Submodular Functions, Optimization, and Applications to Machine Learning

- Spring Quarter, Lecture 11 -
http://j.ee.washington.edu/~bilmes/classes/ee596b_spring_2014/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

May 7th, 2014

$$
f(A)+f(B) \geq f(A \cup B)+f(A \cap B)
$$

$=r(A,+2 f(C)+(B)=,r(A)+f(C)+r(B) \quad=r(A \cap B)$

Cumulative Outstanding Reading

- Read chapters 1 and 2, and sections 3.1-3.2 from Fujishige's book.
- Good references for today: Schrijver-2003, Oxley-1992/2011, Welsh-1973, Goemans-2010, Cunningham-1984, Edmonds-1969.

Announcements, Assignments, and Reminders

- Weekly Office Hours: Wednesdays, 5:00-5:50, or by skype or google hangout (email me).

Class Road Map - IT-I

- L1 (3/31): Motivation, Applications, \& Basic Definitions
- L2: (4/2): Applications, Basic Definitions, Properties
- L3: More examples and properties (e.g., closure properties), and examples, spanning trees
- L4: proofs of equivalent definitions, independence, start matroids
- L5: matroids, basic definitions and examples
- L6: More on matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid and representation
- L7: Dual Matroids, other matroid properties, Combinatorial Geometries
- L8: Combinatorial Geometries, matroids and greedy, Polyhedra, Matroid Polytopes,
- L9: From Matroid Polytopes to Polymatroids.
- L10: Polymatroids and Submodularity
- L11: More properties of polymatroids, SFM special cases
L12: polymatroid properties, extreme points polymatroids,
- L13: sat, dep, supp, exchange capacity, examples
- L14: Lattice theory: partially ordered sets; lattices; distributive, modular, submodular, and boolean lattices; ideals and join irreducibles.
- L15: Supp, Base polytope, polymatroids and entropic Venn diagrams, exchange capacity,
- L16: proof that minimum norm point yields min of submodular function, and the lattice of minimizers of a submodular function, Lovasz extension
- L17: Lovasz extension, Choquet Integration, more properties/examples of Lovasz extension, convex minimization and SFM.
- L18: Lovasz extension examples and structured convex norms, The Min-Norm Point Algorithm detailed.
- L19: symmetric submodular function minimization, maximizing monotone submodular function w. card constraints.
- L20: maximizing monotone submodular function w. other constraints, non-monotone maximization.

Finals Week: June 9th-13th, 2014.

A polymatroid function's polyhedron is a polymatroid.

Theorem 11.2.4

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}_{+}^{E}$, and any P_{f}^{+}-basis $y^{x} \in \mathbb{R}_{+}^{E}$ of x, the component sum of y^{x} is

$$
\begin{align*}
y^{x}(E)=\operatorname{rank}(x) & =\max \left(y(E): y \leq x, y \in P_{f}^{+}\right) \\
& =\min (x(A)+f(E \backslash A): A \subseteq E) \tag{11.34}
\end{align*}
$$

As a consequence, P_{f}^{+}is a polymatroid, since r.h.s. is constant w.r.t. y^{x}.
By taking $B=\operatorname{supp}(x)$ (so elements $E \backslash B$ are zero in x), and for $b \in B$, $x(b)$ is big enough, the r.h.s. min has solution $A^{*}=E \backslash B$. We recover submodular function from the polymatroid polyhedron via the following:

$$
\begin{equation*}
f(B)=\max \left\{y(B): y \in P_{f}^{+}\right\} \tag{11.35}
\end{equation*}
$$

In fact, we will ultimately see a number of important consequences of this theorem (other than just that P_{f}^{+}is a polymatroid)

Join \vee and meet \wedge for $x, y \in \mathbb{R}_{+}^{E}$

- For $x, y \in \mathbb{R}_{+}^{E}$, define vectors $x \wedge y \in \mathbb{R}_{+}^{E}$ and $x \vee y \in \mathbb{R}_{+}^{E}$ such that, for all $e \in E$

$$
\begin{align*}
& (x \vee y)(e)=\max (x(e), y(e)) \tag{11.18}\\
& (x \wedge y)(e)=\min (x(e), y(e)) \tag{11.19}
\end{align*}
$$

Hence,

$$
x \vee y \triangleq\left(\max \left(x\left(e_{1}\right), y\left(e_{1}\right)\right), \max \left(x\left(e_{2}\right), y\left(e_{2}\right)\right), \ldots, \max \left(x\left(e_{n}\right), y\left(e_{n}\right)\right)\right)
$$

and similarly
$x \wedge y \triangleq\left(\min \left(x\left(e_{1}\right), y\left(e_{1}\right)\right), \min \left(x\left(e_{2}\right), y\left(e_{2}\right)\right), \ldots, \min \left(x\left(e_{n}\right), y\left(e_{n}\right)\right)\right)$

- From this, we can define things like an lattices, and other constructs.

Vector rank, $\operatorname{rank}(x)$, is submodular

- Recall that the matroid rank function is submodular.
- The vector rank function $\operatorname{rank}(x)$ also satisfies a form of submodularity.

Theorem 11.2.1 (vector rank and submodularity)

Let P be a polymatroid polytope. The vector rank function $\operatorname{rank}: \mathbb{R}_{+}^{E} \rightarrow \mathbb{R}$ with $\operatorname{rank}(x)=\max (y(E): y \leq x, y \in P)$ satisfies, for all $u, v \in \mathbb{R}_{+}^{E}$

$$
\begin{equation*}
\operatorname{rank}(u)+\operatorname{rank}(v) \geq \operatorname{rank}(u \vee v)+\operatorname{rank}(u \wedge v) \tag{11.18}
\end{equation*}
$$

A polymatroid is a polymatroid function's polytope

- So, when f is a polymatroid function, P_{f}^{+}is a polymatroid.
- Is it the case that, conversely, for any polymatroid P, there is an associated polymatroidal function f such that $P=P_{f}^{+}$?

Theorem 11.2.1

For any polymatroid P (compact subset of \mathbb{R}_{+}^{E}, zero containing, down-monotone, and $\forall x \in \mathbb{R}_{+}^{E}$ any maximal independent subvector $y \leq x$ has same component sum $y(E)=\operatorname{rank}(x)$), there is a polymatroid function $f: 2^{E} \rightarrow \mathbb{R}$ (normalized, monotone non-decreasing, submodular) such that $P=P_{f}^{+}$where $P_{f}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq f(A), \forall A \subseteq E\right\}$.

Tight sets $\mathcal{D}(y)$ are closed, and max tight set sat (y)

Recall the definition of the set of tight sets at $y \in P_{f}^{+}$:

$$
\begin{equation*}
\mathcal{D}(y) \triangleq\{A: A \subseteq E, y(A)=f(A)\} \tag{11.18}
\end{equation*}
$$

Theorem 11.2.1

For any $y \in P_{f}^{+}$, with f a polymatroid function, then $\mathcal{D}(y)$ is closed under union and intersection.

Proof.

We have already proven this as part of Theorem 9.4.5
Also recall the definition of $\operatorname{sat}(y)$, the maximal set of tight elements relative to $y \in \mathbb{R}_{+}^{E}$.

$$
\begin{equation*}
\operatorname{sat}(y) \stackrel{\text { def }}{=} \bigcup\{T: T \in \mathcal{D}(y)\} \tag{11.19}
\end{equation*}
$$

A word on terminology \& notation

- Recall how a matroid is sometimes given as (E, r) where r is the rank function.

A word on terminology \& notation

- Recall how a matroid is sometimes given as (E, r) where r is the rank function.
- We mention also that the term "polymatroid" is sometimes not used for the polytope itself, but instead but for the pair (E, f),

A word on terminology \& notation

- Recall how a matroid is sometimes given as (E, r) where r is the rank function.
- We mention also that the term "polymatroid" is sometimes not used for the polytope itself, but instead but for the pair (E, f),
- But now we see that (E, f) is equivalent to a polymatroid polytope, so this is sensible.

Where are we going with this?

- Consider the right hand side of Theorem 9.4.5: $\min (x(A)+f(E \backslash A): A \subseteq E)$

Where are we going with this?

- Consider the right hand side of Theorem 9.4.5:
$\min (x(A)+f(E \backslash A): A \subseteq E)$
- We are going to study this problem, and approaches that address it, as part of our ultimate goal which is to present strategies for submodular function minimization (that we will ultimately get to, in near future lectures).

Where are we going with this?

- Consider the right hand side of Theorem 9.4.5: $\min (x(A)+f(E \backslash A): A \subseteq E)$
- We are going to study this problem, and approaches that address it, as part of our ultimate goal which is to present strategies for submodular function minimization (that we will ultimately get to, in near future lectures).
- As a bit of a hint on what's to come, recall that we can write it as: $x(E)+\min (f(A)-x(A): A \subseteq E)$ where f is a polymatroid function.

Another Interesting Fact: Matroids from polymatroid functions

Theorem 11.3.1

Given integral polymatroid function f, let (E, \mathcal{F}) be a set system with ground set E and set of subsets \mathcal{F} such that

$$
\begin{equation*}
\forall F \in \mathcal{F}, \quad \forall \emptyset \subset S \subseteq F,|S| \leq f(S) \tag{11.1}
\end{equation*}
$$

Then $M=(E, \mathcal{F})$ is a matroid.

Proof.

Exercise

And its rank function is Exercise.

Matroid instance of Theorem 9.4.5

- Considering Theorem 9.4.5, the matroid case is now a special case, where we have that:

Corollary 11.3.2

We have that:
$\max \left\{y(E): y \in P_{\text {ind. set }}(M), y \leq x\right\}=\min \left\{r_{M}(A)+x(E \backslash A): A \subseteq E\right\}$
(11.2)
where r_{M} is the matroid rank function of some matroid.

Most violated inequality problem in matroid polytope case

- Consider

$$
\begin{equation*}
P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r_{M}(A), \forall A \subseteq E\right\} \tag{11.3}
\end{equation*}
$$

Most violated inequality problem in matroid polytope case

- Consider

$$
\begin{equation*}
P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r_{M}(A), \forall A \subseteq E\right\} \tag{11.3}
\end{equation*}
$$

- We saw before that $P_{r}^{+}=P_{\text {ind. set }}$.

Most violated inequality problem in matroid polytope case

- Consider

$$
\begin{equation*}
P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r_{M}(A), \forall A \subseteq E\right\} \tag{11.3}
\end{equation*}
$$

- We saw before that $P_{r}^{+}=P_{\text {ind. set }}$.
- Suppose we have any $x \in \mathbb{R}_{+}^{E}$ such that $x \notin P_{r}^{+}$, then one or more of the inequalities in Eq. (11.3) are violated.

Most violated inequality problem in matroid polytope case

- Consider

$$
\begin{equation*}
P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r_{M}(A), \forall A \subseteq E\right\} \tag{11.3}
\end{equation*}
$$

- We saw before that $P_{r}^{+}=P_{\text {ind. set }}$.
- Suppose we have any $x \in \mathbb{R}_{+}^{E}$ such that $x \notin P_{r}^{+}$, then one or more of the inequalities in Eq. (11.3) are violated.
- The most violated inequality when x is considered w.r.t. P_{r}^{+} corresponds to the set A that maximizes $x(A)-r_{M}(A)$, i.e., $\max \left\{x(A)-r_{M}(A): A \subseteq E\right\}$.

Most violated inequality problem in matroid polytope case

- Consider

$$
\begin{equation*}
P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r_{M}(A), \forall A \subseteq E\right\} \tag{11.3}
\end{equation*}
$$

- We saw before that $P_{r}^{+}=P_{\text {ind. set. }}$.
- Suppose we have any $x \in \mathbb{R}_{+}^{E}$ such that $x \notin P_{r}^{+}$, then one or more of the inequalities in Eq. (11.3) are violated.
- The most violated inequality when x is considered w.r.t. P_{r}^{+} corresponds to the set A that maximizes $x(A)-r_{M}(A)$, i.e., $\max \left\{x(A)-r_{M}(A): A \subseteq E\right\}$.
- This corresponds to $\min \left\{r_{M}(A)+x(E \backslash A): A \subseteq E\right\}$ since x is modular and $x(E \backslash A)=x(E)-x(A)$.

Most violated inequality problem in matroid polytope case

- Consider

$$
\begin{equation*}
P_{r}^{+}=\left\{x \in \mathbb{R}^{E}: x \geq 0, x(A) \leq r_{M}(A), \forall A \subseteq E\right\} \tag{11.3}
\end{equation*}
$$

- We saw before that $P_{r}^{+}=P_{\text {ind. set }}$.
- Suppose we have any $x \in \mathbb{R}_{+}^{E}$ such that $x \notin P_{r}^{+}$, then one or more of the inequalities in Eq. (11.3) are violated.
- The most violated inequality when x is considered w.r.t. P_{r}^{+} corresponds to the set A that maximizes $x(A)-r_{M}(A)$, i.e., $\max \left\{x(A)-r_{M}(A): A \subseteq E\right\}$.
- This corresponds to $\min \left\{r_{M}(A)+x(E \backslash A): A \subseteq E\right\}$ since x is modular and $x(E \backslash A)=x(E)-x(A)$.
- More importantly, $\min \left\{r_{M}(A)+x(E \backslash A): A \subseteq E\right\}$ a form of submodular function minimization, namely $\min \left\{r_{M}(A)-x(A): A \subseteq E\right\}$ for a submodular function consisting of a difference of matroid rank and modular (so no longer necessarily monotone, nor positive).

Problem to Solve

In particular, we will solve the following problem:

- Given a matroid $M=(E, \mathcal{I})$ along with an independence testing oracle (i.e., for any $A \subseteq E$, tells us if $A \in \mathcal{I}$ or not), and a vector $x \in \mathcal{R}_{+}^{E}$;

Problem to Solve

In particular, we will solve the following problem:

- Given a matroid $M=(E, \mathcal{I})$ along with an independence testing oracle (i.e., for any $A \subseteq E$, tells us if $A \in \mathcal{I}$ or not), and a vector $x \in \mathcal{R}_{+}^{E}$;
- find: a maximizing $y \in P_{\text {ind. set }}$ with $y \leq x$, and moreover (as a byproduct of the algorithm), express y as a convex combination of incidence vectors of independent sets in M, and also return a set $A \subseteq E$ that satisfies $y(E)=r_{M}(A)+x(E \backslash A)$. Of course, by Theorem 9.4.5, for any such y we must have that $y(E) \leq r(A)+x(E \backslash A)$.

Problem to Solve

In particular, we will solve the following problem:

- Given a matroid $M=(E, \mathcal{I})$ along with an independence testing oracle (i.e., for any $A \subseteq E$, tells us if $A \in \mathcal{I}$ or not), and a vector $x \in \mathcal{R}_{+}^{E}$;
- find: a maximizing $y \in P_{\text {ind. set }}$ with $y \leq x$, and moreover (as a byproduct of the algorithm), express y as a convex combination of incidence vectors of independent sets in M, and also return a set $A \subseteq E$ that satisfies $y(E)=r_{M}(A)+x(E \backslash A)$. Of course, by Theorem 9.4.5, for any such y we must have that $y(E) \leq r(A)+x(E \backslash A)$.
- By Theorem 9.4.5, the existence of such an A will certify that $y(E)$ is maximal in $P_{\text {ind. set }}, A$ is minimal in terms of $f(A) \stackrel{\text { def }}{=} r_{M}(A)-x(A)$ (thus most violated).

Problem to Solve

In particular, we will solve the following problem:

- Given a matroid $M=(E, \mathcal{I})$ along with an independence testing oracle (i.e., for any $A \subseteq E$, tells us if $A \in \mathcal{I}$ or not), and a vector $x \in \mathcal{R}_{+}^{E}$;
- find: a maximizing $y \in P_{\text {ind. set }}$ with $y \leq x$, and moreover (as a byproduct of the algorithm), express y as a convex combination of incidence vectors of independent sets in M, and also return a set $A \subseteq E$ that satisfies $y(E)=r_{M}(A)+x(E \backslash A)$. Of course, by Theorem 9.4.5, for any such y we must have that $y(E) \leq r(A)+x(E \backslash A)$.
- By Theorem 9.4.5, the existence of such an A will certify that $y(E)$ is maximal in $P_{\text {ind. set }}, A$ is minimal in terms of $f(A) \stackrel{\text { def }}{=} r_{M}(A)-x(A)$ (thus most violated).
- This can also be used to test membership in $P_{\text {ind. set }}$ (i.e., if $y=x$) depending on the sign of f at A.

Problem to Solve

In particular, we will solve the following problem:

- Given a matroid $M=(E, \mathcal{I})$ along with an independence testing oracle (i.e., for any $A \subseteq E$, tells us if $A \in \mathcal{I}$ or not), and a vector $x \in \mathcal{R}_{+}^{E}$;
- find: a maximizing $y \in P_{\text {ind. set }}$ with $y \leq x$, and moreover (as a byproduct of the algorithm), express y as a convex combination of incidence vectors of independent sets in M, and also return a set $A \subseteq E$ that satisfies $y(E)=r_{M}(A)+x(E \backslash A)$. Of course, by Theorem 9.4.5, for any such y we must have that $y(E) \leq r(A)+x(E \backslash A)$.
- By Theorem 9.4.5, the existence of such an A will certify that $y(E)$ is maximal in $P_{\text {ind. set }}, A$ is minimal in terms of $f(A) \stackrel{\text { def }}{=} r_{M}(A)-x(A)$ (thus most violated).
- This can also be used to test membership in $P_{\text {ind. set }}$ (i.e., if $y=x$) depending on the sign of f at A.
- This will also run in polynomial time.

Idea of the algorithm

- We build up y from the ground up.

Idea of the algorithm

- We build up y from the ground up.
- We keep a family of independent sets $\left(I_{i}: i \in J\right)$ and coefficients $\left(\lambda_{i}: i \in J\right)$ such that $\sum_{i \in J} \lambda_{i}=1$ and $y=\sum_{i \in J} \lambda_{i} \mathbf{1}_{I_{i}}$.

Idea of the algorithm

- We build up y from the ground up.
- We keep a family of independent sets $\left(I_{i}: i \in J\right)$ and coefficients $\left(\lambda_{i}: i \in J\right)$ such that $\sum_{i \in J} \lambda_{i}=1$ and $y=\sum_{i \in J} \lambda_{i} \mathbf{1}_{I_{i}}$.
- We gradually build up y by adding new independent sets (and augmenting J), adding to the existing independent sets, and adjusting coefficients.

Idea of the algorithm

- We build up y from the ground up.
- We keep a family of independent sets $\left(I_{i}: i \in J\right)$ and coefficients $\left(\lambda_{i}: i \in J\right)$ such that $\sum_{i \in J} \lambda_{i}=1$ and $y=\sum_{i \in J} \lambda_{i} \mathbf{1}_{I_{i}}$.
- We gradually build up y by adding new independent sets (and augmenting J), adding to the existing independent sets, and adjusting coefficients.
- and the way these additions are done is via solutions to a max-flow problem in an associated flow-graph (which we'll describe).

Idea of the algorithm

- We build up y from the ground up.
- We keep a family of independent sets $\left(I_{i}: i \in J\right)$ and coefficients $\left(\lambda_{i}: i \in J\right)$ such that $\sum_{i \in J} \lambda_{i}=1$ and $y=\sum_{i \in J} \lambda_{i} \mathbf{1}_{I_{i}}$.
- We gradually build up y by adding new independent sets (and augmenting J), adding to the existing independent sets, and adjusting coefficients.
- and the way these additions are done is via solutions to a max-flow problem in an associated flow-graph (which we'll describe).
- Each update will, of course, ensure that $y \in P_{\text {ind. set }}$, but also we'll keep $y \leq x$.

Idea of the algorithm

- We build up y from the ground up.
- We keep a family of independent sets $\left(I_{i}: i \in J\right)$ and coefficients $\left(\lambda_{i}: i \in J\right)$ such that $\sum_{i \in J} \lambda_{i}=1$ and $y=\sum_{i \in J} \lambda_{i} \mathbf{1}_{I_{i}}$.
- We gradually build up y by adding new independent sets (and augmenting J), adding to the existing independent sets, and adjusting coefficients.
- and the way these additions are done is via solutions to a max-flow problem in an associated flow-graph (which we'll describe).
- Each update will, of course, ensure that $y \in P_{\text {ind. set }}$, but also we'll keep $y \leq x$.
- It's going to take us a few lectures to fully develop this algorithm, so please keep in mind of the overall goal.

Bipartite Matching

- Consider a bipartite graph $G=(V, F, E)$ where left nodes are V, right nodes are F, and $E \subseteq V \times F$ are the only edges.

Bipartite Matching

- Consider a bipartite graph $G=(V, F, E)$ where left nodes are V, right nodes are F, and $E \subseteq V \times F$ are the only edges.
- A matching $A \subseteq E$ is a subset of edges such that no two edges are incident to the same vertex.

Bipartite Matching

- Consider a bipartite graph $G=(V, F, E)$ where left nodes are V, right nodes are F, and $E \subseteq V \times F$ are the only edges.
- A matching $A \subseteq E$ is a subset of edges such that no two edges are incident to the same vertex.
- A node j is matched in A if $(j, k) \in A$ for some $k \in F$, and otherwise j is called unmatched. Likewise for some $k \in F$.

Bipartite Matching

- Consider a bipartite graph $G=(V, F, E)$ where left nodes are V, right nodes are F, and $E \subseteq V \times F$ are the only edges.
- A matching $A \subseteq E$ is a subset of edges such that no two edges are incident to the same vertex.
- A node j is matched in A if $(j, k) \in A$ for some $k \in F$, and otherwise j is called unmatched. Likewise for some $k \in F$.
- Given $A \subseteq E$, an alternating path S (relative to A) is an (undirected) path of unique edges that are alternatively in A and not in A. I.e., if $S=\left(e_{1}, e_{2}, \ldots, e_{s}\right)$ is an alternating path, then $S_{1 / 2} \stackrel{\text { def }}{=} S \backslash A$ where $S_{1 / 2}$ is either the odd or the even elements of S.

Bipartite Matching

- Consider a bipartite graph $G=(V, F, E)$ where left nodes are V, right nodes are F, and $E \subseteq V \times F$ are the only edges.
- A matching $A \subseteq E$ is a subset of edges such that no two edges are incident to the same vertex.
- A node j is matched in A if $(j, k) \in A$ for some $k \in F$, and otherwise j is called unmatched. Likewise for some $k \in F$.
- Given $A \subseteq E$, an alternating path S (relative to A) is an (undirected) path of unique edges that are alternatively in A and not in A. I.e., if $S=\left(e_{1}, e_{2}, \ldots, e_{s}\right)$ is an alternating path, then $S_{1 / 2} \stackrel{\text { def }}{=} S \backslash A$ where $S_{1 / 2}$ is either the odd or the even elements of S.
- An $A \subseteq E$ is an augmenting path if it is an alternating path between two unmatched vertices.

Bipartite Matching

- Given a matching $A \subseteq E$ (which might be empty), we can increase the matching if we can find an augmenting path S.

Bipartite Matching

- Given a matching $A \subseteq E$ (which might be empty), we can increase the matching if we can find an augmenting path S.
- The updated matching becomes $A^{\prime}=A \backslash S \cup S \backslash A=A \ominus S$, where \ominus is the symmetric difference operator.

Bipartite Matching

- Given a matching $A \subseteq E$ (which might be empty), we can increase the matching if we can find an augmenting path S.
- The updated matching becomes $A^{\prime}=A \backslash S \cup S \backslash A=A \ominus S$, where \ominus is the symmetric difference operator.
- The algorithm becomes:

Algorithm 8.1: Alternating Path Bipartite Matching

1 Let A be an arbitrary (including empty) matching in $G=(V, F, E)$;
2 while There exists an augmenting path S in G do
$3\llcorner A \leftarrow A \ominus S$;

Bipartite Matching

- Given a matching $A \subseteq E$ (which might be empty), we can increase the matching if we can find an augmenting path S.
- The updated matching becomes $A^{\prime}=A \backslash S \cup S \backslash A=A \ominus S$, where \ominus is the symmetric difference operator.
- The algorithm becomes:

Algorithm 8.1: Alternating Path Bipartite Matching

1 Let A be an arbitrary (including empty) matching in $G=(V, F, E)$;
2 while There exists an augmenting path S in G do
$3\lfloor A \leftarrow A \ominus S$;

- This can easily be made to run in $O\left(m^{2} n\right)$, where $|V|=m$, $|F|=n, m \leq n$, but it can be made to run much faster as well (see Schrijver-2003).

Bipartite Matching Example

Consider the following bipartite graph $G=(V, F, E)$ with $|V|=|F|=5$. Any edge is an augmenting path since it will adjoin two unmatched vertices.

Bipartite Matching Example

Any edge, not intersecting nodes adjacent to current matching is an augmenting path.

Bipartite Matching Example

Any edge, not intersecting nodes adjacent to current matching is an augmenting path.

Bipartite Matching Example

No possible further single edge addition at this point. We need a multi-edge augmenting path if it exists.

Bipartite Matching Example

Augmenting path is green and blue edges (blue is already in matching, green is new).

Bipartite Matching Example

Removing blue from matching and adding green leads to higher cardinality matching.

Bipartite Matching Example

At this point, resulting alternating path is not augmenting, since it is not between two unmatched vertices (and no augmenting path is possible).

Bipartite Matching Example

At this point, resulting alternating path is not augmenting, since it is not between two unmatched vertices (and no augmenting path is possible).
At this point, matching is maximum cardinality.

Review

- The next slide is from lecture 7 and the one after from lecture 5 .

Matroid Intersection

- Let $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ be two matroids. Consider their common independent sets $\mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- While $\left(V, \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_{1}$ and $X \in \mathcal{I}_{2}$.

Theorem 11.5.5

Let M_{1} and M_{2} be given as above, with rank functions r_{1} and r_{2}. Then the size of the maximum size set in $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ is given by

$$
\begin{equation*}
\left(r_{1} * r_{2}\right)(V) \triangleq \min _{X \subseteq V}\left(r_{1}(X)+r_{2}(V \backslash X)\right) \tag{11.7}
\end{equation*}
$$

This is an instance of the convolution of two submodular functions, f_{1} and f_{2} that, evaluated at $Y \subseteq V$, is written as:

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(Y)=\min _{X \subseteq Y}\left(f_{1}(X)+f_{2}(Y \backslash X)\right) \tag{11.8}
\end{equation*}
$$

Partition Matroid

- Let V be our ground set.
- Let $V=V_{1} \cup V_{2} \cup \cdots \cup V_{\ell}$ be a partition of V into ℓ blocks (i.e., disjoint sets). Define a set of subsets of V as

$$
\begin{equation*}
\mathcal{I}=\left\{X \subseteq V:\left|X \cap V_{i}\right| \leq k_{i} \text { for all } i=1, \ldots, \ell\right\} \tag{11.3}
\end{equation*}
$$

where k_{1}, \ldots, k_{ℓ} are fixed parameters, $k_{i} \geq 0$. Then $M=(V, \mathcal{I})$ is a matroid.

- Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell=1, V_{1}=V$, and $k_{1}=k$.
- Parameters associated with a partition matroid: ℓ and $k_{1}, k_{2}, \ldots, k_{\ell}$ although often the k_{i} 's are all the same.
- We'll show that property (I3') in Def ?? holds. If $X, Y \in \mathcal{I}$ with $|Y|>|X|$, then there must be at least one i with $\left|Y \cap V_{i}\right|>\left|X \cap V_{i}\right|$. Therefore, adding one element $e \in V_{i} \cap(Y \backslash X)$ to X won't break independence.

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph $G=(V, F, E)$. Define two partition matroids $M_{V}=\left(E, \mathcal{I}_{V}\right)$, and $M_{F}=\left(E, \mathcal{I}_{F}\right)$.

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph $G=(V, F, E)$. Define two partition matroids $M_{V}=\left(E, \mathcal{I}_{V}\right)$, and $M_{F}=\left(E, \mathcal{I}_{F}\right)$.
- Independence in each matroid corresponds to:

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph $G=(V, F, E)$. Define two partition matroids $M_{V}=\left(E, \mathcal{I}_{V}\right)$, and $M_{F}=\left(E, \mathcal{I}_{F}\right)$.
- Independence in each matroid corresponds to:
(1) $I \in \mathcal{I}_{V}$ if $|I \cap(V, f)| \leq 1$ for all $f \in F$,

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph $G=(V, F, E)$. Define two partition matroids $M_{V}=\left(E, \mathcal{I}_{V}\right)$, and $M_{F}=\left(E, \mathcal{I}_{F}\right)$.
- Independence in each matroid corresponds to:
(1) $I \in \mathcal{I}_{V}$ if $|I \cap(V, f)| \leq 1$ for all $f \in F$,
(2) and $I \in \mathcal{I}_{F}$ if $|I \cap(v, F)| \leq 1$ for all $v \in V$.

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph $G=(V, F, E)$. Define two partition matroids $M_{V}=\left(E, \mathcal{I}_{V}\right)$, and $M_{F}=\left(E, \mathcal{I}_{F}\right)$.
- Independence in each matroid corresponds to:
(1) $I \in \mathcal{I}_{V}$ if $|I \cap(V, f)| \leq 1$ for all $f \in F$,
(2) and $I \in \mathcal{I}_{F}$ if $|I \cap(v, F)| \leq 1$ for all $v \in V$.
- Therefore, a matching in G is simultaneously independent in both M_{V} and M_{F} and finding the maximum matching is finding the maximum cardinality set independent in both matroids.

Matroid Intersection and Bipartite Matching

- Why might we want to do matroid intersection?
- Consider bipartite graph $G=(V, F, E)$. Define two partition matroids $M_{V}=\left(E, \mathcal{I}_{V}\right)$, and $M_{F}=\left(E, \mathcal{I}_{F}\right)$.
- Independence in each matroid corresponds to:
(1) $I \in \mathcal{I}_{V}$ if $|I \cap(V, f)| \leq 1$ for all $f \in F$,
(2) and $I \in \mathcal{I}_{F}$ if $|I \cap(v, F)| \leq 1$ for all $v \in V$.
- Therefore, a matching in G is simultaneously independent in both M_{V} and M_{F} and finding the maximum matching is finding the maximum cardinality set independent in both matroids.
- For the bipartite graph case, therefore, this can be solved in polynomial time.

Matroid Intersection and Network Communication

- Let $G_{1}=\left(V_{1}, E\right)$ and $G_{2}=\left(V_{2}, E\right)$ be two graphs on an isomorphic set of edges (lets just give them same names E).

Matroid Intersection and Network Communication

- Let $G_{1}=\left(V_{1}, E\right)$ and $G_{2}=\left(V_{2}, E\right)$ be two graphs on an isomorphic set of edges (lets just give them same names E).
- Consider two cycle matroids associated with these graphs $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$. They might be very different (e.g., an edge might be between two distinct nodes in G_{1} but the same edge is a loop in multi-graph G_{2}.)

Matroid Intersection and Network Communication

- Let $G_{1}=\left(V_{1}, E\right)$ and $G_{2}=\left(V_{2}, E\right)$ be two graphs on an isomorphic set of edges (lets just give them same names E).
- Consider two cycle matroids associated with these graphs $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$. They might be very different (e.g., an edge might be between two distinct nodes in G_{1} but the same edge is a loop in multi-graph G_{2}.)
- We may wish to find the maximum size edge-induced subgraph that is still forest in both graphs (i.e., adding any edges will create a circuit in either M_{1}, M_{2}, or both).

Matroid Intersection and Network Communication

- Let $G_{1}=\left(V_{1}, E\right)$ and $G_{2}=\left(V_{2}, E\right)$ be two graphs on an isomorphic set of edges (lets just give them same names E).
- Consider two cycle matroids associated with these graphs $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$. They might be very different (e.g., an edge might be between two distinct nodes in G_{1} but the same edge is a loop in multi-graph G_{2}.)
- We may wish to find the maximum size edge-induced subgraph that is still forest in both graphs (i.e., adding any edges will create a circuit in either M_{1}, M_{2}, or both).
- This is again a matroid intersection problem.

Matroid Intersection and TSP

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.

Matroid Intersection and TSP

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.

Matroid Intersection and TSP

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From G with n nodes, create G^{\prime} with $n+1$ nodes by duplicating (w.l.o.g.) a particular node $v_{1} \in V(G)$ to v_{1}^{+}, v_{1}^{-}, and have all outgoing edges from v_{1} come instead from v_{1}^{+}and all edges incoming to v_{1} go instead to v_{1}^{-}.

Matroid Intersection and TSP

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From G with n nodes, create G^{\prime} with $n+1$ nodes by duplicating (w.l.o.g.) a particular node $v_{1} \in V(G)$ to v_{1}^{+}, v_{1}^{-}, and have all outgoing edges from v_{1} come instead from v_{1}^{+}and all edges incoming to v_{1} go instead to v_{1}^{-}.
- Let M_{1} be the cycle matroid on G^{\prime}.

Matroid Intersection and TSP

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From G with n nodes, create G^{\prime} with $n+1$ nodes by duplicating (w.l.o.g.) a particular node $v_{1} \in V(G)$ to v_{1}^{+}, v_{1}^{-}, and have all outgoing edges from v_{1} come instead from v_{1}^{+}and all edges incoming to v_{1} go instead to v_{1}^{-}.
- Let M_{1} be the cycle matroid on G^{\prime}.
- Let M_{2} be the partition matroid having as independent sets those that have no more than one edge leaving any node - i.e., $I \in \mathcal{I}\left(M_{2}\right)$ if $\left|I \cap \delta^{+}(v)\right| \leq 1$ for all $v \in V\left(G^{\prime}\right)$.

Matroid Intersection and TSP

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From $\overline{G \text { with } n \text { nodes, create } G^{\prime} \text { with } n+1 \text { nodes by duplicating }}$ (w.l.o.g.) a particular node $v_{1} \in V(G)$ to v_{1}^{+}, v_{1}^{-}, and have all outgoing edges from v_{1} come instead from v_{1}^{+}and all edges incoming to v_{1} go instead to v_{1}^{-}.
- Let M_{1} be the cycle matroid on G^{\prime}.
- Let M_{2} be the partition matroid having as independent sets those that have no more than one edge leaving any node - i.e., $I \in \mathcal{I}\left(M_{2}\right)$ if $\left|I \cap \delta^{+}(v)\right| \leq 1$ for all $v \in V\left(G^{\prime}\right)$.
- Let M_{3} be the partition matroid having as independent sets those that have no more than one edge entering any node - i.e., $I \in \mathcal{I}\left(M_{3}\right)$ if $\left|I \cap \delta^{-}(v)\right| \leq 1$ for all $v \in V\left(G^{\prime}\right)$.

Matroid Intersection and TSP

- Definition: a Hamiltonian cycle is a cycle that passes through each node exactly once.
- Given directed graph G, goal is to find such a Hamiltonian cycle.
- From G with n nodes, create G^{\prime} with $n+1$ nodes by duplicating (w.l.o.g.) a particular node $v_{1} \in V(G)$ to v_{1}^{+}, v_{1}^{-}, and have all outgoing edges from v_{1} come instead from v_{1}^{+}and all edges incoming to v_{1} go instead to v_{1}^{-}.
- Let M_{1} be the cycle matroid on G^{\prime}.
- Let M_{2} be the partition matroid having as independent sets those that have no more than one edge leaving any node - i.e., $I \in \mathcal{I}\left(M_{2}\right)$ if $\left|I \cap \delta^{+}(v)\right| \leq 1$ for all $v \in V\left(G^{\prime}\right)$.
- Let M_{3} be the partition matroid having as independent sets those that have no more than one edge entering any node - i.e., $I \in \mathcal{I}\left(M_{3}\right)$ if $\left|I \cap \delta^{-}(v)\right| \leq 1$ for all $v \in V\left(G^{\prime}\right)$.
- Then a Hamiltonian cycle exists iff there is an n-element intersection of M_{1}, M_{2}, and M_{3}.

Matroid Intersection and TSP

- Since TSP is NP-complete, we obviously can't solve matroid intersections of 3 more matroids, unless $P=N P$.

Matroid Intersection and TSP

- Since TSP is NP-complete, we obviously can't solve matroid intersections of 3 more matroids, unless $\mathrm{P}=\mathrm{NP}$.
- But bipartite graph example gives us hope for 2 matroids, and also ideas for an algorithm ...

Recall from Lecture 5: Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not surprising that circuits can also characterize a matroid.

Theorem 11.5.1

Matroid (by circuits) Let E be a set and \mathcal{C} be a collection of nonempty subsets of E, such that no two sets in \mathcal{C} are contained in each other.
Then the following are equivalent.
(1) (C1) \mathcal{C} is the collection of circuits of a matroid;
(2) (C2) if $C, C^{\prime} \in \mathcal{C}$, and $x \in C \cap C^{\prime}$, then $\left(C \cup C^{\prime}\right) \backslash\{x\}$ contains a set in \mathcal{C};
(3) (C3) if $C, C^{\prime} \in \mathcal{C}$, and $x \in C \cap C^{\prime}$, and $y \in C \backslash C^{\prime}$, then $\left(C \cup C^{\prime}\right) \backslash\{x\}$ contains a set in \mathcal{C} containing y;

Fundamental circuits in matroids

Lemma 11.5.2

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup\{e\}$ contains at most one circuit in M.

Proof.

Fundamental circuits in matroids

Lemma 11.5.2

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup\{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_{1}, C_{2} such that $C_{1} \cup C_{2} \subseteq I \cup\{e\}$.

Fundamental circuits in matroids

Lemma 11.5.2

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup\{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_{1}, C_{2} such that $C_{1} \cup C_{2} \subseteq I \cup\{e\}$.
- Then $e \in C_{1} \cap C_{2}$, and by (C2), there is a circuit C_{3} of M s.t. $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\} \subseteq I$

Fundamental circuits in matroids

Lemma 11.5.2

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup\{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_{1}, C_{2} such that $C_{1} \cup C_{2} \subseteq I \cup\{e\}$.
- Then $e \in C_{1} \cap C_{2}$, and by (C2), there is a circuit C_{3} of M s.t. $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\} \subseteq I$
- This contradicts the independence of I.

Fundamental circuits in matroids

Lemma 11.5.2

Let $I \in \mathcal{I}(M)$, and $e \in E$, then $I \cup\{e\}$ contains at most one circuit in M.

Proof.

- Suppose, to the contrary, that there are two distinct circuits C_{1}, C_{2} such that $C_{1} \cup C_{2} \subseteq I \cup\{e\}$.
- Then $e \in C_{1} \cap C_{2}$, and by (C2), there is a circuit C_{3} of M s.t. $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\} \subseteq I$
- This contradicts the independence of I.

In general, let $C(I, e)$ be the unique circuit associated with $I \cup\{e\}$ (commonly called the fundamental circuit in M w.r.t. I and e).

Matroid Intersection Algorithm Idea

- Consider two matroids $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ and start with any $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.

Matroid Intersection Algorithm Idea

- Consider two matroids $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ and start with any $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- Consider some $v_{1} \notin \operatorname{span}_{1}(I)$, so that $I+v_{1} \in \mathcal{I}_{1}$.

Matroid Intersection Algorithm Idea

- Consider two matroids $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ and start with any $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- Consider some $v_{1} \notin \operatorname{span}_{1}(I)$, so that $I+v_{1} \in \mathcal{I}_{1}$.
- If $I+v_{1} \in \mathcal{I}_{2}$, then v_{1} is "augmenting", and we can augment I to $I+v_{1}$ and still be independent in both M_{1} and M_{2}.

Matroid Intersection Algorithm Idea

- Consider two matroids $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ and start with any $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- Consider some $v_{1} \notin \operatorname{span}_{1}(I)$, so that $I+v_{1} \in \mathcal{I}_{1}$.
- If $I+v_{1} \in \mathcal{I}_{2}$, then v_{1} is "augmenting", and we can augment I to $I+v_{1}$ and still be independent in both M_{1} and M_{2}.
- If $I+v_{1} \notin \mathcal{I}_{2}, \exists C_{2}\left(I, v_{1}\right)$ a circuit in M_{2}, and choosing $v_{2} \in C_{2}\left(I, v_{1}\right)$ s.t. $v_{2} \neq v_{1}$ leads to $I+v_{1}-v_{2}$ which (because $\left.\operatorname{span}_{2}(I)=\operatorname{span}_{2}\left(I+v_{1}-v_{2}\right)\right)$ is again independent in M_{2}. $I+v_{1}-v_{2}$ is also independent in M_{1}. Note, $v_{2} \in I$.

Matroid Intersection Algorithm Idea

- Consider two matroids $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ and start with any $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- Consider some $v_{1} \notin \operatorname{span}_{1}(I)$, so that $I+v_{1} \in \mathcal{I}_{1}$.
- If $I+v_{1} \in \mathcal{I}_{2}$, then v_{1} is "augmenting", and we can augment I to $I+v_{1}$ and still be independent in both M_{1} and M_{2}.
- If $I+v_{1} \notin \mathcal{I}_{2}, \exists C_{2}\left(I, v_{1}\right)$ a circuit in M_{2}, and choosing $v_{2} \in C_{2}\left(I, v_{1}\right)$ s.t. $v_{2} \neq v_{1}$ leads to $I+v_{1}-v_{2}$ which (because $\left.\operatorname{span}_{2}(I)=\operatorname{span}_{2}\left(I+v_{1}-v_{2}\right)\right)$ is again independent in M_{2}. $I+v_{1}-v_{2}$ is also independent in M_{1}. Note, $v_{2} \in I$.
- Next choose a $v_{3} \in \operatorname{span}_{1}(I)-\operatorname{span}_{1}\left(I-v_{2}\right)$ to recover what was lost in $I \cup\left\{v_{1}\right\}$ when we removed v_{2} from it. Note, $v_{3} \notin I$.

Matroid Intersection Algorithm Idea

- Consider two matroids $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ and start with any $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- Consider some $v_{1} \notin \operatorname{span}_{1}(I)$, so that $I+v_{1} \in \mathcal{I}_{1}$.
- If $I+v_{1} \in \mathcal{I}_{2}$, then v_{1} is "augmenting", and we can augment I to $I+v_{1}$ and still be independent in both M_{1} and M_{2}.
- If $I+v_{1} \notin \mathcal{I}_{2}, \exists C_{2}\left(I, v_{1}\right)$ a circuit in M_{2}, and choosing $v_{2} \in C_{2}\left(I, v_{1}\right)$ s.t. $v_{2} \neq v_{1}$ leads to $I+v_{1}-v_{2}$ which (because $\left.\operatorname{span}_{2}(I)=\operatorname{span}_{2}\left(I+v_{1}-v_{2}\right)\right)$ is again independent in M_{2}. $I+v_{1}-v_{2}$ is also independent in M_{1}. Note, $v_{2} \in I$.
- Next choose a $v_{3} \in \operatorname{span}_{1}(I)-\operatorname{span}_{1}\left(I-v_{2}\right)$ to recover what was lost in $I \cup\left\{v_{1}\right\}$ when we removed v_{2} from it. Note, $v_{3} \notin I$.
- Then $\operatorname{span}_{1}(I)=\operatorname{span}_{1}\left(I-v_{2}+v_{3}\right)$.

Matroid Intersection Algorithm Idea

- Consider two matroids $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ and start with any $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- Consider some $v_{1} \notin \operatorname{span}_{1}(I)$, so that $I+v_{1} \in \mathcal{I}_{1}$.
- If $I+v_{1} \in \mathcal{I}_{2}$, then v_{1} is "augmenting", and we can augment I to $I+v_{1}$ and still be independent in both M_{1} and M_{2}.
- If $I+v_{1} \notin \mathcal{I}_{2}, \exists C_{2}\left(I, v_{1}\right)$ a circuit in M_{2}, and choosing $v_{2} \in C_{2}\left(I, v_{1}\right)$ s.t. $v_{2} \neq v_{1}$ leads to $I+v_{1}-v_{2}$ which (because $\left.\operatorname{span}_{2}(I)=\operatorname{span}_{2}\left(I+v_{1}-v_{2}\right)\right)$ is again independent in M_{2}. $I+v_{1}-v_{2}$ is also independent in M_{1}. Note, $v_{2} \in I$.
- Next choose a $v_{3} \in \operatorname{span}_{1}(I)-\operatorname{span}_{1}\left(I-v_{2}\right)$ to recover what was lost in $I \cup\left\{v_{1}\right\}$ when we removed v_{2} from it. Note, $v_{3} \notin I$.
- Then $\operatorname{span}_{1}(I)=\operatorname{span}_{1}\left(I-v_{2}+v_{3}\right)$.
- Moreover, since $I+v_{1} \in \mathcal{I}_{1}, v_{1} \notin \operatorname{span}_{1}(I)$, so $\operatorname{span}_{1}\left(I+v_{1}\right)=\operatorname{span}_{1}\left(I+v_{1}-v_{2}+v_{3}\right)$.

Matroid Intersection Algorithm Idea

- Consider two matroids $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ and start with any $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- Consider some $v_{1} \notin \operatorname{span}_{1}(I)$, so that $I+v_{1} \in \mathcal{I}_{1}$.
- If $I+v_{1} \in \mathcal{I}_{2}$, then v_{1} is "augmenting", and we can augment I to $I+v_{1}$ and still be independent in both M_{1} and M_{2}.
- If $I+v_{1} \notin \mathcal{I}_{2}, \exists C_{2}\left(I, v_{1}\right)$ a circuit in M_{2}, and choosing $v_{2} \in C_{2}\left(I, v_{1}\right)$ s.t. $v_{2} \neq v_{1}$ leads to $I+v_{1}-v_{2}$ which (because $\left.\operatorname{span}_{2}(I)=\operatorname{span}_{2}\left(I+v_{1}-v_{2}\right)\right)$ is again independent in M_{2}. $I+v_{1}-v_{2}$ is also independent in M_{1}. Note, $v_{2} \in I$.
- Next choose a $v_{3} \in \operatorname{span}_{1}(I)-\operatorname{span}_{1}\left(I-v_{2}\right)$ to recover what was lost in $I \cup\left\{v_{1}\right\}$ when we removed v_{2} from it. Note, $v_{3} \notin I$.
- Then $\operatorname{span}_{1}(I)=\operatorname{span}_{1}\left(I-v_{2}+v_{3}\right)$.
- Moreover, since $I+v_{1} \in \mathcal{I}_{1}, v_{1} \notin \operatorname{span}_{1}(I)$, so $\operatorname{span}_{1}\left(I+v_{1}\right)=\operatorname{span}_{1}\left(I+v_{1}-v_{2}+v_{3}\right)$.
- But $I+v_{1}-v_{2}+v_{3}$ might not be independent in M_{2} again, so need to find an $v_{4} \in C_{2}\left(I+v_{1}-v_{2}, v_{3}\right), v_{4} \in I$ to remove, and so on.

Matroid Intersection Algorithm Idea

- Hopefully (eventually) we'll find an odd length sequence $S=\left(v_{1}, v_{2}, \ldots, v_{s}\right)$ such that we will be independent in both M_{1} and M_{2} and thus be one greater in size than I.

Matroid Intersection Algorithm Idea

- Hopefully (eventually) we'll find an odd length sequence $S=\left(v_{1}, v_{2}, \ldots, v_{s}\right)$ such that we will be independent in both M_{1} and M_{2} and thus be one greater in size than I.
- We will have $v_{i} \notin I$ for i odd (will be shown in blue), and will have $v_{i} \in I$ for i even (will be shown in green), while $v \in I \backslash S$ will be shown in red.

Matroid Intersection Algorithm Idea

- Hopefully (eventually) we'll find an odd length sequence $S=\left(v_{1}, v_{2}, \ldots, v_{s}\right)$ such that we will be independent in both M_{1} and M_{2} and thus be one greater in size than I.
- We will have $v_{i} \notin I$ for i odd (will be shown in blue), and will have $v_{i} \in I$ for i even (will be shown in green), while $v \in I \backslash S$ will be shown in red.
- We then replace I with $I \ominus S$ (quite analogous to the bipartite matching case), and start again.

Graphic Matroid Intersection Example

Consider the following two graph $G_{1}=\left(V_{1}, E\right)$ and $G_{2}=\left(V_{2}, E\right)$ and corresponding matroids $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$. Any edge is independent in both (an augmenting "sequence") since a single edge can't create a circuit starting at $I=\emptyset$. We start with e_{4}.

Graphic Matroid Intersection Example

Setting $I \leftarrow e_{4}$ with edge e_{4} creates a circuit neither in M_{1} nor M_{2}. We can add another single edge w/o creating a circuit in either matroid.

Graphic Matroid Intersection Example

$e_{5} \in E-\operatorname{span}_{1}\left(\left\{e_{4}\right\}\right)$. Then, after $I \leftarrow I+e_{5}$, (i.e., when $I=\left\{e_{4}, e_{5}\right\}$) we're still independent in M_{2}, but no further single edge additions possible w/o creating a circuit (why?).

Graphic Matroid Intersection Example

$e_{5} \in E-\operatorname{span}_{1}\left(\left\{e_{4}\right\}\right)$. Then, after $I \leftarrow I+e_{5}$, (i.e., when $I=\left\{e_{4}, e_{5}\right\}$) we're still independent in M_{2}, but no further single edge additions possible w/o creating a circuit (why?). We need a multi-edge "augmenting sequence" if it exists.

Graphic Matroid Intersection Example

Augmenting sequence is green and blue edges (blue is already in I, green is new). We choose $e_{2} \in E-\operatorname{span}_{1}(I)$, but now $I+e_{2}$ is not independent in M_{2}.

Graphic Matroid Intersection Example

So there must exist $C_{2}\left(I, e_{2}\right)$. We choose $e_{4} \in C_{2}\left(I, e_{2}\right)$ to remove.

Graphic Matroid Intersection Example

Next, we choose $e_{1} \in \operatorname{span}_{1}(I)-\operatorname{span}_{1}\left(I-e_{4}\right)$ to add.

Graphic Matroid Intersection Example

Next, we choose $e_{1} \in \operatorname{span}_{1}(I)-\operatorname{span}_{1}\left(I-e_{4}\right)$ to add. In this case, we not only have $\operatorname{span}_{1}\left(I+e_{2}\right)=\operatorname{span}_{1}\left(I+e_{2}-e_{4}+e_{1}\right)$, but we also have that $\left(I+e_{2}-e_{4}\right)+e_{1} \in \mathcal{I}_{2}$.

Graphic Matroid Intersection Example

Removing blue and adding green leads to higher cardinality independent set in both matroids. This corresponds to doing $I \leftarrow I \ominus S$ where $S=\left(e_{2}, e_{4}, e_{1}\right)$ and $I=\left\{e_{4}, e_{5}\right\}$.

Graphic Matroid Intersection Example

At this point, are any further augmenting sequences possible? Exercise.

Alternating and Augmenting Sequences

- Let I be an intersection of two matroids $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$ (i.e., $\left.I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$.

Alternating and Augmenting Sequences

- Let I be an intersection of two matroids $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$ (i.e., $\left.I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$.
- Let $S=\left(e_{1}, e_{2}, \ldots, e_{s}\right)$ be a sequence of distinct elements, where $e_{i} \in E-I$ for i odd, and $e_{i} \in I$ for i even, and let $S_{i}=\left(e_{1}, e_{2}, \ldots, e_{i}\right)$. We say that S is an alternating sequence w.r.t. I if the following are true.

Alternating and Augmenting Sequences

- Let I be an intersection of two matroids $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$ (i.e., $\left.I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$.
- Let $S=\left(e_{1}, e_{2}, \ldots, e_{s}\right)$ be a sequence of distinct elements, where $e_{i} \in E-I$ for i odd, and $e_{i} \in I$ for i even, and let $S_{i}=\left(e_{1}, e_{2}, \ldots, e_{i}\right)$. We say that S is an alternating sequence w.r.t. I if the following are true.
(1) $I+e_{1} \in \mathcal{I}_{1}$

Alternating and Augmenting Sequences

- Let I be an intersection of two matroids $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$ (i.e., $\left.I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$.
- Let $S=\left(e_{1}, e_{2}, \ldots, e_{s}\right)$ be a sequence of distinct elements, where $e_{i} \in E-I$ for i odd, and $e_{i} \in I$ for i even, and let $S_{i}=\left(e_{1}, e_{2}, \ldots, e_{i}\right)$. We say that S is an alternating sequence w.r.t. I if the following are true.
(1) $I+e_{1} \in \mathcal{I}_{1}$
(2) For all even $i, \operatorname{span}_{2}\left(I \ominus S_{i}\right)=\operatorname{span}_{2}(I)$ which implies that $I \ominus S_{i} \in \mathcal{I}_{2}$.

Alternating and Augmenting Sequences

- Let I be an intersection of two matroids $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$ (i.e., $\left.I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$.
- Let $S=\left(e_{1}, e_{2}, \ldots, e_{s}\right)$ be a sequence of distinct elements, where $e_{i} \in E-I$ for i odd, and $e_{i} \in I$ for i even, and let $S_{i}=\left(e_{1}, e_{2}, \ldots, e_{i}\right)$. We say that S is an alternating sequence w.r.t. I if the following are true.
(1) $I+e_{1} \in \mathcal{I}_{1}$
(2) For all even $i, \operatorname{span}_{2}\left(I \ominus S_{i}\right)=\operatorname{span}_{2}(I)$ which implies that $I \ominus S_{i} \in \mathcal{I}_{2}$.
(3) For all odd $i, \operatorname{span}_{1}\left(I \ominus S_{i}\right)=\operatorname{span}_{1}\left(I+e_{1}\right)$, and therefore $I \ominus S_{i} \in \mathcal{I}_{1}$.

Alternating and Augmenting Sequences

- Let I be an intersection of two matroids $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$ (i.e., $\left.I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$.
- Let $S=\left(e_{1}, e_{2}, \ldots, e_{s}\right)$ be a sequence of distinct elements, where $e_{i} \in E-I$ for i odd, and $e_{i} \in I$ for i even, and let
$S_{i}=\left(e_{1}, e_{2}, \ldots, e_{i}\right)$. We say that S is an alternating sequence w.r.t. I if the following are true.
(1) $I+e_{1} \in \mathcal{I}_{1}$
(2) For all even $i, \operatorname{span}_{2}\left(I \ominus S_{i}\right)=\operatorname{span}_{2}(I)$ which implies that $I \ominus S_{i} \in \mathcal{I}_{2}$.
(3) For all odd $i, \operatorname{span}_{1}\left(I \ominus S_{i}\right)=\operatorname{span}_{1}\left(I+e_{1}\right)$, and therefore $I \ominus S_{i} \in \mathcal{I}_{1}$.
- Lastly, if also, $|S|=s$ is odd, and $I \ominus S \in \mathcal{I}_{2}$, then S is called an augmenting sequence w.r.t. I.

Alternating and Augmenting Sequences

- If I admits an augmenting sequence S, then the above argument shows that $I \ominus S$ is independent in M_{1}, independent in M_{2}, and also we have that $|I|+1=|I \ominus S|$.

Alternating and Augmenting Sequences

- If I admits an augmenting sequence S, then the above argument shows that $I \ominus S$ is independent in M_{1}, independent in M_{2}, and also we have that $|I|+1=|I \ominus S|$.
- Thus, by finding augmenting sequences, we can increase the size of the matroid intersection until we stop. Moreover, we have:

Proposition 11.5.3

If there is an augmenting sequence, then the intersection is not maximum.

Alternating and Augmenting Sequences

- If I admits an augmenting sequence S, then the above argument shows that $I \ominus S$ is independent in M_{1}, independent in M_{2}, and also we have that $|I|+1=|I \ominus S|$.
- Thus, by finding augmenting sequences, we can increase the size of the matroid intersection until we stop. Moreover, we have:

Proposition 11.5.3

If there is an augmenting sequence, then the intersection is not maximum.

- We next wish to show that, if the intersection is not maximum, then there is an augmenting sequence.

Border graphs

- We construct an auxiliary directed bipartite graph (Border graph) $B(I)=(E \backslash I, I, Z)$, relative to the current I, that will help us with this problem. The graph has only directed edges from $E \backslash I$ to I, or from I back to $E \backslash I$.

Border graphs

- We construct an auxiliary directed bipartite graph (Border graph) $B(I)=(E \backslash I, I, Z)$, relative to the current I, that will help us with this problem. The graph has only directed edges from $E \backslash I$ to I, or from I back to $E \backslash I$.
- Left-going edges: For each $e_{i} \in \operatorname{span}_{1}(I) \backslash I$, create $e_{i} \leftarrow e_{j}$ directed edge $\left(e_{j}, e_{i}\right) \in Z$ from all $e_{j} \in C_{1}\left(I, e_{i}\right) \backslash\left\{e_{i}\right\}$. Note $e_{j} \in I$ and $e_{i} \in E \backslash I$.

Border graphs

- We construct an auxiliary directed bipartite graph (Border graph) $B(I)=(E \backslash I, I, Z)$, relative to the current I, that will help us with this problem. The graph has only directed edges from $E \backslash I$ to I, or from I back to $E \backslash I$.
- Left-going edges: For each $e_{i} \in \operatorname{span}_{1}(I) \backslash I$, create $e_{i} \leftarrow e_{j}$ directed edge $\left(e_{j}, e_{i}\right) \in Z$ from all $e_{j} \in C_{1}\left(I, e_{i}\right) \backslash\left\{e_{i}\right\}$. Note $e_{j} \in I$ and $e_{i} \in E \backslash I$.
- If $e_{i} \notin \operatorname{span}_{1}(I)$, then e_{i} has in-degree zero (a source).

Border graphs

- We construct an auxiliary directed bipartite graph (Border graph) $B(I)=(E \backslash I, I, Z)$, relative to the current I, that will help us with this problem. The graph has only directed edges from $E \backslash I$ to I, or from I back to $E \backslash I$.
- Left-going edges: For each $e_{i} \in \operatorname{span}_{1}(I) \backslash I$, create $e_{i} \leftarrow e_{j}$ directed edge $\left(e_{j}, e_{i}\right) \in Z$ from all $e_{j} \in C_{1}\left(I, e_{i}\right) \backslash\left\{e_{i}\right\}$. Note $e_{j} \in I$ and $e_{i} \in E \backslash I$.
- If $e_{i} \notin \operatorname{span}_{1}(I)$, then e_{i} has in-degree zero (a source).
- Right-going edges: For each $e_{i} \in \operatorname{span}_{2}(I) \backslash I$, create $e_{i} \rightarrow e_{j}$ edge $\left(e_{i}, e_{j}\right) \in Z$ to all $e_{j} \in C_{2}\left(I, e_{i}\right) \backslash\left\{e_{i}\right\}$.

Border graphs

- We construct an auxiliary directed bipartite graph (Border graph) $B(I)=(E \backslash I, I, Z)$, relative to the current I, that will help us with this problem. The graph has only directed edges from $E \backslash I$ to I, or from I back to $E \backslash I$.
- Left-going edges: For each $e_{i} \in \operatorname{span}_{1}(I) \backslash I$, create $e_{i} \leftarrow e_{j}$ directed edge $\left(e_{j}, e_{i}\right) \in Z$ from all $e_{j} \in C_{1}\left(I, e_{i}\right) \backslash\left\{e_{i}\right\}$. Note $e_{j} \in I$ and $e_{i} \in E \backslash I$.
- If $e_{i} \notin \operatorname{span}_{1}(I)$, then e_{i} has in-degree zero (a source).
- Right-going edges: For each $e_{i} \in \operatorname{span}_{2}(I) \backslash I$, create $e_{i} \rightarrow e_{j}$ edge $\left(e_{i}, e_{j}\right) \in Z$ to all $e_{j} \in C_{2}\left(I, e_{i}\right) \backslash\left\{e_{i}\right\}$.
- If $e_{i} \notin \operatorname{span}_{2}(I)$, then e_{i} has out-degree zero (a sink).

Border graph Example

- $\left\{e_{2}, e_{7}, e_{8}\right\}$ are sources and $\left\{e_{1}, e_{3}, e_{6}\right\}$ are sinks. $I=\left\{e_{4}, e_{5}\right\}$. $\operatorname{span}_{1}(I) \backslash I=\left\{e_{1}, e_{3}, e_{6}\right\}$ and $\operatorname{span}_{2}(I) \backslash I=\left\{e_{7}, e_{2}, e_{8}\right\}$

Border graph Example

- $\left\{e_{2}, e_{7}, e_{8}\right\}$ are sources and $\left\{e_{1}, e_{3}, e_{6}\right\}$ are sinks. $I=\left\{e_{4}, e_{5}\right\}$. $\operatorname{span}_{1}(I) \backslash I=\left\{e_{1}, e_{3}, e_{6}\right\}$ and $\operatorname{span}_{2}(I) \backslash I=\left\{e_{7}, e_{2}, e_{8}\right\}$
- $C_{1}\left(I, e_{1}\right) \backslash\left\{e_{1}\right\}=C_{1}\left(I, e_{3}\right) \backslash\left\{e_{3}\right\}=C_{1}\left(I, e_{6}\right) \backslash\left\{e_{6}\right\}=e_{4}$.

Border graph Example

- $\left\{e_{2}, e_{7}, e_{8}\right\}$ are sources and $\left\{e_{1}, e_{3}, e_{6}\right\}$ are sinks. $I=\left\{e_{4}, e_{5}\right\}$. $\operatorname{span}_{1}(I) \backslash I=\left\{e_{1}, e_{3}, e_{6}\right\}$ and $\operatorname{span}_{2}(I) \backslash I=\left\{e_{7}, e_{2}, e_{8}\right\}$
- $C_{1}\left(I, e_{1}\right) \backslash\left\{e_{1}\right\}=C_{1}\left(I, e_{3}\right) \backslash\left\{e_{3}\right\}=C_{1}\left(I, e_{6}\right) \backslash\left\{e_{6}\right\}=e_{4}$.
- $C_{2}\left(I, e_{7}\right) \backslash\left\{e_{7}\right\}=e_{5}, C_{2}\left(I, e_{2}\right) \backslash\left\{e_{2}\right\}=C_{2}\left(I, e_{8}\right) \backslash\left\{e_{8}\right\}=e_{4}$.

Border graph Example

- $\left\{e_{2}, e_{7}, e_{8}\right\}$ are sources and $\left\{e_{1}, e_{3}, e_{6}\right\}$ are sinks. $I=\left\{e_{4}, e_{5}\right\}$. $\operatorname{span}_{1}(I) \backslash I=\left\{e_{1}, e_{3}, e_{6}\right\}$ and $\operatorname{span}_{2}(I) \backslash I=\left\{e_{7}, e_{2}, e_{8}\right\}$
- $C_{1}\left(I, e_{1}\right) \backslash\left\{e_{1}\right\}=C_{1}\left(I, e_{3}\right) \backslash\left\{e_{3}\right\}=C_{1}\left(I, e_{6}\right) \backslash\left\{e_{6}\right\}=e_{4}$.
- $C_{2}\left(I, e_{7}\right) \backslash\left\{e_{7}\right\}=e_{5}, C_{2}\left(I, e_{2}\right) \backslash\left\{e_{2}\right\}=C_{2}\left(I, e_{8}\right) \backslash\left\{e_{8}\right\}=e_{4}$.
- Augmenting sequences are $\left(e_{2}, e_{4}, e_{1}\right),\left(e_{2}, e_{4}, e_{3}\right)$, and $\left(e_{2}, e_{4}, e_{6}\right)$, all dipaths in the Border graph.

Border graph Example

- $\left\{e_{2}, e_{7}, e_{8}\right\}$ are sources and $\left\{e_{1}, e_{3}, e_{6}\right\}$ are sinks. $I=\left\{e_{4}, e_{5}\right\}$. $\operatorname{span}_{1}(I) \backslash I=\left\{e_{1}, e_{3}, e_{6}\right\}$ and $\operatorname{span}_{2}(I) \backslash I=\left\{e_{7}, e_{2}, e_{8}\right\}$
- $C_{1}\left(I, e_{1}\right) \backslash\left\{e_{1}\right\}=C_{1}\left(I, e_{3}\right) \backslash\left\{e_{3}\right\}=C_{1}\left(I, e_{6}\right) \backslash\left\{e_{6}\right\}=e_{4}$.
- $C_{2}\left(I, e_{7}\right) \backslash\left\{e_{7}\right\}=e_{5}, C_{2}\left(I, e_{2}\right) \backslash\left\{e_{2}\right\}=C_{2}\left(I, e_{8}\right) \backslash\left\{e_{8}\right\}=e_{4}$.
- Augmenting sequences are $\left(e_{2}, e_{4}, e_{1}\right),\left(e_{2}, e_{4}, e_{3}\right)$, and $\left(e_{2}, e_{4}, e_{6}\right)$, all dipaths in the Border graph. Exercise: Are there others?

Identifying Augmenting Sequences

Lemma 11.5.4

If S is a source-sink path in $B(I)$, and there is no shorter source-sink path between the same source and sink (i.e., there are no short-cuts), then S is an augmenting sequence w.r.t. I.

Identifying Augmenting Sequences

Lemma 11.5.4

If S is a source-sink path in $B(I)$, and there is no shorter source-sink path between the same source and sink (i.e., there are no short-cuts), then S is an augmenting sequence w.r.t. I.

Lemma 11.5.5

Let I and J be matroid intersections of M_{1} and M_{2} such that $|I|+1=|J|$. Then there exists a source-sink path S in $B(I)$ where $S \subseteq I \ominus J$.

Identifying Augmenting Sequences

Theorem 11.5.6

Let I_{p} and I_{p+1} be intersections of M_{1} and M_{2} with p and $p+1$ elements respectively. Then there exists an augmenting sequence $S \subseteq I_{p} \ominus I_{p+1}$ w.r.t. I_{p}.

Identifying Augmenting Sequences

Theorem 11.5.6

Let I_{p} and I_{p+1} be intersections of M_{1} and M_{2} with p and $p+1$ elements respectively. Then there exists an augmenting sequence $S \subseteq I_{p} \ominus I_{p+1}$ w.r.t. I_{p}.

Theorem 11.5.7

An intersection is of maximum cardinality iff it admits no augmenting sequence.

Identifying Augmenting Sequences

Theorem 11.5.6

Let I_{p} and I_{p+1} be intersections of M_{1} and M_{2} with p and $p+1$ elements respectively. Then there exists an augmenting sequence $S \subseteq I_{p} \ominus I_{p+1}$ w.r.t. I_{p}.

Theorem 11.5.7

An intersection is of maximum cardinality iff it admits no augmenting sequence.

Theorem 11.5.8

For any intersection I, there exists a maximum cardinality intersection I^{*} such that $\operatorname{span}_{1}(I) \subseteq \operatorname{span}_{1}\left(I^{*}\right)$ and $\operatorname{span}_{2}(I) \subseteq \operatorname{span}_{2}\left(I^{*}\right)$.

Identifying Augmenting Sequences

Theorem 11.5.6

Let I_{p} and I_{p+1} be intersections of M_{1} and M_{2} with p and $p+1$ elements respectively. Then there exists an augmenting sequence $S \subseteq I_{p} \ominus I_{p+1}$ w.r.t. I_{p}.

Theorem 11.5.7

An intersection is of maximum cardinality iff it admits no augmenting sequence.

Theorem 11.5.8

For any intersection I, there exists a maximum cardinality intersection I^{*} such that $\operatorname{span}_{1}(I) \subseteq \operatorname{span}_{1}\left(I^{*}\right)$ and $\operatorname{span}_{2}(I) \subseteq \operatorname{span}_{2}\left(I^{*}\right)$.

All this can be made to run in poly time.

