
Submodular Functions, Optimization,
and Applications to Machine Learning

— Spring Quarter, Lecture 13 —
http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering

http://melodi.ee.washington.edu/~bilmes

May 14th, 2014

+f (A) + f (B) f (A ∪ B)

= f (Ar ) +f (C ) + f (Br )

≥
= f (A ∩ B)

f (A ∩ B)

= f (Ar ) + 2f (C ) + f (Br )

Clockwise from top left:v
Lásló Lovász

Jack Edmonds
Satoru Fujishige

George Nemhauser
Laurence Wolsey

András Frank
Lloyd Shapley
H. Narayanan
Robert Bixby

William Cunningham
William Tutte
Richard Rado

Alexander Schrijver
Garrett Birkho�
Hassler Whitney

Richard Dedekind

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F1/38 (pg.1/152)

http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/
http://melodi.ee.washington.edu/~bilmes


Logistics Review

Cumulative Outstanding Reading

Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.

Read Tom McCormick’s overview paper on SFM http://people.

commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

Read chapters 1 - 4 from Fujishige book.

Matroid properties http:

//www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf
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Logistics Review

Announcements, Assignments, and Reminders

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics Review

Class Road Map - IT-I

L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

L9: From Matroid Polytopes to
Polymatroids.

L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, exchange
capacity, minimum norm point algorithm
and the lattice of minimizers of a
submodular function, Lovasz extension

L16:

L17:

L18:

L19:

L20:

Finals Week: June 9th-13th, 2014.
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Logistics Review

Tight sets D(y) are closed, and max tight set sat(y)

Recall the definition of the set of tight sets at y ∈ P+
f :

D(y) , {A : A ⊆ E, y(A) = f(A)} (13.18)

Theorem 13.2.1

For any y ∈ P+
f , with f a polymatroid function, then D(y) is closed

under union and intersection.

Proof.

We have already proven this as part of Theorem ??

Also recall the definition of sat(y), the maximal set of tight elements
relative to y ∈ RE

+.

sat(y)
def
=
⋃
{T : T ∈ D(y)} (13.19)
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Logistics Review

Fundamental circuits in matroids

Lemma 13.2.3

Let I ∈ I(M), and e ∈ E, then I ∪ {e} contains at most one circuit in
M .

Proof.

Suppose, to the contrary, that there are two distinct circuits C1, C2

such that C1 ∪ C2 ⊆ I ∪ {e}.
Then e ∈ C1 ∩ C2, and by (C2), there is a circuit C3 of M s.t.
C3 ⊆ (C1 ∪ C2) \ {e} ⊆ I
This contradicts the independence of I.

In general, let C(I, e) be the unique circuit associated with I ∪ {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Logistics Review

Matroid Partition Problem

Theorem 13.2.1

Let Mi be a collection of k matroids as described. Then, a set S ⊆ E
can be partitioned into k subsets Ii, i = 1 . . . k where Ii ∈ Ii is
independent in matroid i, if and only if, for all A ⊆ S

|A| ≤
k∑

i=1

ri(A) (13.1)

where ri is the rank function of Mi.

Now, if all matroids are the same Mi =M for all i, we get condition

|A| ≤ kr(A) ∀A ⊆ E (13.2)

But considering vector of all ones 1 ∈ RE
+, this is the same as

1

k
|A| = 1

k
1(A) ≤ r(A) ∀A ⊆ E (13.3)
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Logistics Review

Polymatroidal polyhedron and greedy

Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem ??)

Theorem 13.2.1

If f : 2E → R+ is given, and P is a polytope in RE
+ of the form

P =
{
x ∈ RE

+ : x(A) ≤ f(A),∀A ⊆ E
}
, then the greedy solution to the

problem max(wx : x ∈ P ) is ∀w optimum iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).
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Logistics Review

Base Polytope in 3D
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Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(13.5)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(13.6)
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Logistics Review

Polymatroid extreme points

Theorem 13.2.1

For a given ordering E = (e1, . . . , em) of E and a given Ei = (e1, . . . , ei)
and x generated by Ei using the greedy procedure (x(ei) = f(ei|Ei−1)),
then x is an extreme point of Pf

Proof.

We already saw that x ∈ Pf (Theorem ??).

To show that x is an extreme point of Pf , note that it is the unique
solution of the following system of equations

x(Ej) = f(Ej) for 1 ≤ j ≤ i ≤ m (13.9)

x(e) = 0 for e ∈ E \ Ei (13.10)

There are i ≤ m equations and i ≤ m unknowns, and simple
Gaussian elimination gives us back the x constructed via the Greedy
algorithm!!
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Logistics Review

Polymatroid extreme points
Moreover, we have (and will ultimately prove)

Corollary 13.2.2

If x is an extreme point of Pf and B ⊆ E is given such that
supp(x) = {e ∈ E : x(e) 6= 0} ⊆ B ⊆ ∪(A : x(A) = f(A)) = sat(x),
then x is generated using greedy by some ordering of B.

Note, sat(x) = cl(x) = ∪(A : x(A) = f(A)) is also called the
closure of x (recall that sets A such that x(A) = f(A) are called
tight, and such sets are closed under union and intersection, as seen
in Lecture 8, Theorem ??)

Thus, cl(x) is a tight set.

Also, supp(x) = {e ∈ E : x(e) 6= 0} is called the support of x.

For arbitrary x, supp(x) is not necessarily tight, but for an extreme
point, supp(x) is.
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Logistics Review

Polymatroid with labeled edge lengths

Recall f(e|A) =
f(A+ e)− f(A)
Notice how
submodularity,
f(e|B) ≤ f(e|A) for
A ⊆ B, defines the
shape of the polytope.

In fact, we have
strictness here
f(e|B) < f(e|A) for
A ⊂ B.

Also, consider how the
greedy algorithm
proceeds along the
edges of the polytope.
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Logistics Review

Minimizers of a Submodular Function form a lattice

Theorem 13.2.2

For arbitrary submodular f , the minimizers are closed under union and
intersection. That is, letM = argminX⊆E f(X) be the set of
minimizers of f . Let A,B ∈M. Then A ∪B ∈M and A ∩B ∈M.

Proof.

Since A and B are minimizers, we have f(A) = f(B) ≤ f(A ∩B) and
f(A) = f(B) ≤ f(A ∪B).
By submodularity, we have

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (13.8)

Hence, we must have f(A) = f(B) = f(A ∪B) = f(A ∩B).

Thus, the minimizers of a submodular function form a lattice, and there
is a maximal and a minimal minimizer of every submodular function.
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Logistics Review

The sat function = Polymatroid Closure

Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation
function).

For some x ∈ Pf , we have defined:

cl(x)
def
= sat(x)

def
=
⋃
{A : A ∈ D(x)} (13.8)

=
⋃
{A : A ⊆ E, x(A) = f(A)} (13.9)

= {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf} (13.10)

Hence, sat(x) is the maximal (zero-valued) minimizer of the
submodular function fx(A) , f(A)− x(A).
Eq. (??) says that sat consists of any point x that is Pf saturated
(any additional positive movement, in that dimension, leaves Pf ).
We’ll revisit this in a few slides.

First, we see how sat generalizes matroid closure.
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Closure/Sat Fund. Circuit/Dep

The sat function = Polymatroid Closure

Consider matroid (E, I) = (E, r), some I ∈ I. Then 1I ∈ Pr and

D(1I) = {A : 1I(A) = r(A)} (13.1)

and

sat(1I)

=
⋃
{A : A ⊆ E,A ∈ D(1I)} (13.2)

=
⋃
{A : A ⊆ E,1I(A) = r(A)} (13.3)

=
⋃
{A : A ⊆ E, |I ∩A| = r(A)} (13.4)

Notice that 1I(A) = |I ∩A| ≤ |I|.
Intuitively, consider an A ⊃ I ∈ I that doesn’t increase rank,
meaning r(A) = r(I). If r(A) = |I ∩A| = r(I ∩A), as in
Eqn. (13.4), then A is in I’s span, so should get sat(1I) = span(I).

We formalize this next.
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Closure/Sat Fund. Circuit/Dep

The sat function = Polymatroid Closure

Lemma 13.3.1 (Matroid sat : RE
+ → 2E is the same as closure.)

For I ∈ I, we have sat(1I) = span(I) (13.5)

Proof.

For 1I(I) = |I| = r(I), so I ∈ D(1I) and I ⊆ sat(1I). Also,
I ⊆ span(I).

Consider some b ∈ span(I) \ I.

Then I ∪ {b} ∈ D(1I) since 1I(I ∪ {b}) = |I| = r(I ∪ {b}) = r(I).

Thus, b ∈ sat(1I).

Therefore, sat(1I) ⊇ span(I) .

. . .
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Closure/Sat Fund. Circuit/Dep

The sat function = Polymatroid Closure

Now, consider a matroid (E, r) and some C ⊆ E with C /∈ I, and
consider 1C .

Is 1C ∈ Pr? No, it might not be a vertex, or even a
member, of Pr.
span(·) operates on more than just independent sets, so span(C) is
perfectly sensible.
Note span(C) = span(B) where I 3 B ∈ B(C) is a base of C.
Then we have 1B ≤ 1C ≤ 1span(C), and that 1B ∈ Pr. We can then
make the definition:

sat(1C) , sat(1B) for B ∈ B(C) (13.6)

In which case, we also get sat(1C) = span(C) (in general, could
define sat(y) = sat(P-basis(y))).
However, consider the following form

sat(1C) =
⋃
{A : A ⊆ E, |A ∩ C| = r(A)} (13.7)

Exercise: is span(C) = sat(1C)? Prove or disprove it.
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Closure/Sat Fund. Circuit/Dep

The sat function, span, and submodular function
minimization

Thus, for a matroid, sat(1I) is exactly the closure (or span) of I in
the matroid. I.e., for matroid (E, r), we have span(I) = sat(1B).

Recall, for x ∈ Pf and polymatroidal f , sat(x) is the maximal (by
inclusion) minimizer of f(A)− x(A), and thus in a matroid, span(I)
is the maximal minimizer of the submodular function formed by
r(A)− 1I(A).

Submodular function minimization can solve “span” queries in a
matroid or “sat” queries in a polymatroid.
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sat, as tight polymatroidal elements

We are given an x ∈ P+
f for submodular function f .

Recall that for such an x, sat(x) is defined as

sat(x) =
⋃
{A : x(A) = f(A)} (13.8)

We also have stated that sat(x) can be defined as:

sat(x) =
{
e : ∀α > 0, x+ α1e /∈ P+

f

}
(13.9)

We next show more formally that these are the same.
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sat, as tight polymatroidal elements

Lets start with one definition and derive the other.

sat(x)

def
=
{
e : ∀α > 0, x+ α1e /∈ P+

f

}
(13.10)

= {e : ∀α > 0,∃A s.t. (x+ α1e)(A) > f(A)} (13.11)

= {e : ∀α > 0,∃A 3 e s.t. (x+ α1e)(A) > f(A)} (13.12)

this last bit follows since 1e(A) = 1 ⇐⇒ e ∈ A.

Continuing, we get

sat(x) = {e : ∀α > 0,∃A 3 e s.t. x(A) + α > f(A)} (13.13)

given that x ∈ P+
f , meaning x(A) ≤ f(A) for all A, we must have

sat(x)

= {e : ∀α > 0,∃A 3 e s.t. x(A) = f(A)} (13.14)

= {e : ∃A 3 e s.t. x(A) = f(A)} (13.15)

So now, if A is any set such that x(A) = f(A), then we clearly have

∀e ∈ A, e ∈ sat(x), and therefore that sat(x) ⊇ A

(13.16)
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sat(x) = {e : ∀α > 0,∃A 3 e s.t. x(A) + α > f(A)} (13.13)

given that x ∈ P+
f , meaning x(A) ≤ f(A) for all A, we must have

sat(x)

= {e : ∀α > 0,∃A 3 e s.t. x(A) = f(A)} (13.14)

= {e : ∃A 3 e s.t. x(A) = f(A)} (13.15)

So now, if A is any set such that x(A) = f(A), then we clearly have

∀e ∈ A, e ∈ sat(x), and therefore that sat(x) ⊇ A

(13.16)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F21/38 (pg.56/152)



Closure/Sat Fund. Circuit/Dep

sat, as tight polymatroidal elements

Lets start with one definition and derive the other.

sat(x)
def
=
{
e : ∀α > 0, x+ α1e /∈ P+

f

}
(13.10)

= {e : ∀α > 0,∃A s.t. (x+ α1e)(A) > f(A)} (13.11)

= {e : ∀α > 0,∃A 3 e s.t. (x+ α1e)(A) > f(A)} (13.12)

this last bit follows since 1e(A) = 1 ⇐⇒ e ∈ A.

Continuing, we get

sat(x) = {e : ∀α > 0,∃A 3 e s.t. x(A) + α > f(A)} (13.13)

given that x ∈ P+
f , meaning x(A) ≤ f(A) for all A, we must have

sat(x)

= {e : ∀α > 0,∃A 3 e s.t. x(A) = f(A)} (13.14)

= {e : ∃A 3 e s.t. x(A) = f(A)} (13.15)

So now, if A is any set such that x(A) = f(A), then we clearly have

∀e ∈ A, e ∈ sat(x), and therefore that sat(x) ⊇ A

(13.16)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F21/38 (pg.57/152)



Closure/Sat Fund. Circuit/Dep

sat, as tight polymatroidal elements

Lets start with one definition and derive the other.

sat(x)
def
=
{
e : ∀α > 0, x+ α1e /∈ P+

f

}
(13.10)

= {e : ∀α > 0,∃A s.t. (x+ α1e)(A) > f(A)} (13.11)

= {e : ∀α > 0,∃A 3 e s.t. (x+ α1e)(A) > f(A)} (13.12)

this last bit follows since 1e(A) = 1 ⇐⇒ e ∈ A. Continuing, we get

sat(x) = {e : ∀α > 0,∃A 3 e s.t. x(A) + α > f(A)} (13.13)

given that x ∈ P+
f , meaning x(A) ≤ f(A) for all A, we must have

sat(x)

= {e : ∀α > 0,∃A 3 e s.t. x(A) = f(A)} (13.14)

= {e : ∃A 3 e s.t. x(A) = f(A)} (13.15)

So now, if A is any set such that x(A) = f(A), then we clearly have

∀e ∈ A, e ∈ sat(x), and therefore that sat(x) ⊇ A

(13.16)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F21/38 (pg.58/152)



Closure/Sat Fund. Circuit/Dep

sat, as tight polymatroidal elements

Lets start with one definition and derive the other.

sat(x)
def
=
{
e : ∀α > 0, x+ α1e /∈ P+

f

}
(13.10)

= {e : ∀α > 0,∃A s.t. (x+ α1e)(A) > f(A)} (13.11)

= {e : ∀α > 0,∃A 3 e s.t. (x+ α1e)(A) > f(A)} (13.12)

this last bit follows since 1e(A) = 1 ⇐⇒ e ∈ A. Continuing, we get

sat(x) = {e : ∀α > 0,∃A 3 e s.t. x(A) + α > f(A)} (13.13)

given that x ∈ P+
f , meaning x(A) ≤ f(A) for all A, we must have

sat(x)

= {e : ∀α > 0,∃A 3 e s.t. x(A) = f(A)} (13.14)

= {e : ∃A 3 e s.t. x(A) = f(A)} (13.15)

So now, if A is any set such that x(A) = f(A), then we clearly have

∀e ∈ A, e ∈ sat(x), and therefore that sat(x) ⊇ A

(13.16)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F21/38 (pg.59/152)



Closure/Sat Fund. Circuit/Dep

sat, as tight polymatroidal elements

Lets start with one definition and derive the other.

sat(x)
def
=
{
e : ∀α > 0, x+ α1e /∈ P+

f

}
(13.10)

= {e : ∀α > 0,∃A s.t. (x+ α1e)(A) > f(A)} (13.11)

= {e : ∀α > 0,∃A 3 e s.t. (x+ α1e)(A) > f(A)} (13.12)

this last bit follows since 1e(A) = 1 ⇐⇒ e ∈ A. Continuing, we get

sat(x) = {e : ∀α > 0,∃A 3 e s.t. x(A) + α > f(A)} (13.13)

given that x ∈ P+
f , meaning x(A) ≤ f(A) for all A, we must have

sat(x) = {e : ∀α > 0,∃A 3 e s.t. x(A) = f(A)} (13.14)

= {e : ∃A 3 e s.t. x(A) = f(A)} (13.15)

So now, if A is any set such that x(A) = f(A), then we clearly have

∀e ∈ A, e ∈ sat(x), and therefore that sat(x) ⊇ A

(13.16)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F21/38 (pg.60/152)



Closure/Sat Fund. Circuit/Dep

sat, as tight polymatroidal elements

Lets start with one definition and derive the other.

sat(x)
def
=
{
e : ∀α > 0, x+ α1e /∈ P+

f

}
(13.10)

= {e : ∀α > 0,∃A s.t. (x+ α1e)(A) > f(A)} (13.11)

= {e : ∀α > 0,∃A 3 e s.t. (x+ α1e)(A) > f(A)} (13.12)

this last bit follows since 1e(A) = 1 ⇐⇒ e ∈ A. Continuing, we get

sat(x) = {e : ∀α > 0,∃A 3 e s.t. x(A) + α > f(A)} (13.13)

given that x ∈ P+
f , meaning x(A) ≤ f(A) for all A, we must have

sat(x) = {e : ∀α > 0,∃A 3 e s.t. x(A) = f(A)} (13.14)

= {e : ∃A 3 e s.t. x(A) = f(A)} (13.15)

So now, if A is any set such that x(A) = f(A), then we clearly have

∀e ∈ A, e ∈ sat(x), and therefore that sat(x) ⊇ A

(13.16)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F21/38 (pg.61/152)



Closure/Sat Fund. Circuit/Dep

sat, as tight polymatroidal elements

Lets start with one definition and derive the other.

sat(x)
def
=
{
e : ∀α > 0, x+ α1e /∈ P+

f

}
(13.10)

= {e : ∀α > 0,∃A s.t. (x+ α1e)(A) > f(A)} (13.11)

= {e : ∀α > 0,∃A 3 e s.t. (x+ α1e)(A) > f(A)} (13.12)

this last bit follows since 1e(A) = 1 ⇐⇒ e ∈ A. Continuing, we get

sat(x) = {e : ∀α > 0,∃A 3 e s.t. x(A) + α > f(A)} (13.13)

given that x ∈ P+
f , meaning x(A) ≤ f(A) for all A, we must have

sat(x) = {e : ∀α > 0,∃A 3 e s.t. x(A) = f(A)} (13.14)

= {e : ∃A 3 e s.t. x(A) = f(A)} (13.15)

So now, if A is any set such that x(A) = f(A), then we clearly have

∀e ∈ A, e ∈ sat(x), and therefore that sat(x) ⊇ A

(13.16)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F21/38 (pg.62/152)



Closure/Sat Fund. Circuit/Dep

sat, as tight polymatroidal elements

Lets start with one definition and derive the other.

sat(x)
def
=
{
e : ∀α > 0, x+ α1e /∈ P+

f

}
(13.10)

= {e : ∀α > 0,∃A s.t. (x+ α1e)(A) > f(A)} (13.11)

= {e : ∀α > 0,∃A 3 e s.t. (x+ α1e)(A) > f(A)} (13.12)

this last bit follows since 1e(A) = 1 ⇐⇒ e ∈ A. Continuing, we get

sat(x) = {e : ∀α > 0,∃A 3 e s.t. x(A) + α > f(A)} (13.13)

given that x ∈ P+
f , meaning x(A) ≤ f(A) for all A, we must have

sat(x) = {e : ∀α > 0,∃A 3 e s.t. x(A) = f(A)} (13.14)

= {e : ∃A 3 e s.t. x(A) = f(A)} (13.15)

So now, if A is any set such that x(A) = f(A), then we clearly have

∀e ∈ A, e ∈ sat(x),

and therefore that sat(x) ⊇ A

(13.16)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F21/38 (pg.63/152)



Closure/Sat Fund. Circuit/Dep

sat, as tight polymatroidal elements

Lets start with one definition and derive the other.

sat(x)
def
=
{
e : ∀α > 0, x+ α1e /∈ P+

f

}
(13.10)

= {e : ∀α > 0,∃A s.t. (x+ α1e)(A) > f(A)} (13.11)

= {e : ∀α > 0,∃A 3 e s.t. (x+ α1e)(A) > f(A)} (13.12)

this last bit follows since 1e(A) = 1 ⇐⇒ e ∈ A. Continuing, we get

sat(x) = {e : ∀α > 0,∃A 3 e s.t. x(A) + α > f(A)} (13.13)

given that x ∈ P+
f , meaning x(A) ≤ f(A) for all A, we must have

sat(x) = {e : ∀α > 0,∃A 3 e s.t. x(A) = f(A)} (13.14)

= {e : ∃A 3 e s.t. x(A) = f(A)} (13.15)

So now, if A is any set such that x(A) = f(A), then we clearly have

∀e ∈ A, e ∈ sat(x), and therefore that sat(x) ⊇ A (13.16)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F21/38 (pg.64/152)



Closure/Sat Fund. Circuit/Dep

sat, as tight polymatroidal elements

. . . and therefore, with sat as defined in Eq. (??),

sat(x) ⊇
⋃
{A : x(A) = f(A)} (13.17)

On the other hand, for any e ∈ sat(x) defined as in Eq. (13.15),
since e is itself a member of a tight set, there is a set A 3 e such
that x(A) = f(A), giving

sat(x) ⊆
⋃
{A : x(A) = f(A)} (13.18)

Therefore, the two definitions of sat are identical.
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Saturation Capacity

Another useful concept is saturation capacity which we develop next.

For x ∈ Pf , and e ∈ E, consider finding

max {α : α ∈ R, x+ α1e ∈ Pf} (13.19)

This is identical to:

max {α : (x+ α1e)(A) ≤ f(A), ∀A ⊇ {e}} (13.20)

since any B ⊆ E such that e /∈ B does not change in a 1e
adjustment, meaning (x+ α1e)(B) = x(B).

Again, this is identical to:

max {α : x(A) + α ≤ f(A), ∀A ⊇ {e}} (13.21)

or

max {α : α ≤ f(A)− x(A),∀A ⊇ {e}} (13.22)
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Saturation Capacity

The max is achieved when

α = ĉ(x; e)
def
= min {f(A)− x(A), ∀A ⊇ {e}} (13.23)

ĉ(x; e) is known as the saturation capacity associated with x ∈ Pf

and e.

Thus we have for x ∈ Pf ,

ĉ(x; e)
def
= min {f(A)− x(A),∀A 3 e} (13.24)

= max {α : α ∈ R, x+ α1e ∈ Pf} (13.25)

We immediately see that for e ∈ E \ sat(x), we have that
ĉ(x; e) > 0.

Also, for e ∈ sat(x), we have that ĉ(x; e) = 0.

Note that any α with 0 ≤ α ≤ ĉ(x; e) we have x+ α1e ∈ Pf .

We also see that computing ĉ(x; e) is a form of submodular function
minimization.
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We also see that computing ĉ(x; e) is a form of submodular function
minimization.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F24/38 (pg.76/152)



Closure/Sat Fund. Circuit/Dep

Saturation Capacity

The max is achieved when
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Closure/Sat Fund. Circuit/Dep

Dependence Function

Tight sets can be restricted to contain a particular element.

Given x ∈ Pf , and e ∈ sat(x), define

D(x, e) = {A : e ∈ A ⊆ E, x(A) = f(A)} (13.26)

= D(x) ∩ {A : A ⊆ E, e ∈ A} (13.27)

Thus, D(x, e) ⊆ D(x), and D(x, e) is a sublattice of D(x).
Therefore, we can define a unique minimal element of D(x, e)
denoted as follows:

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

(13.28)

I.e., dep(x, e) is the minimal element in D(x) that contains e (the
minimal x-tight set containing e).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F25/38 (pg.80/152)



Closure/Sat Fund. Circuit/Dep

Dependence Function

Tight sets can be restricted to contain a particular element.

Given x ∈ Pf , and e ∈ sat(x), define

D(x, e) = {A : e ∈ A ⊆ E, x(A) = f(A)} (13.26)

= D(x) ∩ {A : A ⊆ E, e ∈ A} (13.27)

Thus, D(x, e) ⊆ D(x), and D(x, e) is a sublattice of D(x).
Therefore, we can define a unique minimal element of D(x, e)
denoted as follows:

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

(13.28)

I.e., dep(x, e) is the minimal element in D(x) that contains e (the
minimal x-tight set containing e).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F25/38 (pg.81/152)



Closure/Sat Fund. Circuit/Dep

Dependence Function

Tight sets can be restricted to contain a particular element.

Given x ∈ Pf , and e ∈ sat(x), define

D(x, e) = {A : e ∈ A ⊆ E, x(A) = f(A)} (13.26)

= D(x) ∩ {A : A ⊆ E, e ∈ A} (13.27)

Thus, D(x, e) ⊆ D(x), and D(x, e) is a sublattice of D(x).

Therefore, we can define a unique minimal element of D(x, e)
denoted as follows:

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

(13.28)

I.e., dep(x, e) is the minimal element in D(x) that contains e (the
minimal x-tight set containing e).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F25/38 (pg.82/152)



Closure/Sat Fund. Circuit/Dep

Dependence Function

Tight sets can be restricted to contain a particular element.

Given x ∈ Pf , and e ∈ sat(x), define

D(x, e) = {A : e ∈ A ⊆ E, x(A) = f(A)} (13.26)

= D(x) ∩ {A : A ⊆ E, e ∈ A} (13.27)

Thus, D(x, e) ⊆ D(x), and D(x, e) is a sublattice of D(x).
Therefore, we can define a unique minimal element of D(x, e)
denoted as follows:

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

(13.28)

I.e., dep(x, e) is the minimal element in D(x) that contains e (the
minimal x-tight set containing e).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F25/38 (pg.83/152)



Closure/Sat Fund. Circuit/Dep

Dependence Function

Tight sets can be restricted to contain a particular element.

Given x ∈ Pf , and e ∈ sat(x), define

D(x, e) = {A : e ∈ A ⊆ E, x(A) = f(A)} (13.26)

= D(x) ∩ {A : A ⊆ E, e ∈ A} (13.27)

Thus, D(x, e) ⊆ D(x), and D(x, e) is a sublattice of D(x).
Therefore, we can define a unique minimal element of D(x, e)
denoted as follows:

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

(13.28)

I.e., dep(x, e) is the minimal element in D(x) that contains e (the
minimal x-tight set containing e).

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F25/38 (pg.84/152)



Closure/Sat Fund. Circuit/Dep

dep and sat in a lattice

Given some
x ∈ Pf ,

The picture on the
right summarizes
the relationships
between the
lattices and
sublattices.

Note,⋂
e dep(x, e) =

dep(x).

sat(x)

dep(x , e)

all of 2 E
 (or at least all of the lattice)

lattice of x-tight sets

lattice of x-tight

 sets containing e

dry(x )

sat(x,e)

=dry(x , e)

=dep(x )
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dep and sat in a lattice

Given x ∈ Pf , recall distributive lattice of tight sets
D(x) = {A : x(A) = f(A)}

We had that sat(x) =
⋃ {A : A ∈ D(x)} is the “1” element of this

lattice.

Consider the “0” element of D(x), i.e., dry(x)
def
=
⋂ {A : A ∈ D(x)}

We can see dry(x) as the elements that are necessary for tightness.

That is, we can equivalently define dry(x) as

dry(x) =
{
e′ : x(A) < f(A),∀A 63 e′

}
(13.29)

This can be read as, for any e′ ∈ dry(x), any set that does not
contain e′ is not tight for x (any set A that is missing any element
of dry(x) is not tight).

Perhaps, then, a better name for dry is ntight(x), for the necessary
for tightness (but we’ll actually use neither name).

Note that dry need not be the empty set. Exercise: give example.
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Closure/Sat Fund. Circuit/Dep

An alternate expression for dep = dry

Now, given x ∈ Pf , and e ∈ sat(x), recall distributive sub-lattice of
e-containing tight sets D(x, e) = {A : e ∈ A, x(A) = f(A)}

We can define the “1” element of this sub-lattice as
sat(x, e)

def
=
⋃ {A : A ∈ D(x, e)}.

Analogously, we can define the “0” element of this sub-lattice as

dry(x, e)
def
=
⋂ {A : A ∈ D(x, e)}.

We can see dry(x, e) as the elements that are necessary for
e-containing tightness, with e ∈ sat(x).

That is, we can view dry(x, e) as

dry(x, e) =
{
e′ : x(A) < f(A),∀A 63 e′, e ∈ A

}
(13.30)

This can be read as, for any e′ ∈ dry(x, e), any e-containing set
that does not contain e′ is not tight for x.

But actually, dry(x, e) = dep(x, e), so we have derived another
expression for dep(x, e) in Eq. (13.30).
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Dependence Function and Fundamental Matroid Circuit

Now, let (E, I) = (E, r) be a matroid, and let I ∈ I giving
1I ∈ Pr. We have sat(1I) = span(I) = closure(I).

Given e ∈ sat(1I) \ I and then consider an A 3 e with
|I ∩A| = r(A).
Then I ∩A serves as a base for A (i.e., I ∩A spans A) and any
such A contains a circuit (i.e., we can add e ∈ A \ I to I ∩A w/o
increasing rank).
Given e ∈ sat(1I) \ I, and consider dep(1I , e), with

dep(1I , e) =
⋂
{A : e ∈ A ⊆ E,1I(A) = r(A)} (13.31)

=
⋂
{A : e ∈ A ⊆ E, |I ∩A| = r(A)} (13.32)

=
⋂
{A : e ∈ A ⊆ E, r(A)− |I ∩A| = 0} (13.33)

By SFM lattice, ∃ a unique minimal A 3 e with |I ∩A| = r(A).
Thus, dep(1I , e) must be a circuit since if it included more than a
circuit, it would not be minimal in this sense.
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such A contains a circuit (i.e., we can add e ∈ A \ I to I ∩A w/o
increasing rank).

Given e ∈ sat(1I) \ I, and consider dep(1I , e), with

dep(1I , e) =
⋂
{A : e ∈ A ⊆ E,1I(A) = r(A)} (13.31)

=
⋂
{A : e ∈ A ⊆ E, |I ∩A| = r(A)} (13.32)

=
⋂
{A : e ∈ A ⊆ E, r(A)− |I ∩A| = 0} (13.33)

By SFM lattice, ∃ a unique minimal A 3 e with |I ∩A| = r(A).
Thus, dep(1I , e) must be a circuit since if it included more than a
circuit, it would not be minimal in this sense.
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Dependence Function and Fundamental Matroid Circuit

Therefore, when e ∈ sat(1I) \ I, then dep(1I , e) = C(I, e) where
C(I, e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

Now, if e ∈ sat(1I) ∩ I with I ∈ I, we said that C(I, e) was
undefined (since no circuit is created in this case) and so we defined
it as C(I, e) = {e}
In this case, for such an e, we have dep(1I , e) = {e} since all such
sets A 3 e with |I ∩A| = r(A) contain e, but in this case no cycle is
created, i.e., |I ∩A| ≥ |I ∩ {e}| = r(e) = 1.

We are thus free to take subsets of I as A, all of which must
contain e, but all of which have rank equal to size.

Also note: in general for x ∈ Pf and e ∈ sat(x), we have dep(x, e)
is tight by definition.
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Summary of sat, and dep

For x ∈ Pf , sat(x) (span, closure) is the maximal saturated (x-tight)
set w.r.t. x. I.e., sat(x) = {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf}. That is,

cl(x)
def
= sat(x) ,

⋃
{A : A ∈ D(x)} (13.34)

=
⋃
{A : A ⊆ E, x(A) = f(A)} (13.35)

= {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf} (13.36)

For e ∈ sat(x), we have dep(x, e) (fundamental circuit) is the minimal
(common) saturated (x-tight) set w.r.t. x containing e. That is,

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
(13.37)
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Dependence Function and exchange

For e ∈ span(I) \ I, we have that I + e /∈ I. This is a set addition
restriction property.

Analogously, for e ∈ sat(x), any x+ α1e /∈ Pf for α > 0. This is a
vector increase restriction property.
Recall, we have C(I, e) \ e′ ∈ I for e′ ∈ C(I, e). I.e., C(I, e)
consists of elements that when removed recover independence.
In other words, for e ∈ span(I) \ I, we have that

C(I, e) = {a ∈ E : I + e− a ∈ I} (13.38)

I.e., an addition of e to I stays within I only if we simultaneously
remove one of the elements of C(I, e).
But, analogous to the circuit case, is there an exchange property for
dep(x, e) in the form of vector movement restriction?
We might expect the vector dep(x, e) property to take the form:
a positive move in the e-direction stays within P+

f only if we
simultaneously take a negative move in one of the dep(x, e)
directions.
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Dependence Function and exchange in 2D

dep(x, e) is set of neg. directions we must move if we want to move in
pos. e direction, starting at x and staying within Pf .

Viewable in 2D, we have for A,B ⊆ E, A ∩B = ∅:
(e)

A

B

A

B
(e)

(e)-(a)-(a)

Left: A ∩ dep(x, e) = ∅, and we
can’t move further in (e) direc-
tion, and moving in any negative
a ∈ A direction doesn’t change
that. Notice no dependence be-
tween (e) and any element in A.

Right: A ⊆ dep(x, e), and we
can’t move further in the (e) di-
rection, but we can move further
in (e) direction by moving in some
a ∈ A negative direction. Notice
dependence between (e) and ele-
ments in A.
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Dependence Function and exchange in 3D
We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.

In 3D, we have:

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) x

x

(e)

-(a)

(e
)-(
a)

0.6

0.8

1

1.2

(a) x

(e)

-(a)

(e
)-(
a)

I.e., for e ∈ sat(x), a ∈ sat(x), a ∈ dep(x, e), e /∈ dep(x, a),

and

dep(x, e) = {a : a ∈ E,∃α > 0 : x+ α(1e − 1a) ∈ Pf} (13.39)

We next show this formally . . .
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I.e., for e ∈ sat(x), a ∈ sat(x), a ∈ dep(x, e), e /∈ dep(x, a), and

dep(x, e) = {a : a ∈ E,∃α > 0 : x+ α(1e − 1a) ∈ Pf} (13.39)

We next show this formally . . .
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Closure/Sat Fund. Circuit/Dep

dep and exchange derived

The derivation for dep(x, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable α:

dep(x, e) = ntight(x, e) = (13.40)

=
{
e′ : x(A) < f(A),∀A 63 e′, e ∈ A

}
(13.41)

=
{
e′ : ∃α > 0, s.t. α ≤ f(A)− x(A),∀A 63 e′, e ∈ A

}
(13.42)

=
{
e′ : ∃α > 0, s.t. α1e(A) ≤ f(A)− x(A),∀A 63 e′, e ∈ A

}
(13.43)

=
{
e′ : ∃α > 0, s.t. α(1e(A)− 1e′(A)) ≤ f(A)− x(A),∀A 63 e′, e ∈ A

}
(13.44)

=
{
e′ : ∃α > 0, s.t. x(A) + α(1e(A)− 1e′(A)) ≤ f(A), ∀A 63 e′, e ∈ A

}
(13.45)

Now, 1e(A)− 1e′(A) = 0 if either {e, e′} ⊆ A, or {e, e′} ∩A = ∅.
Also, if e′ ∈ A but e /∈ A, then
x(A) + α(1e(A)− 1e′(A)) = x(A)− α ≤ f(A) since x ∈ Pf .
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Closure/Sat Fund. Circuit/Dep

dep and exchange derived

thus, we get the same in the above if we remove the constraint
A 63 e′, e ∈ A, that is we get

dep(x, e) =
{
e′ : ∃α > 0, s.t. x(A) + α(1e(A)− 1e′(A)) ≤ f(A), ∀A

}
(13.46)

This is then identical to

dep(x, e) =
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
(13.47)

Compare with original, the minimal element of D(x, e), with
e ∈ sat(x):

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

(13.48)
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dep and exchange derived
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Closure/Sat Fund. Circuit/Dep

Summary of Concepts

Most violated inequality max {x(A)− f(A) : A ⊆ E}

Matroid by circuits, and the fundamental circuit C(I, e) ⊆ I + e.

Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity

e-containing tight sets

dep function & fundamental circuit of a matroid
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Summary of Concepts
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Closure/Sat Fund. Circuit/Dep

Summary important definitions so far: tight, dep, & sat

x-tight sets: For x ∈ Pf , D(x) = {A ⊆ E : x(A) = f(A)}.

Polymatroid closure/maximal x-tight set: For x ∈ Pf ,
sat(x) = ∪{A : A ∈ D(x)} = {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf}.
Saturation capacity: for x ∈ Pf , 0 ≤ ĉ(x; e) =
min {f(A)− x(A)|∀A 3 e} = max {α : α ∈ R, x+ α1e ∈ Pf}
Recall: sat(x) = {e : ĉ(x; e) = 0} and
E \ sat(x) = {e : ĉ(x; e) > 0}.
e-containing x-tight sets: For x ∈ Pf ,
D(x, e) = {A : e ∈ A ⊆ E, x(A) = f(A)} ⊆ D(x).
Minimal e-containing x-tight set/polymatroidal fundamental
circuit/: For x ∈ Pf ,

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
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∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 13 - May 14th, 2014 F38/38 (pg.150/152)



Closure/Sat Fund. Circuit/Dep

Summary important definitions so far: tight, dep, & sat

x-tight sets: For x ∈ Pf , D(x) = {A ⊆ E : x(A) = f(A)}.
Polymatroid closure/maximal x-tight set: For x ∈ Pf ,
sat(x) = ∪{A : A ∈ D(x)} = {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf}.
Saturation capacity: for x ∈ Pf , 0 ≤ ĉ(x; e) =
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