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Logistics Review

Cumulative Outstanding Reading

Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige’s book.

Good references for today: Schrijver-2003, Oxley-1992/2011,
Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.

Read Tom McCormick’s overview paper on SFM http://people.

commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

Read chapters 1 - 3 from Fujishige book.

Matroid properties http:

//www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf
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Logistics Review

Announcements, Assignments, and Reminders

Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google
hangout (email me).
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Logistics Review

Class Road Map - IT-I
L1 (3/31): Motivation, Applications, &
Basic Definitions

L2: (4/2): Applications, Basic
Definitions, Properties

L3: More examples and properties (e.g.,
closure properties), and examples,
spanning trees

L4: proofs of equivalent definitions,
independence, start matroids

L5: matroids, basic definitions and
examples

L6: More on matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid and representation

L7: Dual Matroids, other matroid
properties, Combinatorial Geometries

L8: Combinatorial Geometries, matroids
and greedy, Polyhedra, Matroid
Polytopes,

L9: From Matroid Polytopes to
Polymatroids.

L10: Polymatroids and Submodularity

L11: More properties of polymatroids,
SFM special cases

L12: polymatroid properties, extreme
points polymatroids,

L13: sat, dep, supp, exchange capacity,
examples

L14: Lattice theory: partially ordered
sets; lattices; distributive, modular,
submodular, and boolean lattices; ideals
and join irreducibles.

L15: Supp, Base polytope, polymatroids
and entropic Venn diagrams, exchange
capacity,

L16: proof that minimum norm point
yields min of submodular function, and
the lattice of minimizers of a submodular
function, Lovasz extension

L17: Lovasz extension, Choquet
Integration, more properties/examples of
Lovasz extension, convex minimization
and SFM.

L18: Lovasz extension examples and
structured convex norms, The Min-Norm
Point Algorithm detailed.

L19: symmetric submodular function
minimization, maximizing monotone
submodular function w. card constraints.

L20: maximizing monotone submodular
function w. other constraints,
non-monotone maximization.

Finals Week: June 9th-13th, 2014.
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Logistics Review

A polymatroid function’s polyhedron is a polymatroid.

Theorem 12.2.4

Let f be a polymatroid function defined on subsets of E. For any
x ∈ RE

+, and any P+
f -basis yx ∈ RE

+ of x, the component sum of yx is

yx(E) = rank(x) = max
(
y(E) : y ≤ x, y ∈ P+

f

)
= min (x(A) + f(E \A) : A ⊆ E) (12.34)

As a consequence, P+
f is a polymatroid, since r.h.s. is constant w.r.t. yx.

By taking B = supp(x) (so elements E \B are zero in x), and for b ∈ B,
x(b) is big enough, the r.h.s. min has solution A∗ = E \B. We recover
submodular function from the polymatroid polyhedron via the following:

f(B) = max
{
y(B) : y ∈ P+

f

}
(12.35)

In fact, we will ultimately see a number of important consequences of
this theorem (other than just that P+

f is a polymatroid)
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Logistics Review

Tight sets D(y) are closed, and max tight set sat(y)

Recall the definition of the set of tight sets at y ∈ P+
f :

D(y) , {A : A ⊆ E, y(A) = f(A)} (12.18)

Theorem 12.2.1

For any y ∈ P+
f , with f a polymatroid function, then D(y) is closed

under union and intersection.

Proof.

We have already proven this as part of Theorem 9.4.5

Also recall the definition of sat(y), the maximal set of tight elements
relative to y ∈ RE

+.

sat(y)
def
=
⋃
{T : T ∈ D(y)} (12.19)
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Logistics Review

Bipartite Matching

Given a matching A ⊆ E (which might be empty), we can increase
the matching if we can find an augmenting path S.

The updated matching becomes A′ = A \ S ∪ S \A = A	 S, where
	 is the symmetric difference operator.

The algorithm becomes:

Algorithm 8.1: Alternating Path Bipartite Matching

1 Let A be an arbitrary (including empty) matching in G = (V, F,E) ;
2 while There exists an augmenting path S in G do
3 A← A	 S ;

This can easily be made to run in O(m2n), where |V | = m,
|F | = n, m ≤ n, but it can be made to run much faster as well (see
Schrijver-2003).
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Logistics Review

Matroid Intersection

Let M1 = (V, I1) and M2 = (V, I2) be two matroids. Consider their
common independent sets I1 ∩ I2.
While (V, I1 ∩ I2) is typically not a matroid (Exercise: show
graphical example.), we might be interested in finding the maximum
size common independent set. That is, find max |X| such that both
X ∈ I1 and X ∈ I2.

Theorem 12.2.5

Let M1 and M2 be given as above, with rank functions r1 and r2. Then
the size of the maximum size set in I1 ∩ I2 is given by

(r1 ∗ r2)(V ) , min
X⊆V

(
r1(X) + r2(V \X)

)
(12.7)

This is an instance of the convolution of two submodular functions,
f1 and f2 that, evaluated at Y ⊆ V , is written as:

(f1 ∗ f2)(Y ) = min
X⊆Y

(
f1(X) + f2(Y \X)

)
(12.8)
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Logistics Review

Fundamental circuits in matroids

Lemma 12.2.3

Let I ∈ I(M), and e ∈ E, then I ∪ {e} contains at most one circuit in
M .

Proof.

Suppose, to the contrary, that there are two distinct circuits C1, C2

such that C1 ∪ C2 ⊆ I ∪ {e}.
Then e ∈ C1 ∩ C2, and by (C2), there is a circuit C3 of M s.t.
C3 ⊆ (C1 ∪ C2) \ {e} ⊆ I
This contradicts the independence of I.

In general, let C(I, e) be the unique circuit associated with I ∪ {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Logistics Review

Matroid Intersection Algorithm Idea

Hopefully (eventually) we’ll find an odd length sequence
S = (v1, v2, . . . , vs) such that we will be independent in both M1

and M2 and thus be one greater in size than I.

We will have vi /∈ I for i odd (will be shown in blue ), and will have
vi ∈ I for i even (will be shown in green ), while v ∈ I \ S will be

shown in red .

We then replace I with I 	 S (quite analogous to the bipartite
matching case), and start again.

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014 F10/47 (pg.10/167)



Logistics Review

Identifying Augmenting Sequences

Theorem 12.2.6

Let Ip and Ip+1 be intersections of M1 and M2 with p and p+ 1
elements respectively. Then there exists an augmenting sequence
S ⊆ Ip 	 Ip+1 w.r.t. Ip.

Theorem 12.2.7

An intersection is of maximum cardinality iff it admits no augmenting
sequence.

Theorem 12.2.8

For any intersection I, there exists a maximum cardinality intersection I∗

such that span1(I) ⊆ span1(I
∗) and span2(I) ⊆ span2(I

∗).

All this can be made to run in poly time.
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Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

Matroid Partition Problem

Suppose Mi = (E, Ii) is a matroid and that we have k of them on
the same ground set E.

We wish to, if possible, partition E into k blocks,
Ii, i ∈ {1, 2, . . . , k} where Ii ∈ Ii.
Moreover, we want partition to be lexicographically maximum, that
is |I1| is maximum, |I2| is maximum given |I1|, and so on.
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Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

Matroid Partition Problem

Theorem 12.3.1

Let Mi be a collection of k matroids as described. Then, a set S ⊆ E
can be partitioned into k subsets Ii, i = 1 . . . k where Ii ∈ Ii is
independent in matroid i, if and only if, for all A ⊆ S

|A| ≤
k∑

i=1

ri(A) (12.1)

where ri is the rank function of Mi.

Now, if all matroids are the same Mi =M for all i, we get condition

|A| ≤ kr(A) ∀A ⊆ E (12.2)

But considering vector of all ones 1 ∈ RE
+, this is the same as

1

k
|A| = 1

k
1(A) ≤ r(A) ∀A ⊆ E (12.3)
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Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

Matroid Partition Problem

Recall definition of matroid polytope

P+
r =

{
y ∈ RE

+ : y(A) ≤ r(A) for all A ⊆ E
}

(12.4)

Then we see that this special case of the matroid partition problem
is just testing if 1

k1 ∈ P+
r , a problem of testing the membership in

matroid polyhedra.

This is therefore a special case of submodular function minimization.
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Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

Review

The next two slides from respectively from Lecture 9 and Lecture 8.
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Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

Polymatroidal polyhedron (or a “polymatroid”)

Definition 12.4.4 (polymatroid)

A polymatroid is a compact set P ⊆ RE
+ satisfying

1 0 ∈ P
2 If y ≤ x ∈ P then y ∈ P (called down monotone).

3 For every x ∈ RE
+, any maximal vector y ∈ P with y ≤ x (i.e., any

P -basis of x), has the same component sum y(E)

Vectors within P (i.e., any y ∈ P ) are called independent, and any
vector outside of P is called dependent.

Since all P -bases of x have the same component sum, if Bx is the
set of P -bases of x, than rank(x) = y(E) for any y ∈ Bx.
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Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

Maximum weight independent set via greedy weighted rank

Theorem 12.4.6

Let M = (V, I) be a matroid, with rank function r, then for any weight
function w ∈ RV

+, there exists a chain of sets U1 ⊂ U2 ⊂ · · · ⊂ Un ⊆ V
such that

max {w(I)|I ∈ I} =
n∑

i=1

λir(Ui) (12.19)

where λi ≥ 0 satisfy

w =

n∑
i=1

λi1Ui (12.20)
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Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

Polymatroidal polyhedron and greedy

Let (E, I) be a set system and w ∈ RE
+ be a weight vector.

Recall greedy algorithm: Set A = ∅, and repeatedly choose
y ∈ E \A such that A ∪ {y} ∈ I with w(y) as large as possible,
stopping when no such y exists.

For a matroid, we saw that set system (E, I) is a matroid iff for
each weight function w ∈ RE

+, the greedy algorithm leads to a set
I ∈ I of maximum weight w(I).

Stated succinctly, considering max {w(I) : I ∈ I}, then (E, I) is a
matroid iff greedy works for this maximization.

Can we also characterize a polymatroid in this way?

That is, if we consider max
{
wx : x ∈ P+

f

}
, where P+

f represents

the “independent vectors”, is it the case that P+
f is a polymatroid

iff greedy works for this maximization?

Can we even relax things so that w ∈ RE?
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the “independent vectors”, is it the case that P+
f is a polymatroid

iff greedy works for this maximization?

Can we even relax things so that w ∈ RE?
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Polymatroidal polyhedron and greedy

What is the greedy solution in this setting, when w ∈ RE?

Sort elements of E w.r.t. w so that, w.l.o.g.
E = (e1, e2, . . . , em) with w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
Let k + 1 be the first point (if any) at which we are non-positive,
i.e., w(ek) > 0 and 0 ≥ w(ek+1).
Next define partial accumulated sets Ei, for i = 0 . . .m, we have
w.r.t. the above sorted order:

Ei
def
= {e1, e2, . . . ei} (12.6)

(note E0 = ∅, f(E0) = 0, and E and Ei is always sorted w.r.t w).
The greedy solution is the vector x ∈ RE

+ with elements defined as:

x(e1)
def
= f(E1) = f(e1) = f(e1|E0) = f(e1|∅) (12.7)

x(ei)
def
= f(Ei)− f(Ei−1) = f(ei|Ei−1) for i = 2 . . . k (12.8)

x(ei)
def
= 0 for i = k + 1 . . .m = |E| (12.9)
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Polymatroidal polyhedron and greedy

What is the greedy solution in this setting, when w ∈ RE?
Sort elements of E w.r.t. w so that, w.l.o.g.
E = (e1, e2, . . . , em) with w(e1) ≥ w(e2) ≥ · · · ≥ w(em).

Let k + 1 be the first point (if any) at which we are non-positive,
i.e., w(ek) > 0 and 0 ≥ w(ek+1).
Next define partial accumulated sets Ei, for i = 0 . . .m, we have
w.r.t. the above sorted order:

Ei
def
= {e1, e2, . . . ei} (12.6)

(note E0 = ∅, f(E0) = 0, and E and Ei is always sorted w.r.t w).
The greedy solution is the vector x ∈ RE

+ with elements defined as:

x(e1)
def
= f(E1) = f(e1) = f(e1|E0) = f(e1|∅) (12.7)

x(ei)
def
= f(Ei)− f(Ei−1) = f(ei|Ei−1) for i = 2 . . . k (12.8)

x(ei)
def
= 0 for i = k + 1 . . .m = |E| (12.9)
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Polymatroidal polyhedron and greedy

What is the greedy solution in this setting, when w ∈ RE?
Sort elements of E w.r.t. w so that, w.l.o.g.
E = (e1, e2, . . . , em) with w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
Let k + 1 be the first point (if any) at which we are non-positive,
i.e., w(ek) > 0 and 0 ≥ w(ek+1).
That is, we have

w(e1) ≥ w(e2) ≥ · · · ≥ w(ek) > 0 ≥ w(ek+1) ≥ · · · ≥ w(em) (12.5)

Next define partial accumulated sets Ei, for i = 0 . . .m, we have
w.r.t. the above sorted order:

Ei
def
= {e1, e2, . . . ei} (12.7)

(note E0 = ∅, f(E0) = 0, and E and Ei is always sorted w.r.t w).
The greedy solution is the vector x ∈ RE

+ with elements defined as:

x(e1)
def
= f(E1) = f(e1) = f(e1|E0) = f(e1|∅) (12.8)

x(ei)
def
= f(Ei)− f(Ei−1) = f(ei|Ei−1) for i = 2 . . . k (12.9)

x(ei)
def
= 0 for i = k + 1 . . .m = |E| (12.10)

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014 F19/47 (pg.33/167)



Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

Polymatroidal polyhedron and greedy

What is the greedy solution in this setting, when w ∈ RE?
Sort elements of E w.r.t. w so that, w.l.o.g.
E = (e1, e2, . . . , em) with w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
Let k + 1 be the first point (if any) at which we are non-positive,
i.e., w(ek) > 0 and 0 ≥ w(ek+1).
Next define partial accumulated sets Ei, for i = 0 . . .m, we have
w.r.t. the above sorted order:

Ei
def
= {e1, e2, . . . ei} (12.6)

(note E0 = ∅, f(E0) = 0, and E and Ei is always sorted w.r.t w).

The greedy solution is the vector x ∈ RE
+ with elements defined as:

x(e1)
def
= f(E1) = f(e1) = f(e1|E0) = f(e1|∅) (12.7)

x(ei)
def
= f(Ei)− f(Ei−1) = f(ei|Ei−1) for i = 2 . . . k (12.8)

x(ei)
def
= 0 for i = k + 1 . . .m = |E| (12.9)
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Polymatroidal polyhedron and greedy

What is the greedy solution in this setting, when w ∈ RE?
Sort elements of E w.r.t. w so that, w.l.o.g.
E = (e1, e2, . . . , em) with w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
Let k + 1 be the first point (if any) at which we are non-positive,
i.e., w(ek) > 0 and 0 ≥ w(ek+1).
Next define partial accumulated sets Ei, for i = 0 . . .m, we have
w.r.t. the above sorted order:

Ei
def
= {e1, e2, . . . ei} (12.6)

(note E0 = ∅, f(E0) = 0, and E and Ei is always sorted w.r.t w).
The greedy solution is the vector x ∈ RE

+ with elements defined as:

x(e1)
def
= f(E1) = f(e1) = f(e1|E0) = f(e1|∅) (12.7)

x(ei)
def
= f(Ei)− f(Ei−1) = f(ei|Ei−1) for i = 2 . . . k (12.8)

x(ei)
def
= 0 for i = k + 1 . . .m = |E| (12.9)
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Some Intuition: greedy and gain

Note x(ei) = f(ei|Ei−1) ≤ f(ei|E′) for any E′ ⊆ Ei−1

So x(e1) = f(e1) and this corresponds to w(e1) ≥ w(ei) for all
i 6= 1.

Hence, for the largest value of w (namely w(e1)), we use for x(e1)
the largest possible gain value of e1 (namely f(e1|∅) ≥ f(e1|A) for
any A ⊆ E \ {e1}).

For the next largest value of w (namely w(e2)), we use for x(e2) the
next largest gain value of e2 (namely f(e2|e1)), while still ensuring
(as we will soon see in Theorem 12.4.1) that the resulting x ∈ Pf .

This process continues, using the next largest possible gain of ei for
x(ei) while ensuring we do not leave the polytope, given the values
we’ve already chosen for x(ei′) for i′ < i.
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Some Intuition: greedy and gain

Note x(ei) = f(ei|Ei−1) ≤ f(ei|E′) for any E′ ⊆ Ei−1

So x(e1) = f(e1) and this corresponds to w(e1) ≥ w(ei) for all
i 6= 1.

Hence, for the largest value of w (namely w(e1)), we use for x(e1)
the largest possible gain value of e1 (namely f(e1|∅) ≥ f(e1|A) for
any A ⊆ E \ {e1}).

For the next largest value of w (namely w(e2)), we use for x(e2) the
next largest gain value of e2 (namely f(e2|e1)), while still ensuring
(as we will soon see in Theorem 12.4.1) that the resulting x ∈ Pf .

This process continues, using the next largest possible gain of ei for
x(ei) while ensuring we do not leave the polytope, given the values
we’ve already chosen for x(ei′) for i′ < i.
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Some Intuition: greedy and gain

Note x(ei) = f(ei|Ei−1) ≤ f(ei|E′) for any E′ ⊆ Ei−1

So x(e1) = f(e1) and this corresponds to w(e1) ≥ w(ei) for all
i 6= 1.

Hence, for the largest value of w (namely w(e1)), we use for x(e1)
the largest possible gain value of e1 (namely f(e1|∅) ≥ f(e1|A) for
any A ⊆ E \ {e1}).

For the next largest value of w (namely w(e2)), we use for x(e2) the
next largest gain value of e2 (namely f(e2|e1)), while still ensuring
(as we will soon see in Theorem 12.4.1) that the resulting x ∈ Pf .

This process continues, using the next largest possible gain of ei for
x(ei) while ensuring we do not leave the polytope, given the values
we’ve already chosen for x(ei′) for i′ < i.
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Some Intuition: greedy and gain

Note x(ei) = f(ei|Ei−1) ≤ f(ei|E′) for any E′ ⊆ Ei−1

So x(e1) = f(e1) and this corresponds to w(e1) ≥ w(ei) for all
i 6= 1.

Hence, for the largest value of w (namely w(e1)), we use for x(e1)
the largest possible gain value of e1 (namely f(e1|∅) ≥ f(e1|A) for
any A ⊆ E \ {e1}).

For the next largest value of w (namely w(e2)), we use for x(e2) the
next largest gain value of e2 (namely f(e2|e1)), while still ensuring
(as we will soon see in Theorem 12.4.1) that the resulting x ∈ Pf .

This process continues, using the next largest possible gain of ei for
x(ei) while ensuring we do not leave the polytope, given the values
we’ve already chosen for x(ei′) for i′ < i.
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Some Intuition: greedy and gain

Note x(ei) = f(ei|Ei−1) ≤ f(ei|E′) for any E′ ⊆ Ei−1

So x(e1) = f(e1) and this corresponds to w(e1) ≥ w(ei) for all
i 6= 1.

Hence, for the largest value of w (namely w(e1)), we use for x(e1)
the largest possible gain value of e1 (namely f(e1|∅) ≥ f(e1|A) for
any A ⊆ E \ {e1}).

For the next largest value of w (namely w(e2)), we use for x(e2) the
next largest gain value of e2 (namely f(e2|e1)), while still ensuring
(as we will soon see in Theorem 12.4.1) that the resulting x ∈ Pf .

This process continues, using the next largest possible gain of ei for
x(ei) while ensuring we do not leave the polytope, given the values
we’ve already chosen for x(ei′) for i′ < i.
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Polymatroidal polyhedron and greedy

Theorem 12.4.1

The vector x ∈ RE
+ as previously defined using the greedy algorithm

maximizes wx over P+
f , with w ∈ RE

+, if f is submodular.

Proof.

. . .
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Polymatroidal polyhedron and greedy

Theorem 12.4.1

The vector x ∈ RE
+ as previously defined using the greedy algorithm

maximizes wx over P+
f , with w ∈ RE

+, if f is submodular.

Proof.

Consider the LP strong duality equation:

max(wx : x ∈ P+
f ) = min

(∑
A⊆E

yAf(A) : y ∈ R2E

+ ,
∑
A⊆E

yA1A ≥ w
)

(12.10)

Define the following vector y ∈ R2E
+ as

yEi ← w(ei)− w(ei+1) for i = 1 . . . (m− 1), (12.11)

yE ← w(em), and (12.12)

yA ← 0 otherwise (12.13)

. . .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014 F21/47 (pg.42/167)



Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

Polymatroidal polyhedron and greedy

Theorem 12.4.1

The vector x ∈ RE
+ as previously defined using the greedy algorithm

maximizes wx over P+
f , with w ∈ RE

+, if f is submodular.

Proof.

Consider the LP strong duality equation:

max(wx : x ∈ P+
f ) = min

(∑
A⊆E

yAf(A) : y ∈ R2E

+ ,
∑
A⊆E

yA1A ≥ w
)

(12.10)

Define the following vector y ∈ R2E
+ as

yEi ← w(ei)− w(ei+1) for i = 1 . . . (m− 1), (12.11)

yE ← w(em), and (12.12)

yA ← 0 otherwise (12.13)

. . .
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Polymatroidal polyhedron and greedy

Proof.

We first will see that greedy x ∈ P+
f (that is x(A) ≤ f(A), ∀A).

Order A = (a1, a2, . . . , ak) based on order (e1, e2, . . . , em).
a1 a2 a3 a4 a5 . . .

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 . . . em

Define e−1 : E → {1, . . . ,m} so that e−1(ei) = i.

Then, we have x ∈ P+
f since for all A:

f(A) =

k∑
i=1

f(ai|a1:i−1) (12.14)

≥
k∑

i=1

f(ai|e1:e−1(ai)−1) (12.15)

=
∑
a∈A

f(a|e1:e−1(a)−1) = x(A) (12.16)

. . .
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Polymatroidal polyhedron and greedy

Proof.

We first will see that greedy x ∈ P+
f (that is x(A) ≤ f(A), ∀A).

Order A = (a1, a2, . . . , ak) based on order (e1, e2, . . . , em).
a1 a2 a3 a4 a5 . . .

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 . . . em

Define e−1 : E → {1, . . . ,m} so that e−1(ei) = i.

Then, we have x ∈ P+
f since for all A:

f(A) =

k∑
i=1

f(ai|a1:i−1) (12.14)

≥
k∑

i=1

f(ai|e1:e−1(ai)−1) (12.15)

=
∑
a∈A

f(a|e1:e−1(a)−1) = x(A) (12.16)

. . .
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Polymatroidal polyhedron and greedy
Proof.

We first will see that greedy x ∈ P+
f (that is x(A) ≤ f(A), ∀A).

Order A = (a1, a2, . . . , ak) based on order (e1, e2, . . . , em).
a1 a2 a3 a4 a5 . . .

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 . . . em

Define e−1 : E → {1, . . . ,m} so that e−1(ei) = i.
This means that with A = {a1, a2, . . . , ak}, and ∀j ≤ k

{a1, a2, . . . , aj} ⊆
{
e1, e2, . . . , ee−1(aj)

}
(12.14)

and

{a1, a2, . . . , aj−1} ⊆
{
e1, e2, . . . , ee−1(aj)−1

}
(12.15)

Also recall matlab notation: a1:j ≡ {a1, a2, . . . , aj}.
E.g., with j = 4 we get e−1(a4) = 9, and

{a1, a2, a3, a4} ⊆ {e1, e2, . . . , e9} (12.16)

Then, we have x ∈ P+
f since for all A:

f(A) =
k∑

i=1

f(ai|a1:i−1) (12.17)

≥
k∑

i=1

f(ai|e1:e−1(ai)−1) (12.18)

=
∑
a∈A

f(a|e1:e−1(a)−1) = x(A) (12.19)

. . .
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Polymatroidal polyhedron and greedy

Proof.

We first will see that greedy x ∈ P+
f (that is x(A) ≤ f(A), ∀A).

Order A = (a1, a2, . . . , ak) based on order (e1, e2, . . . , em).
a1 a2 a3 a4 a5 . . .

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 . . . em

Define e−1 : E → {1, . . . ,m} so that e−1(ei) = i.

Then, we have x ∈ P+
f since for all A:

f(A) =

k∑
i=1

f(ai|a1:i−1) (12.14)

≥
k∑

i=1

f(ai|e1:e−1(ai)−1) (12.15)

=
∑
a∈A

f(a|e1:e−1(a)−1) = x(A) (12.16). . .
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Polymatroidal polyhedron and greedy

Proof.

We first will see that greedy x ∈ P+
f (that is x(A) ≤ f(A), ∀A).

Order A = (a1, a2, . . . , ak) based on order (e1, e2, . . . , em).
a1 a2 a3 a4 a5 . . .

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 . . . em

Define e−1 : E → {1, . . . ,m} so that e−1(ei) = i.

Then, we have x ∈ P+
f since for all A:

f(A) =

k∑
i=1

f(ai|a1:i−1) (12.14)

≥
k∑

i=1

f(ai|e1:e−1(ai)−1) (12.15)

=
∑
a∈A

f(a|e1:e−1(a)−1) = x(A) (12.16). . .
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Polymatroidal polyhedron and greedy

Proof.

Next, y is also feasible for the dual constraints in Eq. 12.10 since:

Next, we check that y is dual feasible. Clearly, y ≥ 0,

and also, considering y component wise, for any i, we have that

∑
A:ei∈A

yA =
∑
j≥i

yEj =

m−1∑
j=i

(w(ej)− w(ej+1)) + w(em) = w(ei).

Now optimality for x and y follows from strong duality, i.e.:

wx =
∑
e∈E

w(e)x(e) =
m∑
i=1

w(ei)f(ei|Ei−1) =
m∑
i=1

w(ei)
(
f(Ei)− f(Ei−1)

)
=

m−1∑
i=1

f(Ei)
(
w(ei)− w(ei+1)

)
+ f(E)w(em) =

∑
A⊆E

yAf(A)

. . .
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Polymatroidal polyhedron and greedy

Proof.

Next, y is also feasible for the dual constraints in Eq. 12.10 since:

Next, we check that y is dual feasible. Clearly, y ≥ 0,

and also, considering y component wise, for any i, we have that

∑
A:ei∈A

yA =
∑
j≥i

yEj =

m−1∑
j=i

(w(ej)− w(ej+1)) + w(em) = w(ei).

Now optimality for x and y follows from strong duality, i.e.:

wx =
∑
e∈E

w(e)x(e) =
m∑
i=1

w(ei)f(ei|Ei−1) =
m∑
i=1

w(ei)
(
f(Ei)− f(Ei−1)

)
=

m−1∑
i=1

f(Ei)
(
w(ei)− w(ei+1)

)
+ f(E)w(em) =

∑
A⊆E

yAf(A)

. . .
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Polymatroidal polyhedron and greedy

Proof.

Next, y is also feasible for the dual constraints in Eq. 12.10 since:

Next, we check that y is dual feasible. Clearly, y ≥ 0,

and also, considering y component wise, for any i, we have that

∑
A:ei∈A

yA =
∑
j≥i

yEj =

m−1∑
j=i

(w(ej)− w(ej+1)) + w(em) = w(ei).

Now optimality for x and y follows from strong duality, i.e.:

wx =
∑
e∈E

w(e)x(e) =
m∑
i=1

w(ei)f(ei|Ei−1) =
m∑
i=1

w(ei)
(
f(Ei)− f(Ei−1)

)
=

m−1∑
i=1

f(Ei)
(
w(ei)− w(ei+1)

)
+ f(E)w(em) =

∑
A⊆E

yAf(A)
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Polymatroidal polyhedron and greedy

Proof.

Next, y is also feasible for the dual constraints in Eq. 12.10 since:

Next, we check that y is dual feasible. Clearly, y ≥ 0,

and also, considering y component wise, for any i, we have that

∑
A:ei∈A

yA =
∑
j≥i

yEj =

m−1∑
j=i

(w(ej)− w(ej+1)) + w(em) = w(ei).

Now optimality for x and y follows from strong duality, i.e.:

wx =
∑
e∈E

w(e)x(e) =
m∑
i=1

w(ei)f(ei|Ei−1) =

m∑
i=1

w(ei)
(
f(Ei)− f(Ei−1)

)
=

m−1∑
i=1

f(Ei)
(
w(ei)− w(ei+1)

)
+ f(E)w(em) =

∑
A⊆E

yAf(A)

. . .
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Polymatroidal polyhedron and greedy

Proof.

The equality in prev. Eq. follows via Abel summation:

wx =

m∑
i=1

wixi (12.17)

=

m∑
i=1

wi

(
f(Ei)− f(Ei−1)

)
(12.18)

=

m∑
i=1

wif(Ei)−
m−1∑
i=1

wi+1f(Ei) (12.19)

= wmf(Em) +
m−1∑
i=1

(
wi − wi+1

)
f(Ei) (12.20)
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What about w ∈ RE

When w contains negative elements, we have x(ei) = 0 for
i = k + 1, . . . ,m, where k is the last positive element of w when it
is sorted in decreasing order.

Exercise: show a modification of the previous proof that works for
arbitrary w ∈ RE
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Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P+
f is a polytope of form

P+
f =

{
x ∈ RE

+ : x(A) ≤ f(A), ∀A ⊆ E
}

, then the greedy solution to
max(wx : x ∈ P ) is optimum only if f is submodular.

Proof.

Order elements of E arbitrarily as (e1, e2, . . . , em) and define
Ei = (e1, e2, . . . , ei). Also, choose A and B arbitrarily.

For 1 ≤ p ≤ q ≤ m, define A = {e1, e2, . . . , ek, ek+1, . . . , ep} = Ep

and B = {e1, e2, . . . , ek, ep+1, . . . , eq} = Ek ∪ (Eq \ Ep)

Note, then we have A ∩B = {e1, . . . , ek} = Ek, and A ∪B = Eq.

Define w ∈ {0, 1}m as:

w
def
=

q∑
i=1

1ei = 1A∪B (12.21)

Suppose optimum solution x is given by the greedy procedure.

. . .
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f is a polytope of form
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Polymatroidal polyhedron and greedy
Proof.

Then

k∑
i=1

xi = f(E1) +

k∑
i=2

(f(Ei)− f(Ei−1)) = f(Ek) = f(A ∩B)

(12.22)

and

p∑
i=1

xi = f(E1) +

p∑
i=2

(f(Ei)− f(Ei−1)) = f(Ep) = f(A) (12.23)

and

q∑
i=1

xi = f(E1) +

q∑
i=2

(f(Ei)− f(Ei−1)) = f(Eq) = f(A ∪B)

(12.24)

. . .
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Polymatroidal polyhedron and greedy
Proof.

Then

k∑
i=1

xi = f(E1) +

k∑
i=2

(f(Ei)− f(Ei−1)) = f(Ek) = f(A ∩B)

(12.22)

and

p∑
i=1

xi = f(E1) +

p∑
i=2

(f(Ei)− f(Ei−1)) = f(Ep) = f(A) (12.23)

and

q∑
i=1

xi = f(E1) +

q∑
i=2

(f(Ei)− f(Ei−1)) = f(Eq) = f(A ∪B)

(12.24)
. . .
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Polymatroidal polyhedron and greedy
Proof.

Thus, we have

x(B) =
∑

i∈1,...,k,p+1,...,q

xi =
∑

i:ei∈B
xi = f(A ∪B) + f(A ∩B)− f(A)

(12.25)

But given that the greedy algorithm gives the optimal solution to
max(wx : x ∈ P+

f ), we have that x ∈ P+
f and thus x(B) ≤ f(B).

Thus,

x(B) = f(A ∪B) + f(A ∩B)− f(A) =
∑

i:ei∈B
xi ≤ f(B) (12.26)

ensuring the submodularity of f , since A and B are arbitrary.

. . .
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Proof.
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f ), we have that x ∈ P+
f and thus x(B) ≤ f(B).

Thus,
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Polymatroidal polyhedron and greedy

Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem 8.6.1)

Theorem 12.4.1

If f : 2E → R+ is given, and P is a polytope in RE
+ of the form

P =
{
x ∈ RE

+ : x(A) ≤ f(A),∀A ⊆ E
}

, then the greedy solution to the
problem max(wx : x ∈ P ) is ∀w optimum iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).
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Multiple Polytopes associated with arbitrary f

Given an arbitrary submodular function f : 2V → R (not necessarily
a polymatroid function, so it need not be positive, monotone, etc.).

If f(∅) 6= 0, we can set f ′(A) = f(A)− f(∅) without destroying
submodularity. This also does not change any minima, so we
assume all functions are normalized f(∅) = 0.

We can define several polytopes:

Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(12.27)

P+
f = Pf ∩

{
x ∈ RE : x ≥ 0

}
(12.28)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(12.29)

Pf is what is sometimes called the extended polytope (sometimes
notated as EPf .

P+
f is Pf restricted to the positive orthant.

Bf is called the base polytope
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Multiple Polytopes associated with arbitrary f

Given an arbitrary submodular function f : 2V → R (not necessarily
a polymatroid function, so it need not be positive, monotone, etc.).
If f(∅) 6= 0, we can set f ′(A) = f(A)− f(∅) without destroying
submodularity. This also does not change any minima, so we
assume all functions are normalized f(∅) = 0.
Note that due to constraint x(∅) ≤ f(∅), we must have f(∅) ≥ 0 since if not
(i.e., if f(∅) < 0), then P+

f doesn’t exist.
Another form of normalization can do is:

f ′(A) =

{
f(A) if A 6= ∅
0 if A = ∅

(12.27)

This preserves submodularity due to f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), and
if A ∩B = ∅ then r.h.s. only gets smaller when f(∅) ≥ 0.

We can define several polytopes:

Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(12.28)

P+
f = Pf ∩

{
x ∈ RE : x ≥ 0

}
(12.29)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(12.30)

Pf is what is sometimes called the extended polytope (sometimes
notated as EPf .
P+
f is Pf restricted to the positive orthant.
Bf is called the base polytope
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Multiple Polytopes associated with arbitrary f

Given an arbitrary submodular function f : 2V → R (not necessarily
a polymatroid function, so it need not be positive, monotone, etc.).

If f(∅) 6= 0, we can set f ′(A) = f(A)− f(∅) without destroying
submodularity. This also does not change any minima, so we
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f = Pf ∩
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Multiple Polytopes associated with f

PfP+
f

Bf

P+
f = Pf ∩

{
x ∈ RE : x ≥ 0

}
(12.30)

Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(12.31)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(12.32)
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Base Polytope in 3D
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Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(12.33)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(12.34)
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 12.5.1

Let f be a submodular function defined on subsets of E. For any
x ∈ RE , we have:

rank(x) = max (y(E) : y ≤ x, y ∈ Pf ) = min (x(A) + f(E \A) : A ⊆ E)
(12.35)

Essentially the same theorem as Theorem 9.4.5. Taking x = 0 we get:

Corollary 12.5.2

Let f be a submodular function defined on subsets of E. x ∈ RE , we
have:

rank(0) = max (y(E) : y ≤ 0, y ∈ Pf ) = min (f(A) : A ⊆ E) (12.36)
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Proof of Theorem 12.5.1

Proof of Theorem 12.5.1.

Let y∗ be the optimal solution of the l.h.s. and let A ⊆ E be any
subset.

Then y∗(E) = y∗(A) + y∗(E \A) ≤ f(A) + x(E \A) since if
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tight sets).
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y∗(sat(y∗)) = f(sat(y∗)) by definition.

Thus we have that
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Greedy and Pf

In Theorem 12.4.1, we can relax P+
f to Pf .

If ∃e such that w(e) < 0 then max(wx : x ∈ Pf ) =∞ since we can
let xe →∞, unless we ignore the negative elements or assume
w ≥ 0.

The proof, moreover, showed also that x ∈ Pf , not just P+
f .

Moreover, in polymatroidal case, since the greedy constructed x has
x(E) = f(E), we have that the greedy x ∈ Bf .

In fact, we next will see that the greedy x is a vertex of Bf .
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Polymatroid extreme points
The greedy algorithm does more than solve max(wx : x ∈ P+

f ). We
can use it to generate vertices of polymatroidal polytopes.

Consider P+
f and also C+

f
def
=
{
x : x ∈ RE

+, x(e) ≤ f(e),∀e ∈ E
}

Then ordering A = (a1, . . . , a|A|) arbitrarily with Ai = {a1, . . . , ai},
f(A) =

∑
i f(ai|Ai−1) ≤

∑
i f(ai), and hence P+

f ⊆ C+
f .
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Polymatroid extreme points
Since w ∈ RE

+ is arbitrary, it may be that any e ∈ E is max (i.e., is
such that w(e) > w(e′) for e′ ∈ E \ {e}).

Thus, intuitively, any first vertex of the polytope away from the
origin might be obtained by advancing along the corresponding axis.

Recall, base polytope defined as the extreme face of Pf . I.e.,

Bf = Pf ∩
{
x ∈ RE

+ : x(E) = f(E)
}

(12.37)

Also, intuitively, we can continue advancing along the skeletal edges
of the polytope to reach any other vertex, given the appropriate
ordering. If we advance in all dimensions, we’ll reach a vertex in Bf ,
and if we advance only in some dimensions, we’ll reach a vertex in
Pf \Bf .

We formalize this next:
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Polymatroid extreme points
Given any arbitrary order of E = (e1, e2, . . . , em), define
Ei = (e1, e2, . . . , ei).

As before, a vector x is generated by Ei using the greedy procedure
as follows

x(e1) = f(E1) = f(e1) (12.38)

x(ej) = f(Ej)− f(Ej−1) = f(ej |Ej−1) for 2 ≤ j ≤ i (12.39)

x(e) = 0 for e ∈ E \ Ei (12.40)

An extreme point of Pf is a point that is not a convex combination
of two other distinct points in Pf . Equivalently, an extreme point
corresponds to setting certain inequalities in the specification of Pf

to be equalities, so that there is a unique single point solution.
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Polymatroid extreme points

Theorem 12.6.1

For a given ordering E = (e1, . . . , em) of E and a given Ei = (e1, . . . , ei)
and x generated by Ei using the greedy procedure (x(ei) = f(ei|Ei−1)),
then x is an extreme point of Pf

Proof.

We already saw that x ∈ Pf (Theorem 12.4.1).

To show that x is an extreme point of Pf , note that it is the unique
solution of the following system of equations

x(Ej) = f(Ej) for 1 ≤ j ≤ i ≤ m (12.41)

x(e) = 0 for e ∈ E \ Ei (12.42)

There are i ≤ m equations and i ≤ m unknowns, and simple
Gaussian elimination gives us back the x constructed via the Greedy
algorithm!!
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Polymatroid extreme points
As an example, we have x(E1) = x(e1) = f(e1)

x(E2) = x(e1) + x(e2) = f(e1, e2) so
x(e2) = f(e1, e2)− x(e1) = f(e1, e2)− f(e1) = f(e2|e1).
x(E3) = x(e1) + x(e2) + x(e3) = f(e1, e2, e3) so
x(e3) = f(e1, e2, e3)− x(e2)− x(e1) = f(e1, e2, e3)− f(e1, e2) =
f(e3|e1, e2)
And so on . . . , but we see that this is just Gaussian elimination.

Also, since x ∈ Pf , for each i, we see that,

x(Ej) = f(Ej) for 1 ≤ j ≤ i (12.43)

x(A) ≤ f(A),∀A ⊆ E (12.44)

Thus, the greedy procedure provides a modular function lower
bound on f that is tight on all points Ei in the order. This can be
useful in its own right.
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Polymatroid extreme points
some examples
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Polymatroid extreme points
Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of Pf and B ⊆ E is given such that
supp(x) = {e ∈ E : x(e) 6= 0} ⊆ B ⊆ ∪(A : x(A) = f(A)) = sat(x),
then x is generated using greedy by some ordering of B.

Note, sat(x) = cl(x) = ∪(A : x(A) = f(A)) is also called the
closure of x (recall that sets A such that x(A) = f(A) are called
tight, and such sets are closed under union and intersection, as seen
in Lecture 8, Theorem ??)

Thus, cl(x) is a tight set.

Also, supp(x) = {e ∈ E : x(e) 6= 0} is called the support of x.

For arbitrary x, supp(x) is not necessarily tight, but for an extreme
point, supp(x) is.
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Polymatroid with labeled edge lengths
Recall f(e|A) =
f(A+ e)− f(A)
Notice how
submodularity,
f(e|B) ≤ f(e|A) for
A ⊆ B, defines the
shape of the polytope.

In fact, we have
strictness here
f(e|B) < f(e|A) for
A ⊂ B.

Also, consider how the
greedy algorithm
proceeds along the
edges of the polytope.

e1

e2

f(e1)

f(e1|e2)

f(e
2)

f(e
2|e

1)
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Intuition: why greedy works with polymatroids

Given w, the goal is
to find
x = (x(e1), x(e2))
that maximizes
xᵀw = x(e1)w(e1)+
x(e2)w(e2).

If w(e2) > w(e1) the
upper extreme point
indicated maximizes
xᵀw over x ∈ P+

f .

If w(e2) < w(e1) the
lower extreme point
indicated maximizes
xᵀw over x ∈ P+

f . e1

e2

f(e1)

f(e1|e2)

f(e
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f(e
2|e
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 12.7.4

Let f be a polymatroid function defined on subsets of E. For any
x ∈ RE

+, and any P+
f -basis yx ∈ RE

+ of x, the component sum of yx is

yx(E) = rank(x) = max
(
y(E) : y ≤ x, y ∈ P+

f

)
= min (x(A) + f(E \A) : A ⊆ E) (12.34)

As a consequence, P+
f is a polymatroid, since r.h.s. is constant w.r.t. yx.

By taking B = supp(x) (so elements E \B are zero in x), and for b ∈ B,
x(b) is big enough, the r.h.s. min has solution A∗ = E \B. We recover
submodular function from the polymatroid polyhedron via the following:

f(B) = max
{
y(B) : y ∈ P+

f

}
(12.35)

In fact, we will ultimately see a number of important consequences of
this theorem (other than just that P+

f is a polymatroid)
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Matroid instance of Theorem 9.4.5

Considering Theorem 9.4.5, the matroid case is now a special case,
where we have that:

Corollary 12.7.2

We have that:

max {y(E) : y ∈ Pind. set(M), y ≤ x} = min {rM (A) + x(E \A) : A ⊆ E}
(12.2)

where rM is the matroid rank function of some matroid.
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Most violated inequality problem in matroid polytope case

Consider

P+
r =

{
x ∈ RE : x ≥ 0, x(A) ≤ rM (A),∀A ⊆ E

}
(12.45)

Suppose we have any x ∈ RE
+ such that x 6∈ P+

r .

Hence, there must be a set of W ⊆ 2V , each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > rM (A) for A ∈ W.

The most violated inequality when x is considered w.r.t. P+
r

corresponds to the set A that maximizes x(A)− rM (A), i.e., the most
violated inequality is valuated as:

max {x(A)− rM (A) : A ∈ W} = max {x(A)− rM (A) : A ⊆ E} (12.46)

Since x is modular and x(E \A) = x(E)− x(A), we can express this
via a min as in;:

min {rM (A) + x(E \A) : A ⊆ E} (12.47)
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Most violated inequality problem in matroid polytope case

Consider
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Most violated inequality/polymatroid membership/SFM

Consider

P+
f =

{
x ∈ RE : x ≥ 0, x(A) ≤ f(A),∀A ⊆ E

}
(12.48)

Suppose we have any x ∈ RE
+ such that x 6∈ P+

f .

Hence, there must be a set of W ⊆ 2V , each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > rM (A) for A ∈ W.

1

2 P

x

1

2 P
x

1

2 P

Left: W = {{1}} Center: W = {{2}} Right: W = {{1, 2}}
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Consider

P+
f =

{
x ∈ RE : x ≥ 0, x(A) ≤ f(A),∀A ⊆ E

}
(12.48)

Suppose we have any x ∈ RE
+ such that x 6∈ P+

f .

Hence, there must be a set of W ⊆ 2V , each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > rM (A) for A ∈ W.

1

2 P

x

1

2 P
x

1

2 P

Left: W = {{1}} Center: W = {{2}} Right: W = {{1, 2}}
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Most violated inequality/polymatroid membership/SFM

The most violated inequality when x is considered w.r.t. P+
f

corresponds to the set A that maximizes x(A)− f(A), i.e., the
most violated inequality is valuated as:

max {x(A)− f(A) : A ∈ W} = max {x(A)− f(A) : A ⊆ E} (12.49)

Since x is modular and x(E \A) = x(E)− x(A), we can express
this via a min as in;:

min {f(A) + x(E \A) : A ⊆ E} (12.50)

More importantly, min {f(A) + x(E \A) : A ⊆ E} is a form of
submodular function minimization, namely
min {f(A)− x(A) : A ⊆ E} for a submodular f and x ∈ RE

+,
consisting of a difference of polymatroid and modular function (so
f − x is no longer necessarily monotone, nor positive).

We will ultimatley answer how general this form of SFM is.
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Matroids, other definitions using matroid rank r : 2V → Z+

Definition 12.8.1 (closed/flat/subspace)

A subset A ⊆ E is closed (equivalently, a flat or a subspace) of matroid
M if for all x ∈ E \A, r(A ∪ {x}) = r(A) + 1.

A hyperplane is a flat of rank r(M)− 1.

Definition 12.8.2 (closure)

Given A ⊆ E, the closure (or span) of A, is defined by
span(A) = {b ∈ E : r(A ∪ {b}) = r(A)}.

Therefore, a closed set A has span(A) = A.

Definition 12.8.3 (circuit)

A subset A ⊆ E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a ∈ A,
r(A \ {a}) = |A| − 1).
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 12.8.1 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such
that no two sets in C are contained in each other. Then the following are
equivalent.

1 C is the collection of circuits of a matroid;

2 if C,C ′ ∈ C, and x ∈ C ∩C ′, then (C ∪C ′)\{x} contains a set in C;

3 if C,C ′ ∈ C, and x ∈ C ∩ C ′, and y ∈ C \ C ′, then (C ∪ C ′) \ {x}
contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and
matrices, and spanning trees.
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Fundamental circuits in matroids

Lemma 12.8.3

Let I ∈ I(M), and e ∈ E, then I ∪ {e} contains at most one circuit in
M .

Proof.

Suppose, to the contrary, that there are two distinct circuits C1, C2

such that C1 ∪ C2 ⊆ I ∪ {e}.
Then e ∈ C1 ∩ C2, and by (C2), there is a circuit C3 of M s.t.
C3 ⊆ (C1 ∪ C2) \ {e} ⊆ I
This contradicts the independence of I.

In general, let C(I, e) be the unique circuit associated with I ∪ {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Matroids: The Fundamental Circuit

Define C(I, e) be the unique circuit associated with I ∪ {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

If e ∈ span(I) \ I, then C(I, e) is well defined (I + e creates one
circuit).

If e ∈ I, then I + e = I doesn’t create a circuit. In such cases,
C(I, e) is not really defined.

In such cases, we define C(I, e) = {e}, and we will soon see why.
why we do this.

If e /∈ span(I), then C(I, e) = ∅, since no circuit is created in this
case.
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Matroids: The Fundamental Circuit
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Matroids: The Fundamental Circuit

Define C(I, e) be the unique circuit associated with I ∪ {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

If e ∈ span(I) \ I, then C(I, e) is well defined (I + e creates one
circuit).

If e ∈ I, then I + e = I doesn’t create a circuit. In such cases,
C(I, e) is not really defined.

In such cases, we define C(I, e) = {e}, and we will soon see why.
why we do this.

If e /∈ span(I), then C(I, e) = ∅, since no circuit is created in this
case.
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Matroids: The Fundamental Circuit

Define C(I, e) be the unique circuit associated with I ∪ {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

If e ∈ span(I) \ I, then C(I, e) is well defined (I + e creates one
circuit).

If e ∈ I, then I + e = I doesn’t create a circuit. In such cases,
C(I, e) is not really defined.

In such cases, we define C(I, e) = {e}, and we will soon see why.
why we do this.

If e /∈ span(I), then C(I, e) = ∅, since no circuit is created in this
case.
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Matroids: The Fundamental Circuit

Define C(I, e) be the unique circuit associated with I ∪ {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

If e ∈ span(I) \ I, then C(I, e) is well defined (I + e creates one
circuit).

If e ∈ I, then I + e = I doesn’t create a circuit. In such cases,
C(I, e) is not really defined.

In such cases, we define C(I, e) = {e}, and we will soon see why.
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Union of matroid bases of a set

Lemma 12.8.1

Let B(C) be the set of bases of C. Then, given matroid M = (E, I),
and any loop-free set C ⊆ E, we have that:⋃

B∈B(C)

B = C. (12.51)

Proof.

Define C ′ ,
⋃

B∈B(C), and suppose ∃c ∈ C such that c /∈ C ′.
Hence, ∀B ∈ B(C) we have c /∈ B, and B + c contains a single
circuit for any B, namely C(B, c).

Then choose c′ ∈ C(B, c) with c′ 6= c.

Then B+ c− c′ is independent size |B| subset of C and hence spans
C, and thus is a c-containing member of B(C), contradicting c /∈ C ′.
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The sat function = Polymatroid Closure

Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).

We wish to generalize closure to polymatroids.

Consider x ∈ Pf for polymatroid function f .

Again, recall, tight sets are closed under union and intersection, and
therefore form a distributive lattice.

That is, we saw in Lecture 7 that for any A,B ∈ D(x), we have
that A ∪B ∈ D(x) and A ∩B ∈ D(x), which can constitute a join
and meet.

Recall, for a given x ∈ Pf , we have defined this tight family as

D(x) = {A : A ⊆ E, x(A) = f(A)} (12.52)
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The sat function = Polymatroid Closure

Now given x ∈ P+
f :

D(x) = {A : A ⊆ E, x(A) = f(A)} (12.53)

= {A : f(A)− x(A) = 0} (12.54)

Since x ∈ P+
f and f is presumed to be polymatroid function, we see

f ′(A) = f(A)− x(A) is a non-negative submodular function, and
D(x) are the zero-valued minimizers (if any) of f ′(A).

The zero-valued minimizers of f ′ are thus closed under union and
intersection.

In fact, this is true for all minimizers of a submodular function as
stated in the next theorem.
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D(x) are the zero-valued minimizers (if any) of f ′(A).
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intersection.

In fact, this is true for all minimizers of a submodular function as
stated in the next theorem.
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Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f , the minimizers are closed under union and
intersection. That is, let M = argminX⊆E f(X) be the set of
minimizers of f . Let A,B ∈M. Then A ∪B ∈M and A ∩B ∈M.

Proof.

Since A and B are minimizers, we have f(A) = f(B) ≤ f(A ∩B) and
f(A) = f(B) ≤ f(A ∪B).
By submodularity, we have

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (12.55)

Hence, we must have f(A) = f(B) = f(A ∪B) = f(A ∩B).

Thus, the minimizers of a submodular function form a lattice, and there
is a maximal and a minimal minimizer of every submodular function.
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The sat function = Polymatroid Closure

Matroid closure is generalized by the unique maximal element in
D(x), also called the polymatroid closure or sat (saturation
function).

For some x ∈ Pf , we have defined:

cl(x)
def
= sat(x)

def
=
⋃
{A : A ∈ D(x)} (12.56)

=
⋃
{A : A ⊆ E, x(A) = f(A)} (12.57)

= {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf} (12.58)

Hence, sat(x) is the maximal (zero-valued) minimizer of the
submodular function fx(A) , f(A)− x(A).
Eq. (12.58) says that sat consists of any point x that is Pf

saturated (any additional positive movement, in that dimension,
leaves Pf ). We’ll revisit this in a few slides.

First, we see how sat generalizes matroid closure.
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