

Logistics		Review
Class Road Map - IT-I		
 L1 (3/31): Motivation, Applications, & Basic Definitions L2: (4/2): Applications, Basic Definitions, Properties L3: More examples and properties (e.g., closure properties), and examples, spanning trees L4: proofs of equivalent definitions, independence, start matroids L5: matroids, basic definitions and examples L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation L7: Dual Matroids, other matroid properties, Combinatorial Geometries L8: Combinatorial Geometries L8: Combinatorial Geometries L9: From Matroid Polytopes to Polymatroids. L10: Polymatroids and Submodularity Finals Week: Jun 	,	
Prof. Jeff Bilmes EE596b/Spring 2014/	Submodularity - Lecture 11 - May 7th, 2014	F4/35 (pg.4/47)

A polymatroid function's polyhedron is a polymatroid.

Theorem 11.2.4

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}^E_+$, and any P_f^+ -basis $y^x \in \mathbb{R}^E_+$ of x, the component sum of y^x is

$$y^{x}(E) = \operatorname{rank}(x) = \max\left(y(E) : y \le x, y \in P_{f}^{+}\right)$$
$$= \min\left(x(A) + f(E \setminus A) : A \subseteq E\right)$$
(11.34)

As a consequence, P_f^+ is a polymatroid, since r.h.s. is constant w.r.t. y^x .

By taking $B = \operatorname{supp}(x)$ (so elements $E \setminus B$ are zero in x), and for $b \in B$, x(b) is big enough, the r.h.s. min has solution $A^* = E \setminus B$. We recover submodular function from the polymatroid polyhedron via the following:

$$f(B) = \max\left\{y(B) : y \in P_f^+\right\}$$
 (11.35)

In fact, we will ultimately see a number of important consequences of this theorem (other than just that P_f^+ is a polymatroid) Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 11 - May 7th, 2014 F5/35 (pg.5/4

Join \lor and meet \land for $x, y \in \mathbb{R}^E_+$

• For $x, y \in \mathbb{R}^E_+$, define vectors $x \wedge y \in \mathbb{R}^E_+$ and $x \vee y \in \mathbb{R}^E_+$ such that, for all $e \in E$

$$(x \lor y)(e) = \max(x(e), y(e))$$
(11.18)

$$(x \wedge y)(e) = \min(x(e), y(e))$$
 (11.19)

Hence,

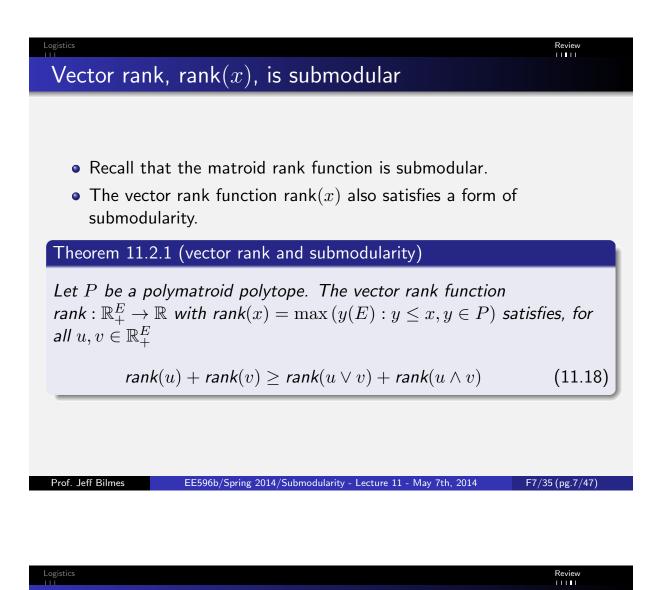
$$x \lor y \triangleq \left(\max\left(x(e_1), y(e_1)\right), \max\left(x(e_2), y(e_2)\right), \dots, \max\left(x(e_n), y(e_n)\right) \right)$$

and similarly

$$x \wedge y \triangleq \left(\min\left(x(e_1), y(e_1)\right), \min\left(x(e_2), y(e_2)\right), \dots, \min\left(x(e_n), y(e_n)\right)\right)$$

• From this, we can define things like an lattices, and other constructs.

Review



A polymatroid is a polymatroid function's polytope

- So, when f is a polymatroid function, P_f^+ is a polymatroid.
- Is it the case that, conversely, for any polymatroid P, there is an associated polymatroidal function f such that $P = P_f^+$?

Theorem 11.2.1

For any polymatroid P (compact subset of \mathbb{R}^E_+ , zero containing, down-monotone, and $\forall x \in \mathbb{R}^E_+$ any maximal independent subvector $y \leq x$ has same component sum $y(E) = \operatorname{rank}(x)$), there is a polymatroid function $f : 2^E \to \mathbb{R}$ (normalized, monotone non-decreasing, submodular) such that $P = P_f^+$ where $P_f^+ = \{x \in \mathbb{R}^E : x \geq 0, x(A) \leq f(A), \forall A \subseteq E\}.$

First, a bit on $\mathcal{D}(y)$

Recall the definition of the set of tight sets at $y \in P_f^+$:

$$\mathcal{D}(y) \triangleq \{A : A \subseteq E, \ y(A) = f(A)\}$$
(11.18)

Review

F9/35 (pg.9/47)

Theorem 11.2.1

For any $y \in P_f^+$, with f a polymatroid function, then $\mathcal{D}(y)$ is closed under union and intersection.

Proof.

We have already proven this as part of Theorem 9.4.5

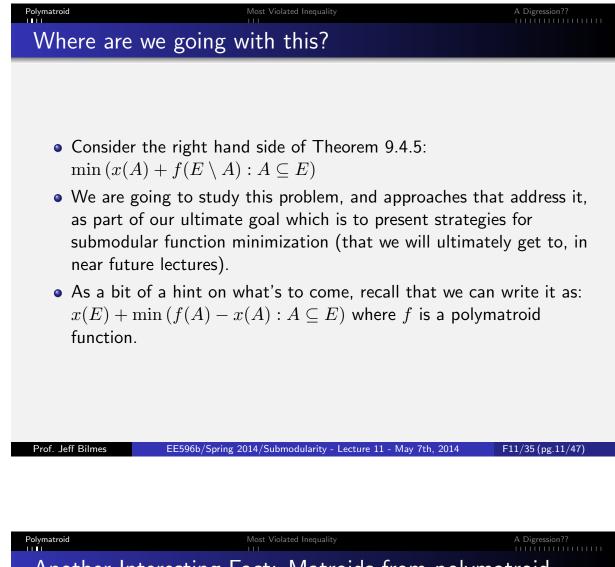
Also recall the definition of sat(y), the maximal set of tight elements relative to $y \in \mathbb{R}^E_+$.

$$\operatorname{sat}(y) \stackrel{\text{def}}{=} \bigcup \{T : T \in \mathcal{D}(y)\}$$
(11.19)

```
Prof. Jeff Bilmes
```

EE596b/Spring 2014/Submodularity - Lecture 11 - May 7th, 2014

Peymatroid International Internation Internation



Another Interesting Fact: Matroids from polymatroid functions

Theorem 11.3.1

Given integral polymatroid function f, let (E, \mathcal{F}) be a set system with ground set E and set of subsets \mathcal{F} such that

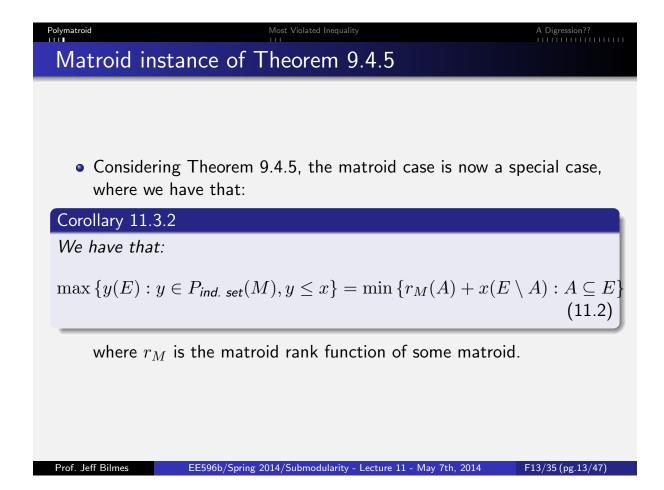
$$\forall F \in \mathcal{F}, \ \forall \emptyset \subset S \subseteq F, |S| \le f(S)$$
(11.1)

Then $M = (E, \mathcal{F})$ is a matroid.

Proof.

Exercise

And its rank function is **Exercise**.



Polymatroid Most Violated Inequality A Digression ?? Most violated inequality problem in matroid polytope case

Consider

$$P_r^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r_M(A), \forall A \subseteq E \right\}$$
(11.3)

- We saw before that $P_r^+ = P_{\text{ind. set.}}$
- Suppose we have any $x \in \mathbb{R}^E_+$ such that $x \notin P_r^+$, then one or more of the inequalities in Eq. (11.3) are violated.
- The most violated inequality when x is considered w.r.t. P_r⁺ corresponds to the set A that maximizes x(A) r_M(A), i.e., max {x(A) r_M(A) : A ⊆ E}.
- This corresponds to min {r_M(A) + x(E \ A) : A ⊆ E} since x is modular and x(E \ A) = x(E) x(A).
- More importantly, min {r_M(A) + x(E \ A) : A ⊆ E} a form of submodular function minimization, namely min {r_M(A) x(A) : A ⊆ E} for a submodular function consisting of a difference of matroid rank and modular (so no longer necessarily monotone, nor positive).

Most Violated Inequality

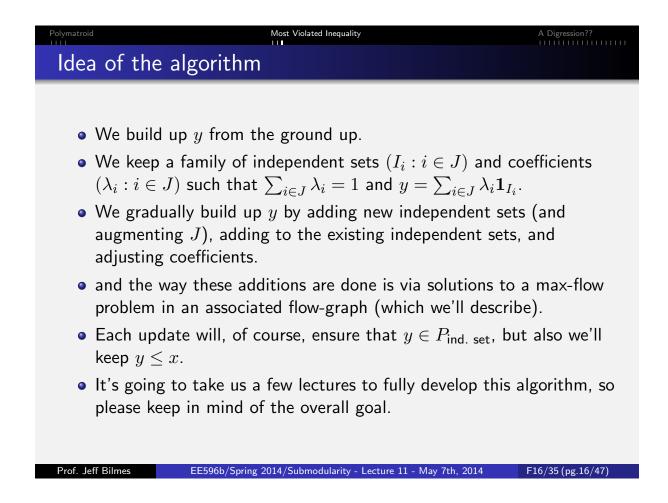
Problem to Solve

In particular, we will solve the following problem:

- Given a matroid M = (E, I) along with an independence testing oracle (i.e., for any A ⊆ E, tells us if A ∈ I or not), and a vector x ∈ R^E₊;
- find: a maximizing $y \in P_{\text{ind. set}}$ with $y \leq x$, and moreover (as a byproduct of the algorithm), express y as a convex combination of incidence vectors of independent sets in M, and also return a set $A \subseteq E$ that satisfies $y(E) = r_M(A) + x(E \setminus A)$. Of course, by Theorem 9.4.5, for any such y we must have that $y(E) \leq r(A) + x(E \setminus A)$.
- By Theorem 9.4.5, the existence of such an A will certify that y(E) is maximal in $P_{\text{ind. set}}$, A is minimal in terms of $f(A) \stackrel{\text{def}}{=} r_M(A) x(A)$ (thus most violated).
- This can also be used to test membership in $P_{\text{ind. set}}$ (i.e., if y = x) depending on the sign of f at A.
- This will also run in polynomial time.

f. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 11 - May 7th, 2014

F15/35 (pg.15/47)



Most Violated Inequality

Bipartite Matching

- Consider a bipartite graph G = (V, F, E) where left nodes are V, right nodes are F, and $E \subseteq V \times F$ are the only edges.
- A matching A ⊆ E is a subset of edges such that no two edges are incident to the same vertex.
- A node j is matched in A if (j, k) ∈ A for some k ∈ F, and otherwise j is called unmatched. Likewise for some k ∈ F.
- Given A ⊆ E, an alternating path S (relative to A) is an (undirected) path of unique edges that are alternatively in A and not in A. I.e., if S = (e₁, e₂, ..., e_s) is an alternating path, then S_{1/2} def = S \ A where S_{1/2} is either the odd or the even elements of S.
- An A ⊆ E is an augmenting path if it is an alternating path between two unmatched vertices.

Prof. Jeff Bilmes

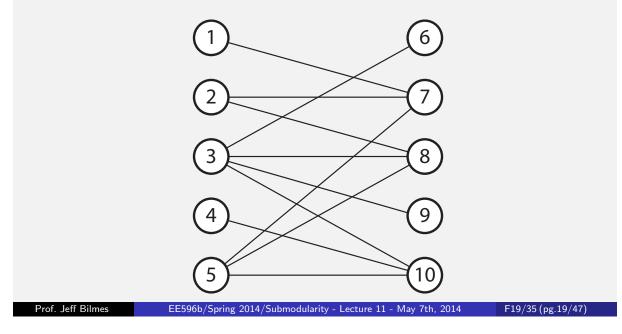
EE596b/Spring 2014/Submodularity - Lecture 11 - May 7th, 2014

F17/35 (pg.17/47)

Polymatroid Most Violated Inequality	A Digression??
Bipartite Matching	
• Given a matching $A \subseteq E$ (which might be empty), we the matching if we can find an augmenting path S .	can increase
• The updated matching becomes $A' = A \setminus S \cup S \setminus A = \ominus$ is the symmetric difference operator.	$A \ominus S$, where
• The algorithm becomes:	
Algorithm 8.1: Alternating Path Bipartite Matching	
1 Let A be an arbitrary (including empty) matching in $G = ($	$\overline{V,F,E)}$;
2 while There exists an augmenting path S in G do 3 $\mid A \leftarrow A \ominus S$;	
• This can easily be made to run in $O(m^2n)$, where $ V $ $ F = n$, $m \le n$, but it can be made to run much faster Schrijver-2003).	

Bipartite Matching Example

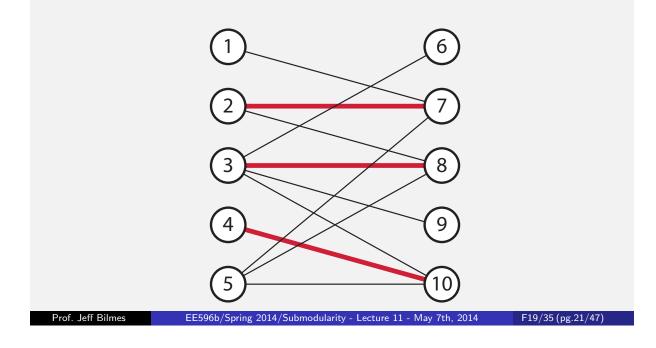
Consider the following bipartite graph G = (V, F, E) with |V| = |F| = 5. Any edge is an augmenting path since it will adjoin two unmatched vertices.



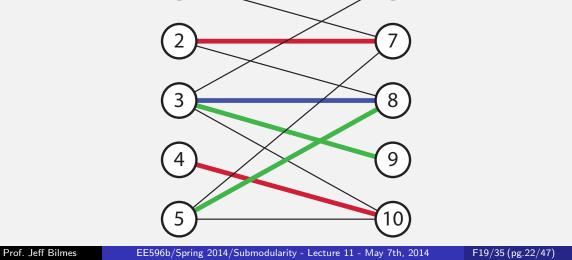
Polymatroid	Most Violated Inequality	A Digression??
Bipartite	Matching Example	
Any edge, n augmenting	not intersecting nodes adjacent to current m path.	atching is an
	2	
	3	
	4	
	5 10	

Bipartite Matching Example

No possible further single edge addition at this point. We need a multi-edge augmenting path if it exists.

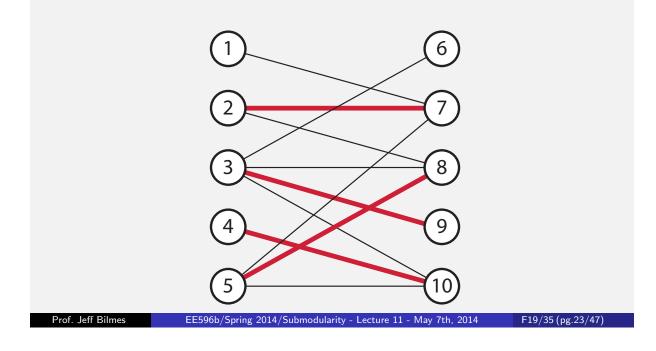


Polymatroid	Most Violated Inequality	A Digression??
Bipartite N	latching Example	
Augmenting p green is new).	bath is green and blue edges (blue is	already in matching,
		6



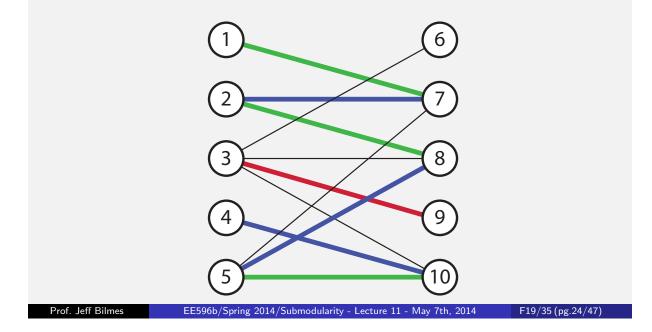
Bipartite Matching Example

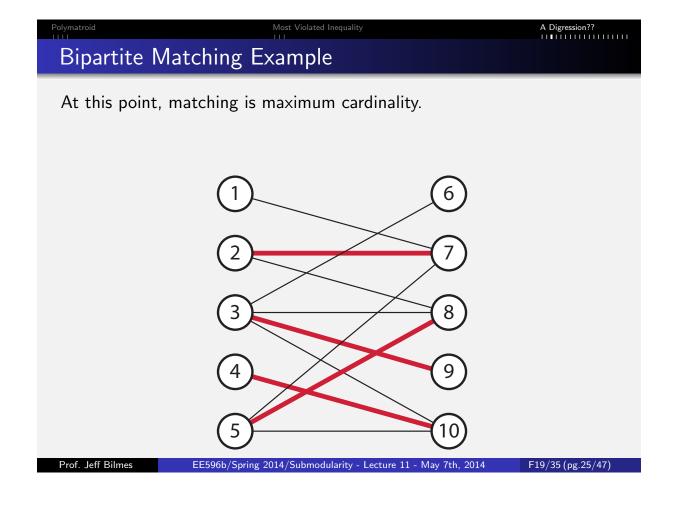
Removing blue from matching and adding green leads to higher cardinality matching.



Polymatroid	Most Violated Inequality	A Digression??
Bipartite Ma	tching Example	
A		

At this point, resulting alternating path is not augmenting, since it is not between two unmatched vertices (and no augmenting path is possible).







F21/35 (pg.27/47)

Matroid Intersection

- Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.
- While (V, I₁ ∩ I₂) is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find max |X| such that both X ∈ I₁ and X ∈ I₂.

Theorem 11.5.5

Let M_1 and M_2 be given as above, with rank functions r_1 and r_2 . Then the size of the maximum size set in $\mathcal{I}_1 \cap \mathcal{I}_2$ is given by

$$(r_1 * r_2)(V) \triangleq \min_{X \subseteq V} \left(r_1(X) + r_2(V \setminus X) \right)$$
(11.7)

This is an instance of the convolution of two submodular functions, f_1 and f_2 that, evaluated at $Y \subseteq V$, is written as:

$$(f_1 * f_2)(Y) = \min_{X \subseteq Y} \left(f_1(X) + f_2(Y \setminus X) \right)$$
 (11.8)

Prof. Jeff Bilmes

Polymatroid Most Violated Inequality A Digression?? Partition Matroid

EE596b/Spring 2014/Submodularity - Lecture 11 - May 7th, 2014

- Let V be our ground set.
- Let V = V₁ ∪ V₂ ∪ · · · ∪ V_ℓ be a partition of V into blocks or disjoint sets (disjoint union). Define a set of subsets of V as

$$\mathcal{I} = \{ X \subseteq V : |X \cap V_i| \le k_i \text{ for all } i = 1, \dots, \ell \}.$$
(11.3)

where k_1, \ldots, k_ℓ are fixed parameters, $k_i \ge 0$. Then $M = (V, \mathcal{I})$ is a matroid.

- Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell = 1$, $V_1 = V$, and $k_1 = k$.
- We'll show that property (I3') in Def **??** holds. If $X, Y \in \mathcal{I}$ with |Y| > |X|, then there must be at least one i with $|Y \cap V_i| > |X \cap V_i|$. Therefore, adding one element $e \in V_i \cap (Y \setminus X)$ to X won't break independence.

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph G = (V, F, E). Define two partition matroids $M_V = (E, \mathcal{I}_V)$, and $M_F = (E, \mathcal{I}_F)$.
- Independence in each matroid corresponds to:
 - $I \in \mathcal{I}_V \text{ if } |I \cap (V, f)| \leq 1 \text{ for all } f \in F,$
 - **2** and $I \in \mathcal{I}_F$ if $|I \cap (v, F)| \le 1$ for all $v \in V$.
- Therefore, a matching in G is simultaneously independent in both M_V and M_F and finding the maximum matching is finding the maximum cardinality set independent in both matroids.
- For the bipartite graph case, therefore, this can be solved in polynomial time.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 11 - May 7th, 2014

F23/35 (pg.29/47)

Polymatroid	Most Violated Inequality	A Digression??
Matroid Intersecti	on and Network Comm	nunication

- Let $G_1 = (V_1, E)$ and $G_2 = (V_2, E)$ be two graphs on an isomorphic set of edges (lets just give them same names E).
- Consider two cycle matroids associated with these graphs M₁ = (E, I₁) and M₂ = (E, I₂). They might be very different (e.g., an edge might be between two distinct nodes in G₁ but the same edge is a loop in multi-graph G₂.)
- We may wish to find the maximum size edge-induced subgraph that is still forest in both graphs (i.e., adding any edges will create a circuit in either M_1 , M_2 , or both).
- This is again a matroid intersection problem.

Matroid Intersection and TSP

- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From G with n nodes, create G' with n + 1 nodes by duplicating (w.l.o.g.) a particular node v₁ ∈ V(G) to v₁⁺, v₁⁻, and have all outgoing edges from v₁ come instead from v₁⁺ and all edges incoming to v₁ go instead to v₁⁻.
- Let M_1 be the cycle matroid on G'.
- Let M₂ be the partition matroid having as independent sets those that have no more than one edge leaving any node i.e., I ∈ I(M₂) if |I ∩ δ⁺(v)| ≤ 1 for all v ∈ V(G').
- Let M₃ be the partition matroid having as independent sets those that have no more than one edge entering any node — i.e., I ∈ I(M₃) if |I ∩ δ⁻(v)| ≤ 1 for all v ∈ V(G').
- Then a Hamiltonian cycle exists iff there is an *n*-element intersection of M_1 , M_2 , and M_3 .

Prof. Jeff Bilmes EE596b/Spring 2014/Submodularity - Lecture 11 - May 7th, 2014 F25/35 (pg.31/47

intersections of 3 more matroids, unless P=NP.

• But bipartite graph example gives us hope for 2 matroids, and also ideas for an algorithm ...

ymatroid

lost Violated Inequality

A Digression??

Recall from Lecture 5: Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not surprising that circuits can also characterize a matroid.

Theorem 11.5.1

Matroid (by circuits) Let E be a set and C be a collection of nonempty subsets of E, such that no two sets in C are contained in each other. Then the following are equivalent.

- **(**C1) C is the collection of circuits of a matroid;
- ② (C2) if $C, C' \in C$, and $x \in C \cap C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C;
- **3** (C3) if $C, C' \in C$, and $x \in C \cap C'$, and $y \in C \setminus C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C containing y;

Most Violated Inequality

Fundamental circuits in matroids

Lemma 11.5.2

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup \{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C₁, C₂ such that C₁ ∪ C₂ ⊆ I ∪ {e}.
- Then $e \in C_1 \cap C_2$, and by (C2), there is a circuit C_3 of M s.t. $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\} \subseteq I$
- This contradicts the independence of *I*.

In general, let C(I, e) be the unique circuit associated with $I \cup \{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).

EE596b/Spring 2014/Submodularity - Lecture 11 - May

Polymatroid Most Violated Inequality A Digression?? Matroid Intersection Algorithm Idea • Consider two matroids $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ and start

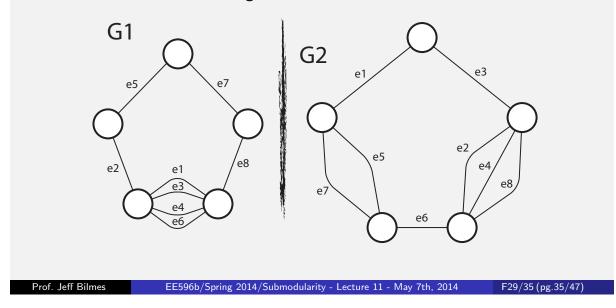
- with any $I \in \mathcal{I}_1 \cap \mathcal{I}_2$. • Consider some $v_1 \notin \operatorname{span}_1(I)$, so that $I + v_1 \in \mathcal{I}_1$.
- If $I + v_1 \in \mathcal{I}_2$, then v_1 is "augmenting", and we can augment I to $I + v_1$ and still be independent in both M_1 and M_2 .
- If $I + v_1 \notin \mathcal{I}_2$, $\exists C_2(I, v_1)$ a circuit in M_2 , and choosing $v_2 \in C_2(I, v_1)$ s.t. $v_2 \neq v_1$ leads to $I + v_1 v_2$ which (because $\operatorname{span}_2(I) = \operatorname{span}_2(I + v_1 v_2)$) is again independent in M_2 . $I + v_1 - v_2$ is also independent in M_1 . Note, $v_2 \in I$.
- Next choose a v₃ ∈ span₁(I) − span₁(I − v₂) to recover what was lost in I ∪ {v₁} when we removed v₂ from it. Note, v₃ ∉ I.
- Then $\operatorname{span}_1(I) = \operatorname{span}_1(I v_2 + v_3)$.
- Moreover, since $I + v_1 \in \mathcal{I}_1$, $v_1 \notin \operatorname{span}_1(I)$, so $\operatorname{span}_1(I + v_1) = \operatorname{span}_1(I + v_1 - v_2 + v_3)$.
- But $I + v_1 v_2 + v_3$ might not be independent in M_2 again, so need to find an $v_4 \in C_2(I + v_1 v_2, v_3)$, $v_4 \in I$ to remove, and so on.

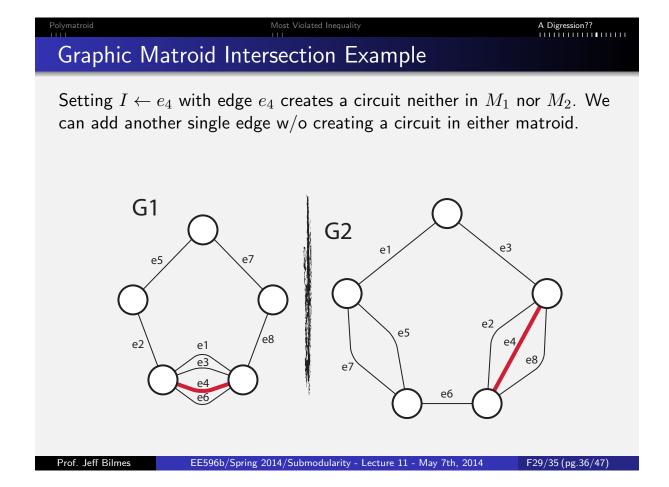
 $S = (v_1, v_2, \dots, v_s)$ such that we will be independent in both M_1

Most Violated Inequality

Graphic Matroid Intersection Example

Consider the following two graph $G_1 = (V_1, E)$ and $G_2 = (V_2, E)$ and corresponding matroids $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$. Any edge is independent in both (an augmenting "sequence") since a single edge can't create a circuit starting at $I = \emptyset$. We start with e_4 .

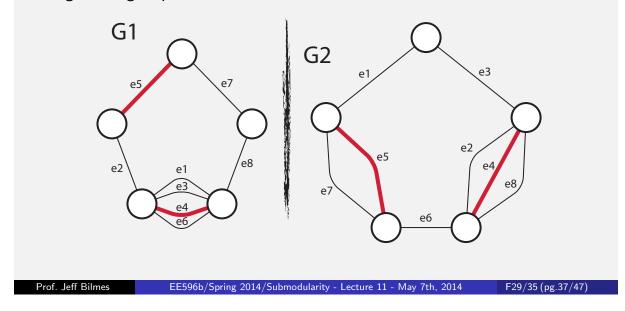




A Digression ? ?

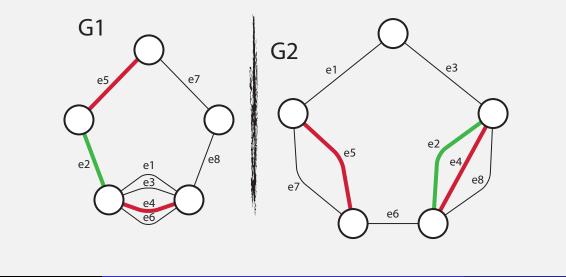
Graphic Matroid Intersection Example

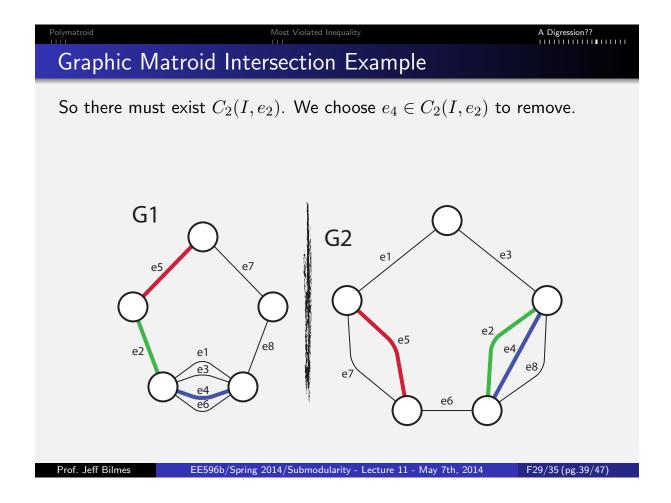
 $e_5 \in E - \operatorname{span}_1(\{e_4\})$. Then, after $I \leftarrow I + e_5$, (i.e., when $I = \{e_4, e_5\}$) we're still independent in M_2 , but no further single edge additions possible w/o creating a circuit (why?). We need a multi-edge "augmenting sequence" if it exists.



Polymatroid Most Violated Inequality A Digression?? Graphic Matroid Intersection Example

Augmenting sequence is green and blue edges (blue is already in I, green is new). We choose $e_2 \in E - \operatorname{span}_1(I)$, but now $I + e_2$ is not independent in M_2 .





Polymatroid	Ma	ost Violated Inequality	A Digression??
Graphic	Matroid Interse	ection Example	
not only h		/ /	o add. In this case, we $+ e_1$), but we also have
C	G1 e5 e2 e1 e1 e8	G2 e1 e5	e3 e2 e4

e7

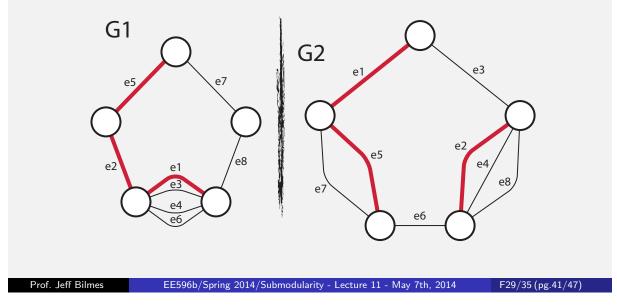
e8,

e6

Graphic Matroid Intersection Example

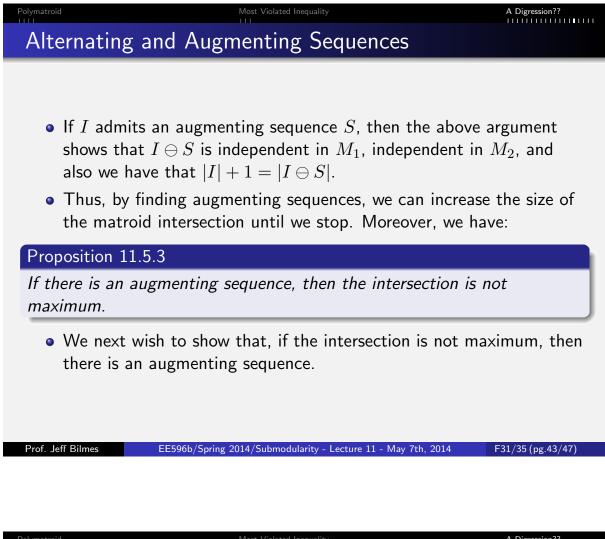
Removing blue and adding green leads to higher cardinality independent set in both matroids. This corresponds to doing $I \leftarrow I \ominus S$ where $S = (e_2, e_4, e_1)$ and $I = \{e_4, e_5\}$.

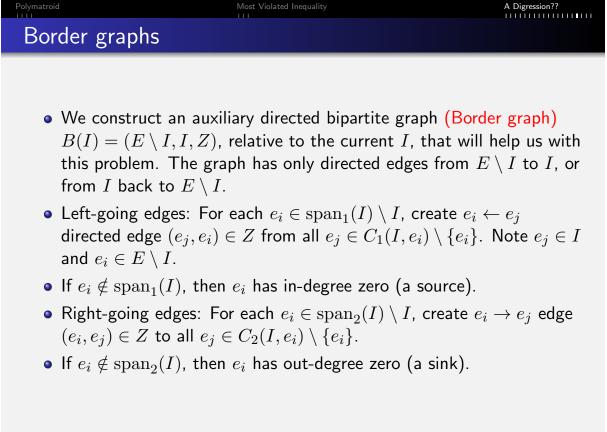
At this point, are any further augmenting sequences possible? Exercise.

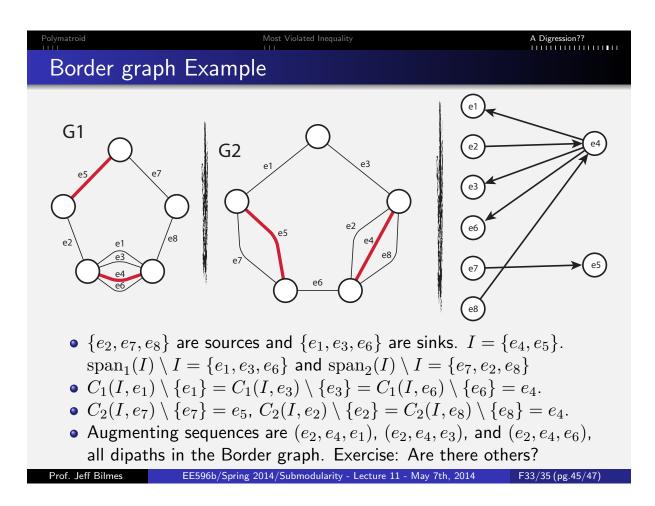


Polymatroid Most Violated Inequality A Digression?? Alternating and Augmenting Sequences

- Let I be an intersection of two matroids $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$ (i.e., $I \in \mathcal{I}_1 \cap \mathcal{I}_2$).
- Let $S = (e_1, e_2, \dots, e_s)$ be a sequence of distinct elements, where $e_i \in E I$ for i odd, and $e_i \in I$ for i even, and let $S_i = (e_1, e_2, \dots, e_i)$. We say that S is an alternating sequence w.r.t.
 - $S_i = (e_1, e_2, \dots, e_i)$. We say that S is an alternating sequence w.r.t. I if the following are true.
 - $I + e_1 \in \mathcal{I}_1$
 - ② For all even i, span₂($I \ominus S_i$) = span₂(I) which implies that $I \ominus S_i \in \mathcal{I}_2$.
 - So For all odd i, $\operatorname{span}_1(I \ominus S_i) = \operatorname{span}_1(I + e_1)$, and therefore $I \ominus S_i \in \mathcal{I}_1$.
- Lastly, if also, |S| = s is odd, and $I \ominus S \in \mathcal{I}_2$, then S is called an augmenting sequence w.r.t. I.







 Most Violated Inequality
 A Digression??

 Identifying Augmenting Sequences
 Identifying Augmenting Sequences

Lemma 11.5.4

If S is a source-sink path in B(I), and there is no shorter source-sink path between the same source and sink (i.e., there are no short-cuts), then S is an augmenting sequence w.r.t. I.

Lemma 11.5.5

Let I and J be matroid intersections of M_1 and M_2 such that |I| + 1 = |J|. Then there exists a source-sink path S in B(I) where $S \subseteq I \ominus J$.

Most Violated Inequality

A Digression??

Identifying Augmenting Sequences

Theorem 11.5.6

Let I_p and I_{p+1} be intersections of M_1 and M_2 with p and p+1elements respectively. Then there exists an augmenting sequence $S \subseteq I_p \oplus I_{p+1}$ w.r.t. I_p .

Theorem 11.5.7

An intersection is of maximum cardinality iff it admits no augmenting sequence.

Theorem 11.5.8

For any intersection I, there exists a maximum cardinality intersection I^* such that $\operatorname{span}_1(I) \subseteq \operatorname{span}_1(I^*)$ and $\operatorname{span}_2(I) \subseteq \operatorname{span}_2(I^*)$.

All this can be made to run in poly time.

Prof. Jeff Bilmes

EE596b/Spring 2014/Submodularity - Lecture 11 - May 7th, 2014

F35/35 (pg.47/47)