Submodular Functions, Optimization, and Applications to Machine Learning

— Spring Quarter, Lecture 12 —

http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

May 12th, 2014

\[
f(A) + f(B) \geq f(A \cup B) + f(A \cap B)
\]

f(A) + 2f(C) + f(B) \geq f(A) + f(C) + f(B)

f(A \cap B) \leq f(A) + f(B) - f(A \cup B)

Clockwise from top left:
Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige’s book.

Read Tom McCormick’s overview paper on SFM http://people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

Read chapters 1 - 3 from Fujishige book.

Announcements, Assignments, and Reminders

- **Weekly Office Hours:** Wednesdays, 5:00-5:50, or by skype or google hangout (email me).
Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, & Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes,
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity
- L11: More properties of polymatroids, SFM special cases
- L12: polymatroid properties, extreme points polymatroids,
- L13: sat, dep, supp, exchange capacity, examples
- L14: Lattice theory: partially ordered sets; lattices; distributive, modular, submodular, and boolean lattices; ideals and join irreducibles.
- L15: Supp, Base polytope, polymatroids and entropic Venn diagrams, exchange capacity,
- L16: proof that minimum norm point yields min of submodular function, and the lattice of minimizers of a submodular function, Lovasz extension
- L17: Lovasz extension, Choquet Integration, more properties/examples of Lovasz extension, convex minimization and SFM.
- L18: Lovasz extension examples and structured convex norms, The Min-Norm Point Algorithm detailed.
- L19: symmetric submodular function minimization, maximizing monotone submodular function w. card constraints.
- L20: maximizing monotone submodular function w. other constraints, non-monotone maximization.

Finals Week: June 9th-13th, 2014.
A polymatroid function’s polyhedron is a polymatroid.

Theorem 12.2.4

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}_E^+$, and any P_f^+-basis $y^x \in \mathbb{R}_E^+$ of x, the component sum of y^x is

$$y^x(E) = \text{rank}(x) = \max \left(y(E) : y \leq x, y \in P_f^+ \right) = \min \left(x(A) + f(E \setminus A) : A \subseteq E \right)$$ \hfill (12.34)

As a consequence, P_f^+ is a polymatroid, since r.h.s. is constant w.r.t. y^x.

By taking $B = \text{supp}(x)$ (so elements $E \setminus B$ are zero in x), and for $b \in B$, $x(b)$ is big enough, the r.h.s. min has solution $A^* = E \setminus B$. We recover submodular function from the polymatroid polyhedron via the following:

$$f(B) = \max \left\{ y(B) : y \in P_f^+ \right\}$$ \hfill (12.35)

In fact, we will ultimately see a number of important consequences of this theorem (other than just that P_f^+ is a polymatroid).
Tight sets $\mathcal{D}(y)$ are closed, and max tight set $\text{sat}(y)$

Recall the definition of the set of tight sets at $y \in P_f^+$:

$$\mathcal{D}(y) \triangleq \{ A : A \subseteq E, y(A) = f(A) \}$$ \hspace{1cm} (12.18)

Theorem 12.2.1

For any $y \in P_f^+$, with f a polymatroid function, then $\mathcal{D}(y)$ is closed under union and intersection.

Proof.

We have already proven this as part of Theorem 9.4.5

Also recall the definition of $\text{sat}(y)$, the maximal set of tight elements relative to $y \in \mathbb{R}_E^+$.

$$\text{sat}(y) \overset{\text{def}}{=} \bigcup \{ T : T \in \mathcal{D}(y) \}$$ \hspace{1cm} (12.19)
Bipartite Matching

- Given a matching $A \subseteq E$ (which might be empty), we can increase the matching if we can find an augmenting path S.
- The updated matching becomes $A' = A \setminus S \cup S \setminus A = A \oplus S$, where \oplus is the symmetric difference operator.
- The algorithm becomes:

Algorithm 8.1: Alternating Path Bipartite Matching

1. Let A be an arbitrary (including empty) matching in $G = (V, F, E)$;
2. while There exists an augmenting path S in G do
 3. $A \leftarrow A \oplus S$;

- This can easily be made to run in $O(m^2n)$, where $|V| = m$, $|F| = n$, $m \leq n$, but it can be made to run much faster as well (see Schrijver-2003).
Matroid Intersection

- Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.
- While $(V, \mathcal{I}_1 \cap \mathcal{I}_2)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_1$ and $X \in \mathcal{I}_2$.

Theorem 12.2.5

Let M_1 and M_2 be given as above, with rank functions r_1 and r_2. Then the size of the maximum size set in $\mathcal{I}_1 \cap \mathcal{I}_2$ is given by

\[
(r_1 * r_2)(V) \triangleq \min_{X \subseteq V} \left(r_1(X) + r_2(V \setminus X) \right) \tag{12.7}
\]

This is an instance of the convolution of two submodular functions, f_1 and f_2 that, evaluated at $Y \subseteq V$, is written as:

\[
(f_1 * f_2)(Y) = \min_{X \subseteq Y} \left(f_1(X) + f_2(Y \setminus X) \right) \tag{12.8}
\]
Lemma 12.2.3

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup \{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_1, C_2 such that $C_1 \cup C_2 \subseteq I \cup \{e\}$.
- Then $e \in C_1 \cap C_2$, and by (C2), there is a circuit C_3 of M s.t. $C_3 \subseteq (C_1 \cup C_2) \setminus\{e\} \subseteq I$.
- This contradicts the independence of I.

In general, let $C(I, e)$ be the unique circuit associated with $I \cup \{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).
Matroid Intersection Algorithm Idea

- Hopefully (eventually) we'll find an odd length sequence $S = (v_1, v_2, \ldots, v_s)$ such that we will be independent in both M_1 and M_2 and thus be one greater in size than I.

- We will have $v_i \notin I$ for i odd (will be shown in blue), and will have $v_i \in I$ for i even (will be shown in green), while $v \in I \setminus S$ will be shown in red.

- We then replace I with $I \ominus S$ (quite analogous to the bipartite matching case), and start again.
Identifying Augmenting Sequences

Theorem 12.2.6

Let I_p and I_{p+1} be intersections of M_1 and M_2 with p and $p + 1$ elements respectively. Then there exists an augmenting sequence $S \subseteq I_p \ominus I_{p+1}$ w.r.t. I_p.

Theorem 12.2.7

An intersection is of maximum cardinality iff it admits no augmenting sequence.

Theorem 12.2.8

For any intersection I, there exists a maximum cardinality intersection I^* such that $\text{span}_1(I) \subseteq \text{span}_1(I^*)$ and $\text{span}_2(I) \subseteq \text{span}_2(I^*)$.

All this can be made to run in poly time.
Suppose \(M_i = (E, \mathcal{I}_i) \) is a matroid and that we have \(k \) of them on the same ground set \(E \).
Matroid Partition Problem

- Suppose $M_i = (E, \mathcal{I}_i)$ is a matroid and that we have k of them on the same ground set E.
- We wish to, if possible, partition E into k blocks, $I_i, i \in \{1, 2, \ldots, k\}$ where $I_i \in \mathcal{I}_i$.

Suppose $M_i = (E, \mathcal{I}_i)$ is a matroid and that we have k of them on the same ground set E.

We wish to, if possible, partition E into k blocks, $I_i, i \in \{1, 2, \ldots, k\}$ where $I_i \in \mathcal{I}_i$.

Moreover, we want partition to be lexicographically maximum, that is $|I_1|$ is maximum, $|I_2|$ is maximum given $|I_1|$, and so on.
Theorem 12.3.1

Let M_i be a collection of k matroids as described. Then, a set $S \subseteq E$ can be partitioned into k subsets $I_i, i = 1 \ldots k$ where $I_i \in \mathcal{I}_i$ is independent in matroid i, if and only if, for all $A \subseteq S$

$$|A| \leq \sum_{i=1}^{k} r_i(A)$$

(12.1)

where r_i is the rank function of M_i.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014
Theorem 12.3.1

Let M_i be a collection of k matroids as described. Then, a set $S \subseteq E$ can be partitioned into k subsets $I_i, i = 1 \ldots k$ where $I_i \in \mathcal{I}_i$ is independent in matroid i, if and only if, for all $A \subseteq S$

$$|A| \leq \sum_{i=1}^{k} r_i(A)$$

(12.1)

where r_i is the rank function of M_i.

Now, if all matroids are the same $M_i = M$ for all i, we get condition

$$|A| \leq kr(A) \ \forall A \subseteq E$$

(12.2)
Matroid Partition Problem

Theorem 12.3.1

Let \(M_i \) be a collection of \(k \) matroids as described. Then, a set \(S \subseteq E \) can be partitioned into \(k \) subsets \(I_i, i = 1 \ldots k \) where \(I_i \in \mathcal{I}_i \) is independent in matroid \(i \), if and only if, for all \(A \subseteq S \)

\[
|A| \leq \sum_{i=1}^{k} r_i(A) \quad (12.1)
\]

where \(r_i \) is the rank function of \(M_i \).

- Now, if all matroids are the same \(M_i = M \) for all \(i \), we get condition

\[
|A| \leq kr(A) \quad \forall A \subseteq E \quad (12.2)
\]

- But considering vector of all ones \(\mathbf{1} \in \mathbb{R}^E_+ \), this is the same as

\[
\frac{1}{k}|A| = \frac{1}{k}\mathbf{1}(A) \leq r(A) \quad \forall A \subseteq E \quad (12.3)
\]
Recall definition of matroid polytope

\[P_r^+ = \{ y \in \mathbb{R}_+^E : y(A) \leq r(A) \text{ for all } A \subseteq E \} \]

(12.4)
Matroid Partition Problem

Recall definition of matroid polytope

\[P_r^+ = \{ y \in \mathbb{R}_+^E : y(A) \leq r(A) \text{ for all } A \subseteq E \} \] \hspace{1cm} (12.4)

Then we see that this special case of the matroid partition problem is just testing if \(\frac{1}{k} \mathbf{1} \in P_r^+ \), a problem of testing the membership in matroid polyhedra.
Recall definition of matroid polytope

\[P_r^+ = \{ y \in \mathbb{R}_+^E : y(A) \leq r(A) \text{ for all } A \subseteq E \} \]

Then we see that this special case of the matroid partition problem is just testing if \(\frac{1}{k} \mathbf{1} \in P_r^+ \), a problem of testing the membership in matroid polyhedra.

This is therefore a special case of submodular function minimization.
Review

- The next two slides from respectively from Lecture 9 and Lecture 8.
A polymatroid is a compact set $P \subseteq \mathbb{R}^E_+$ satisfying

1. $0 \in P$
2. If $y \leq x \in P$ then $y \in P$ (called down monotone).
3. For every $x \in \mathbb{R}^E_+$, any maximal vector $y \in P$ with $y \leq x$ (i.e., any P-basis of x), has the same component sum $y(E)$.

- Vectors within P (i.e., any $y \in P$) are called independent, and any vector outside of P is called dependent.
- Since all P-bases of x have the same component sum, if \mathcal{B}_x is the set of P-bases of x, then $\text{rank}(x) = y(E)$ for any $y \in \mathcal{B}_x$.
Theorem 12.4.6

Let $M = (V, \mathcal{I})$ be a matroid, with rank function r, then for any weight function $w \in \mathbb{R}_+^V$, there exists a chain of sets $U_1 \subset U_2 \subset \cdots \subset U_n \subseteq V$ such that

$$\max \{w(I) | I \in \mathcal{I}\} = \sum_{i=1}^{n} \lambda_i r(U_i)$$

(12.19)

where $\lambda_i \geq 0$ satisfy

$$w = \sum_{i=1}^{n} \lambda_i 1_{U_i}$$

(12.20)
Let \((E, \mathcal{I})\) be a set system and \(w \in \mathbb{R}^E_+\) be a weight vector.
Polymatroidal polyhedron and greedy

- Let \((E, \mathcal{I})\) be a set system and \(w \in \mathbb{R}^E_+\) be a weight vector.
- Recall greedy algorithm: Set \(A = \emptyset\), and repeatedly choose \(y \in E \setminus A\) such that \(A \cup \{y\} \in \mathcal{I}\) with \(w(y)\) as large as possible, stopping when no such \(y\) exists.
Polymatroidal polyhedron and greedy

- Let \((E, \mathcal{I})\) be a set system and \(w \in \mathbb{R}^E_+\) be a weight vector.
- Recall greedy algorithm: Set \(A = \emptyset\), and repeatedly choose \(y \in E \setminus A\) such that \(A \cup \{y\} \in \mathcal{I}\) with \(w(y)\) as large as possible, stopping when no such \(y\) exists.
- For a matroid, we saw that set system \((E, \mathcal{I})\) is a matroid iff for each weight function \(w \in \mathbb{R}^E_+\), the greedy algorithm leads to a set \(I \in \mathcal{I}\) of maximum weight \(w(I)\).
Polymatroidal polyhedron and greedy

- Let \((E, \mathcal{I})\) be a set system and \(w \in \mathbb{R}^E_+\) be a weight vector.
- Recall greedy algorithm: Set \(A = \emptyset\), and repeatedly choose \(y \in E \setminus A\) such that \(A \cup \{y\} \in \mathcal{I}\) with \(w(y)\) as large as possible, stopping when no such \(y\) exists.
- For a matroid, we saw that set system \((E, \mathcal{I})\) is a matroid iff for each weight function \(w \in \mathbb{R}^E_+\), the greedy algorithm leads to a set \(I \in \mathcal{I}\) of maximum weight \(w(I)\).
- Stated succinctly, considering \(\max \{w(I) : I \in \mathcal{I}\}\), then \((E, \mathcal{I})\) is a matroid iff greedy works for this maximization.
Polymatroidal polyhedron and greedy

- Let \((E, \mathcal{I})\) be a set system and \(w \in \mathbb{R}^E_+\) be a weight vector.

- Recall greedy algorithm: Set \(A = \emptyset\), and repeatedly choose \(y \in E \setminus A\) such that \(A \cup \{y\} \in \mathcal{I}\) with \(w(y)\) as large as possible, stopping when no such \(y\) exists.

- For a matroid, we saw that set system \((E, \mathcal{I})\) is a matroid iff for each weight function \(w \in \mathbb{R}^E_+\), the greedy algorithm leads to a set \(I \in \mathcal{I}\) of maximum weight \(w(I)\).

- Stated succinctly, considering \(\max \{w(I) : I \in \mathcal{I}\}\), then \((E, \mathcal{I})\) is a matroid iff greedy works for this maximization.

- Can we also characterize a polymatroid in this way?
Let \((E, \mathcal{I})\) be a set system and \(w \in \mathbb{R}^E_+\) be a weight vector.

Recall greedy algorithm: Set \(A = \emptyset\), and repeatedly choose \(y \in E \setminus A\) such that \(A \cup \{y\} \in \mathcal{I}\) with \(w(y)\) as large as possible, stopping when no such \(y\) exists.

For a matroid, we saw that set system \((E, \mathcal{I})\) is a matroid iff for each weight function \(w \in \mathbb{R}^E_+\), the greedy algorithm leads to a set \(I \in \mathcal{I}\) of maximum weight \(w(I)\).

Stated succinctly, considering \(\max\{w(I) : I \in \mathcal{I}\}\), then \((E, \mathcal{I})\) is a matroid iff greedy works for this maximization.

Can we also characterize a polymatroid in this way?

That is, if we consider \(\max\{wx : x \in P^+_f\}\), where \(P^+_f\) represents the “independent vectors”, is it the case that \(P^+_f\) is a polymatroid iff greedy works for this maximization?
Polymatroidal polyhedron and greedy

Let \((E, \mathcal{I})\) be a set system and \(w \in \mathbb{R}^E_+\) be a weight vector.

Recall greedy algorithm: Set \(A = \emptyset\), and repeatedly choose \(y \in E \setminus A\) such that \(A \cup \{y\} \in \mathcal{I}\) with \(w(y)\) as large as possible, stopping when no such \(y\) exists.

For a matroid, we saw that set system \((E, \mathcal{I})\) is a matroid iff for each weight function \(w \in \mathbb{R}^E_+\), the greedy algorithm leads to a set \(I \in \mathcal{I}\) of maximum weight \(w(I)\).

Stated succinctly, considering \(\max \{w(I) : I \in \mathcal{I}\}\), then \((E, \mathcal{I})\) is a matroid iff greedy works for this maximization.

Can we also characterize a polymatroid in this way?

That is, if we consider \(\max \\{wx : x \in P_f^+\}\), where \(P_f^+\) represents the “independent vectors”, is it the case that \(P_f^+\) is a polymatroid iff greedy works for this maximization?

Can we even relax things so that \(w \in \mathbb{R}^E\)?
Polymatroidal polyhedron and greedy

What is the greedy solution in this setting, when \(w \in \mathbb{R}^E \)?
Polymatroidal polyhedron and greedy

- What is the greedy solution in this setting, when \(w \in \mathbb{R}^E \)?
- Sort elements of \(E \) w.r.t. \(w \) so that, w.l.o.g.
 \[
 E = (e_1, e_2, \ldots, e_m) \text{ with } w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m).
 \]
What is the greedy solution in this setting, when \(w \in \mathbb{R}^E \)?

Sort elements of \(E \) w.r.t. \(w \) so that, w.l.o.g.

\[
E = (e_1, e_2, \ldots, e_m) \text{ with } w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m).
\]

Let \(k + 1 \) be the first point (if any) at which we are non-positive, i.e., \(w(e_k) > 0 \) and \(0 \geq w(e_{k+1}) \).

That is, we have

\[
w(e_1) \geq w(e_2) \geq \cdots \geq w(e_k) > 0 \geq w(e_{k+1}) \geq \cdots \geq w(e_m) \quad (12.5)
\]
Polymatroidal polyhedron and greedy

- What is the greedy solution in this setting, when $w \in \mathbb{R}^E$?
- Sort elements of E w.r.t. w so that, w.l.o.g.
 \[E = (e_1, e_2, \ldots, e_m) \text{ with } w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m). \]
- Let $k + 1$ be the first point (if any) at which we are non-positive, i.e., $w(e_k) > 0$ and $0 \geq w(e_{k+1})$.
- Next define partial accumulated sets E_i, for $i = 0 \ldots m$, we have w.r.t. the above sorted order:

 \[E_i \overset{\text{def}}{=} \{e_1, e_2, \ldots e_i\} \tag{12.6} \]

 (note $E_0 = \emptyset$, $f(E_0) = 0$, and E and E_i is always sorted w.r.t w).
What is the greedy solution in this setting, when $w \in \mathbb{R}^E$?

Sort elements of E w.r.t. w so that, w.l.o.g.

$E = (e_1, e_2, \ldots, e_m)$ with $w(e_1) \geq w(e_2) \geq \cdots \geq w(e_m)$.

Let $k + 1$ be the first point (if any) at which we are non-positive, i.e., $w(e_k) > 0$ and $0 \geq w(e_{k+1})$.

Next define partial accumulated sets E_i, for $i = 0 \ldots m$, we have w.r.t. the above sorted order:

$$E_i \overset{\text{def}}{=} \{e_1, e_2, \ldots e_i\}$$

(note $E_0 = \emptyset$, $f(E_0) = 0$, and E and E_i is always sorted w.r.t w).

The greedy solution is the vector $x \in \mathbb{R}^E_+$ with elements defined as:

$$x(e_1) \overset{\text{def}}{=} f(E_1) = f(e_1) = f(e_1|E_0) = f(e_1|\emptyset)$$

(12.7)

$$x(e_i) \overset{\text{def}}{=} f(E_i) - f(E_{i-1}) = f(e_i|E_{i-1}) \text{ for } i = 2 \ldots k$$

(12.8)

$$x(e_i) \overset{\text{def}}{=} 0 \text{ for } i = k + 1 \ldots m = |E|$$

(12.9)
Some Intuition: greedy and gain

Note $x(e_i) = f(e_i|E_{i-1}) \leq f(e_i|E')$ for any $E' \subseteq E_{i-1}$
Some Intuition: greedy and gain

- Note $x(e_i) = f(e_i | E_{i-1}) \leq f(e_i | E')$ for any $E' \subseteq E_{i-1}$
- So $x(e_1) = f(e_1)$ and this corresponds to $w(e_1) \geq w(e_i)$ for all $i \neq 1$.
Some Intuition: greedy and gain

- Note \(x(e_i) = f(e_i | E_{i-1}) \leq f(e_i | E') \) for any \(E' \subseteq E_{i-1} \)
- So \(x(e_1) = f(e_1) \) and this corresponds to \(w(e_1) \geq w(e_i) \) for all \(i \neq 1 \).
- Hence, for the largest value of \(w \) (namely \(w(e_1) \)), we use for \(x(e_1) \) the largest possible gain value of \(e_1 \) (namely \(f(e_1|\emptyset) \geq f(e_1|A) \) for any \(A \subseteq E \setminus \{e_1\} \)).
Some Intuition: greedy and gain

- Note \(x(e_i) = f(e_i|E_{i-1}) \leq f(e_i|E') \) for any \(E' \subseteq E_{i-1} \).

- So \(x(e_1) = f(e_1) \) and this corresponds to \(w(e_1) \geq w(e_i) \) for all \(i \neq 1 \).

- Hence, for the largest value of \(w \) (namely \(w(e_1) \)), we use for \(x(e_1) \) the largest possible gain value of \(e_1 \) (namely \(f(e_1|\emptyset) \geq f(e_1|A) \) for any \(A \subseteq E \setminus \{e_1\} \)).

- For the next largest value of \(w \) (namely \(w(e_2) \)), we use for \(x(e_2) \) the next largest gain value of \(e_2 \) (namely \(f(e_2|e_1) \)), while still ensuring (as we will soon see in Theorem 12.4.1) that the resulting \(x \in P_f \).
Some Intuition: greedy and gain

- Note \(x(e_i) = f(e_i | E_{i-1}) \leq f(e_i | E') \) for any \(E' \subseteq E_{i-1} \).
- So \(x(e_1) = f(e_1) \) and this corresponds to \(w(e_1) \geq w(e_i) \) for all \(i \neq 1 \).
- Hence, for the largest value of \(w \) (namely \(w(e_1) \)), we use for \(x(e_1) \) the largest possible gain value of \(e_1 \) (namely \(f(e_1 | \emptyset) \geq f(e_1 | A) \) for any \(A \subseteq E \setminus \{e_1\} \)).
- For the next largest value of \(w \) (namely \(w(e_2) \)), we use for \(x(e_2) \) the next largest gain value of \(e_2 \) (namely \(f(e_2 | e_1) \)), while still ensuring (as we will soon see in Theorem 12.4.1) that the resulting \(x \in P_f \).
- This process continues, using the next largest possible gain of \(e_i \) for \(x(e_i) \) while ensuring we do not leave the polytope, given the values we’ve already chosen for \(x(e_{i'}) \) for \(i' < i \).
Polymatroidal polyhedron and greedy

Theorem 12.4.1

The vector $x \in \mathbb{R}_+^E$ as previously defined using the greedy algorithm maximizes wx over P_f^+, with $w \in \mathbb{R}_+^E$, if f is submodular.

Proof.
Theorem 12.4.1

The vector $x \in \mathbb{R}_+^E$ as previously defined using the greedy algorithm maximizes wx over P_f^+, with $w \in \mathbb{R}_+^E$, if f is submodular.

Proof.

Consider the LP strong duality equation:

$$\max(wx : x \in P_f^+) = \min\left(\sum_{A \subseteq E} y_A f(A) : y \in \mathbb{R}_+^{2^E}, \sum_{A \subseteq E} y_A 1_A \geq w\right)$$

(12.10)
Theorem 12.4.1

The vector \(x \in \mathbb{R}^E_+ \) as previously defined using the greedy algorithm maximizes \(wx \) over \(P^+_f \), with \(w \in \mathbb{R}^E_+ \), if \(f \) is submodular.

Proof.

- Consider the LP strong duality equation:

\[
\max (wx : x \in P^+_f) = \min \left(\sum_{A \subseteq E} y_A f(A) : y \in \mathbb{R}^{2^E}_+, \sum_{A \subseteq E} y_A 1_A \geq w \right)
\]

(12.10)

- Define the following vector \(y \in \mathbb{R}^{2^E}_+ \) as

\[
y_{E_i} \leftarrow w(e_i) - w(e_{i+1}) \quad \text{for} \quad i = 1 \ldots (m - 1),
\]

(12.11)

\[
y_E \leftarrow w(e_m), \quad \text{and}
\]

(12.12)

\[
y_A \leftarrow 0 \quad \text{otherwise}
\]

(12.13)
Polymatroidal polyhedron and greedy

Proof.

- We first will see that greedy $x \in P_f^+$ (that is $x(A) \leq f(A), \forall A$).
Polymatroidal polyhedron and greedy

Proof.

- We first will see that greedy $x \in P^+_f$ (that is $x(A) \leq f(A), \forall A$).
- Order $A = (a_1, a_2, \ldots, a_k)$ based on order (e_1, e_2, \ldots, e_m).

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>e_2</td>
<td>e_3</td>
<td>e_4</td>
<td>e_5</td>
<td>e_6</td>
<td>e_7</td>
</tr>
</tbody>
</table>

...
Polymatroidal polyhedron and greedy

Proof.

- We first will see that greedy \(x \in P_f^+ \) (that is \(x(A) \leq f(A), \forall A \)).
- Order \(A = (a_1, a_2, \ldots, a_k) \) based on order \((e_1, e_2, \ldots, e_m) \).

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
<th>(\ldots)</th>
<th>(e_1)</th>
<th>(e_2)</th>
<th>(e_3)</th>
<th>(e_4)</th>
<th>(e_5)</th>
<th>(e_6)</th>
<th>(e_7)</th>
<th>(e_8)</th>
<th>(e_9)</th>
<th>(e_{10})</th>
<th>(e_{11})</th>
<th>(\ldots)</th>
<th>(e_m)</th>
</tr>
</thead>
</table>
- Define \(e^{-1} : E \to \{1, \ldots, m\} \) so that \(e^{-1}(e_i) = i \).

This means that with \(A = \{a_1, a_2, \ldots, a_k\} \), and \(\forall j \leq k \):

\[
\{a_1, a_2, \ldots, a_j\} \subseteq \{e_1, e_2, \ldots, e_{e^{-1}(a_j)}\}
\]
(12.14)

and

\[
\{a_1, a_2, \ldots, a_{j-1}\} \subseteq \{e_1, e_2, \ldots, e_{e^{-1}(a_j)-1}\}
\]
(12.15)

Also recall matlab notation: \(a_{1:j} \equiv \{a_1, a_2, \ldots, a_j\} \).

E.g., with \(j = 4 \) we get \(e^{-1}(a_4) = 9 \), and

\[
\{a_1, a_2, a_3, a_4\} \subseteq \{e_1, e_2, \ldots, e_9\}
\]
(12.16)
Proof.

- We first will see that greedy \(x \in P^+_f \) (that is \(x(A) \leq f(A), \forall A \)).

- Order \(A = (a_1, a_2, \ldots, a_k) \) based on order \((e_1, e_2, \ldots, e_m) \).

- Define \(e^{-1} : E \to \{1, \ldots, m\} \) so that \(e^{-1}(e_i) = i \).

- Then, we have \(x \in P^+_f \) since for all \(A \):

\[
f(A) = \sum_{i=1}^{k} f(a_i|a_1:i-1) \geq \sum_{i=1}^{k} f(a_i|e_1:e^{-1}(a_i)-1) = \sum_{a \in A} f(a|e_1:e^{-1}(a)-1) = x(A)
\]
Proof.

- We first will see that greedy $x \in P_f^+$ (that is $x(A) \leq f(A), \forall A$).
- Order $A = (a_1, a_2, \ldots, a_k)$ based on order (e_1, e_2, \ldots, e_m).

| | a_1 | a_2 | a_3 | a_4 | a_5 | \ldots | e_1 | e_2 | e_3 | e_4 | e_5 | e_6 | e_7 | e_8 | e_9 | e_{10} | e_{11} | \ldots | e_m |
|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|-----------|----------|-------|
- Define $e^{-1}: E \rightarrow \{1, \ldots, m\}$ so that $e^{-1}(e_i) = i$.
- Then, we have $x \in P_f^+$ since for all A:

\[
f(A) = \sum_{i=1}^{k} f(a_i | a_{1:i-1}) \leq \sum_{i=1}^{k} f(a_i | e_{1:e^{-1}(a_i)-1}) = \sum_{a \in A} f(a | e_{1:e^{-1}(a)-1}) = x(A)
\]
Next, \(y \) is also feasible for the dual constraints in Eq. 12.10 since:

\[
\sum_{A : e_i \in A} y_A = \sum_{j \geq i} y_{E_j} = m - 1 \sum_{i = 1}^f(E_i) (w(e_i) - w(e_i + 1)) + f(E) w(e_m) = \sum_{A \subseteq E} y_A f(A)
\]
Polymatroidal polyhedron and greedy

Proof.

- Next, y is also feasible for the dual constraints in Eq. 12.10 since:
- Next, we check that y is dual feasible. Clearly, $y \geq 0$,

...
Proof.

- Next, y is also feasible for the dual constraints in Eq. 12.10 since:
 - Next, we check that y is dual feasible. Clearly, $y \geq 0$,
 - and also, considering y component wise, for any i, we have that

$$\sum_{A: e_i \in A} y_A = \sum_{j \geq i} y_{E_j} = m - 1 \sum_{j=i}^{m-1} (w(e_j) - w(e_{j+1})) + w(e_m) = w(e_i).$$
Polymatroidal polyhedron and greedy

Proof.

- Next, \(y \) is also feasible for the dual constraints in Eq. 12.10 since:
- Next, we check that \(y \) is dual feasible. Clearly, \(y \geq 0 \),
- and also, considering \(y \) component wise, for any \(i \), we have that

\[
\sum_{A: e_i \in A} y_A = \sum_{j \geq i} y_{E_j} = \sum_{j = i}^{m-1} (w(e_j) - w(e_{j+1})) + w(e_m) = w(e_i).
\]

- Now optimality for \(x \) and \(y \) follows from strong duality, i.e.:

\[
wx = \sum_{e \in E} w(e)x(e) = \sum_{i=1}^{m} w(e_i)f(e_i | E_{i-1}) = \sum_{i=1}^{m} w(e_i)\left(f(E_i) - f(E_{i-1})\right)
\]

\[
= \sum_{i=1}^{m-1} f(E_i)\left(w(e_i) - w(e_{i+1})\right) + f(E)w(e_m) = \sum_{A \subseteq E} y_A f(A) \quad \ldots
\]
Polymatroidal polyhedron and greedy

Proof.

The equality in prev. Eq. follows via Abel summation:

\[wx = \sum_{i=1}^{m} w_i x_i \] \hspace{1cm} (12.17)

\[= \sum_{i=1}^{m} w_i \left(f(E_i) - f(E_{i-1}) \right) \] \hspace{1cm} (12.18)

\[= \sum_{i=1}^{m} w_i f(E_i) - \sum_{i=1}^{m-1} w_{i+1} f(E_i) \] \hspace{1cm} (12.19)

\[= w_m f(E_m) + \sum_{i=1}^{m-1} \left(w_i - w_{i+1} \right) f(E_i) \] \hspace{1cm} (12.20)
What about $w \in \mathbb{R}^E$

- When w contains negative elements, we have $x(e_i) = 0$ for $i = k + 1, \ldots, m$, where k is the last positive element of w when it is sorted in decreasing order.
What about $w \in \mathbb{R}^E$?

- When w contains negative elements, we have $x(e_i) = 0$ for $i = k + 1, \ldots, m$, where k is the last positive element of w when it is sorted in decreasing order.

- Exercise: show a modification of the previous proof that works for arbitrary $w \in \mathbb{R}^E$.
Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose \(P_f^+ \) is a polytope of form

\[
P_f^+ = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A), \forall A \subseteq E \right\},
\]

then the greedy solution to \(\max(wx : x \in P) \) is optimum only if \(f \) is submodular.

Proof.

- Order elements of \(E \) arbitrarily as \((e_1, e_2, \ldots, e_m)\) and define \(E_i = (e_1, e_2, \ldots, e_i) \). Also, choose \(A \) and \(B \) arbitrarily.
Conversely, suppose P_f^+ is a polytope of form

$$P_f^+ = \{ x \in \mathbb{R}_+^E : x(A) \leq f(A), \forall A \subseteq E \},$$

then the greedy solution to

$$\max(wx : x \in P)$$

is optimum only if f is submodular.

Proof.

- Order elements of E arbitrarily as (e_1, e_2, \ldots, e_m) and define $E_i = (e_1, e_2, \ldots, e_i)$. Also, choose A and B arbitrarily.
- For $1 \leq p \leq q \leq m$, define $A = \{e_1, e_2, \ldots, e_k, e_{k+1}, \ldots, e_p\} = E_p$
 and $B = \{e_1, e_2, \ldots, e_k, e_{p+1}, \ldots, e_q\} = E_k \cup (E_q \setminus E_p)$.
Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P_f^+ is a polytope of form

$$P_f^+ = \{ x \in \mathbb{R}^E_+ : x(A) \leq f(A), \forall A \subseteq E \},$$

then the greedy solution to

$$\max (wx : x \in P)$$

is optimum only if f is submodular.

Proof.

- Order elements of E arbitrarily as (e_1, e_2, \ldots, e_m) and define $E_i = (e_1, e_2, \ldots, e_i)$. Also, choose A and B arbitrarily.

- For $1 \leq p \leq q \leq m$, define $A = \{e_1, e_2, \ldots, e_k, e_{k+1}, \ldots, e_p\} = E_p$
 and $B = \{e_1, e_2, \ldots, e_k, e_{p+1}, \ldots, e_q\} = E_k \cup (E_q \setminus E_p)$

- Note, then we have $A \cap B = \{e_1, \ldots, e_k\} = E_k$, and $A \cup B = E_q$.
Theorem 12.4.1

Conversely, suppose P_f^+ is a polytope of form

$P_f^+ = \{ x \in \mathbb{R}_+^E : x(A) \leq f(A), \forall A \subseteq E \}$, then the greedy solution to $\max(wx : x \in P)$ is optimum only if f is submodular.

Proof.

1. Order elements of E arbitrarily as (e_1, e_2, \ldots, e_m) and define $E_i = (e_1, e_2, \ldots, e_i)$. Also, choose A and B arbitrarily.
2. For $1 \leq p \leq q \leq m$, define $A = \{e_1, e_2, \ldots, e_k, e_{k+1}, \ldots, e_p\} = E_p$ and $B = \{e_1, e_2, \ldots, e_k, e_{p+1}, \ldots, e_q\} = E_k \cup (E_q \setminus E_p)$.
3. Note, then we have $A \cap B = \{e_1, \ldots, e_k\} = E_k$, and $A \cup B = E_q$.
4. Define $w \in \{0, 1\}^m$ as:

$$w \overset{\text{def}}{=} \sum_{i=1}^{q} 1_{e_i} = 1_{A \cup B} \quad (12.21)$$
Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P_f^+ is a polytope of form

$$P_f^+ = \{ x \in \mathbb{R}^E_+ : x(A) \leq f(A), \forall A \subseteq E \},$$

then the greedy solution to

$$\max(wx : x \in P)$$

is optimum only if f is submodular.

Proof.

- Order elements of E arbitrarily as (e_1, e_2, \ldots, e_m) and define $E_i = (e_1, e_2, \ldots, e_i)$. Also, choose A and B arbitrarily.
- For $1 \leq p \leq q \leq m$, define $A = \{ e_1, e_2, \ldots, e_k, e_{k+1}, \ldots, e_p \} = E_p$ and $B = \{ e_1, e_2, \ldots, e_k, e_{p+1}, \ldots, e_q \} = E_k \cup (E_q \setminus E_p)$.
- Note, then we have $A \cap B = \{ e_1, \ldots, e_k \} = E_k$, and $A \cup B = E_q$.
- Define $w \in \{0, 1\}^m$ as:

$$w \overset{\text{def}}{=} \sum_{i=1}^{q} 1_{e_i} = 1_{A \cup B} \quad (12.21)$$

- Suppose optimum solution x is given by the greedy procedure.
Polymatroidal polyhedron and greedy

Proof.

Then

\[\sum_{i=1}^{k} x_i = f(E_1) + \sum_{i=2}^{k} (f(E_i) - f(E_{i-1})) = f(E_k) = f(A \cap B) \]

(12.22)
Polymatroidal polyhedron and greedy

Proof.

Then

$$\sum_{i=1}^{k} x_i = f(E_1) + \sum_{i=2}^{k} (f(E_i) - f(E_{i-1})) = f(E_k) = f(A \cap B)$$

(12.22)

and

$$\sum_{i=1}^{p} x_i = f(E_1) + \sum_{i=2}^{p} (f(E_i) - f(E_{i-1})) = f(E_p) = f(A)$$

(12.23)
Then

\[
\sum_{i=1}^{k} x_i = f(E_1) + \sum_{i=2}^{k} (f(E_i) - f(E_{i-1})) = f(E_k) = f(A \cap B)
\]
(12.22)

and

\[
\sum_{i=1}^{p} x_i = f(E_1) + \sum_{i=2}^{p} (f(E_i) - f(E_{i-1})) = f(E_p) = f(A)
\]
(12.23)

and

\[
\sum_{i=1}^{q} x_i = f(E_1) + \sum_{i=2}^{q} (f(E_i) - f(E_{i-1})) = f(E_q) = f(A \cup B)
\]
(12.24)
Polymatroidal polyhedron and greedy

Proof.

Thus, we have

\[x(B) = \sum_{i \in 1, \ldots, k, p+1, \ldots, q} x_i = \sum_{i: e_i \in B} x_i = f(A \cup B) + f(A \cap B) - f(A) \]

(12.25)
Polymatroidal polyhedron and greedy

Proof.

Thus, we have

\[x(B) = \sum_{i=1,...,k,p+1,...,q} x_i = \sum_{i:e_i \in B} x_i = f(A \cup B) + f(A \cap B) - f(A) \] (12.25)

But given that the greedy algorithm gives the optimal solution to \(\max(wx : x \in P_f^+) \), we have that \(x \in P_f^+ \) and thus \(x(B) \leq f(B) \).
Polymatroidal polyhedron and greedy

Proof.

• Thus, we have

\[
x(B) = \sum_{i \in 1, \ldots, k, p+1, \ldots, q} x_i = \sum_{i: e_i \in B} x_i = f(A \cup B) + f(A \cap B) - f(A)
\]

(12.25)

• But given that the greedy algorithm gives the optimal solution to \(\max(wx : x \in P_f^+)\), we have that \(x \in P_f^+\) and thus \(x(B) \leq f(B)\).

• Thus,

\[
x(B) = f(A \cup B) + f(A \cap B) - f(A) = \sum_{i: e_i \in B} x_i \leq f(B)
\]

(12.26)

ensuring the submodularity of \(f\), since \(A\) and \(B\) are arbitrary.
Thus, restating the above results into a single complete theorem, we have a result very similar to what we saw for matroids (i.e., Theorem 8.6.1)

Theorem 12.4.1

If $f : 2^E \rightarrow \mathbb{R}_+$ is given, and P is a polytope in \mathbb{R}_+^E of the form

$$P = \{ x \in \mathbb{R}_+^E : x(A) \leq f(A), \forall A \subseteq E \},$$

then the greedy solution to the problem $\max(wx : x \in P)$ is $\forall w$ optimum iff f is monotone non-decreasing submodular (i.e., iff P is a polymatroid).
Multiple Polytopes associated with arbitrary f

- Given an arbitrary submodular function $f : 2^V \rightarrow \mathbb{R}$ (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
Given an arbitrary submodular function \(f : 2^V \rightarrow \mathbb{R} \) (not necessarily a polymatroid function, so it need not be positive, monotone, etc.). If \(f(\emptyset) \neq 0 \), we can set \(f'(A) = f(A) - f(\emptyset) \) without destroying submodularity. This also does not change any minima, so we assume all functions are normalized \(f(\emptyset) = 0 \).

Note that due to constraint \(x(\emptyset) \leq f(\emptyset) \), we must have \(f(\emptyset) \geq 0 \) since if not (i.e., if \(f(\emptyset) < 0 \)), then \(P_f^{+} \) doesn’t exist.

Another form of normalization can do is:

\[
f'(A) = \begin{cases}
 f(A) & \text{if } A \neq \emptyset \\
 0 & \text{if } A = \emptyset
\end{cases}
\] (12.27)

This preserves submodularity due to \(f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \), and if \(A \cap B = \emptyset \) then r.h.s. only gets smaller when \(f(\emptyset) \geq 0 \).
Multiple Polytopes associated with arbitrary f

- Given an arbitrary submodular function $f : 2^V \rightarrow \mathbb{R}$ (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If $f(\emptyset) \neq 0$, we can set $f'(A) = f(A) - f(\emptyset)$ without destroying submodularity. This also does not change any minima, so we assume all functions are normalized $f(\emptyset) = 0$.
- We can define several polytopes:

\[
P_f = \{ x \in \mathbb{R}^E : x(S) \leq f(S), \forall S \subseteq E \} \tag{12.27}
\]

\[
P_f^+ = P_f \cap \{ x \in \mathbb{R}^E : x \geq 0 \} \tag{12.28}
\]

\[
B_f = P_f \cap \{ x \in \mathbb{R}^E : x(E) = f(E) \} \tag{12.29}
\]
Multiple Polytopes associated with arbitrary f

- Given an arbitrary submodular function $f : 2^V \rightarrow \mathbb{R}$ (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If $f(\emptyset) \neq 0$, we can set $f'(A) = f(A) - f(\emptyset)$ without destroying submodularity. This also does not change any minima, so we assume all functions are normalized $f(\emptyset) = 0$.
- We can define several polytopes:

$$P_f = \{ x \in \mathbb{R}^E : x(S) \leq f(S), \forall S \subseteq E \}$$ \hspace{1cm} (12.27)

$$P_f^+ = P_f \cap \{ x \in \mathbb{R}^E : x \geq 0 \}$$ \hspace{1cm} (12.28)

$$B_f = P_f \cap \{ x \in \mathbb{R}^E : x(E) = f(E) \}$$ \hspace{1cm} (12.29)

- P_f is what is sometimes called the extended polytope (sometimes notated as EP_f).
Multiple Polytopes associated with arbitrary f

- Given an arbitrary submodular function $f : 2^V \rightarrow \mathbb{R}$ (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If $f(\emptyset) \neq 0$, we can set $f'(A) = f(A) - f(\emptyset)$ without destroying submodularity. This also does not change any minima, so we assume all functions are normalized $f(\emptyset) = 0$.
- We can define several polytopes:

 $$P_f = \{ x \in \mathbb{R}^E : x(S) \leq f(S), \forall S \subseteq E \} \quad (12.27)$$

 $$P^+_f = P_f \cap \{ x \in \mathbb{R}^E : x \geq 0 \} \quad (12.28)$$

 $$B_f = P_f \cap \{ x \in \mathbb{R}^E : x(E) = f(E) \} \quad (12.29)$$

- P_f is what is sometimes called the extended polytope (sometimes notated as EP_f).
- P^+_f is P_f restricted to the positive orthant.
Multiple Polytopes associated with arbitrary f

- Given an arbitrary submodular function $f : 2^V \rightarrow \mathbb{R}$ (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If $f(\emptyset) \neq 0$, we can set $f'(A) = f(A) - f(\emptyset)$ without destroying submodularity. This also does not change any minima, so we assume all functions are normalized $f(\emptyset) = 0$.
- We can define several polytopes:

$$P_f = \{ x \in \mathbb{R}^E : x(S) \leq f(S), \forall S \subseteq E \}$$ \hspace{1cm} (12.27)

$$P_f^+ = P_f \cap \{ x \in \mathbb{R}^E : x \geq 0 \}$$ \hspace{1cm} (12.28)

$$B_f = P_f \cap \{ x \in \mathbb{R}^E : x(E) = f(E) \}$$ \hspace{1cm} (12.29)

- P_f is what is sometimes called the extended polytope (sometimes notated as EP_f).
- P_f^+ is P_f restricted to the positive orthant.
- B_f is called the base polytope.
Multiple Polytopes associated with f

\[P_f^+ = P_f \cap \{ x \in \mathbb{R}^E : x \geq 0 \} \] \hspace{1cm} (12.30)

\[P_f = \{ x \in \mathbb{R}^E : x(S) \leq f(S), \forall S \subseteq E \} \] \hspace{1cm} (12.31)

\[B_f = P_f \cap \{ x \in \mathbb{R}^E : x(E) = f(E) \} \] \hspace{1cm} (12.32)
Base Polytope in 3D

\[P_f = \{ x \in \mathbb{R}^E : x(S) \leq f(S), \forall S \subseteq E \} \]

(12.33)

\[B_f = P_f \cap \{ x \in \mathbb{R}^E : x(E) = f(E) \} \]

(12.34)
A polymatroid function’s polyhedron is a polymatroid.

Theorem 12.5.1

Let \(f \) be a submodular function defined on subsets of \(E \). For any \(x \in \mathbb{R}^E \), we have:

\[
\text{rank}(x) = \max \{ y(E) : y \leq x, y \in P_f \} = \min \{ x(A) + f(E \setminus A) : A \subseteq E \} \tag{12.35}
\]

Essentially the same theorem as Theorem 9.4.5. Taking \(x = 0 \) we get:

Corollary 12.5.2

Let \(f \) be a submodular function defined on subsets of \(E \). \(x \in \mathbb{R}^E \), we have:

\[
\text{rank}(0) = \max \{ y(E) : y \leq 0, y \in P_f \} = \min \{ f(A) : A \subseteq E \} \tag{12.36}
\]
Proof of Theorem 12.5.1

Let \(y^* \) be the optimal solution of the l.h.s. and let \(A \subseteq E \) be any subset.
Proof of Theorem 12.5.1.

Let y^* be the optimal solution of the l.h.s. and let $A \subseteq E$ be any subset.

Then $y^*(E) = y^*(A) + y^*(E \setminus A) \leq f(A) + x(E \setminus A)$ since if $y^* \in P_f$, $y^*(A) \leq f(A)$ and since $y^* \leq x$, $y^*(E \setminus A) \leq x(E \setminus A)$. This is a form of weak duality.
Proof of Theorem 12.5.1

Let y^* be the optimal solution of the l.h.s. and let $A \subseteq E$ be any subset.

Then $y^*(E) = y^*(A) + y^*(E \setminus A) \leq f(A) + x(E \setminus A)$ since if $y^* \in P_f$, $y^*(A) \leq f(A)$ and since $y^* \leq x$, $y^*(E \setminus A) \leq x(E \setminus A)$. This is a form of weak duality.

Also, for any $e \in E$, if $y^*(e) < x(e)$ then there must be some reason for this other than the constraint $y^* \leq x$, namely it must be that $\exists T \in D(x)$ with $e \in T$ (i.e., e is a member of at least one of the tight sets).
Proof of Theorem 12.5.1.

Let y^* be the optimal solution of the l.h.s. and let $A \subseteq E$ be any subset.

Then $y^*(E) = y^*(A) + y^*(E \setminus A) \leq f(A) + x(E \setminus A)$ since if $y^* \in P_f$, $y^*(A) \leq f(A)$ and since $y^* \leq x$, $y^*(E \setminus A) \leq x(E \setminus A)$. This is a form of weak duality.

Also, for any $e \in E$, if $y^*(e) < x(e)$ then there must be some reason for this other than the constraint $y^* \leq x$, namely it must be that $\exists T \in D(x)$ with $e \in T$ (i.e., e is a member of at least one of the tight sets).

Hence, for all $e \notin \text{sat}(y^*)$ we have $y^*(e) = x(e)$, and moreover $y^*(\text{sat}(y^*)) = f(\text{sat}(y^*))$ by definition.
Proof of Theorem 12.5.1.

Let y^* be the optimal solution of the l.h.s. and let $A \subseteq E$ be any subset.

Then $y^*(E) = y^*(A) + y^*(E \setminus A) \leq f(A) + x(E \setminus A)$ since if $y^* \in P_f$, $y^*(A) \leq f(A)$ and since $y^* \leq x$, $y^*(E \setminus A) \leq x(E \setminus A)$. This is a form of weak duality.

Also, for any $e \in E$, if $y^*(e) < x(e)$ then there must be some reason for this other than the constraint $y^* \leq x$, namely it must be that $\exists T \in D(x)$ with $e \in T$ (i.e., e is a member of at least one of the tight sets).

Hence, for all $e \notin \text{sat}(y^*)$ we have $y^*(e) = x(e)$, and moreover $y^*(\text{sat}(y^*)) = f(\text{sat}(y^*))$ by definition.

Thus we have that $y^*(\text{sat}(y^*)) + y^*(E \setminus \text{sat}(y^*)) = f(\text{sat}(y^*)) + x(E \setminus \text{sat}(y^*))$, strong duality, showing that the two sides are equal for y^*.
In Theorem 12.4.1, we can relax P_f^+ to P_f.
In Theorem 12.4.1, we can relax P_f^+ to P_f.

If $\exists e$ such that $w(e) < 0$ then $\max(wx : x \in P_f) = \infty$ since we can let $x_e \to \infty$, unless we ignore the negative elements or assume $w \geq 0$.
In Theorem 12.4.1, we can relax P_f^+ to P_f.

If $\exists e$ such that $w(e) < 0$ then $\max(wx : x \in P_f) = \infty$ since we can let $x_e \to \infty$, unless we ignore the negative elements or assume $w \geq 0$.

The proof, moreover, showed also that $x \in P_f$, not just P_f^+.

Greedy and P_f

- In Theorem 12.4.1, we can relax P_f^+ to P_f.
- If $\exists e$ such that $w(e) < 0$ then $\max(wx : x \in P_f) = \infty$ since we can let $x_e \to \infty$, unless we ignore the negative elements or assume $w \geq 0$.
- The proof, moreover, showed also that $x \in P_f$, not just P_f^+.
- Moreover, in polymatroidal case, since the greedy constructed x has $x(E) = f(E)$, we have that the greedy $x \in B_f$.
In Theorem 12.4.1, we can relax P^+_f to P_f.

If $\exists e$ such that $w(e) < 0$ then $\max(wx : x \in P_f) = \infty$ since we can let $x_e \to \infty$, unless we ignore the negative elements or assume $w \geq 0$.

The proof, moreover, showed also that $x \in P_f$, not just P^+_f.

Moreover, in polymatroidal case, since the greedy constructed x has $x(E) = f(E)$, we have that the greedy $x \in B_f$.

In fact, we next will see that the greedy x is a vertex of B_f.
Polymatroid extreme points

- The greedy algorithm does more than solve $\max(wx : x \in P_f^+).$ We can use it to generate vertices of polymatroidal polytopes.
Polymatroid extreme points

- The greedy algorithm does more than solve $\max(wx : x \in P_f^+)$. We can use it to generate vertices of polymatroidal polytopes.
- Consider P_f^+ and also $C_f^+ \overset{\text{def}}{=} \{x : x \in \mathbb{R}_+^E, x(e) \leq f(e), \forall e \in E\}$
The greedy algorithm does more than solve $\max(wx : x \in P_f^+)$. We can use it to generate vertices of polymatroidal polytopes.

Consider P_f^+ and also $C_f^+ \overset{\text{def}}{=} \{x : x \in \mathbb{R}_E^+, x(e) \leq f(e), \forall e \in E\}$

Then ordering $A = (a_1, \ldots, a_{|A|})$ arbitrarily with $A_i = \{a_1, \ldots, a_i\}$, $f(A) = \sum_i f(a_i|A_{i-1}) \leq \sum_i f(a_i)$, and hence $P_f^+ \subseteq C_f^+$.

Polymatroid extreme points
Polymatroid extreme points

- The greedy algorithm does more than solve $\max(wx : x \in P_f^+)$. We can use it to generate vertices of polymatroidal polytopes.
- Consider P_f^+ and also $C_f^+ \overset{\text{def}}{=} \{ x : x \in \mathbb{R}^E_+, x(e) \leq f(e), \forall e \in E \}$
- Then ordering $A = (a_1, \ldots, a_{|A|})$ arbitrarily with $A_i = \{a_1, \ldots, a_i\}$, $f(A) = \sum_i f(a_i|A_{i-1}) \leq \sum_i f(a_i)$, and hence $P_f^+ \subseteq C_f^+$.
Polymatroid extreme points

Since \(w \in \mathbb{R}^E_{+} \) is arbitrary, it may be that any \(e \in E \) is max (i.e., is such that \(w(e) > w(e') \) for \(e' \in E \setminus \{e\} \)).
Polymatroid extreme points

- Since \(w \in \mathbb{R}_+^E \) is arbitrary, it may be that any \(e \in E \) is max (i.e., is such that \(w(e) > w(e') \) for \(e' \in E \setminus \{e\} \)).

- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.
Polymatroid extreme points

- Since $w \in \mathbb{R}^E_+$ is arbitrary, it may be that any $e \in E$ is max (i.e., is such that $w(e) > w(e')$ for $e' \in E \setminus \{e\}$).

- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.

- Recall, base polytope defined as the extreme face of P_f. I.e.,

$$B_f = P_f \cap \{x \in \mathbb{R}^E_+: x(E) = f(E)\} \quad (12.37)$$
Polymatroid extreme points

- Since $w \in \mathbb{R}^E_+$ is arbitrary, it may be that any $e \in E$ is max (i.e., is such that $w(e) > w(e')$ for $e' \in E \setminus \{e\}$).

- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.

- Recall, base polytope defined as the extreme face of P_f. I.e.,
 \begin{equation}
 B_f = P_f \cap \{x \in \mathbb{R}^E_+ : x(E) = f(E)\} \quad (12.37)
 \end{equation}

 Also, intuitively, we can continue advancing along the skeletal edges of the polytope to reach any other vertex, given the appropriate ordering. If we advance in all dimensions, we'll reach a vertex in B_f, and if we advance only in some dimensions, we'll reach a vertex in $P_f \setminus B_f$. We formalize this next:
Polymatroid extreme points

Since \(w \in \mathbb{R}_+^E \) is arbitrary, it may be that any \(e \in E \) is max (i.e., is such that \(w(e) > w(e') \) for \(e' \in E \setminus \{e\} \)).

Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.

Recall, base polytope defined as the extreme face of \(P_f \). I.e.,

\[
B_f = P_f \cap \{x \in \mathbb{R}_+^E : x(E) = f(E)\} \quad (12.37)
\]

Also, intuitively, we can continue advancing along the skeletal edges of the polytope to reach any other vertex, given the appropriate ordering. If we advance in all dimensions, we’ll reach a vertex in \(B_f \), and if we advance only in some dimensions, we’ll reach a vertex in \(P_f \setminus B_f \).
Polymatroid extreme points

- Since $w \in \mathbb{R}_+^E$ is arbitrary, it may be that any $e \in E$ is max (i.e., is such that $w(e) > w(e')$ for $e' \in E \setminus \{e\}$).

- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.

- Recall, base polytope defined as the extreme face of P_f. I.e.,

$$B_f = P_f \cap \{x \in \mathbb{R}_+^E : x(E) = f(E)\} \quad (12.37)$$

- Also, intuitively, we can continue advancing along the skeletal edges of the polytope to reach any other vertex, given the appropriate ordering. If we advance in all dimensions, we’ll reach a vertex in B_f, and if we advance only in some dimensions, we’ll reach a vertex in $P_f \setminus B_f$.

- We formalize this next:
Polymatroid extreme points

- Given any arbitrary order of \(E = (e_1, e_2, \ldots, e_m) \), define \(E_i = (e_1, e_2, \ldots, e_i) \).
Polymatroid extreme points

- Given any arbitrary order of $E = (e_1, e_2, \ldots, e_m)$, define $E_i = (e_1, e_2, \ldots, e_i)$.
- As before, a vector x is generated by E_i using the greedy procedure as follows

\[
\begin{align*}
x(e_1) &= f(E_1) = f(e_1) \\
x(e_j) &= f(E_j) - f(E_{j-1}) = f(e_j | E_{j-1}) \text{ for } 2 \leq j \leq i \hspace{1cm} (12.38) \\
x(e) &= 0 \text{ for } e \in E \setminus E_i \hspace{1cm} (12.40)
\end{align*}
\]
Polymatroid extreme points

- Given any arbitrary order of $E = (e_1, e_2, \ldots, e_m)$, define $E_i = (e_1, e_2, \ldots, e_i)$.

- As before, a vector x is generated by E_i using the greedy procedure as follows

 $x(e_1) = f(E_1) = f(e_1)$ (12.38)

 $x(e_j) = f(E_j) - f(E_{j-1}) = f(e_j | E_{j-1})$ for $2 \leq j \leq i$ (12.39)

 $x(e) = 0$ for $e \in E \setminus E_i$ (12.40)

- An extreme point of P_f is a point that is not a convex combination of two other distinct points in P_f. Equivalently, an extreme point corresponds to setting certain inequalities in the specification of P_f to be equalities, so that there is a unique single point solution.
Polymatroid extreme points

Theorem 12.6.1

For a given ordering \(E = (e_1, \ldots, e_m) \) of \(E \) and a given \(E_i = (e_1, \ldots, e_i) \) and \(x \) generated by \(E_i \) using the greedy procedure \((x(e_i) = f(e_i|E_{i-1})) \), then \(x \) is an extreme point of \(P_f \).
Theorem 12.6.1

For a given ordering $E = (e_1, \ldots, e_m)$ of E and a given $E_i = (e_1, \ldots, e_i)$ and x generated by E_i using the greedy procedure ($x(e_i) = f(e_i|E_{i-1})$), then x is an extreme point of P_f

Proof.

- We already saw that $x \in P_f$ (Theorem 12.4.1).
Polymatroid extreme points

Theorem 12.6.1

For a given ordering $E = (e_1, \ldots, e_m)$ of E and a given $E_i = (e_1, \ldots, e_i)$ and x generated by E_i using the greedy procedure ($x(e_i) = f(e_i | E_{i-1})$), then x is an extreme point of P_f

Proof.

- We already saw that $x \in P_f$ (Theorem 12.4.1).
- To show that x is an extreme point of P_f, note that it is the unique solution of the following system of equations

\[
\begin{align*}
x(E_j) &= f(E_j) \text{ for } 1 \leq j \leq i \leq m \\
x(e) &= 0 \text{ for } e \in E \setminus E_i
\end{align*}
\] (12.41)

There are $i \leq m$ equations and $i \leq m$ unknowns, and simple Gaussian elimination gives us back the x constructed via the Greedy algorithm!!
Polymatroid extreme points

As an example, we have $x(E_1) = x(e_1) = f(e_1)$
Polymatroid extreme points

- As an example, we have \(x(E_1) = x(e_1) = f(e_1) \)
- \(x(E_2) = x(e_1) + x(e_2) = f(e_1, e_2) \) so
- \(x(e_2) = f(e_1, e_2) - x(e_1) = f(e_1, e_2) - f(e_1) = f(e_2 | e_1) \).
Polymatroid extreme points

- As an example, we have $x(E_1) = x(e_1) = f(e_1)$

- $x(E_2) = x(e_1) + x(e_2) = f(e_1, e_2)$ so
 \[x(e_2) = f(e_1, e_2) - x(e_1) = f(e_1, e_2) - f(e_1) = f(e_2 | e_1). \]

- $x(E_3) = x(e_1) + x(e_2) + x(e_3) = f(e_1, e_2, e_3)$ so
 \[x(e_3) = f(e_1, e_2, e_3) - x(e_2) - x(e_1) = f(e_1, e_2, e_3) - f(e_1, e_2) = f(e_3 | e_1, e_2). \]
Polymatroid extreme points

As an example, we have $x(E_1) = x(e_1) = f(e_1)$

$x(E_2) = x(e_1) + x(e_2) = f(e_1, e_2)$ so

$x(e_2) = f(e_1, e_2) - x(e_1) = f(e_1, e_2) - f(e_1) = f(e_2 | e_1)$.

$x(E_3) = x(e_1) + x(e_2) + x(e_3) = f(e_1, e_2, e_3)$ so

$x(e_3) = f(e_1, e_2, e_3) - x(e_2) - x(e_1) = f(e_1, e_2, e_3) - f(e_1, e_2) = f(e_3 | e_1, e_2)$

And so on . . . , but we see that this is just Gaussian elimination.
Polymatroid extreme points

- As an example, we have $x(E_1) = x(e_1) = f(e_1)$
- $x(E_2) = x(e_1) + x(e_2) = f(e_1, e_2)$ so

 $x(e_2) = f(e_1, e_2) - x(e_1) = f(e_1, e_2) - f(e_1) = f(e_2|e_1)$.

- $x(E_3) = x(e_1) + x(e_2) + x(e_3) = f(e_1, e_2, e_3)$ so

 $x(e_3) = f(e_1, e_2, e_3) - x(e_2) - x(e_1) = f(e_1, e_2, e_3) - f(e_1, e_2) = f(e_3|e_1, e_2)$

- And so on . . . , but we see that this is just Gaussian elimination.

- Also, since $x \in P_f$, for each i, we see that,

 $$x(E_j) = f(E_j) \text{ for } 1 \leq j \leq i$$ \hspace{1cm} (12.43)

 $$x(A) \leq f(A), \forall A \subseteq E$$ \hspace{1cm} (12.44)
Polymatroid extreme points

As an example, we have $x(E_1) = x(e_1) = f(e_1)$

$x(E_2) = x(e_1) + x(e_2) = f(e_1, e_2)$ so

$x(e_2) = f(e_1, e_2) - x(e_1) = f(e_1, e_2) - f(e_1) = f(e_2 | e_1)$.

$x(E_3) = x(e_1) + x(e_2) + x(e_3) = f(e_1, e_2, e_3)$ so

$x(e_3) = f(e_1, e_2, e_3) - x(e_2) - x(e_1) = f(e_1, e_2, e_3) - f(e_1, e_2) = f(e_3 | e_1, e_2)$

And so on . . . , but we see that this is just Gaussian elimination.

Also, since $x \in P_f$, for each i, we see that,

$$x(E_j) = f(E_j) \text{ for } 1 \leq j \leq i \quad (12.43)$$

$$x(A) \leq f(A), \forall A \subseteq E \quad (12.44)$$

Thus, the greedy procedure provides a modular function lower bound on f that is tight on all points E_i in the order. This can be useful in its own right.
Polymatroid extreme points
some examples
Polymatroid extreme points

Moreover, we have (and will ultimately prove)

Corollary 12.6.2

*If x is an extreme point of P_f and $B \subseteq E$ is given such that $\text{supp}(x) = \{ e \in E : x(e) \neq 0 \} \subseteq B \subseteq \bigcup (A : x(A) = f(A)) = \text{sat}(x)$, then x is generated using greedy by some ordering of B.***
Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If \(x \) is an extreme point of \(P_f \) and \(B \subseteq E \) is given such that
\[
\text{supp}(x) = \{ e \in E : x(e) \neq 0 \} \subseteq B \subseteq \bigcup \{ A : x(A) = f(A) \} = \text{sat}(x),
\]
then \(x \) is generated using greedy by some ordering of \(B \).

Note, \(\text{sat}(x) = \text{cl}(x) = \bigcup \{ A : x(A) = f(A) \} \) is also called the closure of \(x \) (recall that sets \(A \) such that \(x(A) = f(A) \) are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem ??)
Polymatroid extreme points

Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x *is an extreme point of* P_f *and* $B \subseteq E$ *is given such that* $\text{supp}(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \bigcup (A : x(A) = f(A)) = \text{sat}(x)$, *then* x *is generated using greedy by some ordering of* B.

- Note, $\text{sat}(x) = \text{cl}(x) = \bigcup (A : x(A) = f(A))$ *is also called the closure of* x *(recall that sets* A *(such that* $x(A) = f(A)$ *are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem ??)*

- Thus, $\text{cl}(x)$ *is a tight set.*
Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x *is an extreme point of* P_f *and* $B \subseteq E$ *is given such that*

$$\text{supp}(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \bigcup(A : x(A) = f(A)) = \text{sat}(x),$$

then x *is generated using greedy by some ordering of* B.

- Note, $\text{sat}(x) = \text{cl}(x) = \bigcup(A : x(A) = f(A))$ *is also called the closure of* x *(recall that sets* A *such that* $x(A) = f(A)$ *are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem ??)*

- Thus, $\text{cl}(x)$ *is a tight set.*

- Also, $\text{supp}(x) = \{e \in E : x(e) \neq 0\}$ *is called the support of* x.
Polymatroid extreme points

Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of P_f and $B \subseteq E$ is given such that
\[\text{supp}(x) = \{ e \in E : x(e) \neq 0 \} \subseteq B \subseteq \bigcup (A : x(A) = f(A)) = \text{sat}(x), \]
then x is generated using greedy by some ordering of B.

Note, $\text{sat}(x) = \text{cl}(x) = \bigcup (A : x(A) = f(A))$ is also called the closure of x (recall that sets A such that $x(A) = f(A)$ are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem ??)

Thus, $\text{cl}(x)$ is a tight set.

Also, $\text{supp}(x) = \{ e \in E : x(e) \neq 0 \}$ is called the support of x.

For arbitrary x, $\text{supp}(x)$ is not necessarily tight, but for an extreme point, $\text{supp}(x)$ is.
Recall $f(e|A) = f(A + e) - f(A)$

Notice how submodularity, $f(e|B) \leq f(e|A)$ for $A \subseteq B$, defines the shape of the polytope.

In fact, we have strictness here $f(e|B) < f(e|A)$ for $A \subset B$.

Also, consider how the greedy algorithm proceeds along the edges of the polytope.
Polymatroid with labeled edge lengths

- Recall \(f(e|A) = \)
 \(f(A + e) - f(A) \)

- Notice how
 submodularity,
 \(f(e|B) \leq f(e|A) \)
 for
 \(A \subseteq B \), defines the
 shape of the polytope.

- In fact, we have
 strictness here
 \(f(e|B) < f(e|A) \)
 for
 \(A \subset B \).

- Also, consider how the
 greedy algorithm
 proceeds along the
 edges of the polytope.
Intuition: why greedy works with polymatroids

- Given w, the goal is to find $x = (x(e_1), x(e_2))$ that maximizes $x^T w = x(e_1)w(e_1) + x(e_2)w(e_2)$.
- If $w(e_2) > w(e_1)$ the upper extreme point indicated maximizes $x^T w$ over $x \in P^+_f$.
- If $w(e_2) < w(e_1)$ the lower extreme point indicated maximizes $x^T w$ over $x \in P^+_f$.

Maximal point in P^+_f for w in this region.
A polymatroid function’s polyhedron is a polymatroid.

Theorem 12.7.4

Let \(f \) be a polymatroid function defined on subsets of \(E \). For any \(x \in \mathbb{R}^E_+ \), and any \(P_f^+ \)-basis \(y^x \in \mathbb{R}^E_+ \) of \(x \), the component sum of \(y^x \) is

\[
y^x(E) = \text{rank}(x) = \max \left(y(E) : y \leq x, y \in P_f^+ \right)
\]

\[
= \min \left(x(A) + f(E \setminus A) : A \subseteq E \right) \quad (12.34)
\]

As a consequence, \(P_f^+ \) is a polymatroid, since r.h.s. is constant w.r.t. \(y^x \).

By taking \(B = \text{supp}(x) \) (so elements \(E \setminus B \) are zero in \(x \)), and for \(b \in B \), \(x(b) \) is big enough, the r.h.s. min has solution \(A^* = E \setminus B \). We recover submodular function from the polymatroid polyhedron via the following:

\[
f(B) = \max \left\{ y(B) : y \in P_f^+ \right\} \quad (12.35)
\]

In fact, we will ultimately see a number of important consequences of this theorem (other than just that \(P_f^+ \) is a polymatroid).
Considering Theorem 9.4.5, the matroid case is now a special case, where we have that:

Corollary 12.7.2

We have that:

\[
\max \{ y(E) : y \in P_{ind. set}(M), y \leq x \} = \min \{ r_M(A) + x(E \setminus A) : A \subseteq E \}
\]

(12.2)

where \(r_M \) is the matroid rank function of some matroid.
Most violated inequality problem in matroid polytope case

Consider

\[P_r^+ = \{ x \in \mathbb{R}^E : x \geq 0, x(A) \leq r_M(A), \forall A \subseteq E \} \] \hspace{1cm} (12.45)
Consider

\[P_r^+ = \{ x \in \mathbb{R}^E : x \geq 0, x(A) \leq r_M(A), \forall A \subseteq E \} \] (12.45)

Suppose we have any \(x \in \mathbb{R}_+^E \) such that \(x \notin P_r^+ \).
Consider

\[P_r^+ = \{ x \in \mathbb{R}^E : x \geq 0, x(A) \leq r_M(A), \forall A \subseteq E \} \] \hspace{1cm} (12.45)

Suppose we have any \(x \in \mathbb{R}^E_+ \) such that \(x \not\in P_r^+ \).

Hence, there must be a set of \(\mathcal{W} \subseteq 2^V \), each member of which corresponds to a violated inequality, i.e., equations of the form \(x(A) > r_M(A) \) for \(A \in \mathcal{W} \).
Most violated inequality problem in matroid polytope case

Consider

\[P^+_r = \{ x \in \mathbb{R}^E : x \geq 0, x(A) \leq r_M(A), \forall A \subseteq E \} \] (12.45)

Suppose we have any \(x \in \mathbb{R}^E_+ \) such that \(x \not\in P^+_r \).

Hence, there must be a set of \(\mathcal{W} \subseteq 2^V \), each member of which corresponds to a violated inequality, i.e., equations of the form \(x(A) > r_M(A) \) for \(A \in \mathcal{W} \).

The most violated inequality when \(x \) is considered w.r.t. \(P^+_r \) corresponds to the set \(A \) that maximizes \(x(A) - r_M(A) \), i.e., the most violated inequality is valuated as:

\[\max \{ x(A) - r_M(A) : A \in \mathcal{W} \} = \max \{ x(A) - r_M(A) : A \subseteq E \} \] (12.46)
Most violated inequality problem in matroid polytope case

Consider

$$P_r^+ = \{ x \in \mathbb{R}^E : x \geq 0, x(A) \leq r_M(A), \forall A \subseteq E \}$$ \hspace{1cm} (12.45)

Suppose we have any $x \in \mathbb{R}^E_+$ such that $x \not\in P_r^+$.

Hence, there must be a set of $\mathcal{W} \subseteq 2^V$, each member of which corresponds to a violated inequality, i.e., equations of the form $x(A) > r_M(A)$ for $A \in \mathcal{W}$.

The most violated inequality when x is considered w.r.t. P_r^+ corresponds to the set A that maximizes $x(A) - r_M(A)$, i.e., the most violated inequality is valuated as:

$$\max \{ x(A) - r_M(A) : A \in \mathcal{W} \} = \max \{ x(A) - r_M(A) : A \subseteq E \}$$ \hspace{1cm} (12.46)

Since x is modular and $x(E \setminus A) = x(E) - x(A)$, we can express this via a min as in::

$$\min \{ r_M(A) + x(E \setminus A) : A \subseteq E \}$$ \hspace{1cm} (12.47)
Consider

\[P_f^+ = \{ x \in \mathbb{R}^E : x \geq 0, x(A) \leq f(A), \forall A \subseteq E \} \] \hspace{1cm} (12.48)
Consider

\[P_f^+ = \{ x \in \mathbb{R}^E : x \geq 0, x(A) \leq f(A), \forall A \subseteq E \} \]

(12.48)

Suppose we have any \(x \in \mathbb{R}_+^E \) such that \(x \not\in P_f^+ \).
Most violated inequality/polymatroid membership/SFM

- Consider

\[P_f^+ = \left\{ x \in \mathbb{R}^E : x \geq 0, x(A) \leq f(A), \forall A \subseteq E \right\} \] \hspace{1cm} (12.48)

- Suppose we have any \(x \in \mathbb{R}^E_+ \) such that \(x \not\in P_f^+ \).

- Hence, there must be a set of \(\mathcal{W} \subseteq 2^V \), each member of which corresponds to a violated inequality, i.e., equations of the form \(x(A) > r_M(A) \) for \(A \in \mathcal{W} \).

![Diagrams](http://example.com/diagrams.png)

Left: \(\mathcal{W} = \{\{1\}\} \)

Center: \(\mathcal{W} = \{\{2\}\} \)

Right: \(\mathcal{W} = \{\{1, 2\}\} \)
The most violated inequality when \(x \) is considered w.r.t. \(P_f^+ \) corresponds to the set \(A \) that maximizes \(x(A) - f(A) \), i.e., the most violated inequality is valuated as:

\[
\max \{ x(A) - f(A) : A \in \mathcal{W} \} = \max \{ x(A) - f(A) : A \subseteq E \} \quad (12.49)
\]
The most violated inequality when x is considered w.r.t. P_f^+ corresponds to the set A that maximizes $x(A) - f(A)$, i.e., the most violated inequality is valuated as:

$$\max \{ x(A) - f(A) : A \in \mathcal{W} \} = \max \{ x(A) - f(A) : A \subseteq E \} \quad (12.49)$$

Since x is modular and $x(E \setminus A) = x(E) - x(A)$, we can express this via a min as in;:

$$\min \{ f(A) + x(E \setminus A) : A \subseteq E \} \quad (12.50)$$
The most violated inequality when x is considered w.r.t. P_f^+ corresponds to the set A that maximizes $x(A) - f(A)$, i.e., the most violated inequality is valued as:

$$\max \{x(A) - f(A) : A \in \mathcal{W}\} = \max \{x(A) - f(A) : A \subseteq E\} \quad (12.49)$$

Since x is modular and $x(E \setminus A) = x(E) - x(A)$, we can express this via a min as in:

$$\min \{f(A) + x(E \setminus A) : A \subseteq E\} \quad (12.50)$$

More importantly, $\min \{f(A) + x(E \setminus A) : A \subseteq E\}$ is a form of submodular function minimization, namely $\min \{f(A) - x(A) : A \subseteq E\}$ for a submodular f and $x \in \mathbb{R}_+^E$, consisting of a difference of polymatroid and modular function (so $f - x$ is no longer necessarily monotone, nor positive).
The most violated inequality when x is considered w.r.t. P_f^+ corresponds to the set A that maximizes $x(A) - f(A)$, i.e., the most violated inequality is valuated as:

$$\max \{ x(A) - f(A) : A \in \mathcal{W} \} = \max \{ x(A) - f(A) : A \subseteq E \} \quad (12.49)$$

Since x is modular and $x(E \setminus A) = x(E) - x(A)$, we can express this via a min as in;:

$$\min \{ f(A) + x(E \setminus A) : A \subseteq E \} \quad (12.50)$$

More importantly, $\min \{ f(A) + x(E \setminus A) : A \subseteq E \}$ is a form of submodular function minimization, namely

$$\min \{ f(A) - x(A) : A \subseteq E \}$$

for a submodular f and $x \in \mathbb{R}^E_+$, consisting of a difference of polymatroid and modular function (so $f - x$ is no longer necessarily monotone, nor positive).

We will ultimately answer how general this form of SFM is.
Definition 12.8.1 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

A hyperplane is a flat of rank $r(M) - 1$.

Definition 12.8.2 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by

$\text{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}$.

Therefore, a closed set A has $\text{span}(A) = A$.

Definition 12.8.3 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if $r(A) < |A|$ and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).
Several circuit definitions for matroids.

Theorem 12.8.1 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that no two sets in C are contained in each other. Then the following are equivalent.

1. C is the collection of circuits of a matroid;
2. if $C, C' \in C$, and $x \in C \cap C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C;
3. if $C, C' \in C$, and $x \in C \cap C'$, and $y \in C \setminus C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and matrices, and spanning trees.
Lemma 12.8.3

Let \(I \in \mathcal{I}(M) \), and \(e \in E \), then \(I \cup \{e\} \) contains at most one circuit in \(M \).

Proof.

- Suppose, to the contrary, that there are two distinct circuits \(C_1, C_2 \) such that \(C_1 \cup C_2 \subseteq I \cup \{e\} \).
- Then \(e \in C_1 \cap C_2 \), and by (C2), there is a circuit \(C_3 \) of \(M \) s.t. \(C_3 \subseteq (C_1 \cup C_2) \setminus \{e\} \subseteq I \)
- This contradicts the independence of \(I \).

In general, let \(C(I, e) \) be the unique circuit associated with \(I \cup \{e\} \) (commonly called the fundamental circuit in \(M \) w.r.t. \(I \) and \(e \)).
Define $C(I, e)$ be the unique circuit associated with $I \cup \{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).
Matroids: The Fundamental Circuit

- Define $C(I, e)$ be the unique circuit associated with $I \cup \{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).
- If $e \in \text{span}(I) \setminus I$, then $C(I, e)$ is well defined ($I + e$ creates one circuit).
Define $C(I, e)$ be the unique circuit associated with $I \cup \{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).

If $e \in \text{span}(I) \setminus I$, then $C(I, e)$ is well defined ($I + e$ creates one circuit).

If $e \in I$, then $I + e = I$ doesn’t create a circuit. In such cases, $C(I, e)$ is not really defined.
Define $C(I, e)$ be the unique circuit associated with $I \cup \{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).

- If $e \in \text{span}(I) \setminus I$, then $C(I, e)$ is well defined ($I + e$ creates one circuit).
- If $e \in I$, then $I + e = I$ doesn’t create a circuit. In such cases, $C(I, e)$ is not really defined.
- In such cases, we define $C(I, e) = \{e\}$, and we will soon see why we do this.
Define $C(I, e)$ be the unique circuit associated with $I \cup \{e\}$ (the fundamental circuit in M w.r.t. I and e, if it exists).

If $e \in \text{span}(I) \setminus I$, then $C(I, e)$ is well defined ($I + e$ creates one circuit).

If $e \in I$, then $I + e = I$ doesn’t create a circuit. In such cases, $C(I, e)$ is not really defined.

In such cases, we define $C(I, e) = \{e\}$, and we will soon see why we do this.

If $e \notin \text{span}(I)$, then $C(I, e) = \emptyset$, since no circuit is created in this case.
Lemma 12.8.1

Let $\mathcal{B}(C)$ be the set of bases of C. Then, given matroid $\mathcal{M} = (E, \mathcal{I})$, and any loop-free set $C \subseteq E$, we have that:

$$
\bigcup_{B \in \mathcal{B}(C)} B = C.
$$

(12.51)
Lemma 12.8.1

Let $\mathcal{B}(C)$ be the set of bases of C. Then, given matroid $\mathcal{M} = (E, I)$, and any loop-free set $C \subseteq E$, we have that:

$$\bigcup_{B \in \mathcal{B}(C)} B = C. \quad (12.51)$$

Proof.

- Define $C' \triangleq \bigcup_{B \in \mathcal{B}(C)}$, and suppose $\exists c \in C$ such that $c \notin C'$.
Lemma 12.8.1

Let $\mathcal{B}(C)$ be the set of bases of C. Then, given matroid $\mathcal{M} = (E, \mathcal{I})$, and any loop-free set $C \subseteq E$, we have that:

$$ \bigcup_{B \in \mathcal{B}(C)} B = C. \quad (12.51) $$

Proof.

- Define $C' \triangleq \bigcup_{B \in \mathcal{B}(C)}$, and suppose $\exists c \in C$ such that $c \notin C'$.
- Hence, $\forall B \in \mathcal{B}(C')$ we have $c \notin B$, and $B + c$ contains a single circuit for any B, namely $C(B, c)$.

Prof. Jeff Bilmes
EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014

Prof. Jeff Bilmes
EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014
Union of matroid bases of a set

Lemma 12.8.1

Let $\mathcal{B}(C)$ be the set of bases of C. Then, given matroid $\mathcal{M} = (E, \mathcal{I})$, and any loop-free set $C \subseteq E$, we have that:

$$\bigcup_{B \in \mathcal{B}(C)} B = C.$$ \hfill(12.51)

Proof.

- Define $C' \triangleq \bigcup_{B \in \mathcal{B}(C)} B$, and suppose $\exists c \in C$ such that $c \notin C'$.
- Hence, $\forall B \in \mathcal{B}(C')$ we have $c \notin B$, and $B + c$ contains a single circuit for any B, namely $C(B, c)$.
- Then choose $c' \in C(B, c)$ with $c' \neq c$.

Prof. Jeff Bilmes
EE596b/Spring 2014/Submodularity - Lecture 12 - May 12th, 2014
F43/47 (pg.143/167)
Lemma 12.8.1

Let $\mathcal{B}(C)$ be the set of bases of C. Then, given matroid $\mathcal{M} = (E, \mathcal{I})$, and any loop-free set $C \subseteq E$, we have that:

$$
\bigcup_{B \in \mathcal{B}(C)} B = C. \tag{12.51}
$$

Proof.

- Define $C' \triangleq \bigcup_{B \in \mathcal{B}(C)}$, and suppose $\exists c \in C$ such that $c \notin C'$.
- Hence, $\forall B \in \mathcal{B}(C')$ we have $c \notin B$, and $B + c$ contains a single circuit for any B, namely $C(B, c)$.
- Then choose $c' \in C(B, c)$ with $c' \neq c$.
- Then $B + c - c'$ is independent size $|B|$ subset of C and hence spans C, and thus is a c-containing member of $\mathcal{B}(C)$, contradicting $c \notin C'$.
The \texttt{sat} function \equiv Polymatroid Closure

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
The \textit{sat} function \equiv Polymatroid Closure

• Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
• We wish to generalize closure to polymatroids.
The \textit{sat} function $= \text{Polymatroid Closure}$

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_f$ for polymatroid function f.

The \textit{sat} function $= \text{Polymatroid Closure}$

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_f$ for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.
The \textit{sat} function $= \text{Polymatroid Closure}$

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_f$ for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.
- That is, we saw in Lecture 7 that for any $A, B \in \mathcal{D}(x)$, we have that $A \cup B \in \mathcal{D}(x)$ and $A \cap B \in \mathcal{D}(x)$, which can constitute a join and meet.
The \textit{sat} function \equiv Polymatroid Closure

- Thus, in a matroid, closure (span) of a set A are all items that A spans (eq. that depend on A).
- We wish to generalize closure to polymatroids.
- Consider $x \in P_f$ for polymatroid function f.
- Again, recall, tight sets are closed under union and intersection, and therefore form a distributive lattice.
- That is, we saw in Lecture 7 that for any $A, B \in \mathcal{D}(x)$, we have that $A \cup B \in \mathcal{D}(x)$ and $A \cap B \in \mathcal{D}(x)$, which can constitute a join and meet.
- Recall, for a given $x \in P_f$, we have defined this tight family as

\[
\mathcal{D}(x) = \{ A : A \subseteq E, x(A) = f(A) \} \quad (12.52)
\]
The `sat` function = Polymatroid Closure

- Now given \(x \in P_f^+ \):
 \[
 D(x) = \{ A : A \subseteq E, x(A) = f(A) \} \tag{12.53}
 \]
 \[
 = \{ A : f(A) - x(A) = 0 \} \tag{12.54}
 \]
The \textit{sat} function $=\text{Polymatroid Closure}$

- Now given $x \in P_f^+$:

\[D(x) = \{ A : A \subseteq E, x(A) = f(A) \} = \{ A : f(A) - x(A) = 0 \} \quad (12.53) \]

- Since $x \in P_f^+$ and f is presumed to be polymatroid function, we see $f'(A) = f(A) - x(A)$ is a non-negative submodular function, and $D(x)$ are the zero-valued minimizers (if any) of $f'(A)$.

The \textit{sat} function \equiv Polymatroid Closure

Now given $x \in P_f^+$:

$$
\mathcal{D}(x) = \{ A : A \subseteq E, x(A) = f(A) \} \tag{12.53}
$$

$$
= \{ A : f(A) - x(A) = 0 \} \tag{12.54}
$$

Since $x \in P_f^+$ and f is presumed to be polymatroid function, we see $f'(A) = f(A) - x(A)$ is a non-negative submodular function, and $\mathcal{D}(x)$ are the zero-valued minimizers (if any) of $f'(A)$.

The zero-valued minimizers of f' are thus closed under union and intersection.
Now given $x \in P_f^+$:

$$D(x) = \{A : A \subseteq E, x(A) = f(A)\}$$

(12.53)

$$= \{A : f(A) - x(A) = 0\}$$

(12.54)

Since $x \in P_f^+$ and f is presumed to be polymatroid function, we see $f'(A) = f(A) - x(A)$ is a non-negative submodular function, and $D(x)$ are the zero-valued minimizers (if any) of $f'(A)$.

The zero-valued minimizers of f' are thus closed under union and intersection.

In fact, this is true for all minimizers of a submodular function as stated in the next theorem.
Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular \(f \), the minimizers are closed under union and intersection. That is, let \(M = \arg \min_{X \subseteq E} f(X) \) be the set of minimizers of \(f \). Let \(A, B \in M \). Then \(A \cup B \in M \) and \(A \cap B \in M \).
Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M} = \arg\min_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.
Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular \(f \), the minimizers are closed under union and intersection. That is, let \(\mathcal{M} = \arg\min_{X \subseteq E} f(X) \) be the set of minimizers of \(f \). Let \(A, B \in \mathcal{M} \). Then \(A \cup B \in \mathcal{M} \) and \(A \cap B \in \mathcal{M} \).

Proof.

Since \(A \) and \(B \) are minimizers, we have \(f(A) = f(B) \leq f(A \cap B) \) and \(f(A) = f(B) \leq f(A \cup B) \).
Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M} = \arg\min_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A) = f(B) \leq f(A \cap B)$ and $f(A) = f(B) \leq f(A \cup B)$.

By submodularity, we have

$$f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \quad (12.55)$$
Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular \(f \), the minimizers are closed under union and intersection. That is, let \(\mathcal{M} = \arg\min_{X \subseteq E} f(X) \) be the set of minimizers of \(f \). Let \(A, B \in \mathcal{M} \). Then \(A \cup B \in \mathcal{M} \) and \(A \cap B \in \mathcal{M} \).

Proof.

Since \(A \) and \(B \) are minimizers, we have \(f(A) = f(B) \leq f(A \cap B) \) and \(f(A) = f(B) \leq f(A \cup B) \).

By submodularity, we have

\[
 f(A) + f(B) \geq f(A \cup B) + f(A \cap B)
\]

(12.55)

Hence, we must have \(f(A) = f(B) = f(A \cup B) = f(A \cap B) \).
Minimizers of a Submodular Function form a lattice

Theorem 12.9.1

For arbitrary submodular f, the minimizers are closed under union and intersection. That is, let $\mathcal{M} = \text{argmin}_{X \subseteq E} f(X)$ be the set of minimizers of f. Let $A, B \in \mathcal{M}$. Then $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$.

Proof.

Since A and B are minimizers, we have $f(A) = f(B) \leq f(A \cap B)$ and $f(A) = f(B) \leq f(A \cup B)$.

By submodularity, we have

$$f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \quad (12.55)$$

Hence, we must have $f(A) = f(B) = f(A \cup B) = f(A \cap B)$.

Thus, the minimizers of a submodular function form a lattice, and there is a maximal and a minimal minimizer of every submodular function.
The \textbf{sat} function \(\equiv\) Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in \(\mathcal{D}(x)\), also called the polymatroid closure or \textbf{sat} (saturation function).
The \textit{sat} function \equiv Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $D(x)$, also called the polymatroid closure or \textit{sat} (saturation function).
- For some $x \in P_f$, we have defined:

$$\text{cl}(x) \overset{\text{def}}{=} \text{sat}(x) \overset{\text{def}}{=} \bigcup \{ A : A \in D(x) \}$$

(12.56)
The \textit{sat} function \equiv Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or \textit{sat} (\textit{saturation} function).
- For some $x \in P_f$, we have defined:

$$\text{cl}(x) \overset{\text{def}}{=} \text{sat}(x) \overset{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x)\} \quad (12.56)$$

$$= \bigcup \{A : A \subseteq E, x(A) = f(A)\} \quad (12.57)$$

Hence, \text{sat}(x) is the maximal (zero-valued) minimizer of the submodular function $f(x) \triangleq f(A) - x(A)$. Eq. (12.58) says that \text{sat} consists of any point x that is P_f saturated (any additional positive movement, in that dimension, leaves P_f). We'll revisit this in a few slides. First, we see how \text{sat} generalizes matroid closure.
The \textit{sat} function \equiv Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $\mathcal{D}(x)$, also called the polymatroid closure or \textit{sat} (\textit{saturation} function).

- For some $x \in P_f$, we have defined:

 $$\text{cl}(x) \overset{\text{def}}{=} \text{sat}(x) \overset{\text{def}}{=} \bigcup \{ A : A \in \mathcal{D}(x) \} \quad (12.56)$$

 $$= \bigcup \{ A : A \subseteq E, x(A) = f(A) \} \quad (12.57)$$

 $$= \{ e : e \in E, \forall \alpha > 0, x + \alpha 1_e \notin P_f \} \quad (12.58)$$
The \textit{sat} function \equiv Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in $D(x)$, also called the polymatroid closure or \textit{sat} (saturation function).

- For some $x \in P_f$, we have defined:

\[
\text{cl}(x) \overset{\text{def}}{=} \text{sat}(x) \overset{\text{def}}{=} \bigcup \{A : A \in D(x)\} = \bigcup \{A : A \subseteq E, x(A) = f(A)\} = \{e : e \in E, \forall \alpha > 0, x + \alpha \mathbf{1}_e \notin P_f\}.
\]

- Hence, \textit{sat}(x) is the maximal (zero-valued) minimizer of the submodular function $f_x(A) \triangleq f(A) - x(A)$.

The sat function \(=\) Polymatroid Closure

- Matroid closure is generalized by the unique maximal element in \(\mathcal{D}(x)\), also called the polymatroid closure or sat (saturation function).
- For some \(x \in P_f\), we have defined:

\[
\text{cl}(x) \overset{\text{def}}{=} \text{sat}(x) \overset{\text{def}}{=} \bigcup \{A : A \in \mathcal{D}(x)\} \\
= \bigcup \{A : A \subseteq E, x(A) = f(A)\} \\
= \{e : e \in E, \forall \alpha > 0, x + \alpha 1_e \notin P_f\}
\]

Eq. (12.58) says that sat consists of any point \(x\) that is \(P_f\) saturated (any additional positive movement, in that dimension, leaves \(P_f\)). We’ll revisit this in a few slides.
Matroid closure is generalized by the unique maximal element in \(D(x) \), also called the polymatroid closure or \(\text{sat} \) (saturation function).

For some \(x \in P_f \), we have defined:

\[
\text{cl}(x) \overset{\text{def}}{=} \text{sat}(x) \overset{\text{def}}{=} \bigcup \{ A : A \in D(x) \}
\]

\[
= \bigcup \{ A : A \subseteq E, x(A) = f(A) \} \tag{12.57}
\]

\[
= \{ e : e \in E, \forall \alpha > 0, x + \alpha 1_e \notin P_f \} \tag{12.58}
\]

Hence, \(\text{sat}(x) \) is the maximal (zero-valued) minimizer of the submodular function \(f_x(A) \triangleq f(A) - x(A) \).

Eq. (12.58) says that \(\text{sat} \) consists of any point \(x \) that is \(P_f \) saturated (any additional positive movement, in that dimension, leaves \(P_f \)). We’ll revisit this in a few slides.

First, we see how \(\text{sat} \) generalizes matroid closure.