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(NN}

Cumulative Outstanding Reading

@ Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige's book.

e Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.

@ Read Tom McCormick's overview paper on SFM http://people.
commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

@ Read chapters 1 - 3 from Fujishige book.

@ Matroid properties http:
//www-math.mit.edu/~goemans/18433509/matroid-notes.pdf
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Logistics
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Announcements, Assignments, and Reminders

@ Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics
(W1

Class Road Map - IT-I

@ L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

@ L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

@ L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation
L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

@ L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

@ L9: From Matroid Polytopes to
Polymatroids.

@ L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, polymatroids
and entropic Venn diagrams, exchange
capacity,

L16: proof that minimum norm point
yields min of submodular function, and
the lattice of minimizers of a submodular
function, Lovasz extension

L17: Lovasz extension, Choquet
Integration, more properties/examples of
Lovasz extension, convex minimization
and SFM.

L18: Lovasz extension examples and
structured convex norms, The Min-Norm
Point Algorithm detailed.

L19: symmetric submodular function
minimization, maximizing monotone
submodular function w. card constraints.
L20: maximizing monotone submodular
function w. other constraints,
non-monotone maximization.

Finals Week: June 9th-13th, 2014.

Prof. Jeff Bilmes
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Review
[ERNRRN

A polymatroid function's polyhedron is a polymatroid.

Theorem 12.2.4

Let f be a polymatroid function defined on subsets of E. For any
T € ]Rf, and any P]T—basis y* e Rf of z, the component sum of y* is

y*(F) = rank(x) = max (y(E) cy<mye P;r)
= min (z(4) + f(E\ A) : AC E) (12.34)

As a consequence, P]T is a polymatroid, since r.h.s. is constant w.r.t. y*.

By taking B = supp(z) (so elements E'\ B are zero in x), and for b € B,
x(b) is big enough, the r.h.s. min has solution A* = E\ B. We recover
submodular function from the polymatroid polyhedron via the following:

£(B) = max {y(B) Ly € P;} (12.35)

In fact, we will ultimately see a number of important consequences of

this theorem (other than just that P} is a polymatroid)
Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F5/47 (pg.5/167)



Review
NNRNAR

Tight sets D(y) are closed, and max tight set sat(y)
Recall the definition of the set of tight sets at y € Pf+:

D(y) ={A: ACE, y(A) = f(A)} (12.18)

Theorem 12.2.1

For any y € P;, with f a polymatroid function, then D(y) is closed
under union and intersection.

We have already proven this as part of Theorem 9.4.5 []

Also recall the definition of sat(y), the maximal set of tight elements
relative to y € Rf.

sat(y) € | J{T : T € D(y)} (12.19)
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Review
NI RNNR

Bipartite Matching

e Given a matching A C E (which might be empty), we can increase
the matching if we can find an augmenting path S.

@ The updated matching becomes A’ = A\ SUS\ A= AS S, where
© is the symmetric difference operator.

@ The algorithm becomes:

Algorithm 8.1: Alternating Path Bipartite Matching

1 Let A be an arbitrary (including empty) matching in G = (V, F, E) ;
2 while There exists an augmenting path S in G do
3 | A« AeS;

@ This can easily be made to run in O(m?n), where |V| = m,
|F'| =n, m <mn, but it can be made to run much faster as well (see
Schrijver-2003).
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Review
INNTANR

Matroid Intersection

e Let My = (V,Zy) and My = (V,Z3) be two matroids. Consider their
common independent sets 77 N Zs.

e While (V,Z; NZy) is typically not a matroid (Exercise: show
graphical example.), we might be interested in finding the maximum
size common independent set. That is, find max | X| such that both
X €71y and X € Is.

Theorem 12.2.5
Let My and My be given as above, with rank functions 1 and ro. Then
the size of the maximum size set in Z; N Zy is given by

(ryx2)(V) £ min <r1 (X) +7r2(V\ X)) (12.7)

This is an instance of the convolution of two submodular functions,
f1 and f5 that, evaluated at Y C V, is written as:

(s )O) = min (AX) + LY\ X)) (128)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F8/47 (pg.8/167)



Review
INNAR AR

Fundamental circuits in matroids

Let I € Z(M), and e € E, then I U {e} contains at most one circuit in
M.

@ Suppose, to the contrary, that there are two distinct circuits C, Co
such that C1 UCy C I U {e}.

@ Then e € C1 N Cy, and by (C2), there is a circuit C3 of M s.t.
C3 C (01U02)\{€} cI

@ This contradicts the independence of I.

In general, let C(I,e) be the unique circuit associated with I U {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Matroid Intersection Algorithm ldea

e Hopefully (eventually) we'll find an odd length sequence
S = (v1,v2,...,vs) such that we will be independent in both M;
and M and thus be one greater in size than I.

o We will have v; ¢ I for i odd (will be shown in i), and will have
v; € I for i even (will be shown in JgF€€nl), while v € I'\ S will be

shown in -

@ We then replace I with I © S (quite analogous to the bipartite
matching case), and start again.
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Identifying Augmenting Sequences

Theorem 12.2.6

Let I,, and I, 1 be intersections of My and Ms with p and p + 1
elements respectively. Then there exists an augmenting sequence
S CI,olpy wrt. Ip.

Theorem 12.2.7
An intersection is of maximum cardinality iff it admits no augmenting

sequence.

Theorem 12.2.8

For any intersection I, there exists a maximum cardinality intersection I*
such that span, (I) C span, (I*) and span, (1) C spany(*).

All this can be made to run in poly time.
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Mtrd. Partitioning
(NN}

Matroid Partition Problem

@ Suppose M; = (E,Z;) is a matroid and that we have k of them on
the same ground set E.
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Mtrd. Partitioning
(NN}

Matroid Partition Problem

@ Suppose M; = (E,Z;) is a matroid and that we have k of them on
the same ground set E.

@ We wish to, if possible, partition E into k blocks,
Ii,i € {1,2,...,k} where I; € Z,.
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Mtrd. Partitioning
(NN}

Matroid Partition Problem

@ Suppose M; = (E,Z;) is a matroid and that we have k of them on
the same ground set E.

@ We wish to, if possible, partition E into k blocks,
Ii,i € {1,2,...,k} where I; € Z,.

@ Moreover, we want partition to be lexicographically maximum, that
is [I1] is maximum, |I3| is maximum given |I1|, and so on.
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Mtrd. Partitioning
1

Matroid Partition Problem

Theorem 12.3.1

Let M; be a collection of k matroids as described. Then, a set S C FE
can be partitioned into k subsets I;,1=1...k where I; € Z; is
independent in matroid i, if and only if, for all A C S

k
|A] < Zm(A) (12.1)

where r; is the rank function of M;.
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Mtrd. Partitioning
1

Matroid Partition Problem

Theorem 12.3.1

Let M; be a collection of k matroids as described. Then, a set S C FE
can be partitioned into k subsets I;,1=1...k where I; € Z; is
independent in matroid i, if and only if, for all A C S

k
|A] < Zm(A) (12.1)

where r; is the rank function of M;.

@ Now, if all matroids are the same M; = M for all 4, we get condition
|A| < kr(A) VACE (12.2)
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Mtrd. Partitioning
1

Matroid Partition Problem

Theorem 12.3.1

Let M; be a collection of k matroids as described. Then, a set S C FE
can be partitioned into k subsets I;,i =1...k where I; € Z; is
independent in matroid i, if and only if, for all A C S

k
|A] < Zri(A) (12.1)

where r; is the rank function of M;.

@ Now, if all matroids are the same M; = M for all 4, we get condition
|A| < kr(A) VACE (12.2)
@ But considering vector of all ones 1 € RZ, this is the same as
1 1
E‘A| = %1(/1) <r(A) VACE (12.3)
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Mtrd. Partitioning
L1

Matroid Partition Problem

@ Recall definition of matroid polytope

Pr={yeRE:y(A) <r(A)forall AC E} (12.4)
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Mtrd. Partitioning
L1

Matroid Partition Problem

@ Recall definition of matroid polytope
Pr={ye REY : y(A) <r(A) for all A C E} (12.4)
@ Then we see that this special case of the matroid partition problem

is just testing if %1 € PF, a problem of testing the membership in
matroid polyhedra.
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Mtrd. Partitioning
L1

Matroid Partition Problem

@ Recall definition of matroid polytope
Pr={ye REY : y(A) <r(A) for all A C E} (12.4)

@ Then we see that this special case of the matroid partition problem
is just testing if %1 € PF, a problem of testing the membership in
matroid polyhedra.

@ This is therefore a special case of submodular function minimization.
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Polymatroids and Greedy
[ERRRNNANN]

Review

@ The next two slides from respectively from Lecture 9 and Lecture 8.
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Polymatroids and Greedy
[LERNRRNRR

Polymatroidal polyhedron (or a “polymatroid”)

Definition 12.4.4 (polymatroid)

A polymatroid is a compact set P C Rf satisfying
Q0eP
@ If y <z € P then y € P (called down monotone).

© For every x € ]Rf, any maximal vector y € P with y < z (i.e., any
P-basis of z), has the same component sum y(E)

e Vectors within P (i.e., any y € P) are called independent, and any
vector outside of P is called dependent.

@ Since all P-bases of x have the same component sum, if B, is the
set of P-bases of x, than rank(z) = y(F) for any y € B,.
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Polymatroids and Greedy
(RLRNRRNRR!

Maximum weight independent set via greedy weighted rank

Theorem 12.4.6

Let M = (V,Z) be a matroid, with rank function r, then for any weight
function w € RY , there exists a chain of sets Uy C Uy C ---C U, CV
such that

max {w(I)|I € I} =Y \ir(U) (12.19)
=1
where \; > 0 satisfy

w=>Y \ly, (12.20)
=1
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Polymatroids and Greedy
(ARE ARRNRR

Polymatroidal polyhedron and greedy

o Let (E,T) be a set system and w € RY be a weight vector.
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Polymatroids and Greedy
(ARE ARRNRR

Polymatroidal polyhedron and greedy

o Let (F,T) be a set system and w € RY be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
y € E'\ A such that AU {y} € Z with w(y) as large as possible,
stopping when no such y exists.
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Polymatroids and Greedy
(ARE ARRNRR

Polymatroidal polyhedron and greedy

o Let (F,T) be a set system and w € RY be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
y € E\ A such that AU {y} € Z with w(y) as large as possible,
stopping when no such y exists.

e For a matroid, we saw that set system (F,Z) is a matroid iff for
each weight function w € RY, the greedy algorithm leads to a set
I € T of maximum weight w(I).
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Polymatroids and Greedy
(ARE ARRNRR

Polymatroidal polyhedron and greedy

o Let (F,T) be a set system and w € RY be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
y € E\ A such that AU {y} € Z with w(y) as large as possible,
stopping when no such y exists.

e For a matroid, we saw that set system (E,Z) is a matroid iff for
each weight function w € Rf, the greedy algorithm leads to a set
I € T of maximum weight w(I).

@ Stated succinctly, considering max{w(I) : I € I}, then (E,Z) is a
matroid iff greedy works for this maximization.
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Polymatroids and Greedy
(ARE ARRNRR

Polymatroidal polyhedron and greedy

o Let (F,T) be a set system and w € RY be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
y € E\ A such that AU {y} € Z with w(y) as large as possible,
stopping when no such y exists.

e For a matroid, we saw that set system (E,Z) is a matroid iff for
each weight function w € Rf, the greedy algorithm leads to a set
I € T of maximum weight w(I).

e Stated succinctly, considering max{w(I): I € I}, then (E,Z) is a
matroid iff greedy works for this maximization.

@ Can we also characterize a polymatroid in this way?
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Polymatroids and Greedy
(ARE ARRNRR

Polymatroidal polyhedron and greedy

o Let (F,T) be a set system and w € RY be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
y € E'\ A such that AU {y} € Z with w(y) as large as possible,
stopping when no such y exists.

e For a matroid, we saw that set system (E,Z) is a matroid iff for
each weight function w € Rf, the greedy algorithm leads to a set
I € T of maximum weight w(I).

e Stated succinctly, considering max{w(I): I € I}, then (E,Z) is a
matroid iff greedy works for this maximization.

@ Can we also characterize a polymatroid in this way?
@ That is, if we consider max {wx 1T € P]T} where P]T represents

the “independent vectors”, is it the case that PJT is a polymatroid
iff greedy works for this maximization?
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Polymatroids and Greedy
(ARE ARRNRR

Polymatroidal polyhedron and greedy

o Let (F,T) be a set system and w € RY be a weight vector.

@ Recall greedy algorithm: Set A = (), and repeatedly choose
y € E'\ A such that AU {y} € Z with w(y) as large as possible,
stopping when no such y exists.

e For a matroid, we saw that set system (E,Z) is a matroid iff for
each weight function w € Rf, the greedy algorithm leads to a set
I € T of maximum weight w(I).

e Stated succinctly, considering max{w(I): I € I}, then (E,Z) is a
matroid iff greedy works for this maximization.

@ Can we also characterize a polymatroid in this way?
@ That is, if we consider max {wx 1T E P;r} where Pf+ represents

the “independent vectors”, is it the case that P]T is a polymatroid
iff greedy works for this maximization?

@ Can we even relax things so that w € RF?
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Polymatroids and Greedy
(ARRR NRNRR

Polymatroidal polyhedron and greedy

e What is the greedy solution in this setting, when w € RF?
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Polymatroids and Greedy
(ARRR NRNRR

Polymatroidal polyhedron and greedy

e What is the greedy solution in this setting, when w € RF?
@ Sort elements of E/ w.r.t. w so that, w.l.o.g.
E = (e1,e2,...,em) with w(er) > w(ez) = -+ > wlem).
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Polymatroids and Greedy
(ARRR NRNRR

Polymatroidal polyhedron and greedy

e What is the greedy solution in this setting, when w € RF?
@ Sort elements of E/ w.r.t. w so that, w.l.o.g.
E = (e1,e2,...,em) with w(er) > w(ez) = -+ > wlem).
o Let k + 1 be the first point (if any) at which we are non-positive,
i.e., w(er) >0and 0 > w(eg .
That is, we have
w(er) > w(ez) > -+ > w(ex) > 0> wlegt1) > - > wlem) (12.5)
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Polymatroids and Greedy
(ARRR NRNRR

Polymatroidal polyhedron and greedy

e What is the greedy solution in this setting, when w € RF?

@ Sort elements of E/ w.r.t. w so that, w.l.o.g.
E = (e1,ea,...,ep) with w(e;) > w(ez) > -+ > w(en).

o Let k + 1 be the first point (if any) at which we are non-positive,
i.e., w(er) >0and 0> w(ey.

@ Next define partial accumulated sets F;, for i = 0...m, we have
w.r.t. the above sorted order:

Ei d:ef {61,62,...@} (126)

(note Eg =0, f(Ep) =0, and E and F; is always sorted w.r.t w).
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Polymatroids and Greedy
(ARRR NRNRR

Polymatroidal polyhedron and greedy

e What is the greedy solution in this setting, when w € RF?
@ Sort elements of E/ w.r.t. w so that, w.l.o.g.
E = (e1,e2,...,em) with w(er) > w(ez) = -+ > wlem).
o Let k + 1 be the first point (if any) at which we are non-positive,
i.e., w(er) >0and 0> w(ey.
@ Next define partial accumulated sets F;, for i = 0...m, we have
w.r.t. the above sorted order:
Ei d:ef {61,62,...@} (126)
(note Eg =0, f(Ep) =0, and E and F; is always sorted w.r.t w).
@ The greedy solution is the vector = € Rf with elements defined as:

def

z(e1) = f(E1) = f(er) = f(e1|Eo) = f(e1]0) (12.7)
2(e)) Y f(E) — f(Bi1) = f(ei|Eiq) fori=2...k  (12.8)
2(er) Lofori=k+1...m=|E| (12.9)
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Polymatroids and Greedy
(ARRNLRNRR!

Some Intuition: greedy and gain

@ Note .’L‘(ei) = f(ei\Ei_l) < f(€7|E/) for any E' C E;
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Polymatroids and Greedy
(ARRNLRNRR!

Some Intuition: greedy and gain

o Note z(e;) = f(e;|Ei—1) < f(e;|E') for any E' C E;_
@ So z(e1) = f(e1) and this corresponds to w(e;) > w(e;) for all

i # 1.
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Polymatroids and Greedy
(ARRNLRNRR!

Some Intuition: greedy and gain

o Note z(e;) = f(e;|Ei—1) < f(e;|E') for any E' C E;_

@ So z(e1) = f(e1) and this corresponds to w(e1) > w(e;) for all
i# 1.

@ Hence, for the largest value of w (namely w(ey)), we use for x(eq)

the largest possible gain value of e; (namely f(e1]|0) > f(e1|A) for
any A C E\ {e1}).
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Polymatroids and Greedy
(ARRNLRNRR!

Some Intuition: greedy and gain

o Note z(e;) = f(e;|Ei—1) < f(e;|E') for any E' C E;_

@ So z(e1) = f(e1) and this corresponds to w(e1) > w(e;) for all
i# 1.

@ Hence, for the largest value of w (namely w(ey)), we use for x(eq)
the largest possible gain value of e; (namely f(e1]|0) > f(e1]A) for
any A C E\ {e1}).

@ For the next largest value of w (namely w(ez)), we use for x(ez) the

next largest gain value of ez (namely f(ezle1)), while still ensuring
(as we will soon see in Theorem 12.4.1) that the resulting x € Py.
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Polymatroids and Greedy
(ARRNLRNRR!

Some Intuition: greedy and gain

o Note z(e;) = f(e;|Ei—1) < f(e;|E') for any E' C E;_

@ So z(e1) = f(e1) and this corresponds to w(e1) > w(e;) for all
i# 1.

@ Hence, for the largest value of w (namely w(ey)), we use for x(eq)
the largest possible gain value of e; (namely f(e1]|0) > f(e1|A) for
any A C E\ {e1}).

@ For the next largest value of w (namely w(ez)), we use for x(ez) the
next largest gain value of ez (namely f(eale1)), while still ensuring
(as we will soon see in Theorem 12.4.1) that the resulting = € Py.

@ This process continues, using the next largest possible gain of e; for
x(e;) while ensuring we do not leave the polytope, given the values
we've already chosen for x(e;) for i’ < i.
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Polymatroids and Greedy
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Polymatroidal polyhedron and greedy

Theorem 12.4.1

The vector x € ]Rf as previously defined using the greedy algorithm
maximizes wx over P]'f, with w € Rf, if f is submodular.
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Polymatroids and Greedy
[NRRNNI AR

Polymatroidal polyhedron and greedy

Theorem 12.4.1

The vector x € ]Rf as previously defined using the greedy algorithm
maximizes wx over P]'f, with w € Rf, if f is submodular.

@ Consider the LP strong duality equation:

max(wzx : x € PJZ") = min(z yaf(A):y € Rf, Z yalag > w)
ACE ACE
(12.10)
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Polymatroids and Greedy
[NRRNNI AR

Polymatroidal polyhedron and greedy

Theorem 12.4.1

The vector x € Rf as previously defined using the greedy algorithm
maximizes wx over P]'f, with w € RE, if f is submodular.

@ Consider the LP strong duality equation:

max(wx:mePJﬁ'):min(Z y,élj”(A):;yERiE7 ZyA1A2w>

ACE ACE
(12.10)
@ Define the following vector y € Rf as
yE; < w(e;) —w(eiyr) fori=1...(m—1), (12.11)
yp < w(ey), and (12.12)
ya < 0 otherwise (12.13)
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Polymatroids and Greedy
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Polymatroidal polyhedron and greedy

o We first will see that greedy z € P;r (thatis z(A) < f(A),VA).
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Polymatroids and Greedy

o We first will see that greedy z € P;r (thatis z(A) < f(A),VA).

@ Order A = (aj,as,...,a;) based on order (e1,€ea,...,€m).
| Je| Jaefa| | |a| Jas|...| |

‘61‘62‘63‘64‘65‘66‘67‘68‘69‘610‘611‘...‘em‘
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Polymatroids and Greedy
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Polymatroidal polyhedron and greedy

o We first will see that greedy = € P]T (thatis z(A) < f(A),VA).

o Order A = (a1,as,...,a) based on order (e, ea,...,en).
| la| |aefa| | Ja| Jae|..[ |
‘61‘62‘63‘64‘65‘66‘67‘68‘69‘610‘611‘...‘em‘

o Definee ! : E — {1,...,m} so that e~ !(e;) = i.
This means that with A = {a1,az,...,ax}, andVj < k

{CL],(IQ, . .,(lj} C {61,62, . .,66171<[LJ)} (12.14)
and
{(Ll,[lz, ce ,[Ljfl} C {61,62, ey 6671(0.})71} (1215)
Also recall matlab notation: ai.; = {ai,az2,...,a;}.

E.g., with j = 4 we get e '(as) =9, and

{a1,a2,a3,a4} C {e1,e2,...,6€9} (12.16)
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Polymatroidal polyhedron and greedy

o We first will see that greedy z € P;r (thatis z(A) < f(A),VA).

@ Order A = (aj,as,...,a;) based on order (e1,€ea,...,€m).
| Je| Jaefa| | |a| Jas|...| |

‘61‘62‘63‘64‘65‘66‘67‘68‘69‘610‘611‘... ‘em‘
o Definee ! : E — {1,...,m} so that e~!(e;) = i.

@ Then, we have z € PJT since for all A:

k
f(A) = Z flailari—1) (12.14)
i=1
k
> Z f(ailere-1(a;)-1) (12.15)
i=1
= Z f(a|€1:e*1(a)—1) = IE(A) (1216)
acA
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Polymatroidal polyhedron and greedy

o We first will see that greedy z € P;r (thatis z(A) < f(A),VA).

@ Order A = (aj,as,...,a;) based on order (e1,€ea,...,€m).
| Je| Jaefa| | |a| Jas|...| |

‘61‘62‘63‘64‘65‘66‘67‘68‘69‘610‘611‘... ‘em‘
o Definee ! : E — {1,...,m} so that e~!(e;) = i.

@ Then, we have z € PJT since for all A:

k
f(A) = Z flailari—1) (12.14)
i=1
k
> Z f(ailere-1(a;)-1) (12.15)
i=1
= Z f(a|€1:e*1(a)—1) = IE(A) (1216)
acA
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Polymatroidal polyhedron and greedy

@ Next, y is also feasible for the dual constraints in Eq. 12.10 since:
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Polymatroids and Greedy
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Polymatroidal polyhedron and greedy

@ Next, y is also feasible for the dual constraints in Eq. 12.10 since:

@ Next, we check that y is dual feasible. Clearly, y > 0,
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Polymatroids and Greedy
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Polymatroidal polyhedron and greedy

@ Next, y is also feasible for the dual constraints in Eq. 12.10 since:

@ Next, we check that y is dual feasible. Clearly, y > 0,

@ and also, considering y component wise, for any ¢, we have that

m—1
> ya=> um =Y (wle) —wlejn)) +wlem) = wles).
A:e;€A Jj>i j=i
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Polymatroids and Greedy
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Polymatroidal polyhedron and greedy

@ Next, y is also feasible for the dual constraints in Eq. 12.10 since:

@ Next, we check that y is dual feasible. Clearly, y > 0,

@ and also, considering y component wise, for any ¢, we have that

m—1
> ya=> um =Y (wle) —wlejn)) +wlem) = wles).
A:e;€A Jj>i j=i

@ Now optimality for  and y follows from strong duality, i.e.:

wr = Z iw flei|Eizq) iw(ei) (f(EZ) — f(Fi-1 )

ecE =l

- 2 783 (wer) —wlein)) + FBuwlen) = 3 yaf(4
=1

ACE
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Polymatroidal polyhedron and greedy

@ The equality in prev. Eq. follows via Abel summation:

wr =) wii (12.17)
=1
= Zwi (f(Ei) - f(Ei71)> (12.18)

U=l
— szf Z wit1 f(E (12.19)

I
S
3
=
+
&
g
A
=
5

(12.20)

OJ
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Polymatroids and Greedy
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What about w € R¥

@ When w contains negative elements, we have z(e;) = 0 for
i=k+1,...,m, where k is the last positive element of w when it
is sorted in decreasing order.
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Polymatroids and Greedy
[ARRNRRY AR

What about w € R¥

@ When w contains negative elements, we have z(e;) = 0 for

i=k+1,...,m, where k is the last positive element of w when it
is sorted in decreasing order.

@ Exercise: show a modification of the previous proof that works for
arbitrary w € RF
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Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P;r is a polytope of form
Pf = {z e RY : 2(A) < f(A),YA C E}, then the greedy solution to
max(wx : x € P) is optimum only if f is submodular.

@ Order elements of E arbitrarily as (ej, e, ..., e,) and define
E; = (e1,€2,...,¢;). Also, choose A and B arbitrarily.
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Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P;r is a polytope of form
Pf = {z e RY : 2(A) < f(A),YA C E}, then the greedy solution to
max(wx : x € P) is optimum only if f is submodular.

@ Order elements of E arbitrarily as (ej, e, ..., e,) and define
E; = (e1,€2,...,¢;). Also, choose A and B arbitrarily.

o For1 <p<q<m,define A= {ey,e2,... €k €kt1,...,6p} =Ep
and B:{61,62,...,ek,6p+1,...,6q}:EkU(Eq\Ep)
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Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P;r is a polytope of form

Pf = {z e RY : 2(A) < f(A),YA C E}, then the greedy solution to
max(wx : x € P) is optimum only if f is submodular.

@ Order elements of E arbitrarily as (ej, e, ..., e,) and define
E; = (e1,€2,...,¢;). Also, choose A and B arbitrarily.
o For1 <p<q<m,define A= {ey,e2,... €k €kt1,...,6p} =Ep

and B:{61,62,...,ek,6p+1,...,6q}:EkU(Eq\Ep)
o Note, then we have AN B = {ey,...,e;} = B}, and AUB = E,.
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Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P;r is a polytope of form
= {z e RE : 2(A) < f(A),VA C E}, then the greedy solution to
max(wx : x € P) is optimum only if f is submodular.

Proof

@ Order elements of E arbitrarily as (ej, e, ..., e,) and define
E; = (e1,€2,...,¢;). Also, choose A and B arbitrarily.
o For1 <p<q<m,define A= {ey,e2,... €k €kt1,...,6p} =Ep

and B:{61,62,...,ek,6p+1,...,6q}:EkU(Eq\Ep)
o Note, then we have AN B = {ey,...,e;} = B}, and AUB = E,.

o Define w € {0,1}" as .

w Zlez — Tl (12.21)
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Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P;r is a polytope of form
= {z e RE : 2(A) < f(A),VA C E}, then the greedy solution to
max(wx : x € P) is optimum only if f is submodular.

Proof

@ Order elements of E arbitrarily as (ej, e, ..., e,) and define
E; = (e1,€2,...,¢;). Also, choose A and B arbitrarily.
o For1 <p<q<m,define A= {ey,e2,... €k €kt1,...,6p} =Ep

and B = {61,62,...,ek,6p+1,...,6q} = FE; U (Eq\Ep)
o Note, then we have AN B = {ey,...,e;} = B}, and AUB = E,.
o Define w € {0,1}" as

w Zlez — Tl (12.21)

@ Suppose optimum solution x is given by the greedy procedure.
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Polymatroidal polyhedron and greedy
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Polymatroidal polyhedron and greedy
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Pol d and Greedy

Polymatr0|da| polyhedron and greedy

Zwi = f(BY) + ) _(f(B) — f(Eir1)) = f(By) = f(AUB)
(12.28)
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Polymatroidal polyhedron and greedy

@ Thus, we have

z(B) = > zi= Y @;=f(AUB)+ f(ANB) - f(4)
i€l,...k,p+1,....q i:e;EB
(12.25)
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Polymatroids and Greedy
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Polymatroidal polyhedron and greedy

@ Thus, we have

z(B) = > zi= Y @;=f(AUB)+ f(ANB) - f(4)
i€l,...k,p+1,....q i:e;EB
(12.25)

@ But given that the greedy algorithm gives the optimal solution to
max(wzx : x € P]T) we have that z € PJZF and thus z(B) < f(B).
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Polymatroidal polyhedron and greedy
Proof.

@ Thus, we have

cB)= Y m= Y wm=f(AUB)+ f(ANB) - f(A)
i€l,...k,p+1,....q ite;€EB
(12.25)

@ But given that the greedy algorithm gives the optimal solution to
max(wz : z € P"), we have that = € P} and thus z(B) < f(B).

@ Thus,

z(B) = f(AUB) + f(ANB) — = > < f(B) (1226)
i:e;,€EB

ensuring the submodularity of f, since A and B are arbitrary.

Ol
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Polymatroidal polyhedron and greedy

@ Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem 8.6.1)

Theorem 12.4.1

If f:2F R, is given, and P is a polytope in Rf of the form

P ={zeRY :2(A) < f(A),YA C E}, then the greedy solution to the
problem max(wzx : x € P) is Yw optimum iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).
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Possible Polytopes
[NRRRN!

Multiple Polytopes associated with arbitrary f

@ Given an arbitrary submodular function f : 2" — R (not necessarily
a polymatroid function, so it need not be positive, monotone, etc.).
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Possible Polytopes
[ARREN

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2" — R (not necessarily
a polymatroid function, so it need not be positive, monotone, etc.).
o If f(0) #0, we can set f(A) = f(A) — f(0) without destroying
submodularity. This also does not change any minima, so we
assume all functions are normalized f()) = 0.
Note that due to constraint x(0) < f(0), we must have f(0) > 0 since if not
(ie., if f(0) <0), then P} doesn't exist.
Another form of normalization can do is:
/ f(A) ifA#D
f(4) = {0 P (12.27)
This preserves submodularity due to f(A) + f(B) > f(AUB) + f(AN B), and
if AN B = () then r.h.s. only gets smaller when f(0) > 0
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[NRRRN!

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2" — R (not necessarily
a polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, we can set f/(A4) = f(A) — f(0) without destroying
submodularity. This also does not change any minima, so we
assume all functions are normalized f(0)) = 0.

@ We can define several polytopes:

Py ={z e R¥ : 2(S) < f(S),VS C E} (12.27)
Pf+ = PN {x eRF 2> 0} (12.28)
By =Prn{z e R” :2(E) = f(E)} (12.29)
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Possible Polytopes
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Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2" — R (not necessarily
a polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, we can set f/(A4) = f(A) — f(0) without destroying
submodularity. This also does not change any minima, so we
assume all functions are normalized f(0)) = 0.

@ We can define several polytopes:

Py = {z e R” : 2(S) < f(5),VS C E} (12.27)
PJZ" :Pfﬂ{xERE x>0} (12.28)
By=P;n{z e R :2(E) = f(B)} (12.29)

@ Py is what is sometimes called the extended polytope (sometimes
notated as EP.
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Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2" — R (not necessarily
a polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, we can set f/(A4) = f(A) — f(0) without destroying
submodularity. This also does not change any minima, so we
assume all functions are normalized f(0)) = 0.

@ We can define several polytopes:

Py = {z e R” : 2(S) < f(5),VS C E} (12.27)
PJZ" :Pfﬂ{xERE x>0} (12.28)
By=P;n{z e R :2(E) = f(B)} (12.29)

@ Py is what is sometimes called the extended polytope (sometimes
notated as EP.

° P]T is Py restricted to the positive orthant.
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Possible Polytopes
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Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2" — R (not necessarily
a polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, we can set f/(A4) = f(A) — f(0) without destroying
submodularity. This also does not change any minima, so we
assume all functions are normalized f(0)) = 0.

@ We can define several polytopes:

Py = {z e R” : 2(S) < f(5),VS C E} (12.27)
PJZ" :Pfﬂ{xERE x>0} (12.28)
By=P;n{z e R :2(E) = f(B)} (12.29)

@ Py is what is sometimes called the extended polytope (sometimes
notated as EP.

° P;r is Py restricted to the positive orthant.
@ By is called the base polytope
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Possible Polytopes
(LRI

Multiple Polytopes associated with f

Pt Py

B \

=%

Pt =Prn{zeR”:z>0} (12.30)
Py = {z e R” : 2(5) < f(5),VS C E} (12.31)
By=P;n{zreRY :z(E) = ( )} (12.32)
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Possible Polytopes
[NR RRN

Base Polytope in 3D

Py ={x e R : 2(S) < f(S),VS C E} (12.33)
By=P;n{z e R¥ : z(E) = f(B)} (12.34)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F27/47 (pg.75/167)



Possible Polytopes
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A polymatroid function's polyhedron is a polymatroid.

Theorem 12.5.1

Let f be a submodular function defined on subsets of E. For any
x € RE, we have:

rank(z) = max (y(E) : y < z,y € Py) =min (x(A) + f(E\A): ACE)
(12.35)

Essentially the same theorem as Theorem 9.4.5. Taking z = 0 we get:

Corollary 12.5.2

Let f be a submodular function defined on subsets of E. x € RE, we
have:

rank(0) = max (y(E) :y <0,y € Pf) =min(f(A): AC E) (12.36)
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Proof of Theorem 12.5.1

Proof of Theorem 12.5.1.

@ Let y* be the optimal solution of the I.h.s. and let A C E be any
subset.

Ol
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Possible Polytopes
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Proof of Theorem 12.5.1

Proof of Theorem 12.5.1.

@ Let y* be the optimal solution of the |.h.s. and let A C E be any
subset.

@ Then y*(E) =y*(A) +y"(E\ A) < f(A) +z(E \ A) since if
y* € Py, y*(A) < f(A) and since y* <z, y*(E\ A) < 2(E\ A).
This is a form of weak duality.
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Possible Polytopes
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Proof of Theorem 12.5.1

Proof of Theorem 12.5.1.

@ Let y* be the optimal solution of the |.h.s. and let A C E be any
subset.

@ Then y*(E) =y*(A) +y"(E\ A) < f(A) +z(E \ A) since if
y* € Py, y*(A) < f(A) and since y* <z, y*(E\ A) < z(E\ A).
This is a form of weak duality.

@ Also, for any e € E, if y*(e) < z(e) then there must be some reason
for this other than the constraint y* < x, namely it must be that
3T € D(x) with e € T (i.e., e is a member of at least one of the
tight sets).
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Proof of Theorem 12.5.1

Proof of Theorem 12.5.1.

@ Let y* be the optimal solution of the |.h.s. and let A C E be any
subset.

@ Then y*(E) =y*(A) +y"(E\ A) < f(A) +z(E \ A) since if
y* € Py, y*(A) < f(A) and since y* <z, y*(E\ A) < z(E\ A).
This is a form of weak duality.

@ Also, for any e € E, if y*(e) < x(e) then there must be some reason
for this other than the constraint y* < x, namely it must be that
3T € D(z) with e € T (i.e., e is a member of at least one of the
tight sets).

@ Hence, for all e ¢ sat(y*) we have y*(e) = x(e), and moreover
y*(sat(y*)) = f(sat(y*)) by definition.

Ol
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Proof of Theorem 12.5.1

Proof of Theorem 12.5.1.

@ Let y* be the optimal solution of the |.h.s. and let A C E be any
subset.

@ Then y*(E) =y*(A) +y"(E\ A) < f(A) +z(E \ A) since if
y* € Py, y*(A) < f(A) and since y* <z, y*(E\ A) < z(E\ A).
This is a form of weak duality.

@ Also, for any e € E, if y*(e) < x(e) then there must be some reason
for this other than the constraint y* < x, namely it must be that
3T € D(z) with e € T (i.e., e is a member of at least one of the
tight sets).

@ Hence, for all e ¢ sat(y*) we have y*(e) = x(e), and moreover
y*(sat(y*)) = f(sat(y*)) by definition.
@ Thus we have that

v (sat(y")) +y" (B \ sat(y")) = f(sat(y") + (2 \ sat(y")), strong
duality, showing that the two sides are equal for y*.

Ol
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Possible Polytopes
(NNARY}

Greedy and Py

@ In Theorem 12.4.1, we can relax P;r to Py.
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Possible Polytopes
(NNARY}

Greedy and Py

@ In Theorem 12.4.1, we can relax P;r to Py.

e If Je such that w(e) < 0 then max(wz : € Py) = oo since we can
let x. — o0, unless we ignore the negative elements or assume
w > 0.
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Possible Polytopes
(NNARY}

Greedy and Py

@ In Theorem 12.4.1, we can relax P;r to Py.

o If Je such that w(e) < 0 then max(wz : x € Py) = oo since we can
let x, — o0, unless we ignore the negative elements or assume
w > 0.

@ The proof, moreover, showed also that x € Py, not just Pf+.
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Possible Polytopes
(NNARY}

Greedy and Py

@ In Theorem 12.4.1, we can relax P;r to Py.

o If Je such that w(e) < 0 then max(wz : x € Py) = oo since we can
let x, — o0, unless we ignore the negative elements or assume
w > 0.

@ The proof, moreover, showed also that 2 € Py, not just P]T.

@ Moreover, in polymatroidal case, since the greedy constructed = has
x(E) = f(F), we have that the greedy = € By.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F30/47 (pg.85/167)



Possible Polytopes
(NNARY}

Greedy and P

In Theorem 12.4.1, we can relax P;r to Py.

If Je such that w(e) < 0 then max(wz : € Py) = oo since we can
let x, — o0, unless we ignore the negative elements or assume

w > 0.

The proof, moreover, showed also that 2 € Py, not just P]T.

Moreover, in polymatroidal case, since the greedy constructed x has
z(E) = f(F), we have that the greedy = € By.

In fact, we next will see that the greedy x is a vertex of By.
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Extreme Points
[N}

Polymatroid extreme points

@ The greedy algorithm does more than solve max(wx : = € PJ?L) We
can use it to generate vertices of polymatroidal polytopes.
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Extreme Points
[N}

Polymatroid extreme points

@ The greedy algorithm does more than solve max(wx : = € PJ?L) We
can use it to generate vertices of polymatroidal polytopes.
o Consider P} and also C’Jr {x z € RE z(e) < f(e),Ve € E}
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Extreme Points
[N}

Polymatroid extreme points

@ The greedy algorithm does more than solve max(wx : = € PJ?L) We
can use it to generate vertices of polymatroidal polytopes.
o Consider P} and also C’Jr {x z € RE z(e) < f(e),Ve € E}

@ Then orderlng A= (a1,...,a)4)) arbitrarily with 4; = {a1,...,a;},
f(A) =37, flai|Ai—1) <37, f(ai), and hence P;' - C’;{.
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Extreme Points
[N}

Polymatroid extreme points

@ The greedy algorithm does more than solve max(wx : = € Pf ). We
can use it to generate vertices of polymatroidal polytopes.
o Consider P} and also C’Jr {:U z € RE z(e) < f(e),Ve € E}

@ Then orderlng A=(a1,...,a4) arbltrarlly with 4; = {a1,...,a;},
f(A) =37, flai|Ai—1) <37, f(ai), and hence P;r - C’Jﬁr.

os
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Extreme Points
[N}

Polymatroid extreme points

@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for ¢’ € E'\ {e}).
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Extreme Points
[N}

Polymatroid extreme points
@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for ¢’ € E'\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the
origin might be obtained by advancing along the corresponding axis.
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Extreme Points
[N}

Polymatroid extreme points
@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for ¢’ € E'\ {e}).
@ Thus, intuitively, any first vertex of the polytope away from the
origin might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of P;. le.,

By=P;n{z e RY :2(E) = f(B)} (12.37)
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Extreme Points
[N}

Polymatroid extreme points
@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for ¢’ € E'\ {e}).
@ Thus, intuitively, any first vertex of the polytope away from the
origin might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of P;. le.,

By=P;n{z e RY :2(E) = f(B)} (12.37)
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Extreme Points
[N}

Polymatroid extreme points

@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for ¢’ € E'\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the
origin might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of P;. le.,
By=P;n{z e RY :2(E) = f(B)} (12.37)

@ Also, intuitively, we can continue advancing along the skeletal edges
of the polytope to reach any other vertex, given the appropriate
ordering. If we advance in all dimensions, we'll reach a vertex in By,
and if we advance only in some dimensions, we'll reach a vertex in
P\ By.
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Extreme Points
[N}

Polymatroid extreme points

@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for ¢’ € E'\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the
origin might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of P;. le.,
By=P;n{z e RY :2(E) = f(B)} (12.37)

@ Also, intuitively, we can continue advancing along the skeletal edges
of the polytope to reach any other vertex, given the appropriate
ordering. If we advance in all dimensions, we'll reach a vertex in By,
and if we advance only in some dimensions, we'll reach a vertex in
P\ By.

@ We formalize this next:
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Extreme Points
[N}

Polymatroid extreme points
e Given any arbitrary order of F' = (eq, €9, ...
Ei = (61, €2, ... ,62‘).

,€m ), define

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F31/47 (pg.97/167)



Extreme Points
[N}

Polymatroid extreme points
e Given any arbitrary order of F' = (eq, €9, ...
Ei = (61, €2, ... ,62‘).

,€m ), define

@ As before, a vector x is generated by F; using the greedy procedure

as follows
z(e1) = f(Er) = f(e1) (12.38)
z(e;) = f(E;) — f(Ej—1) = f(ej|Ej—1) for2 < j <i  (12.39)
z(e) =0fore e E\ E; (12.40)
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Extreme Points
[N}

Polymatroid extreme points
e Given any arbitrary order of F' = (eq, €9, ...
Ei = (61, €2, ... ,62‘).

,€m ), define

@ As before, a vector x is generated by F; using the greedy procedure

as follows
z(e1) = f(Er) = f(e1) (12.38)
z(e;) = f(E;) — f(Ej—1) = f(ej|Ej—1) for2 < j <i  (12.39)
z(e) =0fore e E\ E; (12.40)

@ An extreme point of Py is a point that is not a convex combination
of two other distinct points in Pr. Equivalently, an extreme point
corresponds to setting certain inequalities in the specification of Py
to be equalities, so that there is a unique single point solution.
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Extreme Points
[N}

Polymatroid extreme points

Theorem 12.6.1

For a given ordering E = (eq,...,ey) of E and a given E; = (e, ..., €;)
and = generated by E; using the greedy procedure (x(e;) = f(ei|Ei-1)),
then x is an extreme point of Py
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Extreme Points
[N}

Polymatroid extreme points

Theorem 12.6.1

For a given ordering E = (eq,...,ey) of E and a given E; = (e, ..., €;)
and = generated by E; using the greedy procedure (x(e;) = f(ei|Ei-1)),
then x is an extreme point of Py

o We already saw that x € Py (Theorem 12.4.1).
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Extreme Points
[N}

Polymatroid extreme points

Theorem 12.6.1

For a given ordering E = (eq,...,ey) of E and a given E; = (e, ..., €;)
and = generated by E; using the greedy procedure (x(e;) = f(ei|Ei-1)),
then x is an extreme point of Py

o We already saw that x € Py (Theorem 12.4.1).

@ To show that x is an extreme point of Py, note that it is the unique
solution of the following system of equations

z(Ej) = f(E;) for 1 <j<i<m (12.41)
z(e) =0foreec E\ E; (12.42)

There are i < m equations and ¢ < m unknowns, and simple

Gaussian elimination gives us back the z constructed via the Greedy

algorithm!!
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Extreme Points
[N}

Polymatroid extreme points
@ As an example, we have z(F1) = z(e1) = f(e1)
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Extreme Points
[N}

Polymatroid extreme points
@ As an example, we have z(F1) = z(e1) = f(e1)
o x(Es) = x(e1) + z(e2) = f(e1,e2) so

z(e2) = fler, e2) — x(e1) = fler, e2) — fler) = flezler).
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Extreme Points
[N}

Polymatroid extreme points
@ As an example, we have z(F7) = z(e1) =
o x(Es) = x(e1) + z(e2) = f(e1,e2) so
z(ez) = f(e1,e2) — x(er) = fler, e2) — f(er) = flezler).
o z(E3) =xz(e1) + z(e2) + x(e3) = f(e, ea,e3) so
a(
I

fe1)

e3) = f(e1,e2,e3) —xz(e2) — x(e1) = f(e1,e2,e3) — fler,e2) =
esler, e2)
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Extreme Points
[N}

Polymatroid extreme points
@ As an example, we have z(F1) = z(e1) = f(e1)
o x(Es) = x(e1) + z(e2) = f(e1,e2) so
z(e2) = fler, e2) — x(e1) = fler, e2) — fler) = flezler).
o z(E3) =xz(e1) + z(e2) + x(e3) = f(e, ea,e3) so
z(es) = f(e1, e2,e3) — x(ez) —x(e1) = f(e1,e2,e3) — fe1, €2) =
fesler, e2)
@ And so on ..., but we see that this is just Gaussian elimination.
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Extreme Points
[N}

Polymatroid extreme points
@ As an example, we have z(F1) = z(e1) = f(e1)
o x(Es) = x(e1) + z(e2) = f(e1,e2) so
z(e2) = fler, e2) — x(e1) = fler, e2) — fler) = flezler).
o z(E3) =xz(e1) + z(e2) + x(e3) = f(e, ea,e3) so
z(es) = f(e1, e2,e3) — x(ez) —x(e1) = f(e1,e2,e3) — fe1, €2) =
fesler, e2)
@ And so on ..., but we see that this is just Gaussian elimination.

@ Also, since x € Py, for each i, we see that,

2(E;) = f(B;) for1<j<i (12.43)
z(A) < f(A),VACE (12.44)
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Extreme Points
[N}

Polymatroid extreme points
@ As an example, we have z(F1) = z(e1) = f(e1)
o z(E2) =x(e1) + z(e2) = f(e1, e2) so
z(e2) = fler, e2) — x(e1) = fler, e2) — fler) = flezler).
o z(E3) =xz(e1) + z(e2) + x(e3) = f(e, ea,e3) so
z(es) = f(e1, e2,e3) — x(ez) —x(e1) = f(e1,e2,e3) — fe1, €2) =
fesler, e2)
@ And so on ..., but we see that this is just Gaussian elimination.

@ Also, since x € Py, for each i, we see that,

w(Ej) = f(Ej) for1<j<i (12.43)
z(A) < f(A),VACE (12.44)
@ Thus, the greedy procedure provides a modular function lower

bound on f that is tight on all points E; in the order. This can be
useful in its own right.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F31/47 (pg.108/167



Extreme Points
1

Polymatroid extreme points
some examples

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014



Extreme Points
[N}

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} C B CU(A: z(A) = f(A)) = sat(x),
then x is generated using greedy by some ordering of B.
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Extreme Points
[N}

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} C B CU(A: z(A) = f(A)) = sat(x),
then x is generated using greedy by some ordering of B.

o Note, sat(z) =cl(x) = U(A: x(A) = f(A)) is also called the
closure of = (recall that sets A such that z(A) = f(A) are called
tight, and such sets are closed under union and intersection, as seen
in Lecture 8, Theorem 77)

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F31/47 (pg.111/167



Extreme Points
[N}

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} C B CU(A: z(A) = f(A)) = sat(x),
then x is generated using greedy by some ordering of B.

o Note, sat(z) =cl(x) = U(A: x(A) = f(A)) is also called the
closure of = (recall that sets A such that z(A) = f(A) are called
tight, and such sets are closed under union and intersection, as seen
in Lecture 8, Theorem 77)

@ Thus, cl(x) is a tight set.
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Extreme Points
[N}

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} C B CU(A: z(A) = f(A)) = sat(x),
then x is generated using greedy by some ordering of B.

o Note, sat(z) =cl(x) = U(A: x(A) = f(A)) is also called the
closure of = (recall that sets A such that z(A) = f(A) are called
tight, and such sets are closed under union and intersection, as seen
in Lecture 8, Theorem 77)

@ Thus, cl(x) is a tight set.
@ Also, supp(z) ={e € E: z(e) # 0} is called the support of z.
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Extreme Points
[N}

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} C B CU(A: z(A) = f(A)) = sat(x),
then x is generated using greedy by some ordering of B.

o Note, sat(z) =cl(x) = U(A: x(A) = f(A)) is also called the
closure of = (recall that sets A such that z(A) = f(A) are called
tight, and such sets are closed under union and intersection, as seen
in Lecture 8, Theorem 77)

@ Thus, cl(x) is a tight set.
@ Also, supp(z) ={e € E: z(e) # 0} is called the support of z.

e For arbitrary x, supp(x) is not necessarily tight, but for an extreme
point, supp(x) is.
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Extreme Points
i

Polymatroid with labeled edge lengths

o Recall f(e|A) =
f(A+e) = f(4)

@ Notice how
submodularity,
1€l B) < f(e|A) for
A C B, defines the
shape of the polytope.

eZ \ f(e1 |e2)

o In fact, we have I
strictness here =
f(elB) < f(e]A) for
ACB.
@ Also, consider how the —
greedy algorithm '
proceeds along the f(e1) e1

edges of the polytope.
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Extreme Points
i

Polymatroid with labeled edge lengths

@ Recall f(e|A) =
f(A+e) = f(A)

@ Notice how
submodularity,
f(e|B) < f(e|A) for
A C B, defines the
shape of the polytope.

@ In fact, we have
strictness here
f(e|B) < f(e|A) for
AC B.

@ Also, consider how the
greedy algorithm
proceeds along the
edges of the polytope.
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Extreme Points
(1]

Intuition: why greedy works with polymatroids

Maximal pointin P}

@ Given w, the goal is . . .
g for w in this region.

to find
r=(z(e1),z(e2)) @

that maximizes M
xTw = z(e1)w(er) +
z(e2)w(ez). $\Q,\\

o If w(ez) > w(ey) the ~7 ‘
upper extreme point oy $\Q” D ﬂ 2.
indicated maximizes L $\ 45 %
aTw over z € P & o

o If w(ez) < w(ey) the \450 3”
lower extreme point Y=
indicated maximizes
zTw over x € P]ZF. f(e1) 1

)
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Most Violated <
[NRRY]

A polymatroid function's polyhedron is a polymatroid.

Theorem 12.7.4

Let f be a polymatroid function defined on subsets of E. For any
T € ]Rf, and any P]T—basis y* e Rf of z, the component sum of y* is

y*(F) = rank(x) = max (y(E) cy<mye P;r)
= min (z(4) + f(E\ A) : AC E) (12.34)

As a consequence, P]T is a polymatroid, since r.h.s. is constant w.r.t. y*.

By taking B = supp(z) (so elements E'\ B are zero in x), and for b € B,
x(b) is big enough, the r.h.s. min has solution A* = E\ B. We recover
submodular function from the polymatroid polyhedron via the following:

£(B) = max {y(B) Ly € P;} (12.35)

In fact, we will ultimately see a number of important consequences of

this theorem (other than just that P} is a polymatroid)



Most Violated <
1

Matroid instance of Theorem 9.4.5

@ Considering Theorem 9.4.5, the matroid case is now a special case,
where we have that:

Corollary 12.7.2

We have that:

max {y(E) : y € Ping. set(M),y <z} =min{ry(A) +z(E\A): ACE
(12.2)

where 7,7 is the matroid rank function of some matroid.
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Most Violated <
(RN

Most violated inequality problem in matroid polytope case

@ Consider

Pr={zeRF:2>0,2(4) <ru(4),YAC E} (12.45)
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Most Violated <
(RN

Most violated inequality problem in matroid polytope case

@ Consider
Pr={zeR":2>0,2(A) <ry(A),VAC E} (12.45)

@ Suppose we have any = € Rf such that z & PT.
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Most Violated <
(RN

Most violated inequality problem in matroid polytope case

@ Consider

Pr={zeRF:2>0,2(4) <ru(A),YAC E} (12.45)
@ Suppose we have any € Rf such that z & P,
@ Hence, there must be a set of W C 2V, each member of which

corresponds to a violated inequality, i.e., equations of the form
.T(A) > T‘]\,j(A) for A e W.
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Most Violated <
(RN

Most violated inequality problem in matroid polytope case

@ Consider
Pr={zeR":2>0,2(A) <ry(A),VAC E} (12.45)

@ Suppose we have any € Rf such that z & P,

@ Hence, there must be a set of W C 2V, each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > ry(A) for A e W.

@ The most violated inequality when x is considered w.r.t. P,
corresponds to the set A that maximizes x(A) — rps(A), i.e., the most
violated inequality is valuated as:

max {x(A) —rm(A): A e W} =max {z(4) —ry(A) : AC E} (12.46)
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Most Violated <
(RN

Most violated inequality problem in matroid polytope case

@ Consider
Pr={zeR":2>0,2(A) <ry(A),VAC E} (12.45)

@ Suppose we have any € Rf such that z & P,

@ Hence, there must be a set of W C 2V, each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > ry(A) for A e W.

@ The most violated inequality when x is considered w.r.t. P
corresponds to the set A that maximizes z(A) — rp7(A), i.e., the most
violated inequality is valuated as:

max {z(A) —ry(A) : A e W} =max {z(A) —ryp(A) : AC E} (12.46)

@ Since z is modular and z(E \ A) = z(E) — x(A), we can express this
via a min as in;:

min{ry(A)+z(E\A): AC E} (12.47)
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Most Violated <
L

Most violated inequality /polymatroid membership/SFM

@ Consider

Pl ={zeR”:2>0,2(4) < f(A),VAC E} (12.48)
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Most Violated <
L

Most violated inequality /polymatroid membership/SFM

o Consider

Pl ={zeR":2>0,2(4) < f(A),YAC E} (12.48)

@ Suppose we have any x € Rf such that = ¢ Pff
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Most Violated <
L

Most violated inequality /polymatroid membership/SFM

o Consider

Pl ={zeR":2>0,2(4) < f(A),YAC E} (12.48)

o Suppose we have any z € R¥ such that = ¢ P;“.

@ Hence, there must be a set of W C 2V, each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > T’M(A) for AeW.

2 p 2 X p 2 P
‘ |
1 1 1

Left: W= {{1}} Center: W = {{2}} Right: W = {{1,2}}
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Most Violated <
(WA |

Most violated inequality /polymatroid membership/SFM

@ The most violated inequality when z is considered w.r.t. P}
corresponds to the set A that maximizes x(A) — f(A), i.e., the
most violated inequality is valuated as:

max {r(A) — f(A) : A € W} =max{z(A) — f(A): AC E} (12.49)
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Most Violated <
(WA |

Most violated inequality /polymatroid membership/SFM

@ The most violated inequality when x is considered w.r.t. P;"
corresponds to the set A that maximizes x(A) — f(A), i.e., the
most violated inequality is valuated as:

max {r(A) — f(A) : A e W} =max{z(A) — f(A): AC E} (12.49)

@ Since x is modular and z(F \ A) = xz(F) — z(A), we can express
this via a min as in;:

min{f(A)+z(E\ A): AC E} (12.50)
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Most Violated <
(WA |

Most violated inequality /polymatroid membership/SFM

@ The most violated inequality when x is considered w.r.t. P;"
corresponds to the set A that maximizes z(A4) — f(A), i.e., the
most violated inequality is valuated as:

max {r(A) — f(A) : A e W} =max{z(A) — f(A): AC E} (12.49)
@ Since z is modular and z(E \ A) = z(E) — z(A), we can express
this via a min as in;:
min{f(A)+z(E\ A): ACE} (12.50)
@ More importantly, min {f(A) + z(E\ A) : A C E} is a form of
submodular function minimization, namely
min { f(A) — z(A) : A C E} for a submodular f and z € RY,

consisting of a difference of polymatroid and modular functlon (so
f — x is no longer necessarily monotone, nor positive).
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Most Violated <
(WA |

Most violated inequality /polymatroid membership/SFM

@ The most violated inequality when x is considered w.r.t. P;"
corresponds to the set A that maximizes z(A4) — f(A), i.e., the
most violated inequality is valuated as:

max {r(A) — f(A) : A e W} =max{z(A) — f(A): AC E} (12.49)

@ Since z is modular and z(E \ A) = z(E) — z(A), we can express
this via a min as in;:

min{f(A)+z(E\ A): ACE} (12.50)

@ More importantly, min {f(A) +z(E\ A) : A C E} is a form of
submodular function minimization, namely
min {f(A) — z(A) : A C E} for a submodular f and z € RY,
consisting of a difference of polymatroid and modular functlon (so
f — x is no longer necessarily monotone, nor positive).

o We will ultimatley answer how general this form of SFM is.
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Matroids cont.
i

Matroids, other definitions using matroid rank r : 2V — Z,

Definition 12.8.1 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid
M ifforallz € E\ A, r(AU{z}) =r(4) + 1.

A hyperplane is a flat of rank r(M) — 1.
Definition 12.8.2 (closure)

Given A C FE, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(4)}.

Therefore, a closed set A has span(A) = A.

Definition 12.8.3 (circuit)

A subset A C E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A] and for any a € A,

r(A\{a}) = |A] - 1).
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Matroids cont.
i

Matroids by circuits

Several circuit definitions for matroids.

Theorem 12.8.1 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such
that no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx € CNC', then (CUC")\ {z} contains a set inC;

Q@ ifC,C"eC,andz e CNC',andy € C\ ', then (CUC)\ {z}
contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and
matrices, and spanning trees.
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Matroids cont.
LA

Fundamental circuits in matroids

Lemma 12.8.3

Let I € Z(M), and e € E, then I U {e} contains at most one circuit in
M.

@ Suppose, to the contrary, that there are two distinct circuits C, Co
such that C1 UCy C I U {e}.

@ Then e € C1 N Cy, and by (C2), there is a circuit C3 of M s.t.
C3 C (01U02)\{€} cI

@ This contradicts the independence of I.

In general, let C(I,e) be the unique circuit associated with I U {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Matroids cont.
1

Matroids: The Fundamental Circuit

@ Define C(I,e) be the unique circuit associated with 7 U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).
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Matroids cont.
1

Matroids: The Fundamental Circuit

e Define C(I,e) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

o If e e span([) \ I, then C(I,e) is well defined (I + e creates one
circuit).
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Matroids cont.
1

Matroids: The Fundamental Circuit

e Define C(I,e) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

o If e e span([l) \ I, then C(I,e) is well defined (I + e creates one
circuit).

@ If ec I, then I + e = I doesn't create a circuit. In such cases,
C(1,e) is not really defined.

Prof. Jeff Bilmes EE596b/Spring 2014 /Submodularity - Lecture 12 - May 12th, 2014 F42/47 (pg.137/167



Matroids cont.
1

Matroids: The Fundamental Circuit

e Define C(I,e) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

o If e e span([l) \ I, then C(I,e) is well defined (I + e creates one
circuit).

e Ifec I, then I + e = I doesn't create a circuit. In such cases,
C(I,e) is not really defined.

@ In such cases, we define C'(I,e) = {e}, and we will soon see why.
why we do this.
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Matroids cont.
1

Matroids: The Fundamental Circuit

e Define C(I,e) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

o If e e span([l) \ I, then C(I,e) is well defined (I + e creates one
circuit).

o If e €I, then I 4+ e = I doesn’t create a circuit. In such cases,
C(I,e) is not really defined.

@ In such cases, we define C'(I,e) = {e}, and we will soon see why.
why we do this.

o If e ¢ span(I), then C(I,e) = 0, since no circuit is created in this
case.
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Matroids cont.
(NN |

Union of matroid bases of a set

Lemma 12.8.1

Let B(C) be the set of bases of C. Then, given matroid M = (E,T),
and any loop-free set C' C E, we have that:

) B=C (12.51)
BeB(C)
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Matroids cont.
(NN |

Union of matroid bases of a set

Lemma 12.8.1
Let B(C) be the set of bases of C. Then, given matroid M = (E,T),
and any loop-free set C' C E, we have that:

) B=C (12.51)
BeB(C)

Proof.
@ Define ¢’ £ Upes(c)» and suppose 3c € C such that ¢ ¢ C".
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Matroids cont.
(NN |

Union of matroid bases of a set

Lemma 12.8.1
Let B(C) be the set of bases of C. Then, given matroid M = (E,T),
and any loop-free set C' C E, we have that:

) B=C (12.51)
BeB(C)

Proof.
o Define C' £ UBeB(C), and suppose 3¢ € C such that ¢ ¢ C".

@ Hence, VB € B(C) we have ¢ ¢ B, and B + ¢ contains a single
circuit for any B, namely C(B,c).
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Matroids cont.
(NN |

Union of matroid bases of a set

Lemma 12.8.1

Let B(C) be the set of bases of C. Then, given matroid M = (E,T),
and any loop-free set C' C E, we have that:

) B=C (12.51)
BeB(C)

Proof.
o Define C' £ UBeB(C), and suppose 3¢ € C such that ¢ ¢ C".

@ Hence, VB € B(C') we have ¢ ¢ B, and B + ¢ contains a single
circuit for any B, namely C(B, ¢).
@ Then choose ¢ € C(B,¢) with ¢ # c.
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Matroids cont.
(NN |

Union of matroid bases of a set

Lemma 12.8.1

Let B(C) be the set of bases of C. Then, given matroid M = (E,T),
and any loop-free set C' C E, we have that:

) B=C (12.51)
BeB(C)

Proof.
o Define ¢’ £ Ugen(c). and suppose Jc € C such that ¢ ¢ C".
@ Hence, VB € B(C') we have ¢ ¢ B, and B + ¢ contains a single
circuit for any B, namely C(B, ¢).
@ Then choose ¢ € C(B,¢) with ¢ # c.

@ Then B+ c— ¢ is independent size | B| subset of C' and hence spans
C, and thus is a c-containing member of B(C), contradicting ¢ ¢ C".
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Closure/Sat
(AN

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).
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Closure/Sat
(AN

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).

@ We wish to generalize closure to polymatroids.
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Closure/Sat
(AN

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).

@ We wish to generalize closure to polymatroids.

e Consider z € Py for polymatroid function f.
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Closure/Sat
(AN

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).

@ We wish to generalize closure to polymatroids.
e Consider z € Py for polymatroid function f.

@ Again, recall, tight sets are closed under union and intersection, and
therefore form a distributive lattice.
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Closure/Sat
(AN

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).

@ We wish to generalize closure to polymatroids.
e Consider z € Py for polymatroid function f.

@ Again, recall, tight sets are closed under union and intersection, and
therefore form a distributive lattice.

@ That is, we saw in Lecture 7 that for any A, B € D(z), we have
that AU B € D(z) and AN B € D(x), which can constitute a join
and meet.
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Closure/Sat
(AN

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).

@ We wish to generalize closure to polymatroids.
e Consider z € Py for polymatroid function f.

@ Again, recall, tight sets are closed under union and intersection, and
therefore form a distributive lattice.

@ That is, we saw in Lecture 7 that for any A, B € D(x), we have
that AU B € D(x) and AN B € D(x), which can constitute a join
and meet.

@ Recall, for a given z € Py, we have defined this tight family as

D(x)={A: ACE,z(A) = f(A)} (12.52)
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Closure/Sat
i

The sat function = Polymatroid Closure

o Now given x € P;r:

D(x)={A: ACE,z(A) = f(A)} (12.53)
={A: f(A) —x(A) =0} (12.54)
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Closure/Sat
i

The sat function = Polymatroid Closure

o Now given x € P]T:

D(z) = {A: AC E,z(A) = f(A)} (12.53)
= {A: f(A) — z(A) =0} (12.54)

@ Since x € P and f is presumed to be polymatroid function, we see
f'(A) = f(A) — x(A) is a non-negative submodular function, and
D(z) are the zero-valued minimizers (if any) of f'(A).
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Closure/Sat
i

The sat function = Polymatroid Closure

o Now given x € P]T:

D(z) = {A: AC E,z(A) = f(A)} (12.53)
= {A: f(A) — z(A) =0} (12.54)

@ Since x € P and f is presumed to be polymatroid function, we see
f'(A) = f(A) — z(A) is a non-negative submodular function, and
D(z) are the zero-valued minimizers (if any) of f/(A).

@ The zero-valued minimizers of f’ are thus closed under union and
intersection.
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Closure/Sat
i

The sat function = Polymatroid Closure

o Now given x € P]T:

D(z) = {A: AC E,z(A) = f(A)} (12.53)
= {A: f(A) — z(A) =0} (12.54)

@ Since x € P and f is presumed to be polymatroid function, we see
f'(A) = f(A) — z(A) is a non-negative submodular function, and
D(z) are the zero-valued minimizers (if any) of f/(A).

@ The zero-valued minimizers of f’ are thus closed under union and
intersection.

@ In fact, this is true for all minimizers of a submodular function as
stated in the next theorem.
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Closure/Sat
1

Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of
minimizers of f. Let A, B € M. Then AUB € M and AN B € M.
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Closure/Sat
1

Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of
minimizers of f. Let A, B € M. Then AUB € M and AN B € M.

L]
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Closure/Sat
1

Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of
minimizers of f. Let A, B € M. Then AUB € M and AN B € M.

Proof.

Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(4) = f(B) < f(AUB).
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Closure/Sat
1

Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of
minimizers of f. Let A, B € M. Then AUB € M and AN B € M.

Proof.

Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(4) =f(B) < f(AUB).
By submodularity, we have

f(A)+ f(B) > f(AUB)+ f(AN B) (12.55)

Ol
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Closure/Sat
1

Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of
minimizers of f. Let A, B € M. Then AUB € M and AN B € M.

Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(4) =f(B) < f(AUB).
By submodularity, we have

F(A)+ £(B) = f(AUB) + f(AN B) (12.55)

Hence, we must have f(A) = f(B) = f(AUB) = f(AN B). O
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Closure/Sat
1

Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of
minimizers of f. Let A, B € M. Then AUB € M and AN B € M.

Proof.

Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(4) =f(B) < f(AUB).
By submodularity, we have

F(A)+ £(B) = f(AUB) + f(AN B) (12.55)

Hence, we must have f(A) = f(B) = f(AUB) = f(AN B). O

Thus, the minimizers of a submodular function form a lattice, and there
is a maximal and a minimal minimizer of every submodular function.
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Closure/Sat
(I

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(z), also called the polymatroid closure or sat (saturation
function).
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Closure/Sat
(I

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation
function).

@ For some x € Py, we have defined:

cl(z) € sat(z) € J{A: A€ D(2)} (12.56)
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Closure/Sat
(I

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation
function).

e For some x € Py, we have defined:

cl(z) € sat(x) €| J{A: A € D(x)} (12.56)
=J{A: ACE,x(4) = f(A)} (12.57)
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Closure/Sat
(I

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation
function).

e For some x € Py, we have defined:

cl(z) € sat(x) €| J{A: A € D(x)} (12.56)
— U {A: ACE,2(A) = f(A)} (12.57)
={e:ec E,VNa>0,x+al. ¢ Pr}  (12.58)
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Closure/Sat
(I

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation
function).

e For some x € Py, we have defined:

cl(z) € sat(x) €| J{A: A € D(x)} (12.56)
— U {A: ACE,2(A) = f(A)} (12.57)
={e:ec E,VNa>0,x+al. ¢ Pr}  (12.58)

@ Hence, sat(x) is the maximal (zero-valued) minimizer of the
submodular function f,(A) = f(A) — x(A).
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Closure/Sat
(I

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation
function).

e For some x € Py, we have defined:

cl(z) € sat(x) €| J{A: A € D(x)} (12.56)
— U {A: ACE,2(A) = f(A)} (12.57)
={e:ec E,VNa>0,x+al. ¢ Pr}  (12.58)

@ Hence, sat(z) is the maximal (zero-valued) minimizer of the
submodular function f,(A) £ f(A) — z(A).

e Eq. (12.58) says that sat consists of any point  that is P
saturated (any additional positive movement, in that dimension,
leaves Py). We'll revisit this in a few slides.
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Closure/Sat
(I

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation
function).

e For some x € Py, we have defined:

cl(z) € sat(z) €| J{A: A € D(2)} (12.56)
= J{A:ACE x(A) = f(A)} (12.57)
={e:ec E,VNa>0,x+al. ¢ Pr}  (12.58)
@ Hence, sat(z) is the maximal (zero-valued) minimizer of the
submodular function f,(A) £ f(A) — z(A).
e Eq. (12.58) says that sat consists of any point x that is Py
saturated (any additional positive movement, in that dimension,
leaves Py). We'll revisit this in a few slides.

@ First, we see how sat generalizes matroid closure.
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