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Cumulative Outstanding Reading

0 Read-chapterstand 2 —andsections 3132 fromFufishige's book—
e Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.

@ Read Tom McCormick's overview paper on SFM http://people.
commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

@ Read chapters 1 - 3 from Fujishige book.
@ Matroid properties http:
//www-math.mit.edu/~goemans/18433509/matroid-notes.pdf
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Announcements, Assignments, and Reminders

@ Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Class Road Map - IT-

@ L1 (3/31): Motivation, Applications, & @ L11: More properties of polymatroids,

Basic Definitions SFM special cases
@ L2: (4/2): Applications, Basic @ L12: polymatroid properties, extreme
Definitions, Properties points polymatroids, sat, dep.
@ L3: More examples and properties (e.g., @ L13:
closure properties), and examples, o L14:
spanning trees o L15:
@ L4: proofs of equivalent definitions, ° L16:
|ndepender-1ce, sta-rt ma.tr‘cn.ds o Li7:
@ L5: matroids, basic definitions and
@ L18:
examples
@ L6: More on matroids, System of o Lo
@ L20:

Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

@ L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

@ L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

@ L9: From Matroid Polytopes to
Polymatroids.

@ L10: Polymatroids and Submodularity

Finals Week: June 9th-13th, 2014.
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A polymatroid function's polyhedron is a polymatroid.

Theorem 12.2.4

Let f be a polymatroid function defined on subsets of E. For any
T € ]Rf, and any P]T—basis y* € Rf of z, the component sum of y* is

y*(F) = rank(x) = max (y(E) cy<mye P;r)
= min (z(4) + f(E\ A) : AC E) (12.34)

As a consequence, P]T is a polymatroid, since r.h.s. is constant w.r.t. y*.

By taking B = supp(z) (so elements E'\ B are zero in x), and for b € B,
x(b) is big enough, the r.h.s. min has solution A* = E\ B. We recover
submodular function from the polymatroid polyhedron via the following:

£(B) = max {y(B) Ly € P;} (12.35)

In fact, we will ultimately see a number of important consequences of
this theorem (other than just that P} is a polymatroid)
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1

Tight sets D(y) are closed, and max tight set sat(y)
Recall the definition of the set of tight sets at y € Pf+:

D(y) = {A: ACE, y(A) = f(A)} (12.18)

Theorem 12.2.1

For any y € P;, with f a polymatroid function, then D(y) is closed
under union and intersection.

We have already proven this as part of Theorem 9.4.5 []

Also recall the definition of sat(y), the maximal set of tight elements
relative to y € Rf.

sat(y) € | J{T : T € D(y)} (12.19)
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Bipartite Matching

e Given a matching A C E (which might be empty), we can increase
the matching if we can find an augmenting path S.

@ The updated matching becomes A’ = A\ SUS\ A= AS S, where
© is the symmetric difference operator.

@ The algorithm becomes:

Algorithm 8.1: Alternating Path Bipartite Matching

1 Let A be an arbitrary (including empty) matching in G = (V, F, E) ;
2 while There exists an augmenting path S in G do
3 | A« AeS;

@ This can easily be made to run in O(m?n), where |V| = m,
|F'| =n, m <mn, but it can be made to run much faster as well (see
Schrijver-2003).
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Matroid Intersection

e Let My = (V,Zy) and My = (V,Z3) be two matroids. Consider their
common independent sets 77 N Zo.

e While (V,Z; NZy) is typically not a matroid (Exercise: show
graphical example.), we might be interested in finding the maximum
size common independent set. That is, find max | X| such that both
X €71y and X € Is.

Theorem 12.2.5
Let My and My be given as above, with rank functions 1 and ro. Then
the size of the maximum size set in Z; N Zy is given by

(ryx2)(V) £ min <r1 (X) +r2(V\ X)) (12.7)

This is an instance of the convolution of two submodular functions,
f1 and f5 that, evaluated at Y C V/, is written as:

(s ) = min (AX) + LY\ X)) (128)
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Fundamental circuits in matroids

Let I € Z(M), and e € E, then I U {e} contains at most one circuit in
M.

@ Suppose, to the contrary, that there are two distinct circuits C1, Co
such that C1 UCy C T U {e}.

@ Then e € C1 N Cy, and by (C2), there is a circuit C3 of M s.t.
C3 C (01U02)\{€} clI

@ This contradicts the independence of I.

In general, let C(I,e) be the unique circuit associated with I U {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Matroid Intersection Algorithm ldea

e Hopefully (eventually) we'll find an odd length sequence
S = (v1,v2,...,vs) such that we will be independent in both M;
and M> and thus be one greater in size than I.

o We will have v; ¢ I for i odd (will be shown in ). and will have
v; € I for i even (will be shown in JgF€€nl), while v € I\ S will be

shown in -

@ We then replace I with I © S (quite analogous to the bipartite
matching case), and start again.
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Identifying Augmenting Sequences

Theorem 12.2.6

Let I,, and 1,1 be intersections of My and Ms with p and p + 1
elements respectively. Then there exists an augmenting sequence
S CIL,olpy wrt Ip.

Theorem 12.2.7
An intersection is of maximum cardinality iff it admits no augmenting

sequence.

Theorem 12.2.8

For any intersection I, there exists a maximum cardinality intersection I*
such that span, (I) C span, (I*) and span, (1) C spany(I*).

All this can be made to run in poly time.
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Mtrd. Partitioning
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Matroid Partition Problem

@ Suppose M; = (E,Z;) is a matroid and that we have k of them on
the same ground set E.
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Mtrd. Partitioning
(NN}

Matroid Partition Problem

@ Suppose M; = (E,Z;) is a matroid and that we have k of them on
the same ground set E.

ion into k blocks,

@ We wish to, if possible, partition—f
Lyie{1,2,... k wh
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Mtrd. Partitioning
(NN}

Matroid Partition Problem

@ Suppose M; = (E,Z;) is a matroid and that we have k of them on
the same ground set E.

@ We wish to, if possible, partition E into k blocks,
Ii,i € {1,2,...,k} where I; € 7.

@ Moreover, we want partition to be lexicographically maximum, that
is |I1] is maximum, |I| is maximum given |I;], and so on.
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Mtrd. Partitioning
1

Matroid Partition Problem

Theorem 12.3.1

Let M; be a collection of k matroids as described. Then, a set | C E
can be partitioned into k subsets I;,i =1...k where I; € Z; is
independent in matroid i, if and only if, for all A C I

k
A< Y (4 (12.1)

where r; is the rank function of M;.
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Mtrd. Partitioning
1

Matroid Partition Problem

Theorem 12.3.1

Let M; be a collection of k matroids as described. Then, a set | C E
can be partitioned into k subsets I;,1 =1...k where I; € Z; is
independent in matroid i, if and only if, for all A C I

k
|A] < Zm(A) (12.1)

where r; is the rank function of M;.

@ Now, if all matroids are the same M; = M for all 4, we get condition
|A| < kr(A) VACE (12.2)
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Mtrd. Partitioning
1

Matroid Partition Problem

Theorem 12.3.1
Let M; be a collection of k matroids as described. The

; 1 1 ibed. /3
can be partitioned into k subsets I;,i =1...k where I; € W
independent in matroid i, if and only if, for all A C I

k
|A] < Zri(A) (12.1)

where r; is the rank function of M;.

@ Now, if all matroids are the same M; = M for all 4, we get condition

Al < kr(4) vAC H] (12.2)
e But considering vector of allones 1 € RZ, this is the same as
1
k\A| 4r(A) VACE (12.3)
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Mtrd. Partitioning
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Matroid Partition Problem

@ Recall definition of matroid polytope

Pr={yeRE:y(A) <r(A)forall AC E} (12.4)
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Mtrd. Partitioning
L1

Matroid Partition Problem

@ Recall definition of matroid polytope
Pr={ye R : y(A) <r(A) for all A C E} (12.4)

@ Then we see that this special case of the matroid partition problem
is just testing if %1 € P, a problem of testing the membership in
matroid polyhedra.
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Mtrd. Partitioning
Lt

Matroid Partition Problem

@ Recall definition of matroid polytope
Pr={ye R : y(A) <r(A) for all A C E} (12.4)

@ Then we see that this special case of the matroid partition problem
is just testing if %1 € PF, a problem of testing the membership in
matroid polyhedra.

@ This is therefore a special case of submodular function minimization.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F14/68 (pg.20/286)



Polymatroids and Greedy
[ERRRERRNN]

Review

@ The next two slides from respectively from Lecture 9 and Lecture 8.
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Polymatroids and Greedy
(LNRRNARNN]

Polymatroidal polyhedron (or a “polymatroid™)

Definition 12.4.4 (polymatroid)

A polymatroid is a compact set P C Rf satisfying
Q0eP
@ If y <z € P then y € P (called down monotone).

@ For every x € RY, any maximal vector y € P with y < z (i.e., any
P-basis of z), has the same component sum y(E)

e Vectors within P (i.e., any y € P) are called independent, and any
vector outside of P is called dependent.

@ Since all P-bases of x have the same component sum, if B, is the
set of P-bases of x, than rank(z) = y(F) for any y € B,.
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Polymatroids and Greedy
(KR RRNARNN]

Maximum weight independent set via greedy weighted rank

Theorem 12.4.6

Let M = (V,Z) be a matroid, with rank function r, then for any weight
function w € RY, there exists a chain of sets Uy C Uy C ---C U, CV
such that

max {w(I)|I € I} = > Ar(Uy) (12.19)
=1
where \; > 0 satisfy

w=>Y \ly, (12.20)
=1
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Polymatroids and Greedy
(RRLERRRNE!

Polymatroidal polyhedron and greedy

o Let (E,7) be a set system and w € RY be a weight vector.
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Polymatroids and Greedy
(RRLERRRNE!

Polymatroidal polyhedron and greedy

o Let (F,T) be a set system and w € RY be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
y € E'\ A such that AU {y} € Z with w(y) as large as possible,
stopping when no such y exists.
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Polymatroids and Greedy
(RRLERRRNE!

Polymatroidal polyhedron and greedy

o Let (F,T) be a set system and w € RY be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
y € E\ A such that AU {y} € Z with w(y) as large as possible,
stopping when no such y exists.

e For a matroid, we saw that set system (F,Z) is a matroid iff for
each weight function w € RY, the greedy algorithm leads to a set
I € T of maximum weight w(I).
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Polymatroids and Greedy
(NNERNRRNR]

Polymatroidal polyhedron and greedy

o Let (F,T) be a set system and w € RY be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
y € E\ A such that AU {y} € Z with w(y) as large as possible,
stopping when no such y exists.

e For a matroid, we saw that set system (E,Z) is a matroid iff for
each weight function w € Rf, the greedy algorithm leads to a set
I € T of maximum weight w(I).

@ Stated succinctly, considering max{w(I) : I € I}, then (E,Z) is a
matroid iff greedy works for this maximization.
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Polymatroids and Greedy
(NNERNARNR]

Polymatroidal polyhedron and greedy

o Let (F,T) be a set system and w € RY be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
y € E\ A such that AU {y} € Z with w(y) as large as possible,
stopping when no such y exists.

e For a matroid, we saw that set system (E,Z) is a matroid iff for
each weight function w € Rf, the greedy algorithm leads to a set
I € T of maximum weight w(I).

e Stated succinctly, considering max{w(I) : I € I}, then (E,Z) is a
matroid iff greedy works for this maximization.

@ Can we also characterize a polymatroid in this way?

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F18/68 (pg.28/286)



Polymatroids and Greedy
(RRLERRRNE!

Polymatroidal polyhedron and greedy

o Let (F,T) be a set system and w € RY be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
y € E\ A such that AU {y} € Z with w(y) as large as possible,
stopping when no such y exists.

e For a matroid, we saw that set system (E,Z) is a matroid iff for
each weight function w € Rf, the greedy algorithm leads to a set
I € T of maximum weight w( [}

e Stated succinctly, considerihg max{w(l): I € Z}, th
matroid iff greedy works forthis maximization

(E,I)is a

iff greedy works for this maximization?
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Polymatroids and Greedy
(NNERNRRNR]

Polymatroidal polyhedron and greedy

@ Let (E,Z) be a set system and w € Rf be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
y € E'\ A such that AU {y} € Z with w(y) as large as possible,
stopping when no such y exists.

e For a matroid, we saw that set system (E,Z) is a matroid iff for
each weight function w € RE, the greedy algorithm leads to a set
I € T of maximum weight w(I).

e Stated succinctly, considering max{w(I) : I € I}, then (E,Z) is a
matroid iff greedy works for this maximization.

@ Can we also characterize a polymatroid in this way?
@ That is, if we consider max {wx 1T E P;r} where Pf+ represents

the “independent vectors”, is it the case that P]T is a polymatroid
iff greedy works for this maximization?

@ Can we even relax things so that w € RE?
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Polymatroids and Greedy
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Polymatroidal polyhedron and greedy

e What is the greedy solution in this setting, when w € RF?
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Polymatroids and Greedy
(NNRR NRRNN]

Polymatroidal polyhedron and greedy

e What is the greedy solution in this setting, when w € RF?
@ Sort elements of E/ w.r.t. w so that, w.l.o.g.
E = (e1,e2,...,ey) with w(e;) > w(ez) > -+ > w(en).
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Polymatroids and Greedy
(NERR NRRNN]

Polymatroidal polyhedron and greedy

e What is the greedy solution in this setting, when w € RF?

@ Sort elements of E/ w.r.t. w so that, w.l.o.g.
E = (e1,e2,...,ey) with w(e;) > w(ez) > -+ > w(en).

@ Let k£ + 1 be the first point (if any) at which we are non-positive,
i.e, weg) >0and 0> w(egqy).
That is, we have

w(er) > w(ez) > -+ > w(ex) > 0> wlept1) = -+ > wlem) (12.5)
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Polymatroids and Greedy
(NNRR NRRNN]

Polymatroidal polyhedron and greedy

e What is the greedy solution in this setting, when w € RF?

@ Sort elements of E/ w.r.t. w so that, w.l.o.g.
E = (e1,e2,...,ey) with w(e;) > w(ez) > -+ > w(en).

@ Let k£ + 1 be the first point (if any) at which we are non-positive,
i.e., weg) >0and 0> w(egqy).

@ Next define partial accumulated sets F;, for i = 0...m, we have
w.r.t. the above sorted order:

E et e, ... e} (12.6)

(note Eg =0, f(Ep) =0, and E and E; is always sorted w.r.t w).
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Polymatroids and Greedy
(NERR NRRNN]

Polymatroidal polyhedron and greedy

e What is the greedy solution in this setting, when w € RF?

@ Sort elements of E/ w.r.t. w so that, w.l.o.g.
E = (e1,e2,...,ey) with w(e;) > w(ez) > -+ > w(en).

@ Let k£ + 1 be the first point (if any) at which we are non-positive,
i.e., w(er) >0and 0> w(egqy.

@ Next define partial accumulated sets F;, for i = 0...m, we have
w.r.t. the above sorted order:

E et e, ... e} (12.6)

(note Eg =0, f(Ep) =0, and E and F; is always sorted w.r.t w).
@ The greedy solution is the vector x € Rf with elements defined as:

def

z(e1) = f(E1) = f(e1) = f(e1lEo) = f(ex|0) (12.7)
2(e:) & £(E;) — f(Bi1) = f(ei|Biy) fori=2...k  (12.8)
2ed) L0 forh=k+1...m=|E| (12.9)
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Polymatroids and Greedy
(NENRLARNE!

Some Intuition: greedy and gain

o Note I’(@i) = f(ei\E,-_l) < f(€i|E/) for any E' C E;
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Polymatroids and Greedy
(NENRLARNE!

Some Intuition: greedy and gain

Xw= X)) wle) +Xe)wle) +- ..
o Note z(e;) = f(ei|Ei—1) < f(ei|E') for any B C E;_y

@ So z(e1) = f(e1) and this corresponds to w(e1) > w(e;) for all

i # 1.

ey L2 | A) A
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Polymatroids and Greedy
(NENRLARNE!

Some Intuition: greedy and gain

e Note z(e;) = f(e;|Ei—1) < f(e;|E') for any E' C E;_

@ So z(e1) = f(e1) and this corresponds to w(e1) > w(e;) for all
i# 1.

@ Hence, for the largest value of w (namely w(ey)), we use for x(eq)

the largest possible gain value of e; (namely f(e1]|0) > f(e1|A) for
any A C E\ {e1}).
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Polymatroids and Greedy
(NENRLARNE!

Some Intuition: greedy and gain

e Note z(e;) = f(e;|Ei—1) < f(e;|E') for any E' C E;_

@ So z(e1) = f(e1) and this corresponds to w(e;) > w(e;) for all
i# 1.

@ Hence, for the largest value of w (namely w(ey)), we use for x(eq)
the largest possible gain value of e; (namely f(e1|0) > f(e1]|A) for
any A C E\ {e1}).

@ For the next Iarges)value of w (namely w(ez)), we use for z(ez) the

next Iargest/%i va Lﬂof €2 (namely (eale1)), while still ensuring

de TheoremN2.4. 1 that the resultmg x € Py

e

(as we will s
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Polymatroids and Greedy
(NENRLARNE!

Some Intuition: greedy and gain

e Note z(e;) = f(e;|Ei—1) < f(e;|E') for any E' C E;_

@ So z(e1) = f(e1) and this corresponds to w(e;) > w(e;) for all
i# 1.

@ Hence, for the largest value of w (namely w(ey)), we use for x(eq)
the largest possible gain value of e; (namely f(e1]|0) > f(e1|A) for
any A C E\ {e1}).

@ For the next largest value of w (namely w(ez)), we use for x(ez) the
next largest gain value of ez (namely f(ezle1)), while still ensuring
(as we will soon see in Theorem 12.4.1) that the resulting = € Py.

@ This process continues, using the next largest possible gain of e; for
x(e;) while ensuring we do not leave the polytope, given the values
we've already chosen for x(e;) for i’ < i.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F20/68 (pg.40/286)



Polymatroids and Greedy
(NNRRNA RRE]

Polymatroidal polyhedron and greedy

Theorem 12.4.1

The vector x € ]Rf as previously defined using the greedy algorithm
maximizes wx over P]'f, with w € Rf, if f is submodular.
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Polymatroids and Greedy
(NNRRNA RRE]

Polymatroidal polyhedron and greedy

Theorem 12.4.1

The vector x € Rf as previously defined using the greedy algorithm
maximizes wx over P;r, with w € RE, if f is submodular.

Proof.
@ Consider the LP strong duality equation:

max(wz : :L'€P+ ) = min ZyAf yERQ, _w
ACE Ag

/’r?‘é
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Polymatroids and Greedy
(NNRRNA RRE]

Polymatroidal polyhedron and greedy

Theorem 12.4.1

The vector x € Rf as previously defined using the greedy algorithm
maximizes wx over P;r, with w € Rf, if f is submodular.

@ Consider the LP strong duality equation:

max(wm:xEP;r) :min(z yaf(A) :yER%rE, Z yala 2w>

ACE ACE
(12.10)
@ Define the following vector y € Rf as
yE; < w(e;) —w(eiyr) fori=1...(m—1), (12.11)
yE < w(emy), and (12.12)
ya < 0 otherwise (12.13)
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Polymatroids and Greedy
(NNRRNA RRE]

Polymatroidal polyhedron and greedy

o We first will see that greedy z € P;r (thatis z(A) < f(A),VA).
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o We first will see that greedy z € P;r (that is z(A) < f(A),VA).

@ Order A = (aj,az,...,ax) based on order (e1,ea,...,em).
| Je| Jaefa| | |a| Jas|...| |

‘61‘62‘63‘64‘65‘66‘67‘68‘69‘610‘611‘...‘em‘
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Polymatroids and Greedy
(NNRRNA RRE]

Polymatroidal polyhedron and greedy

o We first will see that greedy z € P]T (that is z(A) < f(A),VA).

o Order A = (aj,as,...,a) based on order (e, ea,...,en).
ai a as ‘ ‘a4 ‘(15 ‘ ‘ ‘

(] €2 €3 €4 €5 €6 (4 | €s .69 €10 ‘ €11 ‘ ‘ Cm ‘

o Definee ' : E — {1,...,m} so that e (e;) = i.
This means that with A = {a1,a2,...,ar}, andVj < k

{a1,a2,...,0;} & {el,ez,...‘_l(%)} (12.14)
and
{a1,a2,...,a;-1} C {el, €2,... ,ee_1(aj)_1} (12.15)
Also recall matlab notation: ai.; = {ai,az2,...,a;}.
E.g., with j = 4 we get e '(as) =9, and
{a1,a2,a3,a4} C {e1,e2,...,¢e9} (12.16)
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Polymatroids and Greedy
(NNRRNA RRE]

Polymatroidal polyhedron and greedy

o We first will see that greedy z € P;r (that is z(A) < f(A),VA).

@ Order A = (aj,as,...,ax) based on order (e1,ea,...,en).
| Je| Jaefa| | |a| Jas|...| |

‘61‘62‘63‘64‘65‘66‘67‘68‘69‘610‘611‘... ‘em‘
o Definee ™! : E — {1,...,m} so that e~!(e;) = i.

@ Then, we have z € PJT since for all A:

k
f(A) = Z flailari—1) (12.14)
i=1 e
(12.15)
(1216)
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Polymatroids and Greedy
(NNRRNA RNR]

Polymatroidal polyhedron and greedy

o We first will see that greedy z € P;r (that is z(A) < f(A),VA).

@ Order A = (aj,az,...,ax) based on order (e1,ea,...,em).
| Je| Jaefa| | |a| Jas|...| |

‘61‘62‘63‘64‘65‘66‘67‘68‘69‘610‘611‘... ‘em‘
o Definee ! : E — {1,...,m} so that e~!(e;) = i.

@ Then, we have z € PJT since for all A:

k
f(A) = Z flailar;i—1) (12.14)
i=1
k
> Z f(ailere-1(a;)-1) (12.15)
i=1
= Z f(a|€1:e*1(a)—1) = IE(A) (1216)
acA

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F21/68 (pg.48/286)



Polymatroids and Greedy
(NNRRNA RNR]

Polymatroidal polyhedron and greedy

@ Next, y is also feasible for the dual constraints in Eq. 12.75 since:
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Polymatroids and Greedy
(NNRRNA RNR]

Polymatroidal polyhedron and greedy

@ Next, y is also feasible for the dual constraints in Eq. 12.75 since:

@ Next, we check that y is dual feasible. Clearly, y > 0,
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Polymatroids and Greedy
(NNRRNA RRE]

Polymatroidal polyhedron and greedy

@ Next, y is also feasible for the dual constraints in Eq. 12.75 since:

@ Next, we check that y is dual feasible. Clearly, y > 0,

@ and also, considering y component wise, for any ¢, we have that

m—1
D va=) ys = (wle) —wlejr)) +wlem) =ales):
A:e; €A Jj>i j=i

)
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Polymatroids and Greedy
(NNRRNA RRE]

Polymatroidal polyhedron and greedy

@ Next, y is also feasible for the dual constraints in Eq. 12.75 since:
@ Next, we check that y is dual feasible. Clearly, y > 0,

@ and also, considering y component wise, for any ¢, we have that

m—1
> ya=> um =Y (wle;) —wlejn)) +wlem) = wles).
A:e;€A Jj>i j=i

@ Now optimality for x and y follows from strong duality, i.e.:

we =Y w(e)a(e) = Y wie)f(eilBimt) = > wles) (£(B) - f(Biny

ecl ecE o=l

F(B) (w(ed) = wleisn)) + F(BYwlem) = Y yaf(A

ACE
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Polymatroids and Greedy
(NNRRNA RRE]

Polymatroidal polyhedron and greedy

@ The equality in prev. Eq. follows via Abel summation:

wr =) i (12.17)
=1
= Zwi (f(Ei) - f(Eifl)) (12.18)

=1
— szf Z wit1 f(E (12.19)

I
8
3
&H
_.I_
§
Ly
E

(12.20)

OJ
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Polymatroids and Greedy
(NENRARL AR

What about w € R¥

@ When w contains negative elements, we have z(e;) = 0 for
i=k+1,...,m, where k is the last positive element of w when it
is sorted in decreasing order.
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Polymatroids and Greedy
(NNRRERY RN

What about w € R¥

@ When w contains negative elements, we have z(e;) = 0 for

i=k+1,...,m, where k is the last positive element of w when it
is sorted in decreasing order.

@ Exercise: show a modification of the previous proof that works for
arbitrary w €€ RF
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Polymatroids and Greedy
(NNRRERRN N

Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P;r is a polytope of form
Pf = {z e RY :2(A) < f(A),YA C E}, then the greedy solution to
max(wx : x € P) is optimum only if f is submodular.

@ Order elements of E arbitrarily as (ej, e, ..., ey) and define
E; = (e1,€9,...,¢;). Also, choose A and B arbitrarily.
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Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P]fr is a polytope of form
Pf = {z e RY :2(A) < f(A),YA C E}, then the greedy solution to
max(wz : x € P) is optimum only if f is submodular.

@ Order elements of E arbitrarily as (ej, e, ..., ey) and define

E; = (e1,e,...,€;). Also, choose A %gf arbitrarily. A\ ®

@ For1<p<g<m, defineA:{61,62,...,ek,m}:Ep ’
and B:{61,62,...,ek,6p+1,...,6q}:EkU(Eq\Ep)

Anld 3\/4
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Polymatroids and Greedy
(NNRRERRN N

Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P;r is a polytope of form

Pf = {z e RY :2(A) < f(A),YA C E}, then the greedy solution to
max(wx : x € P) is optimum only if f is submodular.

@ Order elements of E arbitrarily as (ej, e, ..., ey) and define
E; = (e1,€9,...,¢;). Also, choose A and B arbitrarily.
o For1 <p<gq<m,define A= {ey,e2,... €k €kt1,...,6p} = Ep

and B:{61,62,...,ek,6p+1,...,6q}:EkU(Eq\Ep)
o Note, then we have AN B = {ey,...,e;} = E}, and AUB = E,.
,——<
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Polymatroids and Greedy
(NNRRERRN N

Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P;r is a polytope of form
= {z e RE : 2(A) < f(A),VA C E}, then the greedy solution to
max(wx : x € P) is optimum only if f is submodular.

Proof

@ Order elements of E arbitrarily as (ej, e, ..., ey) and define
E; = (e1,€9,...,¢;). Also, choose A and B arbitrarily.
o For1 <p<gq<m,define A= {ey,e2,... €k €kt1,...,6p} = Ep

and B:{61,62,...,ek,6p+1,...,6q}:EkU(Eq\Ep)
o Note, then we have AN B = {ey,...,e;} = B}, and AUB = E,.

o Define w € {0,1}" as .

w Zlez — il (12.21)
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Polymatroids and Greedy
(NNRRERRN N

Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P;r is a polytope of form
= {z e RE : 2(A) < f(A),VA C E}, then the greedy solution to
max(wx : x € P) is optimum only if f is submodular.

Proof

@ Order elements of E arbitrarily as (ej, e, ..., ey) and define
E; = (e1,€9,...,¢;). Also, choose A and B arbitrarily.
@ For1 <p<gq<m,define A= {ey,ez,... €k €kt1,...,6p} =Ep

and B = {61,62,...,ek,6p+1,...,6q} = FEp U (Eq\Ep)
o Note, then we have AN B = {ey,...,e;} = B}, and AUB = E,.
o Define w € {0,1}" as

w Zlez — Tl (12.21)

@ Suppose optimum solution x is given by the greedy procedure.
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Polymatroids and Greedy
(NNRRERRN N

Polymatroidal polyhedron and greedy

@ Then
k k
Y @i = f(E)+ ) _(f(E) — f(Bimr) = f(Ex) = f(AN B)
=1 =2

(12.22)
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Polymatroids and Greedy
(NNRRERRN N

Polymatroidal polyhedron and greedy

@ Then
k /5
Z i = f(E1) + Z(f(Ei) — f(Bi1) = f(Ex) = f(ANB)
= = (12.22)
@ and
Y@= f(E)+ ) _(f(E) - f(Eim1) = f(Ep) = f(4) (12.23)
i=1 1=2
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Pol d and Greedy

Polymatr0|da| polyhedron and greedy

> mi=f(B) + Y _(f(Bi) — f(Bin1)) = f(E) = f(AUB)
(12.24)
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Polymatroids and Greedy
(NNRRERRN N

Polymatroidal polyhedron and greedy

@ Thus, we have
z(B) = > zi= Y xi=f(AUB)+ f(ANB) - f(4)
i€l,...k,p+1,....q i:e;EB
(12.25)
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Polymatroids and Greedy
(NNRRERRN N

Polymatroidal polyhedron and greedy

@ Thus, we have

z(B) = > zi= Y @;=f(AUB)+ f(ANB) - f(4)
i€l,...k,p+1,....q i:e;EB
(12.25)

@ But given that the greedy algorithm gives the optimal solution to
max(wzx : x € P]T) we have that z € P]T and thus z(B) < f(B).
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Polymatroids and Greedy
(NNRRERRN N

Polymatroidal polyhedron and greedy
Proof.

@ Thus, we have

2B)= Y wi= Y ai=f(AUB)+ f(ANB) - f(A)
i€l,...k,p+1,....q ite;EB
(12.25)

@ But given that the greedy algorithm gives the optimal solution to
max(wz ;@ € Py), we have that z € P} and thus z(B) < f(B).

@ Thus,

z(B) = f(AUB) + f(ANB) — = > < f(B) (12.26)
i:e,€EB

ensuring the submodularity of f, since A and B are arbitrary.

Ol
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Polymatroids and Greedy
(NNRRNARN] ]

Polymatroidal polyhedron and greedy

@ Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem 8.6.1)

Theorem 12.4.1

If f:2F — R, is given, and P is a polytope in RE of the form

P ={z e R¥ : 2(A) < f(A),YA C E}, then the greedy solution to the
problem max(wx : x € P) is Vw optimum iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).
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Possible Polytopes
[NRNN]

Multiple Polytopes associated with arbitrary f

@ Given an arbitrary submodular function f : 2" — R (not necessarily
a polymatroid function, so it need not be positive, monotone, etc.).
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Possible Polytopes
i

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2" — R (not necessarily
a polymatroid function, so it need not be positive, monotone, etc.).
o If f(0) # 0, we can set f/(A4) = f(A) — f(0) without destroying
submodularity. This also does not change any minima, so we
assume all functions are normalized f(0)) = 0.
Note that due to constraint x(0) < f(0), we must have f(0) > 0 since if not
(ie., if f(0) <0), then P} doesn't exist.
Another form of normalization can do is:
/ f(A) ifA#D
f(4) = {0 P (12.27)
This preserves submodularity due to f(A) + f(B) > f(AUB) + f(AN B), and
if AN B = () then r.h.s. only gets smaller when f(() > 0.

D=x(9) £ €(¢
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Possible Polytopes
[NRNN]

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily
a polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, we can set f/(A4) = f(A) — f(0) without destroying
submodularity. This also does not change any minima, so we
assume all functions are normalized f(0)) = 0.

@ We can define several polytopes:

Py = {z e RP : 2(S) < f(S5),VS C E} (12.27)
P =Pin{zeR”: 2 >0} (12.28)
Bf=P;n{z e R : 2(E) = f(E)} (12.29)
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Possible Polytopes
[NRNN]

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily
a polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, we can set f/(A4) = f(A) — f(0) without destroying
submodularity. This also does not change any minima, so we
assume all functions are normalized f(0)) = 0.

@ We can define several polytopes:

Py = {z e R” : 2(S) < f(5),VS C E} (12.27)
PJZ" :Pfﬂ{xERE x>0} (12.28)
By=P;n{z e R :2(E) = f(E)} (12.29)

@ Py is whatis sometimes called the extended polytope (sometimes
notated as B P¢.
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Possible Polytopes
[NRNN]

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily
a polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, we can set f/(A4) = f(A) — f(0) without destroying
submodularity. This also does not change any minima, so we
assume all functions are normalized f(0)) = 0.

@ We can define several polytopes:

Py = {z e R” : 2(S) < f(5),VS C E} (12.27)
PJZ" :Pfﬂ{xERE x>0} (12.28)
By=P;n{z e R :2(E) = f(E)} (12.29)

@ Py is what is sometimes called the extended polytope (sometimes
notated as EP.

° PJZ" is Py restricted to the positive orthant.
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Possible Polytopes
[NRNN]

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2" — R (not necessarily
a polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, we can set f/(A4) = f(A) — f(0) without destroying
submodularity. This also does not change any minima, so we
assume all functions are normalized f(0)) = 0.

@ We can define several polytopes:

Py = {z e R” : 2(S) < f(5),VS C E} (12.27)
PJZ" :Pfﬂ{xERE x>0} (12.28)
By=P;n{z e R :2(E) = f(E)} (12.29)

@ Py is what is sometimes called the extended polytope (sometimes
notated as EP.

° P;r is Py restricted to the positive orthant.
@ By is called the base polytope
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Possible Polytopes
(LINN]

Multiple Polytopes associated with f

pt Py

B ™ X

. =Pin{zeR?:2>0} (12.30)
N Pf:{él?e}RE: z(S) < f(8),¥S € E} (12.31)
By=P;n{zeRY :z(E) = ( )} (12.32)
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Possible Polytopes
(NLRN]

Base Polytope in 3D

Py ={z e R¥ : 2(5) < f(S),VS C E} (12.33)
By =P;n{z e R¥ : 2(E) = f(E)} (12.34)
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Possible Polytopes
L

A polymatroid function's polyhedron is a polymatroid.

Theorem 12.5.1

Let f be a submodular function defined on subsets of E. For any
x € RE, we have:

max (y(E) 1y < z,y € Pr) =min (z(A) + f(E\A): ACE) (12.35)

If we take x to be zero, we get:

Corollary 12.5.2

Let f be a submodular function defined on subsets of E. = € RE we
have:

max (y(£) :y <0,y € Pf) =min(f(A): ACE) (12.36)
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Possible Polytopes
(NRRY ]

Greedy and Py

@ In Theorem 12.4.1, we can relax P]?L to Py.
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Possible Polytopes
(NRRY ]

Greedy and Py

@ In Theorem 12.4.1, we can relax P;r to Py.

e If Je such that w(e) < 0 then max(wz : x € Py) = oo since we can
let x. — o0, unless we ignore the negative elements or assume
w > 0.
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Possible Polytopes
(NRRY ]

Greedy and Py

@ In Theorem 12.4.1, we can relax P;r to Py.

o If Je such that w(e) < 0 then max(wz : x € Py) = oo since we can
let x, — o0, unless we ignore the negative elements or assume
w > 0.

@ The proof, moreover, showed also that z € Py, not just P]T.
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Possible Polytopes
(NRRY |

Greedy and Py

@ In Theorem 12.4.1, we can relax P;r to Py.

o If Je such that w(e) < 0 then max(wz : x € Py) = oo since we can
let x, — o0, unless we ignore the negative elements or assume
w > 0.

@ The proof, moreover, showed also that 2 € Py, not just P]T.

@ Moreover, in polymatroidal case, since the greedy constructed = has
x(E) = f(F), we have that the greedy = € By.
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Possible Polytopes
(NRRY ]

Greedy and P

In Theorem 12.4.1, we can relax P;r to Py.

If Je such that w(e) < 0 then max(wz : € Py) = 0o since we can
let x, — o0, unless we ignore the negative elements or assume

w > 0.

The proof, moreover, showed also that 2 € Py, not just P]T.

Moreover, in polymatroidal case, since the greedy constructed x has
x(E) = f(F), we have that the greedy = € By.

In fact, we next will see that the greedy x is a vertex of By.
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Extreme Points
(XN}

Polymatroid extreme points

@ The greedy algorithm does more than solve max(wzx : = € PJ?L) We
can use it to generate vertices of polymatroidal polytopes.
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Extreme Points
(XN}

Polymatroid extreme points

@ The greedy algorithm does more than solve max(wx : = € PJ?L) We
can use it to generate vertices of polymatroidal polytopes.
o First, consider P} and also C’Jr {:c z € RE z(e) < f(e)}
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Extreme Points
(XN}

Polymatroid extreme points
@ The greedy algorithm does more than solve max(wx : = € PJ?L) We
can use it to generate vertices of polymatroidal polytopes.
o First, consider P and also C &f {z:2zeRY z(e) < fle)}
© Then ordering A = (a1, ...,a)4) arbitrarily with A; = {a1,...,a;},
f(A) =", fai|Ai—1) <>, f(ai), and hence P;r - C’;’.

x & @F
() E

=) & &

ﬁzw

£(A [
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Extreme Points
(XN}

Polymatroid extreme points
@ The greedy algorithm does more than solve max(wx : = € P}L) We
can use it to generate vertices of polymatroidal polytopes.
o First, consider P} and also C’Jr {:c z € RE z(e) < f(e)} 6
@ Then ordering A = (ai,..., a|A|) arbitrarily with A; = {a1,... a;},
f(A) =37, flai|Ai—1) <37, f(ai), and hence P;r - C’;’.

os
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Extreme Points
(XN}

Polymatroid extreme points

@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for ¢’ € E'\ {e}).
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Extreme Points
(XN}

Polymatroid extreme points
@ Simee w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for €’ € E'\ {e}).
@ Thus, intuiti\velkany first vertex of the polytope away from the
origin might be ob’Eained by advancing along the corresponding axis.
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Extreme Points
(XN}

Polymatroid extreme points
@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for ¢’ € E'\ {e}).
@ Thus, intuitively, any first vertex of the polytope away from the
origin might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of P;. le.,

By =P;n{z e RY :2(E) = f(B)} (12.37)
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Extreme Points
(XN}

Polymatroid extreme points
@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for ¢’ € E'\ {e}).
@ Thus, intuitively, any first vertex of the polytope away from the
origin might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of P;. le.,

By =P;n{z e RY :2(E) = f(B)} (12.37)
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Extreme Points
(XN}

Polymatroid extreme points

@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for ¢’ € E'\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the
origin might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of P;. le.,
By =P;n{z e RY :2(E) = f(B)} (12.37)

@ Also, intuitively, we can continue advancing along the skeletal edges
of the polytope to reach any other vertex, given the appropriate
ordering. If we advance in all dimensions, we'll reach a vertex in By,
and if we advance only in some dimensions, we'll reach a vertex in

o e )
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Extreme Points
(XN}

Polymatroid extreme points

@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for ¢’ € E'\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the
origin might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of P;. le.,
By =P;n{z e RY :2(E) = f(B)} (12.37)

@ Also, intuitively, we can continue advancing along the skeletal edges
of the polytope to reach any other vertex, given the appropriate
ordering. If we advance in all dimensions, we'll reach a vertex in By,
and if we advance only in some dimensions, we'll reach a vertex in
P\ By.

@ We formalize this next:
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Extreme Points
(XN}

Polymatroid extreme points
e Given any arbitrary order of F' = (eq, €9, ...
Ei = (61, €2, ... ,62‘).

,€m ), define
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Extreme Points
(XN}

Polymatroid extreme points
e Given any arbitrary order of F' = (eq, €9, ...
Ei = (61, €2, ... ,62‘).

,€m ), define

@ As before, a vector x is generated by F; using the greedy procedure

as follows
z(e1) = f(Er) = f(e1) (12.38)
z(e;) = f(E;) — f(Ej—1) = f(ej|Ej—1) for2<j <i  (12.39)
z(e) =0fore e E\ E; (12.40)
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Extreme Points
(XN}

Polymatroid extreme points
e Given any arbitrary order of F' = (eq, €9, ...
Ei = (61, €2, ... ,62‘).

,€m ), define

@ As before, a vector x is generated by F; using the greedy procedure

as follows
z(e1) = f(Er) = f(e1) (12.38)
z(e;) = f(E;) — f(Ej—1) = f(ej|Ej—1) for2 < j <i (12.39)
z(e) =0fore € E\ E; (12.40)

@ An extreme point of Py is a point that is not a convex combination
of two other distinct points in Pr. Equivalently, an extreme point
corresponds to setting certain inequalities in the specification of Py
to be equalities, so that there is a unique single point solution.
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Extreme Points
(XN}

Polymatroid extreme points

Theorem 12.6.1

For a given ordering E = (e1,...,en) of E and a given E; and x

generated by E; using the greedy procedure, then x is an extreme point
of Pf
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Extreme Points
(XN}

Polymatroid extreme points

Theorem 12.6.1

For a given ordering E = (e1,...,en) of E and a given E; and x
generated by E; using the greedy procedure, then x is an extreme point
of Pf

o We already saw that x € Py (Theorem 12.4.1).
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Extreme Points
(XN}

Polymatroid extreme points

Theorem 12.6.1

For a given ordering E = (e1,...,eny) of E and a given E; and x
generated by E; using the greedy procedure, then x is an extreme point
of Pf

Proof.
o We already saw that x € Py (Theorem 12.4.1).

@ To show that x is an extreme point of Py, note that it is the unique
solution of the following system of equations

\;) = f(Ej) for1<j<i<m (12.41)
—OforeEE\E (12.42)

There are i < m equations and ¢ < m unknowns, and simple
Gaussian elimination gives us back the z constructed via the Greedy
algorithm!!
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Extreme Points
(XN}

Polymatroid extreme points
@ As an example, we have z(F1) = z(e1) = f(e1)
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Extreme Points
(XN}

Polymatroid extreme points
@ As an example, we have z(F1) = z(e1) = f(e1)
o x(Es) =x(e1) + z(e2) = f(e1,e2) so

z(e2) = fler, e2) — x(e1) = fler, e2) — fler) = flezler).
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Extreme Points
(XN}

Polymatroid extreme points
@ As an example, we have z(F7) = z(e1) =
o x(Es) =x(e1) + z(e2) = f(e1,e2) so
z(ez) = fe1,e2) — x(er) = fler, e2) — f(er) = flezler).
o z(E3) =xz(e1) + z(e2) + xz(e3) = f(e, ea,e3) so
a(
I

fe1)

e3) = f(e1,e2,e3) —xz(e2) — x(e1) = f(e1,e2,e3) — fle1,e2) =
esler, e2)
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Extreme Points
(XN}

Polymatroid extreme points
@ As an example, we have z(F1) = z(e1) = f(e1)
o x(Es) =x(e1) + z(e2) = f(e1,e2) so
z(e2) = fler, e2) — x(e1) = fler, e2) — fler) = flezler).
o z(E3) =xz(e1) + z(e2) + xz(e3) = f(e, ea,e3) so
z(es) = f(e1,e2,e3) — x(ez) —x(e1) = fe1,e2,e3) — fe1, €2) =
fesler, e2)
@ And so on ..., but we see that this is just Gaussian elimination.
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Extreme Points
(XN}

Polymatroid extreme points
@ As an example, we have z(F1) = z(e1) = f(e1)
o x(Es) =x(e1) + z(e2) = f(e1,e2) so
z(e2) = fler, e2) — x(e1) = fler, e2) — fler) = flezler).
o z(E3) =xz(e1) + z(e2) + xz(e3) = f(e, ea,e3) so
z(es) = f(e1,e2,e3) — x(ez) —x(e1) = fe1,e2,e3) — fe1, €2) =
fesler, e2)
@ And so on ..., but we see that this is just Gaussian elimination.

@ Also, since x € Py, for each i, we see that,

2(E;) = f(B;) for1<j<i (12.43)
z(A) < f(A),VACE (12.44)
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Extreme Points

Polymatroid extreme points
@ As an example, we have z(F1) = z(e1) = f(e1)
e z(E2) = x(e1) + z(e2) = f(e1,e2) so
z(e2) = fler, e2) — z(e1) = fler, e2) — fler) = flezler).
o z(E3) =xz(e1) + xz(e2) + xz(e3) = f(ey, ea,e3) so
z(es) = f(e1, e2,e3) — x(ez) — x(e1) = f(e1, e2,e3) — fe1, e2) =
fesler, e2)
@ And so on ..., but we see that this is just Gaussian elimination.

@ Also, since x € Py, for each i, we see that,

z(Ej) = f(E;) for1<j<i (12.43)
z(A) < f(A),VACE (12.44)
@ Thus, the greedy procedure provides a modular function lower

bound on f that is tight on all points E; in the order. This can be
useful in its own right.
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Extreme Points
(XN}

Polymatroid extreme points
some examples
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Extreme Points
(XN}

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e € E:x(e) #0}C B QU(A: 2(A) = f(A)) = sat(z),
then x is generated using greedy by some ordering of B.
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Extreme Points
(XN}

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} C B CU(A: z(A) = f(A)) = sat(x),
then x is generated using greedy by some ordering of B.

o Note/ sat(z) = cl(z) ‘4 :x(A) = f(A)) is also called the
closure of = (recall that'sets A such that z(A) = f(A) are called
tight, and such sets are closed under union and intersection, as seen

in Lecture 8, Theorem 77)
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Extreme Points
(XN}

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} C B CU(A: z(A) = f(A)) = sat(x),
then x is generated using greedy by some ordering of B.

o Note, sat(z) =cl(x) = U(A: x(A) = f(A)) is also called the
closure of = (recall that sets A such that z(A) = f(A) are called
tight, and such sets are closed under union and intersection, as seen
in Lecture 8, Theorem 77)

@ Thus, cl(x) is a tight set.
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Extreme Points
(XN}

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} C B CU(A: z(A) = f(A)) = sat(x),
then x is generated using greedy by some ordering of B.

o Note, sat(z) =cl(x) = U(A: x(A) = f(A)) is also called the
closure of = (recall that sets A such that z(A) = f(A) are called
tight, and such sets are closed under union and intersection, as seen
in Lecture 8, Theorem 77)

@ Thus, cl(x) is a tight set.
o Alsof supp(z) = {e € E : z(e) # 0} is called the support of .
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Extreme Points

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} C B CU(A: z(A) = f(A)) = sat(x),
then x is generated using greedy by some ordering of B.

o Note, sat(z) =cl(x) = U(A: x(A) = f(A)) is also called the
closure of = (recall that sets A such that z(A) = f(A) are called
tight, and such sets are closed under union and intersection, as seen
in Lecture 8, Theorem 77)

@ Thus, cl(x) is a tight set.
@ Also, supp(z) ={e € E: z(e) # 0} is called the support of z.

@ For arbitrary «z, supp( ) is not necessarily tight, but for an extreme

point, supp( _g‘u ot ()()é ap(x)
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Extreme Points

Polymatroid with labeled edge lengths

o Recall f(e|A) =
f(A+e) = f(4)

@ Notice how
submodularity,
7€l B) < f(e|4) for
A C B, defines the
shape of the polytope.

@ In fact, we have
strictness here
f(e|B) < f(e|A) for
A CB.

@ Also, consider how the
greedy algorithm

proceeds along the x R IV f(e1) 91

edges of the polytope.
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Extreme Points

Polymatroid with labeled edge lengths

_ i) |
@ Recall f(e|A) = 7 —
F(A+)~ F(4) % \‘\Jl%\
@ Notice how ( “W ‘
submodularity, \\

f(e|B) < f(e|A) for
A C B, defines the
shape of the polytope.

(3)

@ In fact, we have
strictness here

f(elB) < f(e|A) for

AC B. m\

e Also, considfar how the !>
greedy algorithm ‘I
.
proceeds along the N

edges of the polytope.
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Extreme Points

Intuition: why greedy works with polymatroids

. . . _l’_
o Given w, the goal is Maximal point In Pf

to find for w in this region.

r=(a(e)2(e)) @
that maximizes
xTw = z(e1)w(er) +
z(e2)w(ez).

o If w(ez) > w(ey) the
upper extreme point =
indicated maximizes —
zTw over x € PJ;".

o If w(ez) < w(ep) the
lower extreme point
indicated maximizes
zTw over x € P]ZF.

Prof. Jeff Bilmes




Most Violated <
[NRRN]

A polymatroid function's polyhedron is a polymatroid.

Theorem 12.7.4

Let f be a polymatroid function defined on subsets of E. For any
T € ]Rf, and any P]T—basis y* € Rf of z, the component sum of y* is

y*(F) = rank(x) = max (y(E) cy<mye P;r)
= min (z(4) + f(E\ A) : AC E) (12.34)

As a consequence, P]T is a polymatroid, since r.h.s. is constant w.r.t. y*.

By taking B = supp(z) (so elements E'\ B are zero in x), and for b € B,
x(b) is big enough, the r.h.s. min has solution A* = E\ B. We recover
submodular function from the polymatroid polyhedron via the following:

£(B) = max {y(B) Ly € P;} (12.35)

In fact, we will ultimately see a number of important consequences of

this theorem (other than just that P} is a polymatroid)



Most Violated <
(LNAN]

Matroid instance of Theorem 9.4.5

@ Considering Theorem 9.4.5, the matroid case is now a special case,
where we have that:

Corollary 12.7.2

We have that:

max {y(E) : y € Ping. set(M),y <z} =min{ry(A)+z(E\A): ACE
(12.2)

where 7,7 is the matroid rank function of some matroid.
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Most Violated <
(NLRN]

Most violated inequality problem in matroid polytope case

@ Consider

Pr={zeRF:2>0,2(4) <ru(4),YAC E} (12.45)
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Most Violated <
(NLRN]

Most violated inequality problem in matroid polytope case

e Consider
Pr={zeR":2>0,2(A) <ry(A),VAC E} (12.45)

@ Suppose we have any = € Rf such that z & PT.
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Most Violated <
L

Most violated inequality problem in matroid polytope case

e Consider

Pr={zeRF:2>0,2(4) <ru(4),YAC E} (12.45)
@ Suppose we have any = € Rf such that z & P,
@ Hence, there must be a set of W C 2V, each member of which

corresponds to a violated inequality, i.e., equations of the form
.T(A) > T’]\,j(A) for A e W.
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Most Violated <
L

Most violated inequality problem in matroid polytope case

e Consider
Pr={zeR":2>0,2(A) <ry(A),VAC E} (12.45)

@ Suppose we have any = € Rf such that z & P,

@ Hence, there must be a set of W C 2V, each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > ry(A) for A e W.

@ The most violated inequality when x is considered w.r.t. P,
corresponds to the set A that maximizes x(A) — rps(A), i.e., the most
violated inequality is valuated as:

max {x(A) —rp(A): A e W} =max {z(4A) —ry(A) : AC E} (12.46)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F35/68 (pg.118/286



Most Violated <
(NLRN]

Most violated inequality problem in matroid polytope case

e Consider
Pr={zeR":2>0,2(A) <ry(A),VAC E} (12.45)

@ Suppose we have any = € Rf such that z & P,

@ Hence, there must be a set of W C 2V, each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > ry(A) for A e W.

@ The most violated inequality when x is considered w.r.t. P
corresponds to the set A that maximizes z(A) — rj7(A), i.e., the most
violated inequality is valuated as:

max {z(A) —ryp(A) : A e W} =max {z(A) —ry(A) : AC E} (12.46)

@ Since z is modular and z(E \ A) = z(E) — x(A), we can express this
via a min as in;:

min{ry(A)+z(E\A): AC E} (12.47)
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Most Violated <
L

Most violated inequality /polymatroid membership/SFM

o Consider

Pl ={zeR”:2>0,2(4) < f(A),VAC E} (12.48)
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Most Violated <
L

Most violated inequality /polymatroid membership/SFM

o Consider

Pl ={zeR":2>0,2(4) < f(A),VAC E} (12.48)

@ Suppose we have any x € Rf such that = ¢ Pff
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Most Violated <
[NRN A

Most violated inequality /polymatroid membership/SFM

o Consider

Pl ={zeR":2>0,2(4) < f(A),VAC E} (12.48)

o Suppose we have any z € R¥ such that = ¢ P;“.

@ Hence, there must be a set of W C 2V, each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > T’M(A) for AeW.

2 p 2 X p 2 P
‘ |
1 1 1

Left: W= {{1}} Center: W = {{2}} Right: W = {{1,2}}
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Most Violated <
[NENN |

Most violated inequality /polymatroid membership/SFM

@ The most violated inequality when z is considered w.r.t. P}
corresponds to the set A that maximizes x(A) — f(A), i.e., the
most violated inequality is valuated as:

max {r(A) — f(A) : A e W} =max{z(A) — f(A): AC E} (12.49)
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Most Violated <
(NNAY |

Most violated inequality /polymatroid membership/SFM

@ The most violated inequality when x is considered w.r.t. P;"
corresponds to the set A that maximizes x(A) — f(A), i.e., the
most violated inequality is valuated as:

max {r(A) — f(A) : A e W} =max{z(A) — f(A): AC E} (12.49)

@ Since x is modular and z(F \ A) = z(F) — z(A), we can express
this via a min as in;:

min{f(A)+z(E\ A): AC E} (12.50)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F37/68 (pg.124/286



Most Violated <
[NENN |

Most violated inequality /polymatroid membership/SFM

@ The most violated inequality when x is considered w.r.t. P;"
corresponds to the set A that maximizes z(A) — f(A), i.e., the
most violated inequality is valuated as:

max {r(A) — f(A) : A e W} =max{z(A) — f(A): AC E} (12.49)
@ Since z is modular and z(E \ A) = z(E) — z(A), we can express
this via a min as in;:
min{f(A)+z(E\ A): ACE} (12.50)
@ More importantly, min {f(A) + z(E\ A) : A C E} is a form of
submodular function minimization, namely
min { f(A) — z(A) : A C E} for a submodular f and z € RY,

consisting of a difference of polymatroid and modular functlon (so
f — x is no longer necessarily monotone, nor positive).
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Most Violated <
(NNAY |

Most violated inequality /polymaticid membership/SFM

@ The most violated inequality when x is considered w.r.t. P}
corresponds to the set A that maximizes z(A) — f(A), i.e., the
most violated inequality is valuated as:

max {r(A) — f(A) : A e W} =max{z(A) — f(A): AC E} (12.49)

@ Since z is modular and z(E \ A) = z(E) — z(A), we can express
this via a min as in;:

min{f(A)+z(E\ A): AC E} (12.50)

@ More importantly, min {f(A) +z(E\ A) : A C E} is a form of
submodular function minimization, namely
min {f(A) — z(A) : A C E} for a submodular f and z € RY,
consisting of a difference of polymatroid and modular functlon (so
f — x is no longer necessarily monotone, nor positive).

o We will ultimatley answer how general this form of SFM is.
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Matroids cont.
[NRRN]

Matroids, other definitions using matroid rank r : 2V — Z_

Definition 12.8.1 (closed/flat/subspace)

A subset A C F is closed (equivalently, a flat or a subspace) of matroid
M ifforallz e E\ A, r(AU{z}) =r(4) + 1.

A hyperplane is a flat of rank (M) — 1.
Definition 12.8.2 (closure)

Given A C F, the closure (or span) of A, is defined by
span(A) = {b € E : (AU {B}) = r(A)}. T+

Therefore, a closed set A has span(A) = A. be SF‘! CL) \L

Definition 12.8.3 (circuit)

A subset A C E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A| and for any a € A,

r(A\{a}) = |A] - 1).
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Matroids cont.
1

Matroids by circuits

Several circuit definitions for matroids.

Theorem 12.8.1 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such
that no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx € CNC', then (CUC")\ {z} contains a set inC;

Q@ ifC,C"eC,andz e CNC',andy € C\ ', then (CUC)\ {z}
contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and
matrices, and spanning trees.
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Matroids cont.
(N RN]

Fundamental circuits in matroids

Lemma 12.8.3

Let I € Z(M), and e € E, then I U {e} contains at most one circuit in
M.

@ Suppose, to the contrary, that there are two distinct circuits C1, Co
such that C1 UCy C T U {e}.

@ Then e € C1 N Cy, and by (C2), there is a circuit C3 of M s.t.
C3 C (01U02)\{€} clI

@ This contradicts the independence of I.

In general, let C(I,e) be the unique circuit associated with I U {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Matroids cont.
L

Matroids: The Fundamental Circuit

@ Define C(I,e) be the unique circuit associated with 7 U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).
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Matroids cont.
L

Matroids: The Fundamental Circuit

e Define C(I,e) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

e If e e span([) \ I, then C(1,e) is well defined (I + e creates one
circuit).
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Matroids cont.
L

Matroids: The Fundamental Circuit

e Define C(I,e) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

o If e e span([) \ I, then C(1,e) is well defined (I + e creates one
circuit).

@ If ec I, then I + e = I doesn't create a circuit. In such cases,
C(I,e) is not really defined.
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Matroids cont.
L

Matroids: The Fundamental Circuit

e Define C(I,e) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

o If e e span([) \ I, then C(1,e) is well defined (I + e creates one
circuit).

o If ec I, then I + e = I doesn't create a circuit. In such cases,
C(I,e) is not really defined.

@ In such cases, we define C(I,e) = {e}, and we will soon see why.
why we do this.
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Matroids cont.
L

Matroids: The Fundamental Circuit

e Define C(I,e) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

o If e e span([) \ I, then C(1,e) is well defined (I + e creates one
circuit).

@ If e € I, then I 4+ e = I doesn’t create a circuit. In such cases,
C(I,e) is not really defined.

@ In such cases, we define C'(I,e) = {e}, and we will soon see why.
why we do this.

o If e ¢ span(I), then'C(I,e) =0, since no circuit is created in this
case.
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Matroids cont.
(NNAY |

Union of matroid bases of a set

Lemma 12.8.1

Let B(C) be the set of bases of C. Then, given matroid M = (E,T),
and any loop-free set C' C E, we have that:

) B=C (12.51)
BeB(C)
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Matroids cont.
(NNAY |

Union of matroid bases of a set

Lemma 12.8.1
Let B(C) be the set of bases of C. Then, given matroid M = (E,T),
and any loop-free set C' C E, we have that:

) B=C (12.51)
BeB(C)

Proof.
@ Define ¢’ £ Uges(c)» and suppose 3c € C' such that ¢ ¢ C".
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Matroids cont.
(NNAY |

Union of matroid bases of a set

Lemma 12.8.1
Let B(C) be the set of bases of C. Then, given matroid M = (E,T),
and any loop-free set C' C E, we have that:

) B=C (12.51)
BeB(C)

Proof.
o Define C' £ UBeB(C), and suppose 3¢ € C such that ¢ ¢ C".

@ Hence, VB € B(C) we have ¢ ¢ B, and B + ¢ contains a single
circuit for any B, namely C(B, c).
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Matroids cont.
(NNAY |

Union of matroid bases of a set

Lemma 12.8.1

Let B(C) be the set of bases of C. Then, given matroid M = (E,T),
and any loop-free set C' C E, we have that:

) B=C (12.51)
BeB(C)

Proof.
o Define C' £ UBeB(C), and suppose 3¢ € C such that ¢ ¢ C".

@ Hence, VB € B(C') we have ¢ ¢ B, and B + ¢ contains a single
circuit for any B, namely C(B, ¢).
@ Then choose ¢ € C(B,¢) with ¢ # c.

[]
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Matroids cont.
(NNAY |

Union of matroid bases of a set

Lemma 12.8.1

Let B(C) be the set of bases of C. Then, given matroid M = (E,T),
and any loop-free set C' C E,-we have that:

U B=cC (12.51)
BeB(C)

Proof.
o Define ¢’ £ Ugen(c) and suppose Jc € C such that ¢ ¢ C".
@ Hence, VB € B(C') we have ¢ ¢ B, and B + ¢ contains a single
circuit for any B, namely C(B, ¢).
@ Then choose ¢ € C(B,¢) with ¢ # c.

@ Then B+ c— ¢ is independent size | B| subset of C' and hence spans
C, and thus is a c-containing member of B(C), contradicting ¢ ¢ C".

[]
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Closure/Sat
LARRARRRERNNY!

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).
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Closure/Sat
LARRARRRERNNY!

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).

@ We wish to generalize closure to polymatroids.
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Closure/Sat
LARRARRRERNNY!

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).

@ We wish to generalize closure to polymatroids.

e Consider z € Py for polymatroid function f.
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Closure/Sat
LARRARRRERNNY!

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).

@ We wish to generalize closure to polymatroids.
e Consider z € Py for polymatroid function f.

@ Again, recall, tight sets are closed under union and intersection, and
therefore form a distributive lattice.
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Closure/Sat
LERRRRRRERNNE

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).

@ We wish to generalize closure to polymatroids.
e Consider z € Py for polymatroid function f.

@ Again, recall, tight sets are closed under union and intersection, and
therefore form a distributive lattice.

@ That is, we saw in Lecture 7 that for any A, B € D(z), we have
that AU B € D(x) and AN B € D(x), which can constitute a join
and meet.
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Closure/Sat
LERRRRRRERNNE

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).

@ We wish to generalize closure to polymatroids.
e Consider z € Py for polymatroid function f.

@ Again, recall, tight sets are closed under union and intersection, and
therefore form a distributive lattice.

@ That is, we saw in Lecture 7 that for any A, B € D(x), we have
that AU B € D(x) and AN B € D(x), which can constitute a join
and meet.

@ Recall, for a given z € Py, we have defined this tight family as

D(z) = {A: AC E,z(A) = f(A)} (12.52)
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Closure/Sat
(RINRRARNANINY

The sat function = Polymatroid Closure

o Now given x € P;r:

D(z) = {A: AC E,z(A) = f(A)} (12.53)
= {A: f(A) — z(A) = 0} (12.54)
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Closure/Sat
(RINRRARNANINY

The sat function = Polymatroid Closure

o Now given x € P]T:

D(x)={A: ACE,z(A) = f(A)} (12.53)
={A: f(A) —xz(A) =0} (12.54)
@ Since € P; and f is presumed to be polymatroid function, we see

f/(A) = f(A) — z(A) is a non-negative submodular function, and
D(x) are the zero-valued minimizers (if-any) of f'(A).

x(4) 44l
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Closure/Sat
(RINRRNRNANNY

The sat function = Polymatroid Closure

o Now given x € P]T:

D(x)={A: AC E,z(A4)

f(A)} (12.53)
={A: f(A) —2(4) = 0}

(12.54)

@ Since € P and f is presumed to be polymatroid function, we see
f'(A) = f(A) — x(A) is a non-negative submodular function, and
D(x) are the zero-valued minimizers (if any) of f/'(A).

@ The zero-valued minimizers of f’ are thus closed under union and
intersection.
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Closure/Sat
(RINRRNRNANNY

The sat function = Polymatroid Closure

o Now given x € P]T:

D(x)={A: AC E,z(A4)

f(A)} (12.53)
={A: f(A) —2(4) = 0}

(12.54)

@ Since € P and f is presumed to be polymatroid function, we see
f'(A) = f(A) — x(A) is a non-negative submodular function, and
D(x) are the zero-valued minimizers (if any) of f/'(A).

@ The zero-valued minimizers of f’ are thus closed under union and
intersection.

@ In fact, this is true for all minimizers of a submodular function as
stated in the next theorem.
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Closure/Sat
(NLRRRARNANNY

Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of
minimizers of f. Let A, B € M. Then AUB € M and AN B € M.
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Closure/Sat
(NLRRRARNANNY

Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of
minimizers of f. Let A,B € M. Then AUB € M and AN B € M.

L]
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Closure/Sat
(NLRRRARNANNY

Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of
minimizers of f. Let A, B € M. Then AUB € M and AN B € M.

Proof.

Since A and B are minimizers, we have f(A) = f(B)< f(AN B) and
f(4) = f(B) < f(AUB).
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Closure/Sat
(NLRRRARNANNY

Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of
minimizers of f. Let A, B € M. Then AUB € M and AN B € M.

Proof.

Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(A) =f(B) < f(AUB).
By submodularity, we have

f(A)+ f(B) > f(AUB) + f(AN B) (12.55)

Ol
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Closure/Sat
(NLRRRARNANNY

Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of
minimizers of f. Let A, B € M. Then AUB € M and AN B € M.

Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(A) =f(B) < f(AUB).
By submodularity, we have

F(A)+ £(B) = f(AUB) + f(AN B) (12.55)

Hence, we must have f(A) = f(B) = f(AUB) = f(AN B). O
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Closure/Sat
(N RRRARNANIY

Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of
minimizers of f. Let A, B € M. Then AUB € M and AN B € M.

Proof.

Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(4) =f(B) < f(AUB).
By submodularity, we have

F(A)+ £(B) = f(AUB) + f(AN B) (12.55)

Hence, we must have f(A) = f(B) = f(AUB) = f(AN B). O

Thus, the minimizers of a submodular function form a lattice, and there
is a maximal and a minimal minimizer of every submodular function.
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Closure/Sat
(AR ARARNANY

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation
function).
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Closure/Sat
(AR RNRNANINY

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation

function).
@ For some x € P, we have defined:

cl(z) € sat(z) £ J{A: A € D(x)} (12.56)

F46/68 (pg.157/286
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Closure/Sat
(AR RNRNANINY

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation

function).
@ For some x € Py, we have defined:

cl(z) € sat(z) € J{A: A € D(2)} (12.56)
=|J{4:ACE,x(4) = f(4)} (12.57)

F46/68 (pg.158/286
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Closure/Sat
(AR RNRNANINY

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation

function).
@ For some x € Py, we have defined:

cl(z) € sat(x) €| J{A: A e D(x)} (12.56)
= J{A:ACE x(A) = f(A)} (12.57)
f ={e:ecENVa>0,z+al. ¢ Ps} (12.58)

£l

T
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Closure/Sat
(AR RNRNANINY

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation
function).

@ For some x € Py, we have defined:

cl(z) € sat(x) €| J{A: A e D(x)} (12.56)
— U {A: ACE,2(A) = f(A)} (12.57)
={e:ec EVNa>0,x+al. ¢ Py} (12.58)

@ Hence, sat(x) is the maximal (zero-valued) minimizer of the
submodular function f,(A) = f(A) — z(A).
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Closure/Sat
(AR RNRNANINY

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation
function).

@ For some x € Py, we have defined:

cl(z) € sat(x) €| J{A: A e D(x)} (12.56)
— U {A: ACE,2(A) = f(A)} (12.57)
={e:ec E,VNa>0,z+al. ¢ Py} (12.58)

@ Hence, sat(z) is the maximal (zero-valued) minimizer of the
submodular function f,(A) = f(A) — z(A).

e Eq. (12.58) says that sat consists of any point x that is P
saturated (any additional positive movement, in that dimension,
leaves Pf). We'll revisit this in a few slides.
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Closure/Sat
(AR ARARNANY

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation
function).

@ For some x € Py, we have defined:

cl(z) € sat(x) €| J{A: A e D(x)} (12.56)
= J{A:ACE x(A) = f(A)} (12.57)
={e:ec EVNa>0,x+al. ¢ Py} (12.58)
@ Hence, sat(z) is the maximal (zero-valued) minimizer of the
submodular function f,(A) = f(A) — z(A).
e Eq. (12.58) says that sat consists of any point x that is Py
saturated (any additional positive movement, in that dimension,

leaves Py). We'll revisit this in a few slides.
@ First, we see how sat generalizes matroid closure.
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Closure/Sat
(RN RARNANY

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 1; € P, and

D(1s) = {A: 1,(4) = r(4)} (12.50)
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Closure/Sat
(RN RARNANY

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and
D(1;)={A:1;(A) =r(4)} (12.59)
and

sat(17)
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Closure/Sat
(RN RARNANY

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and
D(1;)={A:1;(A) =r(4)} (12.59)
and

sat(1y) = J{A: AC E, A€ D(1)} (12.60)
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Closure/Sat
(RN RARNANY

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and

D(1;) = {A:1;(A) =r(A)} (12.59)

and
sat(1;) = J{4: AC E, A€ D(1)} (12.60)
=|J{A: ACE 1,(4) =r(A)} (12.61)
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Closure/Sat
(RN RARNANY

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and

D(1;) = {A:1;(A) =r(A)} (12.59)
and

sat(1;) = J{4: AC E, A€ D(1)} (12.60)

=J{A: ACE1,(4) =r(A)} (12.61)

=|J{A: ACE |InA =r(A)} (12.62)
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Closure/Sat
(RN RARNANY

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and

D(1;) = {A:1;(A) =r(A)} (12.59)
and

sat(1;) = J{4: AC E, A€ D(1)} (12.60)

=J{A: ACE1,(4) =r(A)} (12.61)

=J{A4:ACE |InAl=r(A)} (12.62)

@ Notice that 1;(A) = [I N A|.
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Closure/Sat
(RN RARNANY

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and

D(1;) = {A:1;(A) =r(A)} (12.59)
and

sat(1;) = J{4: AC E, A€ D(1)} (12.60)

=J{A: ACE1,(4) =r(A)} (12.61)

=J{A4:ACE |InAl=r(A)} (12.62)

e Notice that 1;(A) = |[I N A|.

e Intuitively, |[I N A| <|I|. Also, consider an A D I € 7 that doesn't
increase rank, meaning r(A) =r(I). If r(A) = |[INA|=r(INA)
then A is in I's span.
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Closure/Sat
(RN RARNANY

The sat function = Polymatroid Closure

e Consider matroid (E,Z) = (E,r), some I € Z. Then 17 € P, and

D(1;) = {A:1;(A) =r(A)} (12.59)

and
sat(1;) = J{4: AC E, A€ D(1)} (12.60)
=J{A: ACE1,(4) =r(A)} (12.61)
=J{A4:ACE |InAl=r(A)} (12.62)

e Notice that 1;(A) = [I N A|.
o Intuitively, |[I N A| <|I|. Also, consider an A D I € 7 that doesn't

increase rank, meaning r(A) =r(I). If r(A) = |[INA|=r(INA)
then A is in I's span.
@ We formalize this next.
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Closure/Sat
(ERRRL ARNANNY

The sat function = Polymatroid Closure

Lemma 12.9.2 (Matroid sat : RY — 2% is the same as closure.)

For I € T, we have sat(1;) = span(]) (12.63)
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Closure/Sat
(ERRRL ARNANNY

The sat function = Polymatroid Closure

Lemma 12.9.2 (Matroid sat : RY — 2% is the same as closure.)

For I € T, we have sat(1;) = span(]) (12.63)

@ For A=1,1;(I)=|I|=r(I),soI € D(1;)and I Csat(1y).
Also, I C span(]).
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Closure/Sat
(ERRRL ARNANNY

The sat function = Polymatroid Closure

Lemma 12.9.2 (Matroid sat : RY — 2% is the same as closure.)

For I € T, we have sat(1;) = span(]) (12.63)

@ For A=1,1;(I)=|I|=r(I),soI € D(1;) and I C sat(1y).
Also, I C span(I).
@ Consider some b € span(/) \ /.
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Closure/Sat
(ERRRL ARNANNY

The sat function = Polymatroid Closure

Lemma 12.9.2 (Matroid sat : RY — 2% is the same as closure.)

For I € T, we have sat(1;) = span(]) (12.63)

@ For A=1,1;(I)=|I|=r(I),soI € D(1;)and I Csat(1y).
Also, I C span(I).

o Consider some b € span(I) \ 1.

@ Then A=T1U{b} € D(1;) since
L (TU{b}) = [I| =r(TU{b}) = ().
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Closure/Sat
(ERRRL ARNANNY

The sat function = Polymatroid Closure

Lemma 12.9.2 (Matroid sat : RY — 2% is the same as closure.)

For I € T, we have sat(1;) = span(]) (12.63)

@ For A=1,1;(I)=|I|=r(I),soI € D(1;)and I Csat(1y).
Also, I C span(I).

o Consider some b € span(I) \ 1.

@ Then A=T1U{b} € D(1;) since
1(1Ufb}) = [I| = r(IU{b}) = r(I).

@ Thus, b € sat(1y).
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Closure/Sat
(ERRRL ARNANNY

The sat function = Polymatroid Closure

Lemma 12.9.2 (Matroid sat : RY — 2% is the same as closure.)

For I € T, we have sat(1;) = span(]) (12.63)

@ For A=1,1;(I)=|I|=r(I),soI € D(1;)and I Csat(1y).
Also, I C span(I).

Consider some b € span(]) \ 1.

Then A =TU{b} € D(1;) since

1(1Ufb}) = [I| = r(IU{b}) = r(I).

Thus, b € sat(17).

Therefore, sat(1;) 2 span(7) .
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Closure/Sat
(ERNERLRNANNY

The sat function = Polymatroid Closure

... proof continued.

@ Now, consider b € sat(1) \ I.

Ol
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Closure/Sat
(ERNERLRNANNY

The sat function = Polymatroid Closure

... proof continued.

o Now, consider b € sat(17) \ I.
@ Choose any A € D(17) with b € A.

Ol
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Closure/Sat
(ERNERLRNANNY

The sat function = Polymatroid Closure

... proof continued.

o Now, consider b € sat(17) \ I.
@ Choose any A € D(1;) with b € A.
@ Then 1(A) = |ANI| =r(4).

Ol
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Closure/Sat
(ERNERLRNANNY

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.
Choose any A € D(17) with b € A.
Then 1(A4) = |[ANI| =r(A).

Now r(A) = |[ANI| < |I| =r().
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Closure/Sat
(ERNERLRNANNY

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.

Choose any A € D(17) with b € A.

Then 1(A) = [ANI| =r(A).

Now r(A) = [ANI| < |I| =r(I).

Also, r(ANI)=|ANI|since ANI .

Ol
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Closure/Sat
(ERNERLRNANNY

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.

Choose any A € D(17) with b € A.

Then 1(A) = |[ANI| =r(A4).

Now r(A) = |[ANI| < |I| =r().

Also, r(ANI)=|ANI|since ANT € T.

Hence, r(ANI)=r(A) =r((ANI)U(A\ I)) meaning
(A\I) Cspan(ANI) Cspan([).

Ol
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Closure/Sat
(ERNERLRNANNY

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.

Choose any A € D(17) with b € A.

Then 1(A) = |[ANI| =r(A4).

Now r(A) = |[ANI| < |I| =r().

Also, r(ANI)=|ANI|since ANT € T.

Hence, r(ANI)=r(A) =r((ANI)U(A\ I)) meaning
(A\I) Cspan(ANT) C span(]).

@ Sincebe A\ I, b€ span(]).

Ol

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F49/68 (pg.183/286



Closure/Sat
(ERNERLRNANNY

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.

Choose any A € D(17) with b € A.

Then 1(A) = |[ANI| =r(A4).

Now r(A) = |[ANI| < |I| =r().

Also, r(ANI)=|ANI|since ANT € T.

Hence, r(ANI)=r(A) =r((ANI)U(A\ I)) meaning
(A\I) Cspan(ANI) Cspan(]).

@ Sincebe A\ I, b € span(]).

@ Thus, sat(1;) C span([]) .

Ol
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Closure/Sat
(ERNERLRNANNY

The sat function = Polymatroid Closure

... proof continued.

Now, consider b € sat(1y) \ I.

Choose any A € D(17) with b € A.

Then 1(A) = |[ANI| =r(A4).

Now r(A) = |[ANI| < |I| =r().

Also, r(ANI)=|ANI|since ANT € T.

Hence, r(ANI)=r(A) =r((ANI)U(A\ I)) meaning
(A\I) Cspan(ANT) C span(]).

@ Sincebe A\ I, b € span(]).

@ Thus, sat(1;) C span([]) .

@ Hence sat(1;) = span([I)

Ol
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Closure/Sat
(ERNERRE ARRY

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C C E with C' ¢ Z, and
consider 1¢.
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Closure/Sat
(ERNERRE ARRY

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?
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Closure/Sat
(ERNERRE ARRY

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1¢ € P.7 No, it might not be a vertex, or even a
member, of P,.
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Closure/Sat
(ERNERRE ARRY

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?7 No, it might not be a vertex, or even a

member, of P,.
@ span(-) operates on more than just independent sets, so span(C) is

perfectly sensible.
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Closure/Sat
(ERNERRE ARRY

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?7 No, it might not be a vertex, or even a
member, of P,.

@ span(-) operates on more than just independent sets, so span(C) is
perfectly sensible.

@ Note span(C) = span(B) where Z 5 B € B(C) is a base of C.
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Closure/Sat
(ERNERRE ARRY

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?7 No, it might not be a vertex, or even a
member, of P,.

@ span(-) operates on more than just independent sets, so span(C) is
perfectly sensible.

@ Note span(C') = span(B) where Z 5 B € B(C) is a base of C.

@ Then we have 15 < 1¢ < 1.0y, and that 15 € P,.. We can then
make the definition:

sat(1¢) = sat(1p) for B € B(C) (12.64)

In which case, we also get sat(1¢) = span(C') (in general, could
define sat(y) = sat(P-basis(y))).
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Closure/Sat
(ERNERRE ARRY

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?7 No, it might not be a vertex, or even a
member, of P,.

@ span(-) operates on more than just independent sets, so span(C) is
perfectly sensible.

@ Note span(C') = span(B) where Z 5 B € B(C) is a base of C.

@ Then we have 15 <1 < Lspan(c). and that 15 € P.. We can then
make the definition:

sat(1¢) = sat(1p) for B € B(C) (12.64)

In which case, we also get sat(1¢) = span(C) (in general, could
define sat(y) = sat(P-basis(y))).
@ However, consider the following form

sat(lc) = J{A: AC E,|[ANC| =r(A)} (12.65)
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Closure/Sat
(ERNERRE ARRY

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1¢. Is 1o € P.?7 No, it might not be a vertex, or even a
member, of P,.

@ span(-) operates on more than just independent sets, so span(C) is
perfectly sensible.

@ Note span(C') = span(B) where Z 5 B € B(C) is a base of C.

@ Then we have 15 <1 < Lspan(c). and that 15 € P.. We can then
make the definition:

sat(1¢) = sat(1p) for B € B(C) (12.64)

In which case, we also get sat(1¢) = span(C) (in general, could
define sat(y) = sat(P-basis(y))).
@ However, consider the following form

sat(lo) = | J{A: AC E,|AnC| =r(A)} (12.65)

Exercise: is span(C) = sat(1¢)? Prove or disprove it.
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Closure/Sat
(ERNERERETRIY

The sat function, span, and submodular function

minimization

@ Thus, for a matroid, sat(1;) is exactly the closure (or span) of I in
the matroid. l.e., for matroid (E, ), we have span(I) = sat(1p).
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Closure/Sat
(ERNERERETRIY

The sat function, span, and submodular function

minimization

@ Thus, for a matroid, sat(1;) is exactly the closure (or span) of I in
the matroid. l.e., for matroid (E, ), we have span(I) = sat(1p).

@ Recall, for 2 € Py and polymatroidal f, sat(x) is the maximal (by
inclusion) minimizer of f(A) — z(A), and thus in a matroid, span(/)
is the maximal minimizer of the submodular function formed by
r(A) — 17(A).
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Closure/Sat
(ERNERERETRIY

The sat function, span, and submodular function

minimization

@ Thus, for a matroid, sat(1;) is exactly the closure (or span) of I in
the matroid. l.e., for matroid (E, ), we have span(I) = sat(1p).

@ Recall, for z € Py and polymatroidal f, sat(x) is the maximal (by
inclusion) minimizer of f(A) — z(A), and thus in a matroid, span(/)
is the maximal minimizer of the submodular function formed by
r(A) = 1;(A).

@ Submodular function minimization can solve “span” queries in a
matroid or “sat” queries in a polymatroid.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F51/68 (pg.196/286



Closure/Sat
(ERNERERETRIY

The sat function, span, and submodular function

minimization

@ Thus, for a matroid, sat(1;) is exactly the closure (or span) of I in
the matroid. l.e., for matroid (E, ), we have span(I) = sat(1p).

@ Recall, for z € Py and polymatroidal f, sat(x) is the maximal (by
inclusion) minimizer of f(A) — z(A), and thus in a matroid, span(/)
is the maximal minimizer of the submodular function formed by
r(A) = 1;(A).

@ Submodular function minimization can solve “span” queries in a
matroid or “sat” queries in a polymatroid.

@ In general, given polymatroid function f : 2V — R, there exists a
form of span in that, given A, we wish to find the largest set B such
that f(BUA) = f(A).
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Closure/Sat
(ERNERERETRIY

The sat function, span, and submodular function

minimization

@ Thus, for a matroid, sat(1;) is exactly the closure (or span) of I in
the matroid. l.e., for matroid (E, ), we have span(I) = sat(1p).

@ Recall, for z € Py and polymatroidal f, sat(x) is the maximal (by
inclusion) minimizer of f(A) — z(A), and thus in a matroid, span(/)
is the maximal minimizer of the submodular function formed by
r(A) = 1;(A).

@ Submodular function minimization can solve “span” queries in a
matroid or “sat” queries in a polymatroid.

@ In general, given polymatroid function f : 2V — R, there exists a
form of span in that, given A, we wish to find the largest set B such
that f(BUA) = f(A).

e Find largest minimizer of g : 2\ — R with g(B) = f(B|A).
Exercise: give example of greedy failing here.
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Closure/Sat
(ERNRRERNE AT

sat, as tight polymatroidal elements

@ We are given an x € P]T for submodular function f.
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Closure/Sat
(ERNRRERNE AT

sat, as tight polymatroidal elements

o We are given an x € ij for submodular function f.

@ Recall that for such an z, sat(x) is defined as

sat(z) = | J{A: 2(4) = f(A)} (12.66)
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Closure/Sat
(ERNRRERNE AT

sat, as tight polymatroidal elements

o We are given an x € ij for submodular function f.

@ Recall that for such an z, sat(x) is defined as
sat(z) = | J{A: 2(4) = f(A)} (12.66)
@ We also have seen that sat(z) can be defined as:

sat(z) = {e Yo >0,r+al. ¢ Pf} (12.67)
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Closure/Sat
(ERNRRERNE AT

sat, as tight polymatroidal elements

o We are given an x € ij for submodular function f.

@ Recall that for such an z, sat(x) is defined as
sat(z) = | J{A: 2(4) = f(A)} (12.66)
@ We also have seen that sat(z) can be defined as:
sat(z) = {e Ya>0,z+al. ¢ PJT} (12.67)

@ We next show more formally that these are the same.
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Closure/Sat
(ERNERERNET AT

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
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Closure/Sat
(ERNERERNET AT

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) & {e Vo> 0,7+ ol ¢ ij} (12.68)
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Closure/Sat
(ERNERERNET AT

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Vo> 0,2+ ale ¢ Pf} (12.68)
={e:VYa>0,3Ast. (z+al.)(A) > f(A)} (12.69)
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Closure/Sat
(ERNERERNET AT

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Vo> 0,2+ ale ¢ Pf} (12.68)

={e:Va> 0,34 st (z+al.)(A) > f(A)} (12.69)
={e:Ya>0,3A5est. (zv+al.)(A) > f(A)} (12.70)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F53/68 (pg.206/286



Closure/Sat
(ERNERERNET AT

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Vo> 0,2+ ale ¢ Pf} (12.68)

={e:Va> 0,34 st (z+al.)(A) > f(A)} (12.69)
={e:Va>0,d43est. (z+al.)(A) > f(A)} (12.70)
@ this last bit follows since 1.(4) =1 <= e € A.
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Closure/Sat
(ERNERERNET AT

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(zx) of {e Va>0,r+al. ¢ P;r} (12.68)
={e:Va> 0,34 st (z+al.)(A) > f(A)} (12.69)
={e:Va>0,d43est. (z+al.)(A) > f(A)} (12.70)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (12.71)
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Closure/Sat
(ERNERERNET AT

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(z) % {e Vo> 0,2+ ale ¢ Pf} (12.68)

={e:Va> 0,34 st (z+al.)(A) > f(A)} (12.69)
={e:Va>0,d43est. (z+al.)(A) > f(A)} (12.70)

e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (12.71)
@ given that x € Pf+, meaning xz(A) < f(A) for all A, we must have

sat(x)
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Closure/Sat
(ERNERERNET AT

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(zx) of {e Va>0,r+al. ¢ P;r} (12.68)
={e:Va> 0,34 st (z+al.)(A) > f(A)} (12.69)
={e:Va>0,d43est. (z+al.)(A) > f(A)} (12.70)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (12.71)
e given that » € P}, meaning z(A) < f(A) for all A, we must have

sat(z) = {e:Va > 0,34 > e st z(A) = f(A)} (12.72)
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Closure/Sat
(ERNERERNET AT

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(zx) of {e Va>0,r+al. ¢ P;r} (12.68)
={e:Va> 0,34 st (z+al.)(A) > f(A)} (12.69)
={e:Va>0,d43est. (z+al.)(A) > f(A)} (12.70)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (12.71)
e given that » € P}, meaning z(A) < f(A) for all A, we must have

)= f(A)} (12.72)
A)} (12.73)

sat(z) = {e:Va>0,3A>est =

(A
={e:JdA>est z(A) = f(
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Closure/Sat
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sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(zx) of {e Va>0,r+al. ¢ P;r} (12.68)
={e:Va> 0,34 st (z+al.)(A) > f(A)} (12.69)
={e:Va>0,d43est. (z+al.)(A) > f(A)} (12.70)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (12.71)
e given that » € P}, meaning z(A) < f(A) for all A, we must have

sat(z) = {e:Va>0,3A > est z(A) = f(A)} (12.72)

={e:dA>est z(4) = f(A)} (12.73)
@ So now, if A is any set such that z(A) = f(A), then we clearly have
(12.74)
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Closure/Sat
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sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(zx) of {e Va>0,r+al. ¢ P;r} (12.68)
={e:Va> 0,34 st (z+al.)(A) > f(A)} (12.69)
={e:Va>0,d43est. (z+al.)(A) > f(A)} (12.70)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) ={e:Va>0,3A>est z(A)+a> f(A)} (12.71)
e given that » € P}, meaning z(A) < f(A) for all A, we must have

sat(z) = {e:Va>0,3A > est z(A) = f(A)} (12.72)

={e:dA>est z(4) = f(A)} (12.73)
@ So now, if A is any set such that z(A4) = f(A), then we clearly have
Ve € A, e € sat(z), (12.74)
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sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.

sat(zx) of {e Va>0,r+al. ¢ P;r} (12.68)
={e:Va> 0,34 st (z+al.)(A) > f(A)} (12.69)
={e:Va>0,dA3est. (z+al.)(A) > f(A)} (12.70)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(x) ={e:Va>0,dA3est. z(A)+a> f(A)} (12.71)

e given that » € P}, meaning z(A) < f(A) for all A, we must have
sat(z) = {e:Va>0,3A > est z(A) = f(A)} (12.72)
={e:dA>est z(A) = f(A)} (12.73)
@ So now, if A is any set such that z(A4) = f(A), then we clearly have
Ve € A, e € sat(x), and therefore that sat(xz) 2 A (12.74)
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sat, as tight polymatroidal elements

@ ...and therefore, with sat as defined in Eq. (12.58),

sat(z) 2 | J{A: z(A) = f(A)} (12.75)
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sat, as tight polymatroidal elements

@ ...and therefore, with sat as defined in Eq. (12.58),

sat(z) 2 | J{A: a( f(A)} (12.75)
@ On the other hand, for any e € sat(x) defined as in Eq. (12.73),
since e is itself a member of a tight set, there is a set A 3 e such

that z(A) = f(A), giving

sat(z) C U {A:x2(A)= f(A)} (12.76)
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sat, as tight polymatroidal elements

@ ...and therefore, with sat as defined in Eq. (12.58),

sat(z) 2 | J{A: a( f(A)} (12.75)

@ On the other hand, for any e € sat(x) defined as in Eq. (12.73),
since e is itself a member of a tight set, there is a set A 3 e such
that (A) = f(A), giving

sat(z) C U {A:x(A)= f(A)} (12.76)

@ Therefore, the two definitions of sat are identical.
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Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
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Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
@ For x € Py, and e € F, consider finding

max {a:a € R,z +al. € Py} (12.77)
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Closure/Sat
(ERNERERNANN Y

Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
@ For x € Py, and e € F, consider finding

max {a:a € R,z +al. € Py} (12.77)
@ This is identical to:
max{a: (v + ale)(A) < f(A),VA D {e}} (12.78)

since any B C FE such that e ¢ B does not change in a 1,
adjustment, meaning (z + al.)(B) = z(B).
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Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
@ For x € Py, and e € F, consider finding

max {a:a € R,z +al. € Py} (12.77)
@ This is identical to:
max{a: (v + al.)(A) < f(A),VA D {e}} (12.78)

since any B C FE such that e ¢ B does not change in a 1,
adjustment, meaning (z + al.)(B) = z(B).
@ Again, this is identical to:

max{a: z(A) +a < f(A),YA D {e}} (12.79)
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Closure/Sat
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Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
@ For x € Py, and e € F, consider finding

max {a:a € R,z +al. € Py} (12.77)
@ This is identical to:
max{a: (v + al.)(A) < f(A),VA D {e}} (12.78)

since any B C FE such that e ¢ B does not change in a 1,
adjustment, meaning (z + al.)(B) = z(B).
@ Again, this is identical to:

max{a:z(A)+a < f(A),YA D {e}} (12.79)
or

max{a:a < f(A) —x(A),VA D {e}} (12.80)
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Saturation Capacity

@ The max is achieved when

a=c(zre) © min {f(A) — z(A),VA D {e}} (12.81)
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Closure/Sat
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (12.81)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (12.81)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.

@ Thus we have for x € Py,

é(ze) ¥ min {f(A) — 2(A),VA > e} (12.82)
=max{a:a € R,z +al. € P} (12.83)
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Closure/Sat
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (12.81)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.

@ Thus we have for x € Py,

é(zre) ¥ min {f(A) — 2(A),VA > e} (12.82)
=max{a:a €R,z+al. € P} (12.83)

@ We immediately see that for e € E \ sat(x), we have that
¢(xye) > 0.
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (12.81)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.

@ Thus we have for x € Py,
é(zre) ¥ min {f(A) — 2(A),VA > e} (12.82)
=max{a:a €R,z+al. € P} (12.83)

e We immediately see that for e € E \ sat(x), we have that
¢(xye) > 0.
@ Also, for e € sat(x), we have that ¢(z;e) = 0.
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (12.81)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.

@ Thus we have for x € Py,
é(zre) ¥ min {f(A) — 2(A),VA > e} (12.82)
=max{a:a €R,z+al. € P} (12.83)

e We immediately see that for e € E \ sat(x), we have that
¢(xye) > 0.

@ Also, for e € sat(z), we have that é(z;e) = 0.

e Note that any a with 0 < a < ¢é(x;e) we have x + al. € Py.
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Saturation Capacity

@ The max is achieved when
a = c(ze) © min {f(A) — z(A),VA D {e}} (12.81)

@ ¢(x;e) is known as the saturation capacity associated with x € P
and e.
@ Thus we have for x € Py,

é(zre) ¥ min {f(A) — 2(A),VA > e} (12.82)
=max{a:a €R,z+al. € P} (12.83)

e We immediately see that for e € E \ sat(x), we have that
¢(xye) > 0.

@ Also, for e € sat(z), we have that é(z;e) = 0.

o Note that any a with 0 < a < ¢é(x;e) we have  + al. € Py.

@ We also see that computing ¢(z;e) is a form of submodular function
minimization.
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Fund. Circuit/Dep
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Dependence Function

@ Tight sets can be restricted to contain a particular element.
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Fund. Circuit/Dep
[NRRRNRNRRAY]

Dependence Function

@ Tight sets can be restricted to contain a particular element.
@ Given z € Py, and e € sat(z), define
D(z,e)={A:ec ACE x(A) = f(A)} (12.84)
=Dx)N{A: ACFE,ec A} (12.85)
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Fund. Circuit/Dep
[NRRRNRNRRAY]

Dependence Function

o Tight sets can be restricted to contain a particular element.
o Given x € Py, and e € sat(x), define

D(z,e)={A:ec ACE x(A) = f(A)} (12.84)
=Dx)N{A: ACFE,ec A} (12.85)

@ Thus, D(x,e) C D(z), and D(x,e) is a sublattice of D(x).
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Fund. Circuit/Dep
[NRRRNRNRRAY]

Dependence Function

Tight sets can be restricted to contain a particular element.

o Given x € Py, and e € sat(x), define
D(z,e)={A:ec ACE x(A) = f(A)} (12.84)
=Dx)N{A: ACFE,ec A} (12.85)

Thus, D(x,e) C D(x), and D(z,e) is a sublattice of D(x).
Therefore, we can define a unique minimal element of D(z, e)
denoted as follows:

N{A:e€c ACE,z(A) = f(A)} ifecsat(z)

0 else

(]

dep(z,e) = {
(12.86)
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Fund. Circuit/Dep
[NRRRNRNRRAY]

Dependence Function

Tight sets can be restricted to contain a particular element.

o Given x € Py, and e € sat(x), define
D(z,e)={A:ec ACE x(A) = f(A)} (12.84)
=Dx)N{A: ACFE,ec A} (12.85)

Thus, D(x,e) C D(x), and D(z,e) is a sublattice of D(x).
Therefore, we can define a unique minimal element of D(z, e)
denoted as follows:

N{A:e€c ACE,z(A) = f(A)} ifecsat(z)
0 else

(]

dep(z,e) = {
(12.86)

@ l.e, dep(z,e) is the minimal element in D(x) that contains e (the
minimal z-tight set containing e).
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dep and sat in a lattice

@ The picture on the
right summarizes
the relationships
between the
lattices and
sublattices.

@ Note,
(. dep(z,e) =
dep(x).
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dep and sat in a lattice

@ Given x € Py, recall distributive lattice of tight sets

D(z) ={A:z(A) = f(A)}

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F59/68 (pg.236/286



Fund. Circuit/Dep
INRRRNRRRRR

dep and sat in a lattice

e Given x € Py, recall distributive lattice of tight sets
D(x) = {A: 2(4) = f(A)}

@ We had that sat(z) = (J{A: A € D(z)} is the “1" element of this
lattice.
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dep and sat in a lattice

e Given x € Py, recall distributive lattice of tight sets
D(z) = {A:x(A) = f(A)}

e We had that sat(z) = |J{A: A € D(z)} is the “1" element of this
lattice.

e Consider the “0" element of D(z), i.e., dry(z) = N{A: AeD(x)}

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F59/68 (pg.238/286



Fund. Circuit/Dep
INRRRNRRRRR

dep and sat in a lattice

e Given x € Py, recall distributive lattice of tight sets
D(a) = {A: o(4) = f(A)}
e We had that sat(z) = |J{A: A € D(z)} is the “1" element of this
lattice.
e Consider the “0" element of D(z), i.e., dry(z) e N{A: AeD(x)}
@ We can see dry(x) as the elements that are necessary for tightness.
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dep and sat in a lattice

e Given x € Py, recall distributive lattice of tight sets
D(a) = {A: o(4) = f(A)}
e We had that sat(z) = |J{A: A € D(z)} is the “1" element of this
lattice.
e Consider the “0" element of D(z), i.e., dry(z) = e N{A: AeD(x)}
@ We can see dry(x) as the elements that are necessary for tightness.
@ That is, we can equivalently define dry(x) as

dry(z) = {¢' : = ),VAF €'} (12.87)
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dep and sat in a lattice

e Given x € Py, recall distributive lattice of tight sets
D(a) = {A: o(4) = f(A)}
@ We had that sat(z) = (J{A: A € D(z)} is the "1" element of this
lattice.
e Consider the “0" element of D(z), i.e., dry(z) e N{A: AeD(x)}
@ We can see dry(x) as the elements that are necessary for tightness.
@ That is, we can equivalently define dry(a:) as

dry(z) = {¢': = ),VAZ €'} (12.87)

@ This can be read as, for any ¢’ € dry(z), any set that does not
contain €’ is not tight for = (any set A that is missing any element
of dry(x) is not tight).
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dep and sat in a lattice

e Given x € Py, recall distributive lattice of tight sets

D(z) = {A:z(A) = f(A)}

We had that sat(z) = |J{A: A € D(z)} is the “1" element of this
lattice.

Consider the “0" element of D(x), i.e., dry(x) e N{A: AeD(x)}
We can see dry(x) as the elements that are necessary for tightness.

e 6 o

That is, we can equivalently define dry(a:) as
dry(z) = {¢': = ),VAZ €'} (12.87)

This can be read as, for any ¢’ € dry(z), any set that does not
contain €’ is not tight for = (any set A that is missing any element
of dry(z) is not tight).

@ Perhaps, then, a better name for dry is nsat(z), for the necessary
for tightness (but we'll actually use neither name).
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dep and sat in a lattice

e Given x € Py, recall distributive lattice of tight sets
D(a) = {A: o(4) = f(A)}
e We had that sat(z) = |J{A: A € D(z)} is the “1" element of this
lattice.
e Consider the “0" element of D(z), i.e., dry(z) = e N{A: AeD(x)}
@ We can see dry(x) as the elements that are necessary for tightness.
@ That is, we can equivalently define dry(a:) as

dry(z) = {¢': = f(A),VAZ '} (12.87)

@ This can be read as, for any ¢’ € dry(z), any set that does not
contain €’ is not tight for = (any set A that is missing any element
of dry(z) is not tight).

@ Perhaps, then, a better name for dry is nsat(x), for the necessary
for tightness (but we'll actually use neither name).

@ Note that dry need not be empty. Exercise: give example.
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An alternate expression for dep = dry

e Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(A) = f(4)}
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An alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1” element of this sub-lattice as
sat(z,e) 2 (J{A: A e D(z,e)l}
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An alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) L LA : A e D(x,e)).

@ Analogously, we can define the “0" element of this sub-lattice as

dry(z,e) ¥ N {A: A€ Da,e)l.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F60/68 (pg.246/286



Fund. Circuit/Dep
INNE RNRRRRR

An alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) L LA : A e D(x,e)).

@ Analogously, we can define the “0" element of this sub-lattice as
def
dry(z,e) = N{A: A e D(z,e)l.
@ We can see dry(z,e) as the elements that are necessary for
e-containing tightness, with e € sat(x).
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An alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) L LA : A e D(x,e)).

@ Analogously, we can define the “0" element of this sub-lattice as
def

dry(z,e) = ({A: A€ D(z,e)}.
@ We can see dry(z,e) as the elements that are necessary for
e-containing tightness, with e € sat(x).

@ That is, we can view dry(z,e) as

dry(z,e) = {¢ : 2(A) < f(A),VAZ e € A} (12.88)
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alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) L LA : A e D(x,e)).

@ Analogously, we can define the “0" element of this sub-lattice as
dry(z,e) e N{A: AeD(z,e)}.

@ We can see dry(z,e) as the elements that are necessary for
e-containing tightness, with e € sat(x).

e That is, we can view dry(x,e) as

dry(z,e) = {¢ : = f(A)VAZ e ec A} (12.88)

@ This can be read as, for any ¢’ € dry(z,e), any e-containing set
that does not contain €’ is not tight for x.
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alternate expression for dep = dry

@ Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(4) = f(4)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) L LA : A e D(x,e)).

@ Analogously, we can define the “0" element of this sub-lattice as
dry(z,e) e N{A: AeD(z,e)}.

@ We can see dry(z,e) as the elements that are necessary for
e-containing tightness, with e € sat(x).

e That is, we can view dry(x,e) as

dry(z,e) = {¢ : = f(A)VAZ e ec A} (12.88)

@ This can be read as, for any €’ € dry(z, e), any e-containing set
that does not contain €’ is not tight for x.

@ But actually, dry(z, e) = dep(z,e), so we have derived another
expression for dep(zx,e) in Eq. (12.88).
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Dependence Function and Fundamental Matroid Circuit

e Now, let (E,Z) = (E,r) be a matroid, and let I € 7 giving
17 € P.. Let e € sat(1y) = span(I) = closure(I).
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Dependence Function and Fundamental Matroid Circuit

e Now, let (E,Z) = (E,r) be a matroid, and let I € 7 giving
1; € P,. Let e € sat(17) = span(/) = closure(I).

@ Given e € sat(1y) \  and then consider an A > e with
[INAl=r(A).
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Dependence Function and Fundamental Matroid Circuit

e Now, let (E,Z) = (E,r) be a matroid, and let I € 7 giving
1; € P,. Let e € sat(17) = span(/) = closure(I).

e Given e € sat(1y) \ I and then consider an A 5 e with
|[INAl=r(A).

@ Then I N A serves as a base for A (i.e., I N A spans A) and any
such A contains a circuit (i.e., we canadde € A\ I to INA w/o
increasing rank).
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Dependence Function and Fundamental Matroid Circuit

e Now, let (E,Z) = (E,r) be a matroid, and let I € 7 giving
1; € P,. Let e € sat(17) = span(/) = closure(I).

e Given e € sat(1y) \ I and then consider an A 5 e with
[INAl=r(A).

@ Then I N A serves as a base for A (i.e., I N A spans A) and any
such A contains a circuit (i.e., we canadde € A\ I to INA w/o
increasing rank).

@ Given e € sat(1y) \ I, and consider dep(1y, e), with

dep(1r,e) = {A:e€ AC E, 1;(A) =r(A)} (12.89)
=([{A:ec ACE,|INA|=r(A)} (12.90)
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Dependence Function and Fundamental Matroid Circuit

e Now, let (E,Z) = (E,r) be a matroid, and let I € 7 giving
1; € P,. Let e € sat(17) = span(/) = closure(I).

e Given e € sat(1y) \ I and then consider an A 5 e with
[INAl=r(A).

@ Then I N A serves as a base for A (i.e., I N A spans A) and any
such A contains a circuit (i.e., we canadde € A\ I to INA w/o
increasing rank).

@ Given e € sat(17) \ /, and consider dep(1y, e), with

dep(lr,e) = {A:e€ AC E,1;(A) =r(A)} (12.89)
=({A:e€ ACE,|INA| =r(A)} (12.90)

@ Then there is a unique minimal A 5> e with [I N A| = r(A).
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Dependence Function and Fundamental Matroid Circuit

e Now, let (E,Z) = (E,r) be a matroid, and let I € 7 giving
1; € P,. Let e € sat(17) = span(/) = closure(I).

e Given e € sat(1y) \ I and then consider an A 5 e with
[INAl=r(A).

@ Then I N A serves as a base for A (i.e., I N A spans A) and any
such A contains a circuit (i.e., we canadde € A\ I to INA w/o
increasing rank).

@ Given e € sat(17) \ /, and consider dep(1y, e), with

dep(lr,e) = {A:e€ AC E,1;(A) =r(A)} (12.89)
=({A:e€ ACE,|INA| =r(A)} (12.90)

@ Then there is a unique minimal A 5> e with [I N A| = r(A).

@ Thus, dep(1,e) must be a circuit since if it included more than a
circuit, it would not be minimal in this sense.
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Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(17) \ I, then dep(17,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).
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Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(1;) \ I, then dep(1,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

e Now, if e € sat(17) NI with I € Z, we said that C(1,e) was

undefined (since no circuit is created in this case) and so we defined
itas C(1,e) = {e}
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Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(1;) \ I, then dep(1,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

e Now, if e € sat(17) NI with I € Z, we said that C(I,e) was
undefined (since no circuit is created in this case) and so we defined
itas C(I,e) = {e}

@ In this case, for such an e, we have dep(1;,e) = {e} since all such
sets A 5 e with [IN A| = r(A) contain e, but in this case no cycle is
created.
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Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(1;) \ I, then dep(1,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

e Now, if e € sat(17) NI with I € Z, we said that C(I,e) was
undefined (since no circuit is created in this case) and so we defined
itas C(I,e) = {e}

@ In this case, for such an e, we have dep(1;,e) = {e} since all such
sets A 5 e with [I N A| = r(A) contain e, but in this case no cycle is
created.

@ We are thus free to take subsets of I as A, all of which must
contain e, but all of which have rank equal to size.
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Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(1;) \ I, then dep(1,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

e Now, if e € sat(17) NI with I € Z, we said that C(I,e) was
undefined (since no circuit is created in this case) and so we defined
itas C(I,e) = {e}

@ In this case, for such an e, we have dep(1;,e) = {e} since all such
sets A 5 e with [I N A| = r(A) contain e, but in this case no cycle is
created.

@ We are thus free to take subsets of I as A, all of which must
contain e, but all of which have rank equal to size.

@ Also note: in general for x € Pr and e € sat(x), we have dep(z,e)
is tight by definition.
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Summary of sat, and dep

e For z € Py, sat(x) (span, closure) is the maximal saturated (z-tight)
set w.rt. z. lLe, sat(z) ={e:e € E,Va >0,z 4+ al. ¢ Pr}. Thats,

cl(z) & sat(z) £ U {A: AeD(2)} (12.91)

= J{A: ACE 2(A) = f(A)} (12.92)
={e:ec E,VNa>0,z+ al. ¢ Py} (12.93)

e For e € sat(z), dep(x, e) (fundamental circuit) is the minimal
(common) saturated (a-tight) set w.r.t. = containing e. That is,

N{A:eec ACE,z(A) = f(A)} ife€sat(x)
dep(, ¢) = 0 else
={':3a>0, st.x+a(le— 1) € Py} (12.94)
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Dependence Function and exchange

@ For e € span(I) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition

restriction property.
@ Analogously, for e € sat(x), any x + al. ¢ Pf for « > 0. This is a

vector increase restriction property.
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any « + al. ¢ Pr for « > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ ¢ €T for ¢ € C(I,e). l.e.,, C(I,€)
consists of elements that when removed recover independence.
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Fund. Circuit/Dep
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any « + al. ¢ Pr for « > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ e € Z for e’ € C(I,e). le.,, C(1,¢e)
consists of elements that when removed recover independence.

@ In other words, for e € span(/) \ I, we have that

C(l,e)={ac€E:I4+e—acT} (12.95)
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any « + al. ¢ Pr for « > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ e € Z for e’ € C(I,e). le.,, C(1,¢e)
consists of elements that when removed recover independence.

@ In other words, for e € span(f) \ I, we have that

C(l,e)={ac€E:I+e—acTl} (12.95)

@ l.e., an addition of e to I stays within Z only if we simultaneously
remove one of the elements of C'(7, e).
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any « + al. ¢ Pr for « > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ e € Z for e’ € C(I,e). le.,, C(1,¢e)
consists of elements that when removed recover independence.

@ In other words, for e € span(f) \ I, we have that

C(l,e)={ac€E:I+e—acTl} (12.95)
@ l.e., an addition of e to I stays within Z only if we simultaneously
remove one of the elements of C'(7, e).

@ But, analogous to the circuit case, is there an exchange property for
dep(x,e) in the form of vector movement restriction?
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Dependence Function and exchange

@ For e € span([]) \ I, we have that I + e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any « + al. ¢ Pr for « > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ e € Z for e’ € C(I,e). le.,, C(1,¢e)
consists of elements that when removed recover independence.

@ In other words, for e € span(f) \ I, we have that

C(l,e)={ac€E:I+e—acTl} (12.95)

@ l.e., an addition of e to I stays within Z only if we simultaneously
remove one of the elements of C'(7, e).

@ But, analogous to the circuit case, is there an exchange property for
dep(z,e) in the form of vector movement restriction?

@ We might expect the vector dep(z, €) property to take the form:
a positive move in the e-direction stays within P, only if we
simultaneously take a negative move in one of the dep(z, e)

directions.
Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F64/68 (pg.269/286




Fund. Circuit/Dep
INNRRRRY RN

Dependence Function and exchange in 2D

@ Viewable in 2D, we have for A, BC E, AN B = {:
(e) B @
—>
B @I\ E@

A A

Right: A C dep(z,e), and we
can't move further in the (e) di-
rection, but we can move further
in (e) direction by moving in some
a € A negative direction. Notice
dependence between (e) and ele-
ments in A.

Left: AN dep(z,e) =0, and we
can't move further in (e) direc-
tion, and moving in any negative
a € A direction doesn't change
that. Notice no dependence be-
tween (e) and any element in A.
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Dependence Function and exchange in 3D

@ We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.
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Dependence Function and exchange in 3D

@ We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.

@ In 3D, we have:
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Dependence Function and exchange in 3D

@ We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.

@ In 3D, we have:

7

@ le, for e € sat(x), a € sat(z), a € dep(z,e), e ¢ dep(z,a),
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Dependence Function and exchange in 3D

@ We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.

@ In 3D, we have:

7

e le, for e € sat(x), a € sat(z), a € dep(z,e), e ¢ dep(z,a), and
dep(z,e) ={a:a€ E,3a>0:z+a(lc —1,) € Pt}  (12.96)
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Dependence Function and exchange in 3D

@ We can move neither in the (e) nor the (a) direction, but we can move
in the (e) direction if we simultaneously move in the -(a) direction.

@ In 3D, we have:

7

e le, for e € sat(x), a € sat(z), a € dep(z,e), e ¢ dep(z,a), and
dep(z,e) ={a:ae€ E,Ja>0:z+a(le—1,) € Pt}  (12.96)

@ We next show this formally . ..
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z, e) (12.97)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014



dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z, e) (12.97)
={¢:: f(A)VAF e € A} (12.98)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z, e) (12.97)
={c:x f(A),VAZ ' ec A} (12.98)
={¢ .3a>o, st.a < f(A) —x(A),VAZ e, ec A} (12.99)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z, e) (12.97)
={c:x (A),VAF €, ec A} (12.98)
={¢ .Ela>0, s.t.agf( ) —z(A),VAZF €, ec A} (12.99)
={c':3a>0, st. alc(A) < f(A) —z(A),VAF €, e € A} (12.100)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z,e) (12.97)
={c:x (A),VAF €, ec A} (12.98)
:&m3a>Q5ta§f(%—()NA%&@EA} (12.99)

={':3a>0, st. alc(A) < f(A) —z(A),VAF €, e c A} (12.100)

={¢:3a >0, st. a(1.(4) —1.(A)) < f(A) —z(A),VA F e € A}
(12.101)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z,e) (12.97)
={c:x (A),VAF €, ec A} (12.98)
:&m3a>Q5ta§f(%—()NA%&@EA} (12.99)

={':3a>0, st. alc(A) < f(A) —z(A),VAF €, e c A} (12.100)
={:3a>0, st. a(l(4) — 1.(A) < f(A) —2(A),VAF €, e c A}
(12.101)

={e:3a >0, st. 2(A) + a(1(A) — 1(A)) < f(A),VAF ', e € A}
(12.102)
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z, e) (12.97)
= {¢ 1 2(4) < f(A),VA Z ¢, e € A} (12.98)
={':3a>0, st.a< f(A) —z(A),VAF e, ec A} (12.99)

={':3a>0, st. alc(A) < f(A) —z(A),VAF €, e c A} (12.100)
={:3a>0, st. a(l(4) — 1.(A) < f(A) —2(A),VAF €, e c A}
(12.101)
={e :3a >0, st. 2(A) + a(1(4) — 1(A)) < f(A),VAF ', e € A}
(12.102)
@ Now, 1.(A) — 1.(A) =0 if either {e,e'} C A, or {e,e'} N A=0.
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dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z, e) (12.97)
= {¢ 1 2(4) < f(A),VA Z ¢, e € A} (12.98)
={':3a>0, st.a< f(A) —z(A),VAF e, ec A} (12.99)

={':3a>0, st. alc(A) < f(A) —z(A),VAF €, e c A} (12.100)
={:3a>0, st. a(l(4) — 1.(A) < f(A) —2(A),VAF €, e c A}
(12.101)
={e :3a >0, st. 2(A) + a(1(4) — 1(A)) < f(A),VAF ', e € A}
(12.102)
@ Now, 1.(A) — 1.(A) =0 if either {e,e'} C A, or {e,e'} N A =0.
@ Also, if ¢ € A but e ¢ A, then
z(A) + a(1e(A) — 1 (A)) = 2(A) — a < f(A) since = € P.
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dep and exchange derived

@ thus, we get the same in the above if we remove the constraint
AF e ee A, that is we get

dep(z,e) = {€ : Ja > 0, s.t. 2(A) + a(Lc(A) — 1 (A)) < f(A),VA}
(12.103)
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dep and exchange derived

@ thus, we get the same in the above if we remove the constraint
AZ e, ee A, that is we get

dep(z,e) = {€ : Ja > 0, s.t. 2(A) + a(1e(A) — 1 (A)) < f(A),VA}
(12.103)

@ This is then identical to

dep(z,e) = {€' : Ja >0, st. x4+ a(le — 1) € P} (12.104)
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dep and exchange derived

@ thus, we get the same in the above if we remove the constraint
AZ e, ee A, that is we get

dep(z,e) = {€ : Ja > 0, s.t. 2(A) + a(1e(A) — 1 (A)) < f(A),VA}
(12.103)

@ This is then identical to
dep(z,e) = {€' : Ja > 0, s.t.  + a(l. — 1) € Py} (12.104)

e Compare with original, the minimal element of D(x, ¢), with
e € sat(z):

N{A:e€c ACE ,z(A) = f(A)} ifeecsat(z)
0 else

dep(zx,e) = {
(12.105)
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