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Logistics
(NN}

Cumulative Outstanding Reading

e Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.

@ Read Tom McCormick's overview paper on SFM http://people.
commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

@ Read chapters 1 - 4 from Fujishige book.

@ Matroid properties http:
//www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf
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Announcements, Assignments, and Reminders

@ Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics
(W1

Class Road Map - IT-I

@ L1 (3/31): Motivation, Applications, &
Basic Definitions

@ L2: (4/2): Applications, Basic
Definitions, Properties

@ L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

@ L4: proofs of equivalent definitions,
independence, start matroids

@ L5: matroids, basic definitions and
examples

@ L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

@ L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

@ L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

@ L9: From Matroid Polytopes to
Polymatroids.

@ L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, exchange
capacity, minimum norm point algorithm
and the lattice of minimizers of a
submodular function, Lovasz extension
L16:

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Review
[ERNRRRERN

Tight sets D(y) are closed, and max tight set sat(y)
Recall the definition of the set of tight sets at y € Pf+:

D(y) ={A: ACE, y(A) = f(A)} (13.18)

Theorem 13.2.1

For any y € P;, with f a polymatroid function, then D(y) is closed
under union and intersection.

We have already proven this as part of Theorem 7?7 []

Also recall the definition of sat(y), the maximal set of tight elements
relative to y € Rf.

sat(y) € | J{T : T € D(y)} (13.19)
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Review
NNRRNRRYE

Fundamental circuits in matroids

Let I € Z(M), and e € E, then I U {e} contains at most one circuit in
M.

@ Suppose, to the contrary, that there are two distinct circuits C, Co
such that C1 UCy C I U {e}.

@ Then e € C1 N Cy, and by (C2), there is a circuit C3 of M s.t.
C3 C (01U02)\{€} cI

@ This contradicts the independence of I.

In general, let C(I,e) be the unique circuit associated with I U {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Review
NI RRNRRYE

Matroid Partition Problem

Theorem 13.2.1

Let M; be a collection of k matroids as described. Then, a set S C FE
can be partitioned into k subsets I;,i =1...k where I; € Z; is
independent in matroid i, if and only if, for all A C S

k
|A] < Zri(A) (13.1)

where r; is the rank function of M;.

@ Now, if all matroids are the same M; = M for all 4, we get condition
|A| < kr(A) VACE (13.2)

@ But considering vector of all ones 1 € RZ, this is the same as

FIAl = T1(4) < r(4) VAC E (13.3)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 13 - May 14th, 2014 F7/38 (pg.7/152)



Review
INNTANRRYE

Polymatroidal polyhedron and greedy

@ Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem 77?)

Theorem 13.2.1

If f:2F R, is given, and P is a polytope in Rf of the form

P ={zeRY :2(A) < f(A),YA C E}, then the greedy solution to the
problem max(wzx : x € P) is Yw optimum iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).
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Review
INNRR RRNR

Base Polytope in 3D

Py ={x e R : 2(S) < f(S),VS C E} (13.5)
By=P;n{zr e R¥ : z(E) = f(B)} (13.6)
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Review
INNRNR ARNE

Polymatroid extreme points

Theorem 13.2.1

For a given ordering E = (eq,...,ey) of E and a given E; = (e, ..., €;)
and = generated by E; using the greedy procedure (x(e;) = f(ei|Ei-1)),
then x is an extreme point of Py

o We already saw that « € Py (Theorem 7).

@ To show that x is an extreme point of Py, note that it is the unique
solution of the following system of equations

z(Ej) = f(E;) for 1 <j<i<m (13.9)
z(e) =0foree E\ E; (13.10)

There are i < m equations and ¢ < m unknowns, and simple
Gaussian elimination gives us back the z constructed via the Greedy

algorithm!!
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Review
INNRNNE AR

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 13.2.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} C B CU(A: z(A) = f(A)) = sat(x),
then x is generated using greedy by some ordering of B.

o Note, sat(z) =cl(x) = U(A: x(A) = f(A)) is also called the
closure of = (recall that sets A such that z(A) = f(A) are called
tight, and such sets are closed under union and intersection, as seen
in Lecture 8, Theorem 77)

@ Thus, cl(x) is a tight set.
@ Also, supp(z) ={e € E: z(e) # 0} is called the support of z.

e For arbitrary x, supp(x) is not necessarily tight, but for an extreme
point, supp(x) is.
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INNRNRRY AR

Polymatroid with labeled edge lengths

@ Recall f(e|A) =
f(A+e) = f(A)

@ Notice how
submodularity,
f(e|B) < f(e|A) for
A C B, defines the
shape of the polytope.

@ In fact, we have
strictness here
f(e|B) < f(e|A) for
AC B.

@ Also, consider how the
greedy algorithm
proceeds along the
edges of the polytope.

(‘3l%a)

flee) a

(‘a2
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Minimizers of a Submodular Function form a lattice

Theorem 13.2.2

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of
minimizers of f. Let A, B € M. Then AUB € M and AN B € M.

Proof.
Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(A) =f(B) < f(AUB).

By submodularity, we have

f(A)+ f(B) =2 f(AUB) + f(AN B) (13.8)

Hence, we must have f(A) = f(B) = f(AUB) = f(AN B). O

Thus, the minimizers of a submodular function form a lattice, and there
is a maximal and a minimal minimizer of every submodular function.
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Review
(NNRNRRRN |

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation
function).

@ For some x € Py, we have defined:

cl(z) € sat(z) € | J{A: A € D(x)} (13.8)
= J{A:ACE x(A) = f(A)} (13.9)
={e:ec ENa>0,z+al. ¢ Pf}  (13.10)

@ Hence, sat(z) is the maximal (zero-valued) minimizer of the
submodular function f,(A) = f(A) — z(A).

e Eq. (??) says that sat consists of any point x that is Py saturated
(any additional positive movement, in that dimension, leaves Pf).
We'll revisit this in a few slides.

o First, we see how sat generalizes matroid closure.
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Closure/Sat
[NRNRARNRN

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 1; € P, and

D(1s) = {A: 1,(4) = r(4)} (13.1)
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Closure/Sat
[NRNRARNRN

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and
D(1;)={A:1;(A) =r(4)} (13.1)
and

sat(1y)
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Closure/Sat
[NRNRARNRN

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and
D(1;)={A:1;(A) =r(4)} (13.1)
and

sat(1y) = J{4: AC E, A€ D(1,)} (13.2)
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Closure/Sat
[NRNRARNRN

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and

D(1;) = {A:1;(A) =r(A)} (13.1)
and

sat(1;) = J{4: AC E, A€ D(1,)} (13.2)

=J{A: ACE 1,(4) =r(A)} (13.3)
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Closure/Sat
[NRNRARNRN

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and

D(1;) = {A:1;(A) =r(A)} (13.1)
and

sat(1;) = J{4: AC E, A€ D(1,)} (13.2)

=J{A: ACE 1,(4) =r(A)} (13.3)

=J{A: ACE |InAl=r(A)} (13.4)
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Closure/Sat
[NRNRARNRN

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and

D(1;) = {A:1;(A) =r(A)} (13.1)
and

sat(1;) = J{4: AC E, A€ D(1,)} (13.2)

=J{A: ACE 1,(4) =r(A)} (13.3)

=J{A:ACE|InA =rA)} (13.4)

e Notice that 1;(A) = [INA| < |I].
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Closure/Sat
[NRNRARNRN

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and

D(1;) = {A:1;(A) =r(A)} (13.1)
and

sat(1;) = J{4: AC E, A€ D(1,)} (13.2)

=J{A: ACE 1,(4) =r(A)} (13.3)

=J{A:ACE|InA =rA)} (13.4)

e Notice that 1;(A) = [INA| < |I].

@ Intuitively, consider an A D I € 7 that doesn’t increase rank,
meaning 7(A) =r(I). If r(A) =|INA|=r(INA), asin
Eqn. (13.4), then A is in I's span, so should get sat(1;) = span(/).
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Closure/Sat
[NRNRARNRN

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and

D(1;) = {A:1;(A) =r(A)} (13.1)
and

sat(1;) = J{4: AC E, A€ D(1,)} (13.2)

=J{A: ACE 1,(4) =r(A)} (13.3)

=J{A:ACE|InA =rA)} (13.4)

e Notice that 1;(A) = [INA| < |I].
@ Intuitively, consider an A D I € 7 that doesn’t increase rank,
meaning 7(A) =r(I). If r(A) =|INA|=r(INA), asin
Eqn. (13.4), then A is in I's span, so should get sat(1;) = span(I).
@ We formalize this next.
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Closure/Sat
[LNANRRRNR!

The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid sat : RY — 2% is the same as closure.)

For I € T, we have sat(1;) = span(]) (13.5)
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Closure/Sat
[LNANRRRNR!

The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid sat : RY — 2% is the same as closure.)

For I € T, we have sat(1;) = span(]) (13.5)

@ For 1;(I) =|I| =7r(I),so I € D(1y) and I C sat(1). Also,
I Cspan([).
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Closure/Sat
[LNANRRRNR!

The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid sat : RY — 2% is the same as closure.)

For I € T, we have sat(1;) = span(]) (13.5)

@ For1;(I)=|I|=r(I),so I € D(1;) and I C sat(1;). Also,
I C span([).
@ Consider some b € span(/) \ /.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 13 - May 14th, 2014 F16/38 (pg.25/152)



Closure/Sat
[LNANRRRNR!

The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid sat : RY — 2% is the same as closure.)

For I € T, we have sat(1;) = span(]) (13.5)

@ For 1;(I) =|I|=7r(I),so I € D(1y) and I C sat(1). Also,
I C span([).
o Consider some b € span(I) \ 1.
@ Then I U{b} € D(11) since 1;(I U {b}) = |I| = r(I U {b}) = r(I).
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Closure/Sat
[LNANRRRNR!

The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid sat : RY — 2% is the same as closure.)

For I € T, we have sat(1;) = span(]) (13.5)

@ For 1;(I) =|I|=7r(I),so I € D(1y) and I C sat(1). Also,
I C span([).
o Consider some b € span(I) \ 1.
@ Then T U {b} € D(1) since 1;(I U {b}) = |I| = r(I U{b}) = r(I).
@ Thus, b € sat(1y).
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Closure/Sat
[LNANRRRNR!

The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid sat : RY — 2% is the same as closure.)

For I € T, we have sat(1;) = span(]) (13.5)

@ For1;(I)=|I|=r(I),so I € D(1;) and I C sat(1;). Also,

I C span([).

Consider some b € span(]) \ 1.

Then T U {b} € D(11) since 1;(1 U {b}) = |I| = r(I U {b}) = r(I).
Thus, b € sat(17).

Therefore, sat(1;) 2 span(]) .
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Closure/Sat
[NLRNNRRNR!

The sat function = Polymatroid Closure

... proof continued.

@ Now, consider b € sat(1) \ I.

Ol
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Closure/Sat
[NLRNNRRNR!

The sat function = Polymatroid Closure

... proof continued.

@ Now, consider b € sat(17) \ I.
@ Choose any A € D(1;) with b € A, thusb e A\ I.

Ol
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Closure/Sat
[NLRNNRRNR!

The sat function = Polymatroid Closure

... proof continued.

@ Now, consider b € sat(17) \ I.
@ Choose any A € D(17) with b € A, thusbe A\ I.
@ Then 1(A) = |ANI| =r(A4).

Ol
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Closure/Sat
[NLRNNRRNR!

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.

Choose any A € D(1;) with b€ A, thusbe A\ I.
Then 1(A) = [ANI| =r(A).

Now r(A) = |[ANI| < |I| =r().

Ol
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Closure/Sat
[NLRNNRRNR!

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.

Choose any A € D(1;) with b€ A, thusbe A\ I.
Then 1(A) = [ANI| =r(A).

Now r(A) = [ANI| < |I] =r(I).

Also, r(ANI)=|ANI|since ANI .

Ol
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Closure/Sat
[NLRNNRRNR!

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.

Choose any A € D(1;) with b€ A, thusbe A\ I.

Then 1(A) = |ANI| =r(A4).

Now r(A) = |ANI| < |I| =r(I).

Also, r(ANI)=|ANI|since ANT € T.

Hence, r(ANI)=r(A) =r((ANI)U(A\ I)) meaning
(A\I) Cspan(ANI) Cspan([).

Ol
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Closure/Sat
[NLRNNRRNR!

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.

Choose any A € D(1;) with b€ A, thusbe A\ I.

Then 1(A) = |ANI| =r(A4).

Now r(A) = |ANI| < |I| =r(I).

Also, r(ANI)=|ANI|since ANT € T.

Hence, r(ANI)=r(A) =r((ANI)U(A\ I)) meaning
(A\I) Cspan(ANT) C span(]).

@ Since be A\ I, we get b € span([).

Ol
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Closure/Sat
[NLRNNRRNR!

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.

Choose any A € D(1;) with b€ A, thusbe A\ I.

Then 1(A) = |ANI| =r(A4).

Now r(A) = |[ANI| < |I| =r().

Also, r(ANI)=|ANI|since ANT € T.

Hence, r(ANI)=r(A) =r((ANI)U(A\ I)) meaning
(A\I) Cspan(ANI) C span(]).

@ Sincebe A\ I, we get b € span([).

@ Thus, sat(1;) C span([]) .

Ol
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Closure/Sat
[NLRNNRRNR!

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.

Choose any A € D(1;) with b€ A, thusbe A\ I.

Then 1(A) = |ANI| =r(A4).

Now r(A) = |[ANI| < |I| =r().

Also, r(ANI)=|ANI|since ANT € T.

Hence, r(ANI)=r(A) =r((ANI)U(A\ I)) meaning
(A\I) Cspan(ANI) C span(]).

@ Sincebe A\ I, we get b € span([).

@ Thus, sat(1;) C span([]) .

@ Hence [sat(1y) = span({)

Ol
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Closure/Sat
[NNLANRRNR]

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C C E with C' ¢ Z, and
consider 1¢.
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Closure/Sat
[NNLANRRNR]

The sat function = Polymatroid Closure

e Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?
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Closure/Sat
[NNLANRRNR]

The sat function = Polymatroid Closure

e Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1¢ € P.7 No, it might not be a vertex, or even a
member, of P,.
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Closure/Sat
[NNLANRRNR]

The sat function = Polymatroid Closure

e Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?7 No, it might not be a vertex, or even a

member, of P,.
@ span(-) operates on more than just independent sets, so span(C) is

perfectly sensible.
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Closure/Sat
[NNLANRRNR]

The sat function = Polymatroid Closure

e Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?7 No, it might not be a vertex, or even a
member, of P,.

@ span(-) operates on more than just independent sets, so span(C) is
perfectly sensible.

@ Note span(C) = span(B) where Z 5 B € B(C) is a base of C.
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Closure/Sat
[NNLANRRNR]

The sat function = Polymatroid Closure

e Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?7 No, it might not be a vertex, or even a
member, of P,.

@ span(-) operates on more than just independent sets, so span(C) is
perfectly sensible.

e Note span(C') = span(B) where Z 5 B € B(C) is a base of C.

@ Then we have 15 < 1¢ < 1.0y, and that 15 € P,.. We can then
make the definition:

sat(1¢) = sat(1p) for B € B(C) (13.6)

In which case, we also get sat(1¢) = span(C') (in general, could
define sat(y) = sat(P-basis(y))).
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Closure/Sat
[NNLANRRNR]

The sat function = Polymatroid Closure

Now, consider a matroid (£, ) and some C C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?7 No, it might not be a vertex, or even a
member, of P,.

span(-) operates on more than just independent sets, so span(C) is
perfectly sensible.

Note span(C) = span(B) where Z 5 B € B(C) is a base of C.
Then we have 1 < 1o < Lspan(c). and that 15 € P.. We can then
make the definition:

sat(1¢) = sat(1p) for B € B(C) (13.6)

In which case, we also get sat(1¢) = span(C) (in general, could
define sat(y) = sat(P-basis(y))).
However, consider the following form

sat(le) = J{A: AC E,|[ANC| =r(A)} (13.7)
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Closure/Sat
[NNLANRRNR]

The sat function = Polymatroid Closure

Now, consider a matroid (£, ) and some C C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?7 No, it might not be a vertex, or even a
member, of P,.

span(-) operates on more than just independent sets, so span(C) is
perfectly sensible.

Note span(C) = span(B) where Z 5 B € B(C) is a base of C.
Then we have 1 < 1o < Lspan(c). and that 15 € P.. We can then
make the definition:

sat(1¢) = sat(1p) for B € B(C) (13.6)

In which case, we also get sat(1¢) = span(C) (in general, could
define sat(y) = sat(P-basis(y))).
However, consider the following form

sat(lo) = J{A: ACE,|[AnC|=r(A)} (13.7)

Exercise: is span(C') = sat(1¢)? Prove or disprove it.
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Closure/Sat
[NNAR NRRNR

The sat function, span, and submodular function

minimization

@ Thus, for a matroid, sat(1) is exactly the closure (or span) of I in
the matroid. l.e., for matroid (E, ), we have span(I) = sat(1p).
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Closure/Sat
[NNAR NRRNR

The sat function, span, and submodular function

minimization

@ Thus, for a matroid, sat(1;) is exactly the closure (or span) of I in
the matroid. l.e., for matroid (E, ), we have span(l) = sat(1p).

@ Recall, for z € Py and polymatroidal f, sat(x) is the maximal (by
inclusion) minimizer of f(A) — z(A), and thus in a matroid, span(/)

is the maximal minimizer of the submodular function formed by
r(A) —17(A).
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Closure/Sat
[NNAR NRRNR

The sat function, span, and submodular function

minimization

@ Thus, for a matroid, sat(1;) is exactly the closure (or span) of I in
the matroid. l.e., for matroid (E, ), we have span(l) = sat(1p).

@ Recall, for z € Py and polymatroidal f, sat(x) is the maximal (by
inclusion) minimizer of f(A) — x(A), and thus in a matroid, span(I)
is the maximal minimizer of the submodular function formed by
r(A) —1;(A).

@ Submodular function minimization can solve “span” queries in a
matroid or “sat” queries in a polymatroid.
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Closure/Sat
[NNANR NRAR|

sat, as tight polymatroidal elements

@ We are given an x € P]T for submodular function f.
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Closure/Sat
[NNANR NRAR|

sat, as tight polymatroidal elements

o We are given an x € ij for submodular function f.

@ Recall that for such an z, sat(z) is defined as

sat(z) = | J{A: 2(4) = f(A)} (13.8)
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Closure/Sat
[NNANR NRAR|

sat, as tight polymatroidal elements

o We are given an x € ij for submodular function f.

@ Recall that for such an z, sat(x) is defined as
sat(z) = | J{A4: 2(4) = f(A)} (13.8)
@ We also have stated that sat(x) can be defined as:

sat(z) = {e Yo >0,r+al. ¢ Pf} (13.9)
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Closure/Sat
[NNANR NRAR|

sat, as tight polymatroidal elements

o We are given an x € ij for submodular function f.

@ Recall that for such an z, sat(x) is defined as
sat(e) = | {4+ (4) = £(4)) (138)
@ We also have stated that sat(x) can be defined as:
sat(z) = {e Ya>0,z+al. ¢ PJT} (13.9)

@ We next show more formally that these are the same.
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) & {e Va >0,z + al, ¢ ij} (13.10)
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Vo> 0,2+ ale ¢ Pf} (13.10)
={e:Va>0,3Ast. (z+al.)(A) > f(A)} (13.11)
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Vo> 0,2+ ale ¢ Pf} (13.10)

={e:Va>0,3Ast. (z+al.)(A) > f(A)} (13.11)
={e:Ya>0,3A>est. (v+al.)(A) > f(A)} (13.12)
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Vo> 0,2+ ale ¢ Pf} (13.10)

={e:Va>0,3Ast. (z+al.)(A) > f(A)} (13.11)
={e:Va>0,d4A3est. (z+al.)(A) > f(A)} (13.12)
@ this last bit follows since 1.(4) =1 <= e € A.
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Ya > 0,2+ al, ¢ Pf} (13.10)
={e:Va>0,3Ast. (z+al.)(A) > f(A)} (13.11)
={e:Va>0,d4A3est. (z+al.)(A) > f(A)} (13.12)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (13.13)
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Vo> 0,2+ ale ¢ Pf} (13.10)

={e:Va>0,3Ast. (z+al.)(A) > f(A)} (13.11)
={e:Va>0,d4A3est. (z+al.)(A) > f(A)} (13.12)

e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (13.13)
@ given that x € Pf+, meaning xz(A) < f(A) for all A, we must have

sat(x)
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Ya > 0,2+ al, ¢ Pf} (13.10)
={e:Va>0,3Ast. (z+al.)(A) > f(A)} (13.11)
={e:Va>0,d4A3est. (z+al.)(A) > f(A)} (13.12)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (13.13)
e given that = € P}, meaning x(A) < f(A) for all A, we must have

sat(z) = {e:Va > 0,34 > est z(A) = f(A)} (13.14)
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Ya > 0,2+ al, ¢ Pf} (13.10)
={e:Va>0,3Ast. (z+al.)(A) > f(A)} (13.11)
={e:Va>0,d4A3est. (z+al.)(A) > f(A)} (13.12)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (13.13)
e given that = € P}, meaning x(A) < f(A) for all A, we must have

)= f(A)} (13.14)
A)} (13.15)

sat(z) = {e:Va>0,3A>est =

(A
={e:JdA>est z(A) = f(
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Closure/Sat
[NNANNA RAR

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Ya > 0,2+ al, ¢ Pf} (13.10)
={e:Va>0,3Ast. (z+al.)(A) > f(A)} (13.11)
={e:Va>0,d4A3est. (z+al.)(A) > f(A)} (13.12)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (13.13)
e given that = € P}, meaning x(A) < f(A) for all A, we must have

sat(z) = {e:Va>0,3A > e st z(A) = f(A)} (13.14)

={e:dA>est z(4) = f(A)} (13.15)
@ So now, if A is any set such that z(A) = f(A), then we clearly have
(13.16)
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Closure/Sat
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sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Ya > 0,2+ al, ¢ Pf} (13.10)
={e:Va>0,3Ast. (z+al.)(A) > f(A)} (13.11)
={e:Va>0,d4A3est. (z+al.)(A) > f(A)} (13.12)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (13.13)
e given that = € P}, meaning x(A) < f(A) for all A, we must have

sat(z) = {e:Va>0,3A > e st z(A) = f(A)} (13.14)

={e:dA>est z(4) = f(A)} (13.15)
@ So now, if A is any set such that z(A4) = f(A), then we clearly have
Ve € A, e € sat(z), (13.16)
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Closure/Sat
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sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.

sat(z) % {e Ya > 0,2+ al, ¢ Pf} (13.10)
={e:Va>0,3Ast. (z+al.)(A) > f(A)} (13.11)
={e:Va>0,3A3est. (z+al.)(A) > f(A)} (13.12)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (13.13)

e given that = € P}, meaning x(A) < f(A) for all A, we must have
sat(z) = {e:Va>0,3A > e st z(A) = f(A)} (13.14)
={e:dA>est z(A) = f(A)} (13.15)
@ So now, if A is any set such that z(A4) = f(A), then we clearly have
Ve € A, e € sat(z), and therefore that sat(z) 2 A (13.16)
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Closure/Sat
[NNANNRY AR}

sat, as tight polymatroidal elements

@ ...and therefore, with sat as defined in Eq. (?7?),

sat(z) 2 | J{A: z(A) = f(A)} (13.17)
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Closure/Sat
[NNANNRY AR}

sat, as tight polymatroidal elements

@ ...and therefore, with sat as defined in Eq. (?7?),

sat(z) 2 | J{A: a( f(A)} (13.17)
@ On the other hand, for any e € sat(x) defined as in Eq. (13.15),
since e is itself a member of a tight set, there is a set A 3 e such

that z(A) = f(A), giving

sat(z) C | J{A:z(A) = f(A)} (13.18)
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Closure/Sat
[NNANNRY AR}

sat, as tight polymatroidal elements

@ ...and therefore, with sat as defined in Eq. (?7?),
sat(z) 2 (J{A: z(A) = f(A)} (13.17)
@ On the other hand, for any e € sat(x) defined as in Eq. (13.15),
since e is itself a member of a tight set, there is a set A 3 e such

that (A) = f(A), giving

sat(z) C | J{A: z(4) = f(A)} (13.18)

@ Therefore, the two definitions of sat are identical.
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Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
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Closure/Sat
[NNANRRRR N

Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
@ For x € Py, and e € F, consider finding

max {a:a € R,z +al. € Py} (13.19)
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Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
@ For x € Py, and e € F, consider finding

max {a:a € R,z +al. € Py} (13.19)
@ This is identical to:
max{a: (v + al.)(A) < f(A),VA D {e}} (13.20)

since any B C FE such that e ¢ B does not change in a 1,
adjustment, meaning (z + al.)(B) = z(B).
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Closure/Sat
[NNANRRRR N

Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
@ For x € Py, and e € F, consider finding

max {a:a € R,z +al. € Py} (13.19)
@ This is identical to:
max{a: (v + al.)(A) < f(A),VA D {e}} (13.20)

since any B C FE such that e ¢ B does not change in a 1,
adjustment, meaning (z + al.)(B) = z(B).
@ Again, this is identical to:

max{a: z(A)+a < f(A),YA D {e}} (13.21)
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Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
@ For x € Py, and e € F, consider finding

max {a:a € R,z +al. € Py} (13.19)
@ This is identical to:
max{a: (v + al.)(A) < f(A),VA D {e}} (13.20)

since any B C FE such that e ¢ B does not change in a 1,
adjustment, meaning (z + al.)(B) = z(B).
@ Again, this is identical to:

max{a: z(A)+a < f(A),YA D {e}} (13.21)
or

max {a: a < f(A) — x(A),VA D {e}} (13.22)
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Saturation Capacity

@ The max is achieved when

a = c(zre) © min {f(A) — z(A),VA D {e}} (13.23)
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (13.23)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (13.23)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.

@ Thus we have for x € Py,

é(x;e) L hin {f(A) —z(A),VA > e} (13.24)
=max{a:a €R,xz+al, € P} (13.25)
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (13.23)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.

@ Thus we have for x € Py,
é(ze) ¥ min {f(A) — 2(A),VA > e} (13.24)
=max{a:a €R,z+al. € P} (13.25)

@ We immediately see that for e € E \ sat(x), we have that
¢(xse) > 0.
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (13.23)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.

@ Thus we have for x € Py,
é(ze) ¥ min {f(A) — 2(A),VA > e} (13.24)
=max{a:a €R,z+al. € P} (13.25)

e We immediately see that for e € E \ sat(x), we have that
¢(xye) > 0.
@ Also, for e € sat(x), we have that ¢(z;e) = 0.
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (13.23)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.

@ Thus we have for x € Py,

é(ze) ¥ min {f(A) — 2(A),VA > e} (13.24)
=max{a:a €R,z+al. € P} (13.25)

e We immediately see that for e € E \ sat(x), we have that
¢(xye) > 0.

@ Also, for e € sat(z), we have that é(z;e) = 0.

e Note that any a with 0 < a < ¢é(x;e) we have x + al. € Py.
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (13.23)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.
@ Thus we have for x € Py,

é(ze) ¥ min {f(A) — 2(A),VA > e} (13.24)
=max{a:a €R,z+al. € P} (13.25)

e We immediately see that for e € E \ sat(x), we have that
¢(xye) > 0.

@ Also, for e € sat(z), we have that é(z;e) = 0.

o Note that any a with 0 < a < ¢é(x;e) we have  + al. € Py.

@ We also see that computing ¢(x; €) is a form of submodular function
minimization.
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Fund. Circuit/Dep
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Dependence Function

@ Tight sets can be restricted to contain a particular element.
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Fund. Circuit/Dep
[ERRNARNRRRENR

Dependence Function

@ Tight sets can be restricted to contain a particular element.
e Given x € Py, and e € sat(x), define
D(z,e)={A:ec ACE x(A) = f(A)} (13.26)
=Dx)N{A: ACFE,ec A} (13.27)
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Dependence Function

@ Tight sets can be restricted to contain a particular element.
o Given x € Py, and e € sat(x), define

D(z,e)={A:ec ACE x(A) = f(A)} (13.26)
=Dx)N{A: ACFE,ec A} (13.27)

@ Thus, D(x,e) C D(z), and D(x,e) is a sublattice of D(x).
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Dependence Function

Tight sets can be restricted to contain a particular element.

o Given x € Py, and e € sat(x), define
D(z,e)={A:ec ACE x(A) = f(A)} (13.26)
=Dx)N{A: ACFE,ec A} (13.27)

Thus, D(x,e) C D(x), and D(z,e) is a sublattice of D(x).
Therefore, we can define a unique minimal element of D(z, e)
denoted as follows:

N{A:e€c ACE,z(A) = f(A)} ifecsat(z)

0 else

(]

dep(z,e) = {
(13.28)
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Dependence Function

Tight sets can be restricted to contain a particular element.

o Given x € Py, and e € sat(x), define
D(z,e)={A:ec ACE x(A) = f(A)} (13.26)
=Dx)N{A: ACFE,ec A} (13.27)

Thus, D(x,e) C D(x), and D(z,e) is a sublattice of D(x).
Therefore, we can define a unique minimal element of D(z, e)
denoted as follows:

N{A:e€c ACE,z(A) = f(A)} ifecsat(z)
0 else

(]

dep(zx,e) = {
(13.28)

@ l.e, dep(z,e) is the minimal element in D(x) that contains e (the
minimal z-tight set containing e).
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dep and sat in a lattice

@ Given some
x € Pf,

@ The picture on the
right summarizes
the relationships
between the
lattices and
sublattices.

o Note,
. dep(z,e) =
dep(x).
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dep and sat in a lattice

@ Given x € Py, recall distributive lattice of tight sets
D(x) ={A:z(A) = f(A)}

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 13 - May 14th, 2014 F27/38 (pg.86/152)



Fund. Circuit/Dep
(NLRRRRNRRRNNR

dep and sat in a lattice

@ Given x € Py, recall distributive lattice of tight sets
D(z) ={A:x(A) = f(A)}

@ We had that sat(z) = (J{A: A € D(z)} is the "1" element of this
lattice.
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dep and sat in a lattice

@ Given x € Py, recall distributive lattice of tight sets
D(z) ={A:z(A) = f(A)}

e We had that sat(z) = |J{A: A € D(z)} is the “1" element of this
lattice.

e Consider the “0" element of D(z), i.e., dry(z) = N{A: AeD(x)}
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dep and sat in a lattice

@ Given x € Py, recall distributive lattice of tight sets
D(a) = {A: o(4) = f(A)}
e We had that sat(z) = |J{A: A € D(z)} is the “1" element of this
lattice.
e Consider the “0" element of D(z), i.e., dry(z) e N{A: AeD(x)}
@ We can see dry(x) as the elements that are necessary for tightness.
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dep and sat in a lattice

@ Given x € Py, recall distributive lattice of tight sets
D(a) = {A: o(4) = f(A)}
e We had that sat(z) = |J{A: A € D(z)} is the “1" element of this
lattice.
e Consider the “0" element of D(z), i.e., dry(z) = e N{A: AeD(x)}
@ We can see dry(x) as the elements that are necessary for tightness.
@ That is, we can equivalently define dry(x) as

dry(z) = {¢': = ),VAZ €'} (13.29)
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dep and sat in a lattice

@ Given x € Py, recall distributive lattice of tight sets
D(a) = {A: o(4) = f(A)}
e We had that sat(z) = (J{A: A € D(z)} is the "1" element of this
lattice.
e Consider the “0" element of D(z), i.e., dry(z) e N{A: AeD(x)}
@ We can see dry(x) as the elements that are necessary for tightness.
@ That is, we can equivalently define dry(a:) as

dry(z) = {¢': = ),VAZ €'} (13.29)

@ This can be read as, for any ¢’ € dry(z), any set that does not
contain €’ is not tight for = (any set A that is missing any element
of dry(x) is not tight).
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dep and sat in a lattice

@ Given x € Py, recall distributive lattice of tight sets

D(x) ={A:z(A) = f(A)}

We had that sat(z) = |J{A: A € D(z)} is the “1" element of this
lattice.

Consider the “0" element of D(x), i.e., dry(x) e N{A: AeD(x)}
We can see dry(x) as the elements that are necessary for tightness.

e 6 o

That is, we can equivalently define dry(a:) as
dry(z) = {¢': = (A),VAZF €} (13.29)

This can be read as, for any ¢’ € dry(z), any set that does not
contain €’ is not tight for = (any set A that is missing any element
of dry(z) is not tight).

@ Perhaps, then, a better name for dry is ntight(z), for the necessary
for tightness (but we'll actually use neither name).
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dep and sat in a lattice

@ Given x € Py, recall distributive lattice of tight sets
D(a) = {A: o(4) = f(A)}
e We had that sat(z) = |J{A: A € D(z)} is the “1" element of this
lattice.
e Consider the “0" element of D(z), i.e., dry(z) = e N{A: AeD(x)}
@ We can see dry(x) as the elements that are necessary for tightness.
@ That is, we can equivalently define dry(a:) as

dry(z) = {¢': = f(A),VAZ €'} (13.29)

@ This can be read as, for any ¢’ € dry(z), any set that does not
contain €’ is not tight for = (any set A that is missing any element
of dry(z) is not tight).

@ Perhaps, then, a better name for dry is ntight(z), for the necessary
for tightness (but we'll actually use neither name).

@ Note that dry need not be the empty set. Exercise: give example.
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An alternate expression for dep = dry

e Now, given = € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(A) = f(A)}
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An alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1” element of this sub-lattice as
sat(z,e) W (J{A: A e D(z,e)}.
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An alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) L LA : A e D(z,e)).

@ Analogously, we can define the “0" element of this sub-lattice as

dry(z,e) of N{A: AeD(z,e)}.
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An alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) L LA : A e D(z,e)).

@ Analogously, we can define the “0" element of this sub-lattice as

dry(z,e) def N{A:AecD(z,e)}.

@ We can see dry(z, e) as the elements that are necessary for
e-containing tightness, with e € sat(x).
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An alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) L LA : A e D(z,e)).

@ Analogously, we can define the “0" element of this sub-lattice as

dry(z,e) def N{A:AecD(z,e)}.

@ We can see dry(z,e) as the elements that are necessary for
e-containing tightness, with e € sat(x).
@ That is, we can view dry(z,e) as

dry(z,e) = {¢ : 2(A) < f(A),VAZ e € A} (13.30)
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alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) L LA : A e D(z,e)).

@ Analogously, we can define the “0" element of this sub-lattice as
dry(z,e) e N{A: AeD(z,e)}.

@ We can see dry(z,e) as the elements that are necessary for
e-containing tightness, with e € sat(x).

e That is, we can view dry(x,e) as

dry(z,e) = {¢ : = f(A),VAZ e ec A} (13.30)

@ This can be read as, for any ¢’ € dry(z,¢), any e-containing set
that does not contain €’ is not tight for x.
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alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) L LA : A e D(z,e)).

@ Analogously, we can define the “0" element of this sub-lattice as
dry(z,e) e N{A: AeD(z,e)}.

@ We can see dry(z,e) as the elements that are necessary for
e-containing tightness, with e € sat(x).

e That is, we can view dry(x,e) as

dry(z,e) = {¢ : = f(A),VAZ e ec A} (13.30)

@ This can be read as, for any €’ € dry(z, e), any e-containing set
that does not contain €’ is not tight for x.

@ But actually, dry(z, e) = dep(z, e), so we have derived another
expression for dep(zx,e) in Eq. (13.30).
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Dependence Function and Fundamental Matroid Circuit

e Now, let (E,7) = (E,r) be a matroid, and let I € 7 giving
17 € P.. We have sat(17) = span(/) = closure(I).
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Dependence Function and Fundamental Matroid Circuit

o Now, let (E,Z) = (E,r) be a matroid, and let I € Z giving
17 € P.. We have sat(17) = span(/) = closure(I).

@ Given e € sat(17) \  and then consider an A 5 e with
|[INAl=r(A).
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Dependence Function and Fundamental Matroid Circuit

o Now, let (E,Z) = (E,r) be a matroid, and let I € Z giving
17 € P.. We have sat(17) = span(/) = closure(I).

e Given e € sat(1y) \ I and then consider an A 5 e with
[INAl=r(A).

@ Then I N A serves as a base for A (i.e., I N A spans A) and any
such A contains a circuit (i.e., we canadd e€ A\ I to /N A w/o
increasing rank).
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Dependence Function and Fundamental Matroid Circuit

o Now, let (E,Z) = (E,r) be a matroid, and let I € Z giving
17 € P.. We have sat(17) = span(/) = closure(I).

e Given e € sat(1y) \ I and then consider an A 5 e with
[INAl=r(A).

@ Then I N A serves as a base for A (i.e., I N A spans A) and any
such A contains a circuit (i.e., we canadde € A\ I to INA w/o
increasing rank).

e Given e € sat(17) \ /, and consider dep(1y,€), with

dep(17,e) = |{A:e€ AC E,1;(A) =r(A)} (13.31)
=([{A:e€c ACE,|INA|=r(A)} (13.32)
=({A:e€c ACE,r(A) — [INA|=0} (13.33)
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Dependence Function and Fundamental Matroid Circuit

o Now, let (E,Z) = (E,r) be a matroid, and let I € Z giving
17 € P.. We have sat(17) = span(/) = closure(I).

e Given e € sat(1y) \ I and then consider an A 5 e with
[INAl=r(A).

@ Then I N A serves as a base for A (i.e., I N A spans A) and any
such A contains a circuit (i.e., we canadde € A\ I to INA w/o
increasing rank).

e Given e € sat(17) \ /, and consider dep(1y,€), with

dep(17,e) = |{A:e€ AC E,1;(A) =r(A)} (13.31)
=([{A:e€c ACE,|INA|=r(A)} (13.32)
=({A:e€ ACE,r(A)— [INA|=0} (13.33)

e By SFM lattice, 3 a unique minimal A 5> e with [I N A| = r(A).
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Dependence Function and Fundamental Matroid Circuit

o Now, let (E,Z) = (E,r) be a matroid, and let I € Z giving
17 € P.. We have sat(17) = span(/) = closure(I).

e Given e € sat(1y) \ I and then consider an A 5 e with
[INAl=r(A).

@ Then I N A serves as a base for A (i.e., I N A spans A) and any
such A contains a circuit (i.e., we canadde € A\ I to INA w/o
increasing rank).

e Given e € sat(17) \ /, and consider dep(1y,€), with

dep(17,e) = |{A:e€ AC E,1;(A) =r(A)} (13.31)
=([{A:e€c ACE,|INA|=r(A)} (13.32)
=({A:e€ ACE,r(A)— [INA|=0} (13.33)

e By SFM lattice, 3 a unique minimal A 5 e with |I N A| = r(A).
@ Thus, dep(1,e) must be a circuit since if it included more than a

circuit, it would not be minimal in this sense.
Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 13 - May 14th, 2014 F29/38 (pg.106/152



Fund. Circuit/Dep
(NRRNR NRNRRNNR

Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(17) \ I, then dep(1;,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).
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Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(1;) \ I, then dep(1;,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

e Now, if e € sat(17) NI with I € Z, we said that C(1,e) was

undefined (since no circuit is created in this case) and so we defined
itas C(1,e) = {e}
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Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(1;) \ I, then dep(1;,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

e Now, if e € sat(17) NI with I € Z, we said that C(1,e) was
undefined (since no circuit is created in this case) and so we defined
itas C(I,e) = {e}

@ In this case, for such an e, we have dep(1;,e) = {e} since all such
sets A 5 e with [IN A| = r(A) contain e, but in this case no cycle is
created, i.e., [INA| > |IN{e}| =r(e) =1.
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Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(1;) \ I, then dep(1,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

e Now, if e € sat(17) NI with I € Z, we said that C(1,e) was
undefined (since no circuit is created in this case) and so we defined
itas C(I,e) = {e}

@ In this case, for such an e, we have dep(1;,e) = {e} since all such
sets A 3 e with [I N A| = r(A) contain e, but in this case no cycle is
created, ie., [INA| > |IN{e}| =r(e) = 1.

@ We are thus free to take subsets of I as A, all of which must
contain e, but all of which have rank equal to size.
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Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(1;) \ I, then dep(1,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

e Now, if e € sat(17) NI with I € Z, we said that C(1,e) was
undefined (since no circuit is created in this case) and so we defined
itas C(I,e) = {e}

@ In this case, for such an e, we have dep(1;,e) = {e} since all such
sets A 3 e with [I N A| = r(A) contain e, but in this case no cycle is
created, ie., [INA| > |IN{e}| =r(e) = 1.

@ We are thus free to take subsets of I as A, all of which must
contain e, but all of which have rank equal to size.

@ Also note: in general for x € Pr and e € sat(x), we have dep(z,e)
is tight by definition.
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Summary of sat, and dep

e For x € Py, sat(x) (span, closure) is the maximal saturated (z-tight)
set w.rt. z. lLe, sat(z) ={e:e € E,Va >0,z 4+ al. ¢ Pr}. Thats,

cl(zx) & sat(z) £ U {A: AeD(2)} (13.34)

= J{A: ACE 2(A) = f(A)} (13.35)
={e:ec E,VNa>0,z+ al. ¢ Py} (13.36)

e For e € sat(z), we have dep(z,e) (fundamental circuit) is the minimal
(common) saturated (a-tight) set w.r.t. = containing e. That is,

N{A:ec ACE,x(A)= f(A)} ifecsat(zr)
dep(,¢) = 0 else
={¢:3a>0, st. z+a(le — 1) € Pf} (13.37)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 13 - May 14th, 2014 F31/38 (pg.112/152



Fund. Circuit/Dep
(NRRRRRT NRRNNR

Dependence Function and exchange

@ For e € span(I) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition

restriction property.
@ Analogously, for e € sat(x), any « + al. ¢ Py for « > 0. This is a

vector increase restriction property.
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any x + al. ¢ Py for « > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ e € Z for e’ € C(I,e). le., C(1,e)
consists of elements that when removed recover independence.
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any x + al. ¢ Py for « > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ e € Z for e’ € C(I,e). le.,, C(1,¢e)
consists of elements that when removed recover independence.

@ In other words, for e € span(/) \ I, we have that

C(l,e)={ac€FE:I+e—acT} (13.38)
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any x + al. ¢ Py for « > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ e € Z for e’ € C(I,e). le.,, C(1,¢e)
consists of elements that when removed recover independence.

@ In other words, for e € span(/) \ I, we have that

C(l,e)={acE:I+e—acl} (13.38)

@ l.e., an addition of e to I stays within Z only if we simultaneously
remove one of the elements of C'(1,e).
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any x + al. ¢ Py for « > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ e € Z for e’ € C(I,e). le.,, C(1,¢e)
consists of elements that when removed recover independence.

@ In other words, for e € span(/) \ I, we have that

C(l,e)={acE:I+e—acl} (13.38)

@ l.e., an addition of e to I stays within Z only if we simultaneously
remove one of the elements of C'(7,e).

@ But, analogous to the circuit case, is there an exchange property for
dep(x,e) in the form of vector movement restriction?
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any x + al. ¢ Py for « > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ e € Z for e’ € C(I,e). le.,, C(1,¢e)
consists of elements that when removed recover independence.

@ In other words, for e € span(/) \ I, we have that

C(l,e)={acE:I+e—acl} (13.38)

@ l.e., an addition of e to I stays within Z only if we simultaneously
remove one of the elements of C'(7,e).

@ But, analogous to the circuit case, is there an exchange property for
dep(z,e) in the form of vector movement restriction?

@ We might expect the vector dep(z, e) property to take the form:
a positive move in the e-direction stays within P, only if we
simultaneously take a negative move in one of the dep(z, e)

directions.
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Dependence Function and exchange in 2D

@ dep(x,e) is set of neg. directions we must move if we want to move in
pos. e direction, starting at = and staying within P;.
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Dependence Function and exchange in 2D

@ dep(x,e) is set of neg. directions we must move if we want to move in
pos. e direction, starting at x and staying within P;.
@ Viewable in 2D, we have for A, B C E, AN B = {:

(e)
B —>

A

Left: AN dep(z,e) =0, and we
can't move further in (e) direc-
tion, and moving in any negative
a € A direction doesn't change
that. Notice no dependence be-
tween (e) and any element in A.

Prof. Jeff Bilmes

B

A

Right: A C dep(z,e), and we
can't move further in the (e) di-
rection, but we can move further
in (e) direction by moving in some
a € A negative direction. Notice
dependence between (e) and ele-
ments in A.
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Dependence Function and exchange in 3D

@ We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.
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Dependence Function and exchange in 3D

@ We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.

@ In 3D, we have:
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Dependence Function and exchange in 3D

@ We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.

@ In 3D, we have:

Z

e le, for e € sat(z), a € sat(x), a € dep(zx,e), e ¢ dep(zx,a),
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Dependence Function and exchange in 3D

@ We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.

@ In 3D, we have:

Z

e le, for e € sat(z), a € sat(x), a € dep(zx,e), e ¢ dep(x,a), and
dep(z,e) ={a:ac E,Ja>0: 2+ a(le —1,) € Pr}  (13.39)
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Dependence Function and exchange in 3D

@ We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.

@ In 3D, we have:

Z

e le, for e € sat(z), a € sat(x), a € dep(zx,e), e ¢ dep(x,a), and
dep(z,e) ={a:a € E,3a>0:2+a(l.—1,) € Pr}  (13.39)

@ We next show this formally . ..
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z, e) = ntight(z,e) = (13.40)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(x, e) = ntight(w e) = (13.40)
={':: f(A),VAF e e A} (13.41)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z,e) = ntight(w e) = (13.40)
={c:x f(A)VAZ e ec A} (13.41)
={¢ .E|a>0, st.a< f(A)—x(A),VAZ e ec A} (13.42)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z,e) = ntight(w e) = (13.40)
={c:x (A),VAF €, ec A} (13.41)
={¢ .E|a>0, s.t.agf( ) —x(A),VAZF € e A} (13.42)
={¢':3a >0, st. alc(A) < f(A) —z(A),VAZF ', ec A} (13.43)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z,e) = ntight(w e) = (13.40)
={c:x (A),VAF €, ec A} (13.41)
={¢ .E|a>0, st.a < f(A) —z(A),VAZ e, ec A} (13.42)

={¢':3a >0, st. alc(A) < f(A) —z(A),VAF ', ec A} (13.43)
={:3a >0, st. a(1.(A) — 1.(A) < f(A) —z(A),VAF ' e c A}
(13.44)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a

non-strict one with a strict explicit slack variable a:

dep(z,e) = ntight(w e) = (13.40)
={c:x (A),VAF €, ec A} (13.41)
={¢ .E|a>0, s.t.agf( ) —x(A),VAZF € e A} (13.42)
={¢':3a >0, st. alc(A) < f(A) —z(A),VAF ', ec A} (13.43)

—{¢
— (¢

Prof. Jeff Bilmes

3o >0, st a(l.(A) — 14(A)) < f(A) — 2(A),VAF e € A}

(13.44)

:3a >0, s.t. 2(A) + a(1(A) — 10(A)) < f(A),VAZF e € A}

(13.45)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a

non-strict

dep(z, e)
={e:z
= {¢
= {¢
= {¢

—{¢

one with a strict explicit slack variable «:

= ntight(w e) = (13.40)
(A),VAF €, ec A} (13.41)
.E|a>0, st.a < f(A) —z(A),VAZ e, ec A} (13.42)

13> 0, st ale(A) < f(A) —z(A),VAZF ' ,ec A} (13.43)
3o > 0, st a(le(A) — 10(A)) < f(A) —z(A),VAF e € A}

(13.44)

:3a >0, s.t. 2(A) + a(1(A) — 10(A)) < f(A),VAZF e € A}

(13.45)

@ Now, 1.(A) — 1.(A) =0 if either {e,e'} C A, or {e,e'} N A=0.

Prof. Jeff Bilmes
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z,e) = ntight(w e) = (13.40)
={c:x (A),VAF €, ec A} (13.41)
={¢ .E|a>0, st.a < f(A) —z(A),VAZ e, ec A} (13.42)

={¢':3a >0, st. alc(A) < f(A) —z(A),VAF ', ec A} (13.43)
={¢':3a >0, st. a(1le(4) — 14(A)) < f(A) —z(A),VAF ', e € A}
(13.44)

={¢:3a >0, st. 2(4) + a(1(A) —1.(A)) < f(A),VAF e c A}
(13.45)
@ Now, 1.(A) — 1.(A) = 0 if either {e,e'} C A, or {e,e'} N A =0.
@ Also, if ¢ € A but e ¢ A, then
z(A) + a(1e(A) — 1 (A)) = 2(A) — a < f(A) since z € P.
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dep and exchange derived

@ thus, we get the same in the above if we remove the constraint
AZ e, ee A, that is we get

dep(z,e) = {€' : Ja > 0, s.t. 2(A) + a(1c(A) — 1 (A)) < f(A),VA}
(13.46)
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dep and exchange derived

@ thus, we get the same in the above if we remove the constraint
AZ e, ee A, that is we get

dep(z,e) = {€ : Ja > 0, s.t. 2(A) + a(Le(A) — 1 (A)) < f(A),VA}
(13.46)

@ This is then identical to

dep(z,e) = {€/ : Ja >0, st. 2+ (1. — 1) € Py} (13.47)
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dep and exchange derived

@ thus, we get the same in the above if we remove the constraint
AZ e, ee A, that is we get

dep(z,e) = {€ : Ja > 0, s.t. 2(A) + a(Le(A) — 1 (A)) < f(A),VA}
(13.46)

@ This is then identical to
dep(z,e) = {¢' : Ja > 0, s.t. z + (1. — 1) € Py} (13.47)

e Compare with original, the minimal element of D(x, ¢), with
e € sat(x):

N{A:e€c ACE,z(A) = f(A)} ifeecsat(z)
0 else

dep(zx,e) = {
(13.48)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 13 - May 14th, 2014 F36/38 (pg.137/152



Fund. Circuit/Dep
(NRRRRRNRRRNI N

Summary of Concepts

@ Most violated inequality max {z(A) — f(A) : AC E}
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Summary of Concepts

@ Most violated inequality max {z(A) — f(4) : AC E}
@ Matroid by circuits, and the fundamental circuit C(I,e) C I +e.
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Summary of Concepts

@ Most violated inequality max {z(A) — f(4) : AC E}
e Matroid by circuits, and the fundamental circuit C(I,e) C I +e.

@ Minimizers of submodular functions form a lattice.
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Summary of Concepts

Most violated inequality max {z(A) — f(A) : A C E}
Matroid by circuits, and the fundamental circuit C'(I,e) C I +e.

Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.
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Summary of Concepts

Most violated inequality max {z(A) — f(A) : A C E}
Matroid by circuits, and the fundamental circuit C'(I,e) C I +e.
Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

z-tight sets, maximal and minimal tight set.
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Summary of Concepts

Most violated inequality max {z(A) — f(A) : A C E}

Matroid by circuits, and the fundamental circuit C'(I,e) C I +e.
Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure
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Summary of Concepts

Most violated inequality max {z(A) — f(A) : A C E}

Matroid by circuits, and the fundamental circuit C'(I,e) C I +e.
Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity
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Summary of Concepts

Most violated inequality max {z(A) — f(A) : A C E}

Matroid by circuits, and the fundamental circuit C'(I,e) C I +e.
Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity

e-containing tight sets
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Summary of Concepts

Most violated inequality max {z(A) — f(A) : A C E}

Matroid by circuits, and the fundamental circuit C'(I,e) C I +e.
Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity

e-containing tight sets

dep function & fundamental circuit of a matroid
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Summary important definitions so far: tight, dep, & sat

o z-tight sets: For v € Py, D(z) = {AC E:x(A) = f(A)}.
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Summary important definitions so far: tight, dep, & sat

o z-tight sets: For x € Py, D(x) ={AC E:x(A) = f(A)}.
e Polymatroid closure/maximal 2-tight set: For x € P,
sat(x) =U{A: AeD(x)} ={e:ec E,Va > 0,2+ al. ¢ Pr}.
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Summary important definitions so far: tight, dep, & sat

o z-tight sets: For x € Py, D(x) ={AC E:x(A) = f(A)}.
@ Polymatroid closure/maximal z-tight set: For = € Py,

sat(z) =U{A: AeD(x)} ={e:ec E,Va>0,x+al. ¢ Pr}.
@ Saturation capacity: for x € Py, 0 < é(z5e) =

min { f(A) — z(A)|[VA > e} = max{a:a € R,z + al. € Py}
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Summary important definitions so far: tight, dep, & sat

o z-tight sets: For x € Py, D(x) ={AC E:x(A) = f(A)}.
@ Polymatroid closure/maximal z-tight set: For x € Py,
sat(z) =U{A: AeD(x)} ={e:ec E,Va>0,x+al. ¢ Pr}.
@ Saturation capacity: for x € Py, 0 < é(z5e) =
min {f(A) —2(4)|VA 3 e} =max{a:a e R,z +al. € Pr}
@ Recall: sat(z) = {e: é(x;e) = 0} and
E\ sat(z) = {e: é(x;e) > 0}.
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Summary important definitions so far: tight, dep, & sat

o z-tight sets: For x € Py, D(x) ={AC E:x(A) = f(A)}.
@ Polymatroid closure/maximal z-tight set: For x € Py,
sat(z) =U{A: AeD(x)} ={e:ec E,Va>0,x+al. ¢ Pr}.
@ Saturation capacity: for x € Py, 0 < é(z5e) =
min {f(A) —2(4)|VA 3 e} =max{a:a e R,z +al. € Pr}
@ Recall: sat(x) = {e: é(z;e) =0} and
E\ sat(z) = {e: é(x;e) > 0}.
@ c-containing x-tight sets: For x € Py,
D(z,e) ={A:ec ACE,x(A) = f(A)} C D(z).
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Summary important definitions so far: tight, dep, & sat

o z-tight sets: For x € Py, D(x) ={AC E:x(A) = f(A)}.
@ Polymatroid closure/maximal z-tight set: For = € Py,
sat(z) =U{A: AeD(x)} ={e:ec E,Va>0,x+al. ¢ Pr}.
@ Saturation capacity: for x € Py, 0 < é(z5e) =
min {f(A) —2(4)|VA 3 e} =max{a:a e R,z +al. € Pr}
@ Recall: sat(x) = {e: é(z;e) =0} and
E\ sat(z) = {e: é(x;e) > 0}.
@ e-containing x-tight sets: For x € Py,
D(z,e) ={A:ec AC E,x(A) = f(A)} C D(z).
@ Minimal e-containing z-tight set/polymatroidal fundamental
circuit/: For z € Py,
{ﬂ fA ce€ ACE z(A) = f(A)} ifecsat(x)

d ,e) =
ep(e;¢) 0 else

= {e’ :Jda>0, st.x+a(le— 1) € Pf}
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