

Logistics

Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, & Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes,
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity

- L11: More properties of polymatroids, SFM special cases
- L12: polymatroid properties, extreme points polymatroids,
- L13: sat, dep, supp, exchange capacity, examples
- L14: Lattice theory: partially ordered sets; lattices; distributive, modular, submodular, and boolean lattices; ideals and join irreducibles.
- L15: Supp, Base polytope, polymatroids and entropic Venn diagrams, exchange capacity,
- L16: minimum norm point algorithm and the lattice of minimizers of a submodular function, Lovasz extension
- L17: Lovasz extension, Choquet Integration, more properties/examples of Lovasz extension, convex minimization and SFM.
- L18:
- L19:
- L20:

Finals Week: June 9th-13th, 2014.

A polymatroid function's polyhedron is a polymatroid.

Theorem 12.2.4

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}^E_+$, and any P_f^+ -basis $y^x \in \mathbb{R}^E_+$ of x, the component sum of y^x is

$$y^{x}(E) = \operatorname{rank}(x) = \max\left(y(E) : y \le x, y \in P_{f}^{+}\right)$$
$$= \min\left(x(A) + f(E \setminus A) : A \subseteq E\right)$$
(12.34)

As a consequence, P_f^+ is a polymatroid, since r.h.s. is constant w.r.t. y^x .

By taking $B = \operatorname{supp}(x)$ (so elements $E \setminus B$ are zero in x), and for $b \in B$, x(b) is big enough, the r.h.s. min has solution $A^* = E \setminus B$. We recover submodular function from the polymatroid polyhedron via the following:

$$f(B) = \max\left\{y(B) : y \in P_f^+\right\}$$
 (12.35)

In fact, we will ultimately see a number of important consequences of this theorem (other than just that P_f^+ is a polymatroid) Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014 F5/46 (pg.5/5)

Tight sets $\mathcal{D}(y)$ are closed, and max tight set sat	$(y)^{ ext{Review}}$
Recall the definition of the set of tight sets at $y \in P_f^+$:	
$\mathcal{D}(y) \triangleq \{A : A \subseteq E, \ y(A) = f(A)\}$	(12.18)
Theorem 12.2.1	
For any $y \in P_f^+$, with f a polymatroid function, then $\mathcal{D}(y)$ is clunder union and intersection.	losed
Proof.	
We have already proven this as part of Theorem 9.4.5	
Also recall the definition of $sat(y)$, the maximal set of tight elements relative to $y \in \mathbb{R}^E_+$.	ments
$\operatorname{sat}(y) \stackrel{\text{def}}{=} \bigcup \{T : T \in \mathcal{D}(y)\}$	(12.19)

Logistics	Review
Matroid Intersection	
• Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consi	der their

common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$. • While $(V, \mathcal{I}_1 \cap \mathcal{I}_2)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_1$ and $X \in \mathcal{I}_2$.

Theorem 12.2.5

Let M_1 and M_2 be given as above, with rank functions r_1 and r_2 . Then the size of the maximum size set in $\mathcal{I}_1 \cap \mathcal{I}_2$ is given by

$$(r_1 * r_2)(V) \triangleq \min_{X \subseteq V} \left(r_1(X) + r_2(V \setminus X) \right)$$
(12.7)

This is an instance of the convolution of two submodular functions, f_1 and f_2 that, evaluated at $Y \subseteq V$, is written as:

$$(f_1 * f_2)(Y) = \min_{X \subseteq Y} \left(f_1(X) + f_2(Y \setminus X) \right)$$
(12.8)

Logistics

Fundamental circuits in matroids

Lemma 12.2.3

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup \{e\}$ contains at most one circuit in M.

Review ↓↓↓↓

F9/46 (pg.9/58

Review

Proof.

- Suppose, to the contrary, that there are two distinct circuits C₁, C₂ such that C₁ ∪ C₂ ⊆ I ∪ {e}.
- Then $e \in C_1 \cap C_2$, and by (C2), there is a circuit C_3 of M s.t. $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\} \subseteq I$
- This contradicts the independence of *I*.

In general, let C(I, e) be the unique circuit associated with $I \cup \{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).

EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th.

Logistics

Matroid Intersection Algorithm Idea

- Consider two matroids $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ and start with any $I \in \mathcal{I}_1 \cap \mathcal{I}_2$.
- Consider some $v_1 \notin \operatorname{span}_1(I)$, so that $I + v_1 \in \mathcal{I}_1$.
- If $I + v_1 \in \mathcal{I}_2$, then v_1 is "augmenting", and we can augment I to $I + v_1$ and still be independent in both M_1 and M_2 .
- If $I + v_1 \notin \mathcal{I}_2$, $\exists C_2(I, v_1)$ a circuit in M_2 , and choosing $v_2 \in C_2(I, v_1)$ s.t. $v_2 \neq v_1$ leads to $I + v_1 v_2$ which (because $\operatorname{span}_2(I) = \operatorname{span}_2(I + v_1 v_2)$) is again independent in M_2 . $I + v_1 - v_2$ is also independent in M_1 . Note, $v_2 \in I$.
- Next choose a $v_3 \in \operatorname{span}_1(I) \operatorname{span}_1(I v_2)$ to recover what was lost in $I \cup \{v_1\}$ when we removed v_2 from it. Note, $v_3 \notin I$.
- Then $\operatorname{span}_1(I) = \operatorname{span}_1(I v_2 + v_3).$
- Moreover, since $I + v_1 \in \mathcal{I}_1$, $v_1 \notin \operatorname{span}_1(I)$, so $\operatorname{span}_1(I + v_1) = \operatorname{span}_1(I + v_1 - v_2 + v_3)$.
- But $I + v_1 v_2 + v_3$ might not be independent in M_2 again, so need to find an $v_4 \in C_2(I + v_1 v_2, v_3)$, $v_4 \in I$ to remove, and so on.

 $S = (v_1, v_2, \dots, v_s)$ such that we will be independent in both M_1

Logistics

Identifying Augmenting Sequences

Theorem 12.2.6

Let I_p and I_{p+1} be intersections of M_1 and M_2 with p and p+1elements respectively. Then there exists an augmenting sequence $S \subseteq I_p \ominus I_{p+1}$ w.r.t. I_p .

Theorem 12.2.7

An intersection is of maximum cardinality iff it admits no augmenting sequence.

Theorem 12.2.8

Prof. Jeff Bilmes

For any intersection I, there exists a maximum cardinality intersection I^* such that $\operatorname{span}_1(I) \subseteq \operatorname{span}_1(I^*)$ and $\operatorname{span}_2(I) \subseteq \operatorname{span}_2(I^*)$.

EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014

All this can be made to run in poly time.

F11/46 (pg.11/58)

Matroid Partition Problem

Theorem 12.3.1

Let M_i be a collection of k matroids as described. Then, a set $S \subseteq E$ can be partitioned into k subsets $I_i, i = 1 \dots k$ where $I_i \in \mathcal{I}_i$ is independent in matroid i, if and only if, for all $A \subseteq S$

$$|A| \le \sum_{i=1}^{k} r_i(A)$$
 (12.1)

where r_i is the rank function of M_i .

• Now, if all matroids are the same $M_i = M$ for all i, we get condition

$$|A| \le kr(A) \quad \forall A \subseteq E \tag{12.2}$$

ullet But considering vector of all ones $\mathbf{1}\in\mathbb{R}^E_+$, this is the same as

$$\frac{1}{k}|A| = \frac{1}{k}\mathbf{1}(A) \le r(A) \quad \forall A \subseteq E$$
(12.3)

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014

Mtrd. Partitioning	Polymatroids and Greedy	Possible Polytopes	Extreme Points	Most Violated \leq	Matroids cont.	Closure/Sat
Matroio	d Partition I	Problem				
• Reca	all definition of	matroid po	lytope			
	$P_r^+ = \left\{ y \in \right.$	$\mathbb{R}^E_+: y(A)$	$\leq r(A)$ fo	$r all A \subseteq E$	2}	(12.4)
• The is ju mat	n we see that t st testing if $rac{1}{k} 1$ roid polyhedra.	his special c $e \in P_r^+$, a pr	ase of the oblem of t	matroid pa esting the r	rtition pro nembersh	blem ip in
 This 	is therefore a s	special case	of submod	lular functio	on minimiz	zation.

F13/46 (pg.13/58)

Mtrd. Partitioning

eme Points Most Violat

Maximum weight independent set via greedy weighted rank

Theorem 12.4.6

Let $M = (V, \mathcal{I})$ be a matroid, with rank function r, then for any weight function $w \in \mathbb{R}^V_+$, there exists a chain of sets $U_1 \subset U_2 \subset \cdots \subset U_n \subseteq V$ such that

$$\max\left\{w(I)|I \in \mathcal{I}\right\} = \sum_{i=1}^{n} \lambda_i r(U_i)$$
(12.19)

where $\lambda_i \geq 0$ satisfy

$$w = \sum_{i=1}^{n} \lambda_i \mathbf{1}_{U_i} \tag{12.20}$$

Prof. Jeff Bilme

EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th,

F17/46 (pg.17/5

Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat Polymatroidal polyhedron and greedy

- Let (E, \mathcal{I}) be a set system and $w \in \mathbb{R}^E_+$ be a weight vector.
- Recall greedy algorithm: Set A = Ø, and repeatedly choose y ∈ E \ A such that A ∪ {y} ∈ I with w(y) as large as possible, stopping when no such y exists.
- For a matroid, we saw that set system (E, \mathcal{I}) is a matroid iff for each weight function $w \in \mathbb{R}^E_+$, the greedy algorithm leads to a set $I \in \mathcal{I}$ of maximum weight w(I).
- Stated succinctly, considering $\max \{w(I) : I \in \mathcal{I}\}$, then (E, \mathcal{I}) is a matroid iff greedy works for this maximization.
- Can we also characterize a polymatroid in this way?
- That is, if we consider $\max\left\{wx: x \in P_f^+\right\}$, where P_f^+ represents the "independent vectors", is it the case that P_f^+ is a polymatroid iff greedy works for this maximization?
- Can we even relax things so that $w \in \mathbb{R}^{E}$?

- Hence, for the largest value of w (namely w(e₁)), we use for x(e₁) the largest possible gain value of e₁ (namely f(e₁|Ø) ≥ f(e₁|A) for any A ⊆ E \ {e₁}).
- For the next largest value of w (namely w(e₂)), we use for x(e₂) the next largest gain value of e₂ (namely f(e₂|e₁)), while still ensuring (as we will soon see in Theorem 12.4.1) that the resulting x ∈ P_f.
- This process continues, using the next largest possible gain of e_i for $x(e_i)$ while ensuring we do not leave the polytope, given the values we've already chosen for $x(e_{i'})$ for i' < i.

Polymatroidal polyhedron and greedy Theorem 12.4.1 The vector $x \in \mathbb{R}^E_+$ as previously defined using the greedy algorithm maximizes wx over P_f^+ , with $w \in \mathbb{R}^E_+$, if f is submodular. Proof. • Consider the LP strong duality equation: $\max(wx: x \in P_f^+) = \min\left(\sum_{A \subseteq E} y_A f(A): y \in \mathbb{R}^{2^E}_+, \sum_{A \subseteq E} y_A \mathbf{1}_A \ge w\right)$ (12.11)• Define the following vector $y \in \mathbb{R}_+^{2^E}$ as $y_{E_i} \leftarrow w(e_i) - w(e_{i+1})$ for $i = 1 \dots (m-1)$, (12.12) $y_E \leftarrow w(e_m)$, and (12.13) $y_A \leftarrow 0$ otherwise (12.14)EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014 F21/46 (pg.21/58) Prof. Jeff Bilme

Polymatroidal p	olyhedron and greedy	st Violated S Matroids cont	. Closure/Sat
Proof.			
• We first will see	e that greedy $x\in P_f^+$ (that is	$\mathbf{s} \ x(A) \le f(A), \forall$	′A).
• Order $A = (a_1, $	$a_2,\ldots,a_k)$ based on order ($e_1, e_2, \ldots, e_m).$	
a_1	a_2 a_3 a_4	a_5	
$ e_1 e_2 e_3 $	$e_4 \mid e_5 \mid e_6 \mid e_7 \mid e_8 \mid e_9$	$ e_{10} e_{11} \ldots$	$ e_m $
• Define $e^{-1}: E$	$\rightarrow \{1, \ldots, m\}$ so that $e^{-1}(e_i)$)=i.	
• Then, we have	$x \in P_f^+$ since for all A :		
	$f(A) = \sum_{i=1}^{k} f(a_i a_{1:i-1})$		(12.15)
	$\geq \sum_{i=1}^{k} f(a_i e_{1:e^{-1}(a_i)-1}$)	(12.16)
	$= \sum_{a \in A}^{n-1} f(a e_{1:e^{-1}(a)-1})$	=x(A)	(12.17)

<page-header>

 Matrix 2011 (Matrix Matrix Matri

Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Close Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P_f^+ is a polytope of form $P_f^+ = \{x \in \mathbb{R}^E_+ : x(A) \le f(A), \forall A \subseteq E\}$, then the greedy solution to $\max(wx : x \in P)$ is optimum only if f is submodular.

Proof.

- Order elements of E arbitrarily as (e_1, e_2, \ldots, e_m) and define $E_i = (e_1, e_2, \ldots, e_i)$. Also, choose A and B arbitrarily.
- For $1 \le p \le q \le m$, define $A = \{e_1, e_2, \dots, e_k, e_{k+1}, \dots, e_p\} = E_p$ and $B = \{e_1, e_2, \dots, e_k, e_{p+1}, \dots, e_q\} = E_k \cup (E_q \setminus E_p)$
- Note, then we have $A \cap B = \{e_1, \ldots, e_k\} = E_k$, and $A \cup B = E_q$.

• Define
$$w \in \{0,1\}^m$$
 as:

$$w \stackrel{\text{def}}{=} \sum_{i=1}^{q} \mathbf{1}_{e_i} = \mathbf{1}_{A \cup B}$$
(12.22)

• Suppose optimum solution x is given by the greedy procedure.

- Given an arbitrary submodular function $f: 2^V \to R$ (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If f(Ø) ≠ 0, we can set f'(A) = f(A) f(Ø) without destroying submodularity. This also does not change any minima, so we assume all functions are normalized f(Ø) = 0. Note that due to constraint x(Ø) ≤ f(Ø), we must have f(Ø) ≥ 0 since if not (i.e., if f(Ø) < 0), then P⁺_f doesn't exist.

Another form of normalization can do is:

$$f'(A) = \begin{cases} f(A) & \text{if } A \neq \emptyset \\ 0 & \text{if } A = \emptyset \end{cases}$$
(12.28)

This preserves submodularity due to $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$, and if $A \cap B = \emptyset$ then r.h.s. only gets smaller when $f(\emptyset) \ge 0$.

• We can define several polytopes:

$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$
(12.29)

$$P_f^+ = P_f \cap \left\{ x \in \mathbb{R}^E : x \ge 0 \right\}$$
(12.30)

$$B_{f} = P_{f} \cap \{x \in \mathbb{R}^{E} : x(E) = f(E)\}$$
(12.31)
EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014 F25/46 (pg.30/58)

• P_f is what is sometimes called the extended polytope (sometimes notated as EP_f

If we take x to be zero, we get:

Corollary 12.5.2

Let f be a submodular function defined on subsets of E. $x \in \mathbb{R}^{E}$, we have:

$$rank(0) = \max(y(E) : y \le 0, y \in P_f) = \min(f(A) : A \subseteq E)$$
 (12.38)

Prof. Jeff Bilme

EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 201

F28/46 (pg.33/58)

- Since w ∈ ℝ^E₊ is arbitrary, it may be that any e ∈ E is max (i.e., is such that w(e) > w(e') for e' ∈ E \ {e}).
- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.
- Recall, base polytope defined as the extreme face of P_f . I.e.,

$$B_f = P_f \cap \left\{ x \in \mathbb{R}^E_+ : x(E) = f(E) \right\}$$
(12.39)

- Also, intuitively, we can continue advancing along the skeletal edges of the polytope to reach any other vertex, given the appropriate ordering. If we advance in all dimensions, we'll reach a vertex in B_f, and if we advance only in some dimensions, we'll reach a vertex in P_f \ B_f.
- We formalize this next:

Theorem 12.6.1

For a given ordering $E = (e_1, \ldots, e_m)$ of E and a given $E_i = (e_1, \ldots, e_i)$ and x generated by E_i using the greedy procedure $(x(e_i) = f(e_i|E_{i-1}))$, then x is an extreme point of P_f

Proof.

- We already saw that $x \in P_f$ (Theorem 12.4.1).
- To show that x is an extreme point of P_f , note that it is the unique solution of the following system of equations

$$x(E_j) = f(E_j) \text{ for } 1 \le j \le i \le m$$
 (12.43)

$$x(e) = 0 \text{ for } e \in E \setminus E_i \tag{12.44}$$

There are $i \leq m$ equations and $i \leq m$ unknowns, and simple Gaussian elimination gives us back the x constructed via the Greedy algorithm!!

A polymatroid function's polyhedron is a polymatroid.

Theorem 12.7.4

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}^E_+$, and any P_f^+ -basis $y^x \in \mathbb{R}^E_+$ of x, the component sum of y^x is

$$y^{x}(E) = \operatorname{rank}(x) = \max\left(y(E) : y \le x, y \in P_{f}^{+}\right)$$
$$= \min\left(x(A) + f(E \setminus A) : A \subseteq E\right)$$
(12.34)

As a consequence, P_f^+ is a polymatroid, since r.h.s. is constant w.r.t. y^x .

By taking $B = \operatorname{supp}(x)$ (so elements $E \setminus B$ are zero in x), and for $b \in B$, x(b) is big enough, the r.h.s. min has solution $A^* = E \setminus B$. We recover submodular function from the polymatroid polyhedron via the following:

$$f(B) = \max\left\{y(B) : y \in P_f^+\right\}$$
 (12.35)

In fact, we will ultimately see a number of important consequences of this theorem (other than just that P_f^+ is a polymatroid) Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014

Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated \leq Matroids cont. Closure/S

Most violated inequality problem in matroid polytope case

• Consider

$$P_r^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r_M(A), \forall A \subseteq E \right\}$$
(12.47)

- Suppose we have any $x \in \mathbb{R}^E_+$ such that $x \notin P_r^+$.
- Hence, there must be a set of $\mathcal{W} \subseteq 2^V$, each member of which corresponds to a violated inequality, i.e., equations of the form $x(A) > r_M(A)$ for $A \in \mathcal{W}$.
- The most violated inequality when x is considered w.r.t. P_r^+ corresponds to the set A that maximizes $x(A) r_M(A)$, i.e., the most violated inequality is valuated as:

 $\max \{x(A) - r_M(A) : A \in \mathcal{W}\} = \max \{x(A) - r_M(A) : A \subseteq E\}$ (12.48)

• Since x is modular and $x(E \setminus A) = x(E) - x(A)$, we can express this via a min as in;:

$$\min\left\{r_M(A) + x(E \setminus A) : A \subseteq E\right\}$$
(12.49)

Prof. Jeff Bilm

EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014

(12.50) (1

F35/46 (pg.47/58

Most violated inequality/polymatroid membership/SFM • The most violated inequality when x is considered w.r.t. P_f^+ corresponds to the set A that maximizes x(A) - f(A), i.e., the most violated inequality is valuated as: $\max \{x(A) - f(A) : A \in \mathcal{W}\} = \max \{x(A) - f(A) : A \subseteq E\}$ (12.51) • Since x is modular and $x(E \setminus A) = x(E) - x(A)$, we can express this via a min as in;: $\min \left\{ f(A) + x(E \setminus A) : A \subseteq E \right\}$ (12.52)• More importantly, $\min \{f(A) + x(E \setminus A) : A \subseteq E\}$ is a form of submodular function minimization, namely $\min \{f(A) - x(A) : A \subseteq E\}$ for a submodular f and $x \in \mathbb{R}^{E}_{+}$, consisting of a difference of polymatroid and modular function (so f - x is no longer necessarily monotone, nor positive). We will ultimatley answer how general this form of SFM is. EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, F37/46 (pg.49/58)

Definition 12.8.1 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

A hyperplane is a flat of rank r(M) - 1.

Definition 12.8.2 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$

Therefore, a closed set A has span(A) = A.

Definition 12.8.3 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if r(A) < |A| and for any $a \in A$, $\overline{r(A \setminus \{a\})} = |A| - 1$).


```
Prof. Jeff Bilmes
```

EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014

F39/46 (pg.51/58)

 Mtrd. Partitioning
 Polymatroids and Greedy
 Possible Polytopes
 Extreme Points
 Most Violated ≤
 Matroids cont.
 Closure/Sat

 Fundamental circuits in matroids

Lemma 12.8.3

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup \{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C₁, C₂ such that C₁ ∪ C₂ ⊆ I ∪ {e}.
- Then $e \in C_1 \cap C_2$, and by (C2), there is a circuit C_3 of M s.t. $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\} \subseteq I$
- This contradicts the independence of *I*.

In general, let C(I, e) be the unique circuit associated with $I \cup \{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).

	c		C	_
Union	ot ma	atroid bas	ses of a	set

Lemma 12.8.1

Let $\mathcal{B}(C)$ be the set of bases of C. Then, given matroid $\mathcal{M} = (E, \mathcal{I})$, and any loop-free set $C \subseteq E$, we have that:

$$\bigcup_{B \in \mathcal{B}(C)} B = C.$$
(12.53)

Proof.

- Define $C' \triangleq \bigcup_{B \in \mathcal{B}(C)}$, and suppose $\exists c \in C$ such that $c \notin C'$.
- Hence, $\forall B \in \mathcal{B}(C)$ we have $c \notin B$, and B + c contains a single circuit for any B, namely C(B, c).
- Then choose $c' \in C(B,c)$ with $c' \neq c$.
- Then B + c c' is independent size |B| subset of C and hence spans C, and thus is a c-containing member of $\mathcal{B}(C)$, contradicting $c \notin C'$.

The sat function = Polymatroid Closure

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_f$ for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.
- That is, we saw in Lecture 7 that for any $A, B \in \mathcal{D}(x)$, we have that $A \cup B \in \mathcal{D}(x)$ and $A \cap B \in \mathcal{D}(x)$, which can constitute a join and meet.
- Recall, for a given $x \in P_f$, we have defined this tight family as

$$\mathcal{D}(x) = \{A : A \subseteq E, x(A) = f(A)\}$$
(12.54)

• Now given
$$x \in P_f^+$$
:

$$\mathcal{D}(x) = \{A : A \subseteq E, x(A) = f(A)\}$$

$$(12.55)$$

$$= \{A : f(A) - x(A) = 0\}$$
(12.56)

- Since $x \in P_f^+$ and f is presumed to be polymatroid function, we see f'(A) = f(A) x(A) is a non-negative submodular function, and $\mathcal{D}(x)$ are the zero-valued minimizers (if any) of f'(A).
- The zero-valued minimizers of f' are thus closed under union and intersection.
- In fact, this is true for all minimizers of a submodular function as stated in the next theorem.

Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A) = f(B) \le f(A \cap B)$ and $f(A) = f(B) \le f(A \cup B)$. By submodularity, we have

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$
 (12.57)

Hence, we must have $f(A) = f(B) = f(A \cup B) = f(A \cap B)$.

Thus, the minimizers of a submodular function form a lattice, and there is a maximal and a minimal minimizer of every submodular function.

f. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014 F45/46 (pg.57

The sat function = Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in D(x), also called the polymatroid closure or sat (saturation function).
- For some $x \in P_f$, we have defined:

$$\mathsf{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \left\{ A : A \in \mathcal{D}(x) \right\}$$
(12.58)

$$= \bigcup \{A : A \subseteq E, x(A) = f(A)\}$$
(12.59)

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
(12.60)

- Hence, sat(x) is the maximal (zero-valued) minimizer of the submodular function f_x(A) ≜ f(A) x(A).
- Eq. (12.60) says that sat consists of any point x that is P_f saturated (any additional positive movement, in that dimension, leaves P_f). We'll revisit this in a few slides.
- First, we see how sat generalizes matroid closure.