1}_I)=\mathrm{span}(I)=\mathrm{closure}(I).$
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.

- Now, let $(E,\mathcal{I})=(E,r)$ be a matroid, and let $I\in\mathcal{I}$ giving $\mathbf{1}_I\in P_r.$ We have $\mathrm{sat}(\mathbf{1}_I)=\mathrm{span}(I)=\mathrm{closure}(I).$
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.
- Then $I \cap A$ serves as a base for A (i.e., $I \cap A$ spans A) and any such A contains a circuit (i.e., we can add $e \in A \setminus I$ to $I \cap A$ w/o increasing rank).

- Now, let $(E, \mathcal{I}) = (E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_I \in P_r$. We have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I) = \operatorname{closure}(I)$.
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.
- Then $I \cap A$ serves as a base for A (i.e., $I \cap A$ spans A) and any such A contains a circuit (i.e., we can add $e \in A \setminus I$ to $I \cap A$ w/o increasing rank).
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, and consider $\operatorname{dep}(\mathbf{1}_I, e)$, with

$$dep(\mathbf{1}_I, e) = \bigcap \{A : e \in A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
(13.31)

$$= \bigcap \{A : e \in A \subseteq E, |I \cap A| = r(A)\}$$
 (13.32)

$$= \bigcap \{A : e \in A \subseteq E, r(A) - |I \cap A| = 0\}$$
 (13.33)

- Now, let $(E,\mathcal{I})=(E,r)$ be a matroid, and let $I\in\mathcal{I}$ giving $\mathbf{1}_I\in P_r.$ We have $\mathrm{sat}(\mathbf{1}_I)=\mathrm{span}(I)=\mathrm{closure}(I).$
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.
- Then $I \cap A$ serves as a base for A (i.e., $I \cap A$ spans A) and any such A contains a circuit (i.e., we can add $e \in A \setminus I$ to $I \cap A$ w/o increasing rank).
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, and consider $\operatorname{dep}(\mathbf{1}_I, e)$, with

$$dep(\mathbf{1}_I, e) = \bigcap \{A : e \in A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
(13.31)

$$= \bigcap \{A : e \in A \subseteq E, |I \cap A| = r(A)\}$$
 (13.32)

$$= \bigcap \{A : e \in A \subseteq E, r(A) - |I \cap A| = 0\}$$
 (13.33)

• By SFM lattice, \exists a unique minimal $A \ni e$ with $|I \cap A| = r(A)$.

- Now, let $(E,\mathcal{I})=(E,r)$ be a matroid, and let $I\in\mathcal{I}$ giving $\mathbf{1}_I\in P_r.$ We have $\mathrm{sat}(\mathbf{1}_I)=\mathrm{span}(I)=\mathrm{closure}(I).$
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.
- Then $I \cap A$ serves as a base for A (i.e., $I \cap A$ spans A) and any such A contains a circuit (i.e., we can add $e \in A \setminus I$ to $I \cap A$ w/o increasing rank).
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, and consider $\operatorname{dep}(\mathbf{1}_I, e)$, with

$$dep(\mathbf{1}_I, e) = \bigcap \{A : e \in A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
(13.31)

$$= \bigcap \{A : e \in A \subseteq E, |I \cap A| = r(A)\}$$
 (13.32)

$$= \bigcap \{A : e \in A \subseteq E, r(A) - |I \cap A| = 0\}$$
 (13.33)

- By SFM lattice, \exists a unique minimal $A \ni e$ with $|I \cap A| = r(A)$.
- Thus, $dep(\mathbf{1}_I, e)$ must be a circuit since if it included more than a circuit, it would not be minimal in this sense.

• Therefore, when $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, then $\operatorname{dep}(\mathbf{1}_I, e) = C(I, e)$ where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).

- Therefore, when $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, then $\operatorname{dep}(\mathbf{1}_I, e) = C(I, e)$ where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}(\mathbf{1}_I) \cap I$ with $I \in \mathcal{I}$, we said that C(I,e) was undefined (since no circuit is created in this case) and so we defined it as $C(I,e) = \{e\}$

Dependence Function and Fundamental Matroid Circuit

- Therefore, when $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, then $\operatorname{dep}(\mathbf{1}_I, e) = C(I, e)$ where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}(\mathbf{1}_I) \cap I$ with $I \in \mathcal{I}$, we said that C(I,e) was undefined (since no circuit is created in this case) and so we defined it as $C(I,e) = \{e\}$
- In this case, for such an e, we have $dep(\mathbf{1}_I,e)=\{e\}$ since all such sets $A\ni e$ with $|I\cap A|=r(A)$ contain e, but in this case no cycle is created, i.e., $|I\cap A|\ge |I\cap \{e\}|=r(e)=1$.

Dependence Function and Fundamental Matroid Circuit

- Therefore, when $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, then $\operatorname{dep}(\mathbf{1}_I, e) = C(I, e)$ where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}(\mathbf{1}_I) \cap I$ with $I \in \mathcal{I}$, we said that C(I,e) was undefined (since no circuit is created in this case) and so we defined it as $C(I,e) = \{e\}$
- In this case, for such an e, we have $\operatorname{dep}(\mathbf{1}_I,e)=\{e\}$ since all such sets $A\ni e$ with $|I\cap A|=r(A)$ contain e, but in this case no cycle is created, i.e., $|I\cap A|\ge |I\cap \{e\}|=r(e)=1$.
- We are thus free to take subsets of I as A, all of which must contain e, but all of which have rank equal to size.

Dependence Function and Fundamental Matroid Circuit

- Therefore, when $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, then $\operatorname{dep}(\mathbf{1}_I, e) = C(I, e)$ where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}(\mathbf{1}_I) \cap I$ with $I \in \mathcal{I}$, we said that C(I,e) was undefined (since no circuit is created in this case) and so we defined it as $C(I,e) = \{e\}$
- In this case, for such an e, we have $\operatorname{dep}(\mathbf{1}_I,e)=\{e\}$ since all such sets $A\ni e$ with $|I\cap A|=r(A)$ contain e, but in this case no cycle is created, i.e., $|I\cap A|\ge |I\cap \{e\}|=r(e)=1$.
- We are thus free to take subsets of I as A, all of which must contain e, but all of which have rank equal to size.
- Also note: in general for $x \in P_f$ and $e \in \operatorname{sat}(x)$, we have $\operatorname{dep}(x,e)$ is tight by definition.

Summary of sat, and dep

• For $x \in P_f$, $\operatorname{sat}(x)$ (span, closure) is the maximal saturated (x-tight) set w.r.t. x. I.e., $\operatorname{sat}(x) = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$. That is,

$$\operatorname{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \triangleq \bigcup \{A : A \in \mathcal{D}(x)\}$$
 (13.34)

$$= \bigcup \left\{ A : A \subseteq E, x(A) = f(A) \right\} \tag{13.35}$$

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
 (13.36)

• For $e \in \text{sat}(x)$, we have dep(x, e) (fundamental circuit) is the minimal (common) saturated (x-tight) set w.r.t. x containing e. That is,

$$dep(x,e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$$
$$= \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f \}$$
(13.37)

• For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x + \alpha \mathbf{1}_e \notin P_f$ for $\alpha > 0$. This is a vector increase restriction property.

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x + \alpha \mathbf{1}_e \notin P_f$ for $\alpha > 0$. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x + \alpha \mathbf{1}_e \notin P_f$ for $\alpha > 0$. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \setminus I$, we have that

$$C(I, e) = \{a \in E : I + e - a \in \mathcal{I}\}$$
 (13.38)

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x + \alpha \mathbf{1}_e \notin P_f$ for $\alpha > 0$. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \setminus I$, we have that

$$C(I, e) = \{a \in E : I + e - a \in \mathcal{I}\}$$
 (13.38)

• I.e., an addition of e to I stays within \mathcal{I} only if we simultaneously remove one of the elements of C(I,e).

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x + \alpha \mathbf{1}_e \notin P_f$ for $\alpha > 0$. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \setminus I$, we have that

$$C(I, e) = \{ a \in E : I + e - a \in \mathcal{I} \}$$
 (13.38)

- I.e., an addition of e to I stays within \mathcal{I} only if we simultaneously remove one of the elements of C(I,e).
- But, analogous to the circuit case, is there an exchange property for dep(x, e) in the form of vector movement restriction?

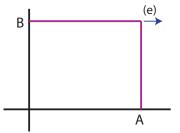
- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x + \alpha \mathbf{1}_e \notin P_f$ for $\alpha > 0$. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \setminus I$, we have that

$$C(I, e) = \{ a \in E : I + e - a \in \mathcal{I} \}$$
 (13.38)

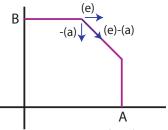
- I.e., an addition of e to I stays within \mathcal{I} only if we simultaneously remove one of the elements of C(I,e).
- But, analogous to the circuit case, is there an exchange property for dep(x, e) in the form of vector movement restriction?
- We might expect the vector dep(x,e) property to take the form: a positive move in the e-direction stays within P_f^+ only if we simultaneously take a negative move in one of the dep(x,e) directions.

• dep(x, e) is set of neg. directions we must move if we want to move in pos. e direction, starting at x and staying within P_f .

- dep(x, e) is set of neg. directions we must move if we want to move in pos. e direction, starting at x and staying within P_f .
- Viewable in 2D, we have for $A, B \subseteq E$, $A \cap B = \emptyset$:



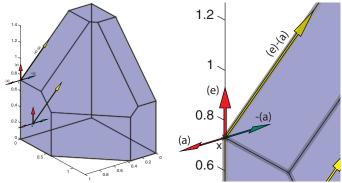
Left: $A \cap \operatorname{dep}(x, e) = \emptyset$, and we can't move further in (e) direction, and moving in any negative $a \in A$ direction doesn't change that. Notice no dependence between (e) and any element in A.



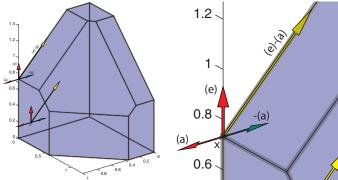
Right: $A \subseteq \operatorname{dep}(x,e)$, and we can't move further in the (e) direction, but we can move further in (e) direction by moving in some $a \in A$ negative direction. Notice dependence between (e) and elements in A.

• We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.

- We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.
- In 3D, we have:

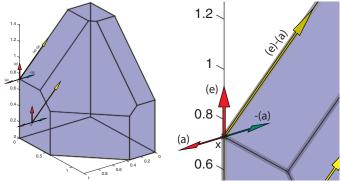


- We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.
- In 3D, we have:



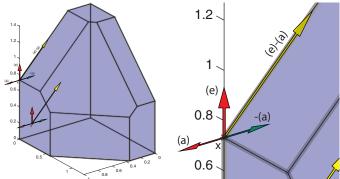
• I.e., for $e \in \operatorname{sat}(x)$, $a \in \operatorname{dep}(x, e)$, $e \notin \operatorname{dep}(x, a)$,

- We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.
- In 3D, we have:



• I.e., for $e \in \operatorname{sat}(x)$, $a \in \operatorname{dep}(x, e)$, $e \notin \operatorname{dep}(x, a)$, and $\operatorname{dep}(x, e) = \{a : a \in E, \exists \alpha > 0 : x + \alpha(\mathbf{1}_e - \mathbf{1}_a) \in P_f\}$ (13.39)

- We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.
- In 3D, we have:



- I.e., for $e \in \operatorname{sat}(x)$, $a \in \operatorname{dep}(x, e)$, $e \notin \operatorname{dep}(x, a)$, and $\operatorname{dep}(x, e) = \{a : a \in E, \exists \alpha > 0 : x + \alpha(\mathbf{1}_e \mathbf{1}_a) \in P_f\}$ (13.39)
- We next show this formally . . .

$$dep(x,e) = ntight(x,e) =$$
(13.40)

$$dep(x, e) = ntight(x, e) =$$

$$= \{e' : x(A) < f(A), \forall A \not\ni e', e \in A\}$$
(13.40)
(13.41)

$$dep(x,e) = ntight(x,e) =$$
 (13.40)

$$= \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\} \tag{13.41}$$

$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \le f(A) - x(A), \forall A \not\ni e', e \in A \right\}$$
 (13.42)

$$dep(x,e) = \mathsf{ntight}(x,e) = \tag{13.40}$$

$$= \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\} \tag{13.41}$$

$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \le f(A) - x(A), \forall A \not\ni e', e \in A \right\}$$
 (13.42)

$$= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_e(A) \le f(A) - x(A), \forall A \not\ni e', e \in A \right\}$$
 (13.43)

$$\begin{split} \operatorname{dep}(x,e) &= \operatorname{ntight}(x,e) = \\ &= \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_e(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_e(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} \\ &= \left\{ e$$

$$\begin{aligned} & \deg(x,e) = \mathsf{ntight}(x,e) = & (13.40) \\ & = \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\} & (13.41) \\ & = \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} & (13.42) \\ & = \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_e(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} & (13.43) \\ & = \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} & (13.44) \\ & = \left\{ e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A \right\} & (13.45) \end{aligned}$$

• The derivation for dep(x,e) involves turning a strict inequality into a non-strict one with a strict explicit slack variable α :

$$\begin{aligned} & \deg(x,e) = \mathsf{ntight}(x,e) = & (13.40) \\ & = \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\} & (13.41) \\ & = \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} & (13.42) \\ & = \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_e(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} & (13.43) \\ & = \left\{ e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A \right\} & (13.44) \\ & = \left\{ e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A \right\} & (13.45) \end{aligned}$$

• Now, $1_e(A) - 1_{e'}(A) = 0$ if either $\{e, e'\} \subseteq A$, or $\{e, e'\} \cap A = \emptyset$.

$$\begin{aligned} & \deg(x,e) = \mathsf{ntight}(x,e) = \\ & = \left\{e': x(A) < f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } \alpha \leq f(A) - x(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_e(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_e(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\right\} \\ & = \left\{e': \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A) + \alpha(\mathbf{1}_e$$

- Now, $1_e(A) 1_{e'}(A) = 0$ if either $\{e, e'\} \subseteq A$, or $\{e, e'\} \cap A = \emptyset$.
- Also, if $e' \in A$ but $e \notin A$, then $x(A) + \alpha(\mathbf{1}_e(A) \mathbf{1}_{e'}(A)) = x(A) \alpha \leq f(A)$ since $x \in P_f$.

• thus, we get the same in the above if we remove the constraint $A \not\ni e', e \in A$, that is we get

$$dep(x,e) = \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A), \forall A\}$$
(13.46)

• thus, we get the same in the above if we remove the constraint $A \not\ni e', e \in A$, that is we get

$$dep(x,e) = \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A), \forall A\}$$
(13.46)

This is then identical to

$$dep(x,e) = \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f\}$$
 (13.47)

• thus, we get the same in the above if we remove the constraint $A \not\ni e', e \in A$, that is we get

$$dep(x,e) = \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A), \forall A\}$$
(13.46)

This is then identical to

$$dep(x,e) = \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f\}$$
 (13.47)

• Compare with original, the minimal element of $\mathcal{D}(x,e)$, with $e \in \operatorname{sat}(x)$:

$$dep(x,e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$$
(13.48)

• Most violated inequality $\max \{x(A) - f(A) : A \subseteq E\}$

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I,e) \subseteq I+e$.

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I,e) \subseteq I + e$.
- Minimizers of submodular functions form a lattice.

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I,e) \subseteq I+e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I,e) \subseteq I+e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I,e) \subseteq I + e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- sat function & Closure

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I,e) \subseteq I+e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- sat function & Closure
- Saturation Capacity

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I,e) \subseteq I+e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- sat function & Closure
- Saturation Capacity
- e-containing tight sets

- Most violated inequality $\max \{x(A) f(A) : A \subseteq E\}$
- Matroid by circuits, and the fundamental circuit $C(I,e) \subseteq I + e$.
- Minimizers of submodular functions form a lattice.
- Minimal and maximal element of a lattice.
- x-tight sets, maximal and minimal tight set.
- sat function & Closure
- Saturation Capacity
- e-containing tight sets
- dep function & fundamental circuit of a matroid

• x-tight sets: For $x \in P_f$, $\mathcal{D}(x) = \{A \subseteq E : x(A) = f(A)\}.$

- x-tight sets: For $x \in P_f$, $\mathcal{D}(x) = \{A \subseteq E : x(A) = f(A)\}.$
- Polymatroid closure/maximal x-tight set: For $x \in P_f$, $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\} = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}.$

- x-tight sets: For $x \in P_f$, $\mathcal{D}(x) = \{A \subseteq E : x(A) = f(A)\}.$
- Polymatroid closure/maximal x-tight set: For $x \in P_f$, $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\} = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}.$
- Saturation capacity: for $x \in P_f$, $0 \le \hat{c}(x; e) = \min\{f(A) x(A) | \forall A \ni e\} = \max\{\alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f\}$

- x-tight sets: For $x \in P_f$, $\mathcal{D}(x) = \{A \subseteq E : x(A) = f(A)\}.$
- Polymatroid closure/maximal x-tight set: For $x \in P_f$, $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\} = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}.$
- Saturation capacity: for $x \in P_f$, $0 \le \hat{c}(x; e) = \min \{ f(A) x(A) | \forall A \ni e \} = \max \{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \}$
- Recall: $sat(x) = \{e : \hat{c}(x; e) = 0\}$ and $E \setminus sat(x) = \{e : \hat{c}(x; e) > 0\}.$

- x-tight sets: For $x \in P_f$, $\mathcal{D}(x) = \{A \subseteq E : x(A) = f(A)\}.$
- Polymatroid closure/maximal x-tight set: For $x \in P_f$, $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\} = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}.$
- Saturation capacity: for $x \in P_f$, $0 \le \hat{c}(x; e) = \min \{f(A) x(A) | \forall A \ni e\} = \max \{\alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f\}$
- Recall: $sat(x) = \{e : \hat{c}(x; e) = 0\}$ and $E \setminus sat(x) = \{e : \hat{c}(x; e) > 0\}.$
- e-containing x-tight sets: For $x \in P_f$, $\mathcal{D}(x,e) = \{A : e \in A \subseteq E, x(A) = f(A)\} \subseteq \mathcal{D}(x)$.

- x-tight sets: For $x \in P_f$, $\mathcal{D}(x) = \{A \subseteq E : x(A) = f(A)\}.$
- Polymatroid closure/maximal x-tight set: For $x \in P_f$, $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\} = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}.$
- Saturation capacity: for $x \in P_f$, $0 \le \hat{c}(x; e) = \min \{ f(A) x(A) | \forall A \ni e \} = \max \{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \}$
- Recall: $sat(x) = \{e : \hat{c}(x; e) = 0\}$ and $E \setminus sat(x) = \{e : \hat{c}(x; e) > 0\}.$
- e-containing x-tight sets: For $x \in P_f$, $\mathcal{D}(x,e) = \{A : e \in A \subseteq E, x(A) = f(A)\} \subseteq \mathcal{D}(x).$
- $\begin{aligned} & \text{Minimal } e\text{-containing } x\text{-tight set/polymatroidal fundamental} \\ & \text{circuit/: For } x \in P_f, \\ & \text{dep}(x,e) = \begin{cases} \bigcap \{A: e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in \text{sat}(x) \\ \emptyset & \text{else} \end{cases} \\ & = \{e': \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e \mathbf{1}_{e'}) \in P_f\} \end{aligned}$