Submodular Functions, Optimization, and Applications to Machine Learning
 - Spring Quarter, Lecture 12 http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

May 12th, 2014

Logistics

Cumulative Outstanding Reading

- Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige's book.
- Good references for today: Schrijver-2003, Oxley-1992/2011, Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.
- Read Tom McCormick's overview paper on SFM http://people. commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
- Read chapters 1 - 3 from Fujishige book.
- Matroid properties http:
//www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf

Announcements, Assignments, and Reminders

- Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

Logistics
 Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, \& Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes,
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity
- L11: More properties of polymatroids, SFM special cases
- L12: polymatroid properties, extreme points polymatroids,
- L13: sat, dep, supp, exchange capacity, examples
- L14: Lattice theory: partially ordered sets; lattices; distributive, modular, submodular, and boolean lattices; ideals and join irreducibles.
- L15: Supp, Base polytope, polymatroids and entropic Venn diagrams, exchange capacity,
- L16: minimum norm point algorithm and the lattice of minimizers of a submodular function, Lovasz extension
- L17: Lovasz extension, Choquet Integration, more properties/examples of Lovasz extension, convex minimization and SFM.
- L18:
- L19:
- L20:

A polymatroid function's polyhedron is a polymatroid.

Theorem 12.2.4

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}_{+}^{E}$, and any P_{f}^{+}-basis $y^{x} \in \mathbb{R}_{+}^{E}$ of x, the component sum of y^{x} is

$$
\begin{align*}
y^{x}(E)=\operatorname{rank}(x) & =\max \left(y(E): y \leq x, y \in P_{f}^{+}\right) \\
& =\min (x(A)+f(E \backslash A): A \subseteq E) \tag{12.34}
\end{align*}
$$

As a consequence, P_{f}^{+}is a polymatroid, since r.h.s. is constant w.r.t. y^{x}.
By taking $B=\operatorname{supp}(x)$ (so elements $E \backslash B$ are zero in x), and for $b \in B$, $x(b)$ is big enough, the r.h.s. min has solution $A^{*}=E \backslash B$. We recover submodular function from the polymatroid polyhedron via the following:

$$
\begin{equation*}
f(B)=\max \left\{y(B): y \in P_{f}^{+}\right\} \tag{12.35}
\end{equation*}
$$

In fact, we will ultimately see a number of important consequences of this theorem (other than just that P_{f}^{+}is a polymatroid)

Tight sets $\mathcal{D}(y)$ are closed, and max tight set sat (y)

Recall the definition of the set of tight sets at $y \in P_{f}^{+}$:

$$
\begin{equation*}
\mathcal{D}(y) \triangleq\{A: A \subseteq E, y(A)=f(A)\} \tag{12.18}
\end{equation*}
$$

Theorem 12.2.1

For any $y \in P_{f}^{+}$, with f a polymatroid function, then $\mathcal{D}(y)$ is closed under union and intersection.

Proof.

We have already proven this as part of Theorem 9.4.5
Also recall the definition of $\operatorname{sat}(y)$, the maximal set of tight elements relative to $y \in \mathbb{R}_{+}^{E}$.

$$
\begin{equation*}
\operatorname{sat}(y) \stackrel{\text { def }}{=} \bigcup\{T: T \in \mathcal{D}(y)\} \tag{12.19}
\end{equation*}
$$

Logistics
 Bipartite Matching

- Given a matching $A \subseteq E$ (which might be empty), we can increase the matching if we can find an augmenting path S.
- The updated matching becomes $A^{\prime}=A \backslash S \cup S \backslash A=A \ominus S$, where \ominus is the symmetric difference operator.
- The algorithm becomes:

```
Algorithm 8.1: Alternating Path Bipartite Matching
Let \(A\) be an arbitrary (including empty) matching in \(G=(V, F, E)\);
while There exists an augmenting path \(S\) in \(G\) do
    \(A \leftarrow A \ominus S\);
```

- This can easily be made to run in $O\left(m^{2} n\right)$, where $|V|=m$, $|F|=n, m \leq n$, but it can be made to run much faster as well (see Schrijver-2003).

Matroid Intersection

- Let $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ be two matroids. Consider their common independent sets $\mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- While ($V, \mathcal{I}_{1} \cap \mathcal{I}_{2}$) is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_{1}$ and $X \in \mathcal{I}_{2}$.

Theorem 12.2.5

Let M_{1} and M_{2} be given as above, with rank functions r_{1} and r_{2}. Then the size of the maximum size set in $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ is given by

$$
\begin{equation*}
\left(r_{1} * r_{2}\right)(V) \triangleq \min _{X \subseteq V}\left(r_{1}(X)+r_{2}(V \backslash X)\right) \tag{12.7}
\end{equation*}
$$

This is an instance of the convolution of two submodular functions, f_{1} and f_{2} that, evaluated at $Y \subseteq V$, is written as:

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(Y)=\min _{X \subseteq Y}\left(f_{1}(X)+f_{2}(Y \backslash X)\right) \tag{12.8}
\end{equation*}
$$

Fundamental circuits in matroids

Lemma 12.2.3

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup\{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_{1}, C_{2} such that $C_{1} \cup C_{2} \subseteq I \cup\{e\}$.
- Then $e \in C_{1} \cap C_{2}$, and by (C2), there is a circuit C_{3} of M s.t. $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\} \subseteq I$
- This contradicts the independence of I.

In general, let $C(I, e)$ be the unique circuit associated with $I \cup\{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).

Matroid Intersection Algorithm Idea

- Consider two matroids $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ and start with any $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- Consider some $v_{1} \notin \operatorname{span}_{1}(I)$, so that $I+v_{1} \in \mathcal{I}_{1}$.
- If $I+v_{1} \in \mathcal{I}_{2}$, then v_{1} is "augmenting", and we can augment I to $I+v_{1}$ and still be independent in both M_{1} and M_{2}.
- If $I+v_{1} \notin \mathcal{I}_{2}, \exists C_{2}\left(I, v_{1}\right)$ a circuit in M_{2}, and choosing $v_{2} \in C_{2}\left(I, v_{1}\right)$ s.t. $v_{2} \neq v_{1}$ leads to $I+v_{1}-v_{2}$ which (because $\left.\operatorname{span}_{2}(I)=\operatorname{span}_{2}\left(I+v_{1}-v_{2}\right)\right)$ is again independent in M_{2}.
$I+v_{1}-v_{2}$ is also independent in M_{1}. Note, $v_{2} \in I$.
- Next choose a $v_{3} \in \operatorname{span}_{1}(I)-\operatorname{span}_{1}\left(I-v_{2}\right)$ to recover what was lost in $I \cup\left\{v_{1}\right\}$ when we removed v_{2} from it. Note, $v_{3} \notin I$.
- Then $\operatorname{span}_{1}(I)=\operatorname{span}_{1}\left(I-v_{2}+v_{3}\right)$.
- Moreover, since $I+v_{1} \in \mathcal{I}_{1}, v_{1} \notin \operatorname{span}_{1}(I)$, so $\operatorname{span}_{1}\left(I+v_{1}\right)=\operatorname{span}_{1}\left(I+v_{1}-v_{2}+v_{3}\right)$.
- But $I+v_{1}-v_{2}+v_{3}$ might not be independent in M_{2} again, so need to find an $v_{4} \in C_{2}\left(I+v_{1}-v_{2}, v_{3}\right), v_{4} \in I$ to remove, and so on.

Identifying Augmenting Sequences

Theorem 12.2.6

Let I_{p} and I_{p+1} be intersections of M_{1} and M_{2} with p and $p+1$ elements respectively. Then there exists an augmenting sequence $S \subseteq I_{p} \ominus I_{p+1}$ w.r.t. I_{p}.

Theorem 12.2.7

An intersection is of maximum cardinality iff it admits no augmenting sequence.

Theorem 12.2.8

For any intersection I, there exists a maximum cardinality intersection I^{*} such that $\operatorname{span}_{1}(I) \subseteq \operatorname{span}_{1}\left(I^{*}\right)$ and $\operatorname{span}_{2}(I) \subseteq \operatorname{span}_{2}\left(I^{*}\right)$.

All this can be made to run in poly time.

- Suppose $M_{i}=\left(E, \mathcal{I}_{i}\right)$ is a matroid and that we have k of them on the same ground set E.
- We wish to, if possible, partition E into k blocks, $I_{i}, i \in\{1,2, \ldots, k\}$ where $I_{i} \in \mathcal{I}_{i}$.
- Moreover, we want partition to be lexicographically maximum, that is $\left|I_{1}\right|$ is maximum, $\left|I_{2}\right|$ is maximum given $\left|I_{1}\right|$, and so on.

Matroid Partition Problem

Theorem 12.3.1

Let M_{i} be a collection of k matroids as described. Then, a set $S \subseteq E$ can be partitioned into k subsets $I_{i}, i=1 \ldots k$ where $I_{i} \in \mathcal{I}_{i}$ is independent in matroid i, if and only if, for all $A \subseteq S$

$$
\begin{equation*}
|A| \leq \sum_{i=1}^{k} r_{i}(A) \tag{12.1}
\end{equation*}
$$

where r_{i} is the rank function of M_{i}.

- Now, if all matroids are the same $M_{i}=M$ for all i, we get condition

$$
\begin{equation*}
|A| \leq k r(A) \quad \forall A \subseteq E \tag{12.2}
\end{equation*}
$$

- But considering vector of all ones $\mathbf{1} \in \mathbb{R}_{+}^{E}$, this is the same as

$$
\begin{equation*}
\frac{1}{k}|A|=\frac{1}{k} \mathbf{1}(A) \leq r(A) \quad \forall A \subseteq E \tag{12.3}
\end{equation*}
$$

Mtrd. Partitioning

Matroid Partition Problem

- Recall definition of matroid polytope

$$
\begin{equation*}
P_{r}^{+}=\left\{y \in \mathbb{R}_{+}^{E}: y(A) \leq r(A) \text { for all } A \subseteq E\right\} \tag{12.4}
\end{equation*}
$$

- Then we see that this special case of the matroid partition problem is just testing if $\frac{1}{k} \mathbf{1} \in P_{r}^{+}$, a problem of testing the membership in matroid polyhedra.
- This is therefore a special case of submodular function minimization.
- The next two slides from respectively from Lecture 9 and Lecture 8.

Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated $\leq \quad$ Matroids cont. Closure/Sat Polymatroidal polyhedron (or a "polymatroid")

Definition 12.4.4 (polymatroid)

A polymatroid is a compact set $P \subseteq \mathbb{R}_{+}^{E}$ satisfying
(1) $0 \in P$
(2) If $y \leq x \in P$ then $y \in P$ (called down monotone).
(3) For every $x \in \mathbb{R}_{+}^{E}$, any maximal vector $y \in P$ with $y \leq x$ (i.e., any P-basis of x), has the same component sum $y(E)$

Maximum weight independent set via greedy weighted rank

Theorem 12.4.6

Let $M=(V, \mathcal{I})$ be a matroid, with rank function r, then for any weight function $w \in \mathbb{R}_{+}^{V}$, there exists a chain of sets $U_{1} \subset U_{2} \subset \cdots \subset U_{n} \subseteq V$ such that

$$
\begin{equation*}
\max \{w(I) \mid I \in \mathcal{I}\}=\sum_{i=1}^{n} \lambda_{i} r\left(U_{i}\right) \tag{12.19}
\end{equation*}
$$

where $\lambda_{i} \geq 0$ satisfy

$$
\begin{equation*}
w=\sum_{i=1}^{n} \lambda_{i} \mathbf{1}_{U_{i}} \tag{12.20}
\end{equation*}
$$

Mtrd. Partitioning Polymatroids and Greedy
 Polymatroidal polyhedron and greedy

- Let (E, \mathcal{I}) be a set system and $w \in \mathbb{R}_{+}^{E}$ be a weight vector.
- Recall greedy algorithm: Set $A=\emptyset$, and repeatedly choose $y \in E \backslash A$ such that $A \cup\{y\} \in \mathcal{I}$ with $w(y)$ as large as possible, stopping when no such y exists.
- For a matroid, we saw that set system (E, \mathcal{I}) is a matroid iff for each weight function $w \in \mathbb{R}_{+}^{E}$, the greedy algorithm leads to a set $I \in \mathcal{I}$ of maximum weight $w(I)$.
- Stated succinctly, considering $\max \{w(I): I \in \mathcal{I}\}$, then (E, \mathcal{I}) is a matroid iff greedy works for this maximization.
- Can we also characterize a polymatroid in this way?
- That is, if we consider max $\left\{w x: x \in P_{f}^{+}\right\}$, where P_{f}^{+}represents the "independent vectors", is it the case that P_{f}^{+}is a polymatroid iff greedy works for this maximization?
- Can we even relax things so that $w \in \mathbb{R}^{E}$?

Polymatroidal polyhedron and greedy

0

- What is the greedy solution in this setting, when $w \in \mathbb{R}^{E}$?
- Sort elements of E w.r.t. w so that, w.l.o.g.
$E=\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ with $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{m}\right)$.
- Let $k+1$ be the first point (if any) at which we are non-positive, i.e., $w\left(e_{k}\right)>0$ and $0 \geq w\left(e_{k+1}\right)$.

That is, we have

$$
\begin{equation*}
w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \cdots \geq w\left(e_{k}\right)>0 \geq w\left(e_{k+1}\right) \geq \cdots \geq w\left(e_{m}\right) \tag{12.5}
\end{equation*}
$$

- Next define partial accumulated sets E_{i}, for $i=0 \ldots m$, we have w.r.t. the above sorted order:

$$
\begin{equation*}
E_{i} \stackrel{\text { def }}{=}\left\{e_{1}, e_{2}, \ldots e_{i}\right\} \tag{12.7}
\end{equation*}
$$

(note $E_{0}=\emptyset, f\left(E_{0}\right)=0$, and E and E_{i} is always sorted w.r.t w).

- The greedy solution is the vector $x \in \mathbb{R}_{+}^{E}$ with elements defined as:

$$
\begin{align*}
& x\left(e_{i}\right) \stackrel{\text { def }}{=} f\left(E_{i}\right)-f\left(E_{i-1}\right)=f\left(e_{i} \mid E_{i-1}\right) \text { for } i=2 \ldots k \tag{12.9}\\
& x\left(e_{i}\right) \stackrel{\text { def }}{=} 0 \text { for } i=k+1 \ldots m=|E| \tag{12.10}
\end{align*}
$$

Some Intuition: greedy and gain

- Note $x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right) \leq f\left(e_{i} \mid E^{\prime}\right)$ for any $E^{\prime} \subseteq E_{i-1}$
- So $x\left(e_{1}\right)=f\left(e_{1}\right)$ and this corresponds to $w\left(e_{1}\right) \geq w\left(e_{i}\right)$ for all $i \neq 1$.
- Hence, for the largest value of w (namely $w\left(e_{1}\right)$), we use for $x\left(e_{1}\right)$ the largest possible gain value of e_{1} (namely $f\left(e_{1} \mid \emptyset\right) \geq f\left(e_{1} \mid A\right)$ for any $\left.A \subseteq E \backslash\left\{e_{1}\right\}\right)$.
- For the next largest value of w (namely $w\left(e_{2}\right)$), we use for $x\left(e_{2}\right)$ the next largest gain value of e_{2} (namely $f\left(e_{2} \mid e_{1}\right)$), while still ensuring (as we will soon see in Theorem 12.4.1) that the resulting $x \in P_{f}$.
- This process continues, using the next largest possible gain of e_{i} for $x\left(e_{i}\right)$ while ensuring we do not leave the polytope, given the values we've already chosen for $x\left(e_{i^{\prime}}\right)$ for $i^{\prime}<i$.

Polymatroidal polyhedron and greedy

Theorem 12.4.1

The vector $x \in \mathbb{R}_{+}^{E}$ as previously defined using the greedy algorithm maximizes $w x$ over P_{f}^{+}, with $w \in \mathbb{R}_{+}^{E}$, if f is submodular.

Proof.

- Consider the LP strong duality equation:

$$
\begin{equation*}
\max \left(w x: x \in P_{f}^{+}\right)=\min \left(\sum_{A \subseteq E} y_{A} f(A): y \in \mathbb{R}_{+}^{2^{E}}, \sum_{A \subseteq E} y_{A} \mathbf{1}_{A} \geq w\right) \tag{12.11}
\end{equation*}
$$

- Define the following vector $y \in \mathbb{R}_{+}^{2^{E}}$ as

$$
\begin{align*}
y_{E_{i}} & \leftarrow w\left(e_{i}\right)-w\left(e_{i+1}\right) \text { for } i=1 \ldots(m-1), \tag{12.12}\\
y_{E} & \leftarrow w\left(e_{m}\right), \text { and } \tag{12.13}\\
y_{A} & \leftarrow 0 \text { otherwise } \tag{12.14}
\end{align*}
$$

Prof. Jeff Bilmes
EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014
F21/46 (pg.21/58)

Mtrd. Partitioning Polymatroids and Greedy
 Possible Polytopes Extreme Points
 Most Violated \leq
 Matroids cont.

Polymatroidal polyhedron and greedy

Proof.

- We first will see that greedy $x \in P_{f}^{+}$(that is $\left.x(A) \leq f(A), \forall A\right)$.
- Order $A=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ based on order $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$.

		a_{1}		a_{2}	a_{3}			a_{4}		a_{5}	\ldots	
e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}	e_{10}	e_{11}	\ldots	e_{m}

- Define $e^{-1}: E \rightarrow\{1, \ldots, m\}$ so that $e^{-1}\left(e_{i}\right)=i$.
- Then, we have $x \in P_{f}^{+}$since for all A :

$$
\begin{align*}
f(A) & =\sum_{i=1}^{k} f\left(a_{i} \mid a_{1: i-1}\right) \tag{12.15}\\
& \geq \sum_{i=1}^{k} f\left(a_{i} \mid e_{1: e^{-1}\left(a_{i}\right)-1}\right) \tag{12.16}\\
& =\sum_{a \in A} f\left(a \mid e_{1: e^{-1}(a)-1}\right)=x(A) \tag{12.17}
\end{align*}
$$

Polymatroidal polyhedron and greedy

Proof.

- Next, y is also feasible for the dual constraints in Eq. 12.11 since:
- Next, we check that y is dual feasible. Clearly, $y \geq 0$,
- and also, considering y component wise, for any i, we have that

$$
\sum_{A: e_{i} \in A} y_{A}=\sum_{j \geq i} y_{E_{j}}=\sum_{j=i}^{m-1}\left(w\left(e_{j}\right)-w\left(e_{j+1}\right)\right)+w\left(e_{m}\right)=w\left(e_{i}\right) .
$$

- Now optimality for x and y follows from strong duality, i.e.:

$$
\begin{aligned}
w x & =\sum_{e \in E} w(e) x(e)=\sum_{i=1}^{m} w\left(e_{i}\right) f\left(e_{i} \mid E_{i-1}\right)=\sum_{i=1}^{m} w\left(e_{i}\right)\left(f\left(E_{i}\right)-f\left(E_{i-1}\right)\right) \\
& =\sum_{i=1}^{n-1} f\left(E_{i}\right)\left(w\left(e_{i}\right)-w\left(e_{i+1}\right)\right)+f(E) w\left(e_{m}\right)=\sum_{A \subseteq E} y_{A} f(A) \quad \ldots
\end{aligned}
$$

Polymatroidal polyhedron and greedy

Proof.

- The equality in prev. Eq. follows via Abel summation:

$$
\begin{align*}
w x & =\sum_{i=1}^{m} w_{i} x_{i} \tag{12.18}\\
& =\sum_{i=1}^{m} w_{i}\left(f\left(E_{i}\right)-f\left(E_{i-1}\right)\right) \tag{12.19}\\
& =\sum_{i=1}^{m} w_{i} f\left(E_{i}\right)-\sum_{i=1}^{m-1} w_{i+1} f\left(E_{i}\right) \tag{12.20}\\
& =w_{m} f\left(E_{m}\right)+\sum_{i=1}^{m-1}\left(w_{i}-w_{i+1}\right) f\left(E_{i}\right) \tag{12.21}
\end{align*}
$$

What about $w \in \mathbb{R}^{E}$

- When w contains negative elements, we have $x\left(e_{i}\right)=0$ for $i=k+1, \ldots, m$, where k is the last positive element of w when it is sorted in decreasing order.
- Exercise: show a modification of the previous proof that works for arbitrary $w \in \mathbb{R}^{E}$

Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P_{f}^{+}is a polytope of form
$P_{f}^{+}=\left\{x \in \mathbb{R}_{+}^{E}: x(A) \leq f(A), \forall A \subseteq E\right\}$, then the greedy solution to $\max (w x: x \in P)$ is optimum only if f is submodular.

Proof.

- Order elements of E arbitrarily as $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ and define $E_{i}=\left(e_{1}, e_{2}, \ldots, e_{i}\right)$. Also, choose A and B arbitrarily.
- For $1 \leq p \leq q \leq m$, define $A=\left\{e_{1}, e_{2}, \ldots, e_{k}, e_{k+1}, \ldots, e_{p}\right\}=E_{p}$ and $B=\left\{e_{1}, e_{2}, \ldots, e_{k}, e_{p+1}, \ldots, e_{q}\right\}=E_{k} \cup\left(E_{q} \backslash E_{p}\right)$
- Note, then we have $A \cap B=\left\{e_{1}, \ldots, e_{k}\right\}=E_{k}$, and $A \cup B=E_{q}$.
- Define $w \in\{0,1\}^{m}$ as:

$$
\begin{equation*}
w \stackrel{\text { def }}{=} \sum_{i=1}^{q} \mathbf{1}_{e_{i}}=\mathbf{1}_{A \cup B} \tag{12.22}
\end{equation*}
$$

- Suppose optimum solution x is given by the greedy procedure.

Polymatroidal polyhedron and greedy

Proof.

- Then

$$
\begin{equation*}
\sum_{i=1}^{k} x_{i}=f\left(E_{1}\right)+\sum_{i=2}^{k}\left(f\left(E_{i}\right)-f\left(E_{i-1}\right)\right)=f\left(E_{k}\right)=f(A \cap B) \tag{12.23}
\end{equation*}
$$

- and

$$
\begin{equation*}
\sum_{i=1}^{p} x_{i}=f\left(E_{1}\right)+\sum_{i=2}^{p}\left(f\left(E_{i}\right)-f\left(E_{i-1}\right)\right)=f\left(E_{p}\right)=f(A) \tag{12.24}
\end{equation*}
$$

- and

$$
\sum_{i=1}^{q} x_{i}=f\left(E_{1}\right)+\sum_{i=2}^{q}\left(f\left(E_{i}\right)-f\left(E_{i-1}\right)\right)=f\left(E_{q}\right)=f(A \cup B)
$$

Polymatroidal polyhedron and greedy

Proof.

- Thus, we have

$$
\begin{equation*}
x(B)=\sum_{i \in 1, \ldots, k, p+1, \ldots, q} x_{i}=\sum_{i: e_{i} \in B} x_{i}=f(A \cup B)+f(A \cap B)-f(A) \tag{12.26}
\end{equation*}
$$

- But given that the greedy algorithm gives the optimal solution to $\max \left(w x: x \in P_{f}^{+}\right)$, we have that $x \in P_{f}^{+}$and thus $x(B) \leq f(B)$.
- Thus,

$$
\begin{equation*}
x(B)=f(A \cup B)+f(A \cap B)-f(A)=\sum_{i: e_{i} \in B} x_{i} \leq f(B) \tag{12.27}
\end{equation*}
$$

ensuring the submodularity of f, since A and B are arbitrary.

- Thus, restating the above results into a single complete theorem, we have a result very similar to what we saw for matroids (i.e., Theorem 8.6.1)

Theorem 12.4.1

If $f: 2^{E} \rightarrow \mathbb{R}_{+}$is given, and P is a polytope in \mathbb{R}_{+}^{E} of the form $P=\left\{x \in \mathbb{R}_{+}^{E}: x(A) \leq f(A), \forall A \subseteq E\right\}$, then the greedy solution to the problem $\max (w x: x \in P)$ is $\forall w$ optimum iff f is monotone non-decreasing submodular (i.e., iff P is a polymatroid).

 Multiple Polytopes associated with arbitrary f

- Given an arbitrary submodular function $f: 2^{V} \rightarrow R$ (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If $f(\emptyset) \neq 0$, we can set $f^{\prime}(A)=f(A)-f(\emptyset)$ without destroying submodularity. This also does not change any minima, so we assume all functions are normalized $f(\emptyset)=0$.
Note that due to constraint $x(\emptyset) \leq f(\emptyset)$, we must have $f(\emptyset) \geq 0$ since if not (i.e., if $f(\emptyset)<0$), then P_{f}^{+}doesn't exist.

Another form of normalization can do is:

$$
f^{\prime}(A)= \begin{cases}f(A) & \text { if } A \neq \emptyset \tag{12.28}\\ 0 & \text { if } A=\emptyset\end{cases}
$$

This preserves submodularity due to $f(A)+f(B) \geq f(A \cup B)+f(A \cap B)$, and if $A \cap B=\emptyset$ then r.h.s. only gets smaller when $f(\emptyset) \geq 0$.

- We can define several polytopes:

$$
\begin{align*}
P_{f} & =\left\{x \in \mathbb{R}^{E}: x(S) \leq f(S), \forall S \subseteq E\right\} \tag{12.29}\\
P_{f}^{+} & =P_{f} \cap\left\{x \in \mathbb{R}^{E}: x \geq 0\right\} \tag{12.30}\\
B_{f} & =P_{f} \cap\left\{x \in \mathbb{R}^{E}: x(E)=f(E)\right\}
\end{align*}
$$

- P_{f} is what is sometimes called the extended polytope (sometimes notated as $F P_{c}$

Multiple Polytopes associated with f

$$
\begin{align*}
P_{f}^{+} & =P_{f} \cap\left\{x \in \mathbb{R}^{E}: x \geq 0\right\} \tag{12.32}\\
P_{f} & =\left\{x \in \mathbb{R}^{E}: x(S) \leq f(S), \forall S \subseteq E\right\} \tag{12.33}\\
B_{f} & =P_{f} \cap\left\{x \in \mathbb{R}^{E}: x(E)=f(E)\right\} \tag{12.34}
\end{align*}
$$

Base Polytope in 3D

e2

e2
e1

$$
\begin{align*}
P_{f} & =\left\{x \in \mathbb{R}^{E}: x(S) \leq f(S), \forall S \subseteq E\right\} \tag{12.35}\\
B_{f} & =P_{f} \cap\left\{x \in \mathbb{R}^{E}: x(E)=f(E)\right\} \tag{12.36}
\end{align*}
$$

Theorem 12.5.1

Let f be a submodular function defined on subsets of E. For any $x \in \mathbb{R}^{E}$, we have:

$$
\begin{equation*}
\operatorname{rank}(x)=\max \left(y(E): y \leq x, y \in P_{f}\right)=\min (x(A)+f(E \backslash A): A \subseteq E) \tag{12.37}
\end{equation*}
$$

If we take x to be zero, we get:

Corollary 12.5.2

Let f be a submodular function defined on subsets of E. $x \in \mathbb{R}^{E}$, we have:

$$
\begin{equation*}
\operatorname{rank}(0)=\max \left(y(E): y \leq 0, y \in P_{f}\right)=\min (f(A): A \subseteq E) \tag{12.38}
\end{equation*}
$$

- In Theorem 12.4.1, we can relax P_{f}^{+}to P_{f}.
- If $\exists e$ such that $w(e)<0$ then $\max \left(w x: x \in P_{f}\right)=\infty$ since we can let $x_{e} \rightarrow \infty$, unless we ignore the negative elements or assume $w \geq 0$.
- The proof, moreover, showed also that $x \in P_{f}$, not just P_{f}^{+}.
- Moreover, in polymatroidal case, since the greedy constructed x has $x(E)=f(E)$, we have that the greedy $x \in B_{f}$.
- In fact, we next will see that the greedy x is a vertex of B_{f}.

Polymatroid extreme points

- The greedy algorithm does more than solve $\max \left(w x: x \in P_{f}^{+}\right)$. We can use it to generate vertices of polymatroidal polytopes.
- Consider P_{f}^{+}and also $C_{f}^{+} \stackrel{\text { def }}{=}\left\{x: x \in \mathbb{R}_{+}^{E}, x(e) \leq f(e), \forall e \in E\right\}$
- Then ordering $A=\left(a_{1}, \ldots, a_{|A|}\right)$ arbitrarily with $A_{i}=\left\{a_{1}, \ldots, a_{i}\right\}$, $f(A)=\sum_{i} f\left(a_{i} \mid A_{i-1}\right) \leq \sum_{i} f\left(a_{i}\right)$, and hence $P_{f}^{+} \subseteq C_{f}^{+}$.
-

Mtrd. Partitioning

 Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated \leq Matroids cont. Closure/Sat
Polymatroid extreme points

- Since $w \in \mathbb{R}_{+}^{E}$ is arbitrary, it may be that any $e \in E$ is \max (i.e., is such that $w(e)>w\left(e^{\prime}\right)$ for $\left.e^{\prime} \in E \backslash\{e\}\right)$.
- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.
- Recall, base polytope defined as the extreme face of P_{f}. I.e.,

$$
\begin{equation*}
B_{f}=P_{f} \cap\left\{x \in \mathbb{R}_{+}^{E}: x(E)=f(E)\right\} \tag{12.39}
\end{equation*}
$$

- Also, intuitively, we can continue advancing along the skeletal edges of the polytope to reach any other vertex, given the appropriate ordering. If we advance in all dimensions, we'll reach a vertex in B_{f}, and if we advance only in some dimensions, we'll reach a vertex in $P_{f} \backslash B_{f}$.
- We formalize this next:

Polymatroid extreme points

- Given any arbitrary order of $E=\left(e_{1}, e_{2}, \ldots, e_{m}\right)$, define $E_{i}=\left(e_{1}, e_{2}, \ldots, e_{i}\right)$.
- As before, a vector x is generated by E_{i} using the greedy procedure as follows

$$
\begin{align*}
x\left(e_{1}\right) & =f\left(E_{1}\right)=f\left(e_{1}\right) \tag{12.40}\\
x\left(e_{j}\right) & =f\left(E_{j}\right)-f\left(E_{j-1}\right)=f\left(e_{j} \mid E_{j-1}\right) \text { for } 2 \leq j \leq i \tag{12.41}\\
x(e) & =0 \text { for } e \in E \backslash E_{i} \tag{12.42}
\end{align*}
$$

- An extreme point of P_{f} is a point that is not a convex combination of two other distinct points in P_{f}. Equivalently, an extreme point corresponds to setting certain inequalities in the specification of P_{f} to be equalities, so that there is a unique single point solution.

Polymatroid extreme points

Theorem 12.6.1

For a given ordering $E=\left(e_{1}, \ldots, e_{m}\right)$ of E and a given $E_{i}=\left(e_{1}, \ldots, e_{i}\right)$ and x generated by E_{i} using the greedy procedure $\left(x\left(e_{i}\right)=f\left(e_{i} \mid E_{i-1}\right)\right)$, then x is an extreme point of P_{f}

Proof.

- We already saw that $x \in P_{f}$ (Theorem 12.4.1).
- To show that x is an extreme point of P_{f}, note that it is the unique solution of the following system of equations

$$
\begin{align*}
x\left(E_{j}\right) & =f\left(E_{j}\right) \text { for } 1 \leq j \leq i \leq m \tag{12.43}\\
x(e) & =0 \text { for } e \in E \backslash E_{i} \tag{12.44}
\end{align*}
$$

There are $i \leq m$ equations and $i \leq m$ unknowns, and simple Gaussian elimination gives us back the x constructed via the Greedy algorithm!!

Polymatroid extreme points

- As an example, we have $x\left(E_{1}\right)=x\left(e_{1}\right)=f\left(e_{1}\right)$
- $x\left(E_{2}\right)=x\left(e_{1}\right)+x\left(e_{2}\right)=f\left(e_{1}, e_{2}\right)$ so
$x\left(e_{2}\right)=f\left(e_{1}, e_{2}\right)-x\left(e_{1}\right)=f\left(e_{1}, e_{2}\right)-f\left(e_{1}\right)=f\left(e_{2} \mid e_{1}\right)$.
- $x\left(E_{3}\right)=x\left(e_{1}\right)+x\left(e_{2}\right)+x\left(e_{3}\right)=f\left(e_{1}, e_{2}, e_{3}\right)$ so
$x\left(e_{3}\right)=f\left(e_{1}, e_{2}, e_{3}\right)-x\left(e_{2}\right)-x\left(e_{1}\right)=f\left(e_{1}, e_{2}, e_{3}\right)-f\left(e_{1}, e_{2}\right)=$ $f\left(e_{3} \mid e_{1}, e_{2}\right)$
- And so on ..., but we see that this is just Gaussian elimination.
- Also, since $x \in P_{f}$, for each i, we see that,

$$
\begin{align*}
x\left(E_{j}\right) & =f\left(E_{j}\right) \quad \text { for } 1 \leq j \leq i \tag{12.45}\\
x(A) & \leq f(A), \forall A \subseteq E \tag{12.46}
\end{align*}
$$

- Thus, the greedy procedure provides a modular function lower bound on f that is tight on all points E_{i} in the order. This can be useful in its own right.

Mtrd. Partitioning
 Polymatroid extreme points

some examples

Polymatroid extreme points

- Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of P_{f} and $B \subseteq E$ is given such that $\operatorname{supp}(x)=\{e \in E: x(e) \neq 0\} \subseteq B \subseteq \cup(A: x(A)=f(A))=\operatorname{sat}(x)$, then x is generated using greedy by some ordering of B.

- Note, $\operatorname{sat}(x)=\mathrm{cl}(x)=\cup(A: x(A)=f(A))$ is also called the closure of x (recall that sets A such that $x(A)=f(A)$ are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem ??)
- Thus, $\mathrm{cl}(x)$ is a tight set.
- Also, $\operatorname{supp}(x)=\{e \in E: x(e) \neq 0\}$ is called the support of x.
- For arbitrary $x, \operatorname{supp}(x)$ is not necessarily tight, but for an extreme point, $\operatorname{supp}(x)$ is.

Polymatroid with labeled edge lengths

- Recall $f(e \mid A)=$
$f(A+e)-f(A)$
- Notice how submodularity, $f(e \mid B) \leq f(e \mid A)$ for $A \subseteq B$, defines the shape of the polytope.
- In fact, we have strictness here
$f(e \mid B)<f(e \mid A)$ for $A \subset B$.
- Also, consider how the greedy algorithm proceeds along the edges of the polytope.

Polymatroid with labeled edge lengths

- Recall $f(e \mid A)=$ $f(A+e)-f(A)$
- Notice how submodularity,
$f(e \mid B) \leq f(e \mid A)$ for $A \subseteq B$, defines the shape of the polytope.
- In fact, we have strictness here
$f(e \mid B)<f(e \mid A)$ for $A \subset B$.
- Also, consider how the greedy algorithm proceeds along the edges of the polytope.

Intuition: why greedy works with polymatroids

- Given w, the goal is to find
$x=\left(x\left(e_{1}\right), x\left(e_{2}\right)\right)$ that maximizes $x^{\top} w=x\left(e_{1}\right) w\left(e_{1}\right)+$ $x\left(e_{2}\right) w\left(e_{2}\right)$.
- If $w\left(e_{2}\right)>w\left(e_{1}\right)$ the upper extreme point indicated maximizes $x^{\top} w$ over $x \in P_{f}^{+}$.
- If $w\left(e_{2}\right)<w\left(e_{1}\right)$ the lower extreme point indicated maximizes $x^{\top} w$ over $x \in P_{f}^{+}$.

Maximal point in P_{f}^{+} for w in this region.

A polymatroid function's polyhedron is a polymatroid.

Theorem 12.7.4

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}_{+}^{E}$, and any P_{f}^{+}-basis $y^{x} \in \mathbb{R}_{+}^{E}$ of x, the component sum of y^{x} is

$$
\begin{align*}
y^{x}(E)=\operatorname{rank}(x) & =\max \left(y(E): y \leq x, y \in P_{f}^{+}\right) \\
& =\min (x(A)+f(E \backslash A): A \subseteq E) \tag{12.34}
\end{align*}
$$

As a consequence, P_{f}^{+}is a polymatroid, since r.h.s. is constant w.r.t. y^{x}.
By taking $B=\operatorname{supp}(x)$ (so elements $E \backslash B$ are zero in x), and for $b \in B$, $x(b)$ is big enough, the r.h.s. min has solution $A^{*}=E \backslash B$. We recover submodular function from the polymatroid polyhedron via the following:

$$
\begin{equation*}
f(B)=\max \left\{y(B): y \in P_{f}^{+}\right\} \tag{12.35}
\end{equation*}
$$

In fact, we will ultimately see a number of important consequences of this theorem (other than just that P_{f}^{+}is a polymatroid)
Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014
F33/46 (pg.45/58)

Matroid instance of Theorem 9.4.5

- Considering Theorem 9.4.5, the matroid case is now a special case, where we have that:

Corollary 12.7.2

We have that:
$\max \left\{y(E): y \in P_{\text {ind. set }}(M), y \leq x\right\}=\min \left\{r_{M}(A)+x(E \backslash A): A \subseteq E\right\}$
where r_{M} is the matroid rank function of some matroid.

Most violated inequality problem in matroid polytope case

- Consider

$$
\begin{equation*}
P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r_{M}(A), \forall A \subseteq E\right\} \tag{12.47}
\end{equation*}
$$

- Suppose we have any $x \in \mathbb{R}_{+}^{E}$ such that $x \notin P_{r}^{+}$.
- Hence, there must be a set of $\mathcal{W} \subseteq 2^{V}$, each member of which corresponds to a violated inequality, i.e., equations of the form $x(A)>r_{M}(A)$ for $A \in \mathcal{W}$.
- The most violated inequality when x is considered w.r.t. P_{r}^{+} corresponds to the set A that maximizes $x(A)-r_{M}(A)$, i.e., the most violated inequality is valuated as:
$\max \left\{x(A)-r_{M}(A): A \in \mathcal{W}\right\}=\max \left\{x(A)-r_{M}(A): A \subseteq E\right\}$
- Since x is modular and $x(E \backslash A)=x(E)-x(A)$, we can express this via a min as in;:

$$
\begin{equation*}
\min \left\{r_{M}(A)+x(E \backslash A): A \subseteq E\right\} \tag{12.49}
\end{equation*}
$$

Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated \leq
 Most violated inequality/polymatroid membership/SFM

- Consider

$$
\begin{equation*}
P_{f}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq f(A), \forall A \subseteq E\right\} \tag{12.50}
\end{equation*}
$$

- Suppose we have any $x \in \mathbb{R}_{+}^{E}$ such that $x \notin P_{f}^{+}$.
- Hence, there must be a set of $\mathcal{W} \subseteq 2^{V}$, each member of which corresponds to a violated inequality, i.e., equations of the form $x(A)>r_{M}(A)$ for $A \in \mathcal{W}$.

Left: $\mathcal{W}=\{\{1\}\}$

Center: $\mathcal{W}=\{\{2\}\}$

Right: $\mathcal{W}=\{\{1,2\}\}$

Mtrd. Partitioning
 Most violated inequality/polymatroid membership/SFM

- The most violated inequality when x is considered w.r.t. P_{f}^{+} corresponds to the set A that maximizes $x(A)-f(A)$, i.e., the most violated inequality is valuated as:

$$
\begin{equation*}
\max \{x(A)-f(A): A \in \mathcal{W}\}=\max \{x(A)-f(A): A \subseteq E\} \tag{12.51}
\end{equation*}
$$

- Since x is modular and $x(E \backslash A)=x(E)-x(A)$, we can express this via a min as in;:

$$
\begin{equation*}
\min \{f(A)+x(E \backslash A): A \subseteq E\} \tag{12.52}
\end{equation*}
$$

- More importantly, $\min \{f(A)+x(E \backslash A): A \subseteq E\}$ is a form of submodular function minimization, namely $\min \{f(A)-x(A): A \subseteq E\}$ for a submodular f and $x \in \mathbb{R}_{+}^{E}$, consisting of a difference of polymatroid and modular function (so $f-x$ is no longer necessarily monotone, nor positive).
- We will ultimatley answer how general this form of SFM is.

Matroids, other definitions using matroid rank $r: 2^{V}$

Definition 12.8.1 (closed/flat/subspace)
A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \backslash A, r(A \cup\{x\})=r(A)+1$.

A hyperplane is a flat of rank $r(M)-1$.

Definition 12.8.2 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A)=\{b \in E: r(A \cup\{b\})=r(A)\}$.

Therefore, a closed set A has $\operatorname{span}(A)=A$.

Definition 12.8.3 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if $r(A)<|A|$ and for any $a \in A$, $r(A \backslash\{a\})=|A|-1)$.

Several circuit definitions for matroids.

Theorem 12.8.1 (Matroid by circuits)

Let E be a set and \mathcal{C} be a collection of nonempty subsets of E, such that no two sets in \mathcal{C} are contained in each other. Then the following are equivalent.
(1) \mathcal{C} is the collection of circuits of a matroid;
(2) if $C, C^{\prime} \in \mathcal{C}$, and $x \in C \cap C^{\prime}$, then $\left(C \cup C^{\prime}\right) \backslash\{x\}$ contains a set in \mathcal{C};
(3) if $C, C^{\prime} \in \mathcal{C}$, and $x \in C \cap C^{\prime}$, and $y \in C \backslash C^{\prime}$, then $\left(C \cup C^{\prime}\right) \backslash\{x\}$ contains a set in \mathcal{C} containing y;

Again, think about this for a moment in terms of linear spaces and matrices, and spanning trees.

Fundamental circuits in matroids

Lemma 12.8.3

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup\{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_{1}, C_{2} such that $C_{1} \cup C_{2} \subseteq I \cup\{e\}$.
- Then $e \in C_{1} \cap C_{2}$, and by (C2), there is a circuit C_{3} of M s.t. $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\} \subseteq I$
- This contradicts the independence of I.

In general, let $C(I, e)$ be the unique circuit associated with $I \cup\{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).

- Define $C(I, e)$ be the unique circuit associated with $I \cup\{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).
- If $e \in \operatorname{span}(I) \backslash I$, then $C(I, e)$ is well defined ($I+e$ creates one circuit).
- If $e \in I$, then $I+e=I$ doesn't create a circuit. In such cases, $C(I, e)$ is not really defined.
- In such cases, we define $C(I, e)=\{e\}$, and we will soon see why. why we do this.
- If $e \notin \operatorname{span}(I)$, then $C(I, e)=\emptyset$, since no circuit is created in this case.

Union of matroid bases of a set

Lemma 12.8.1

Let $\mathcal{B}(C)$ be the set of bases of C. Then, given matroid $\mathcal{M}=(E, \mathcal{I})$, and any loop-free set $C \subseteq E$, we have that:

$$
\begin{equation*}
\bigcup_{B \in \mathcal{B}(C)} B=C . \tag{12.53}
\end{equation*}
$$

Proof.

- Define $C^{\prime} \triangleq \bigcup_{B \in \mathcal{B}(C)}$, and suppose $\exists c \in C$ such that $c \notin C^{\prime}$.
- Hence, $\forall B \in \mathcal{B}(C)$ we have $c \notin B$, and $B+c$ contains a single circuit for any B, namely $C(B, c)$.
- Then choose $c^{\prime} \in C(B, c)$ with $c^{\prime} \neq c$.
- Then $B+c-c^{\prime}$ is independent size $|B|$ subset of C and hence spans C, and thus is a c-containing member of $\mathcal{B}(C)$, contradicting $c \notin C^{\prime}$.
- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_{f}$ for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.
- That is, we saw in Lecture 7 that for any $A, B \in \mathcal{D}(x)$, we have that $A \cup B \in \mathcal{D}(x)$ and $A \cap B \in \mathcal{D}(x)$, which can constitute a join and meet.
- Recall, for a given $x \in P_{f}$, we have defined this tight family as

$$
\begin{equation*}
\mathcal{D}(x)=\{A: A \subseteq E, x(A)=f(A)\} \tag{12.54}
\end{equation*}
$$

Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated $\leq \quad$ Matroids cont. Closure/Sat
 The sat function $=$ Polymatroid Closure

- Now given $x \in P_{f}^{+}$:

$$
\begin{align*}
\mathcal{D}(x) & =\{A: A \subseteq E, x(A)=f(A)\} \tag{12.55}\\
& =\{A: f(A)-x(A)=0\} \tag{12.56}
\end{align*}
$$

- Since $x \in P_{f}^{+}$and f is presumed to be polymatroid function, we see $f^{\prime}(A)=f(A)-x(A)$ is a non-negative submodular function, and $\mathcal{D}(x)$ are the zero-valued minimizers (if any) of $f^{\prime}(A)$.
- The zero-valued minimizers of f^{\prime} are thus closed under union and intersection.
- In fact, this is true for all minimizers of a submodular function as stated in the next theorem.

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M}=\operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $\bar{A} \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A)=f(B) \leq f(A \cap B)$ and $f(A)=f(B) \leq f(A \cup B)$.
By submodularity, we have

$$
\begin{equation*}
f(A)+f(B) \geq f(A \cup B)+f(A \cap B) \tag{12.57}
\end{equation*}
$$

Hence, we must have $f(A)=f(B)=f(A \cup B)=f(A \cap B)$.
Thus, the minimizers of a submodular function form a lattice, and there is a maximal and a minimal minimizer of every submodular function.

```
Prof. Jeff Bilmes
EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014
F45/46 (pg.57/58)
```


Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated $\leq \quad$ Matroids cont. Closure/Sat

The sat function $=$ Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_{f}$, we have defined:

$$
\begin{align*}
\operatorname{cl}(x) \stackrel{\text { def }}{=} \operatorname{sat}(x) & \stackrel{\text { def }}{=} \bigcup\{A: A \in \mathcal{D}(x)\} \tag{12.58}\\
& =\bigcup\{A: A \subseteq E, x(A)=f(A)\} \tag{12.59}\\
& =\left\{e: e \in E, \forall \alpha>0, x+\alpha \mathbf{1}_{e} \notin P_{f}\right\} \tag{12.60}
\end{align*}
$$

- Hence, $\operatorname{sat}(x)$ is the maximal (zero-valued) minimizer of the submodular function $f_{x}(A) \triangleq f(A)-x(A)$.
- Eq. (12.60) says that sat consists of any point x that is P_{f} saturated (any additional positive movement, in that dimension, leaves P_{f}). We'll revisit this in a few slides.
- First, we see how sat generalizes matroid closure.

