Submodular Functions, Optimization, and Applications to Machine Learning

— Spring Quarter, Lecture 12 —

http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

May 12th, 2014

 $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$ $= f(A) + 2f(C) + f(B) - f(A) + f(C) + f(B) - f(A \cap B)$

Cumulative Outstanding Reading

- Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige's book.
- Good references for today: Schrijver-2003, Oxley-1992/2011,
 Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.
- Read Tom McCormick's overview paper on SFM http://people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
- Read chapters 1 3 from Fujishige book.
- Matroid properties http: //www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf

Announcements, Assignments, and Reminders

 Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me). Logistics

Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, & Basic Definitions
- L2: (4/2): Applications, Basic Definitions. Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes.
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity

- L11: More properties of polymatroids, SFM special cases
- L12: polymatroid properties, extreme points polymatroids, sat, dep.
- L13:L14:
- L15:
- L16:
- L17:L18:
- L19:
- L20:

A polymatroid function's polyhedron is a polymatroid.

Theorem 12.2.4

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}_+^E$, and any P_f^+ -basis $y^x \in \mathbb{R}_+^E$ of x, the component sum of y^x is

$$y^{x}(E) = \operatorname{rank}(x) = \max\left(y(E) : y \le x, y \in P_{f}^{+}\right)$$
$$= \min\left(x(A) + f(E \setminus A) : A \subseteq E\right) \tag{12.34}$$

As a consequence, P_f^+ is a polymatroid, since r.h.s. is constant w.r.t. y^x .

By taking $B = \operatorname{supp}(x)$ (so elements $E \setminus B$ are zero in x), and for $b \in B$, x(b) is big enough, the r.h.s. min has solution $A^* = E \setminus B$. We recover submodular function from the polymatroid polyhedron via the following:

$$f(B) = \max \left\{ y(B) : y \in P_f^+ \right\}$$
 (12.35)

In fact, we will ultimately see a number of important consequences of this theorem (other than just that $P_{\scriptscriptstyle f}^+$ is a polymatroid)

Tight sets $\mathcal{D}(y)$ are closed, and max tight set $\operatorname{sat}(y)$

Recall the definition of the set of tight sets at $y \in P_f^+$:

$$\mathcal{D}(y) \triangleq \{A : A \subseteq E, \ y(A) = f(A)\}$$
 (12.18)

Theorem 12.2.1

For any $y \in P_f^+$, with f a polymatroid function, then $\mathcal{D}(y)$ is closed under union and intersection.

Proof.

We have already proven this as part of Theorem 9.4.5

Also recall the definition of $\operatorname{sat}(y)$, the maximal set of tight elements relative to $y \in \mathbb{R}^E_+$.

$$\operatorname{sat}(y) \stackrel{\text{def}}{=} \bigcup \{ T : T \in \mathcal{D}(y) \}$$
 (12.19)

Bipartite Matching

- Given a matching $A \subseteq E$ (which might be empty), we can increase the matching if we can find an augmenting path S.
- The updated matching becomes $A'=A\setminus S\cup S\setminus A=A\ominus S$, where \ominus is the symmetric difference operator.
- The algorithm becomes:

Algorithm 8.1: Alternating Path Bipartite Matching

- 1 Let A be an arbitrary (including empty) matching in G=(V,F,E) ;
- 2 while There exists an augmenting path S in G do
- $A \leftarrow A \ominus S$;
 - This can easily be made to run in $O(m^2n)$, where |V|=m, $|F|=n,\ m\leq n$, but it can be made to run much faster as well (see Schrijver-2003).

Matroid Intersection

- Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.
- While $(V, \mathcal{I}_1 \cap \mathcal{I}_2)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_1$ and $X \in \mathcal{I}_2$.

Theorem 12.2.5

Let M_1 and M_2 be given as above, with rank functions r_1 and r_2 . Then the size of the maximum size set in $\mathcal{I}_1 \cap \mathcal{I}_2$ is given by

$$(r_1 * r_2)(V) \triangleq \min_{X \subseteq V} \left(r_1(X) + r_2(V \setminus X) \right) \tag{12.7}$$

This is an instance of the convolution of two submodular functions, f_1 and f_2 that, evaluated at $Y \subseteq V$, is written as:

$$(f_1 * f_2)(Y) = \min_{X \subset Y} \left(f_1(X) + f_2(Y \setminus X) \right)$$
 (12.8)

Fundamental circuits in matroids

Lemma 12.2.3

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup \{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_1, C_2 such that $C_1 \cup C_2 \subseteq I \cup \{e\}$.
- Then $e \in C_1 \cap C_2$, and by (C2), there is a circuit C_3 of M s.t. $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\} \subseteq I$
- This contradicts the independence of *I*.

In general, let C(I,e) be the unique circuit associated with $I \cup \{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).

Matroid Intersection Algorithm Idea

- Hopefully (eventually) we'll find an odd length sequence $S=(v_1,v_2,\ldots,v_s)$ such that we will be independent in both M_1 and M_2 and thus be one greater in size than I.
- We will have $v_i \notin I$ for i odd (will be shown in blue), and will have $v_i \in I$ for i even (will be shown in green), while $v \in I \setminus S$ will be shown in red .
- We then replace I with $I \ominus S$ (quite analogous to the bipartite matching case), and start again.

Identifying Augmenting Sequences

Theorem 12.2.6

Let I_p and I_{p+1} be intersections of M_1 and M_2 with p and p+1 elements respectively. Then there exists an augmenting sequence $S \subseteq I_p \ominus I_{p+1}$ w.r.t. I_p .

Theorem 12.2.7

An intersection is of maximum cardinality iff it admits no augmenting sequence.

Theorem 12.2.8

For any intersection I, there exists a maximum cardinality intersection I^* such that $\operatorname{span}_1(I) \subseteq \operatorname{span}_1(I^*)$ and $\operatorname{span}_2(I) \subseteq \operatorname{span}_2(I^*)$.

All this can be made to run in poly time.

• Suppose $M_i = (E, \mathcal{I}_i)$ is a matroid and that we have k of them on the same ground set E.

- Suppose $M_i = (E, \mathcal{I}_i)$ is a matroid and that we have k of them on the same ground set E.
- We wish to, if possible, partition E into k blocks,
 - $I_i, i \in \{1, 2, \dots, k\}$ where $I_i \in \mathcal{I}_i$.

- Suppose $M_i = (E, \mathcal{I}_i)$ is a matroid and that we have k of them on the same ground set E.
- We wish to, if possible, partition E into k blocks, $I_i, i \in \{1, 2, ..., k\}$ where $I_i \in \mathcal{I}_i$.
- Moreover, we want partition to be lexicographically maximum, that is $|I_1|$ is maximum, $|I_2|$ is maximum given $|I_1|$, and so on.

Theorem 12.3.1

Let M_i be a collection of k matroids as described. Then, a set $I \subseteq E$ can be partitioned into k subsets $I_i, i = 1 \dots k$ where $I_i \in \mathcal{I}_i$ is independent in matroid i, if and only if, for all $A \subseteq I$

$$|A| \le \sum_{i=1}^{k} r_i(A) \tag{12.1}$$

where r_i is the rank function of M_i .

Theorem 12.3.1

Let M_i be a collection of k matroids as described. Then, a set $I \subseteq E$ can be partitioned into k subsets $I_i, i = 1 \dots k$ where $I_i \in \mathcal{I}_i$ is independent in matroid i, if and only if, for all $A \subseteq I$

$$|A| \le \sum_{i=1}^{k} r_i(A) \tag{12.1}$$

where r_i is the rank function of M_i .

• Now, if all matroids are the same $M_i = M$ for all i, we get condition

$$|A| \le kr(A) \ \forall A \subseteq E \tag{12.2}$$

Theorem 12.3.1

Let M_i be a collection of k matroids as described. Then, a set $I \subseteq E$ can be partitioned into k subsets $I_i, i = 1 \dots k$ where $I_i \in \mathcal{I}_i$ is independent in matroid i, if and only if, for all $A \subseteq I$

$$|A| \le \sum_{i=1}^{k} r_i(A) \tag{12.1}$$

where r_i is the rank function of M_i .

ullet Now, if all matroids are the same $M_i=M$ for all i, we get condition

$$|A| \le kr(A) \ \forall A \subseteq E$$
 (12.2)

• But considering vector of all ones $1 \in \mathbb{R}_+^E$, this is the same as

$$\frac{1}{k}|A| = \frac{1}{k}\mathbf{1}(A) \nleq r(A) \ \forall A \subseteq E$$
 (12.3)

Recall definition of matroid polytope

$$P_r^+ = \left\{ y \in \mathbb{R}_+^E : y(A) \le r(A) \right\}$$
 for all $A \subseteq E$ (12.4)

Recall definition of matroid polytope

$$P_r^+ = \left\{ y \in \mathbb{R}_+^E : y(A) \le r(A) \text{ for all } A \subseteq E \right\}$$
 (12.4)

• Then we see that this special case of the matroid partition problem is just testing if $\frac{1}{k}\mathbf{1} \in P_r^+$, a problem of testing the membership in matroid polyhedra.

Recall definition of matroid polytope

$$P_r^+ = \left\{ y \in \mathbb{R}_+^E : y(A) \le r(A) \text{ for all } A \subseteq E \right\} \tag{12.4}$$

- Then we see that this special case of the matroid partition problem is just testing if $\frac{1}{k}\mathbf{1} \in P_r^+$, a problem of testing the membership in matroid polyhedra.
- This is therefore a special case of submodular function minimization.

Review

• The next two slides from respectively from Lecture 9 and Lecture 8.

Polymatroidal polyhedron (or a "polymatroid")

Definition 12.4.4 (polymatroid)

A polymatroid is a compact set $P \subseteq \mathbb{R}_+^E$ satisfying

- $0 \in P$
- ② If $y \le x \in P$ then $y \in P$ (called down monotone).
- **③** For every $x \in \mathbb{R}_+^E$, any maximal vector $y \in P$ with $y \leq x$ (i.e., any P-basis of x), has the same component sum y(E)
 - Vectors within P (i.e., any $y \in P$) are called independent, and any vector outside of P is called dependent.
 - Since all P-bases of x have the same component sum, if \mathcal{B}_x is the set of P-bases of x, than $\operatorname{rank}(x) = y(E)$ for any $y \in \mathcal{B}_x$.

Maximum weight independent set via greedy weighted rank

Theorem 12.4.6

Let $M=(V,\mathcal{I})$ be a matroid, with rank function r, then for any weight function $w\in\mathbb{R}_+^V$, there exists a chain of sets $U_1\subset U_2\subset\cdots\subset U_n\subseteq V$ such that

$$\max \{w(I)|I \in \mathcal{I}\} = \sum_{i=1}^{n} \lambda_i r(U_i)$$
(12.19)

where $\lambda_i > 0$ satisfy

$$w = \sum_{i=1}^{n} \lambda_i \mathbf{1}_{U_i} \tag{12.20}$$

ullet Let (E,\mathcal{I}) be a set system and $w\in\mathbb{R}_+^E$ be a weight vector.

- \bullet Let (E,\mathcal{I}) be a set system and $w\in\mathbb{R}_+^E$ be a weight vector.
- Recall greedy algorithm: Set $A = \emptyset$, and repeatedly choose $y \in E \setminus A$ such that $A \cup \{y\} \in \mathcal{I}$ with w(y) as large as possible, stopping when no such y exists.

- Let (E,\mathcal{I}) be a set system and $w\in\mathbb{R}_+^E$ be a weight vector.
- Recall greedy algorithm: Set $A=\emptyset$, and repeatedly choose $y\in E\setminus A$ such that $A\cup\{y\}\in\mathcal{I}$ with w(y) as large as possible, stopping when no such y exists.
- ullet For a matroid, we saw that set system (E,\mathcal{I}) is a matroid iff for each weight function $w\in\mathbb{R}_+^E$, the greedy algorithm leads to a set $I\in\mathcal{I}$ of maximum weight w(I).

- Let (E,\mathcal{I}) be a set system and $w \in \mathbb{R}_+^E$ be a weight vector.
- Recall greedy algorithm: Set $A=\emptyset$, and repeatedly choose $y\in E\setminus A$ such that $A\cup\{y\}\in\mathcal{I}$ with w(y) as large as possible, stopping when no such y exists.
- For a matroid, we saw that set system (E,\mathcal{I}) is a matroid iff for each weight function $w \in \mathbb{R}_+^E$, the greedy algorithm leads to a set $I \in \mathcal{I}$ of maximum weight w(I).
- Stated succinctly, considering $\max \{w(I) : I \in \mathcal{I}\}$, then (E, \mathcal{I}) is a matroid iff greedy works for this maximization.

- Let (E,\mathcal{I}) be a set system and $w \in \mathbb{R}_+^E$ be a weight vector.
- Recall greedy algorithm: Set $A=\emptyset$, and repeatedly choose $y\in E\setminus A$ such that $A\cup\{y\}\in\mathcal{I}$ with w(y) as large as possible, stopping when no such y exists.
- For a matroid, we saw that set system (E,\mathcal{I}) is a matroid iff for each weight function $w \in \mathbb{R}_+^E$, the greedy algorithm leads to a set $I \in \mathcal{I}$ of maximum weight w(I).
- Stated succinctly, considering $\max\{w(I):I\in\mathcal{I}\}$, then (E,\mathcal{I}) is a matroid iff greedy works for this maximization.
- Can we also characterize a polymatroid in this way?

- Let (E,\mathcal{I}) be a set system and $w\in\mathbb{R}_+^E$ be a weight vector.
- Recall greedy algorithm: Set $A=\emptyset$, and repeatedly choose $y\in E\setminus A$ such that $A\cup\{y\}\in\mathcal{I}$ with w(y) as large as possible, stopping when no such y exists.
- For a matroid, we saw that set system (E,\mathcal{I}) is a matroid iff for each weight function $w \in \mathbb{R}_+^E$, the greedy algorithm leads to a set $I \in \mathcal{I}$ of maximum weight w(I).
- Stated succinctly, considering $\max\{w(I):I\in\mathcal{I}\}$, then (E,\mathcal{I}) is a matroid iff greedy works for this maximization
- Can we also characterize a polymatroid in this way?
- That is, if we consider $\max\left\{wx:x\in P_f^+\right\}$, where P_f^+ represents the "independent vectors" is it the case that P_f^+ is a polymatroid iff greedy works for this maximization?

- Let (E,\mathcal{I}) be a set system and $w \in \mathbb{R}_+^E$ be a weight vector.
- Recall greedy algorithm: Set $A=\emptyset$, and repeatedly choose $y\in E\setminus A$ such that $A\cup\{y\}\in\mathcal{I}$ with w(y) as large as possible, stopping when no such y exists.
- For a matroid, we saw that set system (E,\mathcal{I}) is a matroid iff for each weight function $w \in \mathbb{R}_+^E$, the greedy algorithm leads to a set $I \in \mathcal{I}$ of maximum weight w(I).
- Stated succinctly, considering $\max \{w(I) : I \in \mathcal{I}\}$, then (E, \mathcal{I}) is a matroid iff greedy works for this maximization.
- Can we also characterize a polymatroid in this way?
- That is, if we consider $\max\left\{wx:x\in P_f^+\right\}$, where P_f^+ represents the "independent vectors", is it the case that P_f^+ is a polymatroid iff greedy works for this maximization?
- Can we even relax things so that $w \in \mathbb{R}^E$?

• What is the greedy solution in this setting, when $w \in \mathbb{R}^E$?

- What is the greedy solution in this setting, when $w \in \mathbb{R}^E$?
- Sort elements of E w.r.t. w so that, w.l.o.g. $E = (e_1, e_2, \dots, e_m)$ with $w(e_1) \geq w(e_2) \geq \dots \geq w(e_m)$.

- What is the greedy solution in this setting, when $w \in \mathbb{R}^E$?
- Sort elements of E w.r.t. w so that, w.l.o.g. $E = (e_1, e_2, \dots, e_m)$ with $w(e_1) \geq w(e_2) \geq \dots \geq w(e_m)$.
- Let k+1 be the first point (if any) at which we are non-positive, i.e., $w(e_k)>0$ and $0\geq w(e_{k+1})$.

That is, we have

$$w(e_1) \ge w(e_2) \ge \dots \ge w(e_k) > 0 \ge w(e_{k+1}) \ge \dots \ge w(e_m)$$
 (12.5)

- What is the greedy solution in this setting, when $w \in \mathbb{R}^E$?
- Sort elements of E w.r.t. w so that, w.l.o.g. $E = (e_1, e_2, \dots, e_m)$ with $w(e_1) \geq w(e_2) \geq \dots \geq w(e_m)$.
- Let k+1 be the first point (if any) at which we are non-positive, i.e., $w(e_k)>0$ and $0\geq w(e_{k+1})$.
- Next define partial accumulated sets E_i , for $i = 0 \dots m$, we have w.r.t. the above sorted order:

$$E_i \stackrel{\text{def}}{=} \{e_1, e_2, \dots e_i\} \tag{12.6}$$

(note $E_0 = \emptyset$, $f(E_0) = 0$, and E and E_i is always sorted w.r.t w).

- What is the greedy solution in this setting, when $w \in \mathbb{R}^E$?
- Sort elements of E w.r.t. w so that, w.l.o.g. $E = (e_1, e_2, \dots, e_m)$ with $w(e_1) \geq w(e_2) \geq \dots \geq w(e_m)$.
- Let k+1 be the first point (if any) at which we are non-positive, i.e., $w(e_k)>0$ and $0\geq w(e_{k+1})$.
- Next define partial accumulated sets E_i , for $i = 0 \dots m$, we have w.r.t. the above sorted order:

$$E_i \stackrel{\text{def}}{=} \{e_1, e_2, \dots e_i\}$$
 (12.6)

(note $E_0 = \emptyset$, $f(E_0) = 0$, and E and E_i is always sorted w.r.t w).

• The greedy solution is the vector $x \in \mathbb{R}_+^E$ with elements defined as:

$$x(e_1) \stackrel{\text{def}}{=} f(E_1) = f(e_1) = f(e_1|E_0) = f(e_1|\emptyset)$$
 (12.7)

$$x(e_i) \stackrel{\text{def}}{=} f(E_i) - f(E_{i-1}) = f(e_i|E_{i-1}) \text{ for } i = 2 \dots k$$
 (12.8)

$$x(e_i) \stackrel{\text{def}}{=} 0 \text{ for } i = k + 1 \dots m = |E|$$
 (12.9)

Some Intuition: greedy and gain

$$\chi \cdot W$$

• Note $x(e_i) = f(e_i|E_{i-1}) \le f(e_i|E')$ for any $E' \subseteq E_{i-1}$

$$\chi \cdot w = \chi(e_i) \cdot w(e_i) + \chi(e_i) \cdot w(e_i) + \cdots$$

- Note $x(e_i) = f(e_i|E_{i-1}) \le f(e_i|E')$ for any $E' \subseteq E_{i-1}$
- So $x(e_1) = f(e_1)$ and this corresponds to $w(e_1) \ge w(e_i)$ for all $i \ne 1$.

- Note $x(e_i) = f(e_i|E_{i-1}) \le f(e_i|E')$ for any $E' \subseteq E_{i-1}$
- So $x(e_1) = f(e_1)$ and this corresponds to $w(e_1) \ge w(e_i)$ for all $i \ne 1$.
- Hence, for the largest value of w (namely $w(e_1)$), we use for $x(e_1)$ the largest possible gain value of e_1 (namely $f(e_1|\emptyset) \geq f(e_1|A)$ for any $A \subseteq E \setminus \{e_1\}$).

- Note $x(e_i) = f(e_i|E_{i-1}) \le f(e_i|E')$ for any $E' \subseteq E_{i-1}$
- So $x(e_1) = f(e_1)$ and this corresponds to $w(e_1) \ge w(e_i)$ for all $i \ne 1$.
- Hence, for the largest value of w (namely $w(e_1)$), we use for $x(e_1)$ the largest possible gain value of e_1 (namely $f(e_1|\emptyset) \ge f(e_1|A)$ for any $A \subseteq E \setminus \{e_1\}$).
- For the next largest value of w (namely $w(e_2)$), we use for $x(e_2)$ the next largest gain value of e_2 (namely $f(e_2|e_1)$), while still ensuring (as we will soon see in Theorem 12.4.1) that the resulting $x \in P_f$.

- Note $x(e_i) = f(e_i|E_{i-1}) \le f(e_i|E')$ for any $E' \subseteq E_{i-1}$
- So $x(e_1) = f(e_1)$ and this corresponds to $w(e_1) \ge w(e_i)$ for all $i \ne 1$.
- Hence, for the largest value of w (namely $w(e_1)$), we use for $x(e_1)$ the largest possible gain value of e_1 (namely $f(e_1|\emptyset) \ge f(e_1|A)$ for any $A \subseteq E \setminus \{e_1\}$).
- For the next largest value of w (namely $w(e_2)$), we use for $x(e_2)$ the next largest gain value of e_2 (namely $f(e_2|e_1)$), while still ensuring (as we will soon see in Theorem 12.4.1) that the resulting $x \in P_f$.
- This process continues, using the next largest possible gain of e_i for $x(e_i)$ while ensuring we do not leave the polytope, given the values we've already chosen for $x(e_{i'})$ for i' < i.

Theorem 12.4.1

The vector $x \in \mathbb{R}_+^E$ as previously defined using the greedy algorithm maximizes wx over P_f^+ , with $w \in \mathbb{R}_+^E$, if f is submodular.

Theorem 12.4.1

The vector $x \in \mathbb{R}_+^E$ as previously defined using the greedy algorithm maximizes wx over P_f^+ , with $w \in \mathbb{R}_+^E$, if f is submodular.

Proof.

• Consider the LP strong duality equation:

$$\max(wx: x \in P_f^+) = \min\left(\sum_{A \subseteq E} y_A f(A): y \in \mathbb{R}_+^{2E}, \sum_{A \subseteq E} y_A \mathbf{1}_A \ge w\right)$$

$$(12.10)$$

Theorem 12.4.1

The vector $x \in \mathbb{R}_+^E$ as previously defined using the greedy algorithm maximizes wx over P_f^+ , with $w \in \mathbb{R}_+^E$, if f is submodular.

Proof.

• Consider the LP strong duality equation:

$$\max(wx : x \in P_f^+) = \min\left(\sum_{A \subseteq E} y_A f(A) : y \in \mathbb{R}_+^{2^E}, \sum_{A \subseteq E} y_A \mathbf{1}_A \ge w\right)$$
(12.10)

ullet Define the following vector $y \in \mathbb{R}_+^{2^E}$ as

$$y_{E_i} \leftarrow w(e_i) - w(e_{i+1}) \text{ for } i = 1 \dots (m-1),$$
 (12.11)
 $y_E \leftarrow w(e_m), \text{ and}$ (12.12)
 $y_A \leftarrow 0 \text{ otherwise}$ (12.13)

Proof.

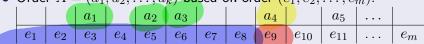
• We first will see that greedy $x \in P_f^+$ (that is $x(A) \leq f(A), \forall A$).

- We first will see that greedy $x \in P_f^+$ (that is $x(A) \leq f(A), \forall A$).
- Order $A = (a_1, a_2, \dots, a_k)$ based on order (e_1, e_2, \dots, e_m) .

. (1/ 2/, / 1//								. (1 / 2 / / 100 /					
			a_1		a_2	a_3			a_4		a_5		
	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}		e_m

Proof.

- We first will see that greedy $x \in P_f^+$ (that is $x(A) \leq f(A), \forall A$).
- Order $A = (a_1, a_2, \dots, a_k)$ based on order (e_1, e_2, \dots, e_m) .



• Define $e^{-1}: E \to \{1, \dots, m\}$ so that $e^{-1}(e_i) = i$. This means that with $A = \{a_1, a_2, \dots, a_k\}$, and $\forall j \leq k$

$$\{a_1, a_2, \dots, a_j\} \subseteq \{e_1, e_2, \dots, e_{e^{-1}(a_j)}\}$$
 (12.14)

and

$$\{a_1, a_2, \dots, a_{j-1}\} \subseteq \{e_1, e_2, \dots, e_{e^{-1}(a_j)-1}\}$$
 (12.15)

Also recall matlab notation: $a_{1:j} \equiv \{a_1, a_2, \dots, a_j\}.$

E.g., with j = 4 we get $e^{-1}(a_4) = 9$, and

$$\{a_1, a_2, a_3, a_4\} \subseteq \{e_1, e_2, \dots, e_9\}$$
 (12.16)

- We first will see that greedy $x \in P_f^+$ (that is $x(A) \leq f(A), \forall A$).
- Order $A = (a_1, a_2, \dots, a_k)$ based on order (e_1, e_2, \dots, e_m) .

- Define $e^{-1}: E \to \{1, \dots, m\}$ so that $e^{-1}(e_i) = i$.
- Then, we have $x \in P_f^+$ since for all A:

$$f(A) = \sum_{i=1}^{\kappa} f(a_i | a_{1:i-1})$$
 (12.14)

$$\sum_{i=1}^{k} f(a_i|e_{1:e^{-1}(a_i)-1})$$
 (12.15)

$$= \sum f(a|e_{1:e^{-1}(a)-1}) = x(A)$$
 (12.16)

- We first will see that greedy $x \in P_f^+$ (that is $x(A) \leq f(A), \forall A$).
- Order $A = (a_1, a_2, \dots, a_k)$ based on order (e_1, e_2, \dots, e_m) .

- Define $e^{-1}: E \to \{1, ..., m\}$ so that $e^{-1}(e_i) = i$.
- Then, we have $x \in P_f^+$ since for all A:

$$f(A) = \sum_{i=1}^{k} f(a_i | a_{1:i-1})$$
(12.14)

$$\geq \sum_{i=1}^{n} f(a_i|e_{1:e^{-1}(a_i)-1}) \tag{12.15}$$

$$= \sum f(a|e_{1:e^{-1}(a)-1}) = x(A)$$
 (12.16)

Proof.

• Next, y is also feasible for the dual constraints in Eq. 12.75 since:

- ullet Next, y is also feasible for the dual constraints in Eq. 12.75 since:
- Next, we check that y is dual feasible. Clearly, $y \ge 0$,

- Next, y is also feasible for the dual constraints in Eq. 12.75 since:
- Next, we check that y is dual feasible. Clearly, $y \ge 0$,
- \bullet and also, considering y component wise, for any i, we have that

$$\sum_{A:e_i \in A} y_A = \sum_{j \ge i} y_{E_j} = \sum_{j=i}^{m-1} (w(e_j) - w(e_{j+1})) + w(e_m) = w(e_i).$$

Proof.

- Next, y is also feasible for the dual constraints in Eq. 12.75 since:
- Next, we check that y is dual feasible. Clearly, $y \ge 0$,
- ullet and also, considering y component wise, for any i, we have that

$$\sum_{A:e_i \in A} y_A = \sum_{j>i} y_{E_j} = \sum_{j=i}^{m-1} (w(e_j) - w(e_{j+1})) + w(e_m) = w(e_i).$$

• Now optimality for x and y follows from strong duality, i.e.:

$$wx = \sum_{e \in E} w(e)x(e) = \sum_{e \in E} w(e)f(e_i|E_{i-1}) = \sum_{i=1}^{m} w(e_i) \Big(f(E_i) - f(E_{i-1}) \Big)$$

$$f(E_i) \Big(w(e_i) - w(e_{i+1}) \Big) + f(E)w(e_m) = \sum_{i=1}^{m} y_i f(A)$$

Proof.

• The equality in prev. Eq. follows via Abel summation:

$$wx = \sum_{i=1}^{m} w_i x_i \tag{12.17}$$

$$= \sum_{i=1}^{m} w_i \Big(f(E_i) - f(E_{i-1}) \Big)$$
 (12.18)

$$=\sum_{i=1}^{m} w_i f(E_i) - \sum_{i=1}^{m-1} w_{i+1} f(E_i)$$
(12.19)

$$= w_m f(E_m) + \sum_{i=1}^{m-1} (w_i - w_{i+1}) f(E_i)$$
 (12.20)

What about $w \in \mathbb{R}^E$

• When w contains negative elements, we have $x(e_i) = 0$ for $i = k + 1, \ldots, m$, where k is the last positive element of w when it is sorted in decreasing order.

What about $w \in \mathbb{R}^E$

- When w contains negative elements, we have $x(e_i) = 0$ for $i = k + 1, \ldots, m$, where k is the last positive element of w when it is sorted in decreasing order.
- Exercise: show a modification of the previous proof that works for arbitrary $w \in \in \mathbb{R}^E$

Theorem 12.4.1

Conversely, suppose P_f^+ is a polytope of form $P_f^+ = \left\{x \in \mathbb{R}_+^E : x(A) \leq f(A), \forall A \subseteq E\right\}$, then the greedy solution to $\max(wx:x\in P)$ is optimum only if f is submodular.

Proof.

• Order elements of E arbitrarily as (e_1, e_2, \dots, e_m) and define $E_i = (e_1, e_2, \dots, e_i)$. Also, choose A and B arbitrarily.

Theorem 12.4.1

Conversely, suppose P_f^+ is a polytope of form $P_f^+ = \{x \in \mathbb{R}_+^E : x(A) \le f(A), \forall A \subseteq E\}, \text{ then the greedy solution to}$ $\max(wx:x\in P)$ is optimum only if f is submodular.

- Order elements of E arbitrarily as (e_1, e_2, \dots, e_m) and define $E_i = (e_1, e_2, \dots, e_i)$. Also, choose A and B arbitrarily. $A \setminus B$
- For $1 \le p \le q \le m$, define $A = \{e_1, e_2, \dots, e_k, e_{k+1}, \dots, e_n\} = E_n$ and $B = \{e_1, e_2, \dots, e_k, e_{p+1}, \dots, e_q\} = E_k \cup (E_q \setminus E_p)$

Theorem 12.4.1

Conversely, suppose P_f^+ is a polytope of form $P_f^+ = \left\{ x \in \mathbb{R}_+^E : x(A) \leq f(A), \forall A \subseteq E \right\}$, then the greedy solution to $\max(wx:x\in P)$ is optimum only if f is submodular.

- Order elements of E arbitrarily as (e_1, e_2, \ldots, e_m) and define $E_i = (e_1, e_2, \ldots, e_i)$. Also, choose A and B arbitrarily.
- For $1 \le p \le q \le m$, define $A = \{e_1, e_2, \dots, e_k, e_{k+1}, \dots, e_p\} = E_p$ and $B = \{e_1, e_2, \dots, e_k, e_{p+1}, \dots, e_q\} = E_k \cup (E_q \setminus E_p)$
- Note, then we have $A \cap B = \{e_1, \dots, e_k\} = E_k$, and $A \cup B = E_q$.

Theorem 12.4.1

Conversely, suppose P_f^+ is a polytope of form $P_f^+ = \left\{ x \in \mathbb{R}_+^E : x(A) \leq f(A), \forall A \subseteq E \right\}$, then the greedy solution to $\max(wx:x\in P)$ is optimum only if f is submodular.

- Order elements of E arbitrarily as (e_1, e_2, \ldots, e_m) and define $E_i = (e_1, e_2, \ldots, e_i)$. Also, choose A and B arbitrarily.
- For $1 \le p \le q \le m$, define $A = \{e_1, e_2, \dots, e_k, e_{k+1}, \dots, e_p\} = E_p$ and $B = \{e_1, e_2, \dots, e_k, e_{p+1}, \dots, e_q\} = E_k \cup (E_q \setminus E_p)$
- Note, then we have $A \cap B = \{e_1, \dots, e_k\} = E_k$, and $A \cup B = E_q$.
- Define $w \in \{0,1\}^m$ as:

$$w \stackrel{\text{def}}{=} \sum_{i=1}^{q} \mathbf{1}_{e_i} = \mathbf{1}_{A \cup B} \tag{12.21}$$

Theorem 12.4.1

Conversely, suppose P_f^+ is a polytope of form

 $P_f^+ = \left\{x \in \mathbb{R}_+^E : x(A) \leq f(A), \forall A \subseteq E \right\}$, then the greedy solution to $\max(wx:x \in P)$ is optimum only if f is submodular.

Proof.

- Order elements of E arbitrarily as (e_1, e_2, \ldots, e_m) and define $E_i = (e_1, e_2, \ldots, e_i)$. Also, choose A and B arbitrarily.
- For $1 \le p \le q \le m$, define $A = \{e_1, e_2, \dots, e_k, e_{k+1}, \dots, e_p\} = E_p$ and $B = \{e_1, e_2, \dots, e_k, e_{p+1}, \dots, e_q\} = E_k \cup (E_q \setminus E_p)$
- Note, then we have $A \cap B = \{e_1, \dots, e_k\} = E_k$, and $A \cup B = E_q$.
- Define $w \in \{0,1\}^m$ as:

$$w \stackrel{\text{def}}{=} \sum_{i=1}^{q} \mathbf{1}_{e_i} = \mathbf{1}_{A \cup B} \tag{12.21}$$

ullet Suppose optimum solution x is given by the greedy procedure.

Proof.

Then

$$\sum_{i=1}^{k} x_i = f(E_1) + \sum_{i=2}^{k} (f(E_i) - f(E_{i-1})) = f(E_k) = f(A \cap B)$$
(12.22)

. . .

Proof.

Then

$$\sum_{i=1}^{k} x_i = f(E_1) + \sum_{i=2}^{k} (f(E_i) - f(E_{i-1})) = f(E_k) = f(A \cap B)$$
(12.22)

and

$$\sum_{i=1}^{p} x_i = f(E_1) + \sum_{i=2}^{p} (f(E_i) - f(E_{i-1})) = f(E_p) = f(A) \quad (12.23)$$

Prof. Jeff Bilmes

Proof.

Then

$$\sum_{i=1}^{k} x_i = f(E_1) + \sum_{i=2}^{k} (f(E_i) - f(E_{i-1})) = f(E_k) = f(A \cap B)$$
(12.22)

and

$$\sum_{i=1}^{p} x_i = f(E_1) + \sum_{i=2}^{p} (f(E_i) - f(E_{i-1})) = f(E_p) = f(A) \quad (12.23)$$

and

$$\sum_{i=1}^{q} x_i = f(E_1) + \sum_{i=2}^{q} (f(E_i) - f(E_{i-1})) = f(E_q) = f(A \cup B)$$
(13.24)

Proof.

• Thus, we have

$$x(B) = \sum_{i \in 1, \dots, k, p+1, \dots, q} x_i = \sum_{i: e_i \in B} x_i = f(A \cup B) + f(A \cap B) - f(A)$$
(12.25)

. . .

Proof.

Thus, we have

$$x(B) = \sum_{i \in 1, \dots, k, p+1, \dots, q} x_i = \sum_{i: e_i \in B} x_i = f(A \cup B) + f(A \cap B) - f(A)$$
(12.25)

• But given that the greedy algorithm gives the optimal solution to $\max(wx:x\in P_f^+)$, we have that $x\in P_f^+$ and thus $x(B)\leq f(B)$.

Thus, we have

$$x(B) = \sum_{i \in 1, \dots, k, p+1, \dots, q} x_i = \sum_{i: e_i \in B} x_i = f(A \cup B) + f(A \cap B) - f(A)$$
(12.25)

- But given that the greedy algorithm gives the optimal solution to $\max(wx:x\in P_f^+)$, we have that $x\in P_f^+$ and thus $x(B)\leq f(B)$.
- Thus,

$$x(B) = f(A \cup B) + f(A \cap B) - f(A) = \sum_{i:e_i \in B} x_i \le f(B) \quad (12.26)$$

ensuring the submodularity of f, since A and B are arbitrary.

ullet Thus, restating the above results into a single complete theorem, we have a result very similar to what we saw for matroids (i.e., Theorem 8.6.1)

Theorem 12.4.1

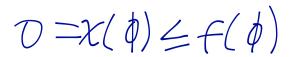
If $f: 2^E \to \mathbb{R}_+$ is given, and P is a polytope in \mathbb{R}_+^E of the form $P = \left\{ x \in \mathbb{R}_+^E : x(A) \le f(A), \forall A \subseteq E \right\}$, then the greedy solution to the problem $\max(wx: x \in P)$ is $\forall w$ optimum iff f is monotone non-decreasing submodular (i.e., iff P is a polymatroid).

• Given an arbitrary submodular function $f: 2^V \to R$ (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).

- Given an arbitrary submodular function $f: 2^V \to R$ (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If $f(\emptyset) \neq 0$, we can set $f'(A) = f(A) f(\emptyset)$ without destroying submodularity. This also does not change any minima, so we assume all functions are normalized $f(\emptyset) = 0$. Note that due to constraint $x(\emptyset) \leq f(\emptyset)$, we must have $f(\emptyset) \geq 0$ since if not (i.e., if $f(\emptyset) < 0$), then P_f^+ doesn't exist. Another form of normalization can do is:

$$f'(A) = \begin{cases} f(A) & \text{if } A \neq \emptyset \\ 0 & \text{if } A = \emptyset \end{cases}$$
 (12.27)

This preserves submodularity due to $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$, and if $A \cap B = \emptyset$ then r.h.s. only gets smaller when $f(\emptyset) \ge 0$.



- Given an arbitrary submodular function $f: 2^V \to R$ (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If $f(\emptyset) \neq 0$, we can set $f'(A) = f(A) f(\emptyset)$ without destroying submodularity. This also does not change any minima, so we assume all functions are normalized $f(\emptyset) = 0$.
- We can define several polytopes:

$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$
 (12.27)

$$P_f^+ = P_f \cap \{x \in \mathbb{R}^E : x \ge 0\}$$
 (12.28)

$$B_f = P_f \cap \{x \in \mathbb{R}^E : x(E) = f(E)\}$$
 (12.29)

- Given an arbitrary submodular function $f: 2^V \to R$ (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If $f(\emptyset) \neq 0$, we can set $f'(A) = f(A) f(\emptyset)$ without destroying submodularity. This also does not change any minima, so we assume all functions are normalized $f(\emptyset) = 0$.
- We can define several polytopes:

$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$
 (12.27)

$$P_f^+ = P_f \cap \{x \in \mathbb{R}^E : x \ge 0\}$$
 (12.28)

$$B_f = P_f \cap \{x \in \mathbb{R}^E : x(E) = f(E)\}$$
 (12.29)

 \bullet P_f is what is sometimes called the extended polytope (sometimes notated as EP_f .

- Given an arbitrary submodular function $f: 2^V \to R$ (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If $f(\emptyset) \neq 0$, we can set $f'(A) = f(A) f(\emptyset)$ without destroying submodularity. This also does not change any minima, so we assume all functions are normalized $f(\emptyset) = 0$.
- We can define several polytopes:

$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$
 (12.27)

$$P_f^+ = P_f \cap \{x \in \mathbb{R}^E : x \ge 0\}$$
 (12.28)

$$B_f = P_f \cap \{x \in \mathbb{R}^E : x(E) = f(E)\}$$
 (12.29)

- P_f is what is sometimes called the extended polytope (sometimes notated as EP_f .
- P_f^+ is P_f restricted to the positive orthant.

Multiple Polytopes associated with arbitrary f

- Given an arbitrary submodular function $f: 2^V \to R$ (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If $f(\emptyset) \neq 0$, we can set $f'(A) = f(A) f(\emptyset)$ without destroying submodularity. This also does not change any minima, so we assume all functions are normalized $f(\emptyset) = 0$.
- We can define several polytopes:

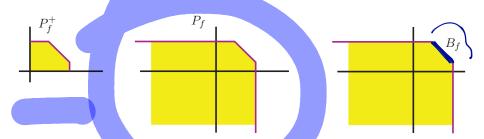
$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$
 (12.27)

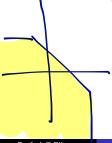
$$P_f^+ = P_f \cap \{x \in \mathbb{R}^E : x \ge 0\}$$
 (12.28)

$$B_f = P_f \cap \{x \in \mathbb{R}^E : x(E) = f(E)\}$$
 (12.29)

- ullet P_f is what is sometimes called the extended polytope (sometimes notated as EP_f .
- P_f^+ is P_f restricted to the positive orthant.
- \bullet $\vec{B_f}$ is called the base polytope

Multiple Polytopes associated with f



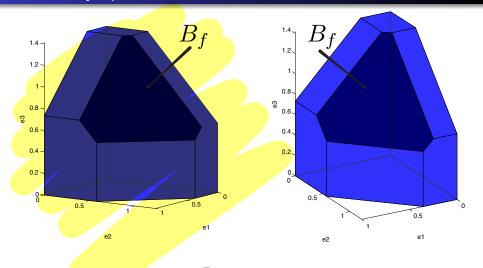


$$P_f^+ = P_f \cap \{x \in \mathbb{R}^E : x \ge 0\}$$
 (12.30)

$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\} \tag{12.31}$$

$$B_f = P_f \cap \{x \in \mathbb{R}^E : x(E) = f(E)\}$$
 (12.32)

Base Polytope in 3D



$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$

$$B_f = P_f \cap \{x \in \mathbb{R}^E : x(E) = f(E)\}$$
 (12.34)

EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014

(12.33)

A polymatroid function's polyhedron is a polymatroid.

Theorem 12.5.1

Let f be a submodular function defined on subsets of E. For any $x \in \mathbb{R}^E$, we have:

$$\max(y(E): y \le x, y \in \underline{P_f}) = \min(x(A) + f(E \setminus A): A \subseteq E) \quad (12.35)$$

If we take x to be zero, we get:

Corollary 12.5.2

Let f be a submodular function defined on subsets of E. $x \in \mathbb{R}^E$, we have:

$$\max(y(E): y \le 0, y \in P_f) = \min(f(A): A \subseteq E)$$
 (12.36)

ullet In Theorem 12.4.1, we can relax P_f^+ to P_f .

- In Theorem 12.4.1, we can relax P_f^+ to P_f .
- If $\exists e$ such that w(e) < 0 then $\max(wx : x \in P_f) = \infty$ since we can let $x_e \to \infty$, unless we ignore the negative elements or assume w > 0.

- In Theorem 12.4.1, we can relax P_f^+ to P_f .
- If $\exists e$ such that w(e) < 0 then $\max(wx: x \in P_f) = \infty$ since we can let $x_e \to \infty$, unless we ignore the negative elements or assume w > 0.
- The proof, moreover, showed also that $x \in P_f$, not just P_f^+ .

- In Theorem 12.4.1, we can relax P_f^+ to P_f .
- If $\exists e$ such that w(e) < 0 then $\max(wx : x \in P_f) = \infty$ since we can let $x_e \to \infty$, unless we ignore the negative elements or assume w > 0.
- ullet The proof, moreover, showed also that $x\in P_f$, not just P_f^+ .
- Moreover, in polymatroidal case, since the greedy constructed x has x(E) = f(E), we have that the greedy $x \in B_f$.

- In Theorem 12.4.1, we can relax P_f^+ to P_f .
- If $\exists e$ such that w(e) < 0 then $\max(wx : x \in P_f) = \infty$ since we can let $x_e \to \infty$, unless we ignore the negative elements or assume w > 0.
- ullet The proof, moreover, showed also that $x\in P_f$, not just P_f^+ .
- Moreover, in polymatroidal case, since the greedy constructed x has x(E) = f(E), we have that the greedy $x \in B_f$.
- In fact, we next will see that the greedy x is a vertex of B_f .

• The greedy algorithm does more than solve $\max(wx : x \in P_f^+)$. We can use it to generate vertices of polymatroidal polytopes.

- The greedy algorithm does more than solve $\max(wx : x \in P_f^+)$. We can use it to generate vertices of polymatroidal polytopes.
- First, consider P_f^+ and also $C_f^+ \stackrel{\mathrm{def}}{=} \left\{ x : x \in \mathbb{R}_+^E, x(e) \leq f(e) \right\}$

- The greedy algorithm does more than solve $\max(wx : x \in P_f^+)$. We can use it to generate vertices of polymatroidal polytopes.
- First, consider P_f^+ and also $C_f^+ \stackrel{\mathrm{def}}{=} \left\{ x : x \in \mathbb{R}_+^E, x(e) \leq f(e) \right\}$
- Then ordering $A=(a_1,\ldots,a_{|A|})$ arbitrarily with $A_i=\{a_1,\ldots,a_i\}$, $f(A)=\sum_i f(a_i|A_{i-1})\leq \sum_i f(a_i)$, and hence $P_f^+\subseteq C_f^+$.

$$\chi \in \mathcal{C}_{4}^{+}$$

$$\chi(A) \leq f(A) \leq \frac{1}{2} + f(A)$$

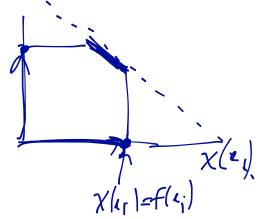
$$= \frac{1}{2} \chi(A) \leq \frac{1}{2} + f(A) \leq \frac{1}{2} + f(A)$$

- The greedy algorithm does more than solve $\max(wx: x \in P_f^+)$. We can use it to generate vertices of polymatroidal polytopes.
- First, consider P_f^+ and also $C_f^+ \stackrel{\text{def}}{=} \{x : x \in \mathbb{R}_+^E, x(e) \leq f(e)\}$
- Then ordering $A = (a_1, \dots, a_{|A|})$ arbitrarily with $A_i = \{a_1, \dots, a_i\}$, $f(A) = \sum_i f(a_i|A_{i-1}) \leq \sum_i f(a_i)$, and hence $P_f^+ \subseteq C_f^+$.



• Since $w \in \mathbb{R}_+^E$ is arbitrary, it may be that any $e \in E$ is max (i.e., is such that w(e) > w(e') for $e' \in E \setminus \{e\}$).

- Since $w \in \mathbb{R}_+^E$ is arbitrary, it may be that any $e \in E$ is max (i.e., is such that w(e) > w(e') for $e' \in E \setminus \{e\}$).
- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.



- Since $w \in \mathbb{R}_+^E$ is arbitrary, it may be that any $e \in E$ is max (i.e., is such that w(e) > w(e') for $e' \in E \setminus \{e\}$).
- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.
- ullet Recall, base polytope defined as the extreme face of P_f . I.e.,

$$B_f = P_f \cap \left\{ x \in \mathbb{R}_+^E : x(E) = f(E) \right\}$$
 (12.37)

- Since $w \in \mathbb{R}_+^E$ is arbitrary, it may be that any $e \in E$ is max (i.e., is such that w(e) > w(e') for $e' \in E \setminus \{e\}$).
- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.
- ullet Recall, base polytope defined as the extreme face of P_f . I.e.,

$$B_f = P_f \cap \left\{ x \in \mathbb{R}_+^E : x(E) = f(E) \right\}$$
 (12.37)

- Since $w \in \mathbb{R}_+^E$ is arbitrary, it may be that any $e \in E$ is max (i.e., is such that w(e) > w(e') for $e' \in E \setminus \{e\}$).
- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.
- ullet Recall, base polytope defined as the extreme face of P_f . I.e.,

$$B_f = P_f \cap \left\{ x \in \mathbb{R}_+^E : x(E) = f(E) \right\}$$
 (12.37)

• Also, intuitively, we can continue advancing along the skeletal edges of the polytope to reach any other vertex, given the appropriate ordering. If we advance in all dimensions, we'll reach a vertex in B_f , and if we advance only in some dimensions, we'll reach a vertex in

 $P_f \setminus B_f$.

- Since $w \in \mathbb{R}_+^E$ is arbitrary, it may be that any $e \in E$ is max (i.e., is such that w(e) > w(e') for $e' \in E \setminus \{e\}$).
- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.
- ullet Recall, base polytope defined as the extreme face of P_f . I.e.,

$$B_f = P_f \cap \left\{ x \in \mathbb{R}_+^E : x(E) = f(E) \right\}$$
 (12.37)

- Also, intuitively, we can continue advancing along the skeletal edges of the polytope to reach any other vertex, given the appropriate ordering. If we advance in all dimensions, we'll reach a vertex in B_f , and if we advance only in some dimensions, we'll reach a vertex in $P_f \setminus B_f$.
- We formalize this next:

• Given any arbitrary order of $E=(e_1,e_2,\ldots,e_m)$, define $E_i=(e_1,e_2,\ldots,e_i)$.

- Given any arbitrary order of $E = (e_1, e_2, \dots, e_m)$, define $E_i = (e_1, e_2, \dots, e_i)$.
- ullet As before, a vector x is generated by E_i using the greedy procedure as follows

$$x(e_1) = f(E_1) = f(e_1)$$
(12.38)

$$x(e_j) = f(E_j) - f(E_{j-1}) = f(e_j|E_{j-1}) \text{ for } 2 \le j \le i$$
 (12.39)

$$x(e) = 0 \text{ for } e \in E \setminus E_i \tag{12.40}$$

- Given any arbitrary order of $E=(e_1,e_2,\ldots,e_m)$, define $E_i=(e_1,e_2,\ldots,e_i)$.
- ullet As before, a vector x is generated by E_i using the greedy procedure as follows

$$x(e_1) = f(E_1) = f(e_1)$$
 (12.38)

$$x(e_j) = f(E_j) - f(E_{j-1}) = f(e_j|E_{j-1}) \text{ for } 2 \le j \le i$$
 (12.39)

$$x(e) = 0 \text{ for } e \in E \setminus E_i \tag{12.40}$$

• An extreme point of P_f is a point that is not a convex combination of two other distinct points in P_f . Equivalently, an extreme point corresponds to setting certain inequalities in the specification of P_f to be equalities, so that there is a unique single point solution.

Theorem 12.6.1

For a given ordering $E=(e_1,\ldots,e_m)$ of E and a given E_i and x generated by E_i using the greedy procedure, then x is an extreme point of P_f

Theorem 12.6.1

For a given ordering $E=(e_1,\ldots,e_m)$ of E and a given E_i and x generated by E_i using the greedy procedure, then x is an extreme point of P_f

Proof.

• We already saw that $x \in P_f$ (Theorem 12.4.1).

Theorem 12.6.1

For a given ordering $E=(e_1,\ldots,e_m)$ of E and a given E_i and x generated by E_i using the greedy procedure, then x is an extreme point of P_f

Proof.

- We already saw that $x \in P_f$ (Theorem 12.4.1).
- To show that x is an extreme point of P_f , note that it is the unique solution of the following system of equations

$$x(E_j) = f(E_j)$$
 for $1 \le j \le i \le m$

$$x(e) = 0 \text{ for } e \in E \setminus E_i \tag{12.42}$$

There are $i \leq m$ equations and $i \leq m$ unknowns, and simple Gaussian elimination gives us back the x constructed via the Greedy algorithm!!

(12.41)

$$\chi(e_{j})$$

$$\chi(e_{j})$$

$$f(e_{j})$$

$$f(e_{j})$$

$$\chi(t_1) = f(E_1)$$
 $\chi(t_1) = f(E_1) - f(E_1)$
 $= f(e_1|e_1)$

• As an example, we have $x(E_1) = x(e_1) = f(e_1)$

- As an example, we have $x(E_1) = x(e_1) = f(e_1)$
- $x(E_2) = x(e_1) + x(e_2) = f(e_1, e_2)$ so $x(e_2) = f(e_1, e_2) x(e_1) = f(e_1, e_2) f(e_1) = f(e_2|e_1).$

- ullet As an example, we have $x(E_1)=x(e_1)=f(e_1)$
- $x(E_2) = x(e_1) + x(e_2) = f(e_1, e_2)$ so $x(e_2) = f(e_1, e_2) x(e_1) = f(e_1, e_2) f(e_1) = f(e_2|e_1).$
- $x(E_3) = x(e_1) + x(e_2) + x(e_3) = f(e_1, e_2, e_3)$ so $x(e_3) = f(e_1, e_2, e_3) x(e_2) x(e_1) = f(e_1, e_2, e_3) f(e_1, e_2) = f(e_3|e_1, e_2)$

- As an example, we have $x(E_1) = x(e_1) = f(e_1)$
- $x(E_2)=x(e_1)+x(e_2)=f(e_1,e_2)$ so $x(e_2)=f(e_1,e_2)-x(e_1)=f(e_1,e_2)-f(e_1)=f(e_2|e_1).$
- $x(E_3) = x(e_1) + x(e_2) + x(e_3) = f(e_1, e_2, e_3)$ so $x(e_3) = f(e_1, e_2, e_3) x(e_2) x(e_1) = f(e_1, e_2, e_3) f(e_1, e_2) = f(e_3|e_1, e_2)$
- And so on ..., but we see that this is just Gaussian elimination.

- ullet As an example, we have $x(E_1)=x(e_1)=f(e_1)$
- $x(E_2)=x(e_1)+x(e_2)=f(e_1,e_2)$ so $x(e_2)=f(e_1,e_2)-x(e_1)=f(e_1,e_2)-f(e_1)=f(e_2|e_1).$
- $x(E_3) = x(e_1) + x(e_2) + x(e_3) = f(e_1, e_2, e_3)$ so $x(e_3) = f(e_1, e_2, e_3) x(e_2) x(e_1) = f(e_1, e_2, e_3) f(e_1, e_2) = f(e_3|e_1, e_2)$
- And so on ..., but we see that this is just Gaussian elimination.
- Also, since $x \in P_f$, for each i, we see that,

$$x(E_j) = f(E_j)$$
 for $1 \le j \le i$ (12.43)

$$x(A) \le f(A), \forall A \subseteq E$$
 (12.44)

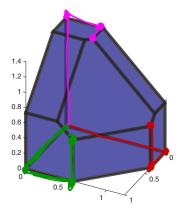
- As an example, we have $x(E_1) = x(e_1) = f(e_1)$
- $x(E_2) = x(e_1) + x(e_2) = f(e_1, e_2)$ so $x(e_2) = f(e_1, e_2) x(e_1) = f(e_1, e_2) f(e_1) = f(e_2|e_1).$
- $x(E_3) = x(e_1) + x(e_2) + x(e_3) = f(e_1, e_2, e_3)$ so $x(e_3) = f(e_1, e_2, e_3) x(e_2) x(e_1) = f(e_1, e_2, e_3) f(e_1, e_2) = f(e_3|e_1, e_2)$
- And so on ..., but we see that this is just Gaussian elimination.
- Also, since $x \in P_f$, for each i, we see that,

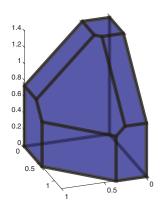
$$x(E_j) = f(E_j)$$
 for $1 \le j \le i$ (12.43)

$$x(A) \le f(A), \forall A \subseteq E$$
 (12.44)

• Thus, the greedy procedure provides a modular function lower bound on f that is tight on all points E_i in the order. This can be useful in its own right.

some examples





Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of P_f and $B \subseteq E$ is given such that $\operatorname{supp}(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \cup (A : x(A) = f(A)) = \operatorname{sat}(x)$, then x is generated using greedy by some ordering of B.

Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of P_f and $B \subseteq E$ is given such that $\mathrm{supp}(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \cup (A : x(A) = f(A)) = \mathrm{sat}(x)$, then x is generated using greedy by some ordering of B.

• Note, sat(x) = cl(x) = U(A : x(A) = f(A)) is also called the closure of x (recall that sets A such that x(A) = f(A) are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem ??)

Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of P_f and $B \subseteq E$ is given such that $\operatorname{supp}(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \cup (A : x(A) = f(A)) = \operatorname{sat}(x)$, then x is generated using greedy by some ordering of B.

- Note, $sat(x) = cl(x) = \cup (A : x(A) = f(A))$ is also called the closure of x (recall that sets A such that x(A) = f(A) are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem $\ref{eq:closed}$)
- Thus, cl(x) is a tight set.

Polymatroid extreme points

Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of P_f and $B \subseteq E$ is given such that $\mathrm{supp}(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \cup (A : x(A) = f(A)) = \mathrm{sat}(x)$, then x is generated using greedy by some ordering of B.

- Note, $sat(x) = cl(x) = \cup (A : x(A) = f(A))$ is also called the closure of x (recall that sets A such that x(A) = f(A) are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem $\ref{eq:closed}$?
- Thus, cl(x) is a tight set.
- Also, $supp(x) = \{e \in E : x(e) \neq 0\}$ is called the support of x.

Polymatroid extreme points

Moreover, we have (and will ultimately prove)

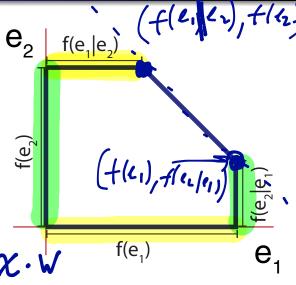
Corollary 12.6.2

If x is an extreme point of P_f and $B \subseteq E$ is given such that $\operatorname{supp}(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \cup (A : x(A) = f(A)) = \operatorname{sat}(x)$, then x is generated using greedy by some ordering of B.

- Note, $sat(x) = cl(x) = \cup (A: x(A) = f(A))$ is also called the closure of x (recall that sets A such that x(A) = f(A) are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem $\ref{eq:closed}$)
- Thus, cl(x) is a tight set.
- Also, $supp(x) = \{e \in E : x(e) \neq 0\}$ is called the support of x.
- For arbitrary x, supp(x) is not necessarily tight, but for an extreme point, supp(x) is.

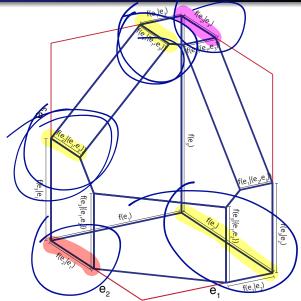
Polymatroid with labeled edge lengths

- Recall f(e|A) = f(A+e) f(A)
- Notice how submodularity, $f(e|B) \leq f(e|A)$ for $A \subseteq B$, defines the shape of the polytope.
- In fact, we have strictness here f(e|B) < f(e|A) for $A \subset B$.
- Also, consider how the greedy algorithm proceeds along the edges of the polytope.



Polymatroid with labeled edge lengths

- $\bullet \ \operatorname{Recall} \ f(e|A) = \\ f(A+e) f(A)$
- Notice how submodularity, $f(e|B) \leq f(e|A)$ for $A \subseteq B$, defines the shape of the polytope.
- In fact, we have strictness here $f(e|B) < f(e|A) \text{ for } A \subset B.$
- Also, consider how the greedy algorithm proceeds along the edges of the polytope.

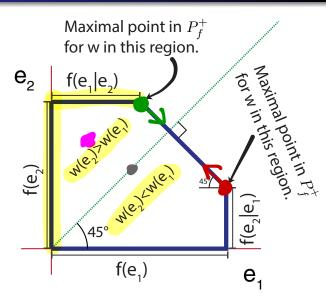


Intuition: why greedy works with polymatroids

• Given w, the goal is to find $x=(x(e_1),x(e_2))$ that maximizes $x^{\mathsf{T}}w=x(e_1)w(e_1)+$

$$x(e_2)w(e_2).$$
• If $w(e_2) > w(e_1)$ the

- upper extreme point indicated maximizes $x^{\mathsf{T}}w$ over $x \in P_f^+$.
- If $w(e_2) < w(e_1)$ the lower extreme point indicated maximizes $x^{\mathsf{T}}w$ over $x \in P_{\scriptscriptstyle f}^+$.



A polymatroid function's polyhedron is a polymatroid.

Theorem 12.7.4

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}_+^E$, and any P_f^+ -basis $y^x \in \mathbb{R}_+^E$ of x, the component sum of y^x is

$$y^{x}(E) = \operatorname{rank}(x) = \max\left(y(E) : y \le x, y \in P_{f}^{+}\right)$$
$$= \min\left(x(A) + f(E \setminus A) : A \subseteq E\right) \tag{12.34}$$

As a consequence, P_f^+ is a polymatroid, since r.h.s. is constant w.r.t. y^x .

By taking $B = \operatorname{supp}(x)$ (so elements $E \setminus B$ are zero in x), and for $b \in B$, x(b) is big enough, the r.h.s. min has solution $A^* = E \setminus B$. We recover submodular function from the polymetroid polyhedron via the following:

$$f(B) = \max \left\{ y(B) : y \in P_f^+ \right\}$$
 (12.35)

In fact, we will ultimately see a number of important consequences of this theorem (other than just that P_{ℓ}^{+} is a polymatroid)

Matroid instance of Theorem 9.4.5

• Considering Theorem 9.4.5, the matroid case is now a special case, where we have that:

Corollary 12.7.2

We have that:

$$\max \{y(E): y \in P_{\textit{ind. set}}(M), y \le x\} = \min \{r_M(A) + x(E \setminus A): A \subseteq E\}$$

$$(12.2)$$

where r_M is the matroid rank function of some matroid.

Consider

$$P_r^+ = \{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r_M(A), \forall A \subseteq E \}$$
 (12.45)

Consider

$$P_r^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r_M(A), \forall A \subseteq E \right\}$$
 (12.45)

• Suppose we have any $x \in \mathbb{R}_+^E$ such that $x \notin P_r^+$.

Consider

$$P_r^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r_M(A), \forall A \subseteq E \right\}$$
 (12.45)

- Suppose we have any $x \in \mathbb{R}_+^E$ such that $x \notin P_r^+$.
- Hence, there must be a set of $\mathcal{W}\subseteq 2^V$, each member of which corresponds to a violated inequality, i.e., equations of the form $x(A)>r_M(A)$ for $A\in\mathcal{W}$.

Consider

$$P_r^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r_M(A), \forall A \subseteq E \right\}$$
 (12.45)

- Suppose we have any $x \in \mathbb{R}_+^E$ such that $x \notin P_r^+$.
- Hence, there must be a set of $\mathcal{W} \subseteq 2^V$, each member of which corresponds to a violated inequality, i.e., equations of the form $x(A) > r_M(A)$ for $A \in \mathcal{W}$.
- The most violated inequality when x is considered w.r.t. P_r^+ corresponds to the set A that maximizes $x(A) r_M(A)$, i.e., the most violated inequality is valuated as:

$$\max\{x(A) - r_M(A) : A \in \mathcal{W}\} = \max\{x(A) - r_M(A) : A \subseteq E\}$$
 (12.46)

Consider

$$P_r^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r_M(A), \forall A \subseteq E \right\}$$
 (12.45)

- Suppose we have any $x \in \mathbb{R}_+^E$ such that $x \notin P_r^+$.
- Hence, there must be a set of $\mathcal{W} \subseteq 2^V$, each member of which corresponds to a violated inequality, i.e., equations of the form $x(A) > r_M(A)$ for $A \in \mathcal{W}$.
- The most violated inequality when x is considered w.r.t. P_r^+ corresponds to the set A that maximizes $x(A) r_M(A)$, i.e., the most violated inequality is valuated as:

$$\max\{x(A) - r_M(A) : A \in \mathcal{W}\} = \max\{x(A) - r_M(A) : A \subseteq E\}$$
 (12.46)

• Since x is modular and $x(E \setminus A) = x(E) - x(A)$, we can express this via a min as in;:

$$\min \left\{ r_M(A) + x(E \setminus A) : A \subseteq E \right\} \tag{12.47}$$

Consider

$$P_f^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le f(A), \forall A \subseteq E \right\}$$
 (12.48)

Consider

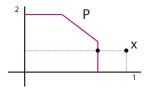
$$P_f^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le f(A), \forall A \subseteq E \right\}$$
 (12.48)

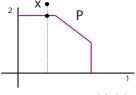
• Suppose we have any $x \in \mathbb{R}_+^E$ such that $x \notin P_f^+$.

Consider

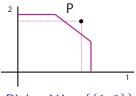
$$P_f^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le f(A), \forall A \subseteq E \right\}$$
 (12.48)

- Suppose we have any $x \in \mathbb{R}_+^E$ such that $x \not \in P_f^+$.
- Hence, there must be a set of $\mathcal{W} \subseteq 2^V$, each member of which corresponds to a violated inequality, i.e., equations of the form $x(A) > r_M(A)$ for $A \in \mathcal{W}$.





Center: $\mathcal{W} = \{\{2\}\}$



Right: $W = \{\{1, 2\}\}$

• The most violated inequality when x is considered w.r.t. P_f^+ corresponds to the set A that maximizes x(A) - f(A), i.e., the most violated inequality is valuated as:

$$\max\{x(A) - f(A) : A \in \mathcal{W}\} = \max\{x(A) - f(A) : A \subseteq E\} \quad (12.49)$$

• The most violated inequality when x is considered w.r.t. P_f^+ corresponds to the set A that maximizes x(A) - f(A), i.e., the most violated inequality is valuated as:

$$\max\{x(A) - f(A) : A \in \mathcal{W}\} = \max\{x(A) - f(A) : A \subseteq E\} \quad (12.49)$$

• Since x is modular and $x(E \setminus A) = x(E) - x(A)$, we can express this via a min as in::

$$\min \{ f(A) + x(E \setminus A) : A \subseteq E \}$$
 (12.50)

• The most violated inequality when x is considered w.r.t. P_f^+ corresponds to the set A that maximizes x(A) - f(A), i.e., the most violated inequality is valuated as:

$$\max\{x(A) - f(A) : A \in \mathcal{W}\} = \max\{x(A) - f(A) : A \subseteq E\}$$
 (12.49)

• Since x is modular and $x(E \setminus A) = x(E) - x(A)$, we can express this via a min as in::

$$\min \{ f(A) + x(E \setminus A) : A \subseteq E \}$$
 (12.50)

• More importantly, $\min \{f(A) + x(E \setminus A) : A \subseteq E\}$ is a form of submodular function minimization, namely $\min \{f(A) - x(A) : A \subseteq E\}$ for a submodular f and $x \in \mathbb{R}_+^E$, consisting of a difference of polymatroid and modular function (so f - x is no longer necessarily monotone, nor positive).

• The most violated inequality when x is considered w.r.t. P_f^+ corresponds to the set A that maximizes x(A) - f(A), i.e., the most violated inequality is valuated as:

$$\max\{x(A) - f(A) : A \in \mathcal{W}\} = \max\{x(A) - f(A) : A \subseteq E\} \quad (12.49)$$

• Since x is modular and $x(E \setminus A) = x(E) - x(A)$, we can express this via a min as in::

$$\min \left\{ f(A) + x(E \setminus A) : A \subseteq E \right\} \tag{12.50}$$

- More importantly, $\min \{f(A) + x(E \setminus A) : A \subseteq E\}$ is a form of submodular function minimization, namely $\min \{f(A) x(A) : A \subseteq E\}$ for a submodular f and $x \in \mathbb{R}_+^E$, consisting of a difference of polymatroid and modular function (so f x is no longer necessarily monotone, nor positive).
- We will ultimatley answer how general this form of SFM is.

Matroids, other definitions using matroid rank $r: 2^V o \mathbb{Z}_+$

Definition 12.8.1 (closed/flat/subspace)

A subset $A\subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x\in E\setminus A$, $r(A\cup\{x\})=r(A)+1$.

A hyperplane is a flat of rank r(M) - 1.

Definition 12.8.2 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$

Therefore, a closed set A has span(A) = A.

Definition 12.8.3 (circuit)

A subset $A\subseteq E$ is circuit or a cycle if it is an $\underline{\text{inclusionwise-minimal}}$ $\underline{\text{dependent set}}$ (i.e., if r(A)<|A| and for any $a\in A$, $\overline{r(A\setminus\{a\})}=|A|-1$).

Matroids by circuits

Several circuit definitions for matroids.

Theorem 12.8.1 (Matroid by circuits)

Let E be a set and $\mathcal C$ be a collection of nonempty subsets of E, such that no two sets in $\mathcal C$ are contained in each other. Then the following are equivalent.

- ullet is the collection of circuits of a matroid;
- ullet if $C,C'\in\mathcal{C}$, and $x\in C\cap C'$, then $(C\cup C')\setminus\{x\}$ contains a set in \mathcal{C} ;
- **3** if $C, C' \in \mathcal{C}$, and $x \in C \cap C'$, and $y \in C \setminus C'$, then $(C \cup C') \setminus \{x\}$ contains a set in \mathcal{C} containing y;

Again, think about this for a moment in terms of linear spaces and matrices, and spanning trees.

Fundamental circuits in matroids

Lemma 12.8.3

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup \{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_1, C_2 such that $C_1 \cup C_2 \subseteq I \cup \{e\}$.
- Then $e \in C_1 \cap C_2$, and by (C2), there is a circuit C_3 of M s.t. $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\} \subseteq I$
- This contradicts the independence of *I*.

In general, let C(I,e) be the unique circuit associated with $I \cup \{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).

• Define C(I,e) be the unique circuit associated with $I \cup \{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).

- Define C(I,e) be the unique circuit associated with $I \cup \{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).
- If $e \in \operatorname{span}(I) \setminus I$, then C(I,e) is well defined I + e creates one circuit).

- Define C(I,e) be the unique circuit associated with $I \cup \{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).
- If $e \in \operatorname{span}(I) \setminus I$, then C(I,e) is well defined (I+e) creates one circuit).
- If $e \in I$, then I + e = I doesn't create a circuit. In such cases, C(I, e) is not really defined.

- Define C(I,e) be the unique circuit associated with $I \cup \{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).
- If $e \in \operatorname{span}(I) \setminus I$, then C(I,e) is well defined (I + e creates one circuit).
- If $e \in I$, then I + e = I doesn't create a circuit. In such cases, C(I,e) is not really defined.
- In such cases, we define $C(I,e)=\{e\}$, and we will soon see why. why we do this.

- Define C(I,e) be the unique circuit associated with $I \cup \{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).
- If $e \in \operatorname{span}(I) \setminus I$, then C(I,e) is well defined (I+e) creates one circuit).
- If $e \in I$, then I + e = I doesn't create a circuit. In such cases, C(I,e) is not really defined.
- In such cases, we define $C(I,e)=\{e\}$, and we will soon see why. why we do this.
- If $e \notin \operatorname{span}(I)$, then $C(I,e) = \emptyset$, since no circuit is created in this case.

Lemma 12.8.1

Let $\mathcal{B}(C)$ be the set of bases of C. Then, given matroid $\mathcal{M}=(E,\mathcal{I})$, and any loop-free set $C\subseteq E$, we have that:

$$\bigcup_{B \in \mathcal{B}(C)} B = C. \tag{12.51}$$

Lemma 12.8.1

Let $\mathcal{B}(C)$ be the set of bases of C. Then, given matroid $\mathcal{M}=(E,\mathcal{I})$, and any loop-free set $C\subseteq E$, we have that:

$$\bigcup_{B \in \mathcal{B}(C)} B = C. \tag{12.51}$$

Proof.

• Define $C' \triangleq \bigcup_{B \in \mathcal{B}(C)}$, and suppose $\exists c \in C$ such that $c \notin C'$.

Lemma 12.8.1

Let $\mathcal{B}(C)$ be the set of bases of C. Then, given matroid $\mathcal{M}=(E,\mathcal{I})$, and any loop-free set $C\subseteq E$, we have that:

$$\bigcup_{B \in \mathcal{B}(C)} B = C. \tag{12.51}$$

Proof.

- Define $C' \triangleq \bigcup_{B \in \mathcal{B}(C)}$, and suppose $\exists c \in C$ such that $c \notin C'$.
- Hence, $\forall B \in \mathcal{B}(C)$ we have $c \notin B$, and B+c contains a single circuit for any B, namely C(B,c).

Lemma 12.8.1

Let $\mathcal{B}(C)$ be the set of bases of C. Then, given matroid $\mathcal{M}=(E,\mathcal{I})$, and any loop-free set $C\subseteq E$, we have that:

$$\bigcup_{B \in \mathcal{B}(C)} B = C. \tag{12.51}$$

Proof.

- Define $C' \triangleq \bigcup_{B \in \mathcal{B}(C)}$, and suppose $\exists c \in C$ such that $c \notin C'$.
- Hence, $\forall B \in \mathcal{B}(C)$ we have $c \notin B$, and B+c contains a single circuit for any B, namely C(B,c).
- Then choose $c' \in C(B, c)$ with $c' \neq c$.

Lemma 12.8.1

Let $\mathcal{B}(C)$ be the set of bases of C. Then, given matroid $\mathcal{M}=(E,\mathcal{I})$, and any loop-free set $C\subseteq E$, we have that:

$$\bigcup_{B \in \mathcal{B}(C)} B = C. \tag{12.51}$$

Proof.

- Define $C' \triangleq \bigcup_{B \in \mathcal{B}(C)}$, and suppose $\exists c \in C$ such that $c \notin C'$.
- Hence, $\forall B \in \mathcal{B}(C)$ we have $c \notin B$, and B+c contains a single circuit for any B, namely C(B,c).
- Then choose $c' \in C(B, c)$ with $c' \neq c$.
- Then B+c-c' is independent size |B| subset of C and hence spans C, and thus is a c-containing member of $\mathcal{B}(C)$, contradicting $c \notin C'$.

 Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_f$ for polymatroid function f.

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_f$ for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_f$ for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.
- That is, we saw in Lecture 7 that for any $A, B \in \mathcal{D}(x)$, we have that $A \cup B \in \mathcal{D}(x)$ and $A \cap B \in \mathcal{D}(x)$, which can constitute a join and meet.

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_f$ for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.
- That is, we saw in Lecture 7 that for any $A, B \in \mathcal{D}(x)$, we have that $A \cup B \in \mathcal{D}(x)$ and $A \cap B \in \mathcal{D}(x)$, which can constitute a join and meet.
- ullet Recall, for a given $x \in P_f$, we have defined this tight family as

$$\mathcal{D}(x) = \{ A : A \subseteq E, x(A) = f(A) \}$$
 (12.52)

• Now given $x \in P_f^+$:

$$\mathcal{D}(x) = \{A : A \subseteq E, x(A) = f(A)\}$$
 (12.53)

$$= \{A : f(A) - x(A) = 0\}$$
 (12.54)

• Now given $x \in P_f^+$:

$$\mathcal{D}(x) = \{ A : A \subseteq E, x(A) = f(A) \}$$
 (12.53)

$$= \{A : f(A) - x(A) = 0\}$$
 (12.54)

• Since $x \in P_f^+$ and f is presumed to be polymatroid function, we see f'(A) = f(A) - x(A) is a non-negative submodular function, and $\mathcal{D}(x)$ are the zero-valued minimizers (if any) of f'(A).

• Now given $x \in P_f^+$:

$$\mathcal{D}(x) = \{ A : A \subseteq E, x(A) = f(A) \}$$
 (12.53)

$$= \{A : f(A) - x(A) = 0\}$$
 (12.54)

- Since $x \in P_f^+$ and f is presumed to be polymatroid function, we see f'(A) = f(A) x(A) is a non-negative submodular function, and $\mathcal{D}(x)$ are the zero-valued minimizers (if any) of f'(A).
- ullet The zero-valued minimizers of f' are thus closed under union and intersection.

• Now given $x \in P_f^+$:

$$\mathcal{D}(x) = \{ A : A \subseteq E, x(A) = f(A) \}$$
 (12.53)

$$= \{A : f(A) - x(A) = 0\}$$
 (12.54)

- Since $x \in P_f^+$ and f is presumed to be polymatroid function, we see f'(A) = f(A) x(A) is a non-negative submodular function, and $\mathcal{D}(x)$ are the zero-valued minimizers (if any) of f'(A).
- The zero-valued minimizers of f' are thus closed under union and intersection.
- In fact, this is true for all minimizers of a submodular function as stated in the next theorem.

Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat Fund. Circuit/Dep

Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A) = f(B) \le f(A \cap B)$ and $f(A) = f(B) \le f(A \cup B)$.

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A)=f(B)\leq f(A\cap B)$ and $f(A)=f(B)\leq f(A\cup B).$

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B) \tag{12.55}$$

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A)=f(B)\leq f(A\cap B)$ and $f(A)=f(B)\leq f(A\cup B).$

By submodularity, we have

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B) \tag{12.55}$$

Hence, we must have $f(A) = f(B) = f(A \cup B) = f(A \cap B)$.

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A)=f(B)\leq f(A\cap B)$ and $f(A)=f(B)\leq f(A\cup B).$

By submodularity, we have

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B) \tag{12.55}$$

Hence, we must have $f(A) = f(B) = f(A \cup B) = f(A \cap B)$.

Thus, the minimizers of a submodular function form a lattice, and there is a maximal and a minimal minimizer of every submodular function.

• Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_f$, we have defined:

$$\mathsf{cl}(x) \stackrel{\text{def}}{=} \mathsf{sat}(x) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x)\}$$
 (12.56)

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_f$, we have defined:

$$\operatorname{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x)\}$$
 (12.56)

$$= \bigcup \{A : A \subseteq E, x(A) = f(A)\}$$
 (12.57)

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_f$, we have defined:

$$\operatorname{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \left\{ A : A \in \mathcal{D}(x) \right\}$$
 (12.56)

$$= \bigcup \{A : A \subseteq E, x(A) = f(A)\}$$
 (12.57)

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
 (12.58)

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_f$, we have defined:

$$\operatorname{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x)\}$$
 (12.56)

$$= \bigcup \left\{ A : A \subseteq E, x(A) = f(A) \right\} \tag{12.57}$$

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
 (12.58)

• Hence, $\operatorname{sat}(x)$ is the maximal (zero-valued) minimizer of the submodular function $f_x(A) \triangleq f(A) - x(A)$.

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_f$, we have defined:

$$\operatorname{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x)\}$$

$$= \bigcup \{A : A \subseteq E, x(A) = f(A)\}$$

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$

$$(12.56)$$

$$(12.57)$$

- Hence, $\operatorname{sat}(x)$ is the maximal (zero-valued) minimizer of the submodular function $f_x(A) \triangleq f(A) x(A)$.
- Eq. (12.58) says that sat consists of any point x that is P_f saturated (any additional positive movement, in that dimension, leaves P_f). We'll revisit this in a few slides.

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or sat (saturation function).
- For some $x \in P_f$, we have defined:

$$\operatorname{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x)\}$$
 (12.56)

$$= \bigcup \{A : A \subseteq E, x(A) = f(A)\}$$
 (12.57)

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
 (12.58)

- Hence, $\operatorname{sat}(x)$ is the maximal (zero-valued) minimizer of the submodular function $f_x(A) \triangleq f(A) x(A)$.
- Eq. (12.58) says that sat consists of any point x that is P_f saturated (any additional positive movement, in that dimension, leaves P_f). We'll revisit this in a few slides.
- First, we see how sat generalizes matroid closure.

ullet Consider matroid $(E,\mathcal{I})=(E,r)$, some $I\in\mathcal{I}.$ Then $\mathbf{1}_I\in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{ A : \mathbf{1}_I(A) = r(A) \}$$
 (12.59)

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{ A : \mathbf{1}_I(A) = r(A) \}$$
 (12.59)

$$\operatorname{sat}(\mathbf{1}_I)$$

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{ A : \mathbf{1}_I(A) = r(A) \}$$
 (12.59)

$$\operatorname{sat}(\mathbf{1}_I) = \bigcup \{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_I) \}$$
 (12.60)

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{ A : \mathbf{1}_I(A) = r(A) \}$$
 (12.59)

$$\operatorname{sat}(\mathbf{1}_I) = \bigcup \{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_I) \}$$
 (12.60)

$$= \{ \{ A : A \subseteq E, \mathbf{1}_I(A) = r(A) \}$$
 (12.61)

• Consider matroid $(E,\mathcal{I})=(E,r)$, some $I\in\mathcal{I}$. Then $\mathbf{1}_I\in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{ A : \mathbf{1}_I(A) = r(A) \}$$
 (12.59)

$$\operatorname{sat}(\mathbf{1}_{I}) = \bigcup \{A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_{I})\}$$
(12.60)

$$= \bigcup \{A : A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
 (12.61)

$$= | | \{A : A \subseteq E, |I \cap A| = r(A) \}$$
 (12.62)

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{ A : \mathbf{1}_I(A) = r(A) \}$$
 (12.59)

and

$$\operatorname{sat}(\mathbf{1}_{I}) = \bigcup \{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_{I}) \}$$
 (12.60)

$$= \bigcup \{A : A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
 (12.61)

$$= \bigcup \{A : A \subseteq E, |I \cap A| = r(A)\}$$
 (12.62)

• Notice that $\mathbf{1}_I(A) = |I \cap A|$.

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{ A : \mathbf{1}_I(A) = r(A) \}$$
 (12.59)

$$\operatorname{sat}(\mathbf{1}_{I}) = \bigcup \{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_{I}) \}$$
 (12.60)

$$= \bigcup \{A : A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
 (12.61)

$$= \bigcup \{A : A \subseteq E, |I \cap A| = r(A)\}$$
 (12.62)

- Notice that $\mathbf{1}_I(A) = |I \cap A|$.
- Intuitively, $|I \cap A| \leq |I|$. Also, consider an $A \supset I \in \mathcal{I}$ that doesn't increase rank, meaning r(A) = r(I). If $r(A) = |I \cap A| = r(I \cap A)$ then A is in I's span.

• Consider matroid $(E, \mathcal{I}) = (E, r)$, some $I \in \mathcal{I}$. Then $\mathbf{1}_I \in P_r$ and

$$\mathcal{D}(\mathbf{1}_I) = \{ A : \mathbf{1}_I(A) = r(A) \}$$
 (12.59)

$$\operatorname{sat}(\mathbf{1}_{I}) = \bigcup \{ A : A \subseteq E, A \in \mathcal{D}(\mathbf{1}_{I}) \}$$
 (12.60)

$$= \bigcup \{A : A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$
 (12.61)

$$= \bigcup \{A : A \subseteq E, |I \cap A| = r(A)\}$$
 (12.62)

- Notice that $\mathbf{1}_I(A) = |I \cap A|$.
- Intuitively, $|I \cap A| \leq |I|$. Also, consider an $A \supset I \in \mathcal{I}$ that doesn't increase rank, meaning r(A) = r(I). If $r(A) = |I \cap A| = r(I \cap A)$ then A is in I's span.
- We formalize this next.

Lemma 12.9.2 (Matroid sat : $\mathbb{R}_+^E \to 2^E$ is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (12.63)

Lemma 12.9.2 (Matroid sat : $\mathbb{R}^E_+ \to 2^E$ is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (12.63)

Proof.

• For A = I, $\mathbf{1}_I(I) = |I| = r(I)$, so $I \in \mathcal{D}(\mathbf{1}_I)$ and $I \subseteq \operatorname{sat}(\mathbf{1}_I)$. Also, $I \subseteq \operatorname{span}(I)$.

. . .

Lemma 12.9.2 (Matroid sat : $\mathbb{R}^E_+ \to 2^E$ is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (12.63)

Proof.

- For A=I, $\mathbf{1}_I(I)=|I|=r(I)$, so $I\in\mathcal{D}(\mathbf{1}_I)$ and $I\subseteq\operatorname{sat}(\mathbf{1}_I)$. Also, $I\subseteq\operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \setminus I$.

Lemma 12.9.2 (Matroid $\operatorname{sat}: \mathbb{R}_+^E o 2^E$ is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (12.63)

Proof.

- For A=I, $\mathbf{1}_I(I)=|I|=r(I)$, so $I\in\mathcal{D}(\mathbf{1}_I)$ and $I\subseteq\operatorname{sat}(\mathbf{1}_I)$. Also, $I\subseteq\operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \setminus I$.
- Then $A = I \cup \{b\} \in \mathcal{D}(\mathbf{1}_I)$ since $\mathbf{1}_I(I \cup \{b\}) = |I| = r(I \cup \{b\}) = r(I).$

Lemma 12.9.2 (Matroid sat : $\mathbb{R}^E_+ \to 2^E$ is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (12.63)

Proof.

- For A=I, $\mathbf{1}_I(I)=|I|=r(I)$, so $I\in\mathcal{D}(\mathbf{1}_I)$ and $I\subseteq\operatorname{sat}(\mathbf{1}_I)$. Also, $I\subseteq\operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \setminus I$.
- Then $A = I \cup \{b\} \in \mathcal{D}(\mathbf{1}_I)$ since $\mathbf{1}_I(I \cup \{b\}) = |I| = r(I \cup \{b\}) = r(I).$
- Thus, $b \in \operatorname{sat}(\mathbf{1}_I)$.

. . .

Lemma 12.9.2 (Matroid sat : $\mathbb{R}^E_+ \to 2^E$ is the same as closure.)

For
$$I \in \mathcal{I}$$
, we have $\operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I)$ (12.63)

Proof.

- For A=I, $\mathbf{1}_I(I)=|I|=r(I)$, so $I\in\mathcal{D}(\mathbf{1}_I)$ and $I\subseteq\operatorname{sat}(\mathbf{1}_I)$. Also, $I\subseteq\operatorname{span}(I)$.
- Consider some $b \in \operatorname{span}(I) \setminus I$.
- Then $A = I \cup \{b\} \in \mathcal{D}(\mathbf{1}_I)$ since $\mathbf{1}_I(I \cup \{b\}) = |I| = r(I \cup \{b\}) = r(I)$.
- Thus, $b \in \operatorname{sat}(\mathbf{1}_I)$.
- Therefore, $sat(\mathbf{1}_I) \supseteq span(I)$.

. . .

... proof continued.

• Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.

... proof continued.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$.

.. proof continued.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$.
- Then $1(A) = |A \cap I| = r(A)$.

.. proof continued.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$.
- Then $1(A) = |A \cap I| = r(A)$.
- Now $r(A) = |A \cap I| \le |I| = r(I)$.

.. proof continued.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$.
- Then $1(A) = |A \cap I| = r(A)$.
- Now $r(A) = |A \cap I| \le |I| = r(I)$.
- Also, $r(A \cap I) = |A \cap I|$ since $A \cap I \in \mathcal{I}$.

... proof continued.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$.
- Then $1(A) = |A \cap I| = r(A)$.
- Now $r(A) = |A \cap I| \le |I| = r(I)$.
- Also, $r(A \cap I) = |A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I) = r(A) = r((A \cap I) \cup (A \setminus I))$ meaning $(A \setminus I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.

. . . proof continued.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$.
- Then $1(A) = |A \cap I| = r(A)$.
- Now $r(A) = |A \cap I| \le |I| = r(I)$.
- Also, $r(A \cap I) = |A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I) = r(A) = r((A \cap I) \cup (A \setminus I))$ meaning $(A \setminus I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.
- Since $b \in A \setminus I$, $b \in \text{span}(I)$.

. . . proof continued.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$.
- Then $1(A) = |A \cap I| = r(A)$.
- Now $r(A) = |A \cap I| \le |I| = r(I)$.
- Also, $r(A \cap I) = |A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I) = r(A) = r((A \cap I) \cup (A \setminus I))$ meaning $(A \setminus I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.
- Since $b \in A \setminus I$, $b \in \operatorname{span}(I)$.
- Thus, $\operatorname{sat}(\mathbf{1}_I) \subseteq \operatorname{span}(I)$.

. . . proof continued.

- Now, consider $b \in \operatorname{sat}(\mathbf{1}_I) \setminus I$.
- Choose any $A \in \mathcal{D}(\mathbf{1}_I)$ with $b \in A$.
- Then $1(A) = |A \cap I| = r(A)$.
- Now $r(A) = |A \cap I| \le |I| = r(I)$.
- Also, $r(A \cap I) = |A \cap I|$ since $A \cap I \in \mathcal{I}$.
- Hence, $r(A \cap I) = r(A) = r((A \cap I) \cup (A \setminus I))$ meaning $(A \setminus I) \subseteq \operatorname{span}(A \cap I) \subseteq \operatorname{span}(I)$.
- Since $b \in A \setminus I$, $b \in \operatorname{span}(I)$.
- Thus, $sat(\mathbf{1}_I) \subseteq span(I)$.
- Hence $sat(\mathbf{1}_I) = span(I)$

• Now, consider a matroid (E, r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$.

• Now, consider a matroid (E,r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$?

• Now, consider a matroid (E,r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .

- Now, consider a matroid (E,r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .
- \bullet span (\cdot) operates on more than just independent sets, so span(C) is perfectly sensible.

- Now, consider a matroid (E,r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .
- $\operatorname{span}(\cdot)$ operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C) = \operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.

- Now, consider a matroid (E,r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .
- $\mathrm{span}(\cdot)$ operates on more than just independent sets, so $\mathrm{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C) = \operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_B \leq \mathbf{1}_C \leq \mathbf{1}_{\mathrm{span}(C)}$, and that $\mathbf{1}_B \in P_r$. We can then make the definition:

$$\operatorname{sat}(\mathbf{1}_C) \triangleq \operatorname{sat}(\mathbf{1}_B) \text{ for } B \in \mathcal{B}(C)$$
 (12.64)

In which case, we also get $sat(\mathbf{1}_C) = span(C)$ (in general, could define sat(y) = sat(P-basis(y))).

- Now, consider a matroid (E,r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .
- $\operatorname{span}(\cdot)$ operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C) = \operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_B \leq \mathbf{1}_C \leq \mathbf{1}_{\mathrm{span}(C)}$, and that $\mathbf{1}_B \in P_r$. We can then make the definition:

$$\operatorname{sat}(\mathbf{1}_C) \triangleq \operatorname{sat}(\mathbf{1}_B) \text{ for } B \in \mathcal{B}(C)$$
 (12.64)

In which case, we also get $sat(\mathbf{1}_C) = span(C)$ (in general, could define sat(y) = sat(P-basis(y))).

• However, consider the following form

$$\operatorname{sat}(\mathbf{1}_C) = \bigcup \{ A : A \subseteq E, |A \cap C| = r(A) \}$$
 (12.65)

- Now, consider a matroid (E,r) and some $C \subseteq E$ with $C \notin \mathcal{I}$, and consider $\mathbf{1}_C$. Is $\mathbf{1}_C \in P_r$? No, it might not be a vertex, or even a member, of P_r .
- $\operatorname{span}(\cdot)$ operates on more than just independent sets, so $\operatorname{span}(C)$ is perfectly sensible.
- Note $\operatorname{span}(C) = \operatorname{span}(B)$ where $\mathcal{I} \ni B \in \mathcal{B}(C)$ is a base of C.
- Then we have $\mathbf{1}_B \leq \mathbf{1}_C \leq \mathbf{1}_{\mathrm{span}(C)}$, and that $\mathbf{1}_B \in P_r$. We can then make the definition:

$$\operatorname{sat}(\mathbf{1}_C) \triangleq \operatorname{sat}(\mathbf{1}_B) \text{ for } B \in \mathcal{B}(C)$$
 (12.64)

In which case, we also get $sat(\mathbf{1}_C) = span(C)$ (in general, could define sat(y) = sat(P-basis(y))).

However, consider the following form

$$\operatorname{sat}(\mathbf{1}_C) = \bigcup \{ A : A \subseteq E, |A \cap C| = r(A) \}$$
 (12.65)

Exercise: is $\operatorname{span}(C) = \operatorname{sat}(\mathbf{1}_C)$? Prove or disprove it.

• Thus, for a matroid, $sat(\mathbf{1}_I)$ is exactly the closure (or span) of I in the matroid. I.e., for matroid (E, r), we have $span(I) = sat(\mathbf{1}_B)$.

- Thus, for a matroid, $\operatorname{sat}(\mathbf{1}_I)$ is exactly the closure (or span) of I in the matroid. I.e., for matroid (E,r), we have $\operatorname{span}(I) = \operatorname{sat}(\mathbf{1}_B)$.
- Recall, for $x \in P_f$ and polymatroidal f, $\operatorname{sat}(x)$ is the maximal (by inclusion) minimizer of f(A) x(A), and thus in a matroid, $\operatorname{span}(I)$ is the maximal minimizer of the submodular function formed by $r(A) \mathbf{1}_I(A)$.

- Thus, for a matroid, $\operatorname{sat}(\mathbf{1}_I)$ is exactly the closure (or span) of I in the matroid. I.e., for matroid (E,r), we have $\operatorname{span}(I) = \operatorname{sat}(\mathbf{1}_B)$.
- Recall, for $x \in P_f$ and polymatroidal f, $\operatorname{sat}(x)$ is the maximal (by inclusion) minimizer of f(A) x(A), and thus in a matroid, $\operatorname{span}(I)$ is the maximal minimizer of the submodular function formed by $r(A) \mathbf{1}_I(A)$.
- Submodular function minimization can solve "span" queries in a matroid or "sat" gueries in a polymatroid.

- Thus, for a matroid, $\operatorname{sat}(\mathbf{1}_I)$ is exactly the closure (or span) of I in the matroid. I.e., for matroid (E, r), we have $\operatorname{span}(I) = \operatorname{sat}(\mathbf{1}_B)$.
- Recall, for $x \in P_f$ and polymatroidal f, $\operatorname{sat}(x)$ is the maximal (by inclusion) minimizer of f(A) x(A), and thus in a matroid, $\operatorname{span}(I)$ is the maximal minimizer of the submodular function formed by $r(A) \mathbf{1}_I(A)$.
- Submodular function minimization can solve "span" queries in a matroid or "sat" queries in a polymatroid.
- In general, given polymatroid function $f: 2^V \to \mathbb{R}$, there exists a form of span in that, given A, we wish to find the largest set B such that $f(B \cup A) = f(A)$.

- Thus, for a matroid, $sat(\mathbf{1}_I)$ is exactly the closure (or span) of I in the matroid. I.e., for matroid (E, r), we have $span(I) = sat(\mathbf{1}_B)$.
- Recall, for $x \in P_f$ and polymatroidal f, $\operatorname{sat}(x)$ is the maximal (by inclusion) minimizer of f(A) x(A), and thus in a matroid, $\operatorname{span}(I)$ is the maximal minimizer of the submodular function formed by $r(A) \mathbf{1}_I(A)$.
- Submodular function minimization can solve "span" queries in a matroid or "sat" queries in a polymatroid.
- In general, given polymatroid function $f: 2^V \to \mathbb{R}$, there exists a form of span in that, given A, we wish to find the largest set B such that $f(B \cup A) = f(A)$.
- Find largest minimizer of $g: 2^{V \setminus A} \to \mathbb{R}$ with g(B) = f(B|A). Exercise: give example of greedy failing here.

ullet We are given an $x \in P_f^+$ for submodular function f.

- We are given an $x \in P_f^+$ for submodular function f.
- Recall that for such an x, sat(x) is defined as

$$sat(x) = \bigcup \{A : x(A) = f(A)\}$$
 (12.66)

- We are given an $x \in P_f^+$ for submodular function f.
- Recall that for such an x, sat(x) is defined as

$$sat(x) = \bigcup \{A : x(A) = f(A)\}$$
 (12.66)

• We also have seen that sat(x) can be defined as:

$$\operatorname{sat}(x) = \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
 (12.67)

- We are given an $x \in P_f^+$ for submodular function f.
- Recall that for such an x, sat(x) is defined as

$$sat(x) = \bigcup \{A : x(A) = f(A)\}$$
 (12.66)

• We also have seen that sat(x) can be defined as:

$$\operatorname{sat}(x) = \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
 (12.67)

• We next show more formally that these are the same.

• Lets start with one definition and derive the other.

 $\operatorname{sat}(x)$

• Lets start with one definition and derive the other.

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
 (12.68)

• Lets start with one definition and derive the other.

$$\operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$
 (12.68)

$$= \{e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
 (12.69)

Lets start with one definition and derive the other.

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$
(12.69)

 $= \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$

(12.70)

• Lets start with one definition and derive the other.

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$(12.68)$$

• this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$.

• Lets start with one definition and derive the other.

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$(12.68)$$

• this last bit follows since $\mathbf{1}_e(A)=1\iff e\in A$. Continuing, we get

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$$
 (12.71)

Lets start with one definition and derive the other.

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$(12.68)$$

- this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$. Continuing, we get $\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$ (12.71)
- \bullet given that $x \in P_f^+$, meaning $x(A) \leq f(A)$ for all A , we must have $\operatorname{sat}(x)$

Lets start with one definition and derive the other.

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$(12.68)$$

ullet this last bit follows since $\mathbf{1}_e(A)=1\iff e\in A.$ Continuing, we get

$$\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$$
 (12.71)

• given that $x \in P_f^+$, meaning $x(A) \leq f(A)$ for all A, we must have

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (12.72)

Lets start with one definition and derive the other.

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$(12.68)$$

• this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$. Continuing, we get

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$$
 (12.71)

• given that $x \in P_f^+$, meaning $x(A) \le f(A)$ for all A, we must have

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (12.72)

$$= \{e : \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (12.73)

• Lets start with one definition and derive the other.

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$
(12.68)

$$= \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\} \quad (12.70)$$

- this last bit follows since $\mathbf{1}_e(A)=1\iff e\in A$. Continuing, we get $\operatorname{sat}(x)=\{e: \forall \alpha>0, \exists A\ni e \text{ s.t. } x(A)+\alpha>f(A)\}$ (12.71)
- given that $x \in P_f^+$, meaning $x(A) \le f(A)$ for all A, we must have

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (12.72)

$$= \{e : \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (12.73)

ullet So now, if A is any set such that x(A)=f(A), then we clearly have

(12.74)

Lets start with one definition and derive the other.

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$
(12.69)

$$= \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A)\}$$
 (12.70)

• this last bit follows since $\mathbf{1}_e(A) = 1 \iff e \in A$. Continuing, we get

$$\operatorname{sat}(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$$
 (12.71)

 \bullet given that $x \in P_f^+$, meaning $x(A) \leq f(A)$ for all A , we must have

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (12.72)

$$= \{e : \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (12.73)

ullet So now, if A is any set such that x(A)=f(A), then we clearly have

$$\forall e \in A, e \in \text{sat}(x), \tag{12.74}$$

• Lets start with one definition and derive the other.

$$sat(x) \stackrel{\text{def}}{=} \left\{ e : \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f^+ \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$= \left\{ e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } (x + \alpha \mathbf{1}_e)(A) > f(A) \right\}$$

$$(12.68)$$

ullet this last bit follows since $\mathbf{1}_e(A)=1\iff e\in A.$ Continuing, we get

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) + \alpha > f(A)\}$$
 (12.71)

• given that $x \in P_f^+$, meaning $x(A) \leq f(A)$ for all A, we must have

$$sat(x) = \{e : \forall \alpha > 0, \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (12.72)

$$= \{e : \exists A \ni e \text{ s.t. } x(A) = f(A)\}$$
 (12.73)

ullet So now, if A is any set such that x(A)=f(A), then we clearly have

$$\forall e \in A, e \in \operatorname{sat}(x), \text{ and therefore that } \operatorname{sat}(x) \supseteq A$$
 (12.74)

• ...and therefore, with sat as defined in Eq. (12.58),

$$\operatorname{sat}(x) \supseteq \bigcup \{A : x(A) = f(A)\}$$
 (12.75)

sat, as tight polymatroidal elements

• ... and therefore, with sat as defined in Eq. (12.58),

$$\operatorname{sat}(x) \supseteq \{A : x(A) = f(A)\}$$
 (12.75)

• On the other hand, for any $e \in \operatorname{sat}(x)$ defined as in Eq. (12.73), since e is itself a member of a tight set, there is a set $A \ni e$ such that x(A) = f(A), giving

$$\operatorname{sat}(x) \subseteq \bigcup \{A : x(A) = f(A)\} \tag{12.76}$$

sat, as tight polymatroidal elements

• ... and therefore, with sat as defined in Eq. (12.58),

$$\operatorname{sat}(x) \supseteq \bigcup \{A : x(A) = f(A)\}$$
 (12.75)

• On the other hand, for any $e \in \operatorname{sat}(x)$ defined as in Eq. (12.73), since e is itself a member of a tight set, there is a set $A \ni e$ such that x(A) = f(A), giving

$$\operatorname{sat}(x) \subseteq \bigcup \left\{ A : x(A) = f(A) \right\} \tag{12.76}$$

• Therefore, the two definitions of sat are identical.

• Another useful concept is saturation capacity which we develop next.

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_f$, and $e \in E$, consider finding

$$\max\left\{\alpha:\alpha\in\mathbb{R},x+\alpha\mathbf{1}_e\in P_f\right\} \tag{12.77}$$

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_f$, and $e \in E$, consider finding

$$\max\left\{\alpha:\alpha\in\mathbb{R},x+\alpha\mathbf{1}_{e}\in P_{f}\right\} \tag{12.77}$$

This is identical to:

$$\max \{\alpha : (x + \alpha \mathbf{1}_e)(A) \le f(A), \forall A \supseteq \{e\}\}$$
 (12.78)

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_e$ adjustment, meaning $(x + \alpha \mathbf{1}_e)(B) = x(B)$.

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_f$, and $e \in E$, consider finding

$$\max\left\{\alpha:\alpha\in\mathbb{R},x+\alpha\mathbf{1}_e\in P_f\right\} \tag{12.77}$$

This is identical to:

$$\max \{\alpha : (x + \alpha \mathbf{1}_e)(A) \le f(A), \forall A \supseteq \{e\}\}$$
 (12.78)

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_e$ adjustment, meaning $(x + \alpha \mathbf{1}_e)(B) = x(B)$.

• Again, this is identical to:

$$\max\left\{\alpha: x(A) + \alpha \le f(A), \forall A \ge \{e\}\right\} \tag{12.79}$$

- Another useful concept is saturation capacity which we develop next.
- For $x \in P_f$, and $e \in E$, consider finding

$$\max\left\{\alpha:\alpha\in\mathbb{R},x+\alpha\mathbf{1}_{e}\in P_{f}\right\} \tag{12.77}$$

This is identical to:

$$\max \left\{ \alpha : (x + \alpha \mathbf{1}_e)(A) \le f(A), \forall A \supseteq \{e\} \right\}$$
 (12.78)

since any $B \subseteq E$ such that $e \notin B$ does not change in a $\mathbf{1}_e$ adjustment, meaning $(x + \alpha \mathbf{1}_e)(B) = x(B)$.

Again, this is identical to:

$$\max \{\alpha : x(A) + \alpha \le f(A), \forall A \ge \{e\}\}$$
 (12.79)

or

$$\max \{\alpha : \alpha \le f(A) - x(A), \forall A \ge \{e\}\}$$
 (12.80)

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
 (12.81)

The max is achieved when

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
 (12.81)

 \bullet $\hat{c}(x;e)$ is known as the saturation capacity associated with $x\in P_f$ and e.

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
 (12.81)

- $\hat{c}(x;e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \ni e \right\} \tag{12.82}$$

$$= \max \left\{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \right\}$$
 (12.83)

The max is achieved when

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
 (12.81)

- $\hat{c}(x;e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min \{ f(A) - x(A), \forall A \ni e \}$$

$$= \max \{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \}$$
(12.82)
$$(12.83)$$

• We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x;e) > 0$.

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
 (12.81)

- $\hat{c}(x;e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min \{ f(A) - x(A), \forall A \ni e \}$$

$$= \max \{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \}$$
(12.82)

- We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x;e) > 0$.
- Also, for $e \in \operatorname{sat}(x)$, we have that $\hat{c}(x;e) = 0$.

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
 (12.81)

- $\hat{c}(x;e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min \{ f(A) - x(A), \forall A \ni e \}$$

$$= \max \{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \}$$
(12.82)

- We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x;e) > 0$.
- Also, for $e \in \operatorname{sat}(x)$, we have that $\hat{c}(x;e) = 0$.
- Note that any α with $0 \le \alpha \le \hat{c}(x; e)$ we have $x + \alpha \mathbf{1}_e \in P_f$.

$$\alpha = \hat{c}(x; e) \stackrel{\text{def}}{=} \min \left\{ f(A) - x(A), \forall A \supseteq \{e\} \right\}$$
 (12.81)

- $\hat{c}(x;e)$ is known as the saturation capacity associated with $x \in P_f$ and e.
- Thus we have for $x \in P_f$,

$$\hat{c}(x;e) \stackrel{\text{def}}{=} \min \{ f(A) - x(A), \forall A \ni e \}$$

$$= \max \{ \alpha : \alpha \in \mathbb{R}, x + \alpha \mathbf{1}_e \in P_f \}$$
(12.82)

- We immediately see that for $e \in E \setminus \operatorname{sat}(x)$, we have that $\hat{c}(x;e) > 0$.
- Also, for $e \in \operatorname{sat}(x)$, we have that $\hat{c}(x;e) = 0$.
- Note that any α with $0 \le \alpha \le \hat{c}(x; e)$ we have $x + \alpha \mathbf{1}_e \in P_f$.
- We also see that computing $\hat{c}(x;e)$ is a form of submodular function minimization.

• Tight sets can be restricted to contain a particular element.

 $= \mathcal{D}(x) \cap \{A : A \subseteq E, e \in A\}$

Dependence Function

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_f$, and $e \in \operatorname{sat}(x)$, define

$$\mathcal{D}(x,e) = \{ A : e \in A \subseteq E, x(A) = f(A) \}$$
 (12.84)

(12.85)

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_f$, and $e \in sat(x)$, define

$$\mathcal{D}(x,e) = \{ A : e \in A \subseteq E, x(A) = f(A) \}$$

$$= \mathcal{D}(x) \cap \{ A : A \subseteq E, e \in A \}$$
(12.84)

• Thus, $\mathcal{D}(x,e) \subseteq \mathcal{D}(x)$, and $\mathcal{D}(x,e)$ is a sublattice of $\mathcal{D}(x)$.

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_f$, and $e \in \operatorname{sat}(x)$, define

$$\mathcal{D}(x,e) = \{ A : e \in A \subseteq E, x(A) = f(A) \}$$

$$= \mathcal{D}(x) \cap \{ A : A \subseteq E, e \in A \}$$
(12.84)

- Thus, $\mathcal{D}(x,e) \subseteq \mathcal{D}(x)$, and $\mathcal{D}(x,e)$ is a sublattice of $\mathcal{D}(x)$.
- Therefore, we can define a unique minimal element of $\mathcal{D}(x,e)$ denoted as follows:

$$dep(x, e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$$
(12.86)

- Tight sets can be restricted to contain a particular element.
- Given $x \in P_f$, and $e \in \operatorname{sat}(x)$, define

$$\mathcal{D}(x,e) = \{ A : e \in A \subseteq E, x(A) = f(A) \}$$

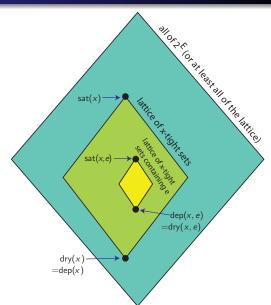
$$= \mathcal{D}(x) \cap \{ A : A \subseteq E, e \in A \}$$
(12.84)

- Thus, $\mathcal{D}(x,e) \subseteq \mathcal{D}(x)$, and $\mathcal{D}(x,e)$ is a sublattice of $\mathcal{D}(x)$.
- Therefore, we can define a unique minimal element of $\mathcal{D}(x,e)$ denoted as follows:

$$dep(x,e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$$
(12.86)

• I.e., dep(x, e) is the minimal element in $\mathcal{D}(x)$ that contains e (the minimal x-tight set containing e).

- The picture on the right summarizes the relationships between the lattices and sublattices.
- Note, $\bigcap_{e} \operatorname{dep}(x, e) = \operatorname{dep}(x).$



• Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\}\$ is the "1" element of this lattice.
- ullet Consider the "0" element of $\mathcal{D}(x)$, i.e., $\mathrm{dry}(x) \stackrel{\mathrm{def}}{=} \bigcap \{A: A \in \mathcal{D}(x)\}$

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $\mathrm{dry}(x) \stackrel{\mathrm{def}}{=} \bigcap \{A: A \in \mathcal{D}(x)\}$
- ullet We can see $\mathrm{dry}(x)$ as the elements that are necessary for tightness.

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $\mathrm{dry}(x) \stackrel{\mathrm{def}}{=} \bigcap \{A: A \in \mathcal{D}(x)\}$
- We can see dry(x) as the elements that are necessary for tightness.
- That is, we can equivalently define dry(x) as

$$dry(x) = \left\{ e' : x(A) < f(A), \forall A \not\ni e' \right\}$$
 (12.87)

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $\mathrm{dry}(x) \stackrel{\mathrm{def}}{=} \bigcap \{A: A \in \mathcal{D}(x)\}$
- We can see dry(x) as the elements that are necessary for tightness.
- That is, we can equivalently define dry(x) as

$$dry(x) = \left\{ e' : x(A) < f(A), \forall A \not\ni e' \right\}$$
 (12.87)

• This can be read as, for any $e' \in dry(x)$, any set that does not contain e' is not tight for x (any set A that is missing any element of dry(x) is not tight).

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $\operatorname{dry}(x) \stackrel{\operatorname{def}}{=} \bigcap \{A : A \in \mathcal{D}(x)\}$
- ullet We can see $\mathrm{dry}(x)$ as the elements that are necessary for tightness.
- That is, we can equivalently define dry(x) as

$$dry(x) = \left\{ e' : x(A) < f(A), \forall A \not\ni e' \right\}$$
 (12.87)

- This can be read as, for any $e' \in dry(x)$, any set that does not contain e' is not tight for x (any set A that is missing any element of dry(x) is not tight).
- Perhaps, then, a better name for dry is nsat(x), for the necessary for tightness (but we'll actually use neither name).

- Given $x \in P_f$, recall distributive lattice of tight sets $\mathcal{D}(x) = \{A : x(A) = f(A)\}$
- We had that $\operatorname{sat}(x) = \bigcup \{A : A \in \mathcal{D}(x)\}$ is the "1" element of this lattice.
- Consider the "0" element of $\mathcal{D}(x)$, i.e., $\mathrm{dry}(x) \stackrel{\mathrm{def}}{=} \bigcap \{A : A \in \mathcal{D}(x)\}$
- ullet We can see $\mathrm{dry}(x)$ as the elements that are necessary for tightness.
- That is, we can equivalently define dry(x) as

$$dry(x) = \{e' : x(A) < f(A), \forall A \not\ni e'\}$$
 (12.87)

- This can be read as, for any $e' \in dry(x)$, any set that does not contain e' is not tight for x (any set A that is missing any element of dry(x) is not tight).
- Perhaps, then, a better name for dry is nsat(x), for the necessary for tightness (but we'll actually use neither name).
- Note that dry need not be empty. Exercise: give example.

• Now, given $x \in P_f$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x,e) = \{A: e \in A, x(A) = f(A)\}$

- Now, given $x \in P_f$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x,e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x,e) \stackrel{\operatorname{def}}{=} \bigcup \{A: A \in \mathcal{D}(x,e)\}.$

- Now, given $x \in P_f$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x,e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x,e) \stackrel{\text{def}}{=} \bigcup \{A: A \in \mathcal{D}(x,e)\}.$
- Analogously, we can define the "0" element of this sub-lattice as $dry(x,e) \stackrel{\text{def}}{=} \bigcap \{A: A \in \mathcal{D}(x,e)\}.$

- Now, given $x \in P_f$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x,e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x,e) \stackrel{\text{def}}{=} \bigcup \{A: A \in \mathcal{D}(x,e)\}.$
- Analogously, we can define the "0" element of this sub-lattice as $dry(x,e) \stackrel{\text{def}}{=} \bigcap \{A: A \in \mathcal{D}(x,e)\}.$
- We can see dry(x, e) as the elements that are necessary for e-containing tightness, with $e \in sat(x)$.

- Now, given $x \in P_f$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x,e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x,e) \stackrel{\text{def}}{=} | | \{A: A \in \mathcal{D}(x,e) \}.$
- Analogously, we can define the "0" element of this sub-lattice as $dry(x,e) \stackrel{\text{def}}{=} \bigcap \{A: A \in \mathcal{D}(x,e)\}.$
- We can see dry(x, e) as the elements that are necessary for e-containing tightness, with $e \in sat(x)$.
- That is, we can view dry(x, e) as

$$dry(x, e) = \{e' : x(A) < f(A), \forall A \not\ni e', e \in A\}$$
 (12.88)

- Now, given $x \in P_f$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x,e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x,e) \stackrel{\operatorname{def}}{=} \bigcup \{A: A \in \mathcal{D}(x,e)\}.$
- Analogously, we can define the "0" element of this sub-lattice as $dry(x,e) \stackrel{\text{def}}{=} \bigcap \{A: A \in \mathcal{D}(x,e)\}.$
- We can see dry(x, e) as the elements that are necessary for e-containing tightness, with $e \in sat(x)$.
- That is, we can view dry(x, e) as

$$\operatorname{dry}(x, e) = \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\}$$
 (12.88)

• This can be read as, for any $e' \in dry(x, e)$, any e-containing set that does not contain e' is not tight for x.

- Now, given $x \in P_f$, and $e \in \operatorname{sat}(x)$, recall distributive sub-lattice of e-containing tight sets $\mathcal{D}(x,e) = \{A : e \in A, x(A) = f(A)\}$
- We can define the "1" element of this sub-lattice as $\operatorname{sat}(x,e) \stackrel{\operatorname{def}}{=} \bigcup \{A: A \in \mathcal{D}(x,e)\}.$
- Analogously, we can define the "0" element of this sub-lattice as $dry(x,e) \stackrel{\text{def}}{=} \bigcap \{A: A \in \mathcal{D}(x,e)\}.$
- We can see dry(x, e) as the elements that are necessary for e-containing tightness, with $e \in sat(x)$.
- That is, we can view dry(x, e) as

$$dry(x,e) = \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\}$$
 (12.88)

- This can be read as, for any $e' \in dry(x, e)$, any e-containing set that does not contain e' is not tight for x.
- But actually, dry(x, e) = dep(x, e), so we have derived another expression for dep(x, e) in Eq. (12.88).

Dependence Function and Fundamental Matroid Circuit

• Now, let $(E,\mathcal{I})=(E,r)$ be a matroid, and let $I\in\mathcal{I}$ giving $\mathbf{1}_I\in P_r$. Let $e\in\operatorname{sat}(\mathbf{1}_I)=\operatorname{span}(I)=\operatorname{closure}(I)$.

- Now, let $(E, \mathcal{I}) = (E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_I \in P_r$. Let $e \in \operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I) = \operatorname{closure}(I)$.
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.

- Now, let $(E, \mathcal{I}) = (E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_I \in P_r$. Let $e \in \operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I) = \operatorname{closure}(I)$.
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.
- Then $I \cap A$ serves as a base for A (i.e., $I \cap A$ spans A) and any such A contains a circuit (i.e., we can add $e \in A \setminus I$ to $I \cap A$ w/o increasing rank).

- Now, let $(E, \mathcal{I}) = (E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_I \in P_r$. Let $e \in \operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I) = \operatorname{closure}(I)$.
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.
- Then $I \cap A$ serves as a base for A (i.e., $I \cap A$ spans A) and any such A contains a circuit (i.e., we can add $e \in A \setminus I$ to $I \cap A$ w/o increasing rank).
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, and consider $\operatorname{dep}(\mathbf{1}_I, e)$, with

$$dep(\mathbf{1}_I, e) = \bigcap \{A : e \in A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$

$$= \bigcap \{A : e \in A \subseteq E, |I \cap A| = r(A)\}$$
(12.89)

- Now, let $(E, \mathcal{I}) = (E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_I \in P_r$. Let $e \in \operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I) = \operatorname{closure}(I)$.
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.
- Then $I \cap A$ serves as a base for A (i.e., $I \cap A$ spans A) and any such A contains a circuit (i.e., we can add $e \in A \setminus I$ to $I \cap A$ w/o increasing rank).
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, and consider $\operatorname{dep}(\mathbf{1}_I, e)$, with

$$dep(\mathbf{1}_I, e) = \bigcap \{A : e \in A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$

$$= \bigcap \{A : e \in A \subseteq E, |I \cap A| = r(A)\}$$
(12.89)

• Then there is a unique minimal $A \ni e$ with $|I \cap A| = r(A)$.

- Now, let $(E, \mathcal{I}) = (E, r)$ be a matroid, and let $I \in \mathcal{I}$ giving $\mathbf{1}_I \in P_r$. Let $e \in \operatorname{sat}(\mathbf{1}_I) = \operatorname{span}(I) = \operatorname{closure}(I)$.
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$ and then consider an $A \ni e$ with $|I \cap A| = r(A)$.
- Then $I \cap A$ serves as a base for A (i.e., $I \cap A$ spans A) and any such A contains a circuit (i.e., we can add $e \in A \setminus I$ to $I \cap A$ w/o increasing rank).
- Given $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, and consider $\operatorname{dep}(\mathbf{1}_I, e)$, with

$$dep(\mathbf{1}_I, e) = \bigcap \{A : e \in A \subseteq E, \mathbf{1}_I(A) = r(A)\}$$

$$= \bigcap \{A : e \in A \subseteq E, |I \cap A| = r(A)\}$$

$$(12.89)$$

- Then there is a unique minimal $A \ni e$ with $|I \cap A| = r(A)$.
- Thus, $dep(\mathbf{1}_I, e)$ must be a circuit since if it included more than a circuit, it would not be minimal in this sense.

• Therefore, when $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, then $\operatorname{dep}(\mathbf{1}_I, e) = C(I, e)$ where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).

- Therefore, when $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, then $\operatorname{dep}(\mathbf{1}_I, e) = C(I, e)$ where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}(\mathbf{1}_I) \cap I$ with $I \in \mathcal{I}$, we said that C(I,e) was undefined (since no circuit is created in this case) and so we defined it as $C(I,e) = \{e\}$

- Therefore, when $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, then $\operatorname{dep}(\mathbf{1}_I, e) = C(I, e)$ where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}(\mathbf{1}_I) \cap I$ with $I \in \mathcal{I}$, we said that C(I,e) was undefined (since no circuit is created in this case) and so we defined it as $C(I,e) = \{e\}$
- In this case, for such an e, we have $dep(\mathbf{1}_I,e)=\{e\}$ since all such sets $A\ni e$ with $|I\cap A|=r(A)$ contain e, but in this case no cycle is created.

- Therefore, when $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, then $\operatorname{dep}(\mathbf{1}_I, e) = C(I, e)$ where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}(\mathbf{1}_I) \cap I$ with $I \in \mathcal{I}$, we said that C(I,e) was undefined (since no circuit is created in this case) and so we defined it as $C(I,e) = \{e\}$
- In this case, for such an e, we have $dep(\mathbf{1}_I,e)=\{e\}$ since all such sets $A\ni e$ with $|I\cap A|=r(A)$ contain e, but in this case no cycle is created.
- We are thus free to take subsets of I as A, all of which must contain e, but all of which have rank equal to size.

- Therefore, when $e \in \operatorname{sat}(\mathbf{1}_I) \setminus I$, then $\operatorname{dep}(\mathbf{1}_I, e) = C(I, e)$ where C(I, e) is the unique circuit contained in I + e in a matroid (the fundamental circuit of e and I that we encountered before).
- Now, if $e \in \operatorname{sat}(\mathbf{1}_I) \cap I$ with $I \in \mathcal{I}$, we said that C(I,e) was undefined (since no circuit is created in this case) and so we defined it as $C(I,e) = \{e\}$
- In this case, for such an e, we have $dep(\mathbf{1}_I,e)=\{e\}$ since all such sets $A\ni e$ with $|I\cap A|=r(A)$ contain e, but in this case no cycle is created.
- We are thus free to take subsets of I as A, all of which must contain e, but all of which have rank equal to size.
- Also note: in general for $x \in P_f$ and $e \in \operatorname{sat}(x)$, we have $\operatorname{dep}(x,e)$ is tight by definition.

Summary of sat, and dep

• For $x \in P_f$, $\operatorname{sat}(x)$ (span, closure) is the maximal saturated (x-tight) set w.r.t. x. I.e., $\operatorname{sat}(x) = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$. That is,

$$\operatorname{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \triangleq \bigcup \{A : A \in \mathcal{D}(x)\}$$
 (12.91)

$$= \bigcup \left\{ A : A \subseteq E, x(A) = f(A) \right\} \tag{12.92}$$

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
 (12.93)

• For $e \in \text{sat}(x)$, dep(x,e) (fundamental circuit) is the minimal (common) saturated (x-tight) set w.r.t. x containing e. That is,

$$dep(x,e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$$
$$= \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f \}$$
(12.94)

• For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x + \alpha \mathbf{1}_e \notin P_f$ for $\alpha > 0$. This is a vector increase restriction property.

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x + \alpha \mathbf{1}_e \notin P_f$ for $\alpha > 0$. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x + \alpha \mathbf{1}_e \notin P_f$ for $\alpha > 0$. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \setminus I$, we have that

$$C(I, e) = \{a \in E : I + e - a \in \mathcal{I}\}$$
 (12.95)

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x + \alpha \mathbf{1}_e \notin P_f$ for $\alpha > 0$. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \setminus I$, we have that

$$C(I, e) = \{a \in E : I + e - a \in \mathcal{I}\}$$
 (12.95)

• I.e., an addition of e to I stays within $\mathcal I$ only if we simultaneously remove one of the elements of C(I,e).

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x + \alpha \mathbf{1}_e \notin P_f$ for $\alpha > 0$. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \setminus I$, we have that

$$C(I, e) = \{a \in E : I + e - a \in \mathcal{I}\}$$
 (12.95)

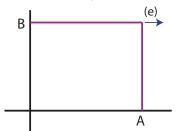
- I.e., an addition of e to I stays within $\mathcal I$ only if we simultaneously remove one of the elements of C(I,e).
- ullet But, analogous to the circuit case, is there an exchange property for dep(x,e) in the form of vector movement restriction?

- For $e \in \operatorname{span}(I) \setminus I$, we have that $I + e \notin \mathcal{I}$. This is a set addition restriction property.
- Analogously, for $e \in \operatorname{sat}(x)$, any $x + \alpha \mathbf{1}_e \notin P_f$ for $\alpha > 0$. This is a vector increase restriction property.
- Recall, we have $C(I,e) \setminus e' \in \mathcal{I}$ for $e' \in C(I,e)$. I.e., C(I,e) consists of elements that when removed recover independence.
- In other words, for $e \in \operatorname{span}(I) \setminus I$, we have that

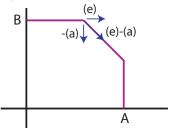
$$C(I, e) = \{ a \in E : I + e - a \in \mathcal{I} \}$$
 (12.95)

- I.e., an addition of e to I stays within \mathcal{I} only if we simultaneously remove one of the elements of C(I,e).
- But, analogous to the circuit case, is there an exchange property for dep(x, e) in the form of vector movement restriction?
- We might expect the vector dep(x,e) property to take the form: a positive move in the e-direction stays within P_f^+ only if we simultaneously take a negative move in one of the dep(x,e) directions.

• Viewable in 2D, we have for $A, B \subseteq E$, $A \cap B = \emptyset$:



Left: $A \cap \operatorname{dep}(x,e) = \emptyset$, and we can't move further in (e) direction, and moving in any negative $a \in A$ direction doesn't change that. Notice no dependence between (e) and any element in A.



Right: $A \subseteq \operatorname{dep}(x,e)$, and we can't move further in the (e) direction, but we can move further in (e) direction by moving in some $a \in A$ negative direction. Notice dependence between (e) and elements in A.

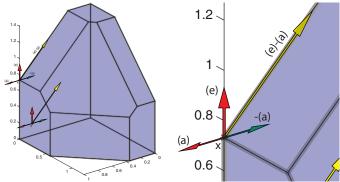
Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat Fund. Circuit/Dep

Dependence Function and exchange in 3D

• We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.

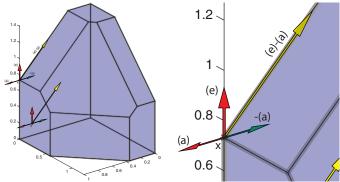
• We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.

• In 3D, we have:



• We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.

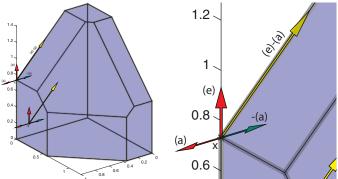
• In 3D, we have:



• I.e., for $e \in \operatorname{sat}(x)$, $a \in \operatorname{dep}(x, e)$, $e \notin \operatorname{dep}(x, a)$,

• We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.

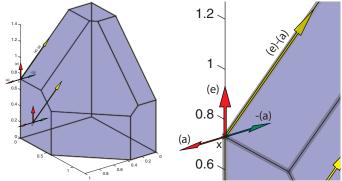
In 3D, we have:



• I.e., for $e \in \operatorname{sat}(x)$, $a \in \operatorname{sat}(x)$, $a \in \operatorname{dep}(x,e)$, $e \notin \operatorname{dep}(x,a)$, and $\operatorname{dep}(x,e) = \{a : a \in E, \exists \alpha > 0 : x + \alpha(\mathbf{1}_e - \mathbf{1}_a) \in P_f\}$ (12.96)

• We can move neither in the (e) nor the (a) direction, but we can move in the (e) direction if we simultaneously move in the -(a) direction.

In 3D, we have:



- I.e., for $e \in \operatorname{sat}(x)$, $a \in \operatorname{sat}(x)$, $a \in \operatorname{dep}(x,e)$, $e \notin \operatorname{dep}(x,a)$, and $\operatorname{dep}(x,e) = \{a : a \in E, \exists \alpha > 0 : x + \alpha(\mathbf{1}_e \mathbf{1}_a) \in P_f\}$ (12.9)
- We next show this formally . . .

$$dep(x,e) \tag{12.97}$$

$$dep(x, e)$$
= $\{e' : x(A) < f(A), \forall A \not\ni e', e \in A\}$ (12.97)
(12.98)

$$dep(x,e) \tag{12.97}$$

$$= \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\} \tag{12.98}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \le f(A) - x(A), \forall A \not\ni e', e \in A\}$$
 (12.99)

$$dep(x,e) (12.97)$$

$$= \left\{ e' : x(A) < f(A), \forall A \not\ni e', e \in A \right\} \tag{12.98}$$

$$=\left\{e':\exists\alpha>0,\text{ s.t. }\alpha\leq f(A)-x(A),\forall A\not\ni e',e\in A\right\} \tag{12.99}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_e(A) < f(A) - x(A), \forall A \not\ni e', e \in A\}$$
 (12.100)

$$dep(x, e)$$

$$= \{e' : x(A) < f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_{e}(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_{e}(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$dep(x, e)$$

$$= \{e' : x(A) < f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_{e}(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_{e}(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

• The derivation for dep(x, e) involves turning a strict inequality into a non-strict one with a strict explicit slack variable α :

$$dep(x, e)$$

$$= \{e' : x(A) < f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_{e}(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_{e}(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

• Now, $1_e(A) - \mathbf{1}_{e'}(A) = 0$ if either $\{e, e'\} \subseteq A$, or $\{e, e'\} \cap A = \emptyset$.

$$dep(x, e)$$

$$= \{e' : x(A) < f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_{e}(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha \mathbf{1}_{e}(A) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A) - x(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

$$= \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha (\mathbf{1}_{e}(A) - \mathbf{1}_{e'}(A)) \leq f(A), \forall A \not\ni e', e \in A\}$$

- Now, $1_e(A) \mathbf{1}_{e'}(A) = 0$ if either $\{e, e'\} \subseteq A$, or $\{e, e'\} \cap A = \emptyset$.
- Also, if $e' \in A$ but $e \notin A$, then $x(A) + \alpha(\mathbf{1}_e(A) \mathbf{1}_{e'}(A)) = x(A) \alpha \leq f(A)$ since $x \in P_f$.

ullet thus, we get the same in the above if we remove the constraint $A \not\ni e', e \in A$, that is we get

$$dep(x,e) = \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A), \forall A\}$$
(12.103)

• thus, we get the same in the above if we remove the constraint $A \not\ni e', e \in A$, that is we get

$$dep(x,e) = \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A), \forall A\}$$
(12.103)

• This is then identical to

$$dep(x,e) = \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f\}$$
 (12.104)

• thus, we get the same in the above if we remove the constraint $A \not\ni e', e \in A$, that is we get

$$dep(x,e) = \{e' : \exists \alpha > 0, \text{ s.t. } x(A) + \alpha(\mathbf{1}_e(A) - \mathbf{1}_{e'}(A)) \le f(A), \forall A\}$$
(12.103)

This is then identical to

$$dep(x,e) = \{e' : \exists \alpha > 0, \text{ s.t. } x + \alpha(\mathbf{1}_e - \mathbf{1}_{e'}) \in P_f\}$$
 (12.104)

• Compare with original, the minimal element of $\mathcal{D}(x,e)$, with $e \in \operatorname{sat}(x)$:

$$dep(x,e) = \begin{cases} \bigcap \{A : e \in A \subseteq E, x(A) = f(A)\} & \text{if } e \in sat(x) \\ \emptyset & \text{else} \end{cases}$$
(12.105)