# Submodular Functions, Optimization, and Applications to Machine Learning

— Spring Quarter, Lecture 12 —

http://j.ee.washington.edu/~bilmes/classes/ee596b\_spring\_2014/

#### Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

May 12th, 2014



 $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$ - $f(A) + 2f(C) + f(B) - f(A) + f(C) + f(B) - f(A \cap B)$ 









# Cumulative Outstanding Reading

- Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige's book.
- Good references for today: Schrijver-2003, Oxley-1992/2011,
   Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.
- Read Tom McCormick's overview paper on SFM http://people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
- Read chapters 1 3 from Fujishige book.
- Matroid properties http: //www-math.mit.edu/~goemans/18433S09/matroid-notes.pdf

### Announcements, Assignments, and Reminders

 Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me). Logistics

### Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, & Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes.
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity

- L11: More properties of polymatroids, SFM special cases
- L12: polymatroid properties, extreme points polymatroids,
- L13: sat, dep, supp, exchange capacity, examples
- L14: Lattice theory: partially ordered sets; lattices; distributive, modular, submodular, and boolean lattices; ideals and join irreducibles.
- L15: Supp, Base polytope, polymatroids and entropic Venn diagrams, exchange capacity,
- L16: proof that minimum norm point yields min of submodular function, and the lattice of minimizers of a submodular function. Lovasz extension
- L17: Lovasz extension, Choquet Integration, more properties/examples of Lovasz extension, convex minimization and SEM.
- L18: Lovasz extension examples and structured convex norms, The Min-Norm Point Algorithm detailed.
- L19: symmetric submodular function minimization, maximizing monotone submodular function w. card constraints.
- L20: maximizing monotone submodular function w. other constraints, non-monotone maximization

Finals Week: June 9th-13th, 2014.

Review

### A polymatroid function's polyhedron is a polymatroid.

#### Theorem 12.2.4

Let f be a polymatroid function defined on subsets of E. For any  $x \in \mathbb{R}_+^E$ , and any  $P_f^+$ -basis  $y^x \in \mathbb{R}_+^E$  of x, the component sum of  $y^x$  is

$$y^{x}(E) = \operatorname{rank}(x) = \max\left(y(E) : y \le x, y \in P_{f}^{+}\right)$$
$$= \min\left(x(A) + f(E \setminus A) : A \subseteq E\right) \tag{12.34}$$

As a consequence,  $P_f^+$  is a polymatroid, since r.h.s. is constant w.r.t.  $y^x$ .

By taking  $B = \operatorname{supp}(x)$  (so elements  $E \setminus B$  are zero in x), and for  $b \in B$ , x(b) is big enough, the r.h.s. min has solution  $A^* = E \setminus B$ . We recover submodular function from the polymatroid polyhedron via the following:

$$f(B) = \max \left\{ y(B) : y \in P_f^+ \right\}$$
 (12.35)

In fact, we will ultimately see a number of important consequences of this theorem (other than just that  $P_{\scriptscriptstyle f}^+$  is a polymatroid)

# Tight sets $\mathcal{D}(y)$ are closed, and max tight set $\operatorname{sat}(y)$

Recall the definition of the set of tight sets at  $y \in P_f^+$ :

$$\mathcal{D}(y) \triangleq \{A : A \subseteq E, \ y(A) = f(A)\}$$
 (12.18)

#### Theorem 12.2.1

For any  $y \in P_f^+$ , with f a polymatroid function, then  $\mathcal{D}(y)$  is closed under union and intersection.

#### Proof.

We have already proven this as part of Theorem 9.4.5



Also recall the definition of  $\operatorname{sat}(y)$ , the maximal set of tight elements relative to  $y \in \mathbb{R}^E_+$ .

$$\operatorname{sat}(y) \stackrel{\text{def}}{=} \bigcup \left\{ T : T \in \mathcal{D}(y) \right\} \tag{12.19}$$

# Bipartite Matching

- Given a matching  $A \subseteq E$  (which might be empty), we can increase the matching if we can find an augmenting path S.
- The updated matching becomes  $A'=A\setminus S\cup S\setminus A=A\ominus S$ , where  $\ominus$  is the symmetric difference operator.
- The algorithm becomes:

### Algorithm 8.1: Alternating Path Bipartite Matching

- 1 Let A be an arbitrary (including empty) matching in G=(V,F,E) ;
- 2 while There exists an augmenting path S in G do
- $A \leftarrow A \ominus S$ ;
  - This can easily be made to run in  $O(m^2n)$ , where |V|=m,  $|F|=n,\ m\leq n$ , but it can be made to run much faster as well (see Schrijver-2003).

### Matroid Intersection

- Let  $M_1 = (V, \mathcal{I}_1)$  and  $M_2 = (V, \mathcal{I}_2)$  be two matroids. Consider their common independent sets  $\mathcal{I}_1 \cap \mathcal{I}_2$ .
- While  $(V, \mathcal{I}_1 \cap \mathcal{I}_2)$  is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find  $\max |X|$  such that both  $X \in \mathcal{I}_1$  and  $X \in \mathcal{I}_2$ .

#### Theorem 12.2.5

Let  $M_1$  and  $M_2$  be given as above, with rank functions  $r_1$  and  $r_2$ . Then the size of the maximum size set in  $\mathcal{I}_1 \cap \mathcal{I}_2$  is given by

$$(r_1 * r_2)(V) \triangleq \min_{X \subseteq V} \left( r_1(X) + r_2(V \setminus X) \right) \tag{12.7}$$

This is an instance of the convolution of two submodular functions,  $f_1$  and  $f_2$  that, evaluated at  $Y \subseteq V$ , is written as:

$$(f_1 * f_2)(Y) = \min_{X \subset Y} \Big( f_1(X) + f_2(Y \setminus X) \Big)$$
 (12.8)

### Fundamental circuits in matroids

#### Lemma 12.2.3

Let  $I \in \mathcal{I}(M)$ , and  $e \in E$ , then  $I \cup \{e\}$  contains at most one circuit in M.

#### Proof.

- Suppose, to the contrary, that there are two distinct circuits  $C_1, C_2$  such that  $C_1 \cup C_2 \subseteq I \cup \{e\}$ .
- Then  $e \in C_1 \cap C_2$ , and by (C2), there is a circuit  $C_3$  of M s.t.  $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\} \subseteq I$
- This contradicts the independence of *I*.



In general, let C(I,e) be the unique circuit associated with  $I \cup \{e\}$  (commonly called the fundamental circuit in M w.r.t. I and e).

# Matroid Intersection Algorithm Idea

- Hopefully (eventually) we'll find an odd length sequence  $S=(v_1,v_2,\ldots,v_s)$  such that we will be independent in both  $M_1$  and  $M_2$  and thus be one greater in size than I.
- We will have  $v_i \notin I$  for i odd (will be shown in blue), and will have  $v_i \in I$  for i even (will be shown in green), while  $v \in I \setminus S$  will be shown in red.
- We then replace I with  $I \ominus S$  (quite analogous to the bipartite matching case), and start again.

### **Identifying Augmenting Sequences**

#### Theorem 12.2.6

Let  $I_p$  and  $I_{p+1}$  be intersections of  $M_1$  and  $M_2$  with p and p+1 elements respectively. Then there exists an augmenting sequence  $S \subseteq I_p \ominus I_{p+1}$  w.r.t.  $I_p$ .

#### Theorem 12.2.7

An intersection is of maximum cardinality iff it admits no augmenting sequence.

#### Theorem 12.2.8

For any intersection I, there exists a maximum cardinality intersection  $I^*$  such that  $\operatorname{span}_1(I) \subseteq \operatorname{span}_1(I^*)$  and  $\operatorname{span}_2(I) \subseteq \operatorname{span}_2(I^*)$ .

All this can be made to run in poly time.

• Suppose  $M_i = (E, \mathcal{I}_i)$  is a matroid and that we have k of them on the same ground set E.

- Suppose  $M_i = (E, \mathcal{I}_i)$  is a matroid and that we have k of them on the same ground set E.
- We wish to, if possible, partition E into k blocks,  $I_i, i \in \{1, 2, ..., k\}$  where  $I_i \in \mathcal{I}_i$ .

- Suppose  $M_i = (E, \mathcal{I}_i)$  is a matroid and that we have k of them on the same ground set E.
- We wish to, if possible, partition E into k blocks,  $I_i, i \in \{1, 2, \dots, k\}$  where  $I_i \in \mathcal{I}_i$ .
- Moreover, we want partition to be lexicographically maximum, that is  $|I_1|$  is maximum,  $|I_2|$  is maximum given  $|I_1|$ , and so on.

#### Theorem 12.3.1

Mtrd. Partitioning

Let  $M_i$  be a collection of k matroids as described. Then, a set  $S \subseteq E$  can be partitioned into k subsets  $I_i, i = 1 \dots k$  where  $I_i \in \mathcal{I}_i$  is independent in matroid i, if and only if, for all  $A \subseteq S$ 

$$|A| \le \sum_{i=1}^{k} r_i(A)$$
 (12.1)

where  $r_i$  is the rank function of  $M_i$ .

#### Theorem 12.3.1

Mtrd. Partitioning

Let  $M_i$  be a collection of k matroids as described. Then, a set  $S \subseteq E$  can be partitioned into k subsets  $I_i, i = 1 \dots k$  where  $I_i \in \mathcal{I}_i$  is independent in matroid i, if and only if, for all  $A \subseteq S$ 

$$|A| \le \sum_{i=1}^{k} r_i(A) \tag{12.1}$$

where  $r_i$  is the rank function of  $M_i$ .

ullet Now, if all matroids are the same  $M_i=M$  for all i, we get condition

$$|A| \le kr(A) \ \forall A \subseteq E \tag{12.2}$$

#### Theorem 12.3.1

Mtrd. Partitioning

Let  $M_i$  be a collection of k matroids as described. Then, a set  $S \subseteq E$  can be partitioned into k subsets  $I_i, i = 1 \dots k$  where  $I_i \in \mathcal{I}_i$  is independent in matroid i, if and only if, for all  $A \subseteq S$ 

$$|A| \le \sum_{i=1}^{k} r_i(A) \tag{12.1}$$

where  $r_i$  is the rank function of  $M_i$ .

ullet Now, if all matroids are the same  $M_i=M$  for all i, we get condition

$$|A| \le kr(A) \ \forall A \subseteq E \tag{12.2}$$

ullet But considering vector of all ones  $\mathbf{1} \in \mathbb{R}_+^E$ , this is the same as

$$\frac{1}{k}|A| = \frac{1}{k}\mathbf{1}(A) \le r(A) \quad \forall A \subseteq E$$
 (12.3)

• Recall definition of matroid polytope

$$P_r^+ = \left\{ y \in \mathbb{R}_+^E : y(A) \le r(A) \text{ for all } A \subseteq E \right\} \tag{12.4}$$

Recall definition of matroid polytope

$$P_r^+ = \left\{ y \in \mathbb{R}_+^E : y(A) \le r(A) \text{ for all } A \subseteq E \right\} \tag{12.4}$$

• Then we see that this special case of the matroid partition problem is just testing if  $\frac{1}{k}\mathbf{1} \in P_r^+$ , a problem of testing the membership in matroid polyhedra.

Recall definition of matroid polytope

$$P_r^+ = \left\{ y \in \mathbb{R}_+^E : y(A) \le r(A) \text{ for all } A \subseteq E \right\}$$
 (12.4)

- Then we see that this special case of the matroid partition problem is just testing if  $\frac{1}{k}\mathbf{1}\in P_r^+$ , a problem of testing the membership in matroid polyhedra.
- This is therefore a special case of submodular function minimization.

Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sa

### Review

• The next two slides from respectively from Lecture 9 and Lecture 8.

# Polymatroidal polyhedron (or a "polymatroid")

### Definition 12.4.4 (polymatroid)

A polymatroid is a compact set  $P \subseteq \mathbb{R}_+^E$  satisfying

 $0 \in P$ 

- ② If  $y \le x \in P$  then  $y \in P$  (called down monotone).
- § For every  $x \in \mathbb{R}_+^E$ , any maximal vector  $y \in P$  with  $y \leq x$  (i.e., any P-basis of x), has the same component sum y(E)
  - Vectors within P (i.e., any  $y \in P$ ) are called independent, and any vector outside of P is called dependent.
  - Since all P-bases of x have the same component sum, if  $\mathcal{B}_x$  is the set of P-bases of x, than  $\operatorname{rank}(x) = y(E)$  for any  $y \in \mathcal{B}_x$ .

# Maximum weight independent set via greedy weighted rank

### Theorem 12.4.6

Let  $M=(V,\mathcal{I})$  be a matroid, with rank function r, then for any weight function  $w\in\mathbb{R}_+^V$ , there exists a chain of sets  $U_1\subset U_2\subset\cdots\subset U_n\subseteq V$  such that

$$\max \{w(I)|I \in \mathcal{I}\} = \sum_{i=1}^{n} \lambda_i r(U_i)$$
(12.19)

where  $\lambda_i > 0$  satisfy

$$w = \sum_{i=1}^{n} \lambda_i \mathbf{1}_{U_i} \tag{12.20}$$

ullet Let  $(E,\mathcal{I})$  be a set system and  $w\in\mathbb{R}_+^E$  be a weight vector.

- $\bullet$  Let  $(E,\mathcal{I})$  be a set system and  $w\in\mathbb{R}_+^E$  be a weight vector.
- Recall greedy algorithm: Set  $A=\emptyset$ , and repeatedly choose  $y\in E\setminus A$  such that  $A\cup\{y\}\in\mathcal{I}$  with w(y) as large as possible, stopping when no such y exists.

- Let  $(E,\mathcal{I})$  be a set system and  $w \in \mathbb{R}_+^E$  be a weight vector.
- Recall greedy algorithm: Set  $A=\emptyset$ , and repeatedly choose  $y\in E\setminus A$  such that  $A\cup\{y\}\in\mathcal{I}$  with w(y) as large as possible, stopping when no such y exists.
- For a matroid, we saw that set system  $(E,\mathcal{I})$  is a matroid iff for each weight function  $w \in \mathbb{R}_+^E$ , the greedy algorithm leads to a set  $I \in \mathcal{I}$  of maximum weight w(I).

- Let  $(E,\mathcal{I})$  be a set system and  $w \in \mathbb{R}_+^E$  be a weight vector.
- Recall greedy algorithm: Set  $A=\emptyset$ , and repeatedly choose  $y\in E\setminus A$  such that  $A\cup\{y\}\in\mathcal{I}$  with w(y) as large as possible, stopping when no such y exists.
- For a matroid, we saw that set system  $(E,\mathcal{I})$  is a matroid iff for each weight function  $w \in \mathbb{R}_+^E$ , the greedy algorithm leads to a set  $I \in \mathcal{I}$  of maximum weight w(I).
- Stated succinctly, considering  $\max\{w(I):I\in\mathcal{I}\}$ , then  $(E,\mathcal{I})$  is a matroid iff greedy works for this maximization.

- Let  $(E,\mathcal{I})$  be a set system and  $w \in \mathbb{R}^E_+$  be a weight vector.
- Recall greedy algorithm: Set  $A = \emptyset$ , and repeatedly choose  $y \in E \setminus A$  such that  $A \cup \{y\} \in \mathcal{I}$  with w(y) as large as possible, stopping when no such y exists.
- For a matroid, we saw that set system  $(E,\mathcal{I})$  is a matroid iff for each weight function  $w \in \mathbb{R}^E_+$ , the greedy algorithm leads to a set  $I \in \mathcal{I}$  of maximum weight w(I).
- Stated succinctly, considering  $\max \{w(I) : I \in \mathcal{I}\}$ , then  $(E, \mathcal{I})$  is a matroid iff greedy works for this maximization.
- Can we also characterize a polymatroid in this way?

- Let  $(E,\mathcal{I})$  be a set system and  $w \in \mathbb{R}_+^E$  be a weight vector.
- Recall greedy algorithm: Set  $A=\emptyset$ , and repeatedly choose  $y\in E\setminus A$  such that  $A\cup\{y\}\in\mathcal{I}$  with w(y) as large as possible, stopping when no such y exists.
- For a matroid, we saw that set system  $(E,\mathcal{I})$  is a matroid iff for each weight function  $w \in \mathbb{R}_+^E$ , the greedy algorithm leads to a set  $I \in \mathcal{I}$  of maximum weight w(I).
- Stated succinctly, considering  $\max\{w(I):I\in\mathcal{I}\}$ , then  $(E,\mathcal{I})$  is a matroid iff greedy works for this maximization.
- Can we also characterize a polymatroid in this way?
- That is, if we consider  $\max\left\{wx:x\in P_f^+\right\}$ , where  $P_f^+$  represents the "independent vectors", is it the case that  $P_f^+$  is a polymatroid iff greedy works for this maximization?

- Let  $(E,\mathcal{I})$  be a set system and  $w \in \mathbb{R}^E_+$  be a weight vector.
- Recall greedy algorithm: Set  $A = \emptyset$ , and repeatedly choose  $y \in E \setminus A$  such that  $A \cup \{y\} \in \mathcal{I}$  with w(y) as large as possible, stopping when no such y exists.
- For a matroid, we saw that set system  $(E,\mathcal{I})$  is a matroid iff for each weight function  $w \in \mathbb{R}_+^E$ , the greedy algorithm leads to a set  $I \in \mathcal{I}$  of maximum weight w(I).
- Stated succinctly, considering  $\max\{w(I): I \in \mathcal{I}\}$ , then  $(E,\mathcal{I})$  is a matroid iff greedy works for this maximization.
- Can we also characterize a polymatroid in this way?
- ullet That is, if we consider  $\max\left\{wx:x\in P_f^+
  ight\}$ , where  $P_f^+$  represents the "independent vectors", is it the case that  $P_f^+$  is a polymatroid iff greedy works for this maximization?
- Can we even relax things so that  $w \in \mathbb{R}^E$ ?

d. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sa

# Polymatroidal polyhedron and greedy

ullet What is the greedy solution in this setting, when  $w\in\mathbb{R}^{E}$ ?

- What is the greedy solution in this setting, when  $w \in \mathbb{R}^E$ ?
- ullet Sort elements of E w.r.t. w so that, w.l.o.g.

$$E = (e_1, e_2, \dots, e_m)$$
 with  $w(e_1) \ge w(e_2) \ge \dots \ge w(e_m)$ .

- What is the greedy solution in this setting, when  $w \in \mathbb{R}^E$ ?
- Sort elements of E w.r.t. w so that, w.l.o.g.  $E = (e_1, e_2, \dots, e_m)$  with  $w(e_1) \ge w(e_2) \ge \dots \ge w(e_m)$ .
- Let k+1 be the first point (if any) at which we are non-positive, i.e.,  $w(e_k)>0$  and  $0\geq w(e_{k+1})$ .

  That is, we have

$$w(e_1) \ge w(e_2) \ge \dots \ge w(e_k) > 0 \ge w(e_{k+1}) \ge \dots \ge w(e_m)$$
 (12.5)

- What is the greedy solution in this setting, when  $w \in \mathbb{R}^E$ ?
- Sort elements of E w.r.t. w so that, w.l.o.g.  $E = (e_1, e_2, \dots, e_m)$  with  $w(e_1) \ge w(e_2) \ge \dots \ge w(e_m)$ .
- Let k+1 be the first point (if any) at which we are non-positive, i.e.,  $w(e_k) > 0$  and  $0 \ge w(e_{k+1})$ .
- Next define partial accumulated sets  $E_i$ , for  $i = 0 \dots m$ , we have w.r.t. the above sorted order:

$$E_i \stackrel{\text{def}}{=} \{e_1, e_2, \dots e_i\} \tag{12.6}$$

(note  $E_0 = \emptyset$ ,  $f(E_0) = 0$ , and E and  $E_i$  is always sorted w.r.t w).

- What is the greedy solution in this setting, when  $w \in \mathbb{R}^E$ ?
- Sort elements of E w.r.t. w so that, w.l.o.g.  $E = (e_1, e_2, \dots, e_m)$  with  $w(e_1) \ge w(e_2) \ge \dots \ge w(e_m)$ .
- Let k+1 be the first point (if any) at which we are non-positive, i.e.,  $w(e_k) > 0$  and  $0 \ge w(e_{k+1})$ .
- Next define partial accumulated sets  $E_i$ , for  $i = 0 \dots m$ , we have w.r.t. the above sorted order:

$$E_i \stackrel{\text{def}}{=} \{e_1, e_2, \dots e_i\} \tag{12.6}$$

(note  $E_0 = \emptyset$ ,  $f(E_0) = 0$ , and  $\underline{E}$  and  $E_i$  is always sorted w.r.t  $\underline{w}$ ).

• The greedy solution is the vector  $x \in \mathbb{R}_+^E$  with elements defined as:

$$x(e_1) \stackrel{\text{def}}{=} f(E_1) = f(e_1) = f(e_1|E_0) = f(e_1|\emptyset)$$
 (12.7)

$$x(e_i) \stackrel{\text{def}}{=} f(E_i) - f(E_{i-1}) = f(e_i|E_{i-1}) \text{ for } i = 2 \dots k$$
 (12.8)

$$x(e_i) \stackrel{\text{def}}{=} 0 \text{ for } i = k + 1 \dots m = |E|$$
 (12.9)

# Some Intuition: greedy and gain

• Note  $x(e_i) = f(e_i|E_{i-1}) \le f(e_i|E')$  for any  $E' \subseteq E_{i-1}$ 

### Some Intuition: greedy and gain

- Note  $x(e_i) = f(e_i|E_{i-1}) \le f(e_i|E')$  for any  $E' \subseteq E_{i-1}$
- So  $x(e_1) = f(e_1)$  and this corresponds to  $w(e_1) \ge w(e_i)$  for all  $i \ne 1$ .

### Some Intuition: greedy and gain

- Note  $x(e_i) = f(e_i|E_{i-1}) \le f(e_i|E')$  for any  $E' \subseteq E_{i-1}$
- So  $x(e_1) = f(e_1)$  and this corresponds to  $w(e_1) \geq w(e_i)$  for all  $i \neq 1$ .
- Hence, for the largest value of w (namely  $w(e_1)$ ), we use for  $x(e_1)$  the largest possible gain value of  $e_1$  (namely  $f(e_1|\emptyset) \ge f(e_1|A)$  for any  $A \subseteq E \setminus \{e_1\}$ ).

Mtrd. Partitioning

### Some Intuition: greedy and gain

- Note  $x(e_i) = f(e_i|E_{i-1}) \le f(e_i|E')$  for any  $E' \subseteq E_{i-1}$
- So  $x(e_1) = f(e_1)$  and this corresponds to  $w(e_1) \ge w(e_i)$  for all  $i \ne 1$ .
- Hence, for the largest value of w (namely  $w(e_1)$ ), we use for  $x(e_1)$  the largest possible gain value of  $e_1$  (namely  $f(e_1|\emptyset) \ge f(e_1|A)$  for any  $A \subseteq E \setminus \{e_1\}$ ).
- For the next largest value of w (namely  $w(e_2)$ ), we use for  $x(e_2)$  the next largest gain value of  $e_2$  (namely  $f(e_2|e_1)$ ), while still ensuring (as we will soon see in Theorem 12.4.1) that the resulting  $x \in P_f$ .

Mtrd. Partitioning

### Some Intuition: greedy and gain

- Note  $x(e_i) = f(e_i|E_{i-1}) \le f(e_i|E')$  for any  $E' \subseteq E_{i-1}$
- So  $x(e_1) = f(e_1)$  and this corresponds to  $w(e_1) \ge w(e_i)$  for all  $i \ne 1$ .
- Hence, for the largest value of w (namely  $w(e_1)$ ), we use for  $x(e_1)$  the largest possible gain value of  $e_1$  (namely  $f(e_1|\emptyset) \ge f(e_1|A)$  for any  $A \subseteq E \setminus \{e_1\}$ ).
- For the next largest value of w (namely  $w(e_2)$ ), we use for  $x(e_2)$  the next largest gain value of  $e_2$  (namely  $f(e_2|e_1)$ ), while still ensuring (as we will soon see in Theorem 12.4.1) that the resulting  $x \in P_f$ .
- This process continues, using the next largest possible gain of  $e_i$  for  $x(e_i)$  while ensuring we do not leave the polytope, given the values we've already chosen for  $x(e_{i'})$  for i' < i.

Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

## Polymatroidal polyhedron and greedy

#### Theorem 12.4.1

The vector  $x \in \mathbb{R}_+^E$  as previously defined using the greedy algorithm maximizes wx over  $P_f^+$ , with  $w \in \mathbb{R}_+^E$ , if f is submodular.

#### Proof.

#### Theorem 12.4.1

The vector  $x \in \mathbb{R}_+^E$  as previously defined using the greedy algorithm maximizes wx over  $P_f^+$ , with  $w \in \mathbb{R}_+^E$ , if f is submodular.

#### Proof.

• Consider the LP strong duality equation:

$$\max(wx : x \in P_f^+) = \min\left(\sum_{A \subseteq E} y_A f(A) : y \in \mathbb{R}_+^{2^E}, \sum_{A \subseteq E} y_A \mathbf{1}_A \ge w\right)$$
(12.10)

#### Theorem 12.4.1

The vector  $x \in \mathbb{R}_+^E$  as previously defined using the greedy algorithm maximizes wx over  $P_f^+$ , with  $w \in \mathbb{R}_+^E$ , if f is submodular.

#### Proof.

• Consider the LP strong duality equation:

$$\max(wx: x \in P_f^+) = \min\left(\sum_{A \subseteq E} y_A f(A): y \in \mathbb{R}_+^{2^E}, \sum_{A \subseteq E} y_A \mathbf{1}_A \ge w\right)$$
(12.10)

ullet Define the following vector  $y \in \mathbb{R}_+^{2^E}$  as

$$y_{E_i} \leftarrow w(e_i) - w(e_{i+1}) \text{ for } i = 1 \dots (m-1),$$
 (12.11)  
 $y_E \leftarrow w(e_m), \text{ and}$  (12.12)  
 $y_A \leftarrow 0 \text{ otherwise}$  (12.13)

artitioning **Polymatroids and Greedy** Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sa

## Polymatroidal polyhedron and greedy

#### Proof.

• We first will see that greedy  $x \in P_f^+$  (that is  $x(A) \leq f(A), \forall A$ ).

#### Proof.

- We first will see that greedy  $x \in P_f^+$  (that is  $x(A) \leq f(A), \forall A$ ).
- Order  $A = (a_1, a_2, \dots, a_k)$  based on order  $(e_1, e_2, \dots, e_m)$ .

|       |       |       |       |       |       |       |       | . ( 1 / 2 / 1 / 10 / |          |          |  |       |  |  |
|-------|-------|-------|-------|-------|-------|-------|-------|----------------------|----------|----------|--|-------|--|--|
|       |       | $a_1$ |       | $a_2$ | $a_3$ |       |       | $a_4$                |          | $a_5$    |  |       |  |  |
| $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ | $e_7$ | $e_8$ | $e_9$                | $e_{10}$ | $e_{11}$ |  | $e_m$ |  |  |

#### Proof.

Mtrd. Partitioning

- We first will see that greedy  $x \in P_f^+$  (that is  $x(A) \le f(A), \forall A$ ).
- Order  $A = (a_1, a_2, \dots, a_k)$  based on order  $(e_1, e_2, \dots, e_m)$ .

• Define  $e^{-1}: E \to \{1, \dots, m\}$  so that  $e^{-1}(e_i) = i$ . This means that with  $A = \{a_1, a_2, \dots, a_k\}$ , and  $\forall j \leq k$ 

$$\{a_1, a_2, \dots, a_j\} \subseteq \left\{e_1, e_2, \dots, e_{e^{-1}(a_j)}\right\}$$
 (12.14)

and

$$\{a_1, a_2, \dots, a_{j-1}\} \subseteq \left\{e_1, e_2, \dots, e_{e^{-1}(a_j)-1}\right\}$$
 (12.15)

Also recall matlab notation:  $a_{1:j} \equiv \{a_1, a_2, \dots, a_j\}.$ 

E.g., with j = 4 we get  $e^{-1}(a_4) = 9$ , and

$$\{a_1, a_2, a_3, a_4\} \subseteq \{e_1, e_2, \dots, e_9\}$$
 (12.16)

#### Proof.

- We first will see that greedy  $x \in P_f^+$  (that is  $x(A) \leq f(A), \forall A$ ).
- Order  $A = (a_1, a_2, \dots, a_k)$  based on order  $(e_1, e_2, \dots, e_m)$ .

|       |       | $a_1$ |       | $a_2$ | $a_3$ |       |       | $a_4$ |          | $a_5$    |           |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|-----------|
| $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ | $e_7$ | $e_8$ | $e_9$ | $e_{10}$ | $e_{11}$ | <br>$e_m$ |

- Define  $e^{-1}: E \to \{1, ..., m\}$  so that  $e^{-1}(e_i) = i$ .
- Then, we have  $x \in P_f^+$  since for all A:

$$f(A) = \sum_{i=1}^{k} f(a_i|a_{1:i-1})$$
(12.14)

$$\geq \sum_{i=1}^{n} f(a_i|e_{1:e^{-1}(a_i)-1}) \tag{12.15}$$

$$= \sum f(a|e_{1:e^{-1}(a)-1}) = x(A)$$
 (12.16)

#### Proof.

- We first will see that greedy  $x \in P_f^+$  (that is  $x(A) \leq f(A), \forall A$ ).
- Order  $A = (a_1, a_2, \dots, a_k)$  based on order  $(e_1, e_2, \dots, e_m)$ .

- Define  $e^{-1}: E \to \{1, \dots, m\}$  so that  $e^{-1}(e_i) = i$ .
- Then, we have  $x \in P_f^+$  since for all A:

$$f(A) = \sum_{i=1}^{k} f(a_i | a_{1:i-1})$$
(12.14)

$$\geq \sum_{i=1}^{n} f(a_i|e_{1:e^{-1}(a_i)-1}) \tag{12.15}$$

$$= \sum f(a|e_{1:e^{-1}(a)-1}) = x(A)$$
 (12.16)

. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sa

## Polymatroidal polyhedron and greedy

#### Proof.

ullet Next, y is also feasible for the dual constraints in Eq. 12.10 since:

Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

## Polymatroidal polyhedron and greedy

#### Proof.

- ullet Next, y is also feasible for the dual constraints in Eq. 12.10 since:
- Next, we check that y is dual feasible. Clearly,  $y \ge 0$ ,



 Polymatroids and Greedy
 Possible Polytopes
 Extreme Points
 Most Violated ≤
 Matroids cont.
 Closure/Sat

### Polymatroidal polyhedron and greedy

#### Proof.

Mtrd. Partitioning

- Next, y is also feasible for the dual constraints in Eq. 12.10 since:
- Next, we check that y is dual feasible. Clearly,  $y \ge 0$ ,
- ullet and also, considering y component wise, for any i, we have that

$$\sum_{A:e_i \in A} y_A = \sum_{j \ge i} y_{E_j} = \sum_{j=i}^{m-1} (w(e_j) - w(e_{j+1})) + w(e_m) = w(e_i).$$

. . .

#### Proof.

Mtrd. Partitioning

- Next, y is also feasible for the dual constraints in Eq. 12.10 since:
- Next, we check that y is dual feasible. Clearly,  $y \ge 0$ ,
- $\bullet$  and also, considering y component wise, for any i, we have that

$$\sum_{A:e_i \in A} y_A = \sum_{j \ge i} y_{E_j} = \sum_{j=i}^{m-1} (w(e_j) - w(e_{j+1})) + w(e_m) = w(e_i).$$

ullet Now optimality for x and y follows from strong duality, i.e.:

$$wx = \sum_{e \in E} w(e)x(e) = \sum_{i=1}^{m} w(e_i)f(e_i|E_{i-1}) = \sum_{i=1}^{m} w(e_i)\Big(f(E_i) - f(E_{i-1})\Big)$$
$$= \sum_{i=1}^{m-1} f(E_i)\Big(w(e_i) - w(e_{i+1})\Big) + f(E)w(e_m) = \sum_{A \subseteq E} y_A f(A) \dots$$

Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

## Polymatroidal polyhedron and greedy

#### Proof.

• The equality in prev. Eq. follows via Abel summation:

$$wx = \sum_{i=1}^{m} w_i x_i \tag{12.17}$$

$$= \sum_{i=1}^{m} w_i \Big( f(E_i) - f(E_{i-1}) \Big)$$
 (12.18)

$$=\sum_{i=1}^{m} w_i f(E_i) - \sum_{i=1}^{m-1} w_{i+1} f(E_i)$$
(12.19)

$$= w_m f(E_m) + \sum_{i=1}^{m-1} (w_i - w_{i+1}) f(E_i)$$
 (12.20)



### What about $w \in \mathbb{R}^E$

• When w contains negative elements, we have  $x(e_i) = 0$  for  $i = k + 1, \ldots, m$ , where k is the last positive element of w when it is sorted in decreasing order.

### What about $w \in \mathbb{R}^E$

- When w contains negative elements, we have  $x(e_i) = 0$  for  $i = k + 1, \ldots, m$ , where k is the last positive element of w when it is sorted in decreasing order.
- $\bullet$  Exercise: show a modification of the previous proof that works for arbitrary  $w \in \mathbb{R}^E$

#### Theorem 12.4.1

Conversely, suppose  $P_f^+$  is a polytope of form  $P_f^+ = \left\{ x \in \mathbb{R}_+^E : x(A) \leq f(A), \forall A \subseteq E \right\}$ , then the greedy solution to  $\max(wx:x\in P)$  is optimum only if f is submodular.

#### Proof.

Mtrd. Partitioning

• Order elements of E arbitrarily as  $(e_1, e_2, \ldots, e_m)$  and define  $E_i = (e_1, e_2, \ldots, e_i)$ . Also, choose A and B arbitrarily.

#### Theorem 12.4.1

Conversely, suppose  $P_f^+$  is a polytope of form

 $P_f^+ = \{x \in \mathbb{R}_+^E : x(A) \leq f(A), \forall A \subseteq E\}$ , then the greedy solution to  $\max(wx:x\in P)$  is optimum only if f is submodular.

#### Proof.

- Order elements of E arbitrarily as  $(e_1, e_2, \ldots, e_m)$  and define  $E_i = (e_1, e_2, \ldots, e_i)$ . Also, choose A and B arbitrarily.
- For  $1 \le p \le q \le m$ , define  $A = \{e_1, e_2, \dots, e_k, e_{k+1}, \dots, e_p\} = E_p$  and  $B = \{e_1, e_2, \dots, e_k, e_{p+1}, \dots, e_q\} = E_k \cup (E_q \setminus E_p)$

#### Theorem 12.4.1

Conversely, suppose  $P_f^+$  is a polytope of form

 $P_f^+ = \{x \in \mathbb{R}_+^E : x(A) \le f(A), \forall A \subseteq E\}$ , then the greedy solution to  $\max(wx : x \in P)$  is optimum only if f is submodular.

#### Proof.

- Order elements of E arbitrarily as  $(e_1, e_2, \ldots, e_m)$  and define  $E_i = (e_1, e_2, \ldots, e_i)$ . Also, choose A and B arbitrarily.
- For  $1 \le p \le q \le m$ , define  $A = \{e_1, e_2, \dots, e_k, e_{k+1}, \dots, e_p\} = E_p$  and  $B = \{e_1, e_2, \dots, e_k, e_{p+1}, \dots, e_q\} = E_k \cup (E_q \setminus E_p)$
- Note, then we have  $A \cap B = \{e_1, \dots, e_k\} = E_k$ , and  $A \cup B = E_q$ .

#### Theorem 12.4.1

Conversely, suppose  $P_f^+$  is a polytope of form

 $P_f^+ = \{x \in \mathbb{R}_+^E : x(A) \leq f(A), \forall A \subseteq E\}$ , then the greedy solution to  $\max(wx : x \in P)$  is optimum only if f is submodular.

#### Proof.

- Order elements of E arbitrarily as  $(e_1, e_2, \ldots, e_m)$  and define  $E_i = (e_1, e_2, \ldots, e_i)$ . Also, choose A and B arbitrarily.
- For  $1 \le p \le q \le m$ , define  $A = \{e_1, e_2, \dots, e_k, e_{k+1}, \dots, e_p\} = E_p$  and  $B = \{e_1, e_2, \dots, e_k, e_{p+1}, \dots, e_q\} = E_k \cup (E_q \setminus E_p)$
- Note, then we have  $A \cap B = \{e_1, \dots, e_k\} = E_k$ , and  $A \cup B = E_q$ .
- Define  $w \in \{0,1\}^m$  as:

$$w \stackrel{\text{def}}{=} \sum^{q} \mathbf{1}_{e_i} = \mathbf{1}_{A \cup B} \tag{12.21}$$

#### Theorem 12.4.1

Conversely, suppose  $P_f^+$  is a polytope of form

 $P_f^+ = \left\{x \in \mathbb{R}_+^E : x(A) \leq f(A), \forall A \subseteq E \right\}$ , then the greedy solution to  $\max(wx:x \in P)$  is optimum only if f is submodular.

#### Proof.

Mtrd. Partitioning

- Order elements of E arbitrarily as  $(e_1, e_2, \ldots, e_m)$  and define  $E_i = (e_1, e_2, \ldots, e_i)$ . Also, choose A and B arbitrarily.
- For  $1 \le p \le q \le m$ , define  $A = \{e_1, e_2, \dots, e_k, e_{k+1}, \dots, e_p\} = E_p$  and  $B = \{e_1, e_2, \dots, e_k, e_{p+1}, \dots, e_q\} = E_k \cup (E_q \setminus E_p)$
- Note, then we have  $A \cap B = \{e_1, \dots, e_k\} = E_k$ , and  $A \cup B = E_q$ .
- Define  $w \in \{0,1\}^m$  as:

$$w \stackrel{\text{def}}{=} \sum_{i=1}^{q} \mathbf{1}_{e_i} = \mathbf{1}_{A \cup B} \tag{12.21}$$

• Suppose optimum solution x is given by the greedy procedure.

#### Proof.

Then

$$\sum_{i=1}^{k} x_i = f(E_1) + \sum_{i=2}^{k} (f(E_i) - f(E_{i-1})) = f(E_k) = f(A \cap B)$$
(12.22)

. . .

#### Proof.

Then

$$\sum_{i=1}^{k} x_i = f(E_1) + \sum_{i=2}^{k} (f(E_i) - f(E_{i-1})) = f(E_k) = f(A \cap B)$$
(12.22)

and

$$\sum_{i=1}^{p} x_i = f(E_1) + \sum_{i=2}^{p} (f(E_i) - f(E_{i-1})) = f(E_p) = f(A) \quad (12.23)$$

Prof. Jeff Bilmes

#### Proof.

Mtrd. Partitioning

Then

$$\sum_{i=1}^{k} x_i = f(E_1) + \sum_{i=2}^{k} (f(E_i) - f(E_{i-1})) = f(E_k) = f(A \cap B)$$
(12.22)

and

$$\sum_{i=1}^{p} x_i = f(E_1) + \sum_{i=2}^{p} (f(E_i) - f(E_{i-1})) = f(E_p) = f(A) \quad (12.23)$$

and

$$\sum_{i=1}^{q} x_i = f(E_1) + \sum_{i=2}^{q} (f(E_i) - f(E_{i-1})) = f(E_q) = f(A \cup B)$$

tioning **Polymatroids and Greedy** Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sa

## Polymatroidal polyhedron and greedy

#### Proof.

• Thus, we have

$$x(B) = \sum_{i \in 1, \dots, k, p+1, \dots, q} x_i = \sum_{i: e_i \in B} x_i = f(A \cup B) + f(A \cap B) - f(A)$$
(12.25)

. . .

Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

## Polymatroidal polyhedron and greedy

#### Proof.

Thus, we have

$$x(B) = \sum_{i \in 1, \dots, k, p+1, \dots, q} x_i = \sum_{i: e_i \in B} x_i = f(A \cup B) + f(A \cap B) - f(A)$$
(12.25)

• But given that the greedy algorithm gives the optimal solution to  $\max(wx:x\in P_f^+)$ , we have that  $x\in P_f^+$  and thus  $x(B)\leq f(B)$ .

 Polymatroids and Greedy
 Possible Polytopes
 Extreme Points
 Most Violated ≤
 Matroids cont.
 Closure/Sat

# Polymatroidal polyhedron and greedy

#### Proof.

Mtrd. Partitioning

Thus, we have

$$x(B) = \sum_{i \in 1, \dots, k, p+1, \dots, q} x_i = \sum_{i: e_i \in B} x_i = f(A \cup B) + f(A \cap B) - f(A)$$
(12.25)

- But given that the greedy algorithm gives the optimal solution to  $\max(wx:x\in P_f^+)$ , we have that  $x\in P_f^+$  and thus  $x(B)\leq f(B)$ .
- Thus,

$$x(B) = f(A \cup B) + f(A \cap B) - f(A) = \sum_{i:e_i \in B} x_i \le f(B)$$
 (12.26)

ensuring the submodularity of f, since A and B are arbitrary.



 Thus, restating the above results into a single complete theorem, we have a result very similar to what we saw for matroids (i.e., Theorem 8.6.1)

#### Theorem 12.4.1

Mtrd. Partitioning

If  $f: 2^E \to \mathbb{R}_+$  is given, and P is a polytope in  $\mathbb{R}_+^E$  of the form  $P = \left\{ x \in \mathbb{R}_+^E : x(A) \le f(A), \forall A \subseteq E \right\}$ , then the greedy solution to the problem  $\max(wx: x \in P)$  is  $\forall w$  optimum iff f is monotone non-decreasing submodular (i.e., iff P is a polymatroid).

Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

## Multiple Polytopes associated with arbitrary f

• Given an arbitrary submodular function  $f: 2^V \to R$  (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).

- Given an arbitrary submodular function  $f: 2^V \to R$  (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If  $f(\emptyset) \neq 0$ , we can set  $f'(A) = f(A) f(\emptyset)$  without destroying submodularity. This also does not change any minima, so we assume all functions are normalized  $f(\emptyset) = 0$ . Note that due to constraint  $x(\emptyset) \leq f(\emptyset)$ , we must have  $f(\emptyset) \geq 0$  since if not (i.e., if  $f(\emptyset) < 0$ ), then  $P_f^+$  doesn't exist. Another form of normalization can do is:

$$f'(A) = \begin{cases} f(A) & \text{if } A \neq \emptyset \\ 0 & \text{if } A = \emptyset \end{cases}$$
 (12.27)

This preserves submodularity due to  $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$ , and if  $A \cap B = \emptyset$  then r.h.s. only gets smaller when  $f(\emptyset) \ge 0$ .

- Given an arbitrary submodular function  $f: 2^V \to R$  (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If  $f(\emptyset) \neq 0$ , we can set  $f'(A) = f(A) f(\emptyset)$  without destroying submodularity. This also does not change any minima, so we assume all functions are normalized  $f(\emptyset) = 0$ .
- We can define several polytopes:

$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$
 (12.27)

$$P_f^+ = P_f \cap \{x \in \mathbb{R}^E : x \ge 0\}$$
 (12.28)

$$B_f = P_f \cap \{x \in \mathbb{R}^E : x(E) = f(E)\}$$
 (12.29)

- Given an arbitrary submodular function  $f: 2^V \to R$  (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If  $f(\emptyset) \neq 0$ , we can set  $f'(A) = f(A) f(\emptyset)$  without destroying submodularity. This also does not change any minima, so we assume all functions are normalized  $f(\emptyset) = 0$ .
- We can define several polytopes:

$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$
 (12.27)

$$P_f^+ = P_f \cap \{x \in \mathbb{R}^E : x \ge 0\}$$
 (12.28)

$$B_f = P_f \cap \{x \in \mathbb{R}^E : x(E) = f(E)\}$$
 (12.29)

 $\bullet$   $P_f$  is what is sometimes called the extended polytope (sometimes notated as  $EP_f$ .

- Given an arbitrary submodular function  $f: 2^V \to R$  (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If  $f(\emptyset) \neq 0$ , we can set  $f'(A) = f(A) f(\emptyset)$  without destroying submodularity. This also does not change any minima, so we assume all functions are normalized  $f(\emptyset) = 0$ .
- We can define several polytopes:

$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$
 (12.27)

$$P_f^+ = P_f \cap \{x \in \mathbb{R}^E : x \ge 0\}$$
 (12.28)

$$B_f = P_f \cap \{x \in \mathbb{R}^E : x(E) = f(E)\}$$
 (12.29)

- ullet  $P_f$  is what is sometimes called the extended polytope (sometimes notated as  $EP_f$ .
- $P_f^+$  is  $P_f$  restricted to the positive orthant.

## Multiple Polytopes associated with arbitrary f

- Given an arbitrary submodular function  $f: 2^V \to R$  (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If  $f(\emptyset) \neq 0$ , we can set  $f'(A) = f(A) f(\emptyset)$  without destroying submodularity. This also does not change any minima, so we assume all functions are normalized  $f(\emptyset) = 0$ .
- We can define several polytopes:

$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$
 (12.27)

$$P_f^+ = P_f \cap \left\{ x \in \mathbb{R}^E : x \ge 0 \right\}$$
 (12.28)

$$B_f = P_f \cap \{x \in \mathbb{R}^E : x(E) = f(E)\}$$
 (12.29)

- ullet  $P_f$  is what is sometimes called the extended polytope (sometimes notated as  $EP_f$ .
- $P_f^+$  is  $P_f$  restricted to the positive orthant.
- $\bullet$   $\vec{B_f}$  is called the base polytope

## Multiple Polytopes associated with f







$$P_f^+ = P_f \cap \left\{ x \in \mathbb{R}^E : x \ge 0 \right\}$$
 (12.30)

$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$
 (12.31)

$$B_f = P_f \cap \{x \in \mathbb{R}^E : x(E) = f(E)\}$$
 (12.32)

### Base Polytope in 3D





$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$

$$B_f = P_f \cap \left\{ x \in \mathbb{R}^E : x(E) = f(E) \right\}$$
(12.33)

## A polymatroid function's polyhedron is a polymatroid.

#### Theorem 12.5.1

Let f be a submodular function defined on subsets of E. For any  $x \in \mathbb{R}^E$ , we have:

$$rank(x) = \max(y(E) : y \le x, y \in \underline{P_f}) = \min(x(A) + f(E \setminus A) : A \subseteq E)$$
(12.35)

Essentially the same theorem as Theorem 9.4.5. Taking x=0 we get:

#### Corollary 12.5.2

Let f be a submodular function defined on subsets of E.  $x \in \mathbb{R}^E$ , we have:

$$rank(0) = \max(y(E) : y \le 0, y \in P_f) = \min(f(A) : A \subseteq E)$$
 (12.36)

### Proof of Theorem 12.5.1

### Proof of Theorem 12.5.1.

ullet Let  $y^*$  be the optimal solution of the l.h.s. and let  $A\subseteq E$  be any subset.



### Proof of Theorem 12.5.1

### Proof of Theorem 12.5.1.

- Let  $y^*$  be the optimal solution of the l.h.s. and let  $A \subseteq E$  be any subset.
- Then  $y^*(E) = y^*(A) + y^*(E \setminus A) \le f(A) + x(E \setminus A)$  since if  $y^* \in P_f$ ,  $y^*(A) \le f(A)$  and since  $y^* \le x$ ,  $y^*(E \setminus A) \le x(E \setminus A)$ . This is a form of weak duality.

### Proof of Theorem 12.5.1

#### Proof of Theorem 12.5.1.

- Let  $y^*$  be the optimal solution of the l.h.s. and let  $A \subseteq E$  be any subset.
- Then  $y^*(E) = y^*(A) + y^*(E \setminus A) \le f(A) + x(E \setminus A)$  since if  $y^* \in P_f$ ,  $y^*(A) \le f(A)$  and since  $y^* \le x$ ,  $y^*(E \setminus A) \le x(E \setminus A)$ . This is a form of weak duality.
- Also, for any  $e \in E$ , if  $y^*(e) < x(e)$  then there must be some reason for this other than the constraint  $y^* \le x$ , namely it must be that  $\exists T \in \mathcal{D}(x)$  with  $e \in T$  (i.e., e is a member of at least one of the tight sets).



### Proof of Theorem 12.5.1

#### Proof of Theorem 12.5.1.

- Let  $y^*$  be the optimal solution of the l.h.s. and let  $A \subseteq E$  be any subset.
- Then  $y^*(E) = y^*(A) + y^*(E \setminus A) \le f(A) + x(E \setminus A)$  since if  $y^* \in P_f$ ,  $y^*(A) \le f(A)$  and since  $y^* \le x$ ,  $y^*(E \setminus A) \le x(E \setminus A)$ . This is a form of weak duality.
- Also, for any  $e \in E$ , if  $y^*(e) < x(e)$  then there must be some reason for this other than the constraint  $y^* \leq x$ , namely it must be that  $\exists T \in \mathcal{D}(x)$  with  $e \in T$  (i.e., e is a member of at least one of the tight sets).
- Hence, for all  $e \notin \operatorname{sat}(y^*)$  we have  $y^*(e) = x(e)$ , and moreover  $y^*(\operatorname{sat}(y^*)) = f(\operatorname{sat}(y^*))$  by definition.

### Proof of Theorem 12.5.1

#### Proof of Theorem 12.5.1.

- Let  $y^*$  be the optimal solution of the l.h.s. and let  $A \subseteq E$  be any subset.
- Then  $y^*(E) = y^*(A) + y^*(E \setminus A) \le f(A) + x(E \setminus A)$  since if  $y^* \in P_f$ ,  $y^*(A) \le f(A)$  and since  $y^* \le x$ ,  $y^*(E \setminus A) \le x(E \setminus A)$ . This is a form of weak duality.
- Also, for any  $e \in E$ , if  $y^*(e) < x(e)$  then there must be some reason for this other than the constraint  $y^* \leq x$ , namely it must be that  $\exists T \in \mathcal{D}(x)$  with  $e \in T$  (i.e., e is a member of at least one of the tight sets).
- Hence, for all  $e \notin \operatorname{sat}(y^*)$  we have  $y^*(e) = x(e)$ , and moreover  $y^*(\operatorname{sat}(y^*)) = f(\operatorname{sat}(y^*))$  by definition.
- Thus we have that  $y^*(\operatorname{sat}(y^*)) + y^*(E \setminus \operatorname{sat}(y^*)) = f(\operatorname{sat}(y^*)) + x(E \setminus \operatorname{sat}(y^*))$ , strong duality, showing that the two sides are equal for  $y^*$ .

 $\bullet$  In Theorem 12.4.1, we can relax  $P_f^+$  to  $P_f.$ 

- ullet In Theorem 12.4.1, we can relax  $P_f^+$  to  $P_f$ .
- If  $\exists e$  such that w(e) < 0 then  $\max(wx : x \in P_f) = \infty$  since we can let  $x_e \to \infty$ , unless we ignore the negative elements or assume w > 0.

- ullet In Theorem 12.4.1, we can relax  $P_f^+$  to  $P_f$ .
- If  $\exists e$  such that w(e) < 0 then  $\max(wx : x \in P_f) = \infty$  since we can let  $x_e \to \infty$ , unless we ignore the negative elements or assume w > 0.
- ullet The proof, moreover, showed also that  $x \in P_f$ , not just  $P_f^+$ .

- In Theorem 12.4.1, we can relax  $P_f^+$  to  $P_f$ .
- If  $\exists e$  such that w(e) < 0 then  $\max(wx : x \in P_f) = \infty$  since we can let  $x_e \to \infty$ , unless we ignore the negative elements or assume w > 0.
- ullet The proof, moreover, showed also that  $x\in P_f$ , not just  $P_f^+$ .
- Moreover, in polymatroidal case, since the greedy constructed x has x(E) = f(E), we have that the greedy  $x \in B_f$ .

- In Theorem 12.4.1, we can relax  $P_f^+$  to  $P_f$ .
- If  $\exists e$  such that w(e) < 0 then  $\max(wx: x \in P_f) = \infty$  since we can let  $x_e \to \infty$ , unless we ignore the negative elements or assume  $w \ge 0$ .
- ullet The proof, moreover, showed also that  $x\in P_f$ , not just  $P_f^+$ .
- Moreover, in polymatroidal case, since the greedy constructed x has x(E) = f(E), we have that the greedy  $x \in B_f$ .
- In fact, we next will see that the greedy x is a vertex of  $B_f$ .

# Polymatroid extreme points

• The greedy algorithm does more than solve  $\max(wx : x \in P_f^+)$ . We can use it to generate vertices of polymatroidal polytopes.

- The greedy algorithm does more than solve  $\max(wx:x\in P_f^+)$ . We can use it to generate vertices of polymatroidal polytopes.
- $\bullet \ \ \text{Consider} \ P_f^+ \ \ \text{and also} \ \ C_f^+ \stackrel{\text{def}}{=} \left\{ x: x \in \mathbb{R}_+^E, x(e) \leq f(e), \forall e \in E \right\}$

- The greedy algorithm does more than solve  $\max(wx:x\in P_f^+)$ . We can use it to generate vertices of polymatroidal polytopes.
- $\bullet \ \ \text{Consider} \ P_f^+ \ \ \text{and also} \ \ C_f^+ \stackrel{\text{def}}{=} \left\{ x: x \in \mathbb{R}_+^E, x(e) \leq f(e), \forall e \in E \right\}$
- Then ordering  $A=(a_1,\ldots,a_{|A|})$  arbitrarily with  $A_i=\{a_1,\ldots,a_i\}$ ,  $f(A)=\sum_i f(a_i|A_{i-1})\leq \sum_i f(a_i)$ , and hence  $P_f^+\subseteq C_f^+$ .

- The greedy algorithm does more than solve  $\max(wx : x \in P_f^+)$ . We can use it to generate vertices of polymatroidal polytopes.
- $\bullet \ \ \text{Consider} \ P_f^+ \ \ \text{and also} \ \ C_f^+ \stackrel{\text{def}}{=} \left\{ x: x \in \mathbb{R}_+^E, x(e) \leq f(e), \forall e \in E \right\}$
- Then ordering  $A=(a_1,\ldots,a_{|A|})$  arbitrarily with  $A_i=\{a_1,\ldots,a_i\}$ ,  $f(A)=\sum_i f(a_i|A_{i-1})\leq \sum_i f(a_i)$ , and hence  $P_f^+\subseteq C_f^+$ .



# Polymatroid extreme points

• Since  $w \in \mathbb{R}_+^E$  is arbitrary, it may be that any  $e \in E$  is max (i.e., is such that w(e) > w(e') for  $e' \in E \setminus \{e\}$ ).

# Polymatroid extreme points

- Since  $w \in \mathbb{R}_+^E$  is arbitrary, it may be that any  $e \in E$  is max (i.e., is such that w(e) > w(e') for  $e' \in E \setminus \{e\}$ ).
- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.

# Polymatroid extreme points

- Since  $w \in \mathbb{R}_+^E$  is arbitrary, it may be that any  $e \in E$  is max (i.e., is such that w(e) > w(e') for  $e' \in E \setminus \{e\}$ ).
- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.
- ullet Recall, base polytope defined as the extreme face of  $P_f$ . I.e.,

$$B_f = P_f \cap \left\{ x \in \mathbb{R}_+^E : x(E) = f(E) \right\}$$
 (12.37)

# Polymatroid extreme points

- Since  $w \in \mathbb{R}_+^E$  is arbitrary, it may be that any  $e \in E$  is max (i.e., is such that w(e) > w(e') for  $e' \in E \setminus \{e\}$ ).
- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.
- ullet Recall, base polytope defined as the extreme face of  $P_f$ . I.e.,

$$B_f = P_f \cap \left\{ x \in \mathbb{R}_+^E : x(E) = f(E) \right\}$$
 (12.37)

- Since  $w \in \mathbb{R}_+^E$  is arbitrary, it may be that any  $e \in E$  is max (i.e., is such that w(e) > w(e') for  $e' \in E \setminus \{e\}$ ).
- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.
- ullet Recall, base polytope defined as the extreme face of  $P_f$ . I.e.,

$$B_f = P_f \cap \left\{ x \in \mathbb{R}_+^E : x(E) = f(E) \right\}$$
 (12.37)

• Also, intuitively, we can continue advancing along the skeletal edges of the polytope to reach any other vertex, given the appropriate ordering. If we advance in all dimensions, we'll reach a vertex in  $B_f$ , and if we advance only in some dimensions, we'll reach a vertex in  $P_f \setminus B_f$ .

- Since  $w \in \mathbb{R}_+^E$  is arbitrary, it may be that any  $e \in E$  is max (i.e., is such that w(e) > w(e') for  $e' \in E \setminus \{e\}$ ).
- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.
- ullet Recall, base polytope defined as the extreme face of  $P_f$ . I.e.,

$$B_f = P_f \cap \left\{ x \in \mathbb{R}_+^E : x(E) = f(E) \right\}$$
 (12.37)

- Also, intuitively, we can continue advancing along the skeletal edges of the polytope to reach any other vertex, given the appropriate ordering. If we advance in all dimensions, we'll reach a vertex in  $B_f$ , and if we advance only in some dimensions, we'll reach a vertex in  $P_f \setminus B_f$ .
- We formalize this next:

• Given any arbitrary order of  $E = (e_1, e_2, \dots, e_m)$ , define  $E_i = (e_1, e_2, \dots, e_i)$ .

- Given any arbitrary order of  $E=(e_1,e_2,\ldots,e_m)$ , define  $E_i=(e_1,e_2,\ldots,e_i)$ .
- ullet As before, a vector x is generated by  $E_i$  using the greedy procedure as follows

$$x(e_1) = f(E_1) = f(e_1)$$
(12.38)

$$x(e_j) = f(E_j) - f(E_{j-1}) = f(e_j|E_{j-1}) \text{ for } 2 \le j \le i$$
 (12.39)

$$x(e) = 0 \text{ for } e \in E \setminus E_i \tag{12.40}$$

- Given any arbitrary order of  $E=(e_1,e_2,\ldots,e_m)$ , define  $E_i=(e_1,e_2,\ldots,e_i)$ .
- ullet As before, a vector x is generated by  $E_i$  using the greedy procedure as follows

$$x(e_1) = f(E_1) = f(e_1)$$
(12.38)

$$x(e_j) = f(E_j) - f(E_{j-1}) = f(e_j|E_{j-1}) \text{ for } 2 \le j \le i$$
 (12.39)

$$x(e) = 0 \text{ for } e \in E \setminus E_i$$
 (12.40)

• An extreme point of  $P_f$  is a point that is not a convex combination of two other distinct points in  $P_f$ . Equivalently, an extreme point corresponds to setting certain inequalities in the specification of  $P_f$  to be equalities, so that there is a unique single point solution.

## Polymatroid extreme points

#### Theorem 12.6.1

For a given ordering  $E=(e_1,\ldots,e_m)$  of E and a given  $E_i=(e_1,\ldots,e_i)$  and x generated by  $E_i$  using the greedy procedure  $(x(e_i)=f(e_i|E_{i-1}))$ , then x is an extreme point of  $P_f$ 

#### Theorem 12.6.1

For a given ordering  $E=(e_1,\ldots,e_m)$  of E and a given  $E_i=(e_1,\ldots,e_i)$  and x generated by  $E_i$  using the greedy procedure  $(x(e_i)=f(e_i|E_{i-1}))$ , then x is an extreme point of  $P_f$ 

#### Proof.

• We already saw that  $x \in P_f$  (Theorem 12.4.1).

#### Theorem 12.6.1

For a given ordering  $E=(e_1,\ldots,e_m)$  of E and a given  $E_i=(e_1,\ldots,e_i)$  and x generated by  $E_i$  using the greedy procedure  $(x(e_i)=f(e_i|E_{i-1}))$ , then x is an extreme point of  $P_f$ 

#### Proof.

Mtrd. Partitioning

- We already saw that  $x \in P_f$  (Theorem 12.4.1).
- ullet To show that x is an extreme point of  $P_f$ , note that it is the unique solution of the following system of equations

$$x(E_j) = f(E_j) \text{ for } 1 \le j \le i \le m$$
 (12.41)

$$x(e) = 0 \text{ for } e \in E \setminus E_i \tag{12.42}$$

There are  $i \leq m$  equations and  $i \leq m$  unknowns, and simple Gaussian elimination gives us back the x constructed via the Greedy algorithm!!

• As an example, we have  $x(E_1) = x(e_1) = f(e_1)$ 

- As an example, we have  $x(E_1) = x(e_1) = f(e_1)$
- $x(E_2) = x(e_1) + x(e_2) = f(e_1, e_2)$  so  $x(e_2) = f(e_1, e_2) x(e_1) = f(e_1, e_2) f(e_1) = f(e_2|e_1).$

- As an example, we have  $x(E_1) = x(e_1) = f(e_1)$
- $x(E_2) = x(e_1) + x(e_2) = f(e_1, e_2)$  so  $x(e_2) = f(e_1, e_2) x(e_1) = f(e_1, e_2) f(e_1) = f(e_2|e_1).$
- $x(E_3) = x(e_1) + x(e_2) + x(e_3) = f(e_1, e_2, e_3)$  so  $x(e_3) = f(e_1, e_2, e_3) x(e_2) x(e_1) = f(e_1, e_2, e_3) f(e_1, e_2) = f(e_3|e_1, e_2)$

- As an example, we have  $x(E_1) = x(e_1) = f(e_1)$
- $x(E_2) = x(e_1) + x(e_2) = f(e_1, e_2)$  so  $x(e_2) = f(e_1, e_2) x(e_1) = f(e_1, e_2) f(e_1) = f(e_2|e_1).$
- $x(E_3) = x(e_1) + x(e_2) + x(e_3) = f(e_1, e_2, e_3)$  so  $x(e_3) = f(e_1, e_2, e_3) x(e_2) x(e_1) = f(e_1, e_2, e_3) f(e_1, e_2) = f(e_3|e_1, e_2)$
- And so on ..., but we see that this is just Gaussian elimination.

- As an example, we have  $x(E_1) = x(e_1) = f(e_1)$
- $x(E_2) = x(e_1) + x(e_2) = f(e_1, e_2)$  so  $x(e_2) = f(e_1, e_2) - x(e_1) = f(e_1, e_2) - f(e_1) = f(e_2|e_1).$
- $x(E_3) = x(e_1) + x(e_2) + x(e_3) = f(e_1, e_2, e_3)$  so  $x(e_3) = f(e_1, e_2, e_3) - x(e_2) - x(e_1) = f(e_1, e_2, e_3) - f(e_1, e_2) =$  $f(e_3|e_1,e_2)$
- And so on ..., but we see that this is just Gaussian elimination.
- Also, since  $x \in P_f$ , for each i, we see that,

$$x(E_j) = f(E_j)$$
 for  $1 \le j \le i$  (12.43)

$$x(A) \le f(A), \forall A \subseteq E \tag{12.44}$$

- As an example, we have  $x(E_1) = x(e_1) = f(e_1)$
- $x(E_2) = x(e_1) + x(e_2) = f(e_1, e_2)$  so  $x(e_2) = f(e_1, e_2) x(e_1) = f(e_1, e_2) f(e_1) = f(e_2|e_1).$
- $x(E_3) = x(e_1) + x(e_2) + x(e_3) = f(e_1, e_2, e_3)$  so  $x(e_3) = f(e_1, e_2, e_3) x(e_2) x(e_1) = f(e_1, e_2, e_3) f(e_1, e_2) = f(e_3|e_1, e_2)$
- And so on ..., but we see that this is just Gaussian elimination.
- Also, since  $x \in P_f$ , for each i, we see that,

$$x(E_j) = f(E_j)$$
 for  $1 \le j \le i$  (12.43)

$$x(A) \le f(A), \forall A \subseteq E$$
 (12.44)

• Thus, the greedy procedure provides a modular function lower bound on f that is tight on all points  $E_i$  in the order. This can be useful in its own right.

trd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated 

Matroids cont. Closure/Sa

## Polymatroid extreme points

some examples





Moreover, we have (and will ultimately prove)

### Corollary 12.6.2

If x is an extreme point of  $P_f$  and  $B \subseteq E$  is given such that  $\mathrm{supp}(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \cup (A : x(A) = f(A)) = \mathrm{sat}(x)$ , then x is generated using greedy by some ordering of B.

Moreover, we have (and will ultimately prove)

### Corollary 12.6.2

Mtrd. Partitioning

If x is an extreme point of  $P_f$  and  $B \subseteq E$  is given such that  $\mathrm{supp}(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \cup (A : x(A) = f(A)) = \mathrm{sat}(x)$ , then x is generated using greedy by some ordering of B.

• Note,  $sat(x) = cl(x) = \cup (A : x(A) = f(A))$  is also called the closure of x (recall that sets A such that x(A) = f(A) are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem ??)

Moreover, we have (and will ultimately prove)

### Corollary 12.6.2

Mtrd. Partitioning

If x is an extreme point of  $P_f$  and  $B \subseteq E$  is given such that  $\operatorname{supp}(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \cup (A : x(A) = f(A)) = \operatorname{sat}(x)$ , then x is generated using greedy by some ordering of B.

- Note,  $sat(x) = cl(x) = \cup (A : x(A) = f(A))$  is also called the closure of x (recall that sets A such that x(A) = f(A) are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem ??)
- Thus, cl(x) is a tight set.

Moreover, we have (and will ultimately prove)

#### Corollary 12.6.2

Mtrd. Partitioning

If x is an extreme point of  $P_f$  and  $B \subseteq E$  is given such that  $\mathrm{supp}(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \cup (A : x(A) = f(A)) = \mathrm{sat}(x)$ , then x is generated using greedy by some ordering of B.

- Note,  $sat(x) = cl(x) = \cup (A : x(A) = f(A))$  is also called the closure of x (recall that sets A such that x(A) = f(A) are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem ??)
- Thus, cl(x) is a tight set.
- Also,  $supp(x) = \{e \in E : x(e) \neq 0\}$  is called the support of x.

Moreover, we have (and will ultimately prove)

#### Corollary 12.6.2

Mtrd. Partitioning

If x is an extreme point of  $P_f$  and  $B \subseteq E$  is given such that  $\mathrm{supp}(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \cup (A : x(A) = f(A)) = \mathrm{sat}(x)$ , then x is generated using greedy by some ordering of B.

- Note,  $sat(x) = cl(x) = \cup (A : x(A) = f(A))$  is also called the closure of x (recall that sets A such that x(A) = f(A) are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem  $\ref{eq:closed}$ )
- Thus, cl(x) is a tight set.
- Also,  $supp(x) = \{e \in E : x(e) \neq 0\}$  is called the support of x.
- For arbitrary x, supp(x) is not necessarily tight, but for an extreme point, supp(x) is.

# Polymatroid with labeled edge lengths

• Recall f(e|A) = f(A+e) - f(A)

- Notice how submodularity,  $f(e|B) \leq f(e|A)$  for  $A \subseteq B$ , defines the shape of the polytope.
- In fact, we have strictness here f(e|B) < f(e|A) for  $A \subset B$ .
- Also, consider how the greedy algorithm proceeds along the edges of the polytope.



# Polymatroid with labeled edge lengths

• Recall f(e|A) = f(A+e) - f(A)

- Notice how submodularity,  $f(e|B) \leq f(e|A)$  for  $A \subseteq B$ , defines the shape of the polytope.
- In fact, we have strictness here  $f(e|B) < f(e|A) \text{ for } A \subset B.$
- Also, consider how the greedy algorithm proceeds along the edges of the polytope.



# Intuition: why greedy works with polymatroids

- Given w, the goal is to find  $x=(x(e_1),x(e_2))$  that maximizes  $x^{\mathsf{T}}w=x(e_1)w(e_1)+x(e_2)w(e_2).$
- If  $w(e_2) > w(e_1)$  the upper extreme point indicated maximizes  $x^{\mathsf{T}}w$  over  $x \in P_f^+$ .
- If  $w(e_2) < w(e_1)$  the lower extreme point indicated maximizes  $x^{\mathsf{T}}w$  over  $x \in P_f^+$ .



### A polymatroid function's polyhedron is a polymatroid.

#### Theorem 12.7.4

Let f be a polymatroid function defined on subsets of E. For any  $x \in \mathbb{R}_+^E$ , and any  $P_f^+$ -basis  $y^x \in \mathbb{R}_+^E$  of x, the component sum of  $y^x$  is

$$y^{x}(E) = \operatorname{rank}(x) = \max\left(y(E) : y \le x, y \in P_{f}^{+}\right)$$
$$= \min\left(x(A) + f(E \setminus A) : A \subseteq E\right) \tag{12.34}$$

As a consequence,  $P_f^+$  is a polymatroid, since r.h.s. is constant w.r.t.  $y^x$ .

By taking  $B = \operatorname{supp}(x)$  (so elements  $E \setminus B$  are zero in x), and for  $b \in B$ , x(b) is big enough, the r.h.s. min has solution  $A^* = E \setminus B$ . We recover submodular function from the polymetroid polyhedron via the following:

$$f(B) = \max \left\{ y(B) : y \in P_f^+ \right\}$$
 (12.35)

In fact, we will ultimately see a number of important consequences of this theorem (other than just that  $P_{\scriptscriptstyle f}^+$  is a polymatroid)

### Matroid instance of Theorem 9.4.5

• Considering Theorem 9.4.5, the matroid case is now a special case, where we have that:

#### Corollary 12.7.2

We have that:

Mtrd. Partitioning

$$\max \{y(E): y \in P_{\textit{ind. set}}(M), y \le x\} = \min \{r_M(A) + x(E \setminus A): A \subseteq E\}$$
(12.2)

where  $r_M$  is the matroid rank function of some matroid.

Matroids cont.

Closure/Sat

Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points **Most Violated ≤** Matroids cont. Closure/Sat

# Most violated inequality problem in matroid polytope case

Consider

$$P_r^+ = \{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r_M(A), \forall A \subseteq E \}$$
 (12.45)

# Most violated inequality problem in matroid polytope case

Consider

$$P_r^+ = \{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r_M(A), \forall A \subseteq E \}$$
 (12.45)

• Suppose we have any  $x \in \mathbb{R}_+^E$  such that  $x \notin P_r^+$ .

Most Violated <

# Most violated inequality problem in matroid polytope case

Consider

$$P_r^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r_M(A), \forall A \subseteq E \right\}$$
 (12.45)

- Suppose we have any  $x \in \mathbb{R}_+^E$  such that  $x \notin P_r^+$ .
- Hence, there must be a set of  $\mathcal{W}\subseteq 2^V$ , each member of which corresponds to a violated inequality, i.e., equations of the form  $x(A)>r_M(A)$  for  $A\in\mathcal{W}$ .

### Most violated inequality problem in matroid polytope case

Consider

$$P_r^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r_M(A), \forall A \subseteq E \right\}$$
 (12.45)

- Suppose we have any  $x \in \mathbb{R}_+^E$  such that  $x \notin P_r^+$ .
- Hence, there must be a set of  $\mathcal{W} \subseteq 2^V$ , each member of which corresponds to a violated inequality, i.e., equations of the form  $x(A) > r_M(A)$  for  $A \in \mathcal{W}$ .
- The most violated inequality when x is considered w.r.t.  $P_r^+$  corresponds to the set A that maximizes  $x(A) r_M(A)$ , i.e., the most violated inequality is valuated as:

$$\max\{x(A) - r_M(A) : A \in \mathcal{W}\} = \max\{x(A) - r_M(A) : A \subseteq E\}$$
 (12.46)

### Most violated inequality problem in matroid polytope case

Consider

Mtrd. Partitioning

$$P_r^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r_M(A), \forall A \subseteq E \right\}$$
 (12.45)

- Suppose we have any  $x \in \mathbb{R}_+^E$  such that  $x \notin P_r^+$ .
- Hence, there must be a set of  $\mathcal{W} \subseteq 2^V$ , each member of which corresponds to a violated inequality, i.e., equations of the form  $x(A) > r_M(A)$  for  $A \in \mathcal{W}$ .
- The most violated inequality when x is considered w.r.t.  $P_r^+$  corresponds to the set A that maximizes  $x(A) r_M(A)$ , i.e., the most violated inequality is valuated as:

$$\max\{x(A) - r_M(A) : A \in \mathcal{W}\} = \max\{x(A) - r_M(A) : A \subseteq E\}$$
 (12.46)

• Since x is modular and  $x(E \setminus A) = x(E) - x(A)$ , we can express this via a min as in;:

$$\min \left\{ r_M(A) + x(E \setminus A) : A \subseteq E \right\} \tag{12.47}$$

Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

# Most violated inequality/polymatroid membership/SFM

Consider

$$P_f^+ = \{ x \in \mathbb{R}^E : x \ge 0, x(A) \le f(A), \forall A \subseteq E \}$$
 (12.48)

Consider

$$P_f^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le f(A), \forall A \subseteq E \right\}$$
 (12.48)

• Suppose we have any  $x \in \mathbb{R}_+^E$  such that  $x \notin P_f^+$ .

Consider

$$P_f^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le f(A), \forall A \subseteq E \right\}$$
 (12.48)

- Suppose we have any  $x \in \mathbb{R}_+^E$  such that  $x \notin P_f^+$ .
- ullet Hence, there must be a set of  $\mathcal{W}\subseteq 2^V$ , each member of which corresponds to a violated inequality, i.e., equations of the form  $x(A) > r_M(A)$  for  $A \in \mathcal{W}$ .







Center:  $W = \{\{2\}\}$ 



Right:  $W = \{\{1, 2\}\}\$ 

• The most violated inequality when x is considered w.r.t.  $P_f^+$  corresponds to the set A that maximizes x(A) - f(A), i.e., the most violated inequality is valuated as:

$$\max\{x(A) - f(A) : A \in \mathcal{W}\} = \max\{x(A) - f(A) : A \subseteq E\} \quad (12.49)$$

• The most violated inequality when x is considered w.r.t.  $P_f^+$  corresponds to the set A that maximizes x(A) - f(A), i.e., the most violated inequality is valuated as:

$$\max\{x(A) - f(A) : A \in \mathcal{W}\} = \max\{x(A) - f(A) : A \subseteq E\}$$
 (12.49)

• Since x is modular and  $x(E \setminus A) = x(E) - x(A)$ , we can express this via a min as in::

$$\min \{ f(A) + x(E \setminus A) : A \subseteq E \}$$
 (12.50)

• The most violated inequality when x is considered w.r.t.  $P_f^+$  corresponds to the set A that maximizes x(A) - f(A), i.e., the most violated inequality is valuated as:

$$\max\{x(A) - f(A) : A \in \mathcal{W}\} = \max\{x(A) - f(A) : A \subseteq E\}$$
 (12.49)

• Since x is modular and  $x(E \setminus A) = x(E) - x(A)$ , we can express this via a min as in;:

$$\min \{ f(A) + x(E \setminus A) : A \subseteq E \}$$
 (12.50)

• More importantly,  $\min \{f(A) + x(E \setminus A) : A \subseteq E\}$  is a form of submodular function minimization, namely  $\min \{f(A) - x(A) : A \subseteq E\}$  for a submodular f and  $x \in \mathbb{R}_+^E$ , consisting of a difference of polymatroid and modular function (so f-x is no longer necessarily monotone, nor positive).

• The most violated inequality when x is considered w.r.t.  $P_f^+$  corresponds to the set A that maximizes x(A) - f(A), i.e., the most violated inequality is valuated as:

$$\max\{x(A) - f(A) : A \in \mathcal{W}\} = \max\{x(A) - f(A) : A \subseteq E\}$$
 (12.49)

• Since x is modular and  $x(E \setminus A) = x(E) - x(A)$ , we can express this via a min as in::

$$\min \{ f(A) + x(E \setminus A) : A \subseteq E \}$$
 (12.50)

- More importantly,  $\min \{f(A) + x(E \setminus A) : A \subseteq E\}$  is a form of submodular function minimization, namely  $\min \{f(A) x(A) : A \subseteq E\}$  for a submodular f and  $x \in \mathbb{R}_+^E$ , consisting of a difference of polymatroid and modular function (so f-x is no longer necessarily monotone, nor positive).
- We will ultimatley answer how general this form of SFM is.

# Matroids, other definitions using matroid rank $r: 2^V \to \mathbb{Z}_+$

### Definition 12.8.1 (closed/flat/subspace)

A subset  $A\subseteq E$  is closed (equivalently, a flat or a subspace) of matroid M if for all  $x\in E\setminus A$ ,  $r(A\cup\{x\})=r(A)+1$ .

A hyperplane is a flat of rank r(M) - 1.

#### Definition 12.8.2 (closure)

Given  $A \subseteq E$ , the closure (or span) of A, is defined by  $\operatorname{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$ 

Therefore, a closed set A has span(A) = A.

#### Definition 12.8.3 (circuit)

A subset  $A\subseteq E$  is circuit or a cycle if it is an  $\underline{\text{inclusionwise-minimal}}$   $\underline{\text{dependent set}}$  (i.e., if r(A)<|A| and for any  $a\in A$ ,  $\overline{r(A\setminus\{a\})}=|A|-1$ ).

### Matroids by circuits

Mtrd. Partitioning

Several circuit definitions for matroids.

#### Theorem 12.8.1 (Matroid by circuits)

Let E be a set and  $\mathcal C$  be a collection of nonempty subsets of E, such that no two sets in  $\mathcal C$  are contained in each other. Then the following are equivalent.

- C is the collection of circuits of a matroid;
- ullet if  $C,C'\in\mathcal{C}$ , and  $x\in C\cap C'$ , then  $(C\cup C')\setminus\{x\}$  contains a set in  $\mathcal{C}$ ;
- **3** if  $C, C' \in \mathcal{C}$ , and  $x \in C \cap C'$ , and  $y \in C \setminus C'$ , then  $(C \cup C') \setminus \{x\}$  contains a set in  $\mathcal{C}$  containing y;

Again, think about this for a moment in terms of linear spaces and matrices, and spanning trees.

Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Most Violated < Matroids cont. Closure/Sat

### Fundamental circuits in matroids

#### Lemma 12.8.3

Let  $I \in \mathcal{I}(M)$ , and  $e \in E$ , then  $I \cup \{e\}$  contains at most one circuit in M.

- Suppose, to the contrary, that there are two distinct circuits  $C_1, C_2$ such that  $C_1 \cup C_2 \subseteq I \cup \{e\}$ .
- Then  $e \in C_1 \cap C_2$ , and by (C2), there is a circuit  $C_3$  of M s.t.  $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\} \subseteq I$
- This contradicts the independence of I.



Mtrd. Partitioning Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

### Matroids: The Fundamental Circuit

• Define C(I,e) be the unique circuit associated with  $I \cup \{e\}$  (the fundamental circuit in M w.r.t. I and e, if it exists).

- Define C(I,e) be the unique circuit associated with  $I \cup \{e\}$  (the fundamental circuit in M w.r.t. I and e, if it exists).
- If  $e \in \operatorname{span}(I) \setminus I$ , then C(I,e) is well defined (I+e) creates one circuit).

- Define C(I,e) be the unique circuit associated with  $I \cup \{e\}$  (the fundamental circuit in M w.r.t. I and e, if it exists).
- If  $e \in \operatorname{span}(I) \setminus I$ , then C(I,e) is well defined (I + e creates one circuit).
- If  $e \in I$ , then I + e = I doesn't create a circuit. In such cases, C(I,e) is not really defined.

- Define C(I,e) be the unique circuit associated with  $I \cup \{e\}$  (the fundamental circuit in M w.r.t. I and e, if it exists).
- If  $e \in \operatorname{span}(I) \setminus I$ , then C(I,e) is well defined (I + e creates one circuit).
- If  $e \in I$ , then I+e=I doesn't create a circuit. In such cases, C(I,e) is not really defined.
- In such cases, we define  $C(I,e)=\{e\}$ , and we will soon see why. why we do this.

- Define C(I,e) be the unique circuit associated with  $I \cup \{e\}$  (the fundamental circuit in M w.r.t. I and e, if it exists).
- If  $e \in \operatorname{span}(I) \setminus I$ , then C(I,e) is well defined (I+e creates one circuit).
- If  $e \in I$ , then I+e=I doesn't create a circuit. In such cases, C(I,e) is not really defined.
- In such cases, we define  $C(I,e)=\{e\}$ , and we will soon see why. why we do this.
- If  $e \notin \operatorname{span}(I)$ , then  $C(I,e) = \emptyset$ , since no circuit is created in this case.

Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

### Union of matroid bases of a set

#### Lemma 12.8.1

Let  $\mathcal{B}(C)$  be the set of bases of C. Then, given matroid  $\mathcal{M}=(E,\mathcal{I})$ , and any loop-free set  $C\subseteq E$ , we have that:

$$\bigcup_{B \in \mathcal{B}(C)} B = C. \tag{12.51}$$

### Union of matroid bases of a set

#### Lemma 12.8.1

Mtrd. Partitioning

Let  $\mathcal{B}(C)$  be the set of bases of C. Then, given matroid  $\mathcal{M}=(E,\mathcal{I})$ , and any loop-free set  $C\subseteq E$ , we have that:

$$\bigcup_{B \in \mathcal{B}(C)} B = C. \tag{12.51}$$

#### Proof.

• Define  $C' \triangleq \bigcup_{B \in \mathcal{B}(C)}$ , and suppose  $\exists c \in C$  such that  $c \notin C'$ .

Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated S Matroids cont. Closure/Sat

#### Union of matroid bases of a set

#### Lemma 12.8.1

Mtrd. Partitioning

Let  $\mathcal{B}(C)$  be the set of bases of C. Then, given matroid  $\mathcal{M}=(E,\mathcal{I})$ , and any loop-free set  $C\subseteq E$ , we have that:

$$\bigcup_{B \in \mathcal{B}(C)} B = C. \tag{12.51}$$

- Define  $C' \triangleq \bigcup_{B \in \mathcal{B}(C)}$ , and suppose  $\exists c \in C$  such that  $c \notin C'$ .
- Hence,  $\forall B \in \mathcal{B}(C)$  we have  $c \notin B$ , and B+c contains a single circuit for any B, namely C(B,c).

Polymatroids and Greedy Possible Polytopes Extreme Points Most Violated ≤ Matroids cont. Closure/Sat

### Union of matroid bases of a set

#### Lemma 12.8.1

Mtrd. Partitioning

Let  $\mathcal{B}(C)$  be the set of bases of C. Then, given matroid  $\mathcal{M}=(E,\mathcal{I})$ , and any loop-free set  $C\subseteq E$ , we have that:

$$\bigcup_{B \in \mathcal{B}(C)} B = C. \tag{12.51}$$

- Define  $C' \triangleq \bigcup_{B \in \mathcal{B}(C)}$ , and suppose  $\exists c \in C$  such that  $c \notin C'$ .
- Hence,  $\forall B \in \mathcal{B}(C)$  we have  $c \notin B$ , and B+c contains a single circuit for any B, namely C(B,c).
- Then choose  $c' \in C(B, c)$  with  $c' \neq c$ .

### Union of matroid bases of a set

#### Lemma 12.8.1

Mtrd. Partitioning

Let  $\mathcal{B}(C)$  be the set of bases of C. Then, given matroid  $\mathcal{M}=(E,\mathcal{I})$ , and any loop-free set  $C\subseteq E$ , we have that:

$$\bigcup_{B \in \mathcal{B}(C)} B = C. \tag{12.51}$$

- Define  $C' \triangleq \bigcup_{B \in \mathcal{B}(C)}$ , and suppose  $\exists c \in C$  such that  $c \notin C'$ .
- Hence,  $\forall B \in \mathcal{B}(C)$  we have  $c \notin B$ , and B+c contains a single circuit for any B, namely C(B,c).
- Then choose  $c' \in C(B, c)$  with  $c' \neq c$ .
- Then B+c-c' is independent size |B| subset of C and hence spans C, and thus is a c-containing member of  $\mathcal{B}(C)$ , contradicting  $c \notin C'$ .

## The sat function = Polymatroid Closure

 Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).

## The sat function = Polymatroid Closure

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.

## The sat function = Polymatroid Closure

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider  $x \in P_f$  for polymatroid function f.

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider  $x \in P_f$  for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider  $x \in P_f$  for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.
- That is, we saw in Lecture 7 that for any  $A, B \in \mathcal{D}(x)$ , we have that  $A \cup B \in \mathcal{D}(x)$  and  $A \cap B \in \mathcal{D}(x)$ , which can constitute a join and meet.

Mtrd. Partitioning

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider  $x \in P_f$  for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.
- That is, we saw in Lecture 7 that for any  $A, B \in \mathcal{D}(x)$ , we have that  $A \cup B \in \mathcal{D}(x)$  and  $A \cap B \in \mathcal{D}(x)$ , which can constitute a join and meet.
- ullet Recall, for a given  $x \in P_f$ , we have defined this tight family as

$$\mathcal{D}(x) = \{ A : A \subseteq E, x(A) = f(A) \}$$
 (12.52)

• Now given  $x \in P_f^+$ :

$$\mathcal{D}(x) = \{ A : A \subseteq E, x(A) = f(A) \}$$
 (12.53)

$$= \{A : f(A) - x(A) = 0\}$$
 (12.54)

• Now given  $x \in P_f^+$ :

Mtrd. Partitioning

$$\mathcal{D}(x) = \{ A : A \subseteq E, x(A) = f(A) \}$$
 (12.53)

$$= \{A : f(A) - x(A) = 0\}$$
 (12.54)

• Since  $x \in P_f^+$  and f is presumed to be polymatroid function, we see f'(A) = f(A) - x(A) is a non-negative submodular function, and  $\mathcal{D}(x)$  are the zero-valued minimizers (if any) of f'(A).

• Now given  $x \in P_f^+$ :

$$\mathcal{D}(x) = \{ A : A \subseteq E, x(A) = f(A) \}$$
 (12.53)

$$= \{A : f(A) - x(A) = 0\}$$
 (12.54)

- Since  $x \in P_f^+$  and f is presumed to be polymatroid function, we see f'(A) = f(A) x(A) is a non-negative submodular function, and  $\mathcal{D}(x)$  are the zero-valued minimizers (if any) of f'(A).
- ullet The zero-valued minimizers of f' are thus closed under union and intersection.

• Now given  $x \in P_f^+$ :

$$\mathcal{D}(x) = \{ A : A \subseteq E, x(A) = f(A) \}$$
 (12.53)

$$= \{A : f(A) - x(A) = 0\}$$
 (12.54)

- Since  $x \in P_f^+$  and f is presumed to be polymatroid function, we see f'(A) = f(A) x(A) is a non-negative submodular function, and  $\mathcal{D}(x)$  are the zero-valued minimizers (if any) of f'(A).
- The zero-valued minimizers of f' are thus closed under union and intersection.
- In fact, this is true for all minimizers of a submodular function as stated in the next theorem.

# Minimizers of a Submodular Function form a lattice

### Theorem 12.9.1

Mtrd. Partitioning

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let  $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$  be the set of minimizers of f. Let  $A, B \in \mathcal{M}$ . Then  $A \cup B \in \mathcal{M}$  and  $A \cap B \in \mathcal{M}$ .

# Minimizers of a Submodular Function form a lattice

### Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let  $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$  be the set of minimizers of f. Let  $A, B \in \mathcal{M}$ . Then  $A \cup B \in \mathcal{M}$  and  $A \cap B \in \mathcal{M}$ .

### Proof.



### Minimizers of a Submodular Function form a lattice

### Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let  $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$  be the set of minimizers of f. Let  $A, B \in \mathcal{M}$ . Then  $A \cup B \in \mathcal{M}$  and  $A \cap B \in \mathcal{M}$ .

### Proof.

Mtrd. Partitioning

Since A and B are minimizers, we have  $f(A) = f(B) \le f(A \cap B)$  and  $f(A) = f(B) \le f(A \cup B)$ .



### Minimizers of a Submodular Function form a lattice

### Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let  $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$  be the set of minimizers of f. Let  $A, B \in \mathcal{M}$ . Then  $A \cup B \in \mathcal{M}$  and  $A \cap B \in \mathcal{M}$ .

#### Proof.

Mtrd. Partitioning

Since A and B are minimizers, we have  $f(A) = f(B) \le f(A \cap B)$  and  $f(A) = f(B) \le f(A \cup B)$ .

By submodularity, we have

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$
 (12.55)



## Minimizers of a Submodular Function form a lattice

### Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let  $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$  be the set of minimizers of f. Let  $A, B \in \mathcal{M}$ . Then  $A \cup B \in \mathcal{M}$  and  $A \cap B \in \mathcal{M}$ .

#### Proof.

Mtrd. Partitioning

Since A and B are minimizers, we have  $f(A)=f(B)\leq f(A\cap B)$  and  $f(A)=f(B)\leq f(A\cup B).$ 

By submodularity, we have

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B) \tag{12.55}$$

Hence, we must have  $f(A) = f(B) = f(A \cup B) = f(A \cap B)$ .

By submodularity, we have

## Minimizers of a Submodular Function form a lattice

### Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let  $\mathcal{M} = \operatorname{argmin}_{X \subseteq E} f(X)$  be the set of minimizers of f. Let  $A, B \in \mathcal{M}$ . Then  $A \cup B \in \mathcal{M}$  and  $A \cap B \in \mathcal{M}$ .

### Proof.

Mtrd. Partitioning

Since A and B are minimizers, we have  $f(A)=f(B)\leq f(A\cap B)$  and  $f(A)=f(B)\leq f(A\cup B).$ 

$$f(A) + f(B) > f(A \cup B) + f(A \cap B)$$

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B) \tag{12.55}$$

Hence, we must have  $f(A) = f(B) = f(A \cup B) = f(A \cap B)$ .

Thus, the minimizers of a submodular function form a lattice, and there is a maximal and a minimal minimizer of every submodular function.

## The sat function = Polymatroid Closure

• Matroid closure is generalized by the unique maximal element in  $\mathcal{D}(x)$ , also called the polymatroid closure or sat (saturation function).

- Matroid closure is generalized by the unique maximal element in  $\mathcal{D}(x)$ , also called the polymatroid closure or sat (saturation function).
- For some  $x \in P_f$ , we have defined:

$$\operatorname{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \left\{ \int \{A : A \in \mathcal{D}(x)\} \right\}$$
 (12.56)

- Matroid closure is generalized by the unique maximal element in  $\mathcal{D}(x)$ , also called the polymatroid closure or sat (saturation function).
- For some  $x \in P_f$ , we have defined:

$$\operatorname{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x)\}$$

$$= \bigcup \{A : A \subseteq E, x(A) = f(A)\}$$
(12.57)

- Matroid closure is generalized by the unique maximal element in  $\mathcal{D}(x)$ , also called the polymatroid closure or sat (saturation function).
- For some  $x \in P_f$ , we have defined:

$$\operatorname{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x)\}$$
 (12.56)

$$= \bigcup \left\{ A : A \subseteq E, x(A) = f(A) \right\} \tag{12.57}$$

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
 (12.58)

Closure/Sat

- Matroid closure is generalized by the unique maximal element in  $\mathcal{D}(x)$ , also called the polymatroid closure or sat (saturation function).
- For some  $x \in P_f$ , we have defined:

$$\operatorname{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x)\}$$
 (12.56)

$$= \bigcup \{A : A \subseteq E, x(A) = f(A)\}$$
 (12.57)

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
 (12.58)

• Hence,  $\operatorname{sat}(x)$  is the maximal (zero-valued) minimizer of the submodular function  $f_x(A) \triangleq f(A) - x(A)$ .

- Matroid closure is generalized by the unique maximal element in  $\mathcal{D}(x)$ , also called the polymatroid closure or sat (saturation function).
- For some  $x \in P_f$ , we have defined:

$$\operatorname{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \left\{ A : A \in \mathcal{D}(x) \right\}$$
 (12.56)

$$= \bigcup \{A : A \subseteq E, x(A) = f(A)\}$$
 (12.57)

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
 (12.58)

- Hence,  $\operatorname{sat}(x)$  is the maximal (zero-valued) minimizer of the submodular function  $f_x(A) \triangleq f(A) x(A)$ .
- Eq. (12.58) says that sat consists of any point x that is  $P_f$  saturated (any additional positive movement, in that dimension, leaves  $P_f$ ). We'll revisit this in a few slides.

Mtrd. Partitioning

- Matroid closure is generalized by the unique maximal element in  $\mathcal{D}(x)$ , also called the polymatroid closure or sat (saturation function).
- For some  $x \in P_f$ , we have defined:

$$\operatorname{cl}(x) \stackrel{\text{def}}{=} \operatorname{sat}(x) \stackrel{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x)\}$$
 (12.56)

$$= \bigcup \left\{ A : A \subseteq E, x(A) = f(A) \right\} \tag{12.57}$$

$$= \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}$$
 (12.58)

- Hence,  $\operatorname{sat}(x)$  is the maximal (zero-valued) minimizer of the submodular function  $f_x(A) \triangleq f(A) x(A)$ .
- Eq. (12.58) says that sat consists of any point x that is  $P_f$  saturated (any additional positive movement, in that dimension, leaves  $P_f$ ). We'll revisit this in a few slides.
- First, we see how sat generalizes matroid closure.